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ABSTRACT 

Vector-borne and zoonotic diseases comprise a serious public health concern globally. 

Over the past 30 years, an increase in newly-emerging vector-borne pathogens, coupled with the 

broader dispersal of known pathogens, has resulted in substantial challenges for public health 

intervention and prevention programs. This burden highlights the need for continued 

improvement of modeling approaches and prediction methods to help identify areas vulnerable to 

infection, thereby contributing toward more efficient distributions of limited public health 

resources.  

The field of disease ecology emphasizes interactions between disease system components 

and the natural environment, recognizing that humans are not always the catalyst for pathogen 

dispersal and distributions. While incorporating environmental factors in assessing potential 

pathogen risk is a logical first step, complexities in this approach exist because pathogens are 

nested within the broader community ecology of host, vector, and reservoir species, and often, 

not all of these elements are known. Although this element poses challenges to understanding 

limiting factors of specific environmental pathogens, the multitude of components within 

individual disease systems offer several avenues from which to study patterns, providing insight 

into risk. Mosquito vectors are one such component. This knowledge, coupled with advances in 

geospatial technologies, provides excellent opportunities to model environmental factors 

contributing to potential pathogen distributions and to help predict disease risk in humans.  

Here, I present three ecological modeling approaches to quantify and predict suitable 

environments, abundances, and connectivity for three mosquito vector species important to 

human and domestic livestock health. The first chapter delivers a global model of suitable 

environments for Aedes aegypti and Ae. albopictus under present and future climate change 
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calibrated on presence-only data. The second chapter outlines a new approach to predicting Ae. 

mcintoshi abundances in Kenya and western Somalia at an 8-day temporal resolution during 

October to January from 2002 – 2015. The third chapter demonstrates the potential to investigate 

Ae. mcintoshi population genetic structure and associations between environmental variables 

across eastern Kenya using gene sequence data. Each of these chapters address individual 

research questions using a disease ecology approach, while contributing more broadly to 

knowledge of mosquito vector ecologies and the potential for human disease risk. 
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INTRODUCTION 

Vector-borne and zoonotic diseases comprise a serious public health concern globally 

(Reisen 2010, Kilpatrick and Randolph 2012). Vector-borne diseases are infections transmitted 

to humans, usually by arthropods, such as insects or ticks (Meade and Earickson 2000). Over the 

past 30 years, an increase in newly-emerging vector-borne pathogens, coupled with the broader 

dispersal of known pathogens, has resulted in substantial challenges for public health 

intervention and prevention programs (Kilpatrick and Randolph 2012). This burden highlights 

the need for continued improvement of modeling approaches and prediction methods to help 

identify areas vulnerable to infection, thereby contributing toward more efficient distributions of 

limited public health resources.  

The field of epidemiology centers largely on characterizing disease risk as a function of 

detected occurrence in humans (Last et al. 1995), but often, humans do not play a central role in 

pathogen maintenance in the environment (Pavlovsky 1966). This knowledge, although not 

recognized widely in traditional epidemiology (Peterson 2014), is not a new concept. In the 

1930s, E.N. Pavlovsky stated formally that zoonotic disease systems exist in the natural 

environment independent of disease incidence in humans, noting that risk in humans occurred 

only when encountering these environments (Pavlovsky 1966). The field of disease ecology 

stems from this paradigm, emphasizing interactions between disease system components and the 

natural environment, recognizing that humans are not always the catalyst for pathogen dispersal 

and distributions (Ostfeld et al. 2008, Peterson 2014). Pavlovsky stated further that identifying 

environmental factors and geographic barriers that limit the spatial distribution of a disease 

provides the information necessary to map and to predict future disease risk in a given area 

(Pavlovsky 1966).  
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While incorporating environmental factors in assessing potential pathogen risk is a 

logical first step, complexities in this approach exist because pathogens are nested within the 

broader community ecology of host, vector, and reservoir species, and often, not all of these 

elements are known (Plowright et al. 2008). Although this element poses challenges to 

understanding limiting factors of specific environmental pathogens, the multitude of components 

within individual disease systems offer several avenues from which to study patterns, providing 

insight into risk (Plowright et al. 2008). Disease vectors, and more specifically, mosquito vectors 

are one such component. This knowledge, coupled with advances in geospatial technologies, 

provides excellent opportunities to model environmental factors contributing to potential 

pathogen distributions and to help predict disease risk in humans (Kalluri et al. 2007).  

Here, I present three ecological modeling approaches to quantify and predict suitable 

environments, abundances, and connectivity for three mosquito vector species important to 

human and domestic livestock health. The first chapter delivers a global model of suitable 

environments for Aedes aegypti and Ae. albopictus under present and future climate change 

calibrated on presence-only data. Aedes aegypti and Ae. albopictus are important vectors of 

dengue, chikungunya, and Zika viruses, as well as being implicated as vectors of yellow fever, 

Japanese encephalitis, and a suite of additional pathogens (Rogers et al. 2006, Hayes 2009, Pages 

et al. 2009, Lambrechts et al. 2010, Jentes et al. 2011). The second chapter outlines a new 

approach to predicting Ae. mcintoshi abundances in Kenya and western Somalia at an 8-day 

temporal resolution during October to January from 2002 – 2015. Aedes mcintoshi is a primary 

mosquito vector for Rift Valley fever virus in East Africa (Linthicum et al. 1985, Pepin et al. 

2010, Rosmoser et al. 2011, Tchouassi et al. 2014), an important human and livestock disease 

that results in devastating economic losses in affected regions (Murithi et al. 2011, Chengula et 
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al. 2013). The third chapter demonstrates the potential to investigate Ae. mcintoshi population 

genetic structure and associations between environmental variables across eastern Kenya using 

gene sequence data. Understanding connectivity between vector populations across a landscape 

provides a new toolset from which to predict the potential for pathogen dispersal across different 

geographic regions. Each of these chapters address individual research questions using a disease 

ecology approach, while contributing more broadly to knowledge of mosquito vector ecologies 

and the potential for human disease risk. 
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CHAPTER 1  

Climate Change Influences on Global Distributions of Dengue and Chikungunya Virus Vectors  

 

The global distributional potential of mosquito-borne viruses has seen considerable 

research attention in recent years, and particularly as regards viruses transmitted by Aedes 

mosquitoes (Brady et al. 2012; Charrel et al. 2007; Jentes et al. 2011; Rogers et al. 2006; Van 

Kleef et al. 2010). These diseases—e.g., dengue, yellow fever, and chikungunya—present 

serious public health concerns, particularly in light of recent spread events, in which each of the 

diseases has emerged either in new regions (Depoortere et al. 2008) or in new environments 

(Massad et al. 2003; Vasconcelos et al. 2001). As a consequence, Aedes-transmitted viral 

diseases have been of considerable concern in recent years across much of the Tropics and 

Subtropics worldwide. 

 The situation for this suite of diseases is complicated still more by the global spread of 

two vector species, Aedes aegypti and Ae. albopictus (Benedict et al. 2007; Caminade et al. 

2012; Erickson et al. 2012; Simard et al. 2005). These two species have spread essentially 

worldwide at lower and middle latitudes in recent decades, providing new or newly reinfested, 

particularly efficient vectors for transmission of ‘forest diseases’ to humans, particularly in 

periurban settings (Massad et al. 2003). Of particular interest are a series of intriguing results 

regarding interactions between the two species: Ae. albopictus appears to be the superior larval 

competitor (Braks et al. 2004; Juliano et al. 2004; Lounibos et al. 2002), yet Ae. aegypti appears 

to be the vector species responsible for most or all massive outbreaks of dengue (Lambrechts et 

al. 2010). As a consequence, quite a bit is to be gained from a deep understanding of the present 

geographic distribution of these species, which has been the focus of several recent studies 
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(Benedict et al. 2007; Bhatt et al. 2013; Caminade et al. 2012; Fischer et al. 2014; Lambrechts et 

al. 2010); however, in light of already-occurring changes in climate and the possible 

distributional opportunities that these open for the mosquitoes, as well as the ongoing evolution 

of the actual distributions of these two globally invasive species (ALA 2014; Derraik 2006; 

Holder et al. 2010), a predictive view of their distributional potential into coming decades as 

global climates change is also useful. 

 In this paper, then, we use correlative ecological niche modeling approaches (Peterson et 

al. 2011) to evaluate and assess the distributional potential of Aedes aegypti and Ae. albopictus at 

present and, most importantly, into the future. We use diverse models and scenarios for future 

climate conditions, and constrain our results and interpretations carefully to avoid 

overinterpretation of pattern in the data. The chief result—that, with the exception of smaller 

regional shifts, distributional potential of these two species will likely be relatively stable in 

coming decades—can be understood as the consequence of broad climate tolerances by these 

two species, such that changes in global climate over coming decades may not translate into 

major distributional shifts in these vector species. Model results also, however, point to the 

potential for reorganization of the distributions of the two species, each in response to its own 

particular ecological niche profile, in several areas, which may have implications for disease 

transmission. 

 

Methods 

We collected primary occurrence data (i.e., data documenting occurrences of individual 

animals at points in time and space) for the two focal species (Aedes aegypti and Ae. albopictus), 

and indeed records for the entire genus Aedes, accumulating digital accessible records from 
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VectorMap (http://vectormap.org/), Atlas of Living Australia (http://www.ala.org.au/), 

speciesLink (http://www.splink.org.br/), and GBIF (http://www.gbif.org/; searches made 09 

April 2013; individual totals of records not possible, as these data sources frequently overlap in 

their coverage of specific data records). The data for the two focal species were used to calibrate 

models, as is described in detail below; the data for the broader genus were used to characterize 

sampling effort across the Earth, which is quite uneven, focusing on the many species in the 

genus, such that collecting intensity and sampling techniques would be broadly representative of 

sampling that would yield records of the focal species; this step was necessitated by the almost-

universal lack of reporting of negative data in biodiversity data sets (i.e., “searched for species X 

but did not find it”). Data were inspected to remove data records not referring to this genus of 

mosquitoes. Finally, to provide a qualitative independent test of model predictions, one of us 

(DML) extracted an independent data set from the broader scientific literature, gray literature, 

and personal collections; these data were not used in model calibration, for lack of information 

on underlying sampling, but provided a useful check on how comprehensive our model 

predictions really are. 

To summarize sampling effort globally, we created a ‘fishnet’ at a spatial resolution of 

10’ that was coincident in position and orientation with the environmental data that would be 

used in model calibration (see below). Via this polygon shapefile, we counted individual records 

out of the 118,134 overall records of the genus falling in each of the square polygons—these 

sampling intensities varied from 0 (covering approximately 99.5% of the terrestrial portion of the 

Earth’s surface) to as many as 454 data records in a single 10’ pixel. Using these counts as 

values, we created a raster data set that could be used to represent sampling intensity for this 

genus. 
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We characterized present-day climates (1950-2000) via data layers provided as part of the 

WorldClim climate data archive (Hijmans et al. 2005). Specifically, we used the 19 ‘bioclimatic’ 

variables (10’ resolution) that are derived from monthly average maximum temperature, monthly 

average minimum temperature, and monthly precipitation, all across the half-century time 

period. We obtained parallel data layers for general circulation model (GCM) projections to 2050 

from the CMIP4 future-climate model projections (CI 2014); these future-climate projections 

summarized 4-8 different GCMs (i.e., distinct implementations of simulation models for global 

climate dynamics) for three scenarios of future-climate emissions (A2, B1, A1B).  

Ecological niche models were calibrated in Maxent, version 3.3.3 (Phillips et al. 2006). 

Initial exploratory runs served to detect a number of apparent artifacts in some of the climate 

datasets: bio 8-9, bio 18-19 were particularly notable in the present-day coverages, apparently as 

a consequence of their linking between temperature and precipitation variables, so we removed 

them from analysis at the outset; a few other variables presented odd artifacts upon visual 

inspection, and also were removed. To reduce dimensionality, and to reduce collinearity among 

layers, we applied principal components analysis to the remaining bioclimatic layers, and used 

the component loadings in the present to transform the future-climate model projections in 

parallel. We used initial, exploratory Maxent runs with its jackknife functionality to explore the 

relative contributions of each of the principal components, and eliminated layers that showed 

consistently low contribution to model predictions. As a consequence, we ran final models based 

on sets of 6 and 8 principal components for each species.  

To provide a general evaluation of the predictive ability of our models, and also to allow 

decisions about whether the 6- or 8-component models were preferable for interpretation, we 

used partial receiver operating characteristic (ROC) analysis (Peterson et al. 2008). Given 
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concerns about the appropriateness of traditional ROC applications (Lobo et al. 2008), which 

plots omission and commission errors across a set of model thresholds, and compares the area 

under that curve to the area under a line of null expectations, the partial ROC approach rescales 

one axis of the ROC curve to reflect proportional area identified as suitable (instead of 

commission error), and focuses only on predictions that have acceptable levels of omission error 

(termed E; in this case, we used E = 5%). We subset spatially unique occurrence points randomly 

into equal portions for model calibration and model evaluation. Partial ROC calculations were 

carried out via programs developed by N. Barve (http://hdl.handle.net/1808/10059). Probability 

values were determined by direct count of AUC ratios <1.0, among 1000 replicate 50% bootstrap 

subsamplings. 

In general, final models were calibrated in Maxent with its bootstrapping/replicated run 

functionality. In view of the apparently massive invasive potential of both mosquito species 

involved (Benedict et al. 2007; Jansen & Beebe 2010), we used a very broad hypothesis of the 

accessible area (M) for them, considering much of the world, and eliminating only the highest 

southern latitudes (i.e., < 60° S). We set aside 50% of input occurrence points as a ‘test 

percentage,’ and conducted 10 replicate analyses to consider effects of particular calibration data 

sets on model outcomes. The sampling bias layer described above was included in the Maxent 

“bias layer” function as a guide to sampling towards a characterization of the broader 

‘background’  for model fitting, akin to pseudoabsence sampling in other niche modeling 

algorithms (Phillips et al. 2009); this layer is illustrated in the Supplementary Materials, and is 

available as a GeoTIFF dataset at http://hdl.handle.net/1808/15275. Models were calibrated for 

present-day conditions, and then transferred onto each of the future-climate scenarios and models 

that were available to us (see Table 1 for a summary). 
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Table 1. Summary of future-climate scenarios (B1, A1B, and A2) and climate models assessed.  

Model Host country A1B and A2 B1 

BCCR-BCM 2.0 Norway X X 

CSIRO-MK 3.0 Australia X  

CSIRO-MK 3.5 Australia X X 

INM-CM 3.0 Russia X X 

MIROC medium resolution Japan X X 

NCAR-CCSM 3.0 United States X X 

 

Once all models were calibrated and all future transfers developed, we used the median 

value for all replicate analyses for each combination of model, scenario, and number of principal 

components. We then calculated the median of medians for a given scenario and number of 

principal components, seeking a central tendency across all of the replicate models developed 

from different random resamplings from available occurrence data. We calculated differences 

between future and present in these logistic suitability scores; we also thresholded the data using 

an E = 5% training presence data criterion, in which we sought the highest suitability score that 

included 95% of the data used to calibrate the models, to convert raw suitability scores into 

binary estimates of potential presence and absence across regions, with the estimate of E derived 

from assessment of approximate error rates in input data (Peterson et al. 2008). Based on these 

binary outputs, we explored anticipated range expansions and contractions. 

 

Results 

 In all, we assembled 2108 and 8040 occurrence records for Aedes aegypti and Ae. 

albopictus, respectively, which distilled down to 338 and 350 spatially unique records at the 
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resolution of our analysis. The overall picture of sampling of Aedes mosquitoes, however, 

indicated sampling of this genus as rather more concentrated in the temperate zone than are the 

populations of these two species (Figure 1). In preliminary explorations, inclusion of this surface 

as a ‘bias layer’ in model calibration made significant differences in model outputs, such that we 

emphasize the importance of considering sampling effort in any modeling exercises that are cast 

on an uneven landscape of sampling, even within the accessible area for a species. 

 

Figure 1. Summary of primary occurrence data available globally for Aedes mosquitoes in 

general (blue), and Ae. aegypti (black) and Ae. albopictus (yellow) in particular. 

 

  

Calibrating models across the entire accessible region for the species (i.e., most of the 

world) based on a subset of available occurrences resulted in model predictions that performed 

uniformly better than random expectations. That is, using partial ROC analysis on random 50% 

subsets of data set aside from model calibration, all comparisons yielded AUC ratios that were 

significantly above null expectations (P < 0.001). Comparing among different numbers of 
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principal components as descriptors of environmental spaces, AUC ratios for 8-component 

models were higher than those for 6-component models by 1.72-2.57%; hence, we focused all 

subsequent explorations on models based on 8 principal components (6-component results are 

presented in the Supplementary Materials, and do not differ markedly from those for 8-

component models). 

 Model predictions for the present day reflected well the known global distributions of 

each of the two species (Figure 2). Indeed, some of the more interesting features include an 

indication of markedly broader distributional potential for Aedes aegypti than for Ae. albopictus 

in Australia, and indeed perhaps overall broader distributional potential in tropical and 

subtropical regions for Ae. aegypti, but then, curiously, a broader overall potential distribution of 

Ae. albopictus in North America. These explorations also confirm that these two successful 

invasive species have indeed fulfilled much or all of their invasive potential globally—broad 

regions that appear to be suitable climatically, but from which no occurrence data were available 

to us included eastern China, Vietnam, Philippines, Borneo, and northeastern Brazil for Ae. 

aegypti, and South America, Africa, India, Japan, and New Zealand for Ae. albopictus. 

Nonetheless, searches via Google Scholar quickly revealed known presences of these species in 

almost all of these areas (Dias et al. 1997; Honório et al. 2003; Huber et al. 2002; Kalra et al. 

1997; Kobayashi et al. 2002; Macdonald & Rajapaksa 1972; Pagès et al. 2009; Savage et al. 

1992; Schultz 1993; Tsuda et al. 2001), so the gap is one of availability of occurrence data, rather 

than absence of the species from these potential areas. The sole significant exception is that of 

New Zealand, which has been reached by Ae. albopictus, but apparently does not yet have 

established populations (Derraik 2006; Holder et al. 2010; Laird et al. 1994). 
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Figure 2. Summary of modeled potential distributional patterns of Aedes aegypti and Ae. 

albopictus under present-day conditions based on analysis of 8 principal components. 
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Model transfers to future conditions were generally similar to present-day patterns, at 

least in the broadest terms (A1B scenario shown in Figure 3; other scenarios provided in 

Supplementary Materials). For Aedes aegypti, model predictions indicated some potential for 

northward expansion in eastern North America, South Asia, and East Asia, and southward in 

Africa and Australia; broadening distributional potential was indicated in interior South America 

and Central Africa. For Ae. albopictus, model predictions gave clearer indications of expanding 

distributional potential in eastern North America and East Asia, plus expanding potential across 

Africa and in eastern and southern South America; distributional potential in Australia was 

anticipated to expand rather markedly for this species. 
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Figure 3. Summary of modeled potential distributional patterns of Aedes aegypti and Ae. 

albopictus under future conditions (A1B) based on analysis of 8 principal components. 

Confidence in present-day and future distributional potential is based on agreement among 6 

climate models (Table 1): present-day-only distributional areas are shown in blue, with model 

agreement regarding stability of present-day distributional areas shown via the intensity of blue 

shading (light blue = low, dark blue = high model agreement); future distributional potential is 

shown as shades of orange (light orange = low, dark orange = high model agreement in 

predicting future suitability).  

Assessing the distributional potential of the two species in tandem suggests a complex 

mosaic of the distributions of the two species around the world (Figure 4): while Aedes 

albopictus has the broadest potential distribution in North America, Ae. aegypti appears to have a 

broader potential in Africa and Australia. Assessing how the distributional patterns of the two 

species will change, continent by continent, we see complex rearrangements (Figure 5): Ae. 

aegypti appears to gain potential distributional area in South America, lose ground in Australia, 

and rearrange its distributional area in Europe, while Ae. albopictus may be able to expand its 

distributional area more than Ae. aegypti in North America; Asia shows particularly complicated 

shifts in dominance of the two species geographically. 
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Figure 4. Summary of patterns of potential distributional overlap derived from ecological niche 

models of Aedes aegypti and Ae. albopictus worldwide, both under current conditions and under 

modeled future conditions (A1B scenario), based on 8 principal components. 
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Figure 5. Summary of patterns of change in potential presence and distributional overlap of 

Aedes aegypti and Ae. albopictus worldwide under the A1B scenario, continent by continent. 

Patterns of shift under climate change scenario A1B are shown via transition matrices for each 

continent: rows indicate present-day situation, and columns indicate model projections of future 

potential. AL = Ae. albopictus, AE = Ae. aegypti, B = both species, -- = neither species. 

Discussion 

Mosquito distributions are highly dynamic in space and time, as their life cycles are short 

and heavily influenced by environmental variation (Crans 2004). Therefore, their distributions 

respond fluidly to new opportunities, e.g., in terms of (1) overcoming dispersal barriers to 

colonize new areas (e.g., the global invasion of the two species under analysis herein) (Benedict 

et al. 2007), (2) ready expansion into new areas as conditions change and improve for their 

population biology (Roiz et al. 2011), and (3) the dynamic interactions and potential competitive 

exclusion between the two species (Braks et al. 2004; Juliano et al. 2004; Lounibos et al. 2002). 

As such, for example, the difference between the two species in terms of Australian distribution 

is intriguing—while Ae. aegypti is present and established, Ae. albopictus is not established 
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there, in spite of having been introduced to at least four states (ALA 2014): based on our results, 

we view this lack of establishment as reflecting non-ideal conditions for the species in Australia, 

although Fischer et al. (2011) presented a more optimistic and suitable picture for the species 

under present-day conditions in Australia, and certainly the Australian Quarantine Service has 

expended considerable effort in assuring its non-establishment. Similarly demonstrated 

colonization pressure by this species without successful establishment has occurred in New 

Zealand, though probably thanks to rapid and effective mitigation efforts (Holder et al. 2010). 

More generally, in view of the impressive dispersal and colonization abilities of these two 

species, our models of potential distributional areas replicate quite well their actual present-day 

distributional areas. 

Our models, while largely coincident with known present-day distributions of the two 

species, were developed to explore climate change implications for these two species. Still, these 

models did fail in replicating some aspects of the species’ known, present-day distributions, as 

can be appreciated from Figure 6, with the overlay of independent occurrence data. For example, 

model predictions failed to identify suitable habitat for Ae. albopictus in northeastern Mexico 

and northeastern Brazil. This omission error was likely a consequence of incomplete sampling in 

our training data set, resulting in under-representation or no representation of environmental 

combinations manifested in these regions.. Although incomplete input data may account for 

some model failures, anthropogenic factors could also impact model results locally: for example, 

Aedes albopictus populations introduced into and established in Los Angeles, in southern 

California (Zhong et al. 2013) may be able to survive there thanks to urban subsidy of moisture, 

but the details are not clear. In addition to omissions, model predictions appeared to extrapolate 

into several high-latitude regions (e.g., Greenland), reflecting model extrapolation beyond the set 
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of environmental conditions associated with the calibration region. These inconsistencies may 

derive from peripherality of environmental characteristics of occurrences within the calibration 

region, leading to wild and inappropriate extrapolation (Owens et al. 2013). 

 

Figure 6. Overlay of independent occurrence data set (yellow triangles) on model predictions for 

present-day potential distributions of Aedes aegypti and Ae. albopictus. Green boxes delimit 

areas in which model predictions failed to anticipate known occurrences. 

 

 

Our future-climate projections, however, indicate considerable potential for shifting 

establishment of these two vector species in several directions, as follows: (1) more broadly in 
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eastern North America, (2) farther south in southern South America (particularly in Ae. aegypti); 

(3) locally northward into southern Europe, (4) more broadly in Central Africa, (5) more broadly 

in East Asia, and (6) across northern and eastern Australia (Ae. albopictus). While these potential 

range shifts in response to climate are relatively subtle, they are the implications of 

environmental shifts that would transform areas from presenting conditions outside of the 

modeled ecological niches of the vector species (e.g., no establishment in Australia despite 

repeated introductions) to presenting conditions that do permit maintenance of populations. 

Clearly, even within the present distributional areas of these species, changing conditions may 

cause changes in their abundance and dominance, although those shifts are not included in our 

present modeling efforts (Martínez-Meyer et al. 2012). 

Regional-scale modeling efforts have shed considerable light on the distributional 

potential of Ae. albopictus, thanks to a series of detailed analyses (Fischer et al. 2014; Fischer et 

al. 2011). These studies have provided a level of rigor that is unusual in the present literature on 

climate change effects on species’ distributions, and offers considerable detail on likely 

distributional shifts of this species across Europe as climates change. Both the Fischer et al. 

(2011) models and our own results indicate a curious middle-latitude focus of suitability for Ae. 

albopictus in Europe, which contrasts with the southern and southeastern suitability profiles for 

this species in North America. 

The relative roles and importance of these two species in dengue transmission appear to 

be unequal. That is, a recent analysis indicated that Ae. albopictus does not appear to drive major 

dengue outbreaks (Lambrechts et al. 2010), such that Ae. aegypti emerges as the chief driver of 

large-scale dengue transmission. Both the pattern of known occurrences and the maps of 

potential distributions for the two species, in large part, suggest that Ae. aegypti is more 



20 
 

extensive distributionally than Ae. albopictus, with the exceptions of eastern North America and 

East Asia, neither of which has a long history of dengue transmission; both of these regions, 

however, appear now to have active transmission (Radke et al. 2012; Ramos et al. 2008; Wu et 

al. 2010). These imbalances, however, may not hold for other Aedes-transmitted diseases, such 

as chikungunya, which is readily transmitted by Ae. albopictus, at least in some cases (Tsetsarkin 

et al. 2011), and which has shown recent major distributional expansion (Fischer et al. 2013; Van 

Bortel et al. 2014), with importation events presenting potential for further colonization (Centers 

for Disease Control and Prevention 2006). 

The global distribution of Aedes-borne viruses, particularly dengue, has seen a lot of 

attention in the scientific literature in recent years (e.g., Bhatt et al. 2013; Brady et al. 2012). 

However, these efforts have not included deep contemplation and detailed mapping of 

distributions and distributional shifts in vector species: rather, they have focused in largest part 

on human infections. While clearly vector populations can exist without virus presence, such 

populations set the stage for easy disease introduction, as is evidenced by recent dengue 

emergence in the southern USA (Radke et al. 2012; Ramos et al. 2008), particularly as both 

vector populations and human populations rearrange spatially in response to climate change (in 

the case of the vectors) and economic opportunity (humans). In this sense, we see the results of 

the present study as offering a quantitative input that can be incorporated into future summaries 

of human disease distributions—to this end, we have placed GeoTIFF versions of our raster 

model outputs in a data repository at the University of Kansas 

(http://hdl.handle.net/1808/15275).  

The models presented herein are far from definitive, however. While this study is novel 

in its global scope with consideration of multiple models and climate change scenarios, several 
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‘next steps’ emerge as highly desirable. First, the availability of large quantities of occurrence 

data for mosquitoes globally is simultaneously an opportunity and a constraint: the opportunity is 

that as much data as we found were readily available for analysis; however, these data are still 

sparse and even lacking for some key regions (e.g., most of Asia, much of South America, parts 

of the United States). Clearly, more data exist, but are cloistered in national, institutional, and 

even personal research databases, and are not available to the broader community.  

Second, distributional complexities need also to be incorporated into these models. The 

competitive interactions between the two species when they co-occur present a first dimension of 

complexity. Another major trend in dengue transmission has been its urbanization in many parts 

of the world—this trend, and the unique opportunities offered to the mosquitoes by urban 

environments, is not reflected in these models, and yet is crucial to understanding present-day 

dengue transmission (Jansen & Beebe 2010). Multiscalar, nested models may represent a useful 

way forward for dealing with such effects.  

Finally, a major factor in transmission of mosquito-borne diseases is the effect of 

temporal and spatiotemporal dynamics of conditions. For example, a recent analysis indicated 

the potential for chikungunya transmission across the eastern United States, but in very limited 

seasons at the northernmost site analyzed (New York City), such that transmission would not be 

at all efficient (Ruiz-Moreno et al. 2012). A previous study by our research group (Peterson et al. 

2005) indicated clear predictivity of spatiotemporal dynamics of dengue vector mosquito 

populations across Mexico, but further exploration of this potential has been stymied by lack of 

adequate and sufficiently dense (in time and space) occurrence data for the species. Overall, 

though, the indication is of a system that is highly predictable, and one in which climate change 
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is likely to produce distributional shifts that, while not massive, will have significant public 

health implications worldwide.  
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CHAPTER 2  

A New Approach for Predicting Abundances of Aedes mcintoshi, a Primary Rift Valley Fever 

Virus Mosquito Vector 

 

Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic disease of great economic, 

livestock, and human health importance in Africa and the Arabian Peninsula [1,2]. Transmission 

of RVFV to humans generally involves direct contact with infected tissues or body fluids of 

animals, or bites of infected mosquitoes [3]. Human illness from RVFV often goes undetected, 

or results in flu-like symptoms, but a more severe form of the virus may present, resulting in 

ocular disease, meningoencephalitis or hemorrhagic fever, the latter with a case-fatality rate of 

50% [4]. Symptoms of RVFV in livestock are less likely to be asymptomatic. High numbers of 

simultaneous, spontaneous abortions among ruminants (so-called “abortion storms”) and high 

mortality rates among young animals accompany epizootics [5]. Effects of epizootics on 

domestic livestock herds are devastating, and result in tremendous economic losses and food 

insecurity for communities whose livelihoods depend on livestock [6]. RVFV has also been 

detected in a wide variety of wild ruminants, from African buffalo to giraffes, but without the 

pronounced symptoms displayed in livestock [7]. 

Current RVFV forecasting models use persistence of above-average rainfall, positive 

Normalized Difference Vegetation Index anomalies, cloud coverage measurements, and El Niño 

Southern Oscillation information to guide early warning systems [8-13]. However, this approach 

treats mosquito population ecology as homogenous among vector species: predictions are made 

for the aggregate abundances of both primary and secondary mosquito vectors. Although this 

approach has seen some success in predicting RVFV risk to general locations and time periods 
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[8,9,14-17], model outputs do not identify the specific timing and locations of high abundances 

of primary vectors, and thus, potential virus emergence. Identifying drivers of high abundances 

of primary vector species will contribute to a better understanding of RVFV ecology, improve 

current prediction methods, and contribute to more efficient allocation of veterinary and public 

health resources. 

Mosquito vectors in the genera Aedes and Culex are responsible for RVFV maintenance 

and amplification in natural environments [18]. Primary vector ecology is a key component in 

the RVFV disease system, warranting special consideration when inferring risk. Evidence 

suggests that adult Aedes mosquitoes in the subgenera Neomelaniconion and Aedimorphus 

transmit the virus transovarially to their eggs, strongly implicating these species as primary 

disease vectors [3]. Adult Aedes mosquitoes can emerge already infected with the virus, before 

feeding on wild or domestic ungulates, thereby establishing low levels of virus activity within a 

geographic area. If suitable environmental conditions persist, Culex mosquitoes emerge, acting 

as secondary vectors that amplify the virus broadly across vulnerable populations [18]. In Kenya, 

where 11 epizootics occurred between 1951 and 2007 [19], the mosquito species Ae. mcintoshi 

(included within the subgenus Neomelaniconion)  has been implicated as an important RVFV 

primary vector [5,20], with evidence of transovarial transmission [21,22] and high RVFV 

prevalence in the species during the 2006-2007 epizootic in this region [3].  

Early field studies provided fundamental information regarding Ae. mcintoshi population 

biology and ecology. Ae. mcintoshi prefer “dambo” habitats: shallow depressions in the 

landscape that become flooded following heavy rainfall [23,24]. Linthicum, Bailey, Davies and 

Kairo [25] flooded a dambo artificially for 18 continuous days and found that female emergence 

occurred at ~14 days, and blood feeding at ~18 days; mosquito life expectancy was <45 days, 
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female dispersal was low (~0.15 km), and direction of dispersal did not always correspond to 

surface winds. Logan, et al. conducted a sequence of artificial flooding events and found that 

~90% of Ae. mcintoshi eggs hatched during the initial flooding of a dambo habitat, with fewer 

eggs hatching in subsequent flooding periods. Our study uses the biological knowledge gained 

from these initial field studies to predict Ae. mcintoshi adult abundances across broader 

landscapes and at different time periods, using georeferenced mosquito abundance data, remotely 

sensed environmental variables, and a predictive modelling approach. 

Specifically, we investigated effects from land surface temperature, cumulative 

precipitation, compound topographic wetness index values, and percent clay in the soil on adult 

Ae. mcintoshi abundances, using zero-inflated negative binomial regression and a multimodel 

averaging approach. We hypothesized that wetness index values, land surface temperatures, and 

cumulative precipitation would all have positive effects on subsequent adult abundance. We 

hypothesized that because soils with more clay retain water better, higher percent clay would be 

associated with lower probabilities of so-called “structural” zeros in the zero-inflated model 

framework (see Methods). Having parameterized models with available Ae. mcintoshi survey 

data, we used the model to predict Ae. mcintoshi abundances retrospectively across Kenya and 

western Somalia over the months leading up to the 2006 – 2007 RVFV epizootic in the study 

region, and we compared those values to retrospective predictions for dates across a 14 year time 

period (2002 to 2016) to observe general differences between predicted values during epizootic 

and inter-epizootic time periods.  
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Methods 

 Rainfall varies greatly across Kenya, with more moisture in the West. Kenya experiences 

two rainy seasons referred to as the “short rains” (October to December) and the “long rains” 

(March through May), that coincide with movement of the intertropical convergence zone 

(ITCZ) [26]. More rainfall occurs from October to December during warm El Niño Southern 

Oscillation (ENSO) anomalies [27].  

Mosquito abundance data for Ae. mcintoshi at 23 locations across Kenya were acquired 

by RS and JL as part of ongoing studies in the United States Army Medical Research Unit in 

Kenya (Figure 1). The data consisted of repeat sampling at each location for 3 to 4 days, usually 

twice yearly from 2007 to 2012, except for 2011. CO2-baited CDC light traps were placed 

overnight at sample sites, and trapped mosquitoes were identified to species by Kenya Medical 

Research Institute entomology personnel.  

 
 

Figure 1. Sample site locations and elevation in  

 

study area. 

 

 



34 
 

 A total of 158 sampling days were accumulated across all locations during the study 

period, with abundance values ranging from 0 to 4,426 individuals; dates on which sampling 

took place but the species was not recorded were assigned an abundance value of zero; such zero 

counts represented 41% of the total counts (Figure 2).  

 

Figure 2. Count frequencies from 0 to 50 and 51 to 5,000. 

 

We obtained Land Surface Temperature/Emissivity data from the Moderate Resolution 

Spectroradiometry Shuttle Mission (MODIS) Aqua sensor at an 8-day temporal resolution and 1 

km spatial resolution through the Reverb ECHO NASA data portal 

(http://reverb.echo.nasa.gov/reverb). Climate Hazards Group Infrared Precipitation with Stations 

(CHIRPS) data were obtained through the University of California at Santa Barbara data portal at 

a daily temporal resolution and a 5 km spatial resolution (http://chg.ucsb.edu/index.html).  

Compound topographic wetness index values [28] were derived from Shuttle Radar Topography 

Mission (SRTM) version 4.0 data at a 90 m spatial resolution accessed through the Consultative 

Group on International Agricultural Research Consortium for Spatial Information 

(http://srtm.csi.cgiar.org/). Minimum and maximum wetness index values within a 500 m radius 
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of each sampling location were calculated. Percentage of soil clay content was obtained at a 1 

km spatial resolution from the Global Soil Dataset for Earth System Modeling Soils [29].  

Environmental values were extracted from raster pixels at the geographic location of each 

sample site using the raster package in R [30]. Daily cumulative precipitation data corresponding 

to sampling dates were constructed in three time windows: sampling date to 14 days prior, 14 to 

18 days before the sampling date, and 14 to 28 days prior. Land surface temperature data were 

acquired in 8-day mean composites. We identified the date of sampling and then subtracted 8, 

16, and 24 days from the sampling date. The composite data with dates closest to this subtracted 

value were used in the analysis (Table 1). 

 

Table 1. Environmental variables included in candidate models. 

Variable Spatial Resolution Temporal Period 

Minimum Wetness Index 90 m aggregated to 500 m Static 

Maximum Wetness Index 90 m aggregated to 500 m Static 

8 day Land Surface Temperature 1 km 8 day 

16 day Land Surface Temperature 1 km 8 day 

24 day Land Surface Temperature 1 km 8 day 

Cumulative Precipitation 0 - 14 5 km Daily  

Cumulative Precipitation 14 - 18 5 km Daily  

Cumulative Precipitation 14 - 28 5 km Daily  

Percent Clay in the Soil 1 km Static 

 

Our count data included a greater number of zeros than may be expected under a Poisson 

or negative binomial distribution (Figure 2). Ignoring this phenomenon would have led to large 

biases in estimated parameters and their standard errors, and zeros can contribute to 

overdispersion [31,32], so we used a zero-inflated statistical modelling approach. Zeros may 

result from inevitable ecological factors or human error, including sampling error, observer error, 

or situations in which suitable habitat is present, but is not occupied due to essentially random 
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events [32]. Following standard zero-inflated modelling approaches, we refer to zeros recorded 

owing to inevitable circumstances as “structural” zeros, and to those recorded by chance due to 

sampling variation as “sampling” zeros [31]. The zero-inflated regression models that we used 

are mixture models that fit processes for both structural and sampling zeros [33]. Yau et al. [34] 

parameterized the zero-inflated negative binomial distribution as 

( 0) (1 )

1
( ) (1 ) (1 ) , 1,2,...

k

k y

P Y p p t

y k
P Y y p t t y

y

   

  
     

 

  

where 0<p<1 is the probability of a structural zero, 
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
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, and   is the mean of the negative 

binomial distribution used for the sampling part of the model. So the three parameters of the 

zero-inflated negative binomial used here are p, t and k (or, alternatively, p, k, and  ). Zero-

inflated regression modelling is a standard technique used in ecology and entomology [35-37].  

We evaluated the importance of relationships between mosquito abundances and our various 

environmental variables using an Akaike’s Information Criterion (AIC) and a Bayesian 

Information Criterion (BIC) approach [38-40]. Lower AIC or BIC scores indicate better-

supported models. AIC model weights (denoted AICw) were also calculated; these values sum to 

1 across all models, and indicate the weight of evidence supporting a model. Likewise, BIC 

weights (BICw) were computed. Best-performing models were considered the so-called 99% 

confidence set of models [39], i.e., for AIC, the models with highest AICw values and with a 

cumulative sum of these weights just exceeding 0.99.  Importance of predictors was assessed 

using a standard sum-of-weights approach [39]: the sum of AICw (respectively, BICw) values for 

all models in the 99% confidence set that contained a given predictor was computed, this sum 

being an index of importance of that predictor. Model-averaged coefficients were also computed, 
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using a weighted average of the coefficients of the models in the 99% confidence set, with 

weights being the AICw (respectively, BICw) values. We fit zero-inflated negative binomial 

models to a random sample of 80% of our data set (n = 127), assigning Ae. mcintoshi abundance 

values as the response variable and the assembled environmental data as predictor variables 

(with different subsets of variables used in different models). All models were fitted using the 

zeroinfl function specifying a negative binomial distribution with a logit link in the pscl package 

in R 3.13 [41]. 

We calculated a Pearson’s correlation matrix to assess the potential for multicollinearity 

between environmental variables, and found high correlation values within, but not between, sets 

of variables (S1 Table). Only one land surface temperature variable, precipitation variable, and 

wetness index variable were included in a candidate model at the same time. Percent clay could 

be included in the zero-inflated portion of a model, but not in the negative binomial portion.  

 We investigated model residuals from the lowest-AIC model for evidence of spatial 

autocorrelation using a spline correlogram in the ncf package in R [42,43], and found no 

evidence of it (S1 Fig). Although sampling dates were inconsistent across study site locations 

and time periods, we investigated the potential for residual temporal autocorrelation. Plots of 

model residuals against sampling dates did not identify obvious temporal patterns in the residuals 

(S2 Fig). 

Estimated parameters from best performing models were used to predict mosquito 

abundances using a random sample of 20% of the abundance data (n = 31) withheld from the 

regression models, and a root mean square predictive error was calculated to evaluate accuracy. 

We used the predict function in the pscl package, with type = “response” to incorporate both the 
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structural zero portion and the sampling portion of the zero-inflated negative binomial model 

when predicting values [41,44].   

For retrospective predictions, unsampled locations were generated across the study region 

at 10 km intervals, predictions were generated from each model in the 99% confidence set, and a 

weighted average of predictions was computed using the AICw values as weights. Predicted 

values were rasterized into a 10 x 10 km grid for visualization purposes. Values greater than 

50,000 were considered extrapolative and excluded from visualizations, based on the fact that the 

greatest number of mosquitoes trapped in a single day across all species in our study locations 

was 47,694.  

Results and Discussion 

Model results indicated that relationships between environmental variables and Ae. 

mcintoshi abundances can be detected using remote sensing and that parameters derived from 

these models can be used to predict accurately the timing and location of primary vector 

emergence. Additionally, our results corroborated several factors known from local-scale studies 

to be important for Ae. mcintoshi development and population ecology. The 99% confidence set 

of models with respect to AIC consisted of 11 models (Table 2), and, with respect to BIC, of 19 

models (S2 Table); these are the models best supported by data according to each information 

criterion, with the support for each model quantified by its AIC (or BIC) weight (AICw or BICw). 

The same variables tended to be included as predictors in the best-supported models according to 

both AIC and BIC, and model-averaged coefficients were similar (S3 Table), so the choice of 

information criterion did not substantially affect results. We henceforth use AIC because our 

objectives include prediction, for which AIC is considered more suitable [45,46].  
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The sum of AICw across the 11 best models including a given predictor indicated the 

importance of that predictor; these sums showed that minimum wetness index values within 500 

m of a sampling site, cumulative precipitation from the sampling date to 14 days prior, land 

surface temperature values from 8-day mean composites 24 days prior to sampling, and 

percentage of clay in the soil (in the structural-zero portion of the model – see Methods) had the 

greatest importance for predicting abundance (Table 2). 

 The data strongly supported a positive relationship between minimum wetness index 

values within 500 m of a sampling site and mosquito abundance (Table 2). This result 

corroborated existing information regarding Ae. mcintoshi ecology: locations with high 

minimum wetness index values have low slopes and high flow accumulation, indicative of 

dambo habitats or landscapes likely to collect water during a precipitation event. We also found a 

positive effect on mosquito abundance of cumulative precipitation from the sampling date to 14 

days prior, and no meaningful effect of cumulative precipitation 14 to 18 or 14 to 28 days prior 

to sampling. These results indicated that precipitation within a short time period prior to 

emergence has a greater impact on Ae. mcintoshi abundances, suggesting that forecasting may 

need to be performed at shorter time intervals. Model results indicated a positive effect on 
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mosquito abundances of 8-day mean land surface temperature composites at 8, 16, and 24 days 

prior to sampling, with 24 days prior having the greatest effect among these variables. 

Temperature is known to play an important role in mosquito life stage development and may 

impact RVFV vector competency in some species [47,48], but the role of local temperatures in 

RVFV risk has been neglected in previous forecasting models [49]. Our results indicated that 

land surface temperature is indeed an important determinant of Ae. mcintoshi abundances in the 

study region. We found a negative relationship between percent clay in the soil and the 

probability of a structural zero within the zero-inflated portion of the model, indicating that areas 

with low clay content had a higher probability of a structural zero (Figure 3), presumably 

because standing-water pools are less likely to form over such soil types.  

 

Figure 3. Probability of structural zeros. 

 

 

Model-averaged out-of-sample predictions demonstrated the capacity of our models to 

predict elevated abundances (Figure 4). Our models’ predictive accuracy was low for low 
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observed abundances: the relationship between observed and predicted values was weak on the 

left-most side of Figure 4. However, as the intended use of the models is to predict very high 

abundances, this point is of secondary importance. Prediction of high abundances was effective. 

Model performance statistics, including root mean square error values from out-of-sample 

predictions for the 11 best models are provided in more detail in S2 Table. 

 

 

Fig 4. Observed vs. predicted values (n = 31). These are out-of-sample predictions (see 

Methods). 

 

Retrospective model-averaged vector abundance predictions were produced at 8-day 

intervals from 30 September 2002 through 25 January 2016. Monitoring and human health 

agencies, such as the World Health Organization, reported [50-52] high abundances of RVFV 

cases at five times and locations during the 2006-2007 epizootic period (Figure 5, numbered 

circles). Retrospective vector abundance predictions were high pre-dating three of these (Figure 
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5, heat maps). Elevated abundances were predicted for 1 November 2006 in Bay, Bakool, 

Jubbuda Dhexe, and Gedo Provinces, Somalia (Figure 5, circle 1), ~7 weeks prior to reports of 

human cases [53]. Importantly, some ambiguity remains whether RVFV crossed into Somalia 

from Kenya, or whether foci developed independently within Somalia during the 2006-2007 

epizootic. Our results supported the possibility of virus circulation within Somalia independent 

of Kenya, with high vector abundance predictions in isolated areas prior to elevated predicted 

abundances in Kenya (Figure 5). High abundances were predicted for 17 and 25 November in 

Garissa, Ijara, and Kitui Districts, Kenya; human cases of RVFV were first reported in mid-

December in Garissa, with the potential index case presenting on 30 November (Figure 5, circle 

2) [54]. Additionally, several of the Kenyan districts located within high predicted abundance 

areas for 25 November later reported RVFV activity for the first time: Kitui, Tharaka, Mwingi, 

Embu, Kirinyaga, Meru South, Meru Central, and Malindi District (Figure 5, circle 3) [51]. The 

World Health Organization recognized cases in these districts as a new RVFV focus during the 

outbreak, although little information is available regarding the exact date of onset of symptoms 

in humans or animals [52].  
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Fig 5. Predicted elevated abundances prior to and during the 2006-2007 epizootic (heat maps) 

and locations of independently documented RVFV foci (numbered circles). 

 

Human RVFV cases were first reported retrospectively on 6 December 2006 in Kalifi 

District, near the eastern coast of Kenya (Figure 5, circle 4) [54]. Our models did not predict high 

Ae. mcintoshi abundances at any time in this area. Nguku et al. [54] found that illness in Kilifi 

District coincided with heavy rainfall, rather than emerging approximately one month after 

heavy rainfall, as was the case in other regions, and that movement of infected livestock from the 

outbreak area in Northeastern Province, Kenya into Kilifi District may have been the catalyst for 
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the outbreak. These observations suggest that primary vector emergence in Kilifi District may 

not have been responsible for virus circulation in the area, but further investigation is needed. 

Illness in Baringo District was estimated to begin in late December, 2006, with the first 

human case reported on 25 January 2007 [51,54], but our model results did not predict elevated 

Ae. mcintoshi abundances in Baringo District at any time during the study period (Figure 5, 

circle 5). Although it is possible that our model predictions did not reflect the potential for Ae. 

mcintoshi abundance in this region, more likely the model was accurate and suitable habitat for 

this species was deficient in the area. Low numbers of Ae. mcintoshi were collected in Baringo 

District during the 2006-2007 epizootic, and follow-up sampling also indicated low densities of 

this species [3,24]. Our data set had only two records for Ae. mcintoshi in Baringo District with 2 

and 6 females recorded, respectively. Alternative vectors or movement of infected mosquitoes or 

livestock into this region may have contributed to the outbreak. 

 Comparative predictions between 2002 and 2016 indicated lower predicted abundances 

across the study period (S1 Movie File), with the exception of one date in 2002 (Figure 6, circle 

1), and a few small- and medium-scale (Figure 7) predictions of elevated abundances which 

apparently did not result in reported RVFV cases. High predicted abundances from 9 November 

2002 were located to the northwest of the 2006-2007 focus in Isiolo and Laikipia Districts, 

Kenya (Figure 6, circle 1); virus activity was not reported there during this time period, nor was 

it reported in the regions shown in Figure 7. Even though conditions appeared to be suitable for 

high primary vector emergence, the possibility exists that ova deposited in these areas were not 

infected with RVFV transovarially and did not emerge with the capacity to transmit the disease; 

conditions were not suitable for large numbers of secondary vectors to amplify the virus; or 

susceptible livestock were not present in the area. In fact, some evidence indicates possible 
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livestock movement restrictions in this area and during this time period because of rinderpest 

virus detected in cattle on 23 October 2002 [55], but further investigation is needed before 

determining whether this factor could have impacted potential RVFV circulation.  

 

 

Figure 6. Predicted elevated abundances during interepizootic year 2002 (left panel), and lower 

predicted abundances during the 2015/2016 time period, when current RVFV surveillance 

systems issued warnings, but no virus was detected (right panel). 
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Figure 7. Medium-scale predictions of elevated abundances which apparently did not result in 

any reported RVFV cases, including 18 November 2008 (upper left), one week after animal 

health authorities issued an RVFV warning in the far, northeastern region of Kenya. 

 

Importantly, abundances predicted by our models were low during two time periods in 

which RVFV warnings were issued in Kenya, but no virus was detected. Animal health 

authorities issued a warning on 13 November 2008 in the far northeastern region, near the 

borders of Ethiopia and Somalia because of persistent rainfall. Our model did not predict high 

vector abundances in this region prior to this date. The highest abundances predicted around this 
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date were only moderate, and were south of this region (Figure 7, circle 1). Several national and 

international agencies issued warnings for potential RVFV activity in the 2015-2016 period 

because of an El Niño event in the study area [56], but we did not predict high abundances 

during this time period (Figure 6, right panel) and no virus was detected. Model predictions for a 

total of 224 weeks from 1 September to 25 January between 2002 and 2016 are available in the 

supplementary material (S1 Movie File). 

Although our model can predict high mosquito abundances accurately, limitations exist. 

Satellite measurements of environmental variables aggregate values across a landscape to a 

single spatial resolution, even though the potential exists for local variations or for larger errors 

in temperature measurements in semi-arid regions because of high reflectance of land surfaces 

and possible aerosols in the atmosphere [57]. Our data consisted of repeat sampling at locations 

across Kenya, but sampling was sparse in some areas. Our model predicts abundances for one 

primary RVFV vector, but additional primary vector species likely exist: several species were 

identified for further investigation during the 2006-2007 epizootic [3]. RVFV surveillance may 

benefit from applying our modelling framework to those species. 

Our model is the first to use predicted vector abundances as a means of predicting 

potential RVFV emergence in this region, providing a powerful tool to help inform current 

RVFV monitoring systems. Additionally, our framework reveals new information about primary 

vector activity during inter-epizootic years that may contribute to a better understanding on 

RVFV ecology. The potential exists to extend our framework to multiple vectors and disease 

systems. Our approach also allows exploration of the effects of climate change on Ae. mcintoshi. 

We recommend incorporating our approach into the existing RVFV surveillance framework and 

extending our methods to additional vectors.  
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Supporting Information 

 

S1 Fig. Spline correlogram of distance between locations and model residuals for the lowest-AIC 

model. 

 

 

 

 

S1 Table. Pearson’s correlation matrix. Only one land surface temperature variable, precipitation 

variable, and wetness index variable were included in a candidate model at the same time; CLAY 
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was included in the zero-inflated portion of the model, but not in the negative binomial portion 

of the model. 
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S2 Fig. Lowest-AIC model residuals vs. sampling date. No obvious temporal autocorrelation in 

model residuals.  
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S2 Table. Candidate models: AIC and BIC rankings, scores, differences, and weights for all 

candidate models run in this analysis. 

 



58 
 

 

 

 



59 
 

 

 

 

 



60 
 

 

 

 

 



61 
 

 

 

 



62 
 

 

 



63 
 

 

S3 Table. Model averaged coefficient values for AIC and BIC models corresponding to a 

cumulative weighted value of 0.994 (11 models for AIC and 19 models for BIC). 

Variable 

Model 

Averaged 

Coefficient 

(AIC 11 

models) 

Model 

Averaged 

Coefficient 

(BIC 19 

models) 

Sum of 

AICw 

Sum 

of 

BICw 

Intercept  -11.858 -12.363 0.994 0.994 

Wetness Index 

Max  0.000 0.000 0.000 0.000 

Wetness Index 

Min  1.825 1.926 0.994 0.994 

Precip 0 to 14 

days  0.010 0.009 0.870 0.766 

Precip 14 to 18 

days 0.000 0.000 0.004 0.029 

Precip  14 to 

28 days 0.000 0.000 0.042 0.027 

Land Surface 

Temp 8 0.003 0.003 0.061 0.160 

Land Surface 

Temp 16 0.004 0.006 0.072 0.109 

Land Surface 

Temp 24 0.060 0.051 0.819 0.727 

log theta 

    Intercept  Zero-

inflation 1.202 0.532 0.994 0.994 

% Clay -0.051 -0.036 0.994 0.706 

 

 

S Movie File. Animated plots between 1 September and 25 January from 2002 to 2016. 
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CHAPTER 3 

Landscape genetics of Aedes mcintoshi, an important vector of Rift Valley fever virus in eastern 

Kenya 

 

Rift Valley fever virus (RVFV) is a medically important, mosquito-borne, zoonotic 

pathogen that affects humans, wild ungulates, and domestic livestock in Africa and the Arabian 

Peninsula (Martin et al. 2008, Rich and Wanyoike 2010). RVFV transmission occurs through 

mosquito bites or close contact with infected bod fluids (Sang et al. 2010). Symptoms often go 

unnoticed in humans, although, in a small percentage of cases, the virus can lead to fatal 

hemorrhagic fever (World Health Organization 2010). However, RVFV severely impacts 

domestic livestock, resulting in spontaneous abortions referred to as “abortion storms” and high 

mortality rates in newborn ruminants (Pepin et al. 2010). These factors, combined with bans on 

the export of livestock, result in major economic losses and food insecurity in affected regions 

(Chengula et al. 2013). 

RVFV exhibits inter-epizootic phases, when little to no virus activity is detected, and 

epizootic phases, which are defined by widespread occurrence detected in domestic livestock 

(Pepin et al. 2010). Over the past 80 years, epizootics have occurred in more than 30 countries. 

East Africa, and specifically Kenya, appear particularly vulnerable, with 11 epizootics reported 

in Kenya between 1951 and 2007 (Murithi et al. 2011). Strong associations exist between 

epizootics in East Africa and extreme weather events, such as El Niño (Anyamba et al. 2001, 

Anyamba et al. 2006), which promote massive mosquito emergences through above-average 

precipitation during the October-to-December “short rains” season (Davies et al. 1985, 

Camberlin et al. 2001).  
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 The mosquito species Aedes mcintoshi, subgenus Neomelaniconion, is an important 

primary vector for RVFV in Kenya (Pepin et al. 2010, Tchouassi et al. 2014). Evidence for 

transovarial transmission in this species suggests that adults can emerge infected with the virus, 

which is then transmitted locally to wild ungulates and/or nearby livestock (Linthicum et al. 

1985b, Sang et al. 2010, Rosmoser et al. 2011). Emergence of Ae. mcintoshi adults appears to be 

associated with flooding of “dambos”: low-lying ephemeral pool habitats that become inundated 

during precipitation events (Linthicum et al. 1984, Linthicum et al. 1985a, Lutomiah et al. 2013). 

Linkages among environmental variables, mosquito abundance, and RVFV foci within Kenya 

have been assessed previously Campbell et al. (in review). However, understanding the genetic 

structure of Ae. mcintoshi could provide further information regarding the potential for RVFV to 

spread across East African landscapes. 

Here, we investigate whether genetic structure exists in Clade IV (described by Tchouassi 

et al., 2014) of Ae. mcintoshi, using gene sequence data for cytochrome oxidase subunit 1 (CO1) 

and nuclear 18S ribosomal internal transcribed spacer. We focus on Clade IV, as this clade is 

distributed across the eastern portion of Kenya (Tchouassi et al., 2014), where RVFV is 

considered to be endemic, and where the last major epizootic in Kenya began in 2006 (Nguku et 

al. 2010). Retrospective predictions of localized changes in mosquito abundances (Campbell et 

al. in review), coupled with the low dispersal distances observed in Ae. mcintoshi (Linthicum et 

al. 1985a), suggest strongly the potential for heterogeneity in connectivity between mosquito 

habitats across the landscape within the Clade IV range (Figure 1). Here, we investigate patterns 

of genetic diversity and differentiation in the Clade IV area, and potential associations with these 

patterns and climate and topographic variables. Given that the study area is an RVFV-endemic 

region, understanding connectivity between Ae. mcintoshi subpopulations can provide new 
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information regarding the genetic diversity and dispersal of this species, which could help to 

inform vector control and vaccination programs. 

Methods 

Cytochrome oxidase subunit 1 (CO1) sequences for 95 Ae. mcintoshi individuals from 9 

locations, and nuclear 18S ribosomal internal transcribed spacer (ITS) data for 39 individuals 

from 8 locations in eastern Kenya were downloaded from GenBank (data were generated by 

Tchouassi et al. 2014: see Appendix for summary of all sequences analyzed). Numbers of 

individuals from each site ranged from 9 to 13 for CO1, and 3 to 6 for ITS. The nine CO1 sample 

locations (Figure 1) correspond to collection sites within the Clade IV geographic area, outlined 

by Tchouassi et al. (2014). 

 

Fig. 1. Aedes mcintoshi sample site locations in  

eastern Kenya. 
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 We aligned sequences for each locus using the program MUSCLE, accessed online (Edgar 

2004), and inspected alignments visually using the software program Geneious version 9.1.5 

(Kearse et al. 2012) (http://www.geneious.com). We generated a maximum likelihood tree 

through MEGA v6.0.6 (Tamura et al. 2013), with n = 500 bootstrap replicates, a GTR+Γ+I 

nucleotide substitution model (four gamma categories), and nearest-neighbor-interchange, with a 

very strong branch swap filter, as the ML heuristic. We used an NJ/BioNJ tree as the initial ML 

tree for the analysis. Nodes with bootstrap support >70% were considered well supported, 

following Hillis and Bull (1993)). We generated a median-joining haplotype network (Bandelt et 

al. 1999), using PopART (Leigh and Bryant 2015). For the combined dataset, we calculated 

Tajima’s D (Tajima 1989), number of haplotypes, average nucleotide diversity ( ), and number 

of segregating sites in dnaSP v5 (Librado and Rozas 2009). For individual sample locations, we 

calculated Tajima’s D in Arlequin v3.5.2.2, using 10,000 simulated samples (Excoffier and 

Lischer 2010); Watterson’s estimate of theta (


w) in the pegas package (Paradis 2010) within R 

(R Core Team 2015), and nucleotide diversity using dnaSP v5. dnaSP was also used to calculate 

the γst between individual sample locations. 

 We acquired the 1900-2014 CenTrends October to February seasonal precipitation 

anomaly dataset through the Climate Hazards Group for each sample location at a 10 km spatial 

resolution (Funk et al. 2015a).  A finer spatial resolution dataset of mean monthly precipitation 

values for a 25-year period (1980 to 2005) was obtained from the Climate Hazards Group clim 

data for October, November, and December (5 km spatial resolution). This period corresponds to 

the “short rains” season, associated with massive Ae. mcintoshi emergences (Sang et al. 2010, 

Funk et al. 2015b).  
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 Compound topographic wetness index values (Beven and Kirkby 1979) were derived 

from Shuttle Radar Topology Mission (SRTM) version 4.0 data at a 90 m spatial resolution, 

accessed through the Consultative Group on International Agricultural Research Consortium for 

Spatial Information (http://srtm.csi.cgiar.org/). Percent clay in the soil at each sample location 

was acquired from the Global Soil Data Set for Earth System Modeling Soils at a 1 km spatial 

resolution (Shangguan et al. 2014). All environmental values were extracted for sample site 

locations using ArcGIS 10.1. 

We generated pairwise geographic (km) and genetic distance matrices (γst) to test for 

isolation by distance using a Mantel test with 100,000 permutations in the ade4 package in R 

(Dray and Dufour 2007). We used a multivariate statistical approach to explore associations 

between genetic diversity (


w) and differentiation (γst) and environmental variables. We explored 

significance of global and local patterns between genetic variance and patterns of spatial 

autocorrelation using spatial principal components analysis (sPCA) in the adegenet package in R 

(Jombart 2008, Jombart et al. 2008, Kierepka and Latch 2016).  

We performed partial redundancy analyses (RDA) with 


w values as the response 

variable, and distanced-based partial redundancy analyses (dbRDA) with the pairwise γst distance 

matrix as the response variable. All models were conditioned on location, and were run using the 

rda and capscale functions in the R-package vegan (Oksanen et al. 2016). γst and 


w values 

served as response variables, environmental variables served as constrained variables, and UTM 

Zone 37N projected coordinates provided location information for the conditional portion of 

each model. Because of the relatively small number of sample sites, all models were run with 

only one constrained environmental variable to maintain greater statistical power. Model outputs 
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included total explained variance, partitioned into contributions from constrained environmental 

variables, conditional location variables, and unconstrained variables. A permutation test with 

9999 iterations determined the significance of each environmental variable, and ordination plots 

indicated the direction of significant associations. In addition to dbRDA and RDA analyses, we 

performed a Procrustes test on distance matrices, comparing similarities between the γst distance 

matrix and the environmental distance matrices (Peres-Neto and Jackson 2001). We expected to 

find positive associations between genetic diversity and precipitation, soil clay content, and 

wetness index values because of their contributions to suitable habitats that promote higher Ae. 

mcintoshi abundances, which could lead to greater diversity. We expected to find a negative 

association between genetic differentiation and precipitation, soil clay content, and wetness 

index values because of the potential for greater connectivity between locations under 

environmentally suitable conditions.  

 

Results 

The 95 CO1 sequences had an aligned length of 1448 base pairs. Each sequence was 

unique, with 181 segregating sites present over the 95 haplotypes. Large gaps in the ITS aligned 

data, low Bayesian posterior probabilities supporting monophyly of Clade IV individuals 

(Tchouassi et al. (2014), and highly variable γst values (Supplementary Table 1), led us to 

exclude the ITS data from further analysis.  

Our maximum likelihood tree indicated that a number of individuals from the sites Kotile 

and Disso fell in Clade II rather than Clade IV (Figure 2). This phylogenetic heterogeneity was 

also reflected by higher nucleotide diversity, 


w, and γst values in comparison to the remaining 

Clade IV sample locations (Figure 3). Therefore, we excluded Kotile and Disso from subsequent 
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statistical analyses; results including these locations are provided in Supplementary Tables 2 and 

3. 

 

 

Figure 2. Maximum likelihood tree (bottom) showing relationship of Clade II and Clade IV 

Aedes mcintoshi CO1 sequences with respect to Ae. ochraceus. Scale bar gives relative number 

of substitutions per site. Median joining haplotype network (right) showing relationships of 

Clade II and Clade IV sequences. Shaded ovals in Clade IV correspond to nodes with high 
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support (>70% bootstrap) on the Clade IV ML tree (upper left), which are indicated by shaded 

squares.   

 

 

Figure 3. (A and B) Networks of average nucleotide diversity (dxy) and γst between sample 

locations (A, B). Yellow squares are the sampling locations, with edge colors representing 

differentiation values. (C) Watterson’s estimate of theta (


w).  Sampling locations correspond to 

Figure 1. 
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After excluding Kotile and Disso, 111 segregating sites were present over the 74 

remaining Clade IV sequences (all unique haplotypes). Average nucleotide diversity was 0.0123, 

less than that previously reported for Ae. mcintoshi more broadly, including samples from other 

clades (0.041), but greater than reported for Ae. ochraceus (0.0061), the sister species of Ae. 

mcintoshi (Tchouassi et al. 2014). We found no evidence of deviation from neutrality in our 

combined data set (Tajima’s D = -0.771, p > 0.10), or at individual locations (Supplementary 

Table 4). We found significant population differentiation between several locations, summarized 

in Table 1.   

Table 1. Population pairwise average nucleotide differences between locations (upper triangle of 

matrix) and corrected p-values (lower triangle of matrix). 

  BO BU EH JA KR MA WA 

 
21.078 22.154 22.407 22.448 22.281 22.331 22.280 

BO - 21.155 18.508 19.590 20.029 18.457 17.689 

BU 0.164 - 16.836 17.292 19.184 15.379 15.091 

EH 0.017 0.637 - 18.746 20.251 16.610 15.934 

JA 0.039 0.581 0.705 - 22.592 19.155 18.566 

KR 0.264 0.998 0.635 0.593 - 12.280 13.127 

MA 0.001 0.048 0.114 0.084 0.053 - 13.033 

WA 0.008 0.194 0.287 0.387 0.171 0.183 - 

 

We did not detect any significant signal of isolation by distance (Mantel test: observation 

= -0.106, p = 0.478), and a plot of genetic distance vs. the natural log of geographic distance 

showed no visible trend (Figure 4). Results from the sPCA indicated no significant global (p = 

0.744) or local spatial structure (p = 0.247), indicating that spatially lagged scores did not need to 

be included as a variable in the partial dbRDA analysis to account for spatial autocorrelation. 
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Figure 4. Genetic vs. geographic distance (in km) excluding Kotile and Disso locations.  

 

Results from partial dbRDA models indicated a positive association between pairwise γst 

values and mean November precipitation (1980 - 2005) (p = 0.048; Table 1). We found no 

significant associations between pairwise γst values and mean precipitation during 1980 - 2005 

for October or December, anomalous precipitation values during 1900 - 2014, wetness index 

values, or percent clay in the soil.  

Partial RDA model results indicated a positive association between 


w and mean October 

precipitation for 1980 - 2005 (p = 0.071), and a negative association between 


w and percent clay 

in the soil (p = 0.055). No significant associations were found between 


w and minimum or 

maximum wetness index values, mean precipitation for November or December in 1980 - 2005, 

or mean anomalous precipitation values (1900 – 2014). 
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The partial RDA 


w  model with mean October precipitation values (1980 – 2005) had the 

greatest proportion of explained variance out of the three significant models (constrained 

variance = 0.659), followed by the partial RDA 


w  model with percent soil as the environmental 

variable (constrained variance = 0.647), and the partial dbRDA pairwise γst model that included 

mean November precipitation values for 1980 - 2005 (constrained variance = 0.530; Table 2, 

Figure 5). Proportions of explained variance in the conditional location variables for each model 

were 0.110, 0.110, and 0.233, respectively.  Results from the Procrustes test were similar to 

dbRDA results, indicating a significant similarity between the distance matrix for mean 

precipitation for the month of November between 1980 and 2005 and the γst distance matrix (p = 

0.047; Supplementary Table 5). 

 

Figure 5. Plots of partial dbRDA and partial RDA models for the three models with the greatest 

proportions of explained variance in the constrained environmental variable. Red arrows indicate 

the direction of the association. 
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Table 2. Significant associations from partial dbRDA and partial RDA analyses, excluding 

Kotile and Disso sites. 
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Discussion 

We investigated genetic subpopulation structure of Ae. mcintoshi in eastern Kenya and 

evaluated potential associations between environmental variables and genetic diversity and 

differentiation. Significant subpopulation structure existed across the study area, and significant 

associations existed between recent mean precipitation values and percentage clay in the soil 

with genetic diversity and differentiation. Of particular interest were associations with mean 

precipitation and anomalous precipitation at different time periods that suggest that more recent 

climate and weather events influence genetic structure over the study area. We expected higher 

precipitation values to promote connectivity among dambo habitats, reducing genetic 

differentiation between locations and increasing genetic diversity of subpopulations. 

A significant positive association between the 25-year mean precipitation for October and 

genetic diversity appears to support our hypothesis that higher precipitation is associated with 

increased genetic diversity. October marks the beginning of the “short rains” season in East 

Africa. At least one massive emergence of Ae. mcintoshi occurred during the short rains in this 

25-year time period, just prior to the 2006 and 2007 epizootic eastern Kenya (Sang et al. 2010), 

but additional punctuations in abundance likely occurred, most notably in October 1997, just 

prior to reported RVFV cases in this area in November 1997 (Murithi et al. 2011).  

Although mean precipitation for October from 1980 to 2005 had a positive association 

with genetic diversity at locations, we did not find any association with reduced genetic 

differentiation between locations as we expected. In fact, contrary to our expectations, we found 

a positive association between genetic differentiation (γst) and mean precipitation for November 

over 1980 - 2005. This association did not support our hypothesis that greater precipitation 

would provide greater connectivity between locations, resulting in reduced genetic 
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differentiation. Fine-scale, limited dispersal of this species, coupled with additional variables not 

included in this analysis, may be responsible for this discrepancy. Alternatively, suitable habitat 

resulting from elevated precipitation may limit dispersal of this species by reducing the need to 

disperse to obtain blood meals or reproduction. Further investigation into the role of precipitation 

at additional spatial and temporal scales is needed to determine whether this result is indeed, an 

artefact. 

Although we hypothesized a positive association between genetic diversity and soil clay 

content, model results suggested that diversity increased as percent clay decreased at sample site 

locations. Soils with lower percentages of clay tend to drain water more readily, which may drive 

Ae. mcintoshi to disperse greater distances to find optimal habitats for blood feeding. Linthicum 

et al. (1985a) noted that host density tends to decrease with distance from flooded dambo 

habitats because domesticated livestock and wild mammals congregate at these sites for drinking 

water.  Aedes mcintoshi emerging from less-ideal habitats may be more likely to disperse to more 

suitable environments, and this factor could impact genetic diversity in samples collected in 

suboptimal habitats. Alternatively, these results may be influenced by the low number of 

sampling sites and relatively homogeneous soil values across study locations, warranting 

additional investigation to capture a broader heterogeneity of soil attributes across the geographic 

range of Clade IV. 

Campbell et al. (in review) found that elevated minimum wetness index values within 

500 m of a sampling site had a strong positive effect on mosquito abundances, but we found no 

significant association between wetness index values and genetic diversity or differentiation. We 

expected locations with higher minimum wetness index values to be on landscapes more likely to 

be connected during precipitation events, providing opportunities for greater genetic diversity 
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and reduced differentiation. Because wetness index values are derived from a static topographic 

variable that is relatively unchanged over time, this variable provided an opportunity to observe 

potential associations arising over a longer temporal period, but wetness index values were not 

an important variable in our models, at least at these spatial and temporal scales. In addition, we 

found no significant associations with mean anomalous precipitation (1900 – 2014) and genetic 

diversity. This variable was measured at a broader spatial scale than the clim mean precipitation 

data from 1980 to 2005 (i.e., 10 km vs. 5 km spatial resolution), which may have smoothed 

variability important to associations between precipitation and genetic variability in this region. 

Additionally, this variable is a mean composite derived across several months from October to 

February, which may have diminished associations further. 

We found no evidence for isolation by distance contributing to genetic differentiation 

across the study area. Notably, differentiation was often low between locations separated by 

large geographic distances, such as Jalish and Elhumow, whereas greater γst values were 

sometimes observed over close proximity, such as Bodhai and Bulagolol. However, location was 

an important conditioning variable, accounting for 11 - 23% of the proportion of explained 

variance in the significant models. These results indicated that at-location variables that were not 

included in the analysis may contribute to genetic diversity and differentiation in the study area. 

Additional variables, such as soil pH, finer-scale wetness index values, and longer-term climatic 

values at finer scales, may provide additional information regarding genetic structure in this area. 

In addition to investigating alternative environmental variables, the combination of 

flooding events and the topographic structure of dambo habitats may be an important factor in 

determining the genetic diversity found at a location.  Linthicum et al. (1984, 1988) found that 

the majority of Ae. mcintoshi larvae and pupae in flooded dambos were not located in the central, 
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lowest-lying area, but rather were located toward habitat edges, where sedge vegetation 

transitioned to grasses. Variable rainfall patterns within the study region may result in long 

intervals between flooding of outer dambo habitat perimeters, whereas areas slightly inward may 

experience more regular cycles of adult emergence. This phenomenon, coupled with the small 

dispersal distances observed in field studies, could introduce additional complexity into 

measurements of genetic diversity at sites and differentiation between locations that was not 

captured in this analysis.  

 Although this study demonstrated subpopulation genetic structure of Ae. mcinotshi 

across eastern Kenya and potential associations between this structure and a suite of 

environmental variables, further analyses including additional sampling of sites and better 

sampling of the genome will be critical to understanding in greater detail the genetic diversity 

and differentiation of Ae. mcintoshi in this region. The large number of haplotypes found in this 

data set indicates that much diversity remains to be detected in this area. Although mitochondrial 

DNA analysis has been successful in identifying mosquito subpopulation structure (Yugavathy et 

al. 2016), the thousands of loci characterized in next-generation sequencing approaches would 

provide a more robust assessment of the genetic diversity and differentiation across this region. 

In addition, including more sample site locations across a broader geographic area within the 

Clade IV range would capture more environmental heterogeneity, while providing an 

opportunity to investigate associations between combinations of environmental variables and 

genetic diversity and differentiation of Ae. mcintoshi. Understanding the subtle interactions 

between Ae. mcintoshi subpopulations across the region that may contribute to RVFV 

maintenance and dissemination in the natural environment will contribute to more informed 
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targeting of veterinary and public health resources and more comprehensive prevention 

approaches.  
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Supplementary Table 1. Pairwise γst ITS data, with and without Kotile and Disso sites. 

Pairwse γst ITS data including Kotile and Disso 

BO 

        BU 0.16197 

       DO 0.93272 0.43038 

      EH 0.875 0.37857 0.36364 

     JA 0.28467 0.03082 0.32819 0.27083 

    KO 0.20666 0.01326 0.37966 0.33793 0.02271 

   MA 0.87506 0.44452 0.37551 0.01818 0.31409 0.39565 

  WA 0.16009 0.01606 0.4155 0.35069 0.02458 0.01958 0.41273 

 
         Pairwise γst ITS data no Kotile 

 BO 

        BU 0.16197 

       DO 0.93272 0.43038 

      EH 0.875 0.37857 0.36364 

     JA 0.28467 0.03082 0.32819 0.27083 

    MA 0.87506 0.44452 0.37551 0.01818 0.31409 

   WA 0.16009 0.01606 0.4155 0.35069 0.02458 0.41273 

  

         Pairwise γst ITS data no Kotile or Disso 

  BO 

        BU 0.16197 

       EH 0.875 0.37857 

      JA 0.28467 0.03082 0.27083 

     MA 0.87506 0.44452 0.01818 0.31409 

    WA 0.16009 0.01606 0.35069 0.02458 0.41273 
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Supplementary Table 2. CO1 data γst model results with and without Kotile and Disso sites.  
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Supplementary Table 3. CO1 data 


w  model results with and without Disso and Kotile sites. 
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Supplementary Table 4. Theta-Pi for each sample location. 

 

 

Supplementary Table 5. Procrustes test for congruence between the Yst distance matrix and 

environmental variable distance matrices. 
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CONCLUSION 

The set of comprehensive analyses presented here represents new applications of 

modeling approaches and technologies toward investigations of disease ecology questions. 

Individually, each approach addressed different research questions and made different 

contributions to the larger body of scientific knowledge regarding the distribution of risks from 

these pathogens across the globe. The first chapter delivered a map of suitable environments for 

Ae. aegypti and Ae. albopictus mosquitos under present and future climate conditions, while 

identifying potential changes in co-occurrence of these species between the present time period 

and 2050. The second chapter outlined a new model for identifying environmental drivers of Ae. 

mcintoshi abundances, and retrospective predictions indicated very high predicted abundances 

just prior to the last major epizootic in Kenya and Somalia. The finer temporal resolution of 

these predicted abundances, along with the potential to expand this framework to other vector 

species in this region, delivered a novel approach to identifying the timing and location of 

potential virus emergence. In the third chapter, further investigation into the genetic structure of 

Ae. mcintoshi revealed that subpopulation structure exists and that environmental factors, rather 

than isolation-by-distance, are contributors to this observed pattern. In addition to these results, 

the analyses performed here demonstrated the utility for continued future investigations of Ae. 

mcintoshi using a greater number of sampling sites and next-generation sequencing approaches. 

Together, these analyses shared the common purpose to provide robust, quantitative 

information that may be used to help narrow broad geographic ranges for field studies, target 

intervention or control approaches, or help identify areas in which to further emphasize 

prevention programs. While each of these studies was not without limitations, the importance of 

ecologically-focused analyses addressing different disease system components cannot be 
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understated. As humans continue to interact with the natural environment in ways that increase 

contact with areas undisturbed previously, promote rapid changes in climate and weather, or 

provide new habitats for pathogen dispersal, human disease risk from vector species will 

continue to challenge public health efforts. In this context, ecological models provide a 

fundamental resource for assessing potential risk of vector-borne diseases, and further 

development and applications will serve to improve our understanding of these systems now and 

into the future. 
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