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Abstract 

Object detection and tracking is an important research topic in the computer vision field 

with numerous practical applications. Although great progress has been made, both in object 

detection and tracking over the past decade, it is still a big challenge in real-time applications like 

automated navigation of an unmanned aerial vehicle and collision avoidance with a forward 

looking camera. An automated and robust object tracking approach is proposed by integrating a 

kernelized correlation filter framework with an adaptive object detection technique based on 

minimum barrier distance transform. The proposed tracker is automatically initialized with salient 

object detection and the detected object is localized in the image frame with a rectangular bounding 

box. An adaptive object redetection strategy is proposed to refine the location and boundary of the 

object, when the tracking correlation response drops below a certain threshold. In addition, reliable 

pre-processing and post-processing methods are applied on the image frames to accurately localize 

the object. Extensive quantitative and qualitative experimentation on challenging datasets have 

been performed to verify the proposed approach. Furthermore, the proposed approach is 

comprehensively examined with six other recent state-of-the-art trackers, demonstrating that the 

proposed approach greatly outperforms these trackers, both in terms of tracking speed and 

accuracy.  



iv 
 

Acknowledgements 

I want to express my heartfelt gratitude to my advisor Dr. Richard Wang, who has guided 

me throughout my Master’s program at the University of Kansas. I want to thank my committee 

members Dr. James Rowland and Dr. James Stiles for providing their valuable suggestions to 

construct this thesis. My sincere respect is shown towards all the faculty and staff members of the 

EECS department at the University of Kansas. All the coursework that I took in the EECS 

department has been extremely helpful for my research work. Overall, the two years of my 

Master’s study at the University of Kansas has been a great experience with regular ups and downs. 

But today I have become more matured both professionally and behaviorally with these 

experiences.  I also want to thank my parents and family for constantly supporting me in this 

journey. It was pleasure to spent time with all my friends and colleagues at Lawrence. Without 

their support, staying away from home for such a long time would not have been possible. Finally, 

I want to thank all the students under Dr. Wang in Computer Vision group at the University of 

Kansas. I found great support working with them, learning new things and delivering at time of 

need.  

 
 
 

 
 
 
 
 
 
 
 



v 
 

Table of Contents 

Acceptance Page…………………...……………………………………………………..............ii 

Abstract…………………………..……………………………………………………………...iii 

Acknowledgements……………..……………………………………………………………….iv 

Table of Contents……………...………………………………………………………………….v 

List of Figures………………...………………………………………….……………………..viii 

List of Tables.………..…………………………………………………………………………....x 

Chapter 1 Introduction…………………………………………………………………………..1 

1.1 Motivation…………………………………………………………………………………4 

1.2 Goals……………………………………………………………………………………....5 

1.3 Contribution……………………………………………………………………………….6 

1.4 Outline……………………………………………………………………………………..6 

Chapter 2 Literature Review…………………………………………………….........................8 

2.1 Object Detection…………………………………………………………………………...8 

2.1.1 Saliency Map based Object Detection.……….....…………………………………9 

2.2 Object Tracking…………………………………………………………………………..10 

2.2.2 Correlation Filter based Object Tracking………………………………………...10 

Chapter 3 MBD Detection……….……………………………………………………………..13 

3.1 Distance Transform……………………………………………………………………....13 

3.1.1 Image Processing and Graph Theory Equivalence…….………………………....15 

3.1.2 Geodesic Distance Transform…..………………………………………………..16 

3.1.3 Minimum Barrier Distance Transform……………………………….………......18 

3.1.4 Fast MBD Transform.................................………………………….....………...19 

3.2 Salient Object Detection using Fast MBD Transform…...……………….………………23 

3.2.1 Saliency Map.……………...……………………………………………………..24 

3.2.2 Fast MBD Saliency Map...……………………………………………………….26 

Chapter 4 KCF Tracking………….……………………………………………………………28 

4.1 Dense Sampling………………………………………………………………………….28 



vi 
 

4.1.1 Regularized Least Squares..……………………………………………………...29 

4.1.2 Circulant Matrix………………………………………………………………….30 

4.1.3 Connection with RLS…………………………………………………………….31 

4.2 Non-Linear Regression…………………………………………………………………..33 

4.2.1 Kernel Matrix…………………………………………………………………….33 

4.2.2 Kernel Regularized Least Squares...……………………………………………...36 

4.2.3 KRLS Filter……………………………………………………………………....37 

4.3 Kernel Correlation Association……...…………………………………………………...39 

4.3.1 Inner Product Kernel…….......…………………………………………………...39 

4.3.2 Radial Basis Function Kernel…………………..………………………………...40 

4.4 Raw Pixel Preprocessing…………….…………………………………………………...41 

4.5 Multiple Channel Inputs………………...………………………………………………..42 

Chapter 5 The Proposed Tracker…………………………………………………………........44 

5.1 Algorithm Formulation…………………………………………………………………..44 

5.2 Auto-initialization in First Frame………...………….…………………………………...48 

5.2.1 Saliency Map Generation…...…………………………………………………....48 

5.2.2 Post Processing…………………………………………………………………...50 

5.3 KRLS Training …………………………………………………………………………..51 

5.4 KRLS Detection……………………………......………………………………………...53 

5.5 Online Update - Redetection……………………………………………………………..54 

5.6 Implementation....………………………………………………………………………..55 

Chapter 6 Experimentation and Results………………………………………………………56 

6.1 System Information……………………………………………………………………....56 

6.2 Datasets and Other Trackers…………………..………………………………………….57 

6.3 Comparison Metric…………………………………………………………………….....57 

6.4 Quantitative Evaluation…………………………………………………………………..58 

6.4.1 Ground Truth Annotation…..…………………………………………………….59 

6.4.2 OPE, TRE Computation…...……………………………………………………..59 

6.4.3 Comparison with other State-of-the-Art Trackers………………………………..60 

6.4.4 Speed Comparison……………………………………………………………….66 



vii 
 

6.5 Qualitative Evaluation……………………………………………………………………67 

6.5.1 Snapshots of Tracking Result...…………………………………………………..67  

6.5.2 Scale Variation and Partial Occlusion……...…………………………………….69 

6.5.3 Fast Motion and Illumination Variation………………………………………….71 

6.5.4 Rotation Dynamics Robustness……..……………………………………………73 

Chapter 7 Conclusion and Future Work…………………………..………………………......77 

7.1 Summary…………………………………………………………………………………77 

7.2 Future Work……………………………………………………………………………...78 

References…...…………………………………………………………………………………..81 

Appendix A……...………………………………………………………………………………86 

Appendix B……...………………………………………………………………………………93 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



viii 
 

List of Figures 

1.1 Object detection & tracking application of locating a flying object............................................1 

1.2 Tracking application of chasing a car.........................................................................................2 

1.3 Tracking Bolt in Olympics race..................................................................................................2 

1.4 Tracking a doll with illumination...............................................................................................3 

3.1 4-adjacency in a 2D image........................................................................................................15 

3.2 Raster Scanning........................................................................................................................20 

3.3 Inverse Raster Scanning...........................................................................................................20 

3.4 Original Image pixel intensity distribution...............................................................................21 

3.5 Initial 𝑓𝑓𝑰𝑰, the MBD map............................................................................................................21 

3.6 Initial Highest pixel intensity of the path A(y)..........................................................................22 

3.7 Initial Lowest pixel intensity of the path B(y)...........................................................................22 

3.8 (a) Saliency Map generated by Fast MBD detector, (b) Bounding box around original image 

frame after detection.................................................................................................................27 

 
5.1 Illustration of proposed approach.............................................................................................44 

 
6.1 OPE Precision Plot curve demonstrating average precision rate of 7 competing trackers over 

14 challenging datasets.............................................................................................................62 

6.2 OPE Success Plot curve demonstrating average success rate of 7 competing trackers over 14 

challenging datasets.................................................................................................................63 

6.3 TRE Average Precision Plot curve demonstrating average precision rate of 7 competing 

trackers over 14 challenging datasets.......................................................................................65 

6.4 TRE Average Success Plot curve demonstrating average success rate of 7 competing trackers 

over 14 challenging datasets.....................................................................................................66 

6.5 Tracking result with bounding box around the objects for shape, size and illumination 

variation...................................................................................................................................68 

6.6 Tracking result with bounding box around the objects in youtube_dataset_3 dataset for all the 

7 trackers exhibiting scale variation.........................................................................................69 



ix 
 

6.7 Tracking result with bounding box around the objects in airplane_005 dataset for all the 7 

trackers exhibiting partial occlusion.........................................................................................70 

6.8 Tracking result with bounding box around the objects in airplane_001 dataset for all the 7 

trackers exhibiting fast motion.................................................................................................72 

6.9 Tracking result with bounding box around the objects in airplane_006 dataset for all the 7 

trackers exhibiting illumination variation.................................................................................73 

6.10 Tracking result with bounding boxes around the objects in Aircraft dataset for all the 7 

trackers exhibiting in-plane rotation.........................................................................................74 

6.11 Tracking result with bounding boxes around the objects in big_2 dataset for all the 7 

trackers exhibiting out-of-plane Rotation.................................................................................75 

 
7.1 Surveillance operation possible with proposed tracker.............................................................79 

7.2 Face detection application possible with proposed tracker.......................................................80 

7.3 Tracking space shuttle from startrek – movie graphics tracking application............................80        

A.1  Snapshots from Aircraft dataset showing tracking with the proposed tracker..........................86 

A.2  Snapshots from airplane_001 dataset showing tracking with the proposed tracker.................87 

A.3  Snapshots from airplane_004 dataset showing tracking with the proposed tracker.................87 

A.4  Snapshots from airplane_005 dataset showing tracking with the proposed tracker.................88 

A.5  Snapshots from airplane_006 dataset showing tracking with the proposed tracker.................88 

A.6  Snapshots from airplane_007 dataset showing tracking with the proposed tracker.................89 

A.7  Snapshots from airplane_011 dataset showing tracking with the proposed tracker.................89 

A.8  Snapshots from airplane_012 dataset showing tracking with the proposed tracker.................90 

A.9  Snapshots from airplane_013 dataset showing tracking with the proposed tracker.......... ......90 

A.10 Snapshots from airplane_015 dataset showing tracking with the proposed tracker............91 

A.11 Snapshots from airplane_016 dataset showing tracking with the proposed tracker............91 

A.12 Snapshots from big_2 dataset showing tracking with the proposed tracker........................92 

A.13 Snapshots from youtube_2 dataset showing tracking with the proposed tracker.................92 

A.14 Snapshots from youtube_3 dataset showing tracking with the proposed tracker.................93 

 



x 
 

List of Tables 

5.1 Algorithm 1: Proposed Tracking algorithm..............................................................................45 

6.1 Table I: Quantitative analysis of proposed and six competing trackers on 14 datasets..............60 

6.2 Table II: Precision Rate of OPE of the proposed and six competing trackers on 14 datasets.....61  

6.3 Table III: Success Rate of OPE of the proposed and six competing trackers on 14 datasets.....62 

6.4 Table IV: Precision Rate of TRE of the proposed and six competing trackers on 14 datasets....64 

6.5 Table V: Success Rate of TRE of the proposed and six competing trackers on 14 datasets.......64 

6.6 Table VI: Speed comparison of 7 trackers on 14 datasets........................................................67. 

 

 
 
 
 
 
 



1 
 

Chapter 1  

Introduction 

Automating visual detection and tracking of moving objects by intelligent independent 

systems has been an active research topic for the past decades in the computer vision field. The 

research has diverse applications extending from surveillance, military, security systems, auto-

navigation, object recognition, to human-machine interactions [1]. In this research, we aim to 

develop an autonomous intelligent vision system that assists in autonomous navigation for 

unmanned aerial vehicles (UAV) with a forward-looking camera. The system can automatically 

localize and track the obstacles, which may be present in the path of the UAV. When the UAV is 

flying, it may collide with other UAVs, airplanes, birds, or some other flying objects. Therefore, 

it is essential to identify the obstacles and localize them in real-time throughout their trajectory for 

successful autonomous navigation and collision avoidance. 

 

 
Fig 1.1: Object detection & tracking application of locating a flying object from airplane_001 dataset [42] 
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Fig 1.2 Tracking application of a car being chased from chasing dataset [30] 

 

 

Fig 1.3 Tracking Bolt in Olympics track race from bolt dataset [30] 
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Fig 1.4 Tracking a doll called sylv when moved in illumination variation from sylv dataset [30] 

Imagine looking at a scenery or a landscape and the first thing your eyes recognize is the 

characteristic features they could sense from the entire view [4]. These characteristic features, 

which help the human brain distinguish between a particular object and its background, are salient 

with resourceful information. An intelligent system which gathers the salient information in an 

image to segregate the object from its background is the basis of salient object detection. 

On the other hand, given the initial detected position of an object in the initial frame, an 

intelligent system will localize the position of the moving object throughout the sequence. 

However, most of the previous works focused only on object detection or tracking, rather than 

creating an intelligent system capable of simultaneous detection and tracking in real-time. In this 

work, we propose a novel and intelligent vision system that can automatically detect, localize, and 

track the objects in high speed. Extensive experiments demonstrate that the proposed approach 

stands out among all the state-of-the-art detectors and trackers in terms of speed and precision. 
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1.1  Motivation 

Unmanned aerial vehicles (UAV) came into existence for military purposes in situations, 

where humans flying the aircraft was very risky. In the twenty-first century, UAVs have become 

very common and is widely used for industrial, commercial or scientific purposes like aerial 

photography, agriculture, surveillance, product deliveries etc. To the best of our knowledge, till 

date no smart visual system has been developed yet, helping automated navigation of UAVs 

flawlessly. 

UAVs can fly through minor difficulties with the well-established transponder-based collision 

avoidance systems in the absence of air-traffic or tall non-cooperative objects like tall buildings, 

towers, bridges, statues etc. But in presence of air-traffic with Aero planes, other flying objects 

like birds, other UAVs or tall structures, the navigation system of an UAV will require some visual 

assistance. Lack of awareness of the surrounding may lead to drastic accidents like airborne 

collisions with fixed or mobile objects, resulting in great loss of life and property.  

Radars are an alternative of visual sensors for guiding the UAVs in their navigation. Radars 

are bulky with big transmitters and receivers, which are more suitable for installation in an 

Aeroplane. But an UAV is very small (maybe weighing 50-100 lbs.) and it has its own flying 

modules and processing systems installed on board. In that scenario, a small camera with visual 

aid and broader field of view can serve the purpose. Again if a Radar system is already present on 

the UAV, then the visual sensor can complement the Radar for guiding it in its auto navigation. In 

presence of noise, Radar data processing may lead to frequent miss detection or false alarms. 

Moreover, installing an image processing software on the UAV is much more cost-effective (and 

space effective) than installing an entire Radar processing unit. The navigation system needs to 

function at all time in all-weather conditions. Hence, object detection and tracking by a forward 
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looking camera in an UAV will always boost the performance in presence or absence of a Radar 

system. 

1.2  Goals 

The object detection and tracking algorithms available in the science community generally 

focus on detecting objects on the ground with a down-looking camera. The goal of the proposed 

system is to detect both static and moving objects with a forward-looking camera in real-time, 

when the UAV is flying.  

The biggest challenge of the tracking problem is to deal with the variation of illumination that 

may vary the intensity of two consecutive image frames, if looked from a slightly different angle 

due to the fast movement of the flying UAV. The fast motion often results in scale variation and 

rotation of the object. The online training to estimate the object position in the next frames becomes 

extremely difficult.  

Again, the fast relative motion between the flying UAV and the object in front poses a serious 

challenge to distinguish correctly the actual reason for such variation in between image sequences. 

Extensive image registration with pre-processing and post-processing is required to deal with such 

problems.  

Occlusion by clouds or tall buildings poses a threat to the success of the visual auto navigation 

system of the UAV. Once the object disappears from the image frame (due to getting hidden in 

between clouds or buildings), redetecting the object in the very next frame is very challenging. 

Since the visual system is responsible for guiding the UAV in its navigation, it is very 

important for it to function at a very high speed – at least 5 frames per second. The online training 

for object estimation should not hold a lot of memory or processing unit. 
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1.3  Contribution  

In this thesis, we integrate the techniques for salient object detection [8] and the kernelized 

correlation filter [3] together, and develop a long-term, error free object localization and tracking 

approach for autonomous navigation of flying UAVs. It generates better detection and tracking 

results compared to the state-of-the-art works in terms of both speed and accuracy as demonstrated 

in our experimentation chapter. It is evident that the proposed approach can successfully and 

accurately detect, as well as track, the salient object throughout the sequence, even when the 

appearance of the flying object suffers from deformations, scale variations, illumination variations, 

and in-plane/out-of-plane rotations. The main contributions of the proposed tracker are four-fold: 

• The proposed approach is able to localize and generate an adaptive bounding box in real-time 

around the object being tracked, as the object changes its shape and size. 

• Our approach, by conjoining tracking with detection and vice versa to form a closed loop 

system, makes it possible to handle long-term error free tracking. 

• The proposed approach, by using an approximate label from the tracker in the previous frames, 

tracks the object in subsequent frames without requiring any computationally expensive 

supervised training. 

• The proposed system runs automatically, without any manual initialization, and it achieves the 

best performance in terms of tracking accuracy and speed. 

1.4  Outline 

The rest of the thesis is organized in the following manner: In chapter 2, literature review of 

the most recent state-of-the-art tracking and detection algorithms has been presented. The research 

related to the distance transform based detection and correlation filter based tracking is portrayed 

(starting from their origin to the algorithms exhibiting best result). 
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In chapter 3, the distance transform based detection algorithm (used in the proposed model) is 

thoroughly studied. The relation between distance transform, graph theory and image processing 

is discussed along with their image segmentation application. Also, the advantage of using raster 

scanning based minimum barrier distance transform detection is fruitfully explained. 

In chapter 4, the kernelized correlation filter based tracking algorithm (used in the proposed 

model) is thoroughly studied. The dense sampling method used to train a classifier (both linear 

and non-linear) is discussed in-depth. The reason for using correlation filter for tracking is 

examined along with the relevance of Circulant matrices, Least Squares, Kernels and image pre-

processing. 

Chapter 5 presents the proposed robust tracking with adaptive detection method. The proposed 

algorithm is tabulated, a flowchart is shown for better understanding and the detailed 

implementation of the algorithm with post-processing is discussed.  

Chapter 6 presents the detailed experimentation, observations and results obtained with the 

proposed tracker, along with 6 other competing state-of-the-art trackers in 14 challenging datasets. 

Both quantitative and qualitative analysis is performed along with a detailed description of the 

comparison metrics. 

In chapter 7, the advantages observed in the proposed method is briefly discussed. Some of the 

shortcomings observed while experimentation is mentioned. The future prospect of the proposed 

method is also demonstrated along with its numerous possible applications. 

Appendix A presents the screenshots of all the tracked image frames in all of the 14 datasets 

with the proposed tracker. 

Appendix B provides some of the MATLAB codes used to tabulate and plot the comparison 

metrics, discussed in chapter 6. 
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Chapter 2 

Literature Review 

Andriluka et al. [16] proposed an approach by combining a detector with the tracker. However, 

auto initialization is not possible in their method because the detector is needed to be trained with 

a huge number of data samples. Mahadevan et al. [17] proposed a tracker, combining a saliency 

map based detector for auto initialization in the first frame and hence tracking by exploiting the 

optical flow motion cues. This tracker is computationally very complex and could not be used in 

a real-time system. Nussberger et al. [18] used multiple cameras in an aircraft to measure the 

altitude and further used a tracker to sense and avoid collisions while flying. Their tracking method 

is found to be inefficient without the use of GPS data (which can have delays).  

2.1  Object Detection 

A saliency map used in salient object detection is a foreground mask, which can be visualized 

as a probability map of the salient pixels expressed in terms of intensity and relative to the entire 

image [5], [6]. Wei et al. [7] proposed connectivity prior and background prior and stated that the 

image background (generally, homogeneous) occupies a major portion of the image. As a result, 

this boundary can be connected very easily - connectivity prior. It is also assumed that objects are 

generally not present on the image boundaries, thus the image boundaries can mostly be assumed 

to be backgrounds - background prior. Zhang et al. [8] used minimum barrier distance [9], [10] to 

compute the saliency map using pixel connectivity (connectivity prior) with image boundary 

(background prior) via raster scanning the entire image. 
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2.1.1 Saliency Map based Object Detection 

Previous research on saliency map-based object detection can be broadly classified into 

top-down and bottom-up methods. In top-down methods [5], [6], [19], all the possible objects in 

an image are localized and henceforth detection is executed on the reduced search space. But these 

methods are mostly task-driven and accompanied by supervised learning, making them un-realistic 

for real-time fast object detection. On the other hand, bottom-up methods [7], [8], [20]–[22] use 

the low level features (like the color, contrast, shape, texture, gradient and Spatio-temporal 

features) from an image to compare the feature contrast of the salient region with the background 

contrast. 

The bottom-up salient object detection methods do not have prior-knowledge of the 

location of the object or the number of objects present in an image, and thus may fail in complex 

images. Whereas the top-down methods require training before performing detection. Our 

approach uses the approximate location of the object from the previous tracking results and then 

performs the re-detection on a much smaller search region. A similar approach was taken by Sui 

et al. [23]. Thus, our method does not require any supervised training, making it computationally 

efficient. Moreover, the reduced search region adds to the qualitative efficiency in performing the 

detection. 

A geodesic saliency map was used in [7], [24] for object detection by utilizing the contrast 

information in the image and calculating the distance of each pixel from the background seeds to 

segment a region in the image. A supervised regression-based segmentation approach was 

developed in [21]. The binary classifier in this method was only adept at detecting single objects, 

but failed in the absence of any object or presence of multiple objects in an image. Some other 

salient object detectors [25], [26] create a ranked list of innumerable proposal windows in an 
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image, instead of using a sliding window. This improves the recall rate, but fails to generate object 

localization to match the ground truth. Moreover, multiple windows were proposed for a single 

object leading to failure of the detector. A raster scanning method was used in [8] to generate a 

minimum barrier saliency map and it outperformed the geodesic saliency map. However, this 

method uses the entire image for creating the saliency maps, whereas our detector is adapted to 

look only in the most recent area where the object was located in the previous frame. Information 

about all the saliency-based detectors is beyond the scope of this thesis, but interested readers may 

refer to [27] for a comprehensive review. 

2.2  Object Tracking 

Classical tracking approaches are broadly classified as generative and discriminative models. 

In generative trackers [5], [6], [11], [12], the targets are represented as a set of basis vectors in a 

subspace and the trackers look for regions similar to the previously tracked targets. On the other 

hand, discriminative trackers [3], [13], [14] solve the problem as a binary classification in 

differentiating the tracked targets and the background. Ng et al. [15] has mathematically shown 

that discriminative asymptotic error is lower than generative asymptotic error, with large number 

of training samples. 

2.2.1 Correlation Filter based Object Tracking 

Correlation filters are adept at object localization, but previous work required supervised 

training, making it inappropriate for real-time online tracking. The minimum output sum of 

squared error (MOSSE) filter, proposed by Bolme et al. [28], efficiently trained the correlation 

filter on gray-scale images, making it computationally efficient and leading to real-time 

applications. Subsequently, an enormous amount of research has been dedicated to correlation 
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filter-based tracking. Henriques et al. [29] improved the MOSSE filter with the CSK method to 

introduce a kernel-based correlation filter on grayscale images and thus achieved high speed in 

tracking with the benchmark datasets [30]. Similarly, Sui et al. improved on loss function to 

achieve consistent peak sensitivity of the tracking filter in [31].  

Color features of the object were used along with a correlation filter in [32] for the first 

time. In this method, the correlation filter was trained by mapping multi-channel features onto a 

Gaussian kernel. Henriques et al. [3] improved the KCF tracker by integrating Gaussian and 

polynomial kernels along with multi-channel HOG features and achieved high speed and accuracy 

than most of the other state-of-the-art discriminative and generative trackers. But a major 

drawback of this method is that it is unable to deal with the scale variations of the target because 

of the fixed template size. Li et al. [2] handled the scale variations by accounting for the templates 

adaptive for tracking in each frame and also used HOG features for naming the colors in the images 

in SAMF tracker. Danelljan et al. [33] further integrated multi-scale correlation filter using HOG 

features in the DSST method to present another solution for adapting to the changing size and 

appearance of the object. But all these trackers are susceptible to occlusion and require a fixed 

scale and rotation of the object throughout the sequence, resulting in drifting in long-term tracking. 

To deal with occlusion, Liu et al. [34] proposed a part-based tracking algorithm using a 

correlation filter. In the presence of occlusions, some part of the object may be visible and the part-

based tracking exploits this feature to handle partial occlusion. However, this approach fails if the 

object becomes invisible between certain consecutive frames. Ma et al. [35] estimated the 

translation and scale change of the objects while tracking using the correlation between temporal 

contexts. This method also proposed a re-detection scheme by training a fern classifier to deal with 

tracking failures. However, this approach has taken down the speed of the tracker. 
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Some other detectors [20], [22], [36] and trackers [37], [38] use deep learning to generate 

more accurate results. But these methods need large-scale training datasets, which restricts their 

usage in real-time applications. 
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Chapter 3 

MBD Detection 

Detection of an object in a frame is analogous to the segmentation of an object from the 

background in a digital image. Segmentation is only possible after identification of the background 

and foreground pixels in an image with the basic assumption [7] that the appearance contrast 

between the foreground and background can be easily differentiated. Apart from this, in an image, 

the uniqueness, rarity, region uniformity and spatial compactness of the pixels can also help in 

identifying the background and the foreground pixels. All these characteristics of an image can be 

mathematically represented in terms of a distance function.  Now, distance between any two pixels 

is needed to be computed with respect to the other pixels, forming a path. This path joins the two 

end pixels and a minimum cost function is associated, which directly depends on the intensity at 

each pixel. The variation of pixel intensity in an image helps in computing the distance function 

and thus also computes the minimum cost function for segmentation in an image. 

3.1 Distance Transform 

The distance transform [44] has been widely used for effectively analyzing the geometric 

and morphological characteristics of an object in an image [7, 8, 9, 10]. This distance transform 

can be represented in terms of a distance function, which is defined as follows by Rosenfeld et al. 

[44]:  

Let P be the set of all integers (i,j). The function f from P x P into some non-negative integers 

is termed as: 

a. Positive definite, if f(x,y) = 0, if and only if x = y. 
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b. Symmetric, if f(x,y) = f(y,x), for all x,y in P. 

c. Triangular, if f(x,z) ≤  f(x,y) + f(y,z), for all x, y, z in P. 

If f satisfies all the three conditions (a-c), then f can be termed as a distance function. In some 

of the object detection and segmentation algorithms, the distance transform used is often termed 

as a pseudo-metric, which is mathematically identical to a distance function. Thus, a function f that 

satisfies conditions (a-c) is also known as a pseudo-metric. The function f is a metric function [10] 

if it satisfies all the above conditions (a-c) along with another condition: 

d. Positive, f(x,y) > 0 for all x ≠ y and all x,y in P 

Generally, distance function can be represented as and computed in two ways – either with 

Euclidean distance or with some variant of Dijkstra’s algorithm. In the first approach, the 

Euclidean distance between a point and the background pixels is usually computed. In the latter 

approaches, discrete sets of image data with Dijkstra’s algorithm or its variations are used for 

calculating the distance function. Image segmentation with the distance function of this type use 

seeds competition for all x ∈ P. The two basic image segmentation methods [10] – Relative Fuzzy 

Connectedness (RFC) and Watershed (WS) belongs to this category. In these methods, image – its 

pixels, intensities and distance functions are represented mathematically in terms of graph theory.  

An image intensity function f : P → ℝ𝑙𝑙, where P is its domain and its elements x ∈ P are called 

space elements or ‘spels’ [10] in short. Now, the image intensity at the pixel x is represented by 

the value of the function f(x) for all x ∈ P. The image intensity at spel x is an l-dimensional vector, 

representing attributes like color of an image. For segmentation, adjacent pixels in an image are 

taken into account and thus an adjacency relation is associated with the spels to generate the 

distance function by considering the adjacent spel pairs. The adjacency structure in an image 

domain P can be named as a ‘scene’ [10]. In all the distance function evaluation, generally a 
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rectangular scene is considered, such that P = ∏𝑖𝑖=1
𝑛𝑛{1,….,𝑎𝑎𝑛𝑛 }, n = 2, 3, with 4-adjacency in 2D 

images.  
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Fig 3.1: 4-adjacency in a 2D image. Yellow boxes represent adjacent pixels, while white boxes do not 

3.1.1 Image Processing and Graph Theory Equivalence 

In graph theory, vertex-edge pair represents a graph as G = {V,E}, where, G is a connected 

graph consisting of finite set of vertices V and finite set of edges E.  Each edge e ∈ E connects any 

unordered pair {v1, v2} ∈ V. In image processing, for distance function f : P → ℝ𝑙𝑙, a spel defined 

previously is considered equivalent to the vertices of graph theory and an adjacency relation of an 

image scene represent the edges. 

Again, a path, in a connected graph G = {V,E}, can be represented with a set of vertices π 

= 〈π(0),π(1), … … . ,π(n)〉, for all {π(i), π(i+1)} ∈ V and i ∈ {1,2,3,…n}. Now, a path connecting 

two vertices a and b can be mathematically written as π = 〈 π(0),π(1), … … . ,π(n)〉, such that, 

π(0) = a and π(n) = b.  There can be multiple paths joining the vertices a and b in a connected 

graph G and we denote them as ∏𝒂𝒂,𝒃𝒃 . 

But for image processing application like segmentation, we need only the minimum path 

connecting two pixels. For that purpose, we assign a cost function represented by a number λ(π) ≥ 

0, which may be defined as the length of the path π. For example, let𝑓𝑓𝝀𝝀: PxP→ [0, ∞] be a function 
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used to calculate the minimum path between two pixels a and b in image G, then 𝑓𝑓𝝀𝝀 can be defined 

as: 

𝑓𝑓𝝀𝝀 = min {λ(π) : π is a path in G from a to b } 

This function 𝑓𝑓𝝀𝝀is not a distance function until and unless it satisfies the following criteria: 

For every path π = 〈π(0),π(1), … … . ,π(n)〉,  

1. λ(π) = λ(〈π(n),π(n − 1), … … . ,π(0)〉) 

2. λ(π) ≤  λ(〈π(0), … ,π(i)〉)  + λ(〈π(i), … ,π(n)〉) for all 0 ≤ i ≤ n 

When 𝑓𝑓𝝀𝝀 obeys 1 and 2, it is symmetric, positive definite and satisfies the triangular inequality, 

making it a pseudo-metric distance function, that can be used as a distance transform for image 

segmentation [9]. The weight function λ can either be a vertex weight or an edge weight and the 

saliency map generated from such weight functions are either vertex weight map or an edge weight 

map respectively. Geodesic distance map is an edge weight map, whereas minimum barrier 

transform map is a vertex weight map. 

3.1.2 Geodesic Distance Transform  

Geodesic distance transform is derived from the geodesic distance function. The cost 

function associated is defined as an edge weight map function λ: E → (0, ∞) for minimum distance 

from pixel a to b as λ(a,b). The path associated with λ is π = 〈π(0),π(1), … … . ,π(n)〉. The 

geodesic distance function (path length function) 𝑓𝑓𝝀𝝀 is defined as: 

                     𝑓𝑓𝝀𝝀  = �  (〈π(0),π(1), … … . ,π(n)〉)  =  � λ (𝑛𝑛
𝑖𝑖=1  {π(i+1), π(i)})  (3.1) 

Wei et al. [7] used geodesic distance transform for object detection. In this method, image 

is represented as an undirected weighted graph G = {V,E}, with finite set of vertices V equivalent 

to image patches (pixels) and finite set of edges E. The vertices are either image patches {I𝒊𝒊} or a 



17 
 

virtual background node {B}. The edges are either internally connecting all I𝒊𝒊’s or boundary edges 

connecting the background node {B} with the image boundary patches {I𝒊𝒊: I𝒊𝒊 represents only 

image boundary}. The geodesic saliency distance function 𝑓𝑓𝝀𝝀 is computed in [7] as: 

                                       𝑓𝑓𝝀𝝀 = min
I1=I,I2,…..,In=B

� 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡(𝑛𝑛−1
𝑖𝑖=1 Ii, Ii+1)   (3.2) 

such that, (Ii, Ii+1, B) ∈ E and 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 (Ii,Ii+1) is the cost function λ(π) defined previously. 

This distance function 𝑓𝑓𝝀𝝀 takes into account 3 priors:  

1. Contrast prior - contrast variation between background and object 

2. Backgroundness cue – An assumption inspired from photo cropping, considers that the 

boundary patches in an image generally do not contain the object pixel. 

3. Connectivity cue – Another assumption from human vision perspective, considers all 

background patches are homogeneous and these pixels can be easily connected. 

The Backgroundness cue assumption also leads to the failure of this method, if the image has 

some pixels representing object in the boundary of the map. Then the distance function calculated 

will be miserably wrong with bad detection results.  

The connectivity cue assumption causes the small-weight-accumulation problem [7], where, 

the saliency map of the image gets whitened in the center because of high saliency value. This is 

due to the fact that, though human vision can consider the image of entire background as 

homogeneous, but in reality there is intensity variation of the background pixels and small saliency 

distance functions are generated in the background causing the small-weight-accumulation 

problem. 

The cost function parameter weight(Ii,Ii+1) or λ(π) computes a distance function independent 

of image intensity when λ(π) is low. Again, when λ(π) tends to be high, the noise in object detection 

from the image becomes vibrant. 
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3.1.3 Minimum Barrier Distance Transform 

Minimum barrier distance transform is derived from the minimum barrier distance 

function. The cost function associated is defined as an vertex weight map function λ: E → [0, ∞) 

for barrier distance from pixel a to b as λ(a,b). The path associated with λ is π = 

〈π(0),π(1), … … . ,π(n)〉. The minimum barrier distance function (path length function) 𝑓𝑓𝝀𝝀 is 

defined as: 

                                     𝑓𝑓𝝀𝝀 = min
π(i)∈ Ia,b

(λ+(π)  −  λ−(π))   

                                         = min
π(i)∈ Ia,b

(max 𝒊𝒊=𝟎𝟎,𝟏𝟏,…𝒏𝒏{λ(π(i))}  −  min
𝒊𝒊=𝟎𝟎,𝟏𝟏,…𝒏𝒏

{λ(π(i))} ) (3.3) 

Here, Ia,b represents all the possible paths from a to b. The minimum barrier distance map 

𝑓𝑓𝝀𝝀 is a pseudo-metric [10] and the path length function is also known as minimum barrier strength 

[9]. The minimum barrier distance function 𝑓𝑓𝝀𝝀 is real valued and bounded, domain is a subset of 

Euclidean space ℝ𝑛𝑛, which in this image processing application is the 2D image pixel intensities. 

The advantage of minimum barrier distance transform over the other distance transforms is that 

the length of the path or distance function remains constant until and unless it finds a stronger 

barrier with intensity difference higher than the previously chosen seed. In other distance 

transforms, the length of path or distance function increases as the path connecting the seed and 

target grows. 

The minimum barrier distance transform cannot be computed using the Dijkstra’s 

algorithm like the other distance transforms and thus a new algorithm is proposed in [9]. The order 

of complexity to compute minimum barrier distance saliency map is O(mnlogn), where m is the 

number of distinct intensities in all the pixels and n  is the total number of pixels in the image. The 

optimized algorithm in [9] takes on average around half a second to compute the minimum barrier 

distance transform in a 300x200 image.  
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The biggest advantage of MBD transform is that it does not require any prior information. 

For example, other Euclidean based distance function require the approximate intensity 

distribution in the image to compute the distance map. Thus, no training is required for computing 

the MBD transform, making it suitable for real-time application. 

The MBD transform is robust to noise, blur and smoothing, and provides better result than 

all other distance function as proved in [10]. Thus MBD transform becomes an obvious choice for 

image segmentation and object detection. Different algorithms are proposed to compute MBD 

transform – exact MBD [9], approximate MBD [10], raster scanned MBD [8]. The working speed 

of exact MBD transform is very low, whereas the performance of approximate MBD transform 

deteriorates with increase in noise or blur. The raster scanned MBD algorithm computes the MBD 

transform at an average speed of 80 frames per second as stated in [8], which is notably higher 

than the other versions and makes it suitable for object detection in a real time scenario like 

implementation of a sense and avoid system for an unmanned aerial vehicle.  

3.1.4 Fast MBD Transform 

The fast MBD transform is an iterative approximation of the exact MBD transform and has 

a linear complexity because the results can be obtained in very few iterations. But this 

approximation computes the distance function, comparable in quality with that of the exact MBD 

transform.  

Fast MBD transform requires raster scanning and also inverse raster scanning of each pixel 

in the image to generate the distance function. We consider 4-adjacency in a 2D image. During 

raster scanning, the top and left adjacent pixels are considered, whereas the right and bottom 

adjacent pixels are considered in inverse raster scanning of the image.  
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Fig 3.2: Raster Scanning [8] 

 

 

 

Fig 3.3: Inverse Raster Scanning [8] 

The path of the raster and inverse raster scans consist of two parts –  

1. Path from background seed to the adjacent pixel - π𝒚𝒚 

2. Path from adjacent pixel to the chosen pixel – π{𝒚𝒚,𝒙𝒙}          

Let the entire path cost function be represented as λ(π) = λ(π𝒚𝒚) + λ(π{𝒚𝒚,𝒙𝒙}), then the distance 

function for a single scan is given by: 

                                    𝑓𝑓𝝀𝝀 =   max
i=0,1,…n

{λ(π(i))}  −  min
i=0,1,…n

{λ(π(i))}     

    =      max {A(y),I(x)}  –   min{B(y),I(x)} (3.4) 

where, A(y) and B(y) are the highest and lowest pixel values on the entire path π from 

background seed to chosen pixel in a single scan via the adjacent pixel. Now, let 𝑓𝑓𝑰𝑰 be the final 

MBD map.  
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𝑓𝑓𝑰𝑰 is modified in each scan by choosing the minimum between previous 𝑓𝑓𝝀𝝀 and current 𝑓𝑓𝑰𝑰 

as: 

                                              𝑓𝑓𝑰𝑰 =  min  (current 𝑓𝑓𝑰𝑰, previous 𝑓𝑓𝝀𝝀) (3.5) 

A(y) and B(y) are modified after each raster and inverse raster scan, as the path changes 

every time and this in turn modifies 𝑓𝑓𝝀𝝀 and 𝑓𝑓𝑰𝑰. There are n iterations and each iteration stop when 

𝑓𝑓𝝀𝝀 becomes equal to 𝑓𝑓𝑰𝑰. So in each iteration, there is raster scan and inverse raster scan for each 

pixel of the image. After each iteration, the error between exact MBD and Fast MBD decreases. It 

has been shown in [8] that after 3 iterations (2 forward and 1 backward) generally, error becomes 

negligible. 

39 95 80 5 90 
16   73 80 93 47 
84  36 79 98 73 
93  73 96 70 23 
56  15 66 12 11 
100  91 21 34 19 
86  70 73 0 22 
92  2 54 47 8 

Fig 3.4: Original Image pixel intensity distribution 

 

 

 

 

 

Fig 3.5: Initial 𝑓𝑓𝑰𝑰, the MBD map 
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Fig 3.6: Initial Highest pixel intensity of the path A(y) 

 

 

 

 

 

Fig 3.7: Initial Lowest pixel intensity of the path B(y)                      

For example, say fig 3.4 represent the pixel intensities of a 2D image. The algorithm is 

started by initiating 𝑓𝑓𝑰𝑰 as: 

                                     𝑓𝑓𝑰𝑰 =   � 0,                   for all the seed pixels
    ∞,    for all other pixels in the image 

A(y) and B(y) are initialized as a matrix equal to the pixel intensities of the image.  

Now suppose, first chosen pixel be {2,2}, that has an intensity of 73 in fig 3.4. So raster scan 

starts from {1,1} goes till {1,5} in first column, then comes to {2,1} and finally to {2,2} position. 

Similarly, inverse raster scan starts from {5,8} and the path is scanned in a reverse direction. In 

the process, A(y) and B(y) are modified resulting in computation of 𝑓𝑓𝝀𝝀. This 𝑓𝑓𝝀𝝀 is assigned to 𝑓𝑓𝑰𝑰, 

after the first scan. But for the raster and inverse raster scan of the next pixel, 𝑓𝑓𝝀𝝀 is modified again. 

Now we compare the current 𝑓𝑓𝝀𝝀 and the previous 𝑓𝑓𝑰𝑰 and choose the minimum of these two as the 

current 𝑓𝑓𝑰𝑰 – which represents the present Fast MBD map. In this way, the same process is repeated 

for all the pixels in the image, completing the first iteration. The second iteration starts with the 

39 95 80 5 90 
16   73 80 93 47 
84  36 79 98 73 
93  73 96 70 23 
56  15 66 12 11 
100  91 21 34 19 
86  70 73 0 22 
92  2 54 47 8 
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MBD map already computed in the first iteration. As stated before, with 3 passes or iterations we 

get the desired Fast MBD map.  

3.2 Salient Object Detection using Fast MBD Transform 

The basic assumption considered for auto navigation of an unmanned aerial vehicle is a simple 

image setup – where the majority of the field of view should be homogeneous background and 

there should be no camouflage between the object and the background. So the main tasks needed 

to be executed for object detection are: 

• The most salient object in the field of view must be detected first – the system should be 

smart enough to know which pixels in the image belongs to object and which ones belong 

to the background. 

• Once the object is detected in an image, it should be separated from the background – either 

by segmentation or by generating a bounding box around the object. In this project, a 

bounding box is generated after salient object detection in each frame. 

A good salient object detector must fulfill the following criteria for real time applications: 

• The detector must be able to differentiate between all the background pixels and object 

pixels. All the object patches in an image should be detected and none of the patches of the 

background should be considered as object patch or vice versa. 

• Object detection is only a small part of a bigger application. So the image segmentation 

process should be computationally efficient. Linear order of complexity is desired. 

• The original image information should not be lost while computing the saliency map. The 

algorithm should never deteriorate the image resolution. 
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• The storage and memory requirement for the detection process should be low, making it 

feasible for a real time application.  

Most of the salient object detection algorithms provide proposals about the location of object 

in the image – they do not provide the actual position in the image. The biggest advantage of fast 

MBD transform salient object detector is that it actually locates the object in the scene and never 

highlights just the probability of its appearance. Fast MBD detector also do not require any 

supervised training for generating the saliency map, making it useful for real-time applications like 

auto navigation of an unmanned aerial vehicle. 

3.2.1 Saliency Map 

Saliency of an image can be described as the unique property of the pixels in an image. There 

are certain unique properties that is exhibited by certain pixels in an image. Saliency map is an 

algorithm that looks for these pixels with their unique properties and mark them on the image to 

make it distinguishable by the computer [45]. Generally, the saliency of an image can be measured 

by the following unique properties of the pixels in an image: 

• Edge cue - The density of the edges within a group of pixels is computed using Canny or 

Sobel edge detectors and compared with edge density at other pixels of the image to 

compute the saliency map. 

• Color cue – The color distribution within a group of pixels is computed using histogram 

and statistical distributions (chi-squared generally) and compared with the color 

distribution at other pixels of the image to compute the saliency map. 
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• Superpixel cue – The color or texture features of similar pixels (cue) in an image are used 

to preserve the object boundaries. All the superpixel cues are compared to compute the 

saliency map. 

• Spectral cue – The intensity of a group of pixels are computed in the Fourier domain and 

different spectral cues are obtained by computing the FFT of the group of pixels of 

different sizes. These different spectral cues are compared to generate the saliency map. 

As mentioned in [45], the saliency map in an image can be computed in 3 ways generally: 

• Saliency sum - The intensity difference between one pixel (say x) and all the other pixels 

in an image is calculated, followed by the sum of the absolute value of all the differences. 

This quantity determines the saliency of that particular pixel x and in the same manner the 

saliency of the other pixels is calculated to generate the final saliency map. Mathematically, 

if 𝑓𝑓𝑥𝑥 be the intensity of pixel x and 𝑓𝑓𝐼𝐼 be the intensity of any pixel I in the same image, the 

saliency map of the image is given by: 

Saliency map of image P = ∑ |𝑛𝑛−1
𝐼𝐼=1 𝑓𝑓𝑥𝑥 −  𝑓𝑓𝐼𝐼| , where, n is the total number of pixels in the 

image. If m number of pixels have same intensity, P = 𝑚𝑚 ∗ ∑ |𝑛𝑛−𝑚𝑚+1
𝐼𝐼=1 𝑓𝑓𝑥𝑥 −  𝑓𝑓𝐼𝐼| and order of 

complexity is O(n). 

• Current and previous frame difference sum – The intensity difference between one pixel 

(say x) in the current frame and all the other pixels in the previous frame of a video 

sequence is calculated, followed by the sum of the absolute value of all the differences. 

This quantity determines the saliency of that particular pixel x in the current frame and in 

the same manner the saliency of the other pixels is calculated to generate the final saliency 

map for the current frame. Mathematically, if 𝑓𝑓𝑥𝑥 be the intensity of pixel x in the current 
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frame and 𝑓𝑓𝐼𝐼 be the intensity of any pixel I in the previous frame of the same video 

sequence, the saliency map of the current frame is given by: 

Saliency map of the current frame P = ∑ |𝑛𝑛−1
𝐼𝐼=1 𝑓𝑓𝑥𝑥 −  𝑓𝑓𝐼𝐼| , where, n is the total number of 

pixels in the image. If m number of pixels have same intensity, P = 𝑚𝑚 ∗ ∑ |𝑛𝑛−𝑚𝑚+1
𝐼𝐼=1 𝑓𝑓𝑥𝑥 −  𝑓𝑓𝐼𝐼| 

and order of complexity is O(n). 

• Coordinate saliency difference – The saliency maps of the current frame and the previous 

frame in a video sequence are calculated using the first way of saliency map computation 

and then the difference between the saliency map at each pixel of current frame and that of 

the previous frame is calculated to generate the final saliency map of the current frame. 

Mathematically, if 𝑓𝑓𝑥𝑥 be the intensity of pixel x and 𝑓𝑓𝐼𝐼 be the intensity of any pixel I in the 

current frame of a video sequence, the saliency map of the current frame is given by: 

P = ∑ |𝑛𝑛−1
𝐼𝐼=1 𝑓𝑓𝑥𝑥 −  𝑓𝑓𝐼𝐼| and let Q be the saliency map of the previous frame calculated in the 

same manner as P, then the final saliency map of the current frame = P – Q 

3.2.2 Fast MBD Saliency Map 

Object detection with generation of saliency map from the fast MBD transform described 

in section 3.1.4 is by far the best object detection algorithm (known to me) in terms of 

computational complexity and efficiency of the output. At first, the 3 color channels of an image 

are separated and each is converted to a grayscale version. For each of the 3 channels, the fast 

MBD transform of each pixel in the image is computed using equations (3.4) and (3.5) as 

mentioned in section 3.1.4. The background pixels are chosen as the seeds and assigned an 

intensity of zero to start with and subsequently the fast MBD transform is calculated for each pixel 

three times corresponding to each channel. After getting the saliency map from the 3 channels, 
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they are combined together by pixel-wise adding the intensities received in the 3 saliency maps. 

The final saliency map is normalized to bring the intensities between zero and one. The fast MBD 

transform runs 3 iterations for generating each of the saliency maps as more iterations do not 

improve the detection results any further, but unnecessarily increases the computational 

complexity.  

The following detection results are obtained by using the fast MBD salient object detection 

algorithm from [8] with a frame from airplane_016 dataset in MATLAB: 

 

 

  
Fig 3.8 (a) Saliency Map generated by Fast MBD detector with airplane_016 dataset [30] (b) Bounding 

box around original image frame from airplane_016 dataset [30] after detection 
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Chapter 4 

KCF Tracking 

The negative samples in the classification task is as important as the positive samples and 

discriminative classifiers like KCF [3] take into account both positive and negative samples for 

classification. In the tracking problem, positive samples are collected from the foreground patches 

and negative samples from the background patches and a classifier uses these labels to train the 

system (basic idea behind tracking-by-detection methods). The complexity of an algorithm 

increases as the number of samples used for classification also increases. To cope with this 

problem, most of the online trackers try to avoid large number of negative samples or use similar 

negative samples (leading to redundancy), making the process inefficient. KCF gives the option 

of using innumerable samples (both positive and negative) by implementing classification in a 

correlation framework (Fourier domain) for both linear regression and non-linear regression (using 

kernels) models to train the tracker. This has increased both efficiency and accuracy of the tracking 

in real-time. The mathematical models from classical signal processing and ridge regression used 

by KCF are described in this chapter. 

4.1  Dense Sampling 

The core idea behind dense sampling is that all the samples are used for classification, instead 

of few samples chosen randomly. After choosing the base sample vectors, cyclic operations are 

performed to regenerate more samples – which can represent all the other possible samples. The 

squares of error of the correlation output between the generated samples and the test input (next 

frame) is minimized to train the model. 
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4.1.1 Regularized Least Squares 

The training of a classifier to predict positive and negative labels in an image can be 

obtained by solving the Regularized Least Squares (RLS). RLS is a Ridge Regression problem, 

which can be solved by a single system of linear equations unlike the convex quadratic 

optimization required to solve a Support Vector Machine (SVM) as shown in [41]. Let X and Y 

be 2 sets of random variables such that there are n sets of statistically independent and identically 

distributed training samples T = {(x1, y1), (x2, y2),……, (xn, y𝑛𝑛)}, that follows the probability 

distribution of XxY. The joint probability distribution of (x,y) is given by p(x,y) = p(y|x).p(x), 

where p(y|x) is the probability of occurrence of y given x. 

We define a binary classifier B(x) to distinguish positive and negative labels from the 

training sample set T. Now, B(x) is trained with RLS as: 

                                             RLS = min
𝐁𝐁
∑ 𝑮𝑮n

i=1 (yi,𝐁𝐁(xi))  + λ ||B||2 (4.1) 

where, G((yi,B(xi)) is a loss function, B is the regularization trade off and λ is a regularization 

parameter used to control the regularization and makes sure that there is no overfitting. The loss 

function chosen in RLS is G(y,B(x)) = (y - B(x))2. Now, diagonalization technique is used in [41] 

to express B in a closed form as: 

                                                       B = (XTX + λI)-1 XTy (4.2) 

where, I is an identity matrix and XT is the transpose of matrix X. In the complex plane, 

XT becomes XH and equation (4.2) can be written as: 

                                                       B = (XHX + λI)-1 XHy (4.3) 

where, XH is the Hermitian transpose of X i.e. (X*)T where, X* is the complex conjugate 

of X. 



30 
 

The RLS trains the classifier by computing B from the input samples X, regularization 

parameter λ and the output test data samples y.  

4.1.2 Circulant Matrix 

The base samples can be represented as a vector and shifted cyclically to form a matrix 

with all the shifted vectors. Henrique et al. [29] assumes that the dense samples (all the positive 

and negative samples) can be approximated from the positive samples along with a very small 

background (containing the negative samples), just by shifting it cyclically. This assumption stands 

true for most of the cases, making the tracking model superfast.  

Let x = (x1,x2,……,xn) be a vector consisting of n input samples. The Circulant matrix 

obtained from x is given by: 

                                     M(x)   =   

⎣
⎢
⎢
⎢
⎡

x1 x2 x3 ⋯ x𝑛𝑛
x𝑛𝑛 x1 x2 … x𝑛𝑛−1

x𝑛𝑛−1 x𝑛𝑛 x1 … x𝑛𝑛−2
⋮ . . ⋱ ⋮

x2 x3 x4 ⋯ x1 ⎦
⎥
⎥
⎥
⎤
 (4.4) 

M(x) is the same matrix as X in equation (4.3). Each of the rows are created from the 

previous row by shifting one element at the end to the front. It can be generated very easily with 

the help of a permutation matrix Δ as: 

                                                 Δ   =   

⎣
⎢
⎢
⎢
⎡
0 0 0 ⋯ 1
1 0 0 … 0
0 1 0 … 0
⋮ . . ⋱ ⋮
0 0 0 ⋯1 0⎦

⎥
⎥
⎥
⎤
 (4.5) 

M(x) can be obtained from Δ.xT as Δ shifts each element of vector x by one space in the 

next row. In general, the ith row can be obtained from Δi.xT. Also negative i will shift x in reverse 

direction. Thus M(x) has rows created from x by shifting half of it in the positive direction and the 

other half in the negative direction. Element of the Circulant matrix can be represented as: 
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 Xij = x(j-i)modn, where n is the size of vector x, i and j are the row and column position in 

the matrix and mod computes the remainder when divided by n.  

We train the classifier with input sample vector x and test label vector y. The fascinating 

thing about Circulant matrix is that M(x).y actually computes the convolution between vectors x 

and y. So now we can train the classifier in the Fourier domain and compute the convolution as: 

                                                       M(x).y = F-1{F*(x) ⊙F(y)} (4.6) 

where, F and F-1 represent the Fourier transform and its inverse, * represents the complex 

conjugate and ⊙ represents element-wise multiplication.  

The intrinsic property of Circulant matrices is that their sums, products and inverses are 

also Circulant – leading to the fact that we do not have to store all of them in the memory and thus 

increases the computation speed of the tracker. The convolution between two vectors can be easily 

computed in Fourier domain with just element-wise multiplication and then taking an inverse as 

shown in equation (4.6) – resulting in orders of computational complexity reduction. The matrix 

inverse operation is computationally expensive and calculated efficiently in the Fourier domain 

using Eigen decomposition, that we will discuss in the next section.  

4.1.3 Connection with RLS 

The Circulant matrix M(x) or X can be evaluated from the training vector x in the Fourier 

domain using a Discrete Fourier Transform matrix D (constant and square) and the process is 

deterministic as all the elements of the training sample vector x has real values and not based on 

probability. Let x be the DFT of vector x, then by Eigen decomposition of X, we can represent it 

as: 

                                                                     X = D Λ DH (4.7) 
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where, Λ = diagonal(x) is the diagonal matrix created from λ during Eigen decomposition 

as shown in equation (4.8): 

                                                                         Xλ = pλ (4.8) 

The matrix Λ consist of the elements of the Eigen vector λ in its diagonal and p is the 

Eigenvalue in the Eigenvalue decomposition of X in (4.8). This is sometimes known as 

diagonalization in classical signal processing. D is independent of x and becomes handy in 

computing DFT of any vector d as F(d) = (√n). D.d, n being the size of vector d and F(d) is the 

Fourier transform of d. 

We can compute XHX from equation (4.7) as: 

                                              XHX = (D Λ DH)H (D Λ DH) = D Λ* DH D Λ DH (4.9) 

Now, DHD = I, where I is an identity matrix, reducing equation (4.9) to: 

                                       XHX = D Λ* Λ DH 

= D {diagonal(x)*}{ diagonal(x)} DH 

                                                = D {diagonal(x* ⊙ x)} D (4.10) 

where, Λ* Λ has diagonal element-wise multiplication leading to equation (4.10). Again, 

(x* ⊙ x) is actually the autocorrelation of a vector x (here image signal) in the Fourier domain, 

which is equivalent to power spectrum of the signal in classical signal processing.  

The RLS binary classifier B in equation (4.3) can be represented in the frequency domain using 

the Eigen decomposed Circulant matrices in equation (4.10) as: 

B = [diagonal{(x*) /(x* ⊙ x + λ)}] y 

                                                   =  diagonal{(x*⊙ y) /(x* ⊙ x + λ)} (4.11) 
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where, B is the binary classifier in frequency domain, x is the training vector in frequency 

domain, y is the testing vector sample in the frequency domain and λ is the regularization parameter 

defined in equation (4.3). Division is performed element-wise iteratively to obtain B.  

This B is the regularized correlation filter in the frequency domain defined in [28]. The 

correlation filter B in the spatial domain can be easily obtained using an inverse Fourier transform. 

The computational complexity of taking DFT is linear O(nlogn) and all the divisions and 

multiplications are element-wise with a complexity of O(n). This is a great advantage over the 

standard method of computing RLS with a complexity of O(n3) as it involves matrix product and 

inversion. 

4.2 Non-Linear Regression 

The objective of non-linear regression is to compute a regression function for classification, 

unlike the binary classification (where only 2 outputs are expected). This regression function is 

represented as a kernel or non-linear classifier. Generally, in tracking-by-detection methods, some 

classifiers use the power spectrum of the samples. It is difficult to kernelize the spatial model based 

on non-linear classifiers that use the power spectrum of the samples, as the regression function 

grows in complexity with the increase of the number of samples. The kernel matrix representation 

in [40] and the use of regularized least squares with kernels in [29] gave a solution for using non-

linear regression models in the tracking problem without affecting the complexity, even though 

the number of samples increase. This is done by using the kernel matrix. 

4.2.1 Kernel Matrix 

The Kernel trick in [40] maps the input x to a higher dimensional non-linear feature space 

H(x). Measuring the similarity between input samples is not as easy as finding the similarity 
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measure between output labels. A kernel k (function) is defined in [40] to measure the similarity 

between inputs x1 and x2 with a mapping in the real plane as: 

k: X x X → ℝ 

                                                                 (x1,x2) → k(x1,x2) (4.12) 

The simplest form of kernel function is an inner product operation defined between inputs 

x1 and x2 as: 

                                                           〈𝑥𝑥1, 𝑥𝑥2〉 = ∑ [𝑥𝑥𝑖𝑖] 𝑛𝑛
𝑖𝑖,𝑗𝑗=1 [𝑥𝑥𝑗𝑗], (4.13) 

where, i,j are the i-th and j-th elements in the input vector x. Now, if the input samples are 

normalized, then in the feature space H(x), the inner product is equivalent to the cosine of the 

angles between the vectors x1 and x2. Thus, the inner product can be computed in terms of lengths 

and angles in the mapped vector feature space. Equation (4.12) changes to the following in the 

mapped feature space, allowing geometric and linear algebraic operations for training the 

classifiers: 

                                                   k(x1,x2) := 〈𝑥𝑥1, 𝑥𝑥2〉 =  〈𝐇𝐇(𝑥𝑥1),𝐇𝐇(𝑥𝑥2)〉 (4.14) 

A distance function f(y) segregates labels y in the feature space. The distance between a 

distance function and the testing sample(y) determines the classification (that is to be assigned) 

corresponding to the testing sample. Now, if this distance is equal in magnitude for two different 

samples, then it becomes difficult to choose the better kernel. So a weight αi is assigned to the i-th 

kernel that reflects the importance of the i-th kernel function for classifying a particular test sample. 

In constrained optimization problem, this weight αi is made equivalent to a Lagrange’s multiplier 

αi>0 and the distance function can be derived from a Lagrangian like: 

                                       L(B,c,α) = 1
2
 ||B||2 - ∑ 𝛼𝛼𝑖𝑖(𝑦𝑦𝑖𝑖(〈𝑥𝑥𝑖𝑖,𝐁𝐁〉  + c) − 1)𝑛𝑛

𝑖𝑖=1  (4.15) 
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where, B is the RLS binary classifier (defined in section 4.1.1) and is also a primal variable 

in the Lagrangian. c is another primal variable constant in the set of linear equations. Now for 

getting an optimized kernel distance function, the Lagrangian in (4.15) needs to be maximized 

with respect to the dual variable α and minimized with respect to primal variables B and c. The 

dual optimization problem obtained by differentiating equation (4.15) with respect to B, c and α 

individually leads to a RLS binary classifier in terms of dual variable α (free of primal variables B 

and c) and the final result is expressed in the higher dimension feature space H(x) as: 

                                                                      B = ∑ 𝛼𝛼𝑖𝑖 𝑯𝑯(𝑥𝑥𝑖𝑖)𝑖𝑖  (4.16) 

where, 𝑥𝑥𝑖𝑖  is the i-th testing sample to be labeled.  

The distance function f(y), when represented in terms of inner product kernel function k in 

the dual space with respect to RLS binary classifier B looks like: 

                                                              f(y) = BT y = ∑ 𝛼𝛼𝑖𝑖 𝑘𝑘(𝒚𝒚, 𝑥𝑥𝑖𝑖)𝑛𝑛
𝑖𝑖=1  (4.17) 

This distance function f(y) is the new kernelized classifier. A kernel matrix K (nxn) stores 

all the inner products between all the sample pairs (mentioned in [3]) and its (i,j)-th element is 

expressed as: 

                                                                       Kij = k(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) (4.18) 

In non-linear regression, the complexity of f(y) increases with increase in number of 

samples, which can be tackled using the kernel trick and the Circulant matrices as discussed in the 

next section. 
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4.2.2 Kernel Regularized Least Squares 

The relation between the RLS classifier and the Kernel matrix is explained in the previous 

section. We can use the kernel matrix K, testing sample y and the regularization parameter λ to 

evaluate the dual space variable or the kernel weight α from equations (4.3), (4.17) and (4.18) as: 

                                                                    α = (K + λI)-1y (4.19) 

where, I is an identity matrix of same dimension as the kernel matrix K.  

For relaxing the complexity, the kernel matrix would be preferred to be Circulant in case of non 

linear regression, so that we can evaluate it easily in the Fourier domain as we did for the linear 

RLS classifier. Henrique et al. [3] states that a kernel matrix is Circulant if the kernel function 

satisfies: 

                                                              k(x1,x2) = k(Δ x1, Δ x2) (4.20) 

where, Δ is the Permutation matrix defined in section 4.1.2 to evaluate Circulant matrix 

M(x) for input sample vector x. The data at each position of the kernel matrix should have equal 

importance for a matrix to satisfy (4.20) and become Circulant.  

The kernel matrix in (4.19) is evaluated in the Fourier domain using a correlation operation 

and is known as the kernel correlation. The kernel correlation between two vectors x1 and x2 (of 

same length) is represented as: 

                                                              𝑘𝑘𝑖𝑖
𝐱𝐱𝟏𝟏𝐱𝐱𝟐𝟐 = k(x2, Δi-1 x1) (4.21) 

where, k is evaluating the inner products between the sample pairs x2 and Δi-1x1 as shown 

in equation (4.18) and stores it in the vector 𝑘𝑘𝑖𝑖
𝐱𝐱𝟏𝟏𝐱𝐱𝟐𝟐 . Δ is the permutation matrix and i is the i-th 

position in the vector 𝑘𝑘𝑖𝑖
𝐱𝐱𝟏𝟏𝐱𝐱𝟐𝟐.  

In the higher dimensional feature space H(x), kernel correlation is computed using inner 

product as: 
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                                                          𝑘𝑘𝑖𝑖
𝐱𝐱𝟏𝟏𝐱𝐱𝟐𝟐 = HT(x2) H(Δi-1x1) (4.22) 

Similarly, autocorrelation of the input sample vector x can be evaluated and stored in a 

kernel vector like (4.21) as: 

                                                              𝑘𝑘𝑖𝑖𝐱𝐱𝐱𝐱 = k(x, Δi-1 x) (4.23) 

Now in the Fourier domain, the kernel autocorrelation vector can be represented as 𝑘𝑘𝐱𝐱𝐱𝐱. 

Thus, the kernel weight vector or the dual space variable α can be evaluated from input sample 

kernel autocorrelation by simplifying equation (4.19) and taking an inverse Fourier transform as: 

                                                         α = F-1 (y (𝑘𝑘𝐱𝐱𝐱𝐱 + λ)-1) (4.24) 

Equation (4.24) represents KRLS weight vector used to train the classifier, where divisions 

are done element-wise. Conventional kernels require nxn matrix computations [O(n4) as require 

sliding window over entire image], when compared to only nx1 vector computations in Fourier 

domain, resulting in closed form solution and complexity relaxation to O(n2logn). 

4.2.3 KRLS Filter 

The KRLS weight vector defined in the previous section (equation 4.24) can be used to 

train the classifier. Once the classifier is trained, we want to detect the image pixels as foreground 

or background. Now a single testing image pixel can be represented as y. But we are interested in 

testing multiple pixels in an image and consider that all such pixels (y’s) are combined in a single 

test vector y. The kernelized classifier f(y) defined in equation (4.17) classifies all the elements in 

testing vector y to determine them as foreground or background.  

This is where we again exploit the benefit of Circulant matrix. Let the RLS binary classifier 

B in equation (4.16) be comprised of the kernel matrix K defined in equation (4.18) and let us 

represent the new classifier kernel matrix as By. The cyclic shifts between base input training 
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sample vector x and the base output testing sample vector y generates all the possible training and 

testing sample vectors - used to develop By. The (i,j)-th element of the matrix By is computed like 

equation (4.21) as: 

                                                           𝑘𝑘𝑖𝑖,𝑗𝑗
𝐱𝐱𝒚𝒚 = k(Δj-1y, Δi-1 x) (4.25) 

where, 𝑘𝑘𝑖𝑖,𝑗𝑗
𝐱𝐱𝒚𝒚 is the kernel correlation between the base input training sample vector x and 

the base output testing sample vector y. Δ is the permutation matrix defined in section 4.1.2. 

Equation (4.21) is different from equation (4.25) with a Δj-1-term as vectors x and y may have 

different dimensions.  

𝑘𝑘𝐱𝐱𝒚𝒚 is the kernel correlation vector comprising of all the elements 𝑘𝑘𝑖𝑖,𝑗𝑗
𝐱𝐱𝒚𝒚. The Circulant 

matrix M(𝑘𝑘𝐱𝐱𝒚𝒚) (defined in section 4.1.2) of 𝑘𝑘𝐱𝐱𝒚𝒚 is used to evaluate the classifier kernel matrix By 

as: 

                                                                By = M(𝑘𝑘𝐱𝐱𝒚𝒚) (4.26) 

The kernel classifier f(y) of equation (4.17) can be termed as the KRLS classifier and 

defined as: 

                                                              f(y) = (By)T α (4.27) 

Using the cyclic shift knowledge of equation (4.26), we can evaluate f(y) vector in the 

Fourier domain and get it back in the spatial domain with an inverse Fourier transform as: 

                                                             f(y) = F-1( 𝑘𝑘𝐱𝐱𝐱𝐱 ⊙ α ) (4.28) 

where, F-1 is the inverse Fourier transform, 𝑘𝑘𝐱𝐱𝐱𝐱 and α are the Fourier transforms of 𝑘𝑘𝐱𝐱𝒚𝒚 and 

α and ⊙ evaluates the convolution between  𝑘𝑘𝐱𝐱𝐱𝐱 and α in the Fourier domain. f(y) vector stores all 

the classified (detected) image patches from the base test sample vector y. f(y) is obtained by 

filtering operations on kernels in the Fourier domain to enhance the speed of the tracker and hence 

is also known as the KRLS filter. 
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4.3 Kernel Correlation Association 

Computation of kernels for non-linear regression is also very rigorous and complex as the 

kernel correlation (𝑘𝑘𝐱𝐱𝒚𝒚) computation requires evaluation of 2 vectors (training vector x and test 

vector y) for all their relative shifts (to generate the Circulant matrices making training and 

detection easier for the classifier). This computational burden can be removed if we can express 

the kernels also as Circulant matrices. Any kernel that follows equation (4.20) could be represented 

as a Circulant matrix. The inner product or radial basis function kernels follow equation (4.20) and 

has been briefly described in the following subsections.  

4.3.1 Inner Product Kernel 

Let k(x1, x2) represents a kernel function (similarity measure) between two vectors x1 and 

x2 defined in section 4.2.1. Then, vectors x1 and x2 form an inner product kernel function IP(x1T 

x2) = k(x1, x2), for some function IP(x), such that it follows equation (4.21) as: 

                                                  𝑘𝑘𝑖𝑖
𝐱𝐱𝟏𝟏𝐱𝐱𝟐𝟐 = k(x2, Δi-1 x1) = IP(x2T Δi-1x1) (4.29) 

where, 𝑘𝑘𝑖𝑖
𝐱𝐱𝟏𝟏𝐱𝐱𝟐𝟐 is the kernel correlation and represent the i–th element of the inner product 

kernel k (here IP(x)), Δ is the permutation matrix defined in section 4.1.2.  

Now, considering the inner product kernel function IP(x) to operate element-wise on the 

input vectors x1 and x2, we can express the kernel correlation vector 𝑘𝑘𝐱𝐱𝟏𝟏𝐱𝐱𝟐𝟐  from equation (4.26) 

as: 

                                                             𝑘𝑘𝐱𝐱𝟏𝟏𝐱𝐱𝟐𝟐 = IP(M(x1) x2) (4.30) 

where, M(x1) represents the circular matrix of vector x1 defined in section 4.1.2. 

Thus, we can use the kernel trick of section 4.2.2 and evaluate 𝑘𝑘𝐱𝐱𝟏𝟏𝐱𝐱𝟐𝟐 in the Fourier domain 

as: 
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                                     𝑘𝑘𝐱𝐱𝟏𝟏𝐱𝐱𝟐𝟐 = IP (F-1 (M(x1) x2)  ) = IP (F-1   (x1* ⊙ x2)) (4.31) 

where, F-1 represents the Inverse Fourier Transform, x1 and x2 represent vectors x1 and x2 

in the Fourier domain and (x1* ⊙ x2) is the autocorrelation between vectors x1 and x2. Equation 

(4.31) can be derived using the diagonalization technique discussed in equation (4.6) in section 

4.1.3. 

Most commonly used inner product kernel is the polynomial kernel k(x1, x2) = (x1Tx2 + c)m, 

where c and m are constants, such that the kernel vector  𝑘𝑘𝐱𝐱𝟏𝟏𝐱𝐱𝟐𝟐  is evaluated in the Fourier domain 

as: 

                                                    𝑘𝑘𝐱𝐱𝟏𝟏𝐱𝐱𝟐𝟐 = (F-1 (x1* ⊙ x2)  +  c)m (4.32) 

The complexity for evaluating equation (4.32) is O(nlogn). 

4.3.2 Radial Basis Function Kernel 

Let k(x1, x2) represents a kernel function (similarity measure) between two vectors x1 and 

x2 defined in section 4.2.1. Then, vectors x1 and x2 form an radial basis kernel function RB(||x1 -  

x2||)2 = k(x1, x2), for some function RB(x), such that it follows equation (4.21) as: 

                𝑘𝑘𝑖𝑖
𝐱𝐱𝟏𝟏𝐱𝐱𝟐𝟐 = k(x2, Δi-1 x1) = RB(||x2 - Δi-1x1||2) = RB(||x1||2 + ||x2||2 - 2 x2TΔi-1x1) (4.33) 

where, 𝑘𝑘𝑖𝑖
𝐱𝐱𝟏𝟏𝐱𝐱𝟐𝟐 is the kernel correlation and represent the i–th element of the radial basis 

kernel k (here RB(x)), Δ is the permutation matrix defined in section 4.1.2, ||x||2 is the l-2 norm of 

x.  

Now, considering the radial basis kernel function RB(x) to operate element-wise on the input 

vectors x1 and x2, we can express the kernel correlation vector 𝑘𝑘𝐱𝐱𝟏𝟏𝐱𝐱𝟐𝟐 from equation (4.26) as: 

                                                           𝑘𝑘𝐱𝐱𝟏𝟏𝐱𝐱𝟐𝟐 = RB(M(x1) x2) (4.34) 

where, M(x1) represents the circular matrix of vector x1 defined in section 4.1.2. 
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Thus, we can use the kernel trick of section 4.2.2 and evaluate 𝑘𝑘𝐱𝐱𝟏𝟏𝐱𝐱𝟐𝟐 in the Fourier domain 

as: 

                 𝑘𝑘𝐱𝐱𝟏𝟏𝐱𝐱𝟐𝟐 = RB ( F-1 (M(x1) x2)  ) = RB (||x1||2 + ||x2||2 - 2F-1   (x1* ⊙ x2)) (4.35) 

where, F-1 represents the Inverse Fourier Transform, x1 and x2 represent vectors x1 and x2 

in the Fourier domain and (x1* ⊙ x2) is the autocorrelation between vectors x1 and x2. Equation 

(4.35) can be derived using the diagonalization technique discussed in equation (4.6) in section 

4.1.3. 

Most commonly used radial basis kernel is the Gaussian kernel k(x1, x2) = exp( - 1
𝜎𝜎2

 ||x1 - 

x2||2 ), where σ2 is the constant variance, such that the kernel correlation vector  𝑘𝑘𝐱𝐱𝟏𝟏𝐱𝐱𝟐𝟐 is evaluated 

in the Fourier domain as: 

                                   𝑘𝑘𝐱𝐱𝟏𝟏𝐱𝐱𝟐𝟐 = exp(- 1
𝜎𝜎2

(||x1||2 + ||x2||2 - 2F-1 (x1* ⊙ x2))) (4.36) 

The complexity for evaluating equation (4.36) is O(nlogn). 

4.4 Raw Pixel Preprocessing 

Correlation filtering involves element-wise multiplication between the image and the 

correlation filter in the Fourier domain. The left edge of the image touches the right edge and the 

top edge touches the bottom edge while convolving with a filter in the Fourier domain. Images are 

non-periodic with discontinuity between the opposite edges. On the other hand, Fourier transform 

is periodic. The image boundaries touching each other affect the correlation output (generates 

noise in the Fourier domain) and subsequently tracking performance deteriorates. To tackle with 

such a problem, preprocessing the images with cosine window was suggested in [28]. 

Let xij represent the (i,j)-th raw pixel intensity in an image matrix, then the pixel intensity 

after cosine window preprocessing can be expressed as: 
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                                    xij = (xijraw – 0.5) sin (πi/n) sin (πj/n),        ∀(i,j) = 0,1,2,…….,n-1 (4.37) 

Cosine windowing assign weights to transform the pixel intensities on the boundaries to zero 

and the center pixels to highest magnitudes. Thus approximating the opposite edges of an image, 

such that the image sequence may appear periodic and produce less noise in the Fourier domain.  

4.5 Multiple Channel Inputs 

The Fourier domain presents a great advantage for multiple channel signals (here image) as 

the kernel functions (inner product and radial basis kernels considered) from each channel can be 

evaluated in the Fourier domain and simply added together to get the multiple channel kernel 

function.  

Let x = [x1,x2,…….,xn] be input vectors from n channels. Considering the linear property of 

Fourier transform, a linear kernel 𝑘𝑘𝑛𝑛
𝐱𝐱𝟏𝟏𝐱𝐱𝟐𝟐 from n channels in the dual space can be expressed similar 

to equation (4.6) as: 

                                                     𝑘𝑘𝑛𝑛
𝐱𝐱𝟏𝟏𝐱𝐱𝟐𝟐 = F-1 (∑  𝑛𝑛

𝑖𝑖=1 (x1i* ⊙ x2 i)) (4.38) 

Equation (4.38) represents Dual Correlation Filter (DCF) mentioned in [3]. If input vector 

x (here x1) consist of a single base sample, 𝑘𝑘𝑛𝑛
𝐱𝐱𝟏𝟏𝐱𝐱𝟐𝟐 can be evaluated from n multiple channels, 

maintaining the diagonalization and Eigen decomposition described earlier. In case of multiple 

base samples constituting the input vector x, the kernel function 𝑘𝑘𝐱𝐱𝟏𝟏𝐱𝐱𝟐𝟐 can only be computed for a 

single channel to maintain the Eigen decomposition in computing the kernel, making it equivalent 

to the MOSSE filter in [28]. 

Let x = [x1,x2,…….,xn] be input vectors from n channels. Considering the linear property of 

Fourier transform, a Gaussian kernel 𝑘𝑘𝑛𝑛
𝐱𝐱𝟏𝟏𝐱𝐱𝟐𝟐 from n channels can be expressed similar to equation 

(4.36) as: 
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                       𝑘𝑘𝑛𝑛
𝐱𝐱𝟏𝟏𝐱𝐱𝟐𝟐 = exp (- 1

𝛔𝛔2
  (||x1||2 + ||x2||2 – 2 F-1 (∑  𝑛𝑛

𝑖𝑖=1  (x1i* ⊙ x2 i)) (4.39) 

The n channels considered in equation (4.39) can be expressed in terms of Histogram of 

Gradient (HOG with 31 gradient orientation bins) descriptors. 
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Chapter 5 

The Proposed Tracker  

In this chapter, the working and implementation of our robust tracker is described. Fig 5.1 

is a pictorial representation of the proposed tracker. Fig 5.1 (a) is a bunch of consecutive input 

image frames from a video. Fig 5.1 (b) shows the auto-initialization of the first frame – which is 

the input for KRLS training. The trained KRLS classifies the images into backgrounds and 

foregrounds. Fig 5.1 (c) shows the low confidence values (correlation peak) detection and 

redection with generation of saliency map in the reduced search region followed by generating 

thresholded binary image with post processing and finally a bounding box is drawn around the 

redetected object. The last image with the redetected bounding box is again fed back for KRLS 

training. This redetection scheme actually improves the tracking performance by many folds.  

 

Fig 5.1: Illustration of our approach: (a) input frames, (b) auto initialization and KRLS training, (c) 
redetection,(from left to right) saliency map generation, binary image thresholding with post processing 
and bounding box drawn around redetected object 

In the following sections, we will discuss the algorithm and its implementation in depth. 

5.1  Algorithm Formulation 

The pseudocode for the tracking algorithm is presented in Algorithm 1. Input images from a 

video sequence is converted into consecutive frames numbered sequentially and stored in a folder. 
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Another output folder is created, where the image sequence with output containing a rectangular 

bounding box around object in each frame is stored. In the tracking algorithm, the Gaussian kernel 

variance, regularization parameter and chosen correlation response threshold are also needed to be 

provided as an input along with the input image sequence. The algorithm is written with 4 basic 

functions.  

The first function main calls the detection function for the first frame. It also calls the 

correlation response function for calculating the correlation response for each image. 

The second function saliency_map is the detection function that creates a binary saliency 

map image and also performs post-processing to improve the binary classification. 

The third function correlation_response is the KRLS filter, which is training and 

detecting the object in each frame. Again the correlation response is checked for each frame in this 

function and if it goes below a certain threshold, the saliency_map is called again for 

redetection. After redetection, the KRLS filter again starts evaluating the correlation response 

considering the redetected binary saliency map as the first frame. 

The fourth function boundary_box takes in the binary saliency map image as an input and 

sends back the output image Oi with a boundary box around it. 

5.1 Algorithm 1: Proposed Tracking Algorithm 

Input: Image frames I1,I2,…..,In from the video sequence, where n is total 
number of frames, Gaussian kernel with variance var, regularization 
parameter λ, correlation filter response threshold γ.   
 
Output: Bounding box around target object in each of output image frames 
O1,O2,…..,On of the video sequence. 
 
function Oi = main(Ii, var, λ, γ) 
  Ii = rgb2gray(Ii);  // Converted to grayscale image 
  s_m1 = saliency_map(I1);  // saliency map of 1st frame 
  O1 = s_m1; 
  Oi = correlation_response(s_m1, Ii, var, λ, γ); 
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  return; 
end  
 
function s_mi = saliency_map(Ii) 
  Ai = Ii; 
  Bi = Ii; 
  if(p,q-th pixel ∈ Background(p,q))      s_mi = 0; 
  else                                    s_mi = ∞; 
  for j = 1:3 
    if(mod(j,2) == 1) 
      { 
      for each p,q, traverse via raster scan 
        {             // (p,q) is the chosen testing pixel 
        for each of upper and left neighbor of p,q-th pixel 
          { 
          Disti(Path(x,y)(p,q)) = max{Bi(x,y),Ii(p,q)}  
                                    – min{Ai(x,y),Ii(p,q)}; 
          if(Disti(Path(x,y)(p,q)) < s_mi) 
            {                   // (x,y) is the background pixel 
            s_mi = Disti(Path(x,y)(p,q)); 
            Bi(x,y) = max{Bi(x,y),Ii(p,q)}; 
            Ai(x,y) = min{Ai(x,y),Ii(p,q)}; 
            } 
          } 
        } 
      }  // Disti(Path(x,y)(p,q)) is the distance between testing  
    else //pixel (p,q) and background seed pixel (x,y) in image Ii 
      { 
       for each p,q, traverse via inverse raster scan 
        { 
        for each of lower and rightt neighbor of p,q-th pixel 
          { 
          Disti(Path(x,y)(p,q)) = max{Bi(x,y),Ii(p,q)}  
                                    – min{Ai(x,y),Ii(p,q)}; 
          if(Disti(Path(x,y)(p,q)) < s_mi) 
            {  
            s_mi = Disti(Path(x,y)(p,q)); 
            Bi(x,y) = max{Bi(x,y),Ii(p,q)}; 
            Ai(x,y) = min{Ai(x,y),Ii(p,q)}; 
            } 
          } 
        } 
      }   
    // Post processing below: 
    n_histi = normalize(hist(s_mi));  // Normalize between 0 to 1 
    mg = mean(n_histi);    // mg global mean 
    if(n_histi < mg)         n_hist_1i = n_histi;      
    else                    n_hist_2i = n_histi;       
    m1 = mean(n_hist_1i); 
    m2 = mean(n_hist_2i); 
    thres_var(p,q)i=sum(n_hist_1i).(m1-mg)2)+sum(n_hist_2i.(m2-mg)2);       
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    thresi = max(thres_var(p,q)i);  // Binary image thresholding 
    if(s_mi < thresi)   s_mi = 0; // Black 
    else               s_mi = 1; // White 
    [Oi, x_cordi, y_cordi, widthi, heighti] = boundary_box(s_mi); 
    s_mi = Oi; 
  return; 
end  
 
function Oi = correlation_response(s_mi, Ii, var, λ, γ)  
  // s_mi is the i-th base vector of saliency map image matrix s_mi 
  // c_ri is the correlation response vector of i-th base vector 
  for(i=2;i<n+1;i++)  
    { 
    for(k=1;k<(size(s_mi-1)+1);k++) // size(s_mi-1) is the 
      {      // total no. of base vectors of Ii for training 
      ak = ifft2(sum(conj(fft2(s_mi-1)) .*fft2(s_mi-1), 3)); 
      bk = 2*(s_mi-1(:)’*s_mi-1(:) – ak);// s_mi-1 is a base vector 
      ck = exp(-1 / var * abs(bk) / numel(bk)); 
      dk = fft2(Ii) ./ (fft2(ck) + λ);   // KRLS Training 
      ek = ifft2(sum(conj(fft2(Ii)) .*fft2(s_mi-1), 3)); 
      fk = s_mi-1(:)’*s_mi-1(:) + Ii (:)’* Ii (:) – 2*ek; 
      gk = exp((-1 / var )* abs(fk) / numel(fk));  
      c_ri,k = real(ifft2(dk .* fft2(gk))); // KRLS Detection 
      }  
    c_ri = max(c_ri,k);// Finds the maximum correlation response        
                 // among all the input base vectors for image Ii 
    if(s_mi < thresi)   s_mi = 0;     // Black 
    else               s_mi = c_ri;   // White 
    [Oi, x_cordi, y_cordi,  widthi, heighti] = boundary_box(s_mi); 
    if( c_ri < γ && c_ri ≥ (γ-0.1) ) 
      Si = (1.5* widthi) * (1.5* heighti);   
      s_mi = saliency_map(Si); 
    else if( c_ri < (γ-0.1) && c_ri ≥ (γ-0.2) ) 
      Si = (2* widthi) * (2* heighti);  
      s_mi = saliency_map(Si);   
    else if( c_ri ≤ (γ-0.1) )  
      Si = Ii;   
      s_mi = saliency_map(Si); 
    else       
      s_mi = s_mi-1; 
    } 
  return; 
end 
 
function [Oi,x_cordi,y_cordi, widthi,heighti]=boundary_box(Obji) 
              // Drawing bounding box in output images Oi 
  Oi = regionprops(Obji, 'BoundingBox', 'Centroid'); 
  x_cordi = floor(Oi.BoundingBox(2));   
  y_cordi = floor(Oi.BoundingBox(1));   

// Coordinate of top leftmost corner of bounding box 
  widthi = Oi.BoundingBox(3); // width of bounding box 
  heighti = Oi.BoundingBox(4);// height of bounding box 
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  open image(Oi); 
  rectangle('Position',[y_cordi, x_cordi, widthi, heighti]); 
end 

 
 

5.2  Auto-initialization in First Frame 

The auto initialization in the first frame is performed by using the Fast Minimum Barrier 

Distance detector (discussed in chapter 3) to generate saliency map and eventually the binary 

saliency map is given threshold (both local and global) using Otsu’s method (discussed in next 

subsection) for achieving better accuracy with the well-known image processing thresholding 

technique. After getting the binary saliency map in the first frame, a rectangular bounding box is 

constructed and drawn around the object to visually differentiate it from the background.  

5.2.1 Saliency Map 

The input images are converted to gray-scale images from RGB (for each channel and the 

outputs are added at the end), as the computations with grayscale images is much easier and saves 

a lot of resource. All the saliency maps generated are binary, but the output frames with bounding 

box (obtained after tracking) are displayed and stored as colored images – serving the purpose of 

both auto navigation and doing so in real-time smoothly.  Saliency map is generated by computing 

the minimum distance (fλ) between each of the pixels and the background pixels on an image. Let 

the coordinate of a chosen pixel be (p,q) and a particular background pixel be (x,y). Now the 

adjacent pixels (described in section 3.1.1, chapter 3) of (p,q) i.e. (p-1,q), (p+1,q), (p,q-1) and 

(p,q+1) are taken into account to evaluate the distance by considering path π (x,y)
(p,q) = < π(0), 

π(1),……., π(n)>, such that, π(0) = (x,y) and π(n) = (p,q). A distance cost function or weight 
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function or length of path λ(π) (described in section 3.1.1, chapter 3), associated with each pixel is 

used to generate the saliency map s_m for an image I as follows: 

fλ(p,q) = min 
λ∈𝜋𝜋(𝑥𝑥,𝑦𝑦)

(𝑝𝑝,𝑞𝑞)
   λ(π) 

where, π (x,y)(p,q) is the set of all possible paths joining background pixels (x,y) and (p,q). 

The minimum barrier distance function (described in equation (3.3), chapter 3) is used as the 

distance cost function: 

                                    𝑓𝑓𝝀𝝀 = min
π(i)∈ I(𝑥𝑥,𝑦𝑦),(𝑝𝑝,𝑞𝑞)

(λ+(π)  −  λ−(π))  

                                        = min
π(i)∈ I(𝑥𝑥,𝑦𝑦),(𝑝𝑝,𝑞𝑞)

( max
𝒊𝒊=𝟎𝟎,𝟏𝟏,…𝒏𝒏

�λ�π(i)��  −  max
𝒊𝒊=𝟎𝟎,𝟏𝟏,…𝒏𝒏

�λ�π(i)�� ) (5.1) 

Now, let s_m be the final MBD map, such that: 

s_m   =   �
0,          for all the background pixels (𝑥𝑥, 𝑦𝑦)
∞,    for all other pixels in the image (𝑝𝑝, 𝑞𝑞)                                    

Let A(x,y) and B(x,y) be the highest and lowest pixel values on the entire path π from 

background (x,y) to chosen pixel  (p,q) in a single scan via the adjacent pixels. A(y) and B(y) are 

initialized as a matrix equal to the pixel intensities of the image I. 

Next each pixel (p,q) is traversed via raster scan and inverse raster scan (described in section 3.1.4, 

chapter 3). During raster scan (p,q-1) and (p-1,q) adjacent pixels are updated, whereas in inverse 

raster scan, (p,q+1) and (p+1,q) adjacent pixels are updated using equations (3.4 and 3.5) from 

chapter 3 as: 

𝑓𝑓𝝀𝝀 =   max
𝒊𝒊=𝟎𝟎,𝟏𝟏,…𝒏𝒏

{λ(π(i))} −  min
𝒊𝒊=𝟎𝟎,𝟏𝟏,…𝒏𝒏

{λ(π(i))}  

           =    max{A(y),I(p,q)}  –   min{B(y),I(p,q)} (5.2) 

s_m is modified in each scan by choosing the minimum between previous 𝑓𝑓𝝀𝝀 and current 

s_m as: 

                                             s_m = min (current s_m, previous 𝑓𝑓𝝀𝝀) (5.3) 
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A(x,y) and B(x,y) are modified after each raster and inverse raster scan as the path changes 

every time and this in turn modifies 𝑓𝑓𝝀𝝀 and s_m. The procedure is iteratively repeated 3 times with 

2 raster scans and 1 inverse raster scan. The size of image I (the search area for fast MBD) is 

provided by the redetection described in latter section. The post processing of the saliency map is 

discussed in the next section.  

5.2.2 Post Processing 

The quality of binary saliency map generated by the fast MBD detector is enhanced by giving 

a threshold using Otsu’s method. Taking into consideration the varying illumination, background, 

object size, noise content in each frame, a constant threshold if applied to the binary image would 

be highly inefficient. Thus a well-known global threshold based on inter-class variance 

maximization [42] is considered to adaptively choose a threshold in each frame depending on the 

above mentioned varying parameters.  

Let H be the histogram of saliency map s_m that is made of pixels with intensity levels L ∈ 

[0, l-1] and ni be the number of pixels with intensity i, where i ∈ L, then, 

                                                                    H = ∑ 𝑛𝑛𝑖𝑖𝑙𝑙−1
𝑖𝑖=0  (5.4) 

Let Hn be the normalized histogram of s_m, such that for every threshold value t, t ∈ L, 

we divide the normalized histogram into two groups – C1 ∈ Hni, i ∈ [0,t] and C2 ∈ Hni, i ∈ [t+1,l-

1], represented as: 

                                                              P1 = P(C1) = ∑ 𝐇𝐇𝒏𝒏
𝒊𝒊𝑡𝑡

𝑖𝑖=0  (5.5) 

                                                      P2 = P(C2) = ∑ 𝐇𝐇𝒏𝒏
𝒊𝒊𝑙𝑙−1

𝑖𝑖=𝑡𝑡+1  = 1 – P1 (5.6) 

Let the mean intensity of all the pixels in group1 (C1) is represented as m1 and defined as: 

                                    m1 =  ∑ 𝑤𝑤.𝑃𝑃(i/𝐂𝐂1𝑡𝑡
𝑖𝑖=0 ) = ∑ 𝑃𝑃(𝑪𝑪1/i).P(𝑖𝑖)

𝑃𝑃(𝑪𝑪1)
𝑡𝑡
𝑖𝑖=0  = 1

𝐏𝐏𝟏𝟏
 ∑ 𝑤𝑤.𝐇𝐇𝒏𝒏

𝒊𝒊𝑡𝑡
𝑖𝑖=0  (5.7) 
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where, P(i) = 𝐇𝐇𝒏𝒏
𝒊𝒊  and P(C1/i) = 1. Similarly if m2 be the mean intensity of all the pixels in 

group2 (C2), then it can be defined as: 

                                                            m2 =  1
𝐏𝐏𝟏𝟏

 ∑ 𝑤𝑤.𝐇𝐇𝒏𝒏
𝒊𝒊𝑙𝑙−1

𝑖𝑖=𝑡𝑡+1  (5.8) 

Let mg be the global intensity mean and mt be the mean intensity up to t levels. Next, the 

inter- class variance is derived in [42] as: 

                                                                   𝜎𝜎𝑏𝑏2 = P1.(m1 – mg)2 + P2.(m2 – mg)2 = 𝑚𝑚𝑔𝑔.𝐏𝐏𝟏𝟏−𝑚𝑚𝑡𝑡

𝐏𝐏𝟏𝟏.(1− 𝐏𝐏𝟏𝟏)
 (5.9) 

For each t ∈ L, we evaluate the inter-class variance as    𝜎𝜎𝑏𝑏2 (t) and the optimal threshold 

topt for the saliency map s_m is given by: 

                                                                                  𝜎𝜎𝑏𝑏2 (topt) = max
0<𝑡𝑡<𝑙𝑙−1

   𝜎𝜎𝑏𝑏2(𝑡𝑡) (5.10) 

  The result obtained by thresholding the saliency map s_m with    𝜎𝜎𝑏𝑏2 (topt) produces a binary 

image (like the one in fig 5.1(c) third image from left to right), such that the background and the 

object can be distinguished very easily.  

Once we get the binary image from Otsu’s method after thresholding, we are interested in 

assigning a rectangular bounding box around the object – so that while tracking in auto navigation, 

we never make the object out of sight. Inbuilt MATLAB functions Regionprop and Rectangle are 

used to make and draw a rectangular bounding box around the object with a chosen color – thus 

auto initializing the object in the first frame. We also store the height and width of this bounding 

box to be used for determining the search area while redetecting.  

5.3  KRLS Training  

The auto initialized binary saliency map of the first frame is fed as an input to the KRLS filter 

for training and henceforth the trained classifier detects object in the subsequent frames. The 

training on the previously tracked images and the detection in the following images runs in parallel. 
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From the saliency map, an input sample vector x is taken and a Circulant matrix M(x) is generated 

from it as described in section 4.1.2 of chapter 4. We have performed non-linear regression to train 

the classifier and thus a Gaussian kernel function k(x, y) (similarity function for the input samples 

x and testing labels y) as defined in section 4.3.2 of chapter 4 is used: 

k(x, y) = exp( - 1
𝜎𝜎2

 ||x - y||2 ), where σ2 is the constant variance. All the elements k(x, y) are 

stored in the kernel matrix K as shown in equation (4.18) in chapter 4. Now, a kernel weight α is 

defined in equation (4.19), which represents the importance of each kernel associated with the 

distance function measurement as: 

                                                                  α = (K + λI)-1y (5.11) 

In section 4.2.2 of chapter 4, the kernel k(x, y) is shown to be Circulant, if it satisfies 

equation (4.20) and transformed to higher order feature space for making the computations in 

Fourier domain. The Gaussian kernel used, satisfy the criteria mentioned in section 4.2.2 of chapter 

4. Thus, the Gaussian kernel weight is evaluated with equation (4.24) as: 

                                                             α = F-1 (y (𝑘𝑘𝐱𝐱𝐱𝐱 + λ)-1) (5.12) 

where, 𝑘𝑘𝐱𝐱𝐱𝐱 is the kernel correlation vector in the Fourier domain and is defined in equation 

(4.36) as: 

                                            𝑘𝑘𝐱𝐱𝐱𝐱 = exp(- 1
𝜎𝜎2

(||x||2 + ||y||2 - 2F-1   (x* ⊙ y))) (5.13) 

The kernel weight α, computed with equation (5.12) is the primary KRLS training parameter 

that will be used by the KRLS filter in the next section to calculate the correlation response of the 

testing labels y with respect to the input base sample x. The discontinuity of the consecutive image 

frames creates noise while computing correlation in the Fourier domain and is removed by pre-

processing with a cosine window as described in section 4.4 of chapter 4. Also the linearity 

property of Fourier Transform is exploited to take inputs from multiple channels (we used HOG 
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features with 31 channels/bins) by simply adding them in the frequency domain to get the output 

as mentioned in section 4.5 of chapter 4. Equation (4.39) is used to compute the kernel correlation 

𝑘𝑘𝑛𝑛
𝐱𝐱𝐱𝐱 from n channels for a Gaussian kernel function (σ2 variance) as follows: 

                        𝑘𝑘𝑛𝑛
𝐱𝐱𝐱𝐱 = exp (- 1

𝛔𝛔2
  ( ||x||2 + ||y||2 – 2 F-1 (∑  𝑛𝑛

𝑖𝑖=1  (xi* ⊙ y i)) (5.14) 

5.4  KRLS Detection  

In the previous section, we computed the kernel correlation function kxy and the Gaussian 

kernel weight α for training the KRLS filter. For detecting an object in the subsequent frame with 

the trained filter, we use the KRLS classifier Oki(y) defined in equation (4.28) of chapter 4 as 

follows: 

                                                             Oki(y) = F-1(𝑘𝑘𝐱𝐱𝐱𝐱 ⊙ α ) (5.15) 

where, ⊙ evaluates the convolution between  𝑘𝑘𝐱𝐱𝐱𝐱 and α in the Fourier domain (element-

wise operation). Equation (5.15) represents the correlation response of a testing sample y with the 

KRLS filter trained on the previously detected frames. Now, the object in the i-th testing frame is 

given by the maximum correlation response as follows: 

                                                              Oi(y) = max 
𝒌𝒌

𝑶𝑶𝐢𝐢
𝒌𝒌(𝐱𝐱) (5.16) 

where, k represents one of the input base vectors from the Circulant matrix M(x) and the 

maximum of all such correlation response is evaluated for each of the i-th frames and stored in 

Oi(y). Finally, a bounding box is wrapped around the detected object with the maximum 

correlation response to store in memory and display. 
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5.5  Online Update - Redetection 

Evaluating the saliency map in each image frame of a video sequence or evaluating the saliency 

map over the entire image is computationally very expensive. Thus an adaptive redetection method 

is proposed which do not take down the speed of our fast kernelized correlation filter tracker. After 

all, we made the regression model Circulant and kernelized for maintaining a high tracking speed. 

The redetection of the object in our proposed tracker is directly related to the correlation response 

of the KRLS filter. This is because it has been seen experimentally that as the tracker starts failing 

to lose the object, its correlation response starts going down. The search area for the redetection of 

object using fast MBD detector is made dependent on the height and width of the bounding box of 

the last successful tracking result.  

In the KRLS detector section, we saw in equation (5.15) that the correlation response is 

computed for each of the base input vectors and the maximum of those correlation responses 

(equation 5.16) is considered as the one corresponding to the object. Now let γ be the correlation 

filter response threshold that we will check for redetection, S be the adaptive search area for 

redetection whenever correlation filter response goes below the threshold γ and height and width 

be the dimension of the last successful bounding box such that: 

          Case 1:     If 0.4 ≤ γ1 < 0.5,      height1 = 1.5* height, width1 = 1.5* width and  

                                                          S1 = height1* width1 = 2.25*S 

         Case 2:     If 0.3 ≤ γ2 < 0.4,      height2 = 2* height, width2 = 2* width and  

                                                         S2 = height2* width2 = 4*S 

         Case 3:     If γ3 < 0.3,              S3 = S i.e. searched over entire image 

where, the subscripts 1, 2 and 3 for each variable correspond to the respective cases. This 

adaptive search area S is again fed as input to the fast MBD detector for redetection and the 
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saliency map generation with post processing is provided as the initialization for the KRLS filter. 

This redetection is performed iteratively whenever the object is partially or absolutely outside the 

bounding box.  

5.6  Implementation 

All the input image frames (Ii) are stored in a single folder and named sequentially. Fast MBD 

detection is performed on the first frame and the saliency map is passed on to the KRLS filter. The 

regularization parameter λ mentioned in equation (5.12) is set to 10-4 as recommended in [3]. The 

correlation response threshold parameter γ mentioned in tracking algorithm and the equations 

(5.17 - 5.19) is set to 0.5 after testing rigorously with various datasets. During detection and 

redetection, we perform raster scanning and inverse raster scanning 3 times in total (2 raster and 1 

inverse raster scan) for each frame as stated in [8]. All the output image frames (Oi) with 

rectangular bounding box around the object is stored in a folder and named sequentially, similar 

to the input image frames.  
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Chapter 6 

Experimentation and Results 

The proposed tracking algorithm and its results were presented in IEEE 28th International 

Conference on Tools with Artificial Intelligence at San Jose, CA in 2016. This chapter discusses 

the results submitted to the conference as a paper [47]. A kernelized correlation filter based tracker 

with adaptive redetection (boosting the performance) is implemented in this work. Our method is 

also compared with 6 other state-of-the-art trackers, published in recent time and exhibit promising 

results. All the seven trackers (ours and the six others) are rigorously tested with 14 challenging 

datasets, where the object is subjected to variations of illumination, shape, size, in-plane and out-

plane rotations throughout the sequences.  

In this chapter, we will discuss about the implementation platform, comparison metrics, 

rigorous quantitative and qualitative comparisons with the other six trackers to show the robustness 

of proposed tracker in outperforming all of them – thus could be implemented for automated 

navigation of unmanned aerial vehicle in real-time. 

6.1  System Information 

The proposed algorithm is implemented in C++ and OpenCV v.3.2.14 on a PC with an Intel 

(R) Xeon (R) W3520 2.67 GHz CPU and 6 Gigabytes of RAM. All the other competing tracker 

codes are obtained from the respective authors’ websites and implemented on the same machine 

for consistency. Some of the competing trackers were implemented in MATLAB, some were 

implemented in C++ and some had mex files generated from C++ code to be implemented on 
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MATLAB. All the parameters of the competing trackers were set to the values recommended by 

the respective authors.  

6.2  Datasets and Other Trackers 

Our problem statement to guide an unmanned aerial vehicle with their navigation do not allow 

us to test the result on the available benchmark datasets [30] as those videos represent other kind 

of object tracking problems like face tracking, on-stage dancer tracking, doll tracking etc. A 

navigation system requires sky in the background and flying objects to be tracked. Thus, extensive 

search was done to find videos fulfilling such criteria. Aircraft (620 frames), big_2 (382 frames), 

airplane_001 (200 frames), airplane_004 (200 frames), airplane_005 (200 frames), airplane_006 

(200 frames), airplane_007 (200 frames), airplane_011 (300 frames), airplane_012 (300 frames), 

airplane_013 (300 frames), airplane_015 (300 frames), airplane_016 (300 frames) from [43], 

youtube_dataset_2  (475 frames) and youtube_dataset_3 (301 frames) were used to evaluate our 

algorithm on UAV-like flying objects and test it with other 6 trackers.  

The six other state-of-the-art trackers used for comparison with the proposed tracker are CT 

[12], STC [46], CN [32], DSST [33], SAMF [2] and KCF [3]. 

6.3  Comparison Metric 

We are basically interested in two performance parameters to decide if a tracker is better than 

the other. Those two parameters are:  

1. Execution speed to make the tracker work in real-time.  

2. Robust tracking result with bounding box around the object in all frames without failure. 
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The first performance parameter can be verified very easily during runtime, just by comparing 

the execution speeds of all the trackers in the respective codes. But comparing the second 

performance parameter to decide on a better tracker is much more complex.  

All trackers are very sensitive to initialization (i.e. the bounding box around the object in the 

first frame). Many trackers behave abnormally if the size or position of the bounding box is slightly 

varied. This is because the bounding box determines the positive and negative samples for 

discriminative tracking and a slight variation may change the prediction in the subsequent frames 

by a huge margin. Thus, One Pass Evaluation (OPE) and Temporal Robustness Evaluation (TRE) 

experiments are generally performed for robust evaluation of any tracker [30]. In case of OPE, the 

trackers are ran from first frame till the last frame and compared with the ground truth (GT) to 

provide some average estimations about tracking or missing the target, for each of the sequences.  

On the other hand, in TRE, unlike OPE, the average estimations about tracking or missing the 

target is computed on a segment of the sequence instead of the entire sequence of frames. Finally, 

an average of all such TREs in each segment of the frame sequence is computed to get the 

estimations. This is done to avoid the misinterpretation of tracker performance due to wrong 

initialization in the first frame.  

6.4  Quantitative Evaluation 

The comparison of the tracking performance with the ground truth (GT) by OPE and TRE is 

mathematically expressed in terms of Center Location Error (CLE), Precision Rate (PR) and 

Success Rate (SR) (also defined in [30]). 

CLE is defined as the average Euclidean distance between the centermost pixel coordinate of 

the bounding box given by ground truth and the same by the tracked object. Lower CLE, suggests 



59 
 

better performance of a tracker. But if the tracker fails in some frame to track the object, then this 

distance could be any random number in the Euclidean plane. Thus, PR and SR were proposed. 

PR is computed as the percentage of frames in which CLE is lower than a given threshold. In our 

experiment, we kept this threshold to be 20 pixels as suggested in [30]. 

On the other hand, SR evaluates the overlapping of the bounding box. Tracked results are 

considered to be successful if  𝑎𝑎𝑡𝑡∩𝑎𝑎𝑔𝑔
𝑎𝑎𝑡𝑡∪𝑎𝑎𝑔𝑔

   > θ, where θ ∈ [0, 1], at and ag denotes the areas of the 

bounding boxes of tracker’s output and ground truth respectively. SR is defined as the percentage 

of frames, where the overlap rates are greater than the threshold θ. Generally, θ is set to 0.5 (in 

[30] and also in our experiment), which reflects a 50% overlap ratio threshold.  

6.4.1 Ground Truth Annotation  

The trackers can be compared with the computation metrics discussed earlier, only if all the 

frames in all the 14 datasets are manually labelled. We have manually noted down the pixel 

coordinates of a rectangular bounding box around the object in all these frames for comparison. 

Basically, in each frame the x and y coordinates of the top-leftmost corner of the rectangular 

bounding box is stored along with the height and width of the bounding box. Thus the ground truth 

consists of 4,278 coordinates and dimensions of 4,278 manually labelled bounding boxes in all the 

frames of 14 datasets. 

6.4.2 OPE, TRE Computation 

OPE is computed for each of the seven trackers on all the 14 datasets ran from first frame till 

the last frame and compared with the ground truths to obtain the CLE, , PR and SR. 
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In TRE computation, the comparison with the ground truth to obtain the CLE, PR and SR is 

carried out in several segments of the sequence. For example, first segment may start from 10th 

frame and continue till last frame. The next segment then starts from 20th frame and continues till 

the last frame. Likewise, the last segment runs from 190th frame till 200th frame if the total number 

of frames in the sequence is 200. Finally, the average CLE, PR and SR are evaluated from all the 

segments. This process is repeated for each of the seven trackers on all the 14 datasets. 

6.4.3 Comparison with other State-of-the-Art Trackers 

The results for the quantitative evaluation between our approach and the other six competing 

trackers CT [12], STC [46], CN [32], DSST [33], SAMF [2] and KCF [3] has been tabulated in 

Table I. For OPE evaluation, 4,278 frames from 14 datasets were thoroughly examined for each 

of the seven trackers (total 29,946 frames). For TRE evaluation, each of the 14 datasets is divided 

into 20 segments and thus each of the tracker is examined with around 85,560 frames (total of 

5,98,920 frames for seven trackers).  

TABLE I 
QUANTITATIVE ANALYSIS OF PROPOSED AND SIX COMPETING TRACKERS ON 14 DATASETS. THE 
BEST AND THE SECOND BEST RESULTS ARE HIGHLIGHTED WITH BOLD-FACE AND UNDERLINE-

POINT-STYLES RESPECTIVELY.   

 OURS CT STC CN DSST SAMF KCF 
Average Precision Rate (OPE) 0.83 0.15 0.49 0.44 0.46 0.48 0.44 
Average Success Rate (OPE) 0.62 0.19 0.41 0.38 0.41 0.41 0.39 
Average Precision Rate (TRE) 0.78 0.29 0.54 0.45 0.54 0.49 0.48 
Average Success Rate (TRE) 0.56 0.31 0.41 0.39 0.46 0.43 0.42 

CLE (in pixels) 9.02 232.72 31.97 84.85 54.92 45.71 91.88 
Average Speed (fps) 108.94 22.11 32.87 30.04 7.09 5.53 65.28 

It is evident from Table I that our proposed tracker generated best average OPE and TRE 

results, along with highest average speed and lowest average CLE on the 14 datasets, when 

compared with the six competing state-of-the-art trackers. The detailed evaluation of OPE and 

TRE of all the seven trackers on the 14 challenging datasets is also tabulated and the PR and SR of 
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the respective OPE and TRE are presented in Table II, Table III, Table IV and Table V 

respectively. It can be observed in both Precision Rate and Success Rate tables, that the average 

performance on almost all the datasets is better compared to the six other trackers.  

6.2 TABLE II 
PRECISION RATE OF OPE OF THE PROPOSED AND SIX COMPETING TRACKERS ON 14 DATASETS. 

THE BEST AND THE SECOND BEST RESULTS ARE HIGHLIGHTED WITH BOLD-FACE AND 
UNDERLINE-POINT-STYLES RESPECTIVELY.  

Tracker 
Datasets 

OURS CT STC CN DSST SAMF KCF 

Aircraft 0.85 0.18 0.60 0.16 0.17 0.60 0.51 
airplane_001 0.92 0.02 0.38 0.20 0.26 0.43 0.12 
airplane_004 0.79 0.25 0.42 0.44 0.50 0.21 0.37 
airplane_005 0.81 0.09 0.36 0.33 0.32 0.39 0.27 
airplane_006 0.92 0.22 0.65 0.54 0.54 0.75 0.53 
airplane_007 0.76 0.08 0.46 0.61 0.36 0.27 0.37 
airplane_011 0.90 0.27 0.31 0.43 0.28 0.31 0.25 
airplane_012 0.74 0.02 0.83 0.15 0.88 0.99 0.81 
airplane_013 0.89 0.02 0.26 0.32 0.32 0.19 0.12 
airplane_015 0.82 0.35 0.49 0.73 0.58 0.57 0.79 
airplane_016 0.83 0.18 0.65 0.76 0.73 0.52 0.45 

big_2 0.89 0.31 0.85 0.82 0.91 0.94 0.85 
youtube_dataset_2 0.81 0.04 0.66 0.65 0.56 0.54 0.46 
youtube_dataset_3 0.69 0.06 0.12 0.07 0.07 0.05 0.26 

 

6.3 TABLE III 
SUCCESS RATE OF OPE OF THE PROPOSED AND SIX COMPETING TRACKERS ON 14 DATASETS. THE 
BEST AND THE SECOND BEST RESULTS ARE HIGHLIGHTED WITH BOLD-FACE AND UNDERLINE-

POINT-STYLES RESPECTIVELY.  

Tracker 
Datasets 

OURS CT STC CN DSST SAMF KCF 

Aircraft 0.52 0.15 0.34 0.18 0.13 0.50 0.42 
airplane_001 0.78 0.02 0.32 0.17 0.27 0.46 0.12 
airplane_004 0.54 0.49 0.47 0.53 0.42 0.43 0.44 
airplane_005 0.57 0.15 0.39 0.20 0.26 0.28 0.23 
airplane_006 0.54 0.19 0.49 0.43 0.45 0.46 0.43 
airplane_007 0.53 0.13 0.47 0.46 0.55 0.34 0.49 
airplane_011 0.77 0.21 0.33 0.34 0.29 0.31 0.20 
airplane_012 0.47 0.08 0.48 0.31 0.59 1.00 0.70 
airplane_013 0.70 0.04 0.27 0.19 0.30 0.11 0.06 
airplane_015 0.71 0.45 0.49 0.65 0.59 0.38 0.54 
airplane_016 0.73 0.22 0.62 0.58 0.56 0.66 0.58 

big_2 0.61 0.30 0.58 0.58 0.65 0.56 0.63 
youtube_dataset_2 0.56 0.05 0.25 0.45 0.40 0.27 0.43 
youtube_dataset_3 0.62 0.10 0.16 0.24 0.22 0.06 0.29 
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We can find in Table II that 11 out of 14 best results in favor of our tracker, demonstrating 

Precision Rate, whereas 12 out of 14 best results favor our tracker in Table III, demonstrating 

Success Rate for OPE.  

 

Fig 6.1: OPE Precision Plot demonstrating average precision rate of 7 competing trackers over 14 
challenging datasets 
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Fig 6.2: OPE Success Plot demonstrating average success rate of 7 competing trackers over 14 
challenging datasets 

The precision plot in fig 6.1 is demonstrating the Precision Rate of OPE in the y-axis and 

the CLE threshold in the x-axis. The success plot in fig 6.2 is demonstrating the Success Rate of 

OPE in the y-axis and the Overlap threshold in the x-axis. Both the plots are computed for all the 

seven competing trackers and a 50 point mean is evaluated to represent them correctly according 

to the Success Rate and Precision Rate definitions, defined in the earlier section. By definition, the 

plot with maximum area under the curve has best Success Rate in fig 6.2. We can observe that the 

red curve representing our proposed method has the maximum area under the curve and thus shows 

the best performance.  
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6.4 TABLE IV 
AVERAGE PRECISION RATE OF TRE OF THE PROPOSED AND SIX COMPETING TRACKERS ON 14 
DATASETS. THE BEST AND THE SECOND BEST RESULTS ARE HIGHLIGHTED WITH BOLD-FACE 

AND UNDERLINE-POINT-STYLES RESPECTIVELY. 

Tracker 
Datasets 

OURS CT STC CN DSST SAMF KCF 

Aircraft 0.85 0.09 0.59 0.03 0.08 0.31 0.07 
airplane_001 0.92 0.22 0.30 0.44 0.49 0.46 0.45 
airplane_004 0.78 0.35 0.50 0.61 0.61 0.63 0.46 
airplane_005 0.49 0.47 0.59 0.37 0.53 0.39 0.48 
airplane_006 0.92 0.37 0.60 0.53 0.55 0.55 0.47 
airplane_007 0.76 0.20 0.37 0.52 0.59 0.54 0.54 
airplane_011 0.89 0.43 0.79 0.24 0.60 0.26 0.34 
airplane_012 0.76 0.50 0.81 0.25 0.89 0.27 0.84 
airplane_013 0.89 0.17 0.27 0.43 0.46 0.45 0.27 
airplane_015 0.70 0.24 0.43 0.66 0.59 0.68 0.65 
airplane_016 0.81 0.27 0.58 0.80 0.70 0.82 0.63 

big_2 0.54 0.40 0.81 0.80 0.85 0.82 0.85 
youtube_dataset_2 0.82 0.18 0.46 0.39 0.38 0.41 0.30 
youtube_dataset_3 0.73 0.13 0.39 0.22 0.29 0.24 0.34 

 

6.5 TABLE V 
AVERAGE SUCCESS RATE OF TRE OF THE PROPOSED AND SIX COMPETING TRACKERS ON 14 

DATASETS. THE BEST AND THE SECOND BEST RESULTS ARE HIGHLIGHTED WITH BOLD-FACE 
AND UNDERLINE-POINT-STYLES RESPECTIVELY. 

Tracker 
Datasets 

OURS CT STC CN DSST SAMF KCF 

Aircraft 0.52 0.08 0.34 0.05 0.10 0.46 0.06 
airplane_001 0.78 0.21 0.19 0.36 0.45 0.37 0.40 
airplane_004 0.54 0.44 0.46 0.53 0.56 0.54 0.46 
airplane_005 0.34 0.38 0.49 0.29 0.45 0.30 0.41 
airplane_006 0.52 0.32 0.44 0.40 0.41 0.41 0.36 
airplane_007 0.53 0.28 0.44 0.43 0.57 0.44 0.56 
airplane_011 0.77 0.43 0.53 0.32 0.53 0.33 0.41 
airplane_012 0.35 0.50 0.56 0.40 0.78 0.41 0.78 
airplane_013 0.71 0.20 0.30 0.36 0.44 0.37 0.29 
airplane_015 0.59 0.32 0.56 0.59 0.54 0.60 0.48 
airplane_016 0.66 0.45 0.49 0.55 0.51 0.56 0.52 

big_2 0.38 0.39 0.51 0.60 0.51 0.61 0.59 
youtube_dataset_2 0.56 0.19 0.18 0.30 0.27 0.31 0.27 
youtube_dataset_3 0.61 0.17 0.25 0.27 0.33 0.28 0.31 

We can find in Table IV that 10 out of 14 best results (two second best result) in favor of 

our tracker, demonstrating Precision Rate of TRE, whereas 8 (two second best result) out of 14 

best results favor our tracker in Table V, demonstrating Success Rate of TRE. 
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Fig 6.3: TRE Average Precision Plot demonstrating average precision rate of 7 competing trackers over 
14 challenging datasets 

Again, fig 6.3 and fig 6.4 represent the average Precision Rate and average Success Rate 

for TRE. These plots are very similar to the plots shown in figs 6.1 and 6.2. We can observe in 

these plots that our proposed approach has largest area (red curves in both the plots), whereas, CT 

has the least area. This means that our tracker has the best performance and CT has the worst 

performance in terms of Precision Rate and Success Rate for TRE. 
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Fig 6.4: TRE Average Success Plot demonstrating average success rate of 7 competing trackers over 14 

challenging datasets 

6.4.4 Speed Comparison 

As presented in Table VI, our algorithm achieves an average speed of 108.94 frames per 

second (fps) on the 14 challenging video sequences. The second best tracker, KCF, has an average 

speed of 49.18 fps on the same video sequences. The slow speed of KCF is due to the fact that 

once it fails to track in a certain frame, then in the subsequent frames the correlation response goes 

down, resulting in delay of detection. Our approach re-detects the object once drifting starts (by 
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observing the correlation response going below a threshold) and thus speed never goes down, 

making it 2 folds faster than KCF. 

TABLE VI 
SPEED COMPARISON OF 7 TRACKERS ON 14 DATASETS. THE BEST AND THE SECOND BEST 

RESULTS ARE HIGHLIGHTED WITH BOLD-FACE AND UNDERLINE-POINT-STYLES RESPECTIVELY. 

Tracker 
Datasets 

OURS CT STC CN DSST SAMF KCF 

Aircraft 105.62 35.73 63.32 38.58 9.88 4.20 49.18 
airplane_001 50.41 17.92 37.30 89.34 20.41 3.99 84.61 
airplane_004 99.26 17.93 28.90 17.81 4.49 6.20 64.11 
airplane_005 49.26 18.06 28.62 17.73 4.25 5.92 60.58 
airplane_006 58.14 18.01 31.289 26.14 6.36 7.75 90.87 
airplane_007 43.73 17.94 29.65 21.65 4.60 7.93 104.29 
airplane_011 140.40 18.54 34.81 35.21 8.94 2.77 37.85 
airplane_012 246.45 18.55 10.03 3.91 0.99 1.66 10.62 
airplane_013 39.53 18.11 39.09 72.71 16.16 3.55 60.62 
airplane_015 134.72 17.68 24.40 14.01 3.29 5.68 53.43 
airplane_016 131.93 17.80 12.79 5.33 1.25 2.45 16.60 

big_2 160.82 33.84 37.76 15.02 3.79 7.57 68.54 
youtube_dataset_2 83.23 18.76 32.80 25.91 6.12 9.07 124.93 
youtube_dataset_3 72.72 18.58 16.57 7.16 1.60 3.19 22.47 

mean 108.94 22.11 32.87 30.04 7.09 5.53 65.28 

Similarly, when compared to CN, STC and CT, our approach stands out by more than 3 times 

faster than their average speeds. This high speed tracking of our approach makes it suitable for 

real-time application like UAV auto navigation. 

6.5  Qualitative Evaluation 

The image sequences may have to deal with different attributes (difficulties as mentioned in 

[30]), which needs to be tackled by each tracker to show promising result on the second 

performance parameter discussed earlier. These attributes are illumination variation, scale 

variation, occlusion, deformation, motion blur, fast motion, in-plane rotation, out-of-plane 

rotation, out-of-view, background clutters and low resolution [30]. Rigorous testing has been 

performed on all the seven trackers with the available 14 datasets and results of some of these 

problems are discussed in this section. 
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6.5.1 Snapshots of Tracking Result  

       

       

       
Fig 6.5: Tracking result with bounding box around the objects for shape, size and illumination variation. 

Color code: red – Proposed method, yellow – SAMF, green – KCF 
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Fig 6.5 presents some of the screenshots, demonstrating the proposed tracker in action. All the 

frames from the 14 datasets with tracking result from our proposed tracker is demonstrated in detail 

in Appendix A for the interested readers to further inspect.  

6.5.2 Scale Variation and Partial/Total Occlusion 

It has been observed experimentally that, in the initial frames, all the trackers produce 

acceptable outputs. This is because the object does not vary its shape or size to a great extent in 

the initial frames.  

       

       
Fig 6.6: Tracking result with bounding box around the objects in youtube_dataset_3 dataset for all the 7 

trackers exhibiting scale variation. Color code same as Precision and Success Plots 
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The chosen frames from youtube_dataset_3 in Fig 6.6 shows that the object size is varying in 

different frames. All the seven trackers assign bounding box around these frames. Some of the 

trackers have fixed bounding box and some are changing with the size of object. But none of the 

six competing trackers can assign bounding box of varying size, compatible with the object in all 

the frames. CT, SAMF, KCF and STC trackers fail miserably in assigning correct bounding boxes 

in Fig 6.6. The red bounding box, representing our algorithm, covers the entire object in all the 4 

frames of Fig 6.6 with least background pixels inside the bounding box. It proves the robustness 

and adaptive nature of our tracking algorithm with respect to scale variation of the object. 

       

       
Fig 6.7: Tracking result with bounding box around the objects in airplane_005 dataset for all the 7 

trackers exhibiting partial occlusion. Color code same as Precision and Success Plots 
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Again, occlusion is a great problem in object tracking, where the object may become partially 

or totally invisible in a certain frame and reappear in the subsequent frames. Most of the trackers 

fail to assign correct bounding box around the reappearing object. In Fig 6.7, we have taken 

consecutive snapshots of an Aeroplane flying in between the clouds from aeroplane_005 dataset. 

The Aeroplane hides in the cloud and reappears again causing occlusion. Only our tracker (red 

bounding box) and STC shows promising results to occlusion in these frames. Although the size 

of STC bounding box is less accurate than our method and the speed of STC is very less when 

compared to our method. Hence, our algorithm shows robustness to partial or full occlusion 

compared to other trackers. 

6.5.3 Fast Motion and Illumination Variation 

The distance between objects in two consecutive frames increase rapidly if the object is moving 

very fast. Some trackers fail to track in such cases, as the search area of tracking is very small and 

consist of the pixels corresponding to the nearby pixels of the object in the previous frame. Also, 

the camera sensor may not capture the images very clearly, when the object is moving very fast, 

leading to motion blurs.  In case of auto navigation application of UAV, we will be expecting 

flying objects to track and thus, fast moving object is inevitable. Fig 6.8 presents a fast flying 

Aeroplane in consecutive frames from airplane_001 dataset. We can see that almost all the other 

six competing trackers miss the target, whereas a red bounding box (representing our algorithm), 

successfully tracks the object in all the frames with scale variation. Hence, we can conclude that 

our algorithm is not vulnerable to fast motion. 
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Fig 6.8: Tracking result with bounding box around the objects in airplane_001 dataset for all the 7 

trackers exhibiting fast motion. Color code same as Precision and Success Plots 

Illumination variation is very common in photography. The light reflecting from the object may 

not be consistent in all the frames. The illumination variation is very sudden, but the tracker is 

trained over a certain number of frames in discriminative online tracking. Thus, the training may 

not consider this sudden change and fail miserably in the upcoming frames while tracking. Fig 6.8 

presents one such scenario, where light starts reflecting from a flying Aeroplane in dataset 

aeroplane_006. CT fails miserably with illumination variation. All the other competing trackers 

successfully track the object, but the bounding box can only cover a part of the object now, for 

CN, KCF and SAMF. The bounding box of DSST becomes very small with illumination variation. 
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Our redetection scheme improves the tracker training, resulting in better performance with 

detection in the subsequent frames – which is quite evident in Fig 6.9 showing red bounding box 

with no object pixel missing. 

       

       
Fig 6.9: Tracking result with bounding box around the objects in airplane_006 dataset for all the 7 

trackers exhibiting illumination variation. Color code same as Precision and Success Plots 

6.5.4 Rotation Dynamics Robustness 

We would be expecting in-plane and out-of-plane rotations of the flying object while tracking 

it, along with translation. It is one of the most challenging tracking problem where majority of 

state-of-the-art trackers exhibits poor performance. Fig 6.10 shows in-plane rotation of a flying 
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Aeroplane from Aircraft dataset. We can see that CT, DSST and CN cannot even keep any part of 

the object during in-plane rotation. The bounding box of DSST becomes very small too. KCF, STC 

and SAMF partially tracks the object (green and blue bounding box cannot wrap around the entire 

object) in these frames. On the other hand, our tracker shows promising result by bounding the 

objects in red with variation of size, as well as keeping all the foreground pixels within the 

boundary box. 

       

       
Fig 6.10: Tracking result with bounding boxes around the objects in Aircraft dataset for all the 7 trackers 

exhibiting in-plane rotation. Color code same as Precision and Success Plots 
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Fig 6.11: Tracking result with bounding boxes around the objects in big_2 dataset for all the 7 trackers 

exhibiting out-of-plane rotation. Color code same as Precision and Success Plots 

The out-of-plane rotation effect on different trackers is depicted in Fig 6.11 with big_2 

dataset. CT fails to tackle both in-plane and out-of-plane rotation dynamics. KCF gives decent 

performance for the in-plane rotation, but miserably fails for out-of-plane rotation. Again reduced 

pink bounding box is a problem for DSST tracker. CN and STC wraps the object with out-of-plane 

rotation, but distinctive amount of background pixels also comes in the bounding boxes and this 

may affect the tracker training leading to failure in the subsequent frames. It is clear that our tracker 

gives good result with out-of-plane rotation dynamics as well. 
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After extensive experimentation we found that our tracker exhibited promising result with 

almost all of the attributes mentioned in [30], unlike the six other competing trackers. The most 

distinctive results are shown in this chapter and some more results are also shown in the 

appendices.  
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Chapter 7 

Conclusion and Future Work 

7.1  Summary 

In this work, we have defined a new problem in the computer vision field with object detection 

and tracking to guide an unmanned aerial vehicle (UAV) in its navigation. Extensive research has 

been performed to track down all the recent state-of-the-art object trackers and detectors and the 

most relevant ones were studied with good care. Even though the existing methods showed great 

results with some of the datasets (or in some favorable conditions), these approaches were inept to 

function as expected for the object detection and tracking from a forward-looking camera in a 

flying UAV. For some methods, either the speed was too low to perform in a real-time application 

or the tracker would behave abnormally in fast motion of the camera or in presence of illumination 

variation. 

The correlation filter based tracker (KCF) from [3] showed good potential, as it was training 

the classifier in the Fourier domain with Circulant matrix, kernelized representation – resulting in 

high speed. After experimentation, we found that this tracker would fail miserably for scale 

variation or motion blur (due to fast relative motion between camera and object), out-of-plane 

rotation or partial/total occlusion and partially track object in presence of illumination variation. 

Another problem of manually labelling the bounding box in the first frame made it uncomfortable 

for auto navigation of UAV. 

A minimum barrier distance transform based detection (MBD) was included in the tracker to 

provide a bounding box around the object from the first frame. Also, an adaptive redetection 
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technique was proposed to tackle with the failures and difficulties of the KCF. The adaptive 

bounding box around the objects with different shape and size was a notable addition. A new post-

processing method was added to the boost the quality of the saliency map generated by the MBD 

detector. The proposed new algorithm was implemented in OpenCV with C++ and extensively 

tested with relevant challenging datasets. 

The most related other trackers were also extensively experimented to compare with our 

proposed method. After qualitative and quantitative evaluations on challenging datasets (related 

to UAV navigation application), we found that our proposed method stands out among all the other 

trackers in terms of speed. In terms of accuracy, it obtained best result for 11 out of 14 challenging 

datasets, second best result for most of the other datasets and a best average result. All the other 

methods stopped immaturely in one or more of the datasets. But the proposed method successfully 

assigned bounding box around objects in all the 14 challenging datasets. Hence, the proposed 

method was successful in demonstrating desired result and better performance than all other state-

of-the-art approaches compared in this work. 

7.2  Future Work 

The vulnerability of the proposed method is that it fails if the object detection fails in the first 

frame or any of the other frames while redetecting. While experimenting, we tried to break the 

proposed method and came up with two situations where it fails. They are: 

• In presence of more than one object in the path of the UAV, the MBD detector fails to 

create a correct saliency map, resulting in failure of the proposed tracker. More work needs 

to be done to make the detector adaptive to multiple saliency map generation. 

• We also found that if the object is too big or too small, the MBD detector do not provide 

satisfactory result. In case of too big object, the proposed method gets confused to assign 
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a correct bounding box as the foreground covers more pixels than the background now, 

which was not likely. 

The proposed tracker can also be used for other applications and should not be limited to only 

one application of UAV navigation. This is true because while testing the benchmark datasets from 

[30], it was found that the proposed method performs quite effectively with many other 

applications. Some of them are listed below: 

1. Surveillance 

2. Face detection and tracking 

3. Tracking in movie graphics 

 

 

Fig 7.1: Surveillance operation possible with proposed tracker in car4 dataset [30] 
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Fig 7.2: Face detection application possible with proposed tracker in shaking2 dataset [30] 

 

 

Fig 7.3: Tracking space shuttle from startrek dataset [30] – movie graphics tracking application 
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Appendices 
 

Appendix A 

The screenshots showing bounding box around objects in some of the frames of 14 

challenging datasets are presented below: 

 

 

Fig A.1: Snapshots from Aircraft dataset showing tracking with the proposed tracker 
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Fig A.2: Snapshots from airplane_001 dataset showing tracking with the proposed tracker 

 

 

Fig A.3: Snapshots from airplane_004 dataset showing tracking with the proposed tracker 
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Fig A.4: Snapshots from airplane_005 dataset showing tracking with the proposed tracker 

 

 

Fig A.5: Snapshots from airplane_006 dataset showing tracking with the proposed tracker 
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Fig A.6: Snapshots from airplane_007 dataset showing tracking with the proposed tracker 

 

 

Fig A.7: Snapshots from airplane_011 dataset showing tracking with the proposed tracker 
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Fig A.8: Snapshots from airplane_012 dataset showing tracking with the proposed tracker 

 

 

Fig A.9: Snapshots from airplane_013 dataset showing tracking with the proposed tracker 
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Fig A.10: Snapshots from airplane_015 dataset showing tracking with the proposed tracker 

 

 

Fig A.11: Snapshots from airplane_016 dataset showing tracking with the proposed tracker 
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Fig A.12: Snapshots from big_2 dataset showing tracking with the proposed tracker 

 

 

Fig A.13: Snapshots from youtube_2 dataset showing tracking with the proposed tracker 
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Fig A.14: Snapshots from youtube_3 dataset showing tracking with the proposed tracker 

Appendix B 

The pseudocode for our proposed tracker is already presented in Table I in chapter 5. In 

this section the other MATLAB codes used for tabulating and plotting OPE and TRE Precision 

Rate and Success Rate are presented. 

B.1 The following MATLAB code tabulates and plots OPE PR and SR: 

% This creates a text file for tabulating the Precision Rate and Success 
% Rate for OPE of each dataset for each tracker 
% Requirements: All the OPEs and Ground Truth should be in the same folder 
% OPE files should follow the format : datasetName_OPE_trackerName.txt 
% Ground truth should follow the format: datasetName.txt 
% Output file created is : avg_OPE_PR_SR_CLE.txt 
% Precision and Success Rates of OPE 
  
clear all; 
close('all'); 
clc; 
  
m1=[];s1=[];cl=[]; 
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seq = 
{'airplane\_001';'airplane\_004';'airplane\_005';'airplane\_006';'airplane\_0
07';'airplane\_011'; ... 
       'airplane\_012';'airplane\_013'; 
'airplane\_015';'airplane\_016';'big\_2';'youtube\_2';'youtube\_3';'Aircraft'
}; 
  
for i = 1:7 
    %read gt files 
    gt1 = fopen('airplane_001.txt','r'); 
    gt2 = fopen('airplane_004.txt','r'); 
    gt3 = fopen('airplane_005.txt','r'); 
    gt4 = fopen('airplane_006.txt','r'); 
    gt5 = fopen('airplane_007.txt','r'); 
    gt6 = fopen('airplane_011.txt','r'); 
    gt7 = fopen('airplane_012.txt','r'); 
    gt8 = fopen('airplane_013.txt','r'); 
    gt9 = fopen('airplane_015.txt','r'); 
    gt10 = fopen('airplane_016.txt','r'); 
    gt11 = fopen('big_2.txt','r'); 
    gt12 = fopen('youtube_2.txt','r'); 
    gt13 = fopen('youtube_3.txt','r'); 
    gt14 = fopen('Aircraft.txt','r'); 
  
    %select tracker 
    if (i==1) tracker = 'ours.txt'; end 
    if (i==2) tracker = 'CN.txt'; end 
    if (i==3) tracker = 'CT.txt'; end 
    if (i==4) tracker = 'DSST.txt'; end 
    if (i==5) tracker = 'KCF.txt'; end 
    if (i==6) tracker = 'SAMF.txt'; end 
    if (i==7) tracker = 'STC.txt'; end 
  
    %read all the OPEs 
    str1 = strcat('airplane_001_OPE_',tracker);    fileid1 = fopen(str1,'r');  
    str2 = strcat('airplane_004_OPE_',tracker);    fileid2 = fopen 
(str2,'r');  
    str3 = strcat('airplane_005_OPE_',tracker);    fileid3 = fopen(str3,'r'); 
    str4 = strcat('airplane_006_OPE_',tracker);    fileid4 = fopen 
(str4,'r'); 
    str5 = strcat('airplane_007_OPE_',tracker);    fileid5 = fopen(str5,'r');  
    str6 = strcat('airplane_011_OPE_',tracker);    fileid6 = fopen 
(str6,'r');  
    str7 = strcat('airplane_012_OPE_',tracker);    fileid7 = fopen(str7,'r'); 
    str8 = strcat('airplane_013_OPE_',tracker);    fileid8 = fopen 
(str8,'r'); 
    str9 = strcat('airplane_015_OPE_',tracker);    fileid9 = fopen(str9,'r'); 
    str10 = strcat('airplane_016_OPE_',tracker);   fileid10 = fopen 
(str10,'r'); 
    str11 = strcat('big_2_OPE_',tracker);          fileid11 = 
fopen(str11,'r'); 
    str12 = strcat('youtube_2_OPE_',tracker);      fileid12 = 
fopen(str12,'r'); 
    str13 = strcat('youtube_3_OPE_',tracker);      fileid13 = 
fopen(str13,'r'); 
    str14 = strcat('Aircraft_OPE_',tracker);       fileid14 = 
fopen(str14,'r'); 
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    %initiating average precision, success rate and cle 
    pr =[]; sr=[]; cle = [];  
  
    %for each dataset, proceed now sequentially 
    for j = 1 : 14 %25 
        file = strcat ('fileid',num2str(j)); 
        file = eval(file); 
        tline1 = fgetl(file); 
        gtfile = strcat ('gt',num2str(j)); 
        gtfile = eval(gtfile); 
        tline2 = fgetl(gtfile); 
        C=[];D=[]; 
        A=[];B=[]; 
        while (ischar(tline2)) 
            C1 = textscan (tline1,'%f,%f,%f,%f'); 
            C2 = textscan (tline2,'%f,%f,%f,%f'); 
  
            %Scale adjustment for SAMF 
            if i == 6 
%                 C1{1} =  C1{1}/2; 
%                 C1{2} = C1{2}/2; 
                C1{3} = C1{3}*2; 
                C1{4} = C1{4}*2; 
            end 
            % M1 = double (C1{1}) + ((double(C1{3}) - double(C1{1}))/2.0); 
            % N1 = double (C1{2}) + ((double(C1{4}) - double(C1{2}))/2.0); 
            M1 =  double (C1{1}) + (double(C1{3})/2.0) ; %if output is in 
x,y,w,h format 
            N1 =  double (C1{2}) + ( double(C1{4})/2.0); 
            % M2 = double (C2{1}) + ((double(C2{3}) - double(C2{1}))/2.0); 
            % N2 = double (C2{2}) + ((double(C2{4}) - double(C2{2}))/2.0); 
            M2 = double (C2{1}) + (double(C2{3})/2.0) ; %if gt is in x,y,w,h 
format 
            N2 = double (C2{2}) + (double(C2{4})/2.0); 
            % for SR 
            % w1 = double(C1{3}) - double(C1{1}); 
            % h1 = double(C1{4}) - double(C1{2}); 
            w1 =  double(C1{3}); % if output in x,y,w,h format 
            h1 =  double(C1{4}); 
            % w2 = double(C2{3}) - double(C2{1}); 
            % h2 = double(C2{4}) - double(C2{2}); 
            w2 = double(C2{3}); % if ground truth in x,y,w,h format 
            h2 = double(C2{4}); 
            X1 = [C1{1} C1{2} w1 h1]; 
            X2 = [C2{1} C2{2} w2 h2]; 
            C = vertcat (C,X1);   
            D = vertcat (D,X2); 
            Z1 = [M1 N1]; 
            Z2 = [M2 N2]; 
            A = vertcat (A,Z1);   
            B = vertcat (B,Z2); 
            tline1 = fgetl(file); 
            tline2 = fgetl(gtfile); 
        end 
       [p,~,c]=precision_plots(A,B,0); % calculate precision 
       [s,~] = success_plots(C,D); % calculate SR 
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       pr = [pr, p]; % since we need to keepaccount of 50 points in each 
dataset 
       sr  = [sr, s]; 
       cle = [cle,c]; 
    end 
  
    pr1 = mean(pr'); 
    sr1 = mean(sr'); 
    cle1 = mean(cle'); 
     
    pr_final(i,:) = pr1;        % Final PR    For drawing figure with 50 
points 
    sr_final(i,:) = sr1;        % Final SR 
    cl_final(i,:) = cle1;       % Final CLE 
     
    m1 = vertcat(m1, mean(pr)); % Final PR    For calculating the table 
    s1 = vertcat(s1,mean(sr));  % Final SR 
    cl = vertcat(cl,mean(cle)); % Final CLE 
    fclose('all'); 
end 
  
handle = fopen('avg_OPE_PR_SR_CLE.txt','w+');   
%Printing the results to a file 
fprintf(handle,'Precision Table\n'); 
fprintf(handle, '%10s %10s %10s %10s %10s %10s 
%10s\n','Ours','CN','CT','DSST','KCF','SAMF','STC'); 
  
    
for jj = 1:14%25 
    fprintf(handle,'%10.2g %10.2g %10.2g %10.2g %10.2g %10.2g 
%10.2g\n',m1(1,jj),m1(2,jj),m1(3,jj),m1(4,jj),m1(5,jj),m1(6,jj),m1(7,jj)); 
end 
       
  
fprintf(handle,'Success Rate Table\n'); 
fprintf(handle, '%10s %10s %10s %10s %10s %10s 
%10s\n','Ours','CN','CT','DSST','KCF','SAMF','STC'); 
      
for jj = 1:14%25 
    fprintf(handle,'%10.2g %10.2g %10.2g %10.2g %10.2g %10.2g 
%10.2g\n',s1(1,jj),s1(2,jj),s1(3,jj),s1(4,jj),s1(5,jj),s1(6,jj),s1(7,jj)); 
end 
  
fprintf(handle,'\n\nCLE\n + %g',mean(mean(cl))); 
   
figure(1); 
plot(pr_final(1,:),'Linewidth',2,'Color','r'); 
hold on; 
plot(pr_final(2,:),'Linewidth',2,'Color','y'); 
plot(pr_final(3,:),'Linewidth',2,'Color','c'); 
plot(pr_final(4,:),'Linewidth',2,'Color','m'); 
plot(pr_final(5,:),'Linewidth',2,'Color','g'); 
plot(pr_final(6,:),'Linewidth',2,'Color','b'); 
plot(pr_final(7,:),'Linewidth',2,'Color','k'); 
xlabel('Center Location Error Threshold'); 
ylabel('Precision Rate'); 
title('Precision Plots of OPE'); 
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legend('Ours','CN','CT','DSST','KCF','SAMF','STC'); 
grid on; 
hold off; 
  
x_axis = linspace(0,1,50); 
figure(2); 
plot(x_axis,sr_final(1,:),'Linewidth',2,'Color','r'); 
hold on; 
plot(x_axis,sr_final(2,:),'Linewidth',2,'Color','y'); 
plot(x_axis,sr_final(3,:),'Linewidth',2,'Color','c'); 
plot(x_axis,sr_final(4,:),'Linewidth',2,'Color','m'); 
plot(x_axis,sr_final(5,:),'Linewidth',2,'Color','g'); 
plot(x_axis,sr_final(6,:),'Linewidth',2,'Color','b'); 
plot(x_axis,sr_final(7,:),'Linewidth',2,'Color','k'); 
xlabel('Overlap Threshold'); 
ylabel('Success Rate'); 
title('Success Plots of OPE'); 
legend('Ours','CN','CT','DSST','KCF','SAMF','STC'); 
grid on; 
hold off; 
 

B.2 The following MATLAB code tabulates and plots TRE PR and SR: 

% This creates a text file for tabulating the Precision Rate and Success 
% Rate for TRE of each dataset for each tracker 
% Requirements: All the TREs and Ground Truth should be in the same folder 
% TRE files should follow the format : datasetName_TRE_trackerName.txt 
% Ground truth should follow the format: datasetName.txt 
% Output file created is : avg_TRE_PR_SR_tracker.txt 
% Precision and Success Rates of TRE 
  
clear all; 
close('all'); 
clc; 
  
numImages = [200,200,200,200,200,300,300,300,300,300,382,475,301,620]; % 
total number of images for each dataset 
                 
seq = 
{'airplane_001';'airplane_004';'airplane_005';'airplane_006';'airplane_007';.
.. 
       
'airplane_011';'airplane_012';'airplane_013';'airplane_015';'airplane_016';'b
ig_2';... 
       'youtube_2';'youtube_3';'Aircraft'}; % dataset names 
                 
tracker = 'DSST';        % tracker to operate on 
  
DSST_prec = [];          % Precision Rate stored here for plotting 
DSST_succ = [];          % Success Rate stored here for plotting 
  
m1=[];s1=[];cl=[]; 
  
for kk = 1:size(seq,1) 
    cntr = 0; 
    incr = floor(numImages(kk)/20); 
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    prec = []; 
    succ = []; 
  
    gtfile = strcat(char(seq(kk)),'.txt'); 
    filegt = fopen(gtfile,'r'); 
  
    GT=[]; GTp=[]; 
    %read and store the gt file in a matrix 
    tline1 = fgetl(filegt); 
    while ischar(tline1) 
        C1 = textscan (tline1,'%f,%f,%f,%f'); 
        GT = vertcat(GT,[C1{1} C1{2} C1{3} C1{4}]); 
        GTp = vertcat (GTp, [C1{1}+(C1{3}/2), C1{2}+(C1{4}/2)]); 
        tline1 = fgetl(filegt); 
    end 
    fclose(filegt); 
  
    % SAMF scale adjustment 
%     if kk== 3 || kk == 14 || kk == 15 || kk==16 ||kk==20 
%              a = 2; 
%          elseif kk == 1 || kk == 2 || kk == 7 
%              a = 1.5; 
%          else 
%              a = 1.1; 
%      end 
  
    for ii = 1:incr:numImages %20 iterations for each dataset 
        cntr = cntr + 1; 
        if cntr == 20 break; end 
        if ii == 1 
            str = strcat(char(seq(kk)),'_OPE_',tracker,'.txt') 
        else 
            str = 
strcat(char(seq(kk)),'_TRE_',tracker,'_',num2str(ii),'.txt') 
        end 
         
        % adjust for tracker stoppage problem 
%         if strcmp('airplane_001_TRE_DSST_11.txt',str) break; end 
%         if strcmp('airplane_004_TRE_DSST_91.txt',str) break; end 
%         if strcmp('airplane_005_TRE_DSST_101.txt',str) break; end 
%         if strcmp('airplane_006_TRE_DSST_51.txt',str) break; end 
%         if strcmp('airplane_007_TRE_DSST_181.txt',str) break; end 
%         if strcmp('airplane_011_TRE_DSST_91.txt',str) break; end 
%         if strcmp('airplane_012_TRE_DSST_61.txt',str) break; end 
%         if strcmp('airplane_013_TRE_DSST_136.txt',str) break; end 
%         if strcmp('airplane_015_TRE_DSST_61.txt',str) break; end 
%         if strcmp('big_2_TRE_DSST_191.txt',str) break; end 
%         if strcmp('youtube_2_TRE_DSST_70.txt',str) break; end 
%         if strcmp('youtube_3_TRE_DSST_196.txt',str) break; end 
%         if strcmp('Aircraft_TRE_DSST_187.txt',str) break; end      
  
        % read and store ouput file in a matrix 
        fileop = fopen(str,'r'); 
        tline2 = fgetl(fileop); 
        OP = [];OTp=[]; 
        while ischar(tline2) 
            C1 = textscan (tline2,'%f,%f,%f,%f'); 
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            OP = vertcat(OP,[C1{1} C1{2} C1{3} C1{4}]); 
            OTp = vertcat (OTp, [C1{1}+(C1{3}/2), C1{2}+(C1{4}/2)]); 
            tline2 = fgetl(fileop); 
        end 
        fclose(fileop); 
  
        % call the precision function  
        [p,~,c]=precision_plots(OTp,GTp(ii:end,:),0); 
  
        % call the success function 
        [s,~]=success_plots(OP,GT(ii:end,:)); 
  
        prec = horzcat(prec,p); 
        succ = horzcat(succ,s); 
    end 
    if size(prec,2) == 1 %adjust only containing OPE for some trackers 
        DSST_prec = horzcat(DSST_prec,prec); 
        DSST_succ = horzcat(DSST_succ, succ); 
    else 
        DSST_prec = horzcat(DSST_prec, mean(prec')'); 
        DSST_succ = horzcat(DSST_succ, mean(succ')'); 
    end 
end 
  
save DSST_tre.mat DSST_prec DSST_succ           % Saves the Precision Rate 
and Success Rate in Tracker.mat file to be plotted 
fprintf('Precision rate for %s is %.2g.\nSuccess rate for %s is 
%.2g\n',tracker, mean(mean(DSST_prec')), tracker, mean(mean(DSST_succ'))); 
  
figure(1); 
plot(mean(ours_prec'),'Linewidth',2,'Color','r'); 
hold on; 
plot(mean(CN_prec'),'Linewidth',2,'Color','y'); 
plot(mean(CT_prec'),'Linewidth',2,'Color','c'); 
plot(mean(DSST_prec'),'Linewidth',2,'Color','m'); 
plot(mean(KCF_prec'),'Linewidth',2,'Color','g'); 
plot(mean(SAMF_prec'),'Linewidth',2,'Color','b'); 
plot(mean(STC_prec'),'Linewidth',2,'Color','k'); 
xlabel('Center Location Error Threshold'); 
ylabel('Precision Rate'); 
title('Precision Plots of TRE'); 
legend('Ours','CN','CT','DSST','KCF','SAMF','STC'); 
grid on; 
hold off; 
  
x_axis = linspace(0,1,50); 
figure(2); 
plot(x_axis,mean(ours_succ'),'Linewidth',2,'Color','r'); 
hold on; 
plot(x_axis,mean(CN_succ'),'Linewidth',2,'Color','y'); 
plot(x_axis,mean(CT_succ'),'Linewidth',2,'Color','c'); 
plot(x_axis,mean(DSST_succ'),'Linewidth',2,'Color','m'); 
plot(x_axis,mean(KCF_succ'),'Linewidth',2,'Color','g'); 
plot(x_axis,mean(SAMF_succ'),'Linewidth',2,'Color','b'); 
plot(x_axis,mean(STC_succ'),'Linewidth',2,'Color','k'); 
xlabel('Overlap Threshold'); 
ylabel('Success Rate'); 
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title('Success Plots of TRE'); 
legend('Ours','CN','CT','DSST','KCF','SAMF','STC'); 
grid on; 
hold off; 
  
m1 = vertcat(m1, mean(DSST_prec)); % Final PR of each tracker   For 
calculating the table 
s1 = vertcat(s1,mean(DSST_succ));  % Final SR of each tracker 
     
handle = fopen('avg_TRE_PR_SR_DSST.txt','w+');   
%Printing the results to a file 
fprintf(handle,'Precision Table\n'); 
% fprintf(handle, '%10s %10s %10s %10s %10s %10s 
%10s\n','Ours','CN','CT','DSST','KCF','SAMF','STC'); 
fprintf(handle, '%10s \n','SAMF'); 
for jj = 1:14 
    fprintf(handle,'%10.2g \n',m1(1,jj)); 
end 
          
         
fprintf(handle,'Success Rate Table\n'); 
% fprintf(handle, '%10s %10s %10s %10s %10s %10s 
%10s\n','Ours','CN','CT','DSST','KCF','SAMF','STC'); 
fprintf(handle, '%10s \n','SAMF'); 
for jj = 1:14 
    fprintf(handle,'%10.2g \n',s1(1,jj)); 
end 
 

B.3 The following MATLAB functions were used from [8] to tabulate and plot OPE and TRE 

PR and SR in B.1 and B.2 of Appendix B: 

function [precisions, distances, averageLocationError] = 
precision_plot(positions, ground_truth, show) 
%PRECISION_PLOT 
     
    max_threshold = 50;  %used for graphs in the paper 
     
     
    precisions = zeros(max_threshold, 1); 
     
    if size(positions,1) ~= size(ground_truth,1), 
        fprintf('Number of ground truth frames does not match number of 
tracked frames.\n') 
        return 
        %just ignore any extra frames, in either results or ground truth 
        %n = min(size(positions,1), size(ground_truth,1)); 
        %positions(n+1:end,:) = []; 
        %ground_truth(n+1:end,:) = []; 
    end 
     
    %calculate distances to ground truth over all frames 
    distances = sqrt((positions(:,1) - ground_truth(:,1)).^2 + ... 
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                     (positions(:,2) - ground_truth(:,2)).^2); 
    distances(isnan(distances)) = []; 
     
    %compute precisions 
    for p = 1:max_threshold, 
        precisions(p) = nnz(distances <= p) / numel(distances); 
    end 
     
    averageLocationError = sum(distances)/numel(distances); 
    
    %plot the precisions 
    if show == 1, 
%       figure('Number','off', 'Name',['Precisions - ' title]) 
        grid on; 
        plot(precisions, 'k-', 'LineWidth',2) 
        xlabel('Local error threshold'), ylabel('Precision') 
    end 
     
end 
 

function [ success_rate, OverlapRatio ] = success_plot( positions, 
ground_truth ) 
% positions and ground_truth format: [x,y,w,h] of the top-left point of the 
% bounding box 
  
  
Ratio = bboxOverlapRatio(positions, ground_truth); 
OverlapRatio = diag(Ratio); 
threshold = [0.02:0.02:1]; 
N = size(threshold,2); 
success_rate = zeros(N,1); 
for i = 1:N 
    success_rate(i) = nnz(OverlapRatio >= threshold(i)) / 
numel(OverlapRatio); 
end 
%figure, plot(success_rate, 'k-', 'LineWidth',2); 
end 
 

 

 

 

 


