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Abstract 

Trans-arterial chemoembolization (TACE) with doxorubicin is commonly used to treat 

hepatocellular carcinoma (HCC), but has limited efficacy due to a high level of resistance. The 

factors that determine the sensitivity to TACE-doxorubicin are unknown. FOXO3 is a 

multifunctional transcription factor that plays a role in determining cell fate in response to stress. 

It frequently functions as a tumor suppressor but can also promote tumor pathogenesis. FOXO3 

is also known to be a mediator of doxorubicin sensitivity in many types of tumor cells, while in 

others it can promote resistance. The role of FOXO3 in HCC and in doxorubicin resistance in 

HCC is unknown. FOXO3 function is largely determined by post-translational modification 

(PTM). Two FOXO3 PTMs, acetylation and serine 574 (S574)-phosphorylation, are known to 

promote its apoptotic function. Contrary to expectations, expression of FOXO3 was increased in 

HCC compared to surrounding liver. Cytosolic FOXO3 was significantly greater in TACE-

resistant HCC as compared to treatment-naïve tumors. In Huh7 hepatoma cells, doxorubicin 

induced acetylation and S574-phosphorylation of FOXO3, and these modifications promoted 

doxorubicin-induced cell death by suppressing the pro-survival function of FOXO3. Resveratrol, 

an activator of SIRT deacetylase enzymes, inhibited these doxorubicin-induced PTMs and 

increased doxorubicin resistance. The expression of SIRT6, a known FOXO3 deacetylase, was 

also increased in TACE-resistant HCC tumors and correlated with cytosolic FOXO3. SIRT6 also 

blocked doxorubicin-induced S574-phosphorylation of FOXO3 and increased resistance to 

doxorubicin in Huh7 cells. Therefore, targeting SIRT6 and/or manipulating FOXO3 

modifications may prove useful in enhancing the chemotherapy sensitivity of HCC. 
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Chapter I: Introduction 

Hepatocellular Carcinoma: Course of Disease and Therapy 

Epidemiology and Clinical Course 

Improved prevention strategies and the development of new therapies have led to a 

decline in incidence of many types of cancer world-wide over recent decades. However, the 

incidence of HCC in the US has been increasing for the last three decades, due in large part to a 

growing population with diet and infection-related risk factors, while treatment options have 

remained extremely limited. Liver cancer, of which HCC is the most common histologic 

subtype, is the second most common cause of cancer-related death in men and the sixth leading 

cause in women world-wide (1). Risk factors associated with HCC include chronic infection with 

hepatitis C virus (HCV), hepatitis B virus (HBV) infection, alcohol use, and non-alcoholic fatty 

liver disease (NAFLD), all of which can cause chronic hepatitis and cirrhosis. Although HCC 

can also develop without prior cirrhosis, approximately 90% of HCC tumors develop in the 

context of cirrhosis (2, 3), and patients with cirrhosis have greater risk of developing HCC, with 

an annual incidence between 1-8 percent depending on the cause of cirrhosis.  

HCC is very difficult to diagnose early in the course of the disease because the symptoms 

are often masked by the symptoms of the underlying liver disease present in the vast majority of 

patients with HCC (2, 4). The physical findings often present in HCC, which include an enlarged 

liver and spleen, ascites, and jaundice, can also be present in patients with cirrhosis without 

HCC. Therefore, patients with chronic liver disease are entered into surveillance programs, 

where they undergo ultrasound imaging tests every 6 months to look for HCC. When a mass is 

found, the diagnosis of HCC is often confirmed using further imaging. Biopsies are only taken in 

cases where the imaging findings are uncertain or where the result would directly impact 
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treatment (5, 6). The four most important predictors of survival include severity of the 

underlying liver disease, the number and size of the tumor(s), tumor invasion into adjacent 

structures including vasculature, and the presence of metastasis (7, 8). Even with routine 

surveillance, given the inherent aggressiveness of HCC, the median survival after diagnosis 

without treatment is only 6-20 months (9). Demonstrating the high fatality rate of HCC, in 2008 

the number of HCC-related deaths was 93% of the number of new cases of HCC world-wide (1). 

Much progress has been made over the last few decades on prevention of HCC, including the 

development of the HBV vaccine, improved surveillance techniques and protocols, and the 

recent discovery of curative anti-viral medications for HCV (10). During that same time there 

has been a surge of interest in discovering new therapies that can prolong life for patients with 

HCC. However, very little progress has been made on that front. 

Overview of treatment approaches 

Treatment approaches for HCC can be divided into surgical, and non-surgical, liver-

directed or systemic cytotoxic therapies. The choice of therapy is determined by both the extent 

of the cancer and the degree of hepatic dysfunction. Surgical approaches including resection of 

the tumor and whole liver transplantation are the only curative therapies for HCC. However, 

most patients are ineligible for surgical resection because they do not have enough reserve liver 

function to survive the removal of a significant portion of their liver. Liver transplantation is 

greatly limited by the number of donor livers available. In addition to patient abstinence, there 

are strict criteria that specify the maximum tumor extent that can be present for a patient to be 

eligible for transplant. These criteria, which are based on data on recurrence and survival after 

transplant, are called the Milan Criteria. They state that a patient must have a solitary tumor that 

is no more than 5 cm in diameter, and no more than three tumors, none being more than 3 cm in 
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diameter, and no evidence of vascular invasion. Furthermore, as a result of the limited donor 

liver availability, patients are ranked on the transplant list based on how sick they are. This often 

leads to a situation where patients with HCC must have a low enough tumor extent to be eligible 

for transplant, but also have poor enough liver function to rank high on the transplant list.   

Systemic treatment of HCC with traditional cytotoxic chemotherapeutic agents such as cisplatin, 

doxorubicin, and 5-FU has been limited by systemic toxicity, poor efficacy, and acquired 

resistance of the tumors after exposure (11-13). Over the last two decades research efforts have 

been focused on discovering new drug targets and effective agents for treating HCC. After 

dozens of clinical trials only one drug, Sorafenib, a multi-kinase inhibitor, has shown any degree 

of success. However, it is only able to produce modest increases in survival of selected patients 

(14, 15), and it is not tolerated by patients with more advanced liver disease. Improvements in 

patient outcome have thus largely resulted from the use of surgical resection, local ablative 

techniques, and liver transplantation (2, 4). 

TACE with Doxorubicin 

One of the more promising developments in HCC treatment has been in targeted delivery 

of cytotoxic chemotherapy agents directly to the tumor. Selective injection of embolizing agents 

in combination with doxorubicin into arteries feeding tumors, or trans-arterial 

chemoembolization (TACE), has been shown to provide a survival benefit in patients with 

unresectable HCC  (16, 17) and is now the standard of care for patients with intermediate stage 

HCC (4). Embolization of the tumor alone causes ischemia and can produce tumor shrinkage. 

However, the combination of the embolic effect with the addition of a chemotherapy agent, 

typically doxorubicin, has been shown in large randomized studies to increase tumor response, 

decrease progression, and improve overall survival (18, 19). Also, the use of embolic drug 
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eluting beads (DEBs) made of polyvinyl chloride (PVC) that release doxorubicin (DEBDOX) in 

a controlled manner has improved the TACE technique allowing for higher doses with reduced 

systemic exposure (20). Doxorubicin-based TACE now plays an important role in shrinking 

(downstaging) tumor size and number to allow eligibility for liver transplantation (16). 

While TACE is highly effective in many patients, approximately 50% of tumors treated with 

DEBDOX show no response, and only 27% show a complete response (19, 20). Resistance to 

doxorubicin has thus emerged as a central problem limiting treatment of patients with HCC. 

Therefore, one way to drastically improve therapy for HCC is to better understand the 

mechanism of doxorubicin toxicity in HCC, as well as the mechanisms of cellular resistance to 

doxorubicin, so that new or adjunct approaches can improve the effectiveness of treatment.  

Doxorubicin Mechanisms of Action 

Doxorubicin is an anthracycline antibiotic that is widely used as a human antitumor 

therapeutic agent. Doxorubicin sensitivity is the result of delivery of the drug to the nucleus and 

a series of signaling events that are initiated by doxorubicin’s interaction with DNA. This 

ultimately leads to a series of programed responses culminating in cell apoptosis. It appears to 

have multiple antitumor effects, but the best understood of these involves its interaction with 

topoisomerase IIα (TOP2A) (21). This enzyme is involved in separating entangled DNA strands, 

and as part of its function it transiently generates and then repairs protein-bound double-strand 

DNA breaks (DSBs) (22). Doxorubicin stabilizes the cleaved-strand intermediate, suppressing 

the completion of the process and resulting in numerous protein-bound DSBs (21). DSBs have 

numerous negative consequences for cells and notably trigger caspase-dependent apoptosis 

programs, which involve the activation of master regulators p53 and FOXO3, and suppression of 

pro-growth signaling pathways, which leads to changes in the ratio of anti/pro-apoptotic Bcl-2 
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family proteins (23). This DNA damage response is the primary factor accounting for the 

antitumor effect of doxorubicin, and blocking just this downstream response to DNA damage is 

sufficient to attenuate doxorubicin toxicity (24). Multiple other mechanisms have been observed 

to be involved in doxorubicin cytotoxicity as well and these include the formation of TOP2A-

independent DNA adducts (25), inhibition of DNA and RNA synthesis, and mitochondrial ROS 

production triggering apoptosis (26). Mechanisms of tumor cell resistance to doxorubicin can be 

divided into three main categories: 1) reduction in the ability of the drug to accumulate in the 

nucleus, 2) decreased DNA damage, and 3) suppression of the downstream events that transduce 

the DNA damage signal into apoptosis (Figure 1). 
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Figure 1: General mechanisms of doxorubicin resistance in hepatocellular carcinoma 
Doxorubicin first must accumulate within the cell but this process is inhibited by the 
upregulation of ABC family efflux pumps in resistant cells. Doxorubicin then prevents the repair 
of TOP2A-generated DSBs in DNA, increasing TOP2A-bound DSBs. Overexpression and 
mutations in TOP2A allow continued TOP2A function in resistant cells. Finally, DNA damage 
induces apoptotic signaling pathways causing cytochorome C release from mitochondria which 
leads to caspase activation and cell death. Downregulation of the effectors of apoptosis and 
upregulation of anti-apoptotic proteins prevents the completion of apoptosis in resistant cells. 
ABC: ATP-binding cassette; DSB: Double-strand DNA break. Adapted from Cox et al., Hepatic 
Oncology. 2016 (27). 
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Mechanisms of Doxorubicin Resistance in HCC 

Parts of this section were adapted from Cox et al., Hepatic Oncology. 2016 (27). 

Upregulation of drug efflux pumps 

Doxorubicin is a hydrophobic molecule that passes through cellular membranes 

independently of specific transporters. However, cells can fail to accumulate the drug through 

active drug efflux via ATP-dependent efflux transporters. This phenomenon, first described in a 

number of cancers and labeled “multidrug resistance,” results from the expression of a group of 

multi-drug resistance efflux pumps. These ATP-dependent transport proteins, members of the 

ATP-binding cassette (ABC) transporter family, were initially identified for their pathological 

role in tumors before their normal physiological functions were understood. They are now 

known to be important components of transport in a number of tissues. Hepatocytes use multiple 

different ABC transporters for the transport of organic ions such as bile acids and conjugated 

bilirubin (28). Since these pumps are highly abundant in hepatocytes, it is not surprising that they 

are expressed in hepatocellular carcinoma, where increased expression results in chemotherapy 

resistance.  

The basal expression of ABC proteins is controlled by multiple transcription factors 

including NF-Y and members of the Sp family (29). Additionally, p53 has been shown to repress 

transcription of ABC family proteins, (30) while several transcription factors including both AP-

1 (31) and NF-κB (32) are capable of upregulating their expression. Activity of the enzyme 

COX-2 has also been implicated in the control of MDR1 expression, as the COX-2 inhibitor, 

celecoxib, decreases MDR1 expression in multi-drug resistant HCC cells (33, 34). In HCC, three 

ABC subfamilies, ABCB (the MDR proteins), ABCC (MRP proteins), and ABCG (BCRP) 

appear to contribute to doxorubicin resistance. Although they have different substrate 
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specificities in normal physiologic conditions, they have all shown an ability to transport 

doxorubicin (35-37). MDR1, MRP1, MRP2, and MRP3 are all expressed in HCC at the 

transcriptional level. MDR1 protein expression is found in 80-90% of HCC cases (35). MDR 

family proteins have also been found to be expressed and functionally active on mitochondrial 

membranes, perhaps protecting mitochondrial DNA from drug-induced damage by keeping the 

drug out of mitochondria or suppressing apoptosis by altering mitochondrial outer membrane 

permeability (38). 

MDR1 expression was found to inversely correlate with response to systemic 

chemotherapy in one study (35), but the precise extent to which expression of ABC proteins 

accounts for clinical drug resistance is less clear. The situation is somewhat clearer in cell culture 

models of HCC. One method of generating doxorubicin resistant cultured HCC cells for study is 

to select for resistant HCC cells in vitro after exposing them to incrementally increasing doses of 

doxorubicin. This method consistently induces the expression of MDR1 and other ABC family 

members (39, 40), and the upregulation of these transporters can be shown to cause drug 

resistance, since inhibitors of ABC proteins such as verapamil and cyclosporine A are able to 

restore doxorubicin sensitivity (41). However, verapamil has not proven to be useful as a 

doxorubicin sensitizing agent in patients, perhaps due to the presence of other efflux transporters, 

pharmacological interactions between the drugs (42), the loss of important normal physiological 

functions (43), or the presence of unrelated resistance mechanisms. Therefore, while 

overexpression of MDR efflux pumps may be an important cause of drug resistance in 

deliberately selected HCC cell lines in vitro, other mechanisms are likely to be important in 

human disease. 

Alterations in TOP2A 



9 
 

As mentioned above, the primary means by which doxorubicin causes cellular toxicity is 

by targeting the alpha isoform of topoisomerase II (TOP2A) (21), resulting in numerous protein-

bound double strand DNA breaks (DSBs) and the subsequent triggering of apoptosis (44). It has 

been hypothesized that one mechanism of resistance to doxorubicin might be through the 

reduction in TOP2A expression and increased reliance on the beta isoform of topoisomerase II 

that is less sensitive to doxorubicin (44). Supporting this hypothesis is the finding that breast 

cancers with co-amplified HER2 and TOP2A genes have increased sensitivity to doxorubicin, 

while tumors with a TOP2A deletion have increased resistance (45, 46). Additionally, this 

mechanism of resistance to doxorubicin has been seen in several cancer cell lines (47). In HCC, 

however, TOP2A expression is increased rather than decreased. The TOP2A protein level in 

HCC is increased independent of gene amplification in 73% of human HCC tumors compared to 

adjacent non-tumor tissue (48). It is also overexpressed in several HCC cell lines with acquired 

doxorubicin resistance (49). Furthermore, TOP2A expression was positively correlated with 

histological grade, vascular invasion, and early age of onset in a tissue microarray of 172 HCC 

tumors, and, in contrast to breast cancers, it positively correlated with HCC doxorubicin 

resistance and shorter survival in 148 patients in a prospective randomized study (50). TOP2A 

overexpression has been found to be associated with several indices of tumor aggressiveness in 

many other types of cancer as well, presumably due to the role of TOP2A in facilitating DNA 

replication and transcription. While the association of increased TOP2A with tumor growth 

seems logical, it is not understood why it is also associated with doxorubicin resistance. One 

hypothesis is that the high expression levels are associated with the development of mutations in 

TOP2A that lead to its insensitivity to doxorubicin (51). Another possibility is that in order for 

cells to survive the high levels of TOP2A they must simultaneously suppress the downstream 
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apoptosis programs normally triggered by DNA strand breaks and it is the acquisition of this 

adaptive characteristic that confers doxorubicin resistance. At the present time this issue remains 

unresolved. 

FOXO3 

FOXO3 is a multifunctional transcription factor that was initially identified as a longevity 

factor responsible for antioxidant responses, cell cycle arrest, and stem cell survival (52). Under 

certain conditions, however, it also promotes apoptosis. This combination of functions allows it 

to have both tumor promoting and tumor suppressing effects depending on the tumor cell type 

(53). Additionally, in response to cell stress FOXO3 has been shown to be involved in apoptosis 

induction or cell survival depending on the context. The role of FOXO3 in HCC and its 

sensitivity to doxorubicin is the focus of this dissertation and will be discussed in more detail 

below.   

P53 

The tumor suppressor p53 is a frequently altered target in doxorubicin resistant HCC. It is 

one of the key DNA damage sensors and acts as a transcriptional activator of pro-apoptotic 

factors including Bax, Bak, CD95 and TRAIL receptors (54, 55). In addition, it transcriptionally 

represses anti-apoptotic factors including Bcl-2 and Survivin (56, 57). Doxorubicin stabilizes 

p53 (58) by stimulating its phosphorylation by DDR kinases. DDR-dependent phosphorylation 

of p53 inhibits binding to and phosphorylation by MDM2, which ordinarily promotes p53 

ubiquitination and proteosomal degradation and leads to low steady-state p53 levels (59). An 

inhibitor of MDM2-p53 binding, Nutlin-3, has been shown to enhance p53 stabilization and 

activation and increase doxorubicin sensitivity in HCC cells with wild-type p53 (60). Mutation 

or deletion or disruption of p53 activation pathways are frequent events in HCC tumorigenesis, 
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providing a possible mechanism for intrinsic resistance to doxorubicin (61). The specific role of 

p53 in doxorubicin resistance has been illustrated by experiments showing that restoring p53 

expression in HCC cells promotes doxorubicin-induced apoptosis (62). 

While it thus might seem attractive to target the regulation of p53, attempts to manipulate 

p53 by interfering with upstream regulators have produced some unanticipated and paradoxical 

results. For example, one recent study showed that inhibition of the deubiquitinase USP9X, 

which decreased steady-state p53 levels, enhanced doxorubicin sensitivity in HCC cells. This 

suggests that the effects of ubiquitination inhibitors are more complex than simply causing the 

degradation of p53 (63). Furthermore, increasing p53 is clearly not the only way to enhance 

doxorubicin sensitivity, as illustrated by comparing p53 expression levels and drug sensitivity in 

hepatoma cell lines. HepG2 cells, which have wild-type p53, are the most resistant, and Huh7 

and Hep3B, which are p53 defective, are more doxorubicin sensitive. Clearly, p53, while 

important, does not completely account for the phenomenon of doxorubicin resistance (64). 

NF-κB 

NF-κB is also a transcription factor that has multiple, sometimes opposing functions, 

such as tumor suppression or promotion depending on the cellular context. In HCC associated 

with inflammation, such as in HCV or HBV infection, NF-κB tends to have a tumor promoting 

effect, while in tumors induced by carcinogens such as diethylnitrosamine, NF-κB functions as a 

tumor suppressor (65). NF-κB signaling is activated by DNA damage and can have varying 

effects on subsequent apoptosis primarily through regulation of its target genes, such as Bcl-XL 

and XIAP (66). In general, NF-κB has an anti-apoptotic effect in response to drugs that induce 

DSBs in DNA such as doxorubicin, although it may be partially dependent on the cancer cell 

type (67). There are few studies investigating the role of NF-κB in resistance to doxorubicin in 
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HCC, although it has been shown to be activated in HCC cells in response to doxorubicin (68), 

and several studies have indicated that activation of NF-κB is a mechanism by which diverse 

stimuli generate an anti-apoptotic effect. For example, the anti-apoptotic gene Bcl-2-associated 

athanogene-1 (BAG-1) was found to enhance doxorubicin resistance by potentiating the 

transcriptional activity of NF-κB (69). Additionally, the HBV protein HBx has been shown to 

increase doxorubicin resistance through the activation of NF-κB in HCC cells (70), and reduced 

expression of miR-26b in HCC promotes doxorubicin resistance due to the loss of its suppression 

of NF-κB signaling (68).  

MAP kinases 

Another class of resistance mechanisms is signaling pathways that are drivers of tumor 

cell proliferation. These frequently inhibit apoptosis during tumorigenesis as well as after 

chemotherapy exposure. One such signaling pathway is the PI3K/Akt pathway. Akt is activated 

through phosphorylation by the second messenger PI3K following growth factor stimulation and 

in response to many cell stressors (71). It is negatively regulated by the phosphatase, PTEN (72). 

Akt then directly and indirectly regulates cell proliferation and apoptosis by phosphorylating and 

modulating target protein function including FOXO3, Bad, p53, and cyclin-dependent kinase 

inhibitors (71), as well as by activating parallel pro-growth pathways (72). This pathway is 

frequently activated in HCC and is correlated with decreased overall survival (73). Several 

studies have shown that inhibiting PI3K/Akt function using pharmacological inhibitors (74, 75) 

or by exogenous overexpression of an upstream inhibitor (76, 77) increases HCC cell sensitivity 

to doxorubicin, while activating PI3K/Akt has the opposite effect (76, 78). 

The MEK/ERK signaling pathway is another important pathway that translates growth 

signals from the cell surface to transcription factors and other regulatory proteins to promote cell 
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proliferation and inhibit apoptosis (72). It promotes HCC tumor cell growth and it is frequently 

activated in HCC. It has also been shown to be activated by doxorubicin (79), serving as a tumor 

cell response that counters doxorubicin-induced toxicity. Direct inhibition of ERK activity 

increases doxorubicin sensitivity in HCC cells by inhibiting cell proliferation and promoting 

apoptosis (79). Inhibition of EGFR, an upstream activator of the MEK/ERK pathway, also 

increases doxorubicin sensitivity in HCC cells (80). In addition, the mechanism of action of the 

tyrosine kinase inhibitor, Sorafenib, which has been used as a systemic chemotherapeutic 

treatment for advanced HCC, also involves inhibition of the MEK/ERK pathway (81). In a 

randomized controlled trial of patients with advanced stage HCC, sorafenib plus systemic 

doxorubicin was shown to increase patient overall survival compared to doxorubicin treatment 

alone (82). 

The p38 MAPK pathway is also activated by doxorubicin and may play a role in 

regulating doxorubicin-induced apoptosis. Its activation is necessary for the phosphorylation of 

FOXO3 responsible for its nuclear translocation following doxorubicin treatment in breast 

cancer cells (83). MK5, a downstream target of p38, is upregulated in HCC cells and 

downregulated by doxorubicin. Overexpression of MK5 decreased doxorubicin-induced 

apoptosis (84).  

Sirtuins 

The sirtuin family of NAD-dependent deacetylases is also known to play a crucial 

regulatory role in the cellular response to stress, apoptosis, metabolism, and aging (85). There are 

seven members of the sirtuin family (SIRTs) in humans, SIRT1-7, and the expression of several 

SIRTs are altered in HCC, some with pro-tumorigenic and some with anti-tumorigenic effects 

(85-88). SIRT1 is consistently found to be overexpressed in HCC (89), and was shown to inhibit 
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doxorubicin-induced apoptosis in HCC cells (85). The mechanism for SIRT1-mediated 

inhibition of doxorubicin sensitivity in HCC is unknown but it may involve the deacetylation of 

p53 (90), FOXO3 (91), or YAP2 (92), where deacetylation of each of these factors has been 

shown to inhibit its apoptotic activity. Additionally, in breast cancer cells with acquired 

resistance to epirubicin, a doxorubicin homolog, SIRT4, 5, 6 and 7 were found to be upregulated, 

particularly SIRT6, which was shown to mediate epirubicin resistance by deacetylation and 

inhibition of FOXO3 (93). 

FOXO3 introduction  

Parts of this section are adapted from Tikhanovich et al., Journal of Gastroenterology and 

Hepatology. 2013 (94). 

 The O branch of the large forkhead family of transcription factors is ubiquitously 

expressed and highly conserved evolutionarily (52). The prototype of the FOXO family was first 

described in C. elegans as daf16, a factor that is required for formation of a long-lived dormant 

form of the organism called the dauer larval stage. Subsequently, FOXO factors were shown to 

play a similar role in higher organisms and function to prevent cellular proliferation, induce 

antioxidant and stress response genes, and modify insulin sensitivity (52, 95). In mammals there 

are 4 FOXO proteins, FOXO1, FOXO3, FOXO4 and FOXO6. While FOXO6 is largely specific 

to neurons, the other 3 factors are widely distributed and are present in most tissues. There 

appears to be considerable overlap in the transcriptional targets of the three, but the 

consequences of knock outs in mice are very different. FOXO1 knock out is embryonically lethal 

due to failure of angiogenesis, FOXO3 knock out produces premature ovarian failure, and 

FOXO4 knock out exhibits no obvious phenotype (53). Numerous, specific functions have been 

identified for each of these FOXO proteins, but several reports have described a prominent role 
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for FOXO3 in tumor biology and cellular adaptation to stress. Thus, FOXO3 may be particularly 

relevant in HCC and doxorubicin response. 

Similar to its homolog in invertebrates, FOXO3 is an important longevity factor in 

humans as three FOXO3 single nucleotide polymorphisms in the FOXO3 gene have been 

associated with centenarians in Japanese (96), German, and French populations (97). The 

specific cellular functions of FOXO3 have been investigated in many cell types and tissues. In 

stem cells, FOXO3 plays an important role in maintaining quiescence and self-renewal capability 

(98), which has also been shown to carry over into several types of cancer stem cell-like cells 

(99-102). In general, FOXO3 is involved in the cellular response to stress, including nutrient 

deprivation, oxidative stress, hypoxic stress, and DNA damage. It plays a significant role in 

determining cell fate, promoting apoptosis or cell survival when cells are exposed to these 

conditions in normal physiologic or in pathologic scenarios.  

The cellular response to stress can involve many different types of processes and can vary 

greatly depending on the type and extent of the stress and the cell type and conditions. One 

cellular response to stress, particularly nutrient deprivation, is the upregulation of autophagy. 

FOXO3 has been shown to stimulate autophagy by increasing the expression of autophagy-

related proteins in response to metabolic stress, promoting cell survival (103). However, FOXO3 

seems to have the opposite role, inhibiting autophagy, in many cancer cell lines (104). Another 

cellular response to stress, particularly DNA damage, is to inhibit cell cycle progression to allow 

cells time to repair damage. Several target genes for FOXO3 are involved in cell cycle control 

including cyclin-dependent kinase inhibitors p15, p21, and p27 (71). In the liver, FOXO3 has 

been shown to limit cellular proliferation in a model of liver regeneration in mice (105). FOXO3 

also directly promotes DNA repair by interacting with ATM, a vital component of the DNA 
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repair pathway, promoting its phosphorylation and downstream signaling in response to DNA 

DSBs (106). Furthermore, during the G2-M checkpoint FOXO3 promotes DNA repair through 

its transcriptional control of GADD45a, a growth arrest and DNA damage response protein 

(107). Hypoxia is another type of cell stress for which FOXO3 has been shown to play a role in 

the cellular response. In breast cancer cells FOXO3 was upregulated by hypoxia and protected 

cells from HIF-1-mediated apoptosis (108). FOXO3 can also promote resistance to hypoxic 

stress through c-Myc inhibition leading to decreased expression of mitochondrial proteins, 

respiratory complexes, and respiratory activity (109, 110). TACE is known to induce tumor 

hypoxia (111), however the role of FOXO3 in the HCC cell response to TACE-induced hypoxia 

is unknown. In response to oxidative stress, cells can respond by upregulating antioxidant 

enzymes and ROS scavenging systems and/or induce apoptosis if the damage becomes too great. 

FOXO3 has been shown to promote cell survival in response to oxidative stress by increasing the 

expression of antioxidant enzymes, SOD2 and catalase (112). However, FOXO3 has also been 

shown to promote apoptosis in many different cell types by controlling expression of target 

genes involved in both the intrinsic and extrinsic apoptosis pathways (113-116). It is likely that 

cell type and conditions have significant influence on FOXO3 function in response to oxidative 

stress. For example, it has been shown that in low glucose, FOXO3 promoted cell survival in 

response to oxidative stress, while in high glucose it promoted apoptosis (117). Furthermore, the 

mechanism by which cell type and conditions regulate FOXO3 function is likely to be through 

upstream enzyme-mediated post-translational modifications on FOXO3, which have been shown 

to be crucial to determining FOXO3 function. 

A complete understanding of the role of FOXO3 in normal cellular function and disease 

requires a more detailed understanding of the many upstream events that affect its function. 
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Multiple post translational modifications of FOXO3 have been described including 

phosphorylation, acetylation, methylation, and ubiquitination (118). These PTMs can alter 

nuclear import and export steps, modify the DNA binding affinity, and alter the pattern of 

transcriptional activity for specific target genes (52, 119).  

The first layer of regulation of FOXO3 is a series of modifications that controls the 

translocation between nucleus and cytosol. These FOXO3 PTMs can be divided into two groups. 

The first group promotes nuclear export, polyubiquitination and proteosomal degradation. These 

include phosphorylation by Akt (the main pathway of FOXO3 degradation) (120), ERK (121), 

IKKβ (122) and CDK2 (123). Sites for all those modifications have been described, and 

activation of the respective kinases typically correlates with loss of nuclear FOXO3. The second 

group of PTMs that control the nuclear-cytosolic distribution are those that promote nuclear 

localization and are associated with an increase in transcriptional activity. These include 

phosphorylation by JNK (124), p38 (83), AMPK (125), CDK1 (126), and MST1 (127), as well 

as monoubiquitination by unknown enzymes (118), and arginine methylation by PRMT1 (128). 

The latter modification, arginine methylation, prevents FOXO3 nuclear export by inhibition of 

AKT phosphorylation due to the proximity of methylated arginine residues to the AKT sites 

(128). 

Notably, there are potential cross-regulatory interactions among the PTMs that regulate 

FOXO3 localization. For example, FOXO3 contains numerous phosphorylation ‘SP’ motifs that 

are substrate targets for JNK, p38 and ERK. Phosphorylation on these sites has been detected 

following oxidative stress and other stimuli. FOXO3, for example, contains p38 phosphorylation 

sites on Ser7, Ser12, Ser294, Ser344, and Ser425 that can be also targeted by JNK (Ser294 and 

Ser425) and ERK (Ser294, Ser344, and Ser425) (83). While p38 and JNK are known to promote 
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nuclear localization, ERK modification has an opposite effect (121). One can speculate that these 

modifications can happen consecutively by different enzymes and various combinations 

throughout the FOXO3 sequence create unique protein conformations that define its localization. 

The balance between these two groups of modifications in the liver creates an environment that 

defines the amount of FOXO3 in the nucleus. Complete loss of nuclear FOXO3 undoubtedly 

leads to deregulation of above mentioned pathways controlled by FOXO3 transcriptional 

activity. 

The second layer of regulation includes a series of modifications that regulate FOXO3 

transcriptional activity by changing DNA binding and promoter binding specificity. This group 

includes acetylation by the redox activated acetyl transferase, p300 (129), deacetylation by 

SIRT1 (91, 118), SIRT2 (130), and SIRT3 (131), lysine methylation (132), and glycosylation 

(133). Lysine methylation at K270 of FOXO3 promotes loss of DNA binding and reduces 

FOXO3-mediated apoptosis (132). Deacetylation by SIRT1 has been shown to differentially alter 

DNA binding affinity, so that more highly acetylated forms of FOXO3 favor expression of pro-

apoptotic genes, (Bim, TRAIL and FasL), while the more deacetylated forms favor expression of 

antioxidant and cytoprotective genes (91). SIRT2 also deacetylates FOXO3 and increases its 

DNA-binding activity (130). The binding of CBP/p300 to FOXO3 is essential for transactivation 

of target genes (129). However, the acetylation itself attenuates FOXO3 transcriptional activity. 

Acetylation may inhibit the ability of the DNA binding domain of FOXO3 to interact with its 

consensus binding motif (106).  

Several lysines were reported to be acetylated in FOXO3. Brunet et al. found that 

FOXO3 is acetylated at K242, K259, K271, K290 and K569 in the presence of stress stimuli 

(91). O-glycosylation is another modification that does not affect the nuclear/cytosolic 
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distribution of FOXO3, but results in the up-regulation of specific gene expression such as 

G6Pase21 and other gluconeogenic genes (134). Recent studies show that some of these effects 

involve the ability of specific PTMs, such as GlcNAcylation to produce differential binding of 

FOXO3 to cofactors such as PGC-1α with a subsequent increase in specific transcriptional 

activities (133). 

Phosphorylation events can also regulate functionally relevant transcriptional specificity 

in addition to FOXO3 localization. For example, JNK-stimulated phosphorylation of FOXO3 at 

serine-574 is translocated to the nucleus where it selectively binds to pro-apoptotic promoters 

and induces cell death. In the absence of this phosphorylation, FOXO3 initiates an antioxidant 

and cell protective transcriptional program (114). Thus, whether FOXO3 serves as a pro-

apoptotic or pro-survival factor likely depends on the state of its modification by upstream 

enzymes. This phenomenon may be particularly relevant in HCC sensitivity to chemotherapy 

and will be addressed below and in further detail in Chapters 4 and 5. 

This second layer of modifications gives an idea of how FOXO3 transcriptional activity 

can be regulated. However, the question of how FOXO3 decides which transcriptional program 

is activated in any given condition is still unclear. Since FOXO3 recognizes a conserved 

consensus motif TTGTTTAC (135, 136) present in multiple genes, the promoter binding patterns 

may be defined more by differential binding to various cofactors. FOXO3 has been shown to 

interact with a large number of binding partners resulting in changes in transcriptional activity of 

both proteins. The list includes a number of nuclear hormone receptors, other transcription 

factors such as β-catenin, RUNX3, SMADs and histone modifying enzymes such as acetylases 

and methyltranferases (137). In addition to being binding partners, these modifying enzymes can 
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directly affect the PTMs of FOXO3 itself, as well as histone modifications, providing an 

additional level of complexity to the activation of FOXO3 target genes. 

FOXO3 function in cancer  

FOXO3 as a tumor suppressor 

The ability of FOXO proteins to function as tumor suppressors has been well 

documented. Firstly, mice with conditional triple knockout of FOXO1/3/4 genes are cancer 

prone, developing thymic lymphomas and hemangiomas (53). In cell culture, Akt or ERK-

mediated degradation of FOXO proteins are required for Ras and Myc-induced oncogenic 

transformation respectively as FOXO proteins were shown to suppress transformation by 

inhibiting cell cycle progression and blocking induction of Myc target genes (121, 138-140). 

Further evidence for the tumor suppressive role of FOXO3 specifically is its frequent 

inactivation in human tumors. It has been found to be inactivated by the PI3K/AKT pathway 

(58), and in the absence of AKT activation, IKK-β activation has also been shown to inactivate 

FOXO3 (122). In fact, many studies have shown an association between the down-regulation of 

FOXO3 and poor prognosis including in gastric adenocarcinoma (141), urothelial carcinoma 

(142), colon adenocarcinoma (143), serous ovarian carcinoma (144), mantel cell lymphoma 

(145), and breast adenocarcinoma (122). The tumor suppressive function of FOXO3 has 

primarily been attributed to its ability to inhibit cell proliferation through its control of cell cycle 

proteins (122), however other mechanisms have also been described. In lung cancer, FOXO3 

transcriptionally represses a DNA methyltransferase, DNMT3B, which when overexpressed 

promotes tumorigenesis by increasing the methylation status of tumor suppressor genes (146). 

And in prostate cancer, FOXO3 inhibits β-catenin-mediated tumor promotion by two 

mechanisms: decreasing its expression by upregulating a β-catenin specific miRNA, and by 
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suppressing β-catenin-mediated transcription by directly binding to β-catenin, competing with its 

transcriptional co-factor, TCF (147).  

FOXO3 as a tumor promoter 

Although it seems clear that FOXO3 often suppresses tumor growth by playing an anti-

proliferative role as it tries to control cell cycle progression, FOXO3 also has a well-documented 

role in promoting cell survival in response to various types of cell stress. Therefore, it should not 

be surprising that FOXO3 has also been found to function as a tumor promoter in specific 

contexts, in sub-populations of cancer cells, and in certain types of cancer in general. For 

example, FOXO3 seems to function as a tumor suppressor in colon cancer as it is frequently 

inactivated by increased PI3K/AKT activation, and FOXO3 can induce apoptosis when its 

activity is increased through the use of a PI3K/AKT inhibitor. However, when FOXO3 is 

activated in cells with high nuclear β-catenin activity, instead of causing apoptosis, it acts in 

concert with β-catenin to promote metastasis. Nuclear colocalization of FOXO3 and β-catenin 

was significantly increased in patients with metastatic colon cancer and shorter survival (148). 

Additionally, in cytogenetically normal acute myelogenous leukemia (CN-AML), high FOXO3 

expression is associated with lower patient survival (149), and in other types of AML it seems to 

protect leukemia-initiating cells from DNA damage and inhibit their differentiation (101, 150). 

In chronic myelogenous leukemia, FOXO3 acts as a tumor suppressor in a majority of cells as 

the BCR-ABL translocation creates a constitutively active tyrosine kinase which activates AKT 

and inactivates FOXO3. However, it also seems to be essential for the maintenance of a small 

population of leukemia initiating cells that are resistant to BCR-ABL inhibitor treatment, have 

high nuclear FOXO3, and are dependent on FOXO3 for their tumor initiating ability (151). High 

FOXO3 expression was also found in most patients with Hodgkin’s Lymphoma, especially in 
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cancer stem cell-like cells, but not in Non-Hodgkin’s Lymphoma (99). Finally, FOXO3 is 

overexpressed at the mRNA and protein levels in anaplastic thyroid carcinoma (ATC) tissue and 

cell lines and it increases proliferation of ATC cells through transcriptional upregulation of 

cyclin A1 (152).  

The mechanisms by which FOXO3 promotes a malignant phenotype have been further 

studied in several cancer cell models which seem to point to the importance of FOXO3 in 

helping tumor cells adapt to changing environmental conditions. For example, FOXO3 

transcriptionally activates IDH1, an enzyme that generates NADPH, an essential co-factor for 

ROS scavenging systems, and converts isocitrate to alpha-ketoglutarate (α-KG) which promotes 

differentiation and tumor suppression through α-KG-dependent dioxygenases in untransformed 

cells. However, when mutated as it is in several types of cancer, IDH1 is able to further convert 

α-KG to 2-hydroxyglutarate, a recently discovered “oncometabolite”, able to drive 

tumorigenesis. These cancer cells are then dependent on FOXO3-driven mutated IDH1 

expression (153). Nutrient deprivation is another type of stress that tumor cells encounter as 

tumor mass increases. In response to serum starvation, FOXO3 can promote cell survival by 

activating NF-κB through transcriptional upregulation of BCL10, an upstream regulator of IKK 

(154). It has also been shown to induce expression of MMP-9 and MMP-13 in response to serum 

starvation, leading to increased tumor cell invasion (155). Finally, exposure to chemotherapy, 

such as doxorubicin, is another extreme type of stress that tumor cells encounter and frequently 

survive. As will be discussed in more detail below, FOXO3 is able to promote apoptosis of 

tumor cells treated with chemotherapy; however it has also been shown to promote resistance to 

chemotherapy. 

FOXO3 in HCC 
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While the role of FOXO3 in many types of cancer has been well studied, strikingly little 

investigation has been done on the role of FOXO3 in HCC. Two previous studies have suggested 

FOXO3 may play a tumor suppressor role in HCC. One study found that the tumor promoter, 

upregulator of cell proliferation (URGCP), is overexpressed in many HCC tumors and cell lines. 

When URGCP was knocked down in HCC cells, proliferation decreased, and this was shown to 

be dependent on FOXO3 when its expression was knocked down and the effect was lost (156). 

Another study found miR-96 to be overexpressed in HCC cells and demonstrated that it 

promotes HCC cell proliferation as well as decreased FOXO1 and FOXO3 expression, Knock-

down of FOXO1 and FOXO3 expression was shown to slightly decrease cell proliferation (157). 

However, evidence has also been given for tumor promotion role for FOXO3 under certain 

conditions. When HCC cells were cultured in serum-free medium, FOXO3 expression was 

downregulated and this downregulation was shown to be responsible for the decreased cellular 

proliferation in this condition. When FOXO3 expression was restored, HCC cell proliferation 

was restored. Additionally, serotonin, which can signal through 5-HT2B receptors expressed on 

hepatocytes, was also able to increase proliferation in HCC cells cultured in serum-free medium 

by increasing expression and activation of FOXO3 (158). 

The only previous study reporting on FOXO3 expression in HCC used 91 samples from 

untreated surgical resections done in China, 86% of which were positive for HBV and only 44% 

had cirrhosis [only 10-15% of HCC patients in the U.S. are positive for HBV and the vast 

majority have cirrhosis (159)]. They performed immunohistochemistry for FOXO3 and divided 

the samples according to their FOXO3 expression, classifying 46 samples as having “high” 

FOXO3 and 45 having “low” FOXO3. The low FOXO3 group had a statistically significant 

worse histologic grade, but the high FOXO3 group had a statistically significant higher 
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percentage of tumors in that were greater than 5cm in size and were more likely to be negative 

for cirrhosis. Additionally, they found that the high FOXO3 group had greater survival out to 5 

years compared to the low FOXO3 group (160). However, they did not see any relationship 

between tumor size and survival, which is concerning as tumor size has been found repeatedly to 

have great influence on HCC recurrence and survival after transplant (161). There is clearly a 

need for more investigation into the role of FOXO3 in HCC, and this need is addressed in 

Chapters 3 and 4 of this dissertation.  

FOXO3 function in chemotherapy 

FOXO3 has been shown to mediate apoptosis induction for several types of 

chemotherapy in several types of cancer. Resistance to cisplatin, a DNA cross-linking agent, 

occurs in breast and colon cancer through IKK-β (162) and Akt-mediated (163) FOXO3 

cytoplasmic sequestration, respectively. Sensitivity to paclitaxel, a microtubule inhibitor, in 

breast cancer is dependent on JNK phosphorylation of AKT and activation of FOXO3 (164). 

Other compounds shown to be cytotoxic to HCC cells include bortezomib, a proteasome 

inhibitor (165), and melatonin (166), both of which cause apoptosis in a FOXO3-dependent 

manner.  

FOXO3 has also been shown to mediate doxorubicin-induced apoptosis in a number of 

different tumor cell types. Doxorubicin increases nuclear accumulation of FOXO3 in breast 

cancer (83), lung cancer, neuroblastoma (116), and osteosarcoma cells (167). Additionally, 

pharmacological approaches that inhibit Akt or otherwise increase FOXO3 nuclear accumulation 

work synergistically with doxorubicin to enhance apoptosis (145, 168). The mechanisms by 

which FOXO3 mediates doxorubicin-induced apoptosis include transcriptional repression of 

miR-21 which represses translation of Fas-L (116), transcriptional upregulation of Bim, a pro-
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apoptotic Bcl-2 homolog (169), and transcriptional repression of Bcl-2 (114) and survivin, an 

anti-apoptotic Bcl-2 family member (170).  

The role of FOXO3 in doxorubicin sensitivity of HCC, whether it promotes apoptosis or 

resistance, has not been studied previously. This is a knowledge gap that will be addressed in 

Chapter 4 of this dissertation. Furthermore, as has been discussed previously, FOXO3 can be 

responsible either for enhanced cell survival or enhanced apoptosis. While it has been shown that 

FOXO3 frequently promotes apoptosis through its transcriptional program in response to 

doxorubicin treatment, there has been no mechanism put forth to explain how and why FOXO3 

promotes apoptosis rather than cell survival. Changes in FOXO3 that cause a loss of its apoptotic 

function or an enhancement of its survival function may promote doxorubicin resistance. In fact, 

this scenario has been demonstrated previously in breast cancer and certain leukemias that have 

developed doxorubicin resistance. High nuclear FOXO3 expression was observed in 

doxorubicin-resistant breast cancer where it promoted AKT activation and cell survival (171). In 

leukemic cells with acquired doxorubicin-resistance, FOXO3 was shown to contribute to this 

resistance by transcriptionally activating MDR1 (172). In breast cancer cells, doxorubicin-

mediated nuclear accumulation of FOXO3 was found to be dependent on p38-induced 

phosphorylation of FOXO3 on Serine-7 (83). However, this PTM was not shown have an effect 

on FOXO3 function. Recently, S574-phosphorylation of FOXO3 was shown to be necessary for 

its ability to cause apoptosis in response to ethanol in HCC cells (114), and deacetylated FOXO3 

was shown to promote cisplatin-resistance in urothelial carcinoma cells (173). To date, no 

FOXO3-PTMs have been reported to regulate FOXO3 function in response to doxorubicin, and 

this is another knowledge gap that will be addressed in Chapter 4.  
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Project Aims 

 The function of FOXO3 in HCC pathogenesis, including the response to chemotherapy, 

remains unknown. Investigations of FOXO3 function in other malignancies suggest a possible 

role as a tumor suppressor and chemo-sensitizing factor. However, FOXO3 can also promote cell 

survival and resistance to cell stress. The conditions and mechanisms that determine how 

FOXO3 will function and the influence it will have on cell fate have not been fully elucidated. 

The purpose of the research described in this dissertation was to evaluate the hypothesis that 

HCC sensitivity to doxorubicin is mediated through changes in FOXO3 PTMs. Furthermore, this 

work seeks to correlate expression of SIRT6, an upstream modifier of FOXO3, with doxorubicin 

resistance in HCC. The experiments presented in the following chapters have combined both 

human HCC tumor samples and in vitro cell culture modes to critically evaluate this hypothesis. 

Chapter 3 of this dissertation examines the expression and cellular distribution of FOXO3 in 

human HCC tumor samples. I also examine the correlation of FOXO3 expression with tumor 

behavior. 

Chapter 4 investigates the FOXO3 PTM changes induced by doxorubicin exposure in Huh7 

cells, specifically acetylation and S574-phosphorylation. I examined the significance of these 

PTM changes in doxorubicin sensitivity by blocking there induction and determining if 

resistance is increased.  

Chapter 5 examines the expression of SIRT6 in TACE-doxorubicin-resistant and treatment-

naïve human HCC tumors. I also examine the effect of SIRT6 overexpression on doxorubicin-

induced FOXO3 PTM changes and cell death. 

 



27 
 

These studies are the first to show that FOXO3 expression correlates with HCC tumor 

behavior including response to chemotherapy. Furthermore, they point to SIRT6 overexpression 

and blocking of doxorubicin-induced changes in FOXO3 PTMs as a possible mechanism of 

resistance to TACE-doxorubicin in human HCC. 

 

 Chapter II: Methods 

Materials  

General materials were purchased from VWR International (Randor, PA), Sigma-Aldrich 

(St. Louis, MO), or Fisher Scientific (Pittsburgh, PA). Dulbecco’s modified Eagle medium 

(DMEM) was purchased from VWR. Fetal bovine serum (FBS) was purchased from ATCC 

(Manassas, VA). MEM nonessential amino acids, FluoroBrite™ DMEM, Opti-MEM, Pierce™ 

LDH Cytotoxicity Assay Kit, Dynabeads M-280 Sheep anti-rabbit IgG, and X-tremeGENE™ 

HP DNA Transfection Reagent were purchased from Fisher. The Dako LSAB⁺ System-HRP 

immunohistochemistry visualization kit was purchased from Dako (Carpinteria, CA, K0679). 

Protease inhibitor cocktail (Sigma-Aldrich, P8340) was used at 1:100 dilution. Doxorubicin 

hydrochloride suitable for fluorescence, resveratrol, Duolink® In Situ PLA® Probe and In Situ 

Detection kits were purchased from Sigma-Aldrich. Geneticin and puromycin were purchased 

from Invitrogen (Carlsbad, CA).  

Plasmids 

The plasmid pECE-HA-FOXO3a-WT was provided by M. Greenburg (Addgene 

(Cambridge, MA, plasmid # 1787). The pECE-HA-FOXO3-S574A and S574D plasmids were 

generated using the Q5® Site-Directed Mutagenesis Kit, purchased from New England Biolabs 

(Ipswitch, MA).  All sequences were confirmed by DNA sequencing analysis. The 
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pcDNA3.1+SIRT6-flag was provided by E. Verdin (Addgene plasmid # 13817). The plasmid 

pcDNA3.1 SIRT6_H133Y-flage was provided by K. Chua (Addgene plasmid # 53149). It has a 

single point mutation which inactivates its ability to catalyze acetyl group transfer, and was 

previously described (174). The lentiviral vector coding for human FOXO3 3’UTR-specific 

shRNA (MISSION® TRC shRNA TRCN0000040100) and the control vector pLKO.1 were 

obtained from Sigma-Aldrich and used to make sh-FOXO3 and sh-non-target (sh-NT) lentivirus. 

These plasmids contain a puromycin resistance gene for selection in mammalian cells. The 

pMD2.G VSV-G envelope-expressing plasmid for lentivirus production was provided by D. 

Trono (Addgene plasmid # 12259). The lentiviral packaging plasmid, psPAX2, was a gift from 

Didier Trono (Addgene plasmid # 12260) 

Cell Culture 

Huh7 cells (provided by Dr. Charles Rice) are a hepatoma cell line derived from the HCC 

tumor of a Japanese male (175). They have a mutated p53 gene and have a high degree of 

karyotypic variability and instability (64). Huh7 cells used for experiments were between 

passages 7-12. They were maintained in DMEM with 10% FBS, and 0.1mM MEM nonessential 

amino acids. The 293FT cell line (ATCC) is a clonal isolate from HEK cells that have been 

transformed with SV40 large T antigen, controlled by the cytomegalovirus (CMV) promoter. 

They are fast growing and highly transfectable and were used for the production of lentivirus. 

293FT cells were cultured in DMEM with 10% FBS, 0.1mM MEM nonessential amino acids, 

and 500 μg/ml geneticin. All cells were incubated in 37°C, 5% CO2. 

Transfection 

For transfection of Huh7 cells with FOXO3, SIRT6, or mutants, cells were plated at a 

density of 15 x 104 cells/well in a 6-well plate or 2.5 x 104 cells/well in a 24-well plate. For 
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transfection of cells in a 6-well plate, the following day the medium was replaced with 1.5ml 

Opti-MEM 1 hour before transfection. For each well, 1.5ug of plasmid DNA and 1.5ul of 

transfection reagent were diluted in 100ul Opti-MEM and incubated for 15-30 minutes. For 

transfection of cells in a 24-well plate, the same ratios were used but the amounts were reduced 

by a factor of 4. The transfection complexes were added and incubated with cells for 4 hours. 

The medium was then replaced with fresh Opti-MEM. The next day the medium was replaced 

with complete medium and experiments were begun. 

Lentivirus Production and Transduction 

For lentivirus production, 7 x 105 293FT cells were seeded on 6cm tissue culture dishes 

in 5 mL of media. The following day the medium was replaced with antibiotic-free medium and 

transfection was performed. The psPAX2, pMD2.G and either pLKO.1 sh-RNA plasmid were 

co-transfected using a ratio of 0.75/0.25/1μg ratio and X-tremeGENE™ HP DNA Transfection 

Reagent using a 3μl/μg of DNA ratio. The following day, the medium was changed to remove 

the transfection reagent and 5ml of fresh medium was added. The next day, lentivirus-containing 

medium was harvested and stored at 4°C. Fresh media was again added to the cells. The next 

day, the medium was again harvested and pooled with the medium from the previous day. The 

medium was spun at 1,250 rpm for 5 minutes to pellet any 293FT cells that were inadvertently 

collected during harvesting. Virus was aliquoted and then frozen at -80°C for long-term storage. 

For transduction of lentivirus and sh-RNA mediated FOXO3 knock-down, Huh7 cells 

were seeded a T-25 flask at 1.5 x 106 cells per flask. The next day, the sh-FOXO3 and sh-NT 

viruse-containing media were thawed on ice. 2μl of polybrene from 8mg/ml stock was added to 

2ml of virus-containing medium and incubated at room temperature for 15min at room 

temperature. Virus was added to the cells and incubated for 5-6 hours before adding 2ml of fresh 
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medium. The next day, media were replaced with fresh medium. Pools of shRNA-transduced 

cells were selected the following day by adding 3μg/ml puromycin to the medium. The following 

day, the media were replaced with fresh puromycin medium. The following day, the media were 

replaced with normal medium without antibiotics and the cells were allowed to recover for 3-5 

days before checking the level of FOXO3 knock-down by western blot. Sh-FOXO3 and sh-NT 

Huh7 cells were only used in experiments for two passages.  

Human Samples 

At the University of Kansas Hospital, approximately 150 liver transplants are done each 

year, of which approximately 30 have a diagnosis of HCC. When liver transplantations for 

patients with HCC are done the explant livers are dissected and gross and microscopic analyses 

are performed to determine the number, size, and histologic grade of the tumor(s), which are 

used to help determine the clinical stage, prognosis, and risk of recurrence. We developed 

collaborations with nurses, technicians, residents, surgeons, and pathologists, so that we could 

have access to samples of tumor and adjacent tissue from the explant livers that would have been 

discarded. We also collected corresponding clinical data including patient gender, age, etiology 

of liver disease, treatment prior to transplantation, tumor size, histologic grade of the HCC, 

presence or absence of tumor metastasis and vascular invasion, and we periodically followed 

patients on our list to watch for tumor recurrence after transplant. Tumor size was measured 

during gross dissection of the liver after transplant. The differentiation or histologic grade of 

each tumor was determined by a pathologist and given a qualitative score of well, moderate to 

well, moderate, moderate to poor, or poor. For measuring correlations with staining, each state 

was assigned a numerical value (1-5), with 1 being well differentiated and 5 being poorly 

differentiated. All human tissues were obtained with informed consent from each patient, 
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according to ethical and institutional guidelines. The study was approved by the Institutional 

Review Board at the University of Kansas Medical Center. 

Immunohistochemical Staining of Human Liver Tissue 

Human liver samples were fixed in 4% paraformaldehyde for 24 hours and were then 

paraffin embedded. 5μm tissue sections were made and put on slides for immunohistochemical 

(IHC) staining. To begin IHC staining, sections were deparaffinized and hydrated by three 

washes with xylene for 15 minutes each, followed by three washes with 100% ethanol for five 

minutes each, followed by one was in 70% ethanol for ten minutes and two washes in distilled 

H2O for five minutes each. Antigen unmasking in the tissue sections was done by boiling the 

slides in a pressure cooker in 10mM sodium citrate buffer with 0.5% Tween 20, pH 6.0 for ten 

minutes, and allowed to cool down for 30 minutes. The slides were then washed twice in distilled 

H2O for five minutes each. Blocking of the slides was then done using 3% hydrogen peroxide for 

five minutes, followed by a rinse in distilled H2O for five minutes. Slides were then washed 

twice in tris buffered saline with 0.1% Tween 20 (TBS-T) for three minutes each. The reagents 

for visualization including blocking reagent, dilution reagent, linker reagent, streptavidin 

peroxidase, and substrate-chromogen solution were provided in the Dako LSAB⁺ System-HRP 

kit. Slides were blocked using the serum-free blocking reagent for five minutes. The primary 

antibody was diluted 1:100 in the blocking reagent and was incubated on the tissue sections 

overnight at 40C in a humidified chamber. The primary antibody was removed and the slides 

were washed twice in TBS-T for 15 seconds each time. The tissue sections were covered with 

the link buffer and incubated for 30 minutes at room temperature. The slides were then washed 

twice in TBS-T for 15 seconds each time. The sections were then covered with 1-3 drops of 

streptavidin peroxidase for 30 minutes at room temperature, followed by two washes with TBS-T 
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for 15 seconds each time. Substrate-Chromgen Solution was applied to slides and incubated 5-10 

minutes. Sections were counterstained with hematoxylin for 0.5-1 min, followed by washing 

with tap water twice for three minutes each. Slides were then dehydrated and a coverslip was 

applied. 

We enlisted the help of a pathologist, Dr. Maura O’Neil, to examine the IHC stained 

slides with us and distinguish areas of HCC from dysplastic and regenerative nodules. After 

staining the samples, we used the Aperio® AT2 digital pathology slide scanner (Leica 

Biosystems, Buffalo Grove, IL) to acquire digital images of each slide. We then used Aperio 

ImageScope software and algorithms, licensed by the University of Kansas Hospital Pathology 

Department to quantitate the amount of FOXO3 and SIRT6 expression in selected areas of 

cirrhosis and HCC. Briefly, this software uses hematoxylin staining to identify cell nuclei and 

quantifies the amount of HRP staining in each nucleus. It also measures cytoplasmic staining by 

quantifying the amount of HRP within a chosen radius around each nucleus. The software 

measures the intensity of each pixel. Intensity, which is proportional to the amount of light 

transmitted through the slide, ranges from zero (black) to 255 (bright white), so that a large 

intensity value means there is less staining present. The average intensity of all of the objects 

(nuclei or cytoplasm) within a chosen area on a slide is given on a scale from 0 (low) to 255 

(high). We subtracted these values from 255 in order to present the data on a numerical scale 

where a low value represents low staining and a high value represents high staining. We verified 

the data by having two people provide a semi-quantitative score of the nuclear and cytoplasmic 

FOXO3 staining in the samples while blinded to all clinical data. We found it consistent with the 

Aperio quantitative measurements.  

Western Blotting 



33 
 

Whole cell lysates were prepared from cells lysed in RIPA buffer (20mM Tris [pH 7.4], 

150mM NaCl, 1mM EDTA, 1mM EGTA, 1% Triton X-100, 2.5mM Na4P2O7, protease 

inhibitors). Lysates were centrifuged at 20,000 x g for 20 min, supernatants collected, and 

protein concentration measured using the Bio-Rad protein assay kit. Cell lysates were separated 

by 10% SDS-PAGE and transferred to polyvinylidene difluoride membranes (Immobilon-P 

membranes; Millipore, Billerica, MA, USA). Membranes were blocked with blocking buffer 

(5% bovine serum albumin, 0.1% Tween-20 in TBS) for 1 h at room temperature. After 

incubation with the appropriate primary antibodies overnight at 4 °C, membranes were then 

incubated with horseradish peroxidase-conjugated secondary antibodies, detected using the 

WesternBright ECL system from Advansta (Menlo Park, CA) and the ODYSSEY Fc, Dual-

Mode Imaging system (Li-COR, Lincoln, NE, USA). Primary antibodies used were rabbit 

polyclonal anti-p-FOXO3-S574 polyclonal antibody generated by our lab through Abcam 

(Burlingame, CA, 1:500) (Li, 2016), rabbit anti-GAPDH (FL-335, Santa Cruz Biotechnology, 

Dallas, TX, 1:2000), rabbit anti-HA antibody (Santa Cruz, 1:1000), anti-rabbit FOXO3 (75D8) 

(Cell Signaling Technologies, 1:500), and rabbit anti-P-JNK antibody (Cell Signaling 

Technologies, 1:1000). 

Immunoprecipitation  

Huh7 cells were seeded on 100mm dishes at a density of 5 x 106 cells/dish and were 

treated as indicated. Following treatment, cells were washed with ice-cold PBS, lysed in 400-

500ul cell RIPA buffer containing protease inhibitors, and kept on ice for 15min. Lysates were 

centrifuged for 15min at 16,000g at 40C and protein concentration was measured in the 

supernatant. 400μg of total protein was used for each immunoprecipitation (IP). Samples were 

diluted in IP Buffer (1%NP-40, 25mM Tris-HCl pH7.4, 0.2%SDS, 50mM NaCl, 0.5% sodium 
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deoxycholate with protease inhibitors). The immunoprecipitation antibody was added (~4ug or 

1:100) and incubated overnight at 4°C with rotation. 20μl of Dynabeads M-280 Sheep anti-rabbit 

IgG (Fisher) were added to each sample and incubated at 4°C with rotation for 3-4 hours. 

Samples were washed 5 times with IP buffer, rotating for 10 min at room temperature. Magnetic 

beads were pelleted with a magnetic separator and the liquid was discarded. Samples were re-

suspended in 10µl of new prepared 3X Western sample buffer and incubated at room 

temperature for 10 min, followed by incubation at 95 °C for at 3 min before proceeding to 

western blot. Primary antibodies used were anti-rabbit FOXO3 (75D8) (Cell Signaling 

Technologies, 1:500), and rabbit anti-Acetyl-Lysine (Cell Signaling Technologies, 1:00) 

Immunofluorescence 

Huh7 cells grown on coverslips were washed in PBS and fixed in 4% paraformaldehyde 

at room temperature for 30 min. The fixed cells were then incubated in IF buffer (1% BSA, 2.5 

mM EDTA in PBS) for 1 hr at room temperature. Cells were then incubated in primary antibody 

diluted in IF buffer for 1 h at room temperature or overnight at 40C. After washing with PBS, the 

coverslips were incubated with AlexaFluor conjugated goat secondary antibody (1: 500; 

Molecular Probes, Waltham, MA, USA) for 1 h in the dark at room temperature. Nuclei were 

counterstained by incubation for 5 min with 1.0 µg/ml DAPI and the cover slips were mounted in 

Fluorsave mounting medium (Invitrogen). Primary antibodies used were rabbit anti-FLAG 

antibody (F7425) (Sigma-Aldrich, 1:200), rabbit polyclonal p-FOXO3-S574 polyclonal 

antibody, and mouse anti-FOXO3 clone 15F7.2 (EMD Millipore, Darmstadt, Germany, 1:100). 

Images were acquired by using Nikon Eclipse Ti microscope (Nikon Americas Inc., Melville, 

NY, USA). 

Proximity Ligation Assay 
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Proximity ligation assays (PLA) were carried out using Duolink® In Situ PLA® Probe 

and In Situ Detection kits according to the manufacturer's instructions. Before detection Huh7 

cells were seeded in 6-well plates on coverslips treated at a density of 15 x 104 cells/well and 

were treated as indicated. After treatment, cells were fixed with 4% paraformaldehyde for 30 

minutes at room temperature, washed with PBS, permeabilized with 1% Triton in PBS, blocked 

with supplied PLA blocking buffer, and incubated with mouse anti-FOXO3 antibody clone 

15F7.2 (EMD Millipore, 1:100) and rabbit anti-Acetyl-Lysine (Cell Signaling Technologies, 

1:100) overnight at 40C. Interactions were visualized using detection reagent supplied in the kit. 

The PLA assay omitting one or both primary antibodies was used as a negative control. 

Counterstaining for flag-positive cells after the Duolink® In Situ assay was performed according 

to the manufacturer’s protocol using the DYKDDDDK Tag Alexa Fluor® 488 Conjugate 

antibody (Cell Signaling, 1:100). Images were acquired by using Nikon Eclipse Ti microscope 

(Nikon Americas Inc., Melville, NY, USA). 

LDH Release and TUNEL Assays 

To determine doxorubicin-induced cytotoxicity, Huh7 cells were seeded in 24-well plates 

at a density of 5 x 104 cells/well. The next day, cells were treated with doxorubicin. The 

concentrations of doxorubicin used for experiments were 0.5 or 1μM. doxorubicin treatment was 

continued for 72 hours before LDH release and total LDH were determined using the Pierce™ 

LDH Cytotoxicity Assay Kit according to manufacturer’s instruction. When determining the 

effect of resveratrol treatment on doxorubicin cytotoxicity, resveratrol was added at a 

concentration of 50μM 4 hours before doxorubicin treatment and was continued for 24 hours 

during doxorubicin treatment. If cells were to be transfected before doxorubicin exposure, they 
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were seeded at a density of 2.5 x 104 cells/well and were transfected 24 hours before beginning 

doxorubicin treatment. 

The DeadEND Fluorometric TUNEL System was also used to determine the effect of 

overexpressing SIRT6 or the SIRT6-H133Y on doxorubicin cytotoxicity in Huh7 cells. Cells 

were seeded in 6-well plates on coverslips at a density of 15 x 104 cells/well 24 hours before 

transfection. The next day, the medium was replaced with fresh medium containing 1μM. 

doxorubicin, and this was continued for 36 hours. The cells were then  fixed with 4% 

paraformaldehyde at room temperature for 30 min. After a PBS rinse, cells were stained using 

the DeadEND Fluorometric TUNEL System (Promega) according to the manufacturer's 

instructions. Following TUNEL staining, immunofluorescence was performed, counter staining 

for flag to determine which cells were transfected. The percentage of TUNEL positivity was 

quantified in untransfected (no flag expression), and SIRT6 and SIRT6-H133Y-transfected cells 

(positive for flag expression) by examining 5 randomly selected 10X fields.  

Statistics 

Results are expressed as the mean ± standard error (SE). Student's t-test, Mann-Whitney 

rank sum test, and Spearman's rank correlation were used for statistical analyses using SigmaPlot 

version 11.0 (Systat Software, Inc., San Jose, CA). p < 0.05 was considered significant. 
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Chapter III: Expression of FOXO3 in Human Hepatocellular Carcinoma and Correlation 

with Clinical Behavior 

Background 

 FOXO3 plays an important role in liver diseases, including HCV infection and alcoholic 

liver disease (114, 128). This transcription factor plays a role in the pathogenesis of several types 

of cancer, as significant correlations between increased or decreased FOXO3 expression and 

clinical outcome have been reported in colorectal cancer (143), breast cancer (122, 171), acute 

myeloid leukemia (176), and prostate cancer (177), to name a few. However, there has been little 

investigation of FOXO3 in the pathogenesis of HCC. To date, only one study has examined 

FOXO3 expression in HCC tumors. These data are incomplete, though, because the majority of 

these samples were from patients with HBV infection without cirrhosis (160), while most HCC 

patients in the U.S. have both HCV infection and cirrhosis (2, 4). Since FOXO3 function can 

drastically vary depending on the cell context, it is possible that the role of FOXO3 in HCC will 

also vary depending on tumor and patient characteristics such as the presence of cirrhosis. 

 To address this gap in knowledge, this chapter provides a detailed characterization of 

FOXO3 expression in HCC in samples that are representative of the population of HCC cases in 

the US. The strategy for this study was to begin by determining the pattern of FOXO3 expression 

in human HCC samples, including the overall expression level in both tumor and surrounding 

cirrhotic tissue, as well as the cellular localization. As discussed in Chapter 1, FOXO3 

localization can provide some insight into its function. The first layer of regulation of FOXO3 is 

through PTMs that control its translocation between the nucleus, where it is able to activate or 

repress gene transcription, and the cytosol, where it may carry out other functions or be 

degraded. This level of regulation has been reported to occur in other cancers such as breast 



38 
 

cancer, where FOXO3 activity is frequently suppressed by cytoplasmic sequestration and 

degradation (122). 

 Since both levels of expression and localization can potentially affect FOXO3 function, 

we also compared expression to clinical parameters, such as tumor size, risk for recurrence, and 

treatment effects. These analyses revealed significant increases in FOXO3 expression in tumor 

compared to non-tumor, as well as positive correlation of FOXO3 expression with markers of 

aggressive behavior. In addition, this analysis revealed an unexpected effect of doxorubicin 

treatment on the expression pattern of FOXO3, which may have implications for clinically 

relevant drug resistance. 

Results 

FOXO3 expression in HCC compared to cirrhotic tissue 

 To characterize FOXO3 expression in human HCC tumors, we performed IHC staining 

in HCC samples and surrounding adjacent cirrhotic tissue from 35 different patients. We 

measured nuclear, cytoplasmic, and total FOXO3 expression. In cirrhotic tissue, there was quite 

a bit of variation from sample to sample, but, when present, FOXO3 was typically found in the 

nucleus, with very little cytoplasmic protein (Figure 2A-D). The expression of FOXO3 in HCC 

was extremely variable, particularly the localization (Figure 2E-H). Most tumors had a high level 

of nuclear FOXO3, while some also had a very high level of cytosolic FOXO3. Comparing the 

total FOXO3 expression in each of the HCC samples to adjacent cirrhotic tissue, we found the 

mean value to be significantly higher in HCC (Figure 3B). A comparison of either the nuclear or 

cytosolic expression of FOXO3 in HCC samples with adjacent cirrhotic tissue revealed that the 

mean nuclear FOXO3 expression in HCC is significantly higher than in cirrhotic tissue (Figure 

3C). Due to the high variation in cytosolic FOXO3 in the tumor samples, the Shapiro-Wilk 
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normality test failed, so we were unable to use a t-test to compare tumor to cirrhosis. Instead, we 

used a Mann-Whitney Rank Sum Test to compare the median value of cytosolic FOXO3 

expression in HCC compared to cirrhosis, and we found it to be significantly higher in HCC 

(Figure 3D). Collectively these data indicate that the total, nuclear, and cytosolic FOXO3 

expression is higher in HCC compared to adjacent cirrhotic tissue. 
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Figure 3: Quantification of FOXO3 expression in HCC and cirrhosis. 
(A) Picture of IHC staining for FOXO3 and hematoxylin with DEB and HCC, cirrhosis, and 
necrosis areas labeled. (B) Total FOXO3 expression (nuclear and cytosolic) in HCC (left) and 
cirrhosis (right). (C) Nuclear FOXO3 expression in HCC and cirrhosis. (D) Cytoplasmic FOXO3 
expression in HCC and cirrhosis. Box plot upper boundary represents 75th percentile, lower 
boundary represents 25th percentile, and the line within the box represents the median. The upper 
and lower error bars represent the 90th and 10th percentile respectively. For HCC samples n=35, 
and for cirrhosis samples n=33. Values for each sample in B-D represent the average staining 
intensity of all the objects (nuclei or cytoplasm) within a selected area subtracted from 255 
(maximum intensity) so that a higher value equals increased expression. * indicates p≤0.05 
 

C 
D 
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Correlation of FOXO3 expression with clinical characteristics 

 Since the overall, nuclear, and cytosolic FOXO3 expression was higher in HCC 

compared to adjacent cirrhotic tissue, but yet there was marked variability in expression from 

tumor sample to sample, we hypothesized that FOXO3 expression patterns may correlate with 

clinical and pathologic behavior. To test this we compared expression with a number of 

variables, including tumor size, histologic grade, vascular invasion, prior treatment, and 

recurrence after transplant. In this initial analysis, we decided to include only the 22 tumors that 

were treatment-naïve because we wished to investigate the significance of variation in FOXO3 

expression in HCC apart from its role in response to treatment. FOXO3 expression in treated 

tumors is analyzed separately (see below). 

 Importantly, tumor size, vascular invasion, and histologic grade are reported to be strong 

predictors of recurrence after transplant (178), and we found our samples to be consistent with 

this finding, as tumor size had a significant correlation with recurrence, and the presence of 

vascular invasion correlated with recurrence as well, although not quite statistically significant 

(Table 1). Evidence of vascular invasion by the tumor was found in four patients, two of which 

to this date have had tumor recurrence, and there were two more patients who have had tumor 

recurrence, totaling four recurrences to this date. We also found that both nuclear and cytosolic 

FOXO3 expression had significant positive correlations with tumor size, and that nuclear 

FOXO3 significantly correlated with tumor grade as well. 
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Table 1: FOXO3 Clinical Correlations 

  
Avg. Cyto. 

FOXO3 
Avg. Nuc. 
FOXO3 

Tumor 
Diameter 

Differentiation 
(Grade) 

Vascular 
invasion Recurrence 

Avg. Cyto. 
FOXO3 

Pearson 
Correlation 1 .710** .506* .390 .269 .283 

P. value   .000 .016 .072 .227 .202 

Avg. Nuc. 
FOXO3 

Pearson 
Correlation .710** 1 .438* .548** .287 .285 

P. value .000   .042 .008 .195 .198 
Diameter Pearson 

Correlation .506* .438* 1 .262 .526* .554** 

P. value .016 .042   .238 .012 .007 
Differentiation Pearson 

Correlation .390 .548** .262 1 .640** .442* 

P. value .072 .008 .238   .001 .040 
Vascular 
invasion 

Pearson 
Correlation .269 .287 .526* .640** 1 .389 

P. value .227 .195 .012 .001   .074 
Recurrence Pearson 

Correlation .283 .285 .554** .442* .389 1 

P. value .202 .198 .007 .040 .074   

Table 1: FOXO3 clinical correlations. 
Values for cytosolic and nuclear FOXO3 in 22 treatment-naïve HCC samples represent the 
average optical density (O.D.) of all the objects ( nuclei (N) or cytoplasms (C)) within a selected 
area subtracted from 240 (maximum O.D.) so that a higher value equals increased expression. 
Pearson correlation coefficients between these values and clinical variables were determined 
using SPSS. * indicates p≤0.05, ** indicates p≤0.01 
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Nuclear/Cytosolic Distribution of FOXO3 in TACE-treated HCC Compared to Treatment-naïve 

Many patients with HCC are treated with TACE doxorubicin as a “bridging” therapy 

while on the waiting list for transplant, or as means of “down-staging” a patient’s tumor in order 

to fit within Milan criteria for transplant eligibility (179). Of the 35 patients in this study, 13 had 

received prior treatment using TACE with doxorubicin at least once, some of whom had been 

treated multiple times, and still had viable tumor cells remaining on histology at the time of 

transplant. On histology, we could frequently see DEBs within the vasculature in or around the 

tumor remaining from prior TACE treatment in these samples (as seen in Figure 2F and Figure 

3A). Surprisingly, several of the tumors that had been treated with TACE had very high cytosolic 

FOXO3 (as seen in Figure 2F, H). When compared to treatment-naïve tumors, the cytosolic 

expression of FOXO3 was significantly higher in the TACE-treated group (Figure 4C), while the 

total and nuclear FOXO3 expression were not significantly different between these two groups 

(Figure 4A, B). When these data were expressed as nuclear to cytosolic ratio (N/C) of FOXO3 

expression, the analysis demonstrated a striking reduction in the TACE-treated compared to the 

treatment-naïve group (Figure 4D).  
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Figure 4: Quantification of FOXO3 expression in treatment-naïve and TACE-doxorubicin 
treated HCC. 
 (A) Total FOXO3 expression (nuclear and cytosolic) in cirrhosis (left), treatment-naïve HCC 
(middle), and TACE-doxorubicin-treated HCC (right). (B) Nuclear FOXO3 expression. (C) 
Cytoplasmic FOXO3 expression. (D) Nuclear/cytosolic (N/C) ratio of FOXO3 in each sample. 
Box plot upper boundary represents 75th percentile, lower boundary represents 25th percentile, 
and the line within the box represents the median. The upper and lower error bars represent the 
90th and 10th percentile respectively. Circles represent samples with values outside the 10th and 
90th percentiles. For cirrhosis samples n=33, for treatment-naïve HCC samples n=22, and for 
TACE-doxorubicin-treated HCC n=13. Values for each sample in A-C represent the average 
intensity of all the objects (i.e. nuclei) within a selected area subtracted from 255 (maximum 
intensity) so that a higher value equals increased expression. Values for each sample in D. p=N/S 
indicates p≥0.05. * indicates p≤0.05 
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Discussion 

The level of FOXO3 expression has been reported for several types of human cancer and 

has been found to correlate with clinical behavior in some. In colon cancer, suppression of 

FOXO3 expression was found to correlate significantly with worsening pathologic stage, and 

patients with low-FOXO3-expressing tumors had significantly shorter survival (143). However, 

in the CN subtype of AML, high FOXO3 is correlated with worse patient survival (149). The 

only other report on FOXO3 expression in HCC found that it correlated inversely with histologic 

grade and tumor size and those patients with high FOXO3-expressing tumors had increased 

survival (160). However, this study looked at tumors in predominantly non-cirrhotic livers with 

HBV infection. In contrast, I have found in our samples, which all had cirrhosis and a majority 

had HCV infection, that FOXO3 expression is higher in HCC compared to adjacent cirrhotic 

tissue, and correlates positively with worse histologic grade, and greater tumor size. Clearly, 

much more investigation is needed to understand the role of FOXO3 in HCC. However, this 

evidence suggests that FOXO3 may be promoting tumor cell survival in HCC.  

It is possible that FOXO3 can play a tumor-suppressing role in certain contexts or at 

certain times during tumor progression, while in other contexts and at other times it may be 

promoting tumor cell survival and growth. One such context that may help determine what role 

FOXO3 plays is the metabolic environment. A recent study found FOXO3 to promote apoptosis 

in response to oxidative stress when cells were grown in medium with 10% serum, however, 

when cells were grown in 5% serum and were exposed to oxidative stress, FOXO3 inhibited 

apoptosis (117). Cirrhosis alters stiffness and blood flow in the liver and thus hugely affects 

hepatocyte function. For example, in a cell culture of cirrhosis using HepG2 hepatoma cells and 

a collagen matrix, increasing stiffness of the hepatoma cells caused decreased glucose 
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metabolism and suppressed AKT activation (180). Cirrhosis, present in all the livers in our study, 

likely altered the metabolic environment of both normal and malignant hepatocytes, potentially 

influencing the role FOXO3 plays in HCC. The exact role of FOXO3 in HCC initiation and 

progression is an important area for future study. However, given the significant change in the 

FOXO3 expression pattern in TACE-doxorubicin-treated HCC, and the potential clinical impact 

of gaining further understanding of mechanisms of doxorubicin resistance in HCC, we decided to 

focus our investigation on the role of FOXO3 in determining doxorubicin sensitivity in HCC. 

The data presented in figure 3 demonstrate that FOXO3 expression in tumors that had 

been treated with TACE-doxorubicin, and still had remaining viable cells, had higher cytosolic 

FOXO3 and a lower N/C ratio of FOXO3 expression in their cells compared to treatment-naïve 

HCC. Resistance to TACE-doxorubicin in HCC is frequently seen and can be inherent to the 

tumor cells or it can represent an acquired property (27). In these samples, there were often large 

areas of necrosis, indicating partial effectiveness of the treatment, although some samples 

showed no signs of treatment effectiveness. Tumor cells in these samples likely represent cells 

which were either inherently resistant to TACE-doxorubicin or acquired resistance which 

allowed them to survive. The fact that the pattern of FOXO3 expression in these samples is 

significantly altered points to the possibility that FOXO3 is playing a role in doxorubicin-

resistance in HCC.  

As discussed in chapter 1, phosphorylation of FOXO3 by AKT (120), ERK (121), or 

IKK-β (122) can lead to its nuclear export, polyubiquitination, and proteosomal degradation. 

Accordingly, the increased cytosolic FOXO3 in TACE-doxorubicin resistant cells could indicate 

a suppression of FOXO3 activity. Additionally, FOXO3 has been shown to mediate doxorubicin-

induced apoptosis in several types of cancer cells in which suppression of FOXO3 promotes 
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doxorubicin resistance (93). Therefore, one potential explanation for why TACE-doxorubicin-

resistant HCC cells have significantly higher cytosolic FOXO3 is that suppression of FOXO3 

activity is one mechanism by which these cells mediate resistance. One flaw with this 

explanation, however, is that neither the nuclear or total FOXO3 in these cells was significantly 

different from that in the treatment-naïve HCC.  

Another potential explanation for increased cytosolic FOXO3 in TACE-doxorubicin-

resistant HCC is that FOXO3 is serving a function in the cytosol which is increased in these 

cells. Although transcription factors are typically thought of as “active” in the nucleus where 

they can increase gene transcription, many transcription factors, including p53 (181) and FOXO1 

(182), have been shown to have transcription-independent functions in the cytosol. FOXO3 as 

well, has been shown to exist in mitochondria where it can physically interact with and be 

deacetylated by the mitochondrial sirtuin, SIRT3. SIRT3-mediated deacetylation of FOXO3 was 

shown to increase FOXO3 DNA-binding, increase expression of some FOXO3-dependent genes, 

and decrease intracellular ROS (183). Therefore, more investigation needs to be done to 

determine whether FOXO3 has a cytosolic function in HCC and particularly in TACE-

doxorubicin-resistant HCC cells.  

Finally, an altered cellular localization of FOXO3 in TACE-doxorubicin-resistant HCC 

cells almost certainly represents a change in the PTMs on FOXO3. As discussed in chapter 1, 

PTMs including phosphorylation and acetylation have been shown to regulate FOXO3 

localization. PTMs on FOXO3 by upstream enzymes do not occur in a vacuum, but rather, PTMs 

which have opposing effects on FOXO3 are likely occurring simultaneously, and the balance of 

these modifications determine the ultimate pattern of FOXO3 localization in cells. For example, 

AKT-mediated phosphorylation of FOXO3 causes its cytoplasmic translocation and degradation 
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(120), however, SIRT1-mediated deacetylation of FOXO3 has been shown to be able to override 

AKT and maintain FOXO3 nuclear localization (184).  

In addition to altering FOXO3 localization, PTMs are known to regulate the 

transcriptional program of FOXO3 (91). Accordingly, the PTMs which are altering FOXO3 

localization in TACE-doxorubicin-resistant HCC cells may also be altering FOXO3 function in 

these cells. Although FOXO3 has been shown to mediate doxorubicin-induced apoptosis in other 

cancer cell types, specific PTMs necessary for this function have not been identified.  

Additionally, FOXO3 has been shown to promote resistance to oxidative stress and promote 

resistance to DNA-damage, like that caused by doxorubicin, in certain cell types and contexts. 

Therefore, the role of FOXO3 in determining the doxorubicin sensitivity of HCC cells requires 

further investigation into the FOXO3 PTM changes caused by doxorubicin and how these affect 

FOXO3 function.  
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Chapter IV: The Role of FOXO3 and Specific Post-translational Modifications of FOXO3 

on Doxorubicin Sensitivity in Huh7 Cells 

Background 

FOXO3 is capable of both activating and suppressing transcription, and these functions, 

as well as the pattern of target genes affected, allow FOXO3 to promote many different, 

sometimes opposing, cellular functions. For example, FOXO3 is capable of both inhibiting cell 

cycle progression, by increasing transcription of its target genes p21 and p27 (71), and increasing 

cell proliferation, through transcriptional upregulation of cyclinA1 (152). One mechanism by 

which FOXO3 can achieve these diverse effects is through post-translational modifications 

(PTMs). As discussed in chapter 1, FOXO3 PTMs can affect function by influencing cellular 

localization. In addition, these PTMs can influence FOXO3 transcriptional regulatory activity 

directly. 

The effects of specific PTMs on FOXO3 transcriptional activity have not been as 

extensively investigated as their effect on FOXO3 localization. However, several studies have 

examined upstream pathways that affect FOXO3 transcriptional activity and function (52), and 

have implicated two classes of PTMs in regulating FOXO3 function: acetylation and 

phosphorylation. Depending on the site and context, these PTMs have been linked to induction 

of both FOXO3-mediated stress-resistance and FOXO3-promoted apoptosis. For example, 

nutrient deprivation in 293T cells was shown to induce AMPK-dependent phosphorylation of 

FOXO3 at two sites, Ser413 and Ser588. These phosphorylation events promoted increased 

expression of FOXO3 target genes that facilitate resistance to injury and stress, including 

GADD45 (185). 
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Oxidative stress (91) and DNA damaging agents (142) have been shown to stimulate 

FOXO3 acetylation, and this PTM also influences FOXO3 transcriptional function. Acetylation 

of FOXO3 apparently has opposing effects relative to AMPK-stimulated phosphorylation, since 

deacetylation of FOXO3 has been shown to promote resistance to stress. In particular, 

deacetylation of FOXO3 by Sirtuin family deacetylases (SIRTs) promoted FOXO3-dependent 

resistance to cell stress (91) by enhancing both FOXO3-dependent expression of genes involved 

in DNA repair (GADD45) (91) and oxidative stress (SOD2) (186), and FOXO3-dependent 

suppression target genes involved in apoptosis, including BIM (187) and Fas-L (91). 

Additionally, the SIRT-activating compound resveratrol, which is produced in plants in response 

to stress (188), increases FOXO3 expression (189) and FOXO3-dependent transcription of SOD2 

and catalase in response to oxidative stress. The mechanism of this effect was attributed to 

activation of both SIRT1 and AMPK (190). Thus, AMPK-dependent phosphorylation and 

deacetylation of FOXO3 both promote FOXO3-dependent resistance to stress and inhibition of 

apoptosis.  

In contrast, a recent study demonstrated that JNK-dependent phosphorylation of FOXO3 

at Ser574 is necessary for FOXO3-mediated induction of apoptosis. At baseline, very little 

FOXO3 is S574-phosphorylated. In response to LPS or ethanol, FOXO3 became S574-

phosphorylated in hepatoma and macrophage cells respectively. S574-P-FOXO3 specifically 

bound to promoters and increased expression of the apoptosis-inducing TRAIL, while 

suppressing transcription of anti-apoptotic BCL-2. On the other hand, FOXO3 unphosphorylated 

at S574 bound to the promoters and increased the expression of BCL-2 and antioxidant genes 

PrxIII and SOD2 (114).  
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The functional effects of FOXO3 acetylation and phosphorylation may be relevant in a 

clinically important role for FOXO3, i.e., cellular sensitivity to the chemotherapeutic agent 

doxorubicin. FOXO3 has been shown to be capable of promoting doxorubicin-induced cell death 

(116, 169) or resistance to doxorubicin (171), depending on the cancer cell type and condition. 

Many studies have shown that doxorubicin induces nuclear translocation of FOXO3 (Chapter 1), 

and both phosphorylation and acetylation have been shown to affect FOXO3 nuclear 

localization. (91, 114, 191, 192) Whether doxorubicin induces these PTMs and whether these 

PTMs influence sensitivity to the drug are unknown. 

To address these questions in this Chapter, we investigated the effects of doxorubicin on 

S574-phosphorylation and acetylation of FOXO3 in an HCC cell line Huh7. These analyses 

revealed that doxorubicin induces both of these PTMs. Further, our analyses indicate that these 

PTMs are critical for doxorubicin sensitivity in HCC cells. These data link for the first time 

specific FOXO3 PTMs and doxorubicin sensitivity and may provide potential strategies for 

decreasing doxorubicin resistance in HCC.  

Results 

The Effect of Doxorubicin on S574-phosphorylation and Acetylation of FOXO3  

To determine the effect of doxorubicin on S574-phosphorylation of FOXO3 in HCC 

cells, we treated Huh7 cells with 1μM doxorubicin for 0, 4, 8 hours and performed a western blot 

probing for S574-P-FOXO3, using an antibody that specifically recognizes the S574-

phosphorylated form of FOXO3. Doxorubicin induced phosphorylation of FOXO3 at S574 

without changing the expression of total FOXO3 (Figure 5A). After exposure of Huh7 cells to 

doxorubicin, FOXO3 S574 phosphorylation increased with time up to 24 hours (Figure 5A-B). 
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Immunofluorescence microscopy demonstrated that the S574-P-FOXO3 form is largely nuclear 

in location (Figure 5B). 

To determine the effect of doxorubicin on the acetylation status of FOXO3, we treated 

cells with 1μM doxorubicin and immunoprecipitated FOXO3 and probed the samples for acetyl-

lysine. Similar to S574 phosphorylation, doxorubicin treatment also induced acetylation of 

FOXO3 (Figure 5C, D). Proximity ligation assay (PLA) using acetyl-lysine and FOXO3 

antibodies confirmed these findings, with FOXO3 acetylation increasing with time up to 24 

hours after doxorubicin exposure. Also as with S574-P-FOXO3, Ac-FOXO3 was also shown to 

be predominantly nuclear in location (Figure 5E). 
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Figure 5: Doxorubicin induces S574-phosphorylation and acetylation of FOXO3. 
(A) Western blot of lysates from Huh7 cells treated with 1μM doxorubicin for 0, 4, or 8 hours, 
probing for P-S574-FOXO3, total FOXO3, and GAPDH as a loading control. (B) 
Immunofluorescence staining for P-S574-FOXO3 (green) and DAPI (blue) in Huh7 cells fixed 
after treating with 1μM doxorubicin for 0, 4, 8, or 24 hours. (C) Western blot using lysates from 
Huh7 cells treated with 1μM doxorubicin for 0, 4, or 8 hours, immunoprecipitated with FOXO3 
antibody, blotting for Acetyl-Lysine (Ac-Lysine) and FOXO3 as input control. (D) Densitometry 
of Ac-Lysine western blot bands in the upper portion of figure 5C, relative to densitometry of 
corresponding FOXO3 bands in the lower portion of figure 5C. (E) Proximity ligation assay for 
acetylated FOXO3 (Ac-FOXO3, red) and staining for DAPI (blue) in Huh7 cells fixed after 
treating with 1μM doxorubicin for 0, 4, 8, or 24 hours. 

  



56 
 

FOXO3 S574-phosphorylation Increases Doxorubicin Sensitivity in Huh7 Cells 

To examine the impact of FOXO3 S574-phosphorylation on doxorubicin sensitivity in 

Huh7 cells, we engineered FOXO3 mutations at Serine-574 to prevent (S574A) or mimic 

(S574D) its phosphorylation. The wild-type (WT) and mutant forms of FOXO3 were expressed 

in Huh7 cells in which native FOXO3 had been knocked down. Delivery of lentiviral short 

hairpin RNA directed against the 3’UTR of native FOXO3 mRNA resulted in ~80% knockdown 

of FOXO3 as assessed by western blot (Figure 6B). FOXO3 knockdown or cells transfected with 

empty vector (EV), FOXO3-WT, S574A, or S574D, were treated with 1μM doxorubicin for 72 

hours and cell death measured by LDH release. In control Huh7 cells with native FOXO3 

expression [i.e., cells transduced with non-targeted lentivirus (sh-NT)], overexpression of 

FOXO3-WT, S574A, or S574D had no effect on doxorubicin sensitivity (Figure 6A). 

Surprisingly, knockdown of FOXO3 alone did not significantly reduce doxorubicin sensitivity. 

Rescue of FOXO3 expression in sh-FOXO3 cells with WT or S574D did not affect doxorubicin 

sensitivity. However, rescue of FOXO3 with S574A significantly decreased doxorubicin 

sensitivity (Figure 6A).   
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Figure 6: Effect of blocking S574-phosphorylation of FOXO3 on doxorubicin sensitivity in 
Huh7 cells. 
(A) Huh7 FOXO3 knock down cells (sh-FOXO3) and control cells (sh-NT) were transfected 
with empty vector (EV), or HA-tagged wild-type FOXO3 (FOXO3-WT), S574A-FOXO3 
(S574A), or S574D-FOXO3 (S574D). Cells were untreated or treated with 1μM doxorubicin for 
72 hours. Cell death was evaluated by LDH release. Data is presented as the mean of four 
independent experiments ± SE, and represents the amount of LDH release as a percent of total 
LDH. ** indicates p≤0.01, Student’s t-test. (B) Western blot to assess sh-RNA-mediated knock-
down of FOXO3 expression. (C) Western blot to assess relative HA protein expression 
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Resveratrol Blocks Doxorubicin-induced FOXO3 PTMs and Promotes Resistance to 

Doxorubicin-induced Cell Death 

To determine the impact of doxorubicin-induced FOXO3 acetylation, we used the SIRT 

deacetylase activator, resveratrol. Huh7 cells were treated with 100μM resveratrol followed by 

1μM doxorubicin for 8 hours. Immunoprecipitation and western blot analysis of FOXO3 

revealed that treatment of Huh7 cells with resveratrol significantly reduced doxorubicin-induced 

FOXO3 acetylation (Figure 7B). Interestingly, resveratrol also increased total FOXO3 

expression, while significantly suppressing induction of S574-P-FOXO3 (Figure 7A). We also 

found that resveratrol blocked doxorubicin-induced phosphorylation of JNK, the kinase known 

to target FOXO3 S574 (Figure 7B). FOXO3 immunlocalization studies showed that doxorubicin 

increased nuclear translocation of FOXO3, consistent with previous studies (83). Moreover, 

resveratrol, while not completely blocking FOXO3 nuclear localization, significantly increased 

the amount of FOXO3 in the cytoplasm (Figure 7C).  
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Figure 7: Resveratrol alters FOXO3 PTMs, expression, and localization. 
(A) Western blot of lysates from Huh7 cells treated with DMSO or 100μM resveratrol for 4 
hours before adding 1μM doxorubicin for 0, 4, or 8 hours, probing for P-S574-FOXO3, total 
FOXO3, phosphor-JNK (P-JNK), and GAPDH as a loading control. (B) Western blot of lysates 
from Huh7 cells treated with DMSO or 100μM resveratrol for 4 hours before adding 1μM 
doxorubicin for 0 or 8 hours, immunoprecipitated with FOXO3 antibody, blotting for Acetyl-
Lysine (Ac-Lysine) and FOXO3 as input control. (C) Immunofluorescence staining for FOXO3 
(green) and DAPI (blue) in Huh7 cells fixed after treating with DMSO or resveratrol for 4 hours 
before adding 1μM doxorubicin for 0 or 24 hours. 
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Since resveratrol blocked doxorubicin induction of FOXO3 acetylation and S574 

phosphorylation, both pro-apoptotic PTMs, the SIRT activator would be predicted to decrease 

sensitivity to doxorubicin. To test this directly, Huh7 cells were pre-treated with resveratrol 

followed by increasing concentrations of doxorubicin. As expected, resveratrol significantly 

suppressed doxorubicin-induced cell death (Figure 8A). To confirm that resveratrol-mediated 

doxorubicin resistance is dependent on FOXO3, the experiment was repeated in FOXO3 

knockdown Huh7 cells. In the absence of FOXO3, resveratrol did not have a protective effect 

(Figure 8B). In fact, resveratrol may have slightly increased doxorubicin sensitivity in these 

cells. The difference between the resveratrol effect in sh-NT cells and sh-FOXO3 cells (black 

bars) shows a positive trend after two independent experiments, but did not quite reach statistical 

significance (p=0.056)  
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Figure 8: Resveratrol decreases doxorubicin sensitivity in Huh7 cells. 
 (A) Huh7 cells were treated with DMSO or 50μM resveratrol before adding 0, 0.5 or 1μM 
doxorubicin for 72 hours, removing resveratrol treatment after 24 hours while continuing 
doxorubicin treatment. Cell death was evaluated LDH (B) Huh7 sh-NT or sh-FOXO3 cells were 
treated with DMSO or resveratrol as above before adding 1μM doxorubicin for 72 hours. Cell 
death was evaluated by LDH release. Data is presented as the mean of four (A) or two (B) 
independent experiments ± SE, and represents the amount of LDH release as a percent of total 
LDH. ** indicates p≤0.001, Student’s t-test. 
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Discussion 

Doxorubicin is capable of inducing apoptosis in many types of cancer cells, but the exact 

mechanism by which it does so varies among different cell types (193). FOXO3 has been shown 

to play a pivotal role in doxorubicin-induced apoptosis in several cancer cell types (116, 145, 

146). However, the role of FOXO3 in doxorubicin sensitivity in HCC has not been previously 

studied. In chapter 3, I demonstrated that FOXO3 is overexpressed in many HCC tumors, and 

that its cellular localization is significantly altered in TACE-doxorubicin-resistant HCC. This 

suggests that FOXO3 may be playing an important role in doxorubicin sensitivity in HCC.  

Cellular localization of FOXO3 is regulated by upstream signaling pathways through 

PTMs. Thus, the altered cellular localization in TACE-doxorubicin-resistant HCC tumors also 

suggests that FOXO3 PTMs are altered in these cells. In addition to localization, the 

transcriptional program of FOXO3 is also regulated through PTMs. FOXO3 is a multifunctional 

transcription factor that can promote many different, sometimes opposing, cellular functions. 

Hence, it may be difficult to understand the role of FOXO3 in a given scenario simply by 

increasing or decreasing its expression. In fact, FOXO3 consistently undergoes nuclear 

translocation in response to doxorubicin (83, 116, 167), but it has been shown to be capable of 

both inducing apoptosis and promoting cell survival (116, 171). Therefore, in order to investigate 

the role of FOXO3 in doxorubicin sensitivity in HCC, we decided to examine the induction of 

important FOXO3 PTMs by doxorubicin, and attempt to determine their functional significance.  

Two PTMs have been shown to be vital for allowing FOXO3 to induce apoptosis: 

acetylation and S574-phosphorylation. FOXO3 acetylation in response to cisplatin in urothelial 

carcinoma cells is important for its ability to induce apoptosis (173). S574-phosphorylation as 

well, is necessary for FOXO3 to induce apoptosis in hepatoma cells in response to ethanol 
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treatment (114). The data in Figure 5 demonstrate that FOXO3 becomes acetylated and S574-

phosphorylated in response to doxorubicin in Huh7 cells. However, as seen in Figure 6, knock-

down of FOXO3 expression alone did not reduce doxorubicin sensitivity. This could indicate 

that FOXO3 does not play a significant role in doxorubicin sensitivity in Huh7 cells. Another 

possibility is that FOXO3 is capable of playing an anti-apoptotic role in response to doxorubicin 

treatment in doxorubicin-sensitive cells, but that this function is suppressed by doxorubicin-

induced PTMs on FOXO3, or when we artificially knock-down its expression. In support of this 

hypothesis, when we rescued FOXO3 knock-down with S574A-FOXO3 we saw a decrease in 

doxorubicin sensitivity (Figure 6A). These results suggest that one possible means for HCC cells 

to achieve resistance to doxorubicin is by suppressing the S574-phosphorylation of FOXO3.  

Our strategy to determine the significance of doxorubicin-induced acetylation of FOXO3 

was to use a SIRT activator which would increase SIRT-mediated deacetylation of FOXO3, and 

examine the effect on doxorubicin sensitivity. Resveratrol is a known SIRT activator that has 

also been shown to promote resistance to oxidative stress in a FOXO3-dependent manner (190). 

In Figure 7 we demonstrate that resveratrol is able to block doxorubicin-induced FOXO3 

acetylation. Interestingly, we also found that resveratrol blocks doxorubicin-induced S574-

phosphorylation of FOXO3. This could indicate that FOXO3 acetylation and S574-

phosphorylation are inter-dependent. Another possibility is that resveratrol is altering multiple 

cell signaling pathways, those responsible for FOXO3 acetylation, as well as those responsible 

for FOXO3 S574-phosphorylation. Resveratrol suppresses oxidative stress-induced JNK 

activation (194), and JNK has previously been shown to be required for S574-phosphorylation of 

FOXO3 (114). In Figure 7, we also demonstrate that resveratrol suppresses doxorubicin-induced 

JNK phosphorylation. Additionally, we show that resveratrol increases FOXO3 expression and it 
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alters doxorubicin-induced changes in FOXO3 cellular distribution. Interestingly, the cellular 

distribution of FOXO3 in Huh7 cells treated with resveratrol and doxorubicin appears similar to 

that seen in TACE-doxorubicin-resistant HCC tumors (see Figure 2 in chapter 3).  

Very little is known about the effect of resveratrol on doxorubicin sensitivity in HCC. 

Resveratrol has been shown to have anti-tumor effects in many types of tumor cells including 

HCC, both in vitro and in vivo (195, 196). Furthermore, resveratrol has been shown to promote 

doxorubicin sensitivity and doxorubicin resistance depending on the cell type (197, 198). The 

only published report on the effect of resveratrol on doxorubicin sensitivity in HCC used Hep3B 

cells overexpressing the hepatitis B virus X protein and showed that resveratrol increased 

doxorubicin sensitivity in these cells (199). However, the data we present in figure 8 demonstrate 

that resveratrol significantly reduces doxorubicin sensitivity in Huh7 cells. We are also 

attempting to determine whether this effect depends on FOXO3. In two independent experiments 

done thus far, resveratrol increased doxorubicin sensitivity in FOXO3 knock-down cells, in 

contrast to decreasing doxorubicin sensitivity in control cells. However, the difference between 

the control and FOXO3 knock-down cells is not statistically significant with a p value of 0.056. 

We plan on repeating this experiment to see if this trend continues. Clearly, resveratrol causes 

many changes in FOXO3, and further studies are required to determine the mechanism behind 

these changes and their impact on FOXO3 function.  

Taken together, the data is this chapter suggests that the pro-survival function of FOXO3 

is suppressed in doxorubicin sensitive cells exposed to doxorubicin by the induction of its 

acetylation and S574-phosphorylation. Treatment of doxorubicin sensitive cells with resveratrol 

causes cellular changes that appear to preserve and maximize the pro-survival function of 

FOXO3 by increasing its expression, while blocking its acetylation and S574-phosphorylation. 



65 
 

This, along with the data presented in chapter 3, raises the possibility that cellular changes 

similar to those caused by resveratrol occur in doxorubicin resistant HCC cells, providing a 

potential mechanism for doxorubicin resistance in HCC.  
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Chapter V: Expression of SIRT6 in Human HCC and its Effect on FOXO3 Post-

translational Modifications and Doxorubicin Sensitivity in Huh7 Cells 

Background 

The data presented in Chapter 3-4 indicate that suppression of FOXO3 acetylation and 

S574-phosphorylation preserves its pro-survival function and is one potential mechanism of 

resistance to doxorubicin in HCC. This hypothesis is consistent with other studies showing that 

SIRT-mediated deacetylation of FOXO3 is able to tip the balance of FOXO3 function away from 

apoptosis induction towards DNA damage repair and oxidative stress resistance (200), both of 

which are caused by doxorubicin. Since resveratrol, a SIRT deacetylase activator, was able to 

protect Huh7 HCC cells from doxorubicin (Chapter 4), this suggests the possibility that SIRT-

mediated FOXO3 deacetylation may play a central role in TACE-doxorubicin-resistant HCC 

tumors.  

Of the seven mammalian SIRT enzymes, SIRT1 (91), 2 (130), and 3 (183) have been 

shown to interact with and suppress acetylation of FOXO3 in certain conditions. SIRT6 has not 

been shown to directly deacetylate FOXO3, but it does interact with FOXO3 (201)). Also, the C. 

elegans SIRT6/7 homolog, SIR-2.4, was shown to interact with and suppress acetylation of the 

FOXO3 homolog, DAF-16 (202). SIRT6 (203-206), along with SIRT1 (207), is an important 

factor involved in repair of DNA damage, including DSBs, and both promote resistance to 

oxidative stress by increasing FOXO3-dependent transcription of antioxidant genes (91, 202). 

While studies have identified SIRT1 overexpression in HCC (85, 89, 208, 209) and have linked 

SIRT1 to chemoresistance (85, 173), the role of SIRT6 in HCC pathogenesis is not well 

established. Two studies have reported SIRT6 to have a tumor suppressive role in HCC (87, 

210), but two separate studies have reported it to have tumor promoting activity (211, 212). 
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Importantly, SIRT6 was shown to promote resistance to epirubicin, a doxorubicin homolog, in 

breast cancer cells. Furthermore, the mechanism was shown to involve deacetylation of FOXO3 

(93). However, there have been no previous reports on the role of SIRT6 in doxorubicin 

sensitivity in HCC nor have studies been performed in human samples.  

In this Chapter, I examined the role of SIRT6 in HCC, especially with respect to a 

potential function in doxorubicin resistance. SIRT6 expression in treatment-naïve and TACE-

doxorubicin-resistant HCC patient samples was compared, and SIRT6 overexpression was used 

to confirm a protective effect from doxorubicin in HCC cells and identify the mechanism of this 

protection. These analyses revealed a significant increase in SIRT6 expression in TACE-

doxorubicin-resistant HCC and suggest that regulation of FOXO3 acetylation by SIRT6 is a 

critical mechanism by which HCC tumors become resistant to doxorubicin.  

Results 

SIRT6 Expression in Treatment- naïve vs. TACE-doxorubicin-resistant HCC and Correlation 

with Nuclear/Cytosolic Distribution of FOXO3 

To characterize SIRT6 is expression in TACE-doxorubicin-resistant HCC, tumors from 

15 different patients were immunostained for SIRT6. Of the 15 tumors, 8 were treatment-naïve 

and 7 had viable tumor cells remaining after TACE-doxorubicin treatment. All 15 tumors were 

positive for SIRT6 expression, although, similar to FOXO3, there appeared to be significant 

variation in the amount and localization of expression between the samples. Overall, there was a 

significant increase in SIRT6 expression in TACE-doxorubicin resistant compared to the 

treatment-naïve HCC tumors (Figure 9; Figure 10D). In the treatment-naïve tumors, SIRT1 

expression was typically nuclear in distribution (Figure 9A-D); there was no significant 

difference in the nuclear SIRT6 expression between naïve and treated tumors (Figure 10C). 
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However, there was more cytosolic SIRT6 in the TACE-doxorubicin-resistant tumors (Figure 

9E-H), and both the total and cytosolic levels of SIRT6 expression were significantly higher in 

the TACE-doxorubicin-resistant tumors (Figure 10B, D). Interestingly, the FOXO3 N/C 

expression ratio was inversely correlated with the level of cytosolic SIRT6 expression in this 

same group of 15 tumors (Figure 10A), indicating that as cytosolic SIRT6 expression increases, 

the distribution of FOXO3 expression becomes more cytosolic in location.  
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Treatment-naïve  

TACE-doxorubicin-resistant  

Figure 9: SIRT6 
expression in treatment-
naïve and TACE-
doxorubicin-resistant 
HCC. 
IHC staining for SIRT6 
(brown) and hematoxylin 
(blue). (A-D) Typical 
examples of SIRT6 
expression in treatment-
naïve HCC tumors. (E-F) 
Typical examples of SIRT6 
expression in TACE-
doxorubicin-resistant 
tumors, drug eluting bead 
(DEB) labeled 
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Figure 10: SIRT6 expression is altered in TACE-doxorubicin-resistant HCC tumors. 
 (A) Correlation between N/C ratio of FOXO3 expression and cytosolic SIRT6 expression in 
HCC tumors, n=15. (B) Cytosolic SIRT6 expression in TACE-doxorubicin resistant tumors 
(DOX-R, left), n=7, and treatment-naïve tumors (Naïve, right), n=8). (C) Nuclear SIRT6 
expression in DOX-R and Naïve tumors. (D) Total SIRT6 expression in DOX-R and Naïve 
tumors. Values for each sample in B-D represent the average optical density (O.D.) of all the 
objects ( nuclei (N), cytoplasms (C), or N+C (Total)) within a selected area subtracted from 240 
(maximum O.D.) so that a higher value equals increased expression. P-value was determined 
Student’s t-test.  
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SIRT6 Overexpression Inhibits Doxorubicin-induced S574-phosphorylation of FOXO3 

The correlation of increased SIRT6 expression levels and FOXO3 cytosolic localization 

(Figure 10A) suggests possible effects on FOXO3 PTMs. To determine whether SIRT6 

overexpression is able to block doxorubicin-induced S574-phosphorylation of FOXO3, similar to 

resveratrol, we transfected Huh7 cells with SIRT6 or a previously characterized catalytically 

inactive SIRT6 mutant, SIRT6-H133Y. We then treated the cells with 1μM doxorubicin for 24 

hours and examined FOXO3 S574-phosphorylation by immunofluorescence. In SIRT6 

overexpressing cells, we found significant reduction in FOXO3 S574-phosphorylation (Figure 

11). We also found that this suppression was dependent on SIRT6 deacetylase activity, as we did 

not find any suppression of FOXO3 S574-phosphorylation in SIRT6-H133Y overexpressing 

cells (Figure 11). 

 

Figure 11: SIRT6 overexpression blocks doxorubicin-induced S574-phosphorylation of 
FOXO3 through its deacetylase activity. 
Huh7 cells were mock transfected or transfected with flag tagged SIRT6 or the catalytically 
inactive mutant, SIRT6-H133Y. Cells were then treated with 1μM doxorubicin for 24 hours 
before fixing and staining for flag peptide (red) S574-P-FOXO3 (P-FOXO3, green) and DAPI 
(blue). White arrows indicate cells positive for SIRT6 transfection. 
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SIRT6 Overexpression Protects from Doxorubicin-induced Apoptosis 

To directly measure effects of SIRT6 overexpression on doxorubicin sensitivity, we 

transfected Huh7 cells with SIRT6 or the catalytically inactive mutant and treated the cells with 

1μM doxorubicin. As expected, doxorubicin treatment of untransfected cells resulted in abundant 

apoptotic cells (near 25%), as measured by TUNEL assay (Figure 12, left). Overexpression of 

SIRT6, however, significantly inhibited doxorubicin-induced apoptosis (Figure 12, middle), 

while expression of catalytically inactive SIRT6 had no significant effect on doxorubicin 

sensitivity (Figure 12, right). Thus, SIRT6 overexpression suppressed doxorubicin-induced cell 

death, and this function required deacetylase activity.  

 

 

 

 

 

 

 

 

 

 

 

Figure 12: SIRT6 protects against doxorubicin-induced cell death 
Huh7 cells were transfected with SIRT6 or catalytically inactive SIRT6 (H133Y) before 
treatment with 1μM doxorubicin for 36 hours. Cell death was measured by TUNEL assay. The 
percentage of untransfected (white), and transfected cells positive for TUNEL staining were 
counted. Data represent the mean of 5, 10X fields counted for each group, ± SE. ** indicates 
p≤0.01, Student’s t-test.  
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Discussion 

SIRT6 has been previously shown to be an upstream modifier of FOXO3, suppressing its 

acetylation and altering its function (202). Furthermore, overexpression of SIRT6 and the 

subsequent deacetylation of FOXO3 were shown to be an important mechanism of resistance to 

epirubicin in breast cancer cells (93). Given that the acetylation and S574-phosphorylatio of 

FOXO3 appear to play an important role in mediating doxorubicin sensitivity in Huh7 cells, we 

hypothesized that upregulation of the deacetylase, SIRT6, might be an in vivo mechanism of 

resistance to doxorubicin in human HCC tumors.  

In order to test this hypothesis we first determined whether SIRT6 is overexpressed in 

human TACE-doxorubicin-resistant tumors relative to treatment-naïve tumors. The data in figure 

10 show that SIRT6 expression is significantly increased in TACE-doxorubicin-resistant tumors. 

Interestingly, we found that cytosolic SIRT6 was especially increased, and that there was no 

difference in the nuclear SIRT6 level between the two groups. SIRT6 is best known as a nuclear 

protein, carrying out its function through histone deacetylation and repression of gene 

transcription (213). However, there is emerging evidence for SIRT6 activity outside the nucleus 

and deacetylation of non-histone targets. For example, in non-small cell lung carcinoma 

(NSCLC), SIRT6 was found to be overexpressed, particularly in the cytoplasm, where it was 

suggested to be involved in promoting autophagy and resistance to paclitaxel chemotherapy. 

Additionally, cytosolic SIRT6 correlated with aggressive tumor behavior and shorter survival 

(214). Another cytosolic function of SIRT6 is the assembly of stress granules, an important pro-

survival mechanism in the cellular response to stress. SIRT6 localizes to cytoplasmic stress 

granules during cellular stress, and catalytically inactive SIRT6 disrupts and delays the formation 

of stress granules (215). Therefore, it is possible that the increased cytosolic SIRT6 is playing a 
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role in TACE-doxorubicin-resistant HCC, but further research is needed to confirm this 

hypothesis and determine the exact mechanism.  

Another interesting finding from figure 10 is the correlation between cytosolic SIRT6 and 

the nuclear/cytosolic distribution of FOXO3 in the same group of tumors. Given that FOXO3 

localization is regulated by PTMs such as acetylation, this suggests that cytosolic SIRT6 may be 

directly or indirectly mediating the redistribution of FOXO3 in TACE-doxorubicin-resistant 

HCC. Another possibility is that SIRT6 and FOXO3 are translocating to the cytoplasm in order 

to carry out a common function, potentially involved in mediating resistance to TACE-

doxorubicin. Further research is required to determine the function and significance of cytosolic 

SIRT6 and FOXO3.  

The data presented in chapter 4 demonstrate that suppression of doxorubicin-induced 

acetylation and S574-phosphorylation of FOXO3 is a potential mechanism of resistance to 

doxorubicin. Resveratrol, a SIRT activator, blocked doxorubicin-induce acetylation, as well as 

S574-phosphorylation of FOXO3. Given that SIRT6 has been linked to deacetylation of FOXO3 

and that SIRT6 is overexpressed in TACE-doxorubicin-resistant HCC, we hypothesized that 

SIRT6 overexpression may be contributing to doxorubicin resistance through is suppression of 

doxorubicin-induced FOXO3 PTMs. It is unclear whether acetylation is necessary for S574-

phosphorylation of FOXO3, or vice versa, so we decided to investigate the role of SIRT6 in 

regulating both PTMs, by overexpressing SIRT6 in Huh7 cells before treating them with 

doxorubicin. The data in figure 11 demonstrates that SIRT6 overexpression in Huh7 cells 

significantly blocks doxorubicin-induced S574-phosphorylation of FOXO3, while the 

catalytically inactive mutant of SIRT6 is unable to do so, indicating that its deacetylase activity 

is required. We have not yet directly examined the effect of SIRT6 overexpression on 
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doxorubicin-induced acetylation of FOXO3, but we plan to do so by using PLA to measure 

FOXO3 acetylation.  

Finally, SIRT6 has been previously reported to be involved in mediating resistance to 

both paclitaxel (214) and epirubicin (93) in NLSCLC and breast cancer respectively. However, 

its potential role in chemotherapy resistance in HCC, doxorubicin or otherwise, has not been 

investigated. The data in figure 12 demonstrate that SIRT6 overexpression in Huh7 cells is able 

to suppress doxorubicin-induced cell death and that this requires its deacetylase activity. This 

finding is of notable clinical relevance as it suggests that SIRT6 overexpression is mediating 

TACE-doxorubicin-resistance in human HCC tumors.  
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Chapter VI: Conclusions 

Background 

HCC is the third leading cause of cancer related death. It ranks 16th in absolute causes of 

death world-wide (216), and its incidence has increased 62% in the last 20 years (217). Surgical 

resection or liver transplantation are the only curative therapies for HCC, but both are 

unavailable options for most patients, and there are still significant rates of recurrence for those 

who do receive them (217, 218). For patients with intermediate stage HCC, TACE with 

doxorubicin provides a modest survival benefit and can help patients maintain or achieve 

eligibility for liver transplantation (111, 179). However, TACE-doxorubicin treatment rarely 

achieves a complete tumor response, and a significant proportion of tumors show no response at 

all (19, 20). Furthermore, the factors and mechanisms involved in resistance of HCC to TACE-

doxorubicin remain elusive. There is a clearly evident need for investigation into the critical 

drivers of HCC tumor progression and response to treatment. The transcription factor FOXO3 

has proven to have a pivotal role in the pathogenesis of many types of cancer, including response 

to chemotherapy (71, 147, 162, 163, 171-173). However, very little is known about the function 

of FOXO3 in the pathogenesis of HCC. The research presented in this dissertation was 

undertaken to address these clinically relevant gaps in scientific knowledge.  

FOXO3 as a Potential Driver of HCC Pathogenesis 

One way by which FOXO3 is regulated is through control of its level of expression. If it 

is not expressed it cannot function and if its expression is increased then its function may be 

enhanced. As discussed in chapter 1, another important level of FOXO3 regulation is the control 

of its cellular localization. As a transcription factor, its primary function is served in the nucleus 

through gene transcription. Therefore, a first step in understanding the role of FOXO3 in the 
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pathogenesis of HCC is to determine its expression and cellular localization in human HCC 

tumors. We found that nuclear and cytosolic FOXO3 expression is increased in HCC tumors 

compared to adjacent cirrhotic tissue. Additionally, its expression correlated with aggressive 

tumor behavior. This was a somewhat surprising finding given the well-characterized function of 

FOXO3 as a tumor suppressor in many other types of cancer (121, 122, 143, 177). However, the 

ability of FOXO3 to promote survival and resistance to cellular stress is also well characterized, 

and it has been found to promote growth and survival in other types of tumors and in certain 

contexts (148, 152, 171). Furthermore, HCC is a unique tumor in many respects. For example, a 

vast majority of tumors arise in the context of extensive fibrosis and inflammation. Therefore, it 

is certainly possible that FOXO3 is a previously unrecognized tumor promoter in HCC. Future 

studies investigating the function, rather than just the expression, of FOXO3 are needed to 

determine its role in HCC. Ultimately, if FOXO3 is proven to be a driver of HCC pathology, 

therapies that target FOXO3 and suppress or alter its function may be clinically useful. 

Additionally, comparing FOXO3 function in HCC to its tumor suppressive function in other 

types of cancer could help elucidate the conditions that determine whether FOXO3 functions as a 

tumor suppressor or tumor promoter. This knowledge could have broad implications for the 

treatment of other types of cancer as well.  

 Altered FOXO3 Distribution in TACE-doxorubicin-resistant HCC 

The tumor cells that had survived TACE-doxorubicin treatment had a significantly lower 

nuclear/cytosolic ratio of FOXO3 expression compared to treatment-naïve tumor cells. At first 

glance, this could suggest that FOXO3 is being inactivated in these tumors through cytosolic 

sequestration. However, there was no significant difference in nuclear or total FOXO3 between 

the treatment-naïve and resistant tumors. Given that FOXO3 localization and function are largely 
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controlled by PTMs, one interpretation of this finding is that the FOXO3 PTM pattern and 

therefore its function in the resistant tumors may be altered. We were not able to test this 

hypothesis, but instead began investigating the function of FOXO3 in doxorubicin-mediated cell 

death in vitro. Very little is known about extra-nuclear functions of FOXO3. One previous report 

demonstrated that FOXO3 can be found in mitochondria and activate transcription of 

mitochondrial encoded genes (183). Directly investigating FOXO3 PTMs in TACE-doxorubicin 

resistant tumors in the future may provide an indication as to why there is more FOXO3 in the 

cytoplasm of these tumor cells. It may also provide the knowledge necessary to interrogate its 

function in vitro and understand how FOXO3 may be functioning in the cytoplasm. Our data 

suggest that we will find decreased FOXO3 acetylation and S574-phosphorylation in resistant 

tumors.  

FOXO3 Acetylation and S574-phosphorylation: Turning Off FOXO3 Anti-apoptotic 

Function in HCC 

Doxorubicin is a potent chemotherapeutic agent causing numerous DNA DSBs (21), and 

mitochondrial depolarization and formation of ROS (17), culminating in cell apoptosis. FOXO3 

is a key player in determining cell fate in response to DNA damage and oxidative stress, so it is 

not surprising that it has been found to have a prominent role in doxorubicin-induced cell death 

in several types of cancer cells (83, 116, 167). However, the function of FOXO3 in the response 

to doxorubicin is not universal to all types of cancer cells, but rather varies depending on cell 

type and context. Additionally, there are no previous studies on the role of FOXO3 in 

doxorubicin-induced cell death in HCC.  

The data in chapter 4 demonstrate that FOXO3 becomes acetylated and S574-

phosphorylated after exposure to doxorubicin in Huh7 cells. Rather than producing a gain of pro-
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apoptotic function, these modifications appear to produce a loss of pro-survival function. When 

FOXO3-S574A is expressed in place of endogenous FOXO3, it is able to suppress doxorubicin-

induced cell death. Furthermore, resveratrol treatment increases FOXO3 expression, inhibits 

doxorubicin-induced FOXO3 acetylation and S574-phosphorylation, and increases resistance to 

doxorubicin-induced cell death. Previous studies have shown that both deacetylated FOXO3 and 

FOXO3 that is unphosphorylated at S574 promote transcription of antioxidant and anti-apoptotic 

genes (91, 114). However, further investigation is needed to understand the mechanism behind 

the differential transcriptional programs of specific FOXO3 species. Additionally, in the absence 

of doxorubicin, FOXO3 is primarily deacetylated and unphosphorylated at S574 in Huh7 cells. 

Therefore, these studies may also provide insight into the function of FOXO3 in the pathogenesis 

of HCC apart from its role in the response to doxorubicin (Figure 13).  

SIRT6 as a Mediator of Resistance to TACE-doxorubicin in HCC 

There is an urgent need to understand the mechanisms underlying resistance to TACE-

doxorubicin in human HCC. Our in vitro studies suggest that blocking doxorubicin-induced 

acetylation and S574-phosphorylation of FOXO3, and thereby maintaining its anti-apoptotic 

function, is one potential mechanism of doxorubicin resistance in HCC. To explore the relevance 

of this potential mechanism in vivo, we returned to the human HCC tumors to examine the 

expression of upstream modifiers of FOXO3. A previous study showed that SIRT6 

overexpression promotes resistance to epirubicin, a doxorubicin homolog, in breast cancer cells, 

and suggested that the mechanism may involve SIRT6-mediated deacetylation of FOXO3 (93). 

The data in chapter 5 demonstrate that SIRT6 expression is significantly increased in TACE-

doxorubicin-resistant compared to treatment-naïve HCC. Furthermore, cytosolic SIRT6 

expression is significantly correlated with the nuclear/cytosolic distribution of FOXO3. These 
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results suggest that SIRT6 overexpression may be increasing resistance to TACE-doxorubicin, 

possibly by modifying FOXO3 and promoting its anti-apoptotic function. Indeed, when 

overexpressed in Huh7 cells, SIRT6 blocked doxorubicin-induced S574-phosphorylation of 

FOXO3 and increased resistance to doxorubicin. Further studies are needed to determine 

whether SIRT6 is also capable of suppressing doxorubicin-induced acetylation of FOXO3. In 

addition, further investigation is needed to determine the level of FOXO3 acetylation in 

treatment-naïve and TACE-doxorubicin-resistant tumors. If FOXO3 acetylation negatively 

correlates with SIRT6 expression and resistance, it would provide important evidence for the 

relevance of this mechanism in vivo.  

The next step in determining the significance of SIRT6 overexpression in mediating 

doxorubicin resistance in HCC is to investigate whether inhibiting SIRT6 in doxorubicin-

resistant HCC increases doxorubicin sensitivity. Small molecule inhibitors of other SIRT 

enzymes have already undergone clinical trials in other diseases (219), and selective SIRT6 

inhibitors have also been identified (220). In vitro models of doxorubicin resistance have been 

developed in many cancer cell lines including the hepatoma cell line, HepG2 (221) and could be 

used to answer this question. However, the ideal experiment would be to acquire fresh, viable 

samples of HCC tumors, including TACE-doxorubicin-resistant tumors, and investigate the 

effect of SIRT6 inhibition in doxorubicin sensitivity ex vivo.  
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Figure 13: Potential model of doxorubicin resistance mechanism in HCC. 
SIRT6 overexpression in TACE-doxorubicin-resistant HCC tumors cells blocks doxorubicin-
induced FOXO3 acetylation and S574-phosphorylation, tipping the balance of FOXO3 function 
towards cell survival.   
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The Effect of Tumor Embolization Alone 

One caveat to the implications of the in vitro aspects of this study is that they did not 

account for the non-doxorubicin-mediated effects of TACE, namely the hypoxia and nutrient 

deprivation caused by tumor embolization. These conditions in vivo may be significantly 

affecting the role of FOXO3 in the development of resistance to TACE-doxorubicin. The 

nutrient sensing-kinase, AMPK, was found to be activated in response to hypoxia in 

osteosarcoma cells (222). Moreover, activation of AMPK increased resistance to doxorubicin; 

however, the downstream mechanism was not explored (222). Resveratrol has been shown to 

activate AMPK (190), and AMPK-mediated phosphorylation of FOXO3 at Ser413 and Ser588 

increases expression of FOXO3 and FOXO3-dependent expression of genes promoting 

resistance to cell stress (185). These studies suggest the possibility that the role of FOXO3 in 

promoting resistance to TACE-doxorubicin in HCC may be two-fold: promoting resistance to 

doxorubicin and embolization-induced cell death. To test this hypothesis, future studies could 

investigate the level of AMPK activation and FOXO3 S413 and S588 phosphorylation in TACE-

doxorubicin-resistant tumors. In vitro models of hypoxia and nutrient deprivation, as well as 

animal studies of trans-arterial embolization with or without chemotherapy could also be used to 

determine the role of FOXO3.  

In conclusion, we have shown that the expression of FOXO3 is increased in HCC and it 

correlates with tumor behavior, including resistance to TACE-doxorubicin treatment. 

Doxorubicin induces a dramatic change in FOXO3 PTMs, including increased acetylation and 

S574-phosphorylation. Blocking the induction of these PTMs increased resistance to doxorubicin 

in Huh7 cells. Furthermore, SIRT6 overexpression was demonstrated in TACE-doxorubicin-

resistant HCC tumors, and it was shown in vitro to block doxorubicin-induced S574-
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phosphorylation of FOXO3 and increase resistance to doxorubicin. These novel insights into the 

mechanisms of resistance to TACE-doxorubicin in HCC could have therapeutic potential and 

provide a foundation for future studies that will reveal new details of HCC pathogenesis.  
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