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ABSTRACT 

(U-Th)/He thermochronology is a well-established dating technique used to understand the 

temperature-time histories of rocks in a wide range of geologic settings. The technique is presently 

restricted to rocks that contain specific accessory minerals like apatite or zircon. Marine carbonates 

and shales typically lack these accessory phases, and thus present a challenge for application of 

the method. Here, we explore the utility of biogenic apatite from conodonts as a (U-Th)/He 

thermochronometer at a well-studied calibration site located in eastern Nevada and southwestern 

Utah.  

We perform (U-Th)/He thermochronometry, laser ablation inductively coupled plasma 

mass spectrometry, X-ray micro-computed tomography, and scanning electron microscopy on 

specimens with conodont color alteration indices (CAI) of 1.5 – 3 extracted from carbonate rocks 

in the footwalls of low-angle normal faults in the Mormon Mountains, Tule Spring Hills, and 

Beaver Dam Mountains. Conodont (U-Th)/He (CHe) dates have high scatter; dates are commonly 

reproducible to 20% of sample means, but can deviate up to 150%. All CAI 1.5 – 2.5 conodonts 

produce CHe dates younger than 193 Ma, consistent with thermal resetting of samples; however, 

most CAI 3 conodonts give ages 2 – 3x older than Mississippian and Permian deposition. Average 

U, Th, and rare earth element (REE) concentrations depend on porosity and permeability 

differences between albid and hyaline conodont tissue and range from <10 to 100s of ppm in 

concentration. Parent isotope concentrations are especially low in CAI 3 conodonts, commonly <1 

ppm, and there is an inverse relationship between these concentrations and CHe dates. The 

majority of parent U, Th, and Sm, and REEs are concentrated within the outer 5 µm of the conodont 

elements and consistently show 5 – 10x enrichment relative to cores. Margin enrichment is also 

depressed with increasing CAI. SEM imaging shows a shift in the orientation of apatite 
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microcrystallites from perpendicular to parallel to the major axis of the conodont elements at CAI 

3, and corrosion and recrystallization features on the surfaces of some CAI 2.5 and 3 conodonts.  

We propose these microstructural changes associated with increasing CAI influence CHe 

dates. Parent isotope loss occurs during the post-cooling stage, either in the outcrop or in the 

laboratory. Our hypothesis is that the double-buffered formic acid procedure for dissolving 

dolomitized carbonates may accelerate this loss in higher CAI conodonts.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 
  

v 

ACKNOWLEDGEMENTS 

 I want to thank my advisors, Dr. Tandis Bidgoli, Dr. Doug Walker, and Dr. Andreas Möller, 

for all their help throughout this exciting, challenging, and formative experience in my life. Your 

guidance has allowed me to persevere through this project and feel confident that I can overcome 

any difficulty and achieve any goal I set in the future.  

 I also want to thank my parents, Maureen and Jeff, my siblings, Kate and Jack, my friends, 

and my entire extended family in the Kansas City area for their unconditional love and support 

throughout this process. Without each and every one of you I would not be where I am today.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 
  

vi 

TABLE OF CONTENTS 

Abstract...........................................................................................................................................iii 

Acknowledgements..........................................................................................................................v 

List of Figures................................................................................................................................vii 

List of Tables................................................................................................................................viii 

Introduction......................................................................................................................................1 

Background......................................................................................................................................5 

Methods..........................................................................................................................................12 

Results............................................................................................................................................20 

Discussion......................................................................................................................................31 

Conclusions....................................................................................................................................38 

References......................................................................................................................................40 

Figures............................................................................................................................................50 

Tables.............................................................................................................................................67 

Appendix A – Graphs of LA-ICPMS depth profiles for dated conodonts....................................75 

 

 

 

 

 

 

 

 



   

 
  

vii 

LIST OF FIGURES 

Figure 1. Location map.........................................................................................................50 

Figure 2. Geologic map of study area...................................................................................51 

Figure 3. Geologic cross-section through study area............................................................53 

Figure 4. Restored-state cross section and paleodepth reconstructions of study area...........54 

Figure 5. Parent isotope and REE concentrations in different CAI conodonts measured 

through LA-ICPMS depth profiles....................................................................................56 

Figure 6. Parent isotope and REE concentrations in different conodont apatite tissue types 

measured through LA-ICPMS depth profiles....................................................................57 

Figure 7. Plots of conodont depositional age versus (U-Th)/He date...................................58 

Figure 8. Plot of conodont mass versus (U-Th)/He date.......................................................59 

Figure 9. Plots of parent U, Th, and Sm isotope concentrations versus (U-Th)/He date......60 

Figure 10. Plot of effective uranium concentration (e[U]) versus (U-Th)/He date.................61 

Figure 11. Plot of conodont CAI versus (U-Th)/He date........................................................62 

Figure 12. Comparison of SEM images of conodonts using secondary electron (SE) and 

backscattered electron (BSE) techniques...........................................................................63 

Figure 13. SE images displaying microstructural variations in different CAI conodonts......64 

Figure 14. SE images displaying corrosion features in higher CAI conodonts......................65 

Figure 15. SE image displaying internal microstructural variability in laser ablation pit 

sidewall..............................................................................................................................66 

 

 

 



   

 
  

viii 

LIST OF TABLES 

Table 1. Input parameters for LA-ICPMS analytical work.................................................68 

Table 2. Measured isotopic concentrations for external standard NIST612 glass, Durango 

apatite, and Fish Canyon Tuff apatite................................................................................69 

Table 3. Range of minimum and maximum parent isotope concentrations at conodont 

margins and depth measured from LA-ICPMS depth profiles..........................................70 

Table 4. Conodont (U-Th)/He thermochronology mean ages and sample locations...........71 

Table 5. Full results of conodont (U-Th)/He thermochronology analytical work with 

solution ICPMS parent isotope concentration measurements...........................................72 

 

 

 

 

 

 

 

 

 

 

 

 



   

 
  
 
 

1 

INTRODUCTION 

 (U-Th)/He thermochonology is a geologic tool based on the radioactive decay of isotopes 

of U, Th, and Sm to daughter 4He. Helium retention in apatite is temperature dependent and 

transitions from near complete preservation below 40 °C to complete expulsion by thermally 

activated volume diffusion above 80 °C (Wolf et al., 1996, 1998; House et al., 1999; Stockli et al., 

2000). These temperatures define the apatite helium (AHe) partial retention zone (PRZ; Wolf et 

al., 1998) and represent the lowest temperature sensitivity of commonly utilized 

thermochronometers, making (U-Th)/He thermochronology a widely applicable technique and 

valuable to researchers with a variety of goals and interests (e.g., House et al., 1998; Spotila et al., 

1998; Brady, 2002; Crowhurst et al., 2002; Lorencak et al., 2004; Stock et al., 2006; Flowers et 

al., 2008; Clark et al., 2010; Gavillot et al., 2010; Cogné et al., 2011). In tectonics, the technique 

can be used to establish the timing of fault initiation and rate of footwall exhumation (e.g., Stockli 

et al., 2001; Stockli et. al., 2002), and to estimate the magnitude of deformation, admissible fault 

geometries, and paleo-geothermal gradients (e.g., Crowley et al., 2002; Söderlund et al., 2005; 

Bidgoli et al., 2015). For sedimentary basin analysis and hydrocarbon systems modeling, (U-

Th)/He data can be tied to other burial and temperature history data (e.g., stratigraphic thicknesses, 

biostratigraphic constraints, paleothermometry data, etc.) to evaluate such things as trap 

development, seal integrity, rock quality and diagenesis, oil and gas generation and migration 

patterns, and expected resource volumes (see summary in Armstrong, 2005 and references 

therein).  

Although the (U-Th)/He method is useful for studying a range of near-surface processes, 

application of the method is currently restricted to igneous, metamorphic, and siliciclastic rocks 

with specific minerals such as apatite or zircon present. Marine carbonates and shales typically 
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lack these accessory phases in sizes practical for (U-Th)/He dating; thus, identifying datable 

material in carbonates and shales presents a significant opportunity to expand the method and 

enhance our understanding of the thermal history of rocks from these settings.  

Conodonts may offer a way for using the (U-Th)/He method in carbonate successions 

(Peppe and Reiners, 2007; Flowers et al., 2014; Powell et al., 2014). These tooth-like microfossils 

are common in Cambrian through Triassic carbonates and shales, and are preserved as 

biomineralized apatite with U and Th in concentrations that are comparable to magmatic sources 

of apatite (Trotter and Eggins, 2006; Peppe and Reiners, 2007). The microfossils are referred to as 

elements, which were apparently part of the feeding apparatus of the host animal. Conodonts are 

already routinely collected and used as biostratigraphic markers (e.g., Bergström, 1970; Sweet et 

al., 1970; Behnken, 1975; Over, 2007; Hogancamp et al., 2016) and as maximum temperature 

indicators via the conodont color alteration index (CAI; Epstein et al., 1977; Rejebian et al., 1987). 

Thus, conodonts are particularly attractive because successful use as a (U-Th)/He 

thermochronometer means that a single conodont element, when paired with other geologic data, 

could provide three independent time and temperature constraints – cooling age, biostratigraphic 

age, and maximum temperature.  

Peppe and Reiners (2007) is the only published study to date that has explored the utility 

of conodonts as (U-Th)/He thermochronometers. Successful aspects of their study included 

determining that the closure temperature for conodonts is similar to magmatic apatite (60 – 67 °C), 

and that the diffusion domain likely corresponds to the whole of the conodont element. Several of 

the samples in their study also yielded (U-Th)/He (CHe) dates consistent with regional thermal 

histories for the sample locales. Other samples, however, showed a wide spread in dates and an 

inverse correlation with parent isotope concentrations, pointing to possible open-system behavior 
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at some point late in the history of the samples (i.e. post-cooling).  

Some of the challenges associated with conodonts as potential thermochronometers may 

relate to their inherent variability. They are found in a variety of shapes and sizes; morphologies 

include bar, blade, cone, and platform elements. Although Peppe and Reiners (2007) confirmed 

that the diffusion domain size was likely the conodont element, conodont biogenic apatite is 

composed of two structural components (crown and basal body) and three primary tissue types 

(albid, hyaline, and basal tissues). Each of these tissue types varies in microcrystalline size and 

arrangement, elemental composition, porosity and permeability, and relative percentage within a 

single conodont element (Pietzner et al., 1968; Wright et al., 1990; Trotter and Eggins, 2006). 

These variations can influence primary isotope distributions within individual conodonts and the 

potential for isotope and elemental mobility. Similarly, temperature changes, as documented by 

CAI, can alter the microstructures of the conodonts, which may also impact isotope distributions, 

He diffusivity, and CHe ages (Burnett, 1988; Fuchs, 1989; Königshof, 1992; Nöth, 1998). These 

challenges have yet to be resolved in the emerging CHe method.  

Here, we evaluate the suitability of biogenic apatite from conodonts for (U-Th)/He 

thermochronology by dating material extracted from surface outcrops located in the footwalls of 

three well-studied low-angle normal faults (LANFs) in eastern Nevada and western Utah (Figures 

1, 2, and 3). These faults are among the best cited examples of low-angle normal faults, and have 

been the focus of detailed geologic and structural investigations (Wernicke et al., 1985; Axen et 

al., 1990; Axen, 1993). They have also been the focus of recent zircon and apatite (U-Th)/He study 

(Bidgoli et. al., 2015) and earlier fission-track studies (O’Sullivan, 1994; Stockli, 1999). These 

studies along with published thermochronology data from the region (Fitzgerald et al., 1991, 2009; 
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Reiners et al., 2000; Quigley et al., 2010) provide relatively tight constraints on the thermal history 

of the study area, and allow direct comparisons with CHe results.  

In this paper, we report CHe dates as well as trace and REE isotope concentrations from 

laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) depth profiles to better 

characterize the potential of conodonts as thermochronometers. We show that while some dates 

are consistent with the known thermal history of the region, most of our samples have dates that 

are older than the expected Miocene age and show significant scatter. Additionally, many CAI 3 

conodonts dated older than deposition, a clear indication of open-system behavior during the low 

temperature history of our samples. Although our results do not allow us to conclusively determine 

the cause for open-system behavior, we show that microstructural changes associated with 

increasing CAI may be a contributing factor for parent isotope mobility and the limited 

reproducibility of our CHe dates.  
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BACKGROUND 

Study area background 

Overview 

The study area is located in a part of the Basin and Range province that experienced 

significant extension during the Miocene (Wernicke et al., 1985; Hintze, 1986; Figures 1 and 2). 

Extension was accommodated by three LANFs in the area: the Mormon Peak Detachment (MPD) 

in the Mormon Mountains, the Tule Springs Detachment (TSD) in the Tule Springs Hills, and 

Castle Cliffs Detachment (CCD) in the Beaver Dam Mountains (Wernicke et al., 1985; Hintze, 

1986; Axen et al., 1990; Axen, 1993; Figure 3). These LANFs are well studied in terms of their 

geometries and kinematics (Wernicke, 1982; Wernicke et al., 1985; Axen et al., 1990; Axen, 1993; 

Swanson and Wernicke, 2015). Additionally, new apatite and zircon (U-Th)/He thermochronology 

data from the area (Bidgoli et. al., 2015) and published fission-track data (O’Sullivan, 1994; 

Stockli, 1999) provide constraints on the thermal histories of the footwalls of these detachment 

faults in non-carbonate intervals, and suggest that extension-related cooling occurred between 17 

and 14 Ma (Figure 4).  However, much of the exposed outcrop in this region is carbonate rock 

lacking thermochronological data. Thus, the study area is ideal as a calibration site for testing the 

(U-Th)/He method on conodonts in that the CHe results can be directly compared to other datasets.  

Structural and tectonic history 

Two major phases of deformation occurred in the study area. Mesozoic contractional 

structures are part of a mid-Cretaceous to early Cenozoic belt of deformation associated with the 

Sevier orogeny (Longwell, 1949; Armstrong, 1968, Fleck, 1970, Bohannon, 1983; Heller et al., 

1986; Carpenter, 1989; Axen et al., 1990; Carpenter and Carpenter, 1994). Contraction was 

principally facilitated through the Mormon-Tule Springs thrust, an east-vergent decollément-style 
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thrust with approximately 30 km of shortening across it (Wernicke, 1982; Wernicke et al., 1984; 

1985). Miocene extension via three major low-angle normal faults (LANFs) later gave the region 

its current tectonic expression.   

The CCD is the major extensional structure in the Beaver Dam Mountains and likely 

initiated with a low dip of up to 32 degrees, but is currently exposed with dips of 10 to 20 degrees 

in outcrop (Axen et al., 1990; Axen, 1993). The CCD extends from the eastern Beaver Dam 

Mountains to beneath the Tule Spring Hills where propagation likely terminates. The Beaver Dam 

anticline (monocline) is preserved in the footwall of the detachment and is variously interpreted as 

being related to Miocene flexural unloading (Axen and Wernicke, 1989; Axen, 2004) or Laramide-

age contraction (Hintze, 1986; Carpenter and Carpenter, 1994; Christie-Blick et al., 2007).  

Extension in the Tule Spring Hills and Mormon Mountains initiated also in the Miocene 

along the structurally shallower TSD and MPD, respectively. The TSD resides in the hanging wall 

of the CCD and has a ramp-flat geometry, with the detachment’s flat initiating at a low angle, 

between 3-15 degrees, and reactivating part of the Tule Springs thrust (Axen, 1993). The TSD has 

accommodated 5.5-7 km of middle to late Miocene extension. Pliocene north-trending normal and 

strike slip faults, which cut and offset the TSD between 6 and 8 km left-laterally, dominate the 

low-relief exposed ridges and valleys that make up the modern Tule Spring Hills. The MPD, 

located west of the TSD, also initiated at a low dip. Current exposures of the fault dip 5-10 degrees, 

but palinspastic reconstructions of the MPD suggest an original dip of 20-28 degrees and that it 

likely accommodated 12 to 13 km of extension (Wernicke et al., 1985; Swanson and Wernicke, 

2015).  

Not all researchers concur that low-angle normal faulting created the modern structural 

expression of the Mormon Mountains, Tule Spring Hills, and Beaver Dam Mountains. Some 
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workers theorize that low-angle features in these ranges are the result of gravity slides, and that 

Miocene extension was minor and accommodated through high-angle range-bounding normal 

faults (Carpenter and Carpenter, 1994; Anders et al., 2006). Basal gravity slides are capable of 

producing structures that look similar to LANFs (e.g. Pierce, 1957, 1975; Anders et al., 2010). 

Anders et al. (2006) argued for a reinterpretation of the MPD based on the presence of basal 

conglomerates and related clastic dikes, the limited deformation in the footwall beneath the MPD, 

and multidirectional kinematic indicators. None of these aspects violate the LANF interpretation.  

Although debate exists on the origin of these structures, results from a recent 

thermochronology study suggest a low-angle normal fault interpretation is more likely. Zircon and 

apatite (U-Th)/He thermochronology, along with fission-track dating show that protracted cooling 

associated with footwall exhumation initiated at around 17 Ma in the Beaver Dam Mountains 

(O’Sullivan, 1994; Stockli, 1999; Bidgoli et al., 2015). Extension then propagated westward to the 

Tule Spring Hills and Mormon Mountains by about 13-14 Ma (Bidgoli et al., 2015). Not only are 

the westward faults younger, but ages within each fault block are also systematically younger in 

the direction of slip on the fault and show no relationship with elevation, consistent with a LANF 

interpretation (Bidgoli et al., 2015). A maximum of 40 km of extension is permitted across the 

three detachments in the study area based on the (U-Th)/He data (Bidgoli et al., 2015), which is 

substantial but lower than previous estimates of 54 +/- 10 km (Wernicke and Axen, 1988; Axen et 

al., 1990).  

Stratigraphy 

The Mormon Mountains, Tule Spring Hills, and Beaver Dam Mountains expose 

Precambrian crystalline basement overlain by Cambrian sandstone and shale and thick successions 

of Cambrian through Permian shallow-water marine carbonates (Wernicke, 1985; Hintze, 1986). 
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Above these units lie Triassic carbonates, Jurassic and Cretaceous siliciclastics, and Tertiary ash-

flow tuffs (Hintze, 1986). Previous thermochronology studies dated apatites and zircons extracted 

from Precambrian basement gneisses and granites, Cambrian sandstones, and Permian through 

Jurassic sandstones and conglomerates (O’Sullivan, 1994; Stockli et al., 1999; Bidgoli et al., 

2015). Carbonate-dominated intervals were chosen for this study and have not been previously 

dated. Units sampled in this study include the Cambrian Bright Angle Shale and Bonanza King 

Formations, Devonian Muddy Peak Dolomite, Mississippian Redwall Limestone/Monte Cristo 

Limestone, Pennsylvanian Callville Limestone, and Permian Pakoon Dolomite (Hintze, 1986). 

Sampled intervals were predominantly medium-to-coarse grained, light-to-dark gray dolomitized 

packestones to grainstones.  

Conodont background 

Overview 

Conodont apatite begins uptake of U, Th, and REE during deposition, and concentrations 

are thought to be preserved through burial and diagenesis at low temperatures, making them 

potential candidates for (U-Th)/He analysis (Bernat, 1975; Wright et al., 1984; Shaw and 

Wasserberg, 1985; Trueman and Tuross, 2002, Trotter and Eggins, 2006). Conodonts are made of 

hyaline, albid, and basal tissue, each of which varies microstructurally and in uptake of trace 

elements, which is a potential complication to dating (see following section; Trotter and Eggins, 

2006; Trotter et al., 2007; Sanz-Lopez et al., 2012). Other challenges associated with dating 

conodonts include the impact of burial and diagenesis on conodont microstructure (documented 

through CAI), which may ultimately influence parent isotope distributions, He diffusivity, and 

CHe ages. These factors, along with the complex morphologies of the conodont elements, also 

make it hard to accurately estimate the alpha ejection correction, a necessary morphometrically-
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based age correction that is applied to (U-Th)/He dates (Farley et al., 1996).  

Mineralogy, microstructure, and color alteration index (CAI) 

Conodonts are made of biogenic carbonate fluorapatite that is compositionally similar to 

francolite (Ca
5
Na

0.14
(PO

4
)

3.01
(CO

3
)

0.016
F

0.73 
(H

2
O)

0.85
), and are composed of three basic histologic 

types that differ in the size and connectivity of microcrystallites, which can affect porosity and 

permeability of conodonts, and ultimately, their compositions (Pietzner et al., 1968; Wright et al., 

1990; Trotter and Eggins, 2006; Trotter et al., 2007; Sanz-Lopez et al., 2012). Albid tissue is 

composed of both fine and very large microcrystals (up to 100s of µm) but has the lowest porosity 

and permeability due to unconnected intracrystalline pores (Trotter et al., 2007, Sanz-Lopez et al., 

2012). Hyaline tissue is made up of medium-sized microcrystals (up to 30 µm) with higher (up to 

10 nm) lamellar porosity (Pietzner et al., 1968; Trotter and Eggins, 2006; Trotter et al., 2007; Sanz-

Lopez et al., 2012). Basal bodies are a third histologic type, and they have a very fine 

polycrystalline matrix with high intercrystalline porosity and permeability (Trotter et al., 2007). 

Microcrystalline structures can vary within each tissue type, and tissue types also differ in their 

average concentrations of radiogenic parent isotopes, trace elements, and REEs. Albid tissue 

produces the lowest concentrations, commonly less than 10 ppm U, hyaline tissue generally 

possesses moderate concentrations, between 10 and 100 U ppm, and basal bodies contain the 

highest concentrations, commonly >100 ppm U. Recent studies have shown that REE patterns in 

conodonts are controlled largely by diagenetic uptake (Bright et al., 2009; Zhao et al., 2013; Chen 

et al., 2015); thus concentrations within individual conodonts can be heavily influenced by their 

specific post-mortem histories.  

In 1977, A.G. Epstein created the conodont color alteration index (CAI), a scale from 1 – 

8 that describes color changes that occur to conodonts that experience different temperatures. From 
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1 to 8, colors shift from light brown to dark brown to gray to black to white at temperatures ranging 

from <50 to >600 degrees Celsius (Epstein, 1977; Rejebian et al., 1987). These color changes 

correspond to microstructural alterations that occur within conodonts at increasing burial 

temperatures. Surficial microstructural orientation shifts commonly begin at lower levels of CAI 

(Königshof, 1992; Nöth, 1998). From CAI 1 to 3, a preferential rotation of microcrystals from 

perpendicular to parallel to the largest axis of the conodont has been observed (Nöth, 1998). 

Microcrystalline orientation shifts may impact porosity and permeability within conodonts, and 

may affect diffusion pathways and chemical exchange near the exterior of grains (Burnett, 1988; 

Sanz-Lopez et al., 2012).  

In addition to microstructural shifts, surface textures can change with increasing CAI. 

Typical surficial microtextures include large (~2 µm) blocky crystals, columnar crystals, crystal 

fans, and denticular crystals (Blanco-Ferrera et al., 2010, Sanz-Lopez et al., 2012). All 

microtextures are seen in conodonts above CAI 1. Additionally, at higher temperatures, conodonts 

may experience hydrothermal alteration by dissolution and/or recrystallization (Burnett, 1988; 

Fuchs, 1989; Königshof, 2003). Surface texture patterns in chemically corroded conodonts are 

described as pocked, frosted, or pitted surfaces (Nöth, 1998).  Dolomite rhombs from the host rock 

and large apatite crystallites can be embedded into corroded surfaces in higher CAI conodonts, 

indicating acidic fluids can substantially alter surficial microtextures (Königshof, 2003; Sanz-

Lopez et al., 2012). While more common in conodonts that have experienced contact 

metamorphism (CAI 4), recrystallization features can begin in conodonts with CAI as low as 1.5, 

depending on depositional environment and post-depositional conditions (Ebneth et al., 1997; 

Nöth, 1998). Surface microtextures are different from internal conodont microstructural patterns 

(i.e. lamellar tissue structure; Sanz-Lopez et al., 2012), and the effect of increasing CAI on 
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potential microstructural changes at depth remains unclear for conodonts with lower CAIs. 

Geo- and thermochronometer studies 

A small number of studies have used conodonts as geo- and thermochronometers (e.g., 

Turekian et al., 1970; Sachs et al., 1980; Kovach and Zartman, 1981; Ueki and Sano, 2001; Elrick 

et al., 2002; Peppe and Reiners, 2007; Flowers et al., 2014; Powell et al., 2014). Early studies by 

Turekian et al. (1970) and Sachs et al. (1980) found major problems in that conodonts and other 

fossil bones were susceptible to He loss and/or had low parent isotope concentrations. Several 

subsequent studies tested the potential of conodonts as U/Pb geochronometers and determined that 

conodonts typically generated U/Pb ages close to their depositional or early diagenetic age, but 

had large scatter (Kovach and Zartman, 1981; Ueki and Sano, 2001; Elrick et al., 2002).  

Peppe and Reiners (2007) was the first published study to test the potential of conodonts 

as (U-Th)/He thermochronometers. They analyzed CAI 1-5 conodonts from seven localities 

around North America and concluded that three or potentially four of their seven samples yielded 

reproducible ages that correspond to known regional cooling ages. Uncertainties within 2σ for 

samples they considered acceptable range from 3.3% to 15%. He diffusion experiments showed 

that conodont apatite has a closure temperature of 60-70 °C, consistent with the window for 

magmatic apatite. Their study also showed that among the samples that did not yield reproducible 

CHe dates, many showed inverse correlations between parent isotope concentrations and CHe 

date, indicating conodonts may have experienced a period of open-system behavior. Overall, their 

work suggests that conodonts have potential as thermochronometers, but more robust analysis is 

required to evaluate CHe ages with respect to specific regional geologic cooling histories, and 

extrapolate how characteristics of conodonts such as CAI, microstructure, apatite tissue type, and 

species morphology and evolution patterns impact CHe dating potential.  
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METHODS 

Sample collection 

We collected samples from three transects across exposed carbonate footwall blocks in the 

Mormon Mountains, Tule Spring Hills, and Beaver Dam Mountains (Figure 2). We sampled each 

transect along the structural dip, perpendicular to the strike of the faults following methods of 

Stockli (2005), so that thermal profiles of extension-related exhumation would be captured. We 

collected roughly 5 kilograms of carbonate material per sample, at 200 to 300 m horizontal spacing 

between samples, depending on outcrop availability. In total 43 samples were collected: 14 

samples in the Mormon Mountains, 8 samples in the Tule Spring Hills, and 20 samples in the 

Beaver Dam Mountains. Sampled intervals were dominantly medium to coarse-grained dolomitic 

packestones to grainstones.  

Sample dissolution and conodont separation 

Carbonate samples were dissolved using double-buffered formic acid following the 

methods described by Jeppson and Anehus (1995). Formic acid is preferred to other common 

carbonate dissolution techniques (i.e. acetic acid) because it is quick, effective on dolomites, and 

less prone to etching or destroying conodonts during extraction (Jeppson and Anehus, 1995). 

Conodonts are susceptible to damage if the pH of the acid used during dissolution is outside the 

optimal range, which can vary based on taxonomy and locale (Jeppson and Anehus, 1995; Jeppson 

et al., 1999). For dolomitized carbonates processed using buffered formic acid, an initial pH of as 

low as 2.43 is safe, although a higher pH may be required to preserve certain specimens (Jeppson 

and Anehus, 1995). Therefore, careful monitoring of pH and potential damage to specimens is of 

paramount importance while processing samples.  
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Our samples were dissolved in a 10.6% formic acid solution, with 20 g of calcium 

carbonate and 1.2 g of tricalcium phosphate added as buffering agents. Dolomite material was 

weighed and 11 ml of the solution was added per gram of dolomite. The solution was mixed 

regularly to prevent density segregation. Following dissolution, lithium metatungstate (2.83 – 2.84 

g/cm3) was used for heavy liquid separation (Hanan and Totten, 1996). Conodonts were then 

separated from residues, dry picked under a binocular scope, and evaluated for species 

identification and CAI. CAI values ranged from 1.5 to 3 using the criteria originally defined by 

Epstein (1977). In total, 15 of the 43 samples dissolved yielded conodonts. The number of 

conodont elements extracted per sample was variable and ranged from <10 to >150 elements, for 

a total of 568 elements. Sample dissolution and CAI analyses were performed at the University of 

Iowa’s Micropaleontology Laboratory.  

Laser ablation ICPMS 

We performed laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) 

to generate depth profiles of trace elements (137Ba, 206Pb, 207Pb, 208Pb, 232Th, and 238U) and specific 

rare earth elements (139La, 140Ce, 141Pr, 146Nd, 147Sm, 153Eu, 158Gd, 163Dy, 166Er, and 172Yb, as well as 

89Y which behaves similarly) within conodonts. 43Ca was measured as an internal standard. U, Th, 

Sm, Nd, and Pb isotopes were measured to determine concentration distributions with respect to 

datable isotopic systems. Low, middle, and high REEs were selected to obtain a holistic data set 

across a spectrum of atomic masses, to determine if isotopic concentration and distribution patterns 

were element-specific. LA-ICPMS analyses were made using a Thermo Scientific Element-2 high 

resolution ICPMS coupled with a Photon Machines excimer laser with a 193 nm wavelength and 

5 ns pulse width at The University of Kansas Isotope Geochemistry Laboratories (Table 1).  
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We generated 512 ablation pits in 400 conodont elements using a procedure modified from 

Trotter and Eggins (2006). Conodont elements were picked and mounted onto epoxy pucks using 

a clear double-sided tape. The puck was then inserted into the sample cell of the laser and between 

1 and 5 ablation pits were shot into each conodont element during 2 experimental runs. We 

attempted to ablate the flattest surfaces on conodont exteriors, but finding completely flat surfaces 

was impossible. Ablating oblique surfaces required consideration that rim and depth zoning 

patterns may exist in different positions and to smaller spatial extents than they appear to in our 

spots. We adjusted the laser fluence, spot size, and ablation time between runs to reduce the 

likelihood that small and/or thin conodont elements would break in the ablation process. The first 

run included Mormon Mountains and Tule Spring Hills conodonts. We used a 3 J/cm-2 laser 

fluence, 10 Hz pulse rate, 50 µm spot size, and total ablation time of 35 seconds. Beaver Dam 

Mountains conodonts were analyzed in the second trial, where we used 2.5 J/cm-2 laser fluence, 10 

Hz pulse rate, 35 µm spot sizing, and total ablation time of 30 seconds. The ablation rate was 

estimated at ~1 µm per second, based on a measured ablation depth of 0.2 µm per laser pulse in 

Durango apatite from Trotter and Eggins (2006). We used half the fluence but twice the pulse rate 

compared to that study and estimate that the ablation rate is roughly equivalent. Total method time 

per spot was 50 seconds in both trials including background measurement, and individual mass 

cycle times were roughly 0.6 seconds. All conodont elements were photographed before and after 

analysis for documentation.  

Data reduction was completed using the Trace_Element_IS data reduction scheme in Iolite 

V2.5 (Paton et al., 2011). The Iolite software generates spot data (depth profiles) in terms of 

elemental counts per second (cps) versus time in seconds. We used the Longerich et al. (1996) data 

reduction method to calculate concentrations, dividing the count rate by the normalized sensitivity 
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after correcting for volume of sample ablated using a calibration standard. Our internal calibration 

standard was 37.88 weight percent Ca for conodont apatite (see Table 1 for summary of input 

parameters). NIST 612 glass, Durango apatite, and Fish Canyon Tuff apatite were also ablated for 

comparison as external standards (see Table 2 for summary of measured values). Trotter and 

Eggins (2006) measured an average U concentration in Durango apatite at 8.88 ppm via LA-

ICPMS, we measured 7.19 ppm U in our Durango standard via LA-ICPMS. In terms of 

compositional similarity between spots, the Durango apatite has shown measured isotopic 

concentrations to be reproducible to between 1% and 5% (Eggins et al., 1998), and the dates 

obtained in this study fall within this range. Fish Canyon Tuff apatite has been more variable in 

previous studies depending on specific sample locations (Farley, 2002; Gleadow et al., 2015). FCT 

average U concentration obtained here is 11.99 ppm, while Gleadow et al. (2015) found an average 

FCT apatite U concentration of 13.72 ppm. No substantial inter-element fractionation was 

witnessed from the change in spot size and depth between trials; average Durango apatite Ca 

concentrations between trials were within 2.4% and average BD and MMTS Ca concentrations 

between trials were within 1.7%.  

X-ray micro-computed tomography (MicroCT) 

We re-picked conodont elements from the previous laser-ablation epoxy pucks onto hole-

punch sized disks (7.9 mm diameter) of sticky tape for X-ray micro-computed tomography 

(MicroCT) lab work. Disks were photographed on customized Nikon SMZ-U/100 

stereomicroscopes for documentation prior to mounting. Up to five disks were then stacked on top 

of a standard thumbtack and taped together to create a single mount. The thumbtack mount is the 

ideal size and shape to insert into a holder, resting as close to the energy source as possible, 

maximizing image quality. The conodont mount was then bombarded with X-rays to generate 
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grayscale images of the individual conodont elements. In total 4 scans were performed imaging 

roughly 400 conodont elements at 5 µm resolution between image slices, with 500 to 600 slices 

per scan. MicroCT analyses were completed using an Xradia microXCT 400 Scanner at the 

University of Texas at Austin High-Resolution X-ray Computed Tomography Facility.  

Image analyses were performed in ImageJ (Schneider et al., 2012) and BLOB3D 

(Ketcham, 2005). ImageJ was used to visualize the CT scans and BLOB3D was used for voxel-

based quantitative analysis of all conodonts selected for (U-Th)/He dating. The procedure for 

calculating conodont size parameters followed the segmentation, separation, and extraction 

method described in Ketcham (2005). Segmentation in ImageJ began by identifying in which scans 

an individual conodont first appeared and ultimately disappeared. Conodonts were isolated by 

cropping images to the maximum two-dimensional horizontal slice area of the desired conodont 

element. The cropped scans were then modeled through a grayscale analysis using an 8-bit, 256-

level color scale in BLOB3D. This was accomplished by first determining average grayscale 

values for conodont apatite and background air in each scan. The midpoint between these values 

was used as a threshold to separate conodont material from air. Voxels with grayscale values above 

the threshold were grouped as the conodont. We then extracted three-dimensional measurements 

from the scans and calculated surface area, volume, surface to volume ratio, and minimum and 

maximum axial dimensions and orientations (Ketcham, 2005). These calculations were made to 

better understand the impact of grain size and morphological variability on (U-Th)/He dates, and 

for future work on determining a morphology-independent alpha-ejection correction (see next 

section; Farley et al., 1996; Farley, 2002; Evans et al., 2008).  

 (U-Th)/He thermochronology 
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The (U-Th)/He method is based on the production of 4He during radioactive decay of 

isotopes of U, Th, and Sm. Helium is mobilized by thermally activated volume diffusion; thus, 

temperature is the main factor in determining whether 4He is retained or expelled during 

radioactive decay of parent isotopes. In apatite, helium is completely expelled above 80 °C and 

mostly retained below 40 °C (Wolf et al., 1996, 1998; House et al., 1999; Stockli et al., 2000). The 

AHe PRZ is an intermediary temperature range where He is neither entirely retained nor entirely 

expelled (Wolf et al., 1998). (U-Th)/He dates from samples in the PRZ are heavily influenced by 

slight differences in temperature at depth, which can help explain scatter in certain sample 

populations (e.g., House et al., 2001; Stockli et al., 2002). Additional factors that impact 4He 

retention include grain size (e.g., Farley, 2000; Reiners and Farley, 2001), cooling rate (e.g., 

Dodson, 1973), and crystal lattice damage (e.g., Nasdala et al., 2001; Shuster et al., 2006).   

We performed (U-Th)/He thermochronometry on 69 conodont elements from 15 samples. 

Up to 6 conodont aliquots were analyzed per sample. Conodont elements were first picked under 

customized Nikon SMZ-U/100 stereomicroscopes and placed into platinum tubes with the ends 

crimped to seal the grains within. Conodonts with distinct, identifiable morphologies such as blade 

denticles or cone elements of various sizes and without large fractures were selected for dating. 

We hoped to avoid selecting fragments with no discernable morphology, which was not possible 

in many samples, especially the Tule Spring Hills conodonts. Following picking, conodont 

elements were degassed using a Photon Machines diode and U.S. Laser Nd:YAG laser to 1070°C 

for five minutes. Aliquots were reheated until the re-extracts were <1% of the previous total. The 

gas released was spiked with 3He for isotope dilution, purified using a gettering and cryogenic 

trapping system, and measured using a Blazers Prisma QMS-200 quadrupole mass spectrometer. 

Conodonts were then dissolved using 30% HNO3 and spiked with U235, Th230, and Sm149. The 
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resulting solution was measured for parent isotopes on a Thermo Scientific Element-2 high 

resolution ICPMS with CETAC micro-concentric nebulizer and ESI autosampler.  

The alpha ejection correction (Ft) is a morphometry-based age correction applied to grains 

with non-ideal geometries to calculate for the effect of alpha particle ejection on (U-Th)/He ages. 

Alpha particles can eject from grains if they are near their surfaces, which can alter parent/daughter 

ratios and affect (U-Th)/He dates (Ziegler, 1977; Farley et al., 1996). The proximity to surface at 

risk for alpha ejection varies by parent isotope and ranges from 11 to 34 micrometers, and U-series 

parent isotopes are at risk up to 20 micrometers (Farley et al., 1996). Conodonts have highly 

variable, irregular shapes that are more susceptible to alpha ejection compared to grains with 

conventional morphologies. This issue could result in substantial parent/daughter fractionation at 

conodont margins where the morphology is thin, jagged, or pointy (e.g. near serrated tooth edges 

of blade conodont elements), and lead to CHe dates that are too young.  

Standard Ft corrections are two-dimensional, calculated using length and width of grains 

with simple geometries. 2D corrections are not ideal for highly complex conodonts. Evans et al. 

(2008) first attempted 3D alpha ejection corrections using an erosional procedure to remove the 

outer 20 micrometers of grains. Our 3D Ft calculations were performed in BLOB3D, and CHe 

dates were reported with and without the Ft corrections in Table 5. All laboratory and analytical 

work was performed at the (U-Th)/He and U-Pb Geo-Thermochronometry Lab at the University 

of Texas at Austin. Data reduction was performed using the laboratory’s in-house Excel-based 

software packages.  

Scanning Electron Microscopy 

Scanning electron microscopy was performed at the University of Kansas Microscopy & 

Analytical Imaging Lab. We attempted secondary electron (SE) and backscattered electron (BSE) 
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imaging, and energy dispersive X-ray spectroscopy (EDS) using a FEI Versa 3D Dual Beam with 

multiple detectors. Both SE and BSE techniques are useful for very high-resolution imaging of 

grain surfaces for a variety of materials, including fossil bones: SE imaging is ideal for detecting 

low-energy electrons emitted from light isotopes, while BSE imaging is better suited for detecting 

high-energy electrons from heavier isotopes (Hay and Sandberg, 1967; Bell, 1990; Joy, 1991; 

Turner-Walker and Syversen, 2002). EDS maps can be used to understand isotope distribution 

patterns at depth within grains at up to atomic-level resolution (Allen et al., 2012). Together, we 

hoped these techniques would produce a comprehensive data set of images that could aid in our 

interpretations of isotope distributions within conodonts and our understanding of the CHe data. 

Sample preparation for imaging conodont surfaces was minimal. Conodont disks used for 

microCT scans were placed onto metal posts with double-sided black reflective tape and inserted 

into the SEM. Two polished epoxy pucks were also prepared with the goal of analyzing the internal 

structure of conodont elements from samples MM08 and BD16.  

All conodont surfaces were imaged using the SE method, and several were imaged using 

BSE and EDS methods using the FEI Versa 3D Dual Beam microscope (Figures 12, 13, 14, 15). 

EDS test maps were generated in the AZtecEnergy EDS data reduction software program. 

Concentrations measured in the EDS program were too low to produce images that provided 

meaningful information to help with our interpretation of parent isotope distributions within 

conodonts, and further analysis was abandoned.  
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RESULTS 

LA-ICPMS depth profiles 

LA-ICPMS depth profiles reveal that trace and REEs are heterogeneously distributed 

within conodonts in a variety of patterns and with a range of concentrations. All measured trace 

and REE concentrations are consistently highest near conodont margins and decrease with depth. 

Significant intra- and inter-sample variability in trace element and REE concentrations was also 

observed. Concentrations and trends and their relationship with conodont histologies and CAI are 

described herein. Examples of LA-ICPMS depth profiles are presented in Figure 5. LA-ICPMS 

input specifications and a summary of external standard measured values are presented in Tables 

1 and 2. A summary of elemental concentrations calculated from conodonts in each mountain 

range is presented in Table 3, and graphs of parent isotope concentrations measured from LA-

ICPMS depth profiles in all grains that were dated are presented in Appendix A. The full calculated 

LA-ICPMS data set is is available through the IEDA (Interdisciplinary Earth Data Alliance) 

EarthChem (www.earthchem.org) at http://dx.doi.org/10.1594/IEDA/100631.  

Compositional patterns 

Most of the conodont elements analyzed possess a narrow rim at their margin that is heavily 

enriched in U, Th, Sm, and REEs. Rim enrichment is commonly 10x the concentration at depth 

and U and Th concentrations can exceed 100 ppm and 50 ppm, respectively. These rims can be up 

to 5 micrometer (µm) thick, but are commonly thinner than two mass cycles or <1.2 µm. Thicker 

rims may be artifacts of ablating at angles oblique to the conodont surface (see following sections 

and discussion).  

Compositional patterns at depth are variable, with ~70% of conodont elements showing a 

relatively flat or homogeneous distribution pattern beyond their enriched margins and ~30% 
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showing a humped or U-shaped trace and REE distribution patterns that may be evidence of zoning 

(enrichment or depletion) within conodont elements.  Zones of enrichment/depletion typically 

occur between 10 and 30 µm from the surface. We are unable to determine if these are concentric 

bands or axial zones because the irregular morphology of the individual conodont elements means 

that the laser ablation profiles were not always acquired perpendicular to the major growth axes. 

The distribution patterns are consistent for all measured elements, with the exceptions of Pb206, 

Pb207, and Pb208, for which 10% of conodonts show isolated enrichments of up to 5x at depths 

between 10 and 30 µm.  

We also observe different compositional patterns between light, middle, and heavy REEs. 

All REEs tend to be distributed in patterns similar to the radiogenic parent isotopes, meaning they 

consistently show enriched rims of 5 µm or less and relatively depleted cores with local zoning. 

Although distribution patterns are similar, measured concentrations differ between REEs. 

Conodonts commonly contain higher concentrations of LREEs compared to MREEs and HREEs. 

These distributional trends are seen in both the higher concentration margins and lower 

concentration cores. Margin La/Dy ratios are typically 2:1 to 10:1, and La/Yb ratios are typically 

20:1 to 100:1. At the margins in Beaver Dam conodonts, LREE concentrations are often in the 5-

10 ppm range, while MREE concentrations are in the 1-5 ppm range, and HREE concentrations 

are in the <1 ppm range. REE ratios remain similar at depth; La/Dy ratios are typically between 

2:1 and 10:1, and La/Yb ratios are between 20:1 and 100:1. At depth in Beaver Dam conodonts, 

LREE concentrations range from 1-5 ppm, and MREE and HREE concentrations are consistently 

<1 ppm. Concentrations vary by sample; LREE concentrations are in the 10-100 ppm range in 

Mormon Mountains conodonts and >100 ppm in Tule Spring Hills conodonts, but the REE ratios 

are consistent.  
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Radioactive parent concentrations 

Although LA-ICPMS depth profiles exhibit a wide range of element concentrations, these 

can be summarized into consistent concentration patterns. Concentrations at rims are substantially 

higher than at depth across the full data set: average U rim concentrations range from <1 ppm to 

345 ppm, while average depth U concentrations range from <1 ppm to 41 ppm (where profiles are 

homogeneous). A summary of parent isotope concentrations is presented in Table 3. 

Concentrations vary widely between samples, for example rims of BD17 conodont elements 

mostly exceed 100 ppm U, while rims of BD16 conodont elements commonly contain less than 1 

ppm U. These concentrations are also correlated with conodont tissue type and thermal alteration 

related to CAI. Average U, Th, and Sm concentrations measured through laser ablation ICPMS 

depth profiling were comparable to (U-Th)/He-based solution ICPMS measurements reported in 

Table 5.  

Beaver Dam conodonts produced relatively consistent parent concentration data. Relative 

enriched rim concentrations range from 1 ppm to 345 ppm U, <1 ppm to 78 ppm Th, and <1 ppm 

to 72 ppm Sm (Table 3). At depth within Beaver Dam Mountains conodonts, average U 

concentrations range from <1 ppm to 25 ppm, average Th concentrations range from <1 ppm to 

12 ppm, and average Sm concentrations range from <1 ppm to 46 ppm (Table 3). Rim enrichments 

of 5x to 10x depth concentration, and stable depth concentration profiles are consistent across all 

BD samples. Zoning at depth is typically consistent across all measured trace and REE isotopes in 

BD conodonts. Parent concentrations are extremely high in sample BD17, both at rims and at 

depth. BD17 conodonts consistently have rim U concentrations in excess of 100 ppm. 

Concentrations are lowest in samples BD15 and BD16, consistently lower than 7 ppm U at depth 

in both samples and in some instances lower than 1 ppm (Figure 5).  
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Conodonts from the Mormon Mountains have similar trace and REE concentrations to the 

Beaver Dam Mountains conodonts (Figure 5). Rim concentrations in Mormon Mountains 

conodonts range from 1 ppm to 109 ppm U, <1 ppm to 28 ppm Th, and 2 ppm to 96 ppm Sm 

(Table 3). At depth in the Mormon Mountains samples, average U concentrations range from 1 

ppm to 10 ppm, average Th concentrations ranged from <1 ppm to 3 ppm, and average Sm 

concentrations range from 1 ppm to 8 ppm (Table 3). Concentrations in MM08 conodonts are 

typically 3 – 4 ppm higher at depth than in the other three Mormon Mountains samples. Depth 

zoning is consistent across all trace and REEs in the Mormon Mountains conodonts.  

The Tule Spring Hills samples had the most variable concentration data. Trace element and 

REE concentrations at depth were typically high, while rim enrichments were the most variable 

(Figure 5). Rim concentrations ranged from 9 ppm to 207 ppm U, 23 ppm to 265 ppm Th, and 33 

ppm to 331 ppm Sm (Table 3). At depth in Tule Springs samples average U concentrations ranged 

from 4 ppm to 41 ppm, average Th concentrations ranged from 18 ppm to 85 ppm, and average 

Sm concentrations ranged from 2 ppm to 83 ppm (Table 3). Many rims exceeded 10x 

concentrations at depth, but some rims actually had lower concentrations than at depth. Many 

conodonts produced depth profiles similar to Mormon and Beaver Dam conodonts, but some 

conodonts produced more variable profiles, while others broke during analysis. Tule Spring 

samples were the smallest and most fragmented conodonts, increasing likelihood for breakage, 

oblique ablation, and potential bias within the dataset.  

Tissue type and CAI effects 

The patterns of relative rim concentration enrichments and homogeneous depletion or 

zoning at depth correlate with conodont tissue type. Roughly 70% of the LA-ICPMS spots targeted 

hyaline crown tissue, which comprises the bulk of conodont structural assemblage. The remaining 
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30% of spots were ablated into albid crown tissue on the fringes of what were commonly blade 

and platform elements. Depth profiles in albid tissue produced U-shaped chemical isotope 

distribution patterns and lower heavy REE concentrations than hyaline tissue, which has gradual 

chemical isotope depletion patterns and higher trace element and REE concentrations (Figure 6). 

Large depletion zones, with average concentrations of <10 ppm, were seen deep in ablation pits 

within albid tissue. Hyaline tissue corresponded with higher concentrations; spot analyses 

produced concentrations in the 10 – 100 ppm range, sometimes exceeding 100 ppm. The character 

of laser ablation depth profiles with regard to albid and hyaline tissue is also similar to observations 

made by Trotter and Eggins, 2006.  

We also see consistent relationships between measured concentrations and CAI. Average 

measured isotope concentrations inversely correlate with CAI across all trace and REE elements. 

In Beaver Dam Mountains samples average concentrations are substantially higher in CAI 2 

conodonts (commonly >10 ppm U, and >100 ppm U in BD17) than CAI 3 conodonts (commonly 

<5 ppm U), in Mormon Mountains samples concentrations are slightly higher concentrations in 

CAI 2 conodonts (commonly >10 ppm U) than CAI 2.5 conodonts (commonly <10 ppm U), and 

in Tule Spring Hills samples concentrations are also higher in CAI 1.5 conodonts (commonly >20 

ppm U) than CAI 2 conodonts (commonly <20 ppm U). With respect to rim enrichments, we see 

decreasing enrichment in trace and REEs near conodont surfaces with increasing CAI. This trend 

is evident in conodonts from all three mountain ranges. Rim enrichments are still typically 5x to 

10x the concentration at depth in higher CAI conodonts in each mountain range. These two major 

trends (inverse correlation between concentrations and CAI, decreasing rim enrichment with 

increasing CAI) are consistent across the entire data set when all the LA-ICPMS data is evaluated 
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together. Tissue type differences may help explain some of the variability in concentrations 

between conodonts from the same samples that possess identical CAI.  

CHe thermochronology 

The CHe data show two distinct populations among our samples: the majority of conodonts 

(58 of 69) date younger than deposition, but a small portion (11 of 69) date older than deposition 

(Figure 7; Tables 4 and 5). CHe dates have substantial scatter within and between samples. 

Variation of uncorrected dates within each sample is commonly 20% but up to 150% about the 

mean.  This is due to several factors (e.g., microstructural changes at increasing CAI; see following 

sections and discussion) that are as yet only loosely controlled or quantified.  For this reason, we 

do not exclude any analyses in computing the final mean age for each sample.  This is in contrast 

to typical practice for magmatic or detrital apatite mineral grains.  For these, analytical errors are 

typically low, on the order of a percent or less, while within sample variation (e.g., repeated 

analyses on a single standard, are commonly about 5%). This means that aliquots are routinely 

excluded from final age interpretations.  The discussion of CHe results in this section excludes the 

3D Ft corrections, which range from 0.248 to 0.910 and are reported in Table 5.  

CHe dates from each of the ranges studied are highly scattered in comparison to previous 

studies of the geologic and thermal history of the region (Hintze, 1986; Wernicke et al., 1985; 

Axen et al., 1990; Axen, 1993; Stockli, 1999; Bidgoli et al, 2015). The conodont apatite CHe dates 

are older than expected in all three mountain ranges and have considerably more variability. In 

comparison, traditional apatite (U-Th)/He samples from Bidgoli et al. (2015) consistently 

produced dates that were clustered and Miocene in age, and in agreement with AFT.  

The six Beaver Dam Mountains (BD) samples produced the oldest CHe dates and are the 

most scattered. Paleodepth reconstruction of our samples following the strategy outlined in Bidgoli 
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et al. (2015) show that five of the seven BD samples reside near the apatite fission track partial 

annealing zone (PAZ; 60-110 °C; Stockli, 1999), while the other two samples (BD15 and BD16) 

date substantially older than depositional ages (Figure 4). Mean ages from BD samples near the 

PAZ range from 23.2 +/- 11.6 Ma to 72.4 +/- 21.7 Ma, but individual dates range from 0.7 +/- 0.01 

Ma to 110.0 +/- 0.75 Ma (Tables 4 and 5). In contrast, samples BD15 and BD16 produce mean 

dates that are much older than the Mississippian depositional ages of the rocks themselves (Hintze, 

1986), 883 +/- 49 Ma and 1282 +/- 560 Ma respectively (see timescale of Walker et al., 2013). 

Individual BD15 and BD16 dates range from 138 +/- 21 Ma to 1737 +/- 3.01 Ma. Samples BD02 

and BD06 were partially destroyed during laboratory work; however, BD02 produces one CHe 

date (1.1 +/- 0.01 Ma) and BD06 produces three CHe dates (0.7 +/- 0.01 Ma, 59.2 +/- 0.4 Ma, and 

62.5 +/- 0.6 Ma), all of which are younger than deposition.  

 The four Mormon Mountains (MM) samples in this study produce mean dates from 55.4 

+/- 30 Ma to 94.0 +/- 49 Ma (Table 4). Individual dates from MM samples range from 14.8 +/- 

0.14 Ma to 192.4 +/- 0.79 Ma, and all are younger than deposition (Table 5). In comparison, 

Bidgoli et al. (2015) found Mormon Mountains apatite produced average (U-Th)/He dates that 

ranged from 7.6 +/- 2.5 Ma to 14.6 +/- 0.5 Ma. In the restored-state cross section and paleodepth 

reconstruction in Figure 4, the Mormon Mountains conodonts plot at similar paleodepths to the 

respective Mormon Mountains apatite samples. Thus we expect the conodonts to produce similar 

CHe dates, but instead the conodonts produced older CHe dates with wider scatter. Assuming the 

closure temperature for conodont apatite is similar to magmatic apatite, these older CHe dates may 

be pointing to loss of parent elements.  

The three Tule Spring Hills (TS) conodont samples produce the youngest trend in mean 

dates, ranging from 35.9 +/- 4.3 Ma to 68 +/- 41.4 Ma, and are the most reproducible cluster (Table 
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4). Individual Tule Spring dates range from 20.7 +/- 0.33 Ma to 98.4 +/- 0.90 Ma (Table 5). All 

Tule Spring CHe dates are also younger than the depositional age. Bidgoli et al. (2015) found Tule 

Spring Hills apatite samples produced average CHe dates that ranged from 16.0 +/- 3.7 Ma to 27.6 

+/- 6.2 Ma. The TS conodonts plot 1-2 km shallower than their corresponding apatite samples in 

the paleodepth reconstruction in Figure 4, but produce mostly older CHe dates. It is not clear from 

the reconstructions if the samples from this study define a paleo-partial retention zone, as might 

be expected for samples at shallower paleodepths, or if these old dates indicate open-system 

behavior and possible parent isotope loss.  

Grain size and effective U 

As part of our analysis, we evaluate the CHe data for typical trends. Although no 

relationship between conodont mass and CHe date is evident (Figure 8), there is a strong inverse 

relationship between parent isotopes and CHe dates (Figures 9 and 10). The relationship can be 

represented by the effective U concentration (e[U]), the U concentration equivalent to the alpha 

productivity of the measured U and Th concentrations in a grain, given by [U] + 0.235x[Th] 

(Flowers et al., 2009). We exclude Sm due to its low contribution to total alpha particles. Across 

the full data set, e[U] ranges from 0.2 to 185.8 ppm, with high e[U] samples (>40 ppm) producing 

young CHe dates of less than 50 Ma. But perhaps the most interesting observation is that CAI 3 

conodonts with ages older than deposition (samples BD15 and BD16) all have very low e[U] (<10 

ppm). In total, 10 of 13 samples from the three mountain ranges have strong inverse relationships 

between e[U] and CHe date. The remaining three samples had dates that are either uncorrelated 

with e[U] (BD06 and TS04) or have positive correlations (BD18).  

Conodont tissue type and CAI effects 
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There appears to be no correlation between tissue type and cooling age. Conodonts with 

predominantly albid tissue do not produce CHe dates that are quantifiably different from conodonts 

with predominantly hyaline. Albid tissue does, generally, have lower trace element and REE 

concentrations than hyaline tissue, but these lower concentrations do not appear to impact CHe 

dates. The most significant trend in the CHe age data is the strong correlation between CAI and 

CHe date. Conodonts with higher CAI values consistently have older CHe dates and substantially 

more scatter in individual dates. Most CAI 3 conodonts produced dates older than depositional age 

of the rocks themselves. In addition, the Tule Spring Hills samples had the lowest CAI values (1.5 

and 2) and produced the youngest mean cooling dates.  

The CHe dates from all three ranges produce a consistent trend with CAI (Figure 11). The 

Beaver Dam Mountains samples contain the highest CAI conodonts; BD15, BD16, and BD20 are 

CAI 3 while BD02, BD06, BD17, and BD18 are CAI 2. CAI 3 Beaver Dam conodonts produce 

older CHe dates than CAI 2 conodonts, most of which are older than deposition and have higher 

scatter (BD15 and BD16 date older than deposition, BD20 dates younger). The Mormon 

Mountains conodonts are in the middle of the CAI range in this study. Sample MM08 is CAI 2, 

and samples MM06, MM09, and MM14 are CAI 2.5. MM08 conodonts produce the youngest CHe 

dates of the four Mormon Mountains samples. The Tule Spring Hills samples yield the lowest CAI 

conodonts. Samples TS01 and TS08 are CAI 1.5, and TS04 is CAI 2. CAI 2 Tule Spring conodonts 

produce older CHe dates with higher scatter than CAI 1.5 conodonts. Thus the direct relationship 

between CAI and CHe age is evident in each of the three mountain ranges.  

Scanning electron microscopy 
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Conodont surface microstructural characteristics are identified through SE and BSE 

imaging1 (Figure 12). The images show overgrowth patterns and crystallographic orientations that, 

when used in conjunction with existing information about conodont CAI and tissue types, allow 

us to make a qualitative assessment of microstructural changes associated with degree of thermal 

alteration. Crystallographic orientations roughly correlate with CAI-related observations from 

Nöth (1998). In Figure 13, conodonts with a range of CAIs can be observed. The CAI 1.5 and 2 

conodonts clearly show that the microcrystallites are oriented nearly perpendicular to the major 

axis of the conodont element. By comparison, the CAI 2.5 conodonts show a shift in the orientation 

of microcrystals, to nearly 45 degrees. In CAI 3 conodonts, microcrystals become oriented closer 

to parallel to the major axis of the conodont.  

In addition to the change in orientation of microcrystallites, evidence of surface corrosion 

is apparent in some of the CAI 2.5 and 3 conodonts. Corrosion features include pocked, pitted, 

and/or frosted surfaces that indicate textural alteration may have occurred (Nöth, 1998; Konigshof, 

2003). Conodonts from samples BD15, BD16, and BD20 samples show smaller pocked and pitted 

apatite crystallites less than 10 µm in diameter, as well as larger dolomite rhombs that cover 

conodont exteriors. In Figure 14a, a CAI 2.5 MM06 conodont has a surface pattern that appears 

pocked and pitted, as well as several fractures in the upper-right corner of the SE image. A similar 

pocked and pitted texture is seen on the surface of a CAI 3 BD20 conodont in Figure 14b. These 

corrosion features are less common in CAI 1.5 and 2 conodonts, where mineral overgrowth 

patterns are more random.  

                                            
1 1 The full suite of SEM images is available through the IEDA (Interdisciplinary Earth Data 
Alliance) EarthChem Library (www.earthchem.org) at http://dx.doi.org/10.1594/IEDA/100632. 
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Scans of the sidewalls of laser ablation pits show that microstructural heterogeneities 

within individual conodont elements are both real and visible. The conodont elements were tilted 

and reimaged at various angles to confirm that the appearance of microstructural changes, 

represented as different shades of gray, are not artifacts of the imaging process (Figure 15). At 

near-surface level, tilted scans show that the margins of the conodont grains, which vary in 

thickness from 1 to 5 µm, appear darker than the interior of the laser ablation pit. At depth, SE 

imaging uncovers dark gray sections within the sidewalls of laser ablation pits that typically 

correlate with zoning in the laser ablation data.  

We were unable to obtain much information from EDS maps to aid in the analysis of 

internal composition of conodont elements. Count rates were very low for REEs and heavy 

nuclides on conodont surfaces and in polished slabs, which made the maps not particularly useful. 

Although the EDS technique was abandoned, EDS mapping did initially show surface counts of 

U and Th elements appear lower in samples that dated older than deposition than samples that 

dated younger.  
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DISCUSSION 

CHe data from this study show that a majority of the samples were thermally reset in the 

Cenozoic. These conodonts range in CAI from 1.5 to 3 and likely experienced maximum burial 

temperatures of ≤200 °C (Harris, 1979; Crafford and Harris, 2005) during Cretaceous to early 

Cenozoic thrusting (Wernicke et al., 1985; Axen et al., 1990; Axen, 1993). Thermal resetting of 

CAI 1.5 (50-90 °C; Epstein et al., 1977) suggests conodonts have a closure temperature of <90 °C 

and probably close to 60-70 °C, confirming the results of Peppe and Reiners (2007).  

Although many of the conodont samples studied here are thermally reset and show promise 

for the CHe method, paleodepth reconstructions of the samples show that most of the dates do not 

align well with ages from previous thermochronology studies in the region (Stockli, 1999; Bidgoli 

et al., 2015) and are generally too old (Figure 4).  Additionally, an inverse relationship between 

e[U] and CHe date is evident in 10 out of 13 of the samples (Figure 10). Most of the CAI 3 Beaver 

Dam Mountains conodonts (11 out of 18) produced CHe dates much older than the depositional 

ages of the samples (Figure 11) and had exceptionally low e[U].  Many samples also have high Th 

contents relative to U (e.g., Tule Spring Hills samples typically have Th/U ratios >4; Table 5), 

suggesting preferential loss of U in these samples.  Collectively, these observations confirm an 

imbalance between daughter He and parent U, Th, and Sm isotopes. Several questions arise from 

these observations. What is causing open-system behavior? What factors influence parent isotope 

mobility post-exhumation?    

Possible causes of open-system behavior 

Incomplete dissolution of the conodonts in the (U-Th)/He laboratory is a possible cause of 

the anomalously old CHe dates and large scatter in the data, and could be a particular concern with 
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dissolution of large grains (Reiners, 2005).  However, no trend was observed between CHe date 

and grain size (mass) (Figure 7).  Similarly, several individual conodonts in certain samples 

(BD02, BD06, BD17) produced dates that are younger than expected, which is contrary to 

incomplete recovery of parent isotopes.  Although we cannot entirely rule out the possibility of 

incomplete grain (conodont element) dissolution, based on the above observations and discussion 

to follow, we believe this is an unlikely cause.  

The imbalance between parent and daughter isotopes indicates the He was already 

generated, so parent isotope loss had to occur below the closure temperature, post-exhumation and 

cooling of our samples. It is possible that a naturally occurring acid leeching process in the host 

rock is the underlying cause, but we believe element loss in the laboratory is more likely. Whole-

rock carbonate dissolution procedures using dilute acids, usually formic or acetic, are known to 

impact the number of conodonts that a sample yields (e.g. Harris and Sweet, 1989; Jeppsson and 

Anehus, 1995; Jeppsson et al., 1999; Jeppsson, 2005), so it follows that these procedures could 

also impact geochemical data derived from them.  

Results from a limited number of studies evaluating the impact laboratory dissolution 

procedures on light isotopes are conflicting (e.g., Wheeley et al. 2012; Quinton et al., 2016), and 

highlight the need for robust assessments of the impact of these procedures on geochemical data.  

Relationships between light oxygen isotopes in conodonts and CAI, tissue type, and carbonate 

dissolution techniques have been documented in previous paleoclimate and seawater chemistry 

studies (Wenzel et al., 2000; Trotter et al., 2008; Quinton et al., 2016; Wheeley et al., 2012).  Some 

researchers found no significant difference in light isotopes concentrations between CAI 1 

conodonts extracted using different dissolution techniques, as well as no difference in oxygen 

concentrations between tissue types (Trotter et al., 2008; Quinton et al., 2016). By contrast, other 
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studies (Wenzel et al., 2000; Wheeley et al., 2012) showed that oxygen isotope ratios in conodonts 

are statistically variable at CAI 1 and increasingly so at higher CAIs, and also variable between 

tissue types. The degree of variability in oxygen isotope ratios may also be impacted by the 

dissolution procedure. Wheeley et al. (2012) demonstrated that the traditional double-buffered 

formic acid dissolution procedure yielded more variable oxygen isotope data compared to acetic 

acid and other extraction methods in otherwise identical conodonts.  

Although we cannot confidently determine where or when our samples experience open-

system behavior, our results suggest that susceptibility to parent isotope loss is variable in 

conodonts and influenced by a range of factors including heterogeneous parent isotope 

distributions and thermal alteration (CAI) of our conodonts. Other factors may include conodont 

histology and possible differences between conodont genera and/or species.  

Non-uniform parent isotope distributions 

From the LA-ICPMS data, we know that parent isotopes are distributed heterogeneously 

within conodonts, with the majority of parent isotopes concentrated near the outer margins 

(Figures 5 and 6). But comparing our work to previous LA-ICPMS studies is complicated by how 

LA-ICPMS data is typically treated; some researchers ignore the outer margin of conodonts and 

focus on interior profiles with lower concentrations (Trotter and Eggins, 2006), which best reflect 

the primary biomineral composition (Millard and Hedges, 1996; Eggins et al., 2003; Trotter and 

Eggins, 2006). Compositional differences on conodont surfaces are usually interpreted to be the 

result of contamination or external debris and not reported (Trotter and Eggins, 2006). Relative 

rim enrichments observed in this study are most likely the result of diagenesis. Studies have shown 

that trace and REEs are strongly absorbed postmortem in biogenic apatite (Bernat, 1975; Wright 

et al., 1984; Millard and Hedges, 1996; Eggins et al., 2003; Trotter and Eggins, 2006). Uranium 
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and REE uptake is fast and may reflect groundwater geochemistry during early burial and 

diagenesis (Wright et al., 1984; Millard and Hedges, 1996; Eggins et al., 2003; Trotter and Eggins, 

2006; Bright et al., 2009). But the low porosity and permeability of conodonts means that trace 

and REEs cannot diffuse deep into the tissue; thus, they become concentrated near conodont 

surfaces (Pietzner et al., 1968; Wright et al., 1984; Wright et al., 1990; Trotter and Eggins, 2006; 

Bright et al., 2009).  

For CHe dates, the non-uniform parent isotope distributions affect both the propensity for 

parent isotope loss and alpha ejection, which greatly complicates the potential for the method and 

resulting dates. Enrichment of parent isotopes near the element surface means that grain edges may 

be more prone and sensitive to parent loss. Similarly, this enrichment means that daughter 

production and ejection at conodont margins is greater than is being accounted for in our 

uncorrected and Ft-corrected CHe dates (Table 5).  

Conodont CAI impacts 

The pattern of increasingly old and scattered CHe dates and depressed rim and depth 

concentrations of our LA-ICPMS depth profiles, both with increasing CAI, suggests that thermal 

alteration of conodont surfaces is a major contributing factor for parent mobility (Figures 5 and 

11). Microstructural changes that commonly occur between CAI 1 and 3 are surface 

recrystallization, including changes in grain size and orientation, and corrosion (Nöth, 1998; 

Königshof, 2003; Ebneth et al., 1997; Figure 13). Each of these processes may influence the 

susceptibility for parent loss in the low temperature history of our conodonts and our resulting 

CHe dates.  

It is possible that both corrosion and recrystallization impact the rim concentrations of the 

studied conodonts. Corrosion, evidenced by frosted, pocked, and pitted textures, may increase 
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near-surface porosity and permeability with increasing CAI (Nöth, 1998; Königshof, 2003; Figure 

14). Diagenetic processes have been shown to decrease internal surface area and increase porosity 

of bone structures (Hedges and Millard, 1995; Millard and Hedges, 1996), which may make some 

samples more prone to geochemical alteration by fluids during the dissolution procedure.  Changes 

in apatite crystal size, habit, and orientation with CAI may also influence chemical stability. For 

example, larger numbers of crystal dislocations/defects and subgrain boundaries may be present 

in higher CAI conodonts (Trotter et al., 2007. Additionally, previous studies have shown 

conodonts to be increasingly brittle at higher CAI (Garcia-Lopez et al., 1997; Nöth, 1998; 

Königshof, 2003), promoting development of fractures and cleavages (Rejebian et al. 1987; 

Garcia-Lopez et al., 1997; Nöth, 1998; Königshof, 2003). Such effects may increase the surface 

area and contact with dilute acids during rock digestion and increase the potential for parent loss 

in conodonts.  

Conodont tissue type and other effects 

While notable differences in trace and REE concentrations exist, no trends were identified 

between tissue type and cooling age. Because all conodonts in this study are comprised of multiple 

tissue types, their solution ICPMS concentrations and CHe dates represent averages of all the 

different apatite tissue types present. Thus isolating tissue type as an independent variable to 

evaluate against CHe dates was not possible with the existing method. Conodont porosity and 

permeability impacts parent isotope and REE distributions, in theory it is possible that tissue type 

plays a minor role in influencing the CHe results. In-situ laser spot dating using a method similar 

to that proposed by Evans et al. (2015) may permit a more quantitative analysis of the effect of 

conodont tissue type on CHe dating in the future.   
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Genera- and species-specific differences between conodonts may also factor into 

susceptibility to surface alteration and parent isotope mobility. Rejebian et al. (1987) demonstrated 

that platform conodonts reach higher CAI values more quickly during artificial maturation 

experiments than other morphologies. Evolutionary changes over time and morphology 

differences between bar, blade, cone, and platform elements and their respective surface 

ornamentations could also impact how conodonts respond to dissolution techniques. Different 

species of conodonts have different shapes and sizes that may have different microstructural 

characteristics, such as size of dental elements, enamel thickness, internal and surface lamellae 

development patterns, etc. (Burnett and Hall, 1992; Donoghue, 2001). These differences may 

affect their structural integrity and geochemical composition, which impacts (U-Th)/He dating 

potential.  

Future of the CHe method 

Several key challenges remain in advancing the emerging CHe method.  Based on the 

evidence of open system behavior, additional study is needed to evaluate the potential impacts of 

laboratory dissolution procedures on geochemical data derived from conodonts. LA-ICPMS and 

CHe data could be acquired from conodonts processed using different digestion solutions and 

procedures, similar to the experimental setup in Quinton et al. (2016). Sample splits could be 

dissolved using unbuffered and buffered solutions of formic and acetic acid, of varying strengths. 

Such experiments could also evaluate the potential effects of prolonged exposure to weak acids, 

by varying acid processing times on sample splits. These controlled experiments could provide a 

quantitative assessment of the magnitude of impact that dissolution prcedures have on conodonts 

of different CAIs, sizes, morphologies, and genera/species, which would speak to the overall utility 

of conodonts as (U-Th)/He thermochronometers.  
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 Heterogeneous elemental distributions within conodonts also pose a challenge for 

conodont CHe dating, and methods will need to be developed to properly incorporate such data 

into an accurate 3D Ft correction. Recent work has focused on improving Ft corrections for grains 

with non-spherical shapes and heterogeneous isotope distributions. Hourigan et al. (2005) 

demonstrated that assuming homogeneous isotope distribution can result in up to 30% error in 

zircon (U-Th)/He ages. Evans et al. (2008) showed that a 3D erosion procedure removing the outer 

20 µm of a grain can improve correction accuracy and reduce the Ft by up to 6%, given that alpha 

particle stopping distances are roughly 20 µm in apatite. Bargnesi et al. (2016) developed a custom 

alpha-ejection correction for zircons that extrapolates data from LA-ICPMS depth profiles and 

adjusted (U-Th)/He ages up to 39%. Although successful in many regards, these studies are 

deficient for our purposes because their work applies to grains with much simpler geometries and 

parent isotope distribution patterns than conodonts. Future 3D Ft corrections for conodonts will 

have to account for the exceptionally complicated morphologies and isotope distributions, and for 

potential issues related to differences in apatite tissue type and CAI.  
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CONCLUSIONS 

This study evaluates the suitability of biogenic apatite from conodonts as a (U-Th)/He 

thermochronometer by dating conodonts extracted from surface outcrops located in the footwalls 

of three well-studied low-angle normal faults (LANFs) in eastern Nevada and western Utah.  New 

data provided here shows promise for the emerging CHe method. Thermally reset samples confirm 

a closure temperature for conodont apatite of <90 °C. Although the majority of the samples are 

thermally reset, most of the CHe dates are older than anticipated, with some conodonts producing 

dates older than the depositional age of the samples, a clear indication of open system behavior 

during the post-cooling, low temperature history of the samples.  

Our results do not allow us to conclusively determine the cause for open-system behavior; 

however, the data acquired by this study show that CHe dates are influenced by a number of 

factors. The most significant factor is parent loss during conodont extraction, and another key 

factor is heterogeneous parent distribution. LA-ICPMS depth profiles show that conodont margins 

have thin rims (1-5 µm) that are typically highly enriched (5x-10x) in trace and REEs that probably 

reflects uptake during early diagenesis; whereas, concentrations at depth are lower and reflective 

of primary compositions. Apatite grain morphologies and tissue type (albid or hyaline) also play a 

fundamental role in isotope concentrations and distribution patterns, likely based on differences in 

microcrystalline structure, porosity, and permeability, but do not appear to have a quantifiable 

impact on CHe dates in this study.  

Our results also show that microstructural changes associated with increasing CAI may be 

a contributing factor for anomalously old CHe dates and scatter in the data. Thermal alteration by 

way of surface recrystallization and corrosion may make sample more susceptible to parent isotope 

loss.  Although a naturally occurring acid leeching process in the host rock cannot be rule out, we 
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suspect that whole-rock carbonate dissolution procedures using dilute formic acid is a more likely 

cause. Future work will focus on evaluating the impact of dissolution procedures on geochemical 

data and CHe dates from conodonts of different CAIs, sizes, morphologies, and genera/species.  
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FIGURES 

 

 

Figure 1. Map of western U.S. showing location of study area. Red box highlights the Mormon 

Mountains, Tule Spring Hills, and Beaver Dam Mountains study area location along the southern 

Nevada – Utah border. Blue shaded region defines the spatial extent of the Basin and Range 

province. AZ – Arizona; CA – California; NV – Nevada; UT – Utah.  
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Figure 2. Geologic map of the Mormon Mountains – Tule Spring Hills – Beaver Dam Mountains 

study area, with sample locations from this study (green dots) and earlier studies (yellow dots). A 

total of 43 carbonate samples were collected, but only 15 samples yielded conodonts. Line A-A’ 

shows the location of the cross section in Figure 3. Lines B-B’ and C-C’ show the locations of 

cross sections that are restored to their preextensional configurations in Figure 4. Geologic map 

data are simplified from the compilation of Felger and Beard (2010). Figure is modified from 

Bidgoli et al. (2015). 
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Figure 3. Geologic cross-section A-A’ showing the relative positions of the Castle Cliffs, Tule 

Springs, and Mormon Peak detachments. Cross section location shown in Figure 2. Cross section 

is modified from Axen et al. (1990) and Bidgoli et al. (2015). 
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Figure 4. Paleodepth reconstructions and (U-Th)/He age vs. paleodepth plots (modified from Axen 

et al., 1990 and Bidgoli et al., 2015). Conodont (U-Th)/He samples from this study are shown with 

green dots. Apatite and zircon (U-Th)/He from Bidgoli et al. (2015) and apatite fission track data 
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from Stockli (1999) are also shown (red dots). Error bars are 1s standard deviations. Cross section 

locations are shown in Figure 2. (A) Restored state cross section B-B’ across the Beaver Dam 

Mountains showing the preextensional configuration of our conodont (U-Th)/He samples. (B) Plot 

of mean (U-Th)/He age versus distance from nonconformity above the Precambrian basement with 

previously determing AFT PAZ and ZPRZ. (C) Restored state cross section C-C’ across the Tule 

Spring Hills and Mormon Mountains showing paleodepth positions of samples prior to extension. 

(D) Plot of mean (U-Th)/He age versus distance from base of Tertiary.  
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Figure 5. Representative LA-ICPMS depth profile data showing concentrations (ppm) of trace and 

REEs versus depth (µm) for conodonts with a range of CAIs. Scatter plot data includes the parent 

U, Th, and Sm as well as trace and trace and REE Ba, Eu, and Yb. Note high rim enrichments (5x-

10x) at the margins of the conodonts relative to depth concentrations. LREE Ba typically shows 

higher concentrations than MREE Eu and HREE Yb. With increasing CAI, all trace and REE 

concentrations tend to drop both at the margins and at depth. Concentrations also tend to decrease 

with increasing CAI. TS08 and BD18 display high Th concentrations, which may be influenced 

by apatite tissue type and lower CAI.  
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Figure 6. Plot of representative LA-ICPMS depth profiles showing differences between hyaline 

and albid apatite tissue from sample MM06. Scatter plot data includes the parent U, Th, and Sm 

as well as trace and REE Ba, Eu, and Yb.  Note higher concentrations in hyaline tissue than albid 

tissue, and more gradual depletion pattern in parent U, Th, and Sm in hyaline tissue. Parent isotope 

concentrations moderately increase with depth in albid tissue.  
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Figure 7. (A) Depositional age versus conodont (U-Th)/He date. Horizontal error bars are standard 

(U-Th)/He errors (6%). Vertical error bars show potential range in depositional age. Most dates 

are younger than the approximate depositional age of the samples, but two samples (BD15 and 

BD16) produced (U-Th)/He dates that are much too old given the known geology. (B) Same data 

rescale to show conodont dates <200 Ma.   
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Figure 8. (A) Mass versus (U-Th)/He date of conodonts analyzed in this study. No relationship is 

seen between the two. (B) Same figure rescaled to show only conodont dates younger than 200 

Ma.  
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Figure 9. Relationship between parent isotope (U, Th, Sm) concentrations and conodont (U-Th)/He 

dates. Inset plot shows the same data rescaled to only show dates <200 Ma.   
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Figure 10. Plot of e[U] versus (U-Th)/He date for conodonts from this study. The data show a 

strong inverse relationship between the two. BD17 conodonts have the highest e[U] of all samples. 

Inset plot shows the same data rescaled to only show conodont dates <200 Ma.   
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Figure 11. Plot of CAI versus (U-Th)/He date for conodonts analyzed in this study. In general, 

higher CAI conodonts produce older and more scattered (U-Th)/He dates.  
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Figure 12. Comparison of SEM images between secondary electron (SE) and backscattered 

electron (BSE) techniques. Figure 12a. SE image of large MM08 conodonts, CAI 2. Figure 12b. 

BSE image of large MM08 conodonts, CAI 2.  
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Figure 13. SE images displaying microstructural differences in conodont surfaces between CAI 

1.5, 2, 2.5, and 3 blade conodont elements. (A) CAI 1.5 conodont element from sample TS08 

showing microcrystals oriented perpendicular to the conodont surface. Microcrystal size is widely 

variable. (B) CAI 2 conodont from sample MM08. Note random overgrowth pattern. (C) CAI 2.5 

conodont from sample MM06 showing microcrystals oriented roughly 45 degrees to the principal 

axis of the conodont. (D) CAI 3 conodont from sample BD20 with microcrystals oriented near 

parallel to the major axis of the conodont.  
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Figure 14. SE images displaying corrosion alterations to conodonts. Figure 12a: SEM image of 

MM06 conodont (CAI 2.5) with pocked and pitted texture consistent with surface corrosion. Also 

note small fractures in the upper-right corner. Figure 12b: SEM image of BD20 conodont (CAI 3) 

with pocked and pitted texture consistent with surface corrosion.  
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Figure 15. SE image of laser ablation spot in MM08 conodont. Note the darker color at the rim 

and darker irregularities in the sidewalls of the ablation pit. These features are evident in tilted 

images, indicating they are not imaging artifacts.  
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Table 3. Summary of Range of Parent Isotope Concentrations in LA-ICPMS Profiles 
(parts per million) 

Sample 
Minimum 

238U 
Maximum 

238U 
Minimum 

232Th 
Maximum 

232Th 
Minimum 

147Sm 
Maximum 

147Sm 
BDM 

Margin <1 345 <1 78 <1 72 
BDM Depth <1 25 <1 12 <1 46 
MM Margin 1 109 <1 28 2 96 
MM Depth 1 10 <1 3 1 8 

TSH Margin 9 207 23 265 33 331 
TSH Depth 4 41 18 85 2 83 
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Table 4. Conodont (U-Th)/He Sample Locations and Mean Dates 

Sample CAI Latitude 
(UTM) 

Longitude 
(UTM) 

Mean 
Age, 
no Ft 

Error, 2-
sigma 

standard 
deviation 

Beaver Dam Mountains Samples 
BD02 2 783538.563 4110073.000 1.1  
BD06 2 782832.188 4115208.750 40.8 34.8 
BD15 3 782757.188 4109797.000 883.2 493.4 
BD16 3 782503.500 4109796.000 1281.9 559.7 
BD17 2 782293.625 4109730.250 23.2 11.6 
BD18 2 782818.375 4109638.500 56.0 15.2 
BD20 3 781910.563 4109491.250 72.4 21.7 

Mormon Mountains Samples 
MM06 2.5 728868.075 4094060.729 94.0 49.0 
MM08 2 729939.810 4095359.232 55.4 29.5 
MM09 2.5 729831.934 4095241.549 79.3 35.5 
MM14 2.5 728471.217 4093376.276 86.2 55.6 

Tule Spring Hills Samples 
TS01 1.5 751907.528 4110736.381 56.8 16.9 
TS04 2 752391.438 4110630.811 67.8 41.4 
TS08 1.5 751175.595 4110666.494 35.9 4.3 
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APPENDIX A 
 

Naming Acronym: Mountain Range and Sample Number – LA-ICPMS Spot Number 
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