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A method of window exchange umbrella sampling molecular dynamics simulation is employed for

transmembrane helix assembly. An analytical expression for the average acceptance probability between

neighboring windows is derived and combined with the first passage time optimization method to

predetermine a parameter set in an optimal range. With the parameter set, the method provides a

substantially more efficient sampling of helix-helix interfaces together with the potential of mean force

along the helix-helix distance of a transmembrane helix-dimer model, compared to the umbrella sampling

method.
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Membrane proteins are involved in many vital cellular
processes [1]. Unlike globular proteins, the orientation of
each helix in membrane proteins with respect to membrane
bilayers defines their structures, which is closely related to
their functions. Structures of various polytopic membrane
proteins in detergents and micelles have been determined
by crystallography and spectroscopy. However, it remains
challenging to obtain structural information of membrane
proteins with small numbers of transmembrane (TM)
helices and their oligomers in bilayer environments [2].
Membrane proteins with a single-pass TM helix are abun-
dant, and receptors with a single-pass TM helix make up
about 30% of human TM receptors [1]. In this context, it is
critical to have a reliable computational approach to pro-
vide structural models of these membrane proteins and the
helix association energetics.

In the computational TM-assembly modeling, multiple
degrees of freedom for helix motion, such as helix-helix
distance, crossing angle, and rotation angle along each TM
helical axis, need to be considered. Therefore, the model-
ing itself is computationally intensive even in finding the
interfacial (contact) residues of a simple bitopic TM helix
dimer [3]. Furthermore, in most molecular dynamics (MD)
simulations, it usually has been assumed that the interface
between mutated TM helices resembles that of the wild
type, e.g., the right-handed interface of point mutated
glycophorin A [4]. Without a prior knowledge of the mu-
tant structure, such an assumption may be problematic
because the configurational space sampling (e.g., crossing
and rotation angles) at short or intermediate TM helix
separations would be incomplete due to the strong inter-
actions between the interfacial residues. Replica exchange
(REX) methods [5–8] may overcome such difficulties by
facilitating the sampling with the aid of regular exchange
attempts between replicas at different temperatures. But
these methods generally do not provide the potential of
mean force (PMF) along the reaction coordinate(s), and
their applicability to all-atom explicit lipid bilayers is

limited, in which one can capture realistic helix-helix
interactions. Recently, there has been remarkable progress
in advanced sampling methods [9]. Among them, the
Wang-Landau scheme [10] and the orthogonal space ran-
dom walk (OSRW) strategy [11] are of particular interest.
These methods, in principle, are quite general and can
address all the aforementioned issues. Yet, these methods
require sophisticated recursion procedures, and are there-
fore challenging to implement.
These issues for TM helix assembly can be

addressed by window exchange umbrella sampling MD
(WEUSMD), a variant of Hamiltonian REXMD [12], in
which replicas (i.e., windows) along a certain helix motion
(i.e., reaction coordinate) are exchanged. In particular, we
derived an analytical expression to predetermine the pa-
rameter set in an optimal range, based on the first passage
time optimization for REXMD [13], to make WEUSMD
efficient. Thus, its application is straightforward compared
to the Wang-Landau and OSRW methods. In the follow-
ing, we first describe the analytic expression of the aver-
age acceptance probability between neighboring windows
to determine a parameter set. Then, a practical application
of WEUSMD with an optimized parameter set to a TM
helix-dimer model is presented and discussed.
Let us consider a system consisting of N windows

along a reaction coordinate �. The potential energy of
the ith window with a coordinate set Ri under the win-
dow potential wmð�iÞ is given by UiðRiÞ ¼ U0ðRiÞ þ
wmð�iÞ, where U0 is the unbiased potential energy,
wmð�iÞ ¼ kmð�i � �mÞ2=2, �i � �ðRiÞ, km is the window
force constant, and �m is the target value of the reaction
coordinate. Assuming that the temperature (T) is constant
for all the windows, the canonical distribution of �i

becomes

pmð�iÞ ¼ expf��½W ð�iÞ þ wmð�iÞ�gR
d�i expf��½W ð�iÞ þ wmð�iÞ�g

; (1)
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where � � 1=ðkBTÞ is the inverse temperature, kB is the
Boltzmann constant, and W ð�Þ is the PMF along �
defined by exp½��W ð�Þ� � h�ð�ðRÞ � �Þi.

During a WEUSMD simulation, an exchange between
(neighboring) windows is regularly attempted. The ex-
change between windows i and j under window potentials
wm and wn is accepted or rejected by the Metropolis
criterion, Pij ¼ min½1; expð��Þ� where � ¼ �f½wmð�jÞþ
wnð�iÞ� � ½wmð�iÞ þ wnð�jÞ�g. The average acceptance

probability (Pa) of the exchange can be written as Pa �RR
d�id�jpmð�iÞpnð�jÞPij. One can easily find that the

contributions to Pa from the guaranteed (� � 0) and the
conditional (�> 0) exchanges are formally identical.
Thus, in terms of Eq. (1), Pa can be written as

Pa ¼ 2
ZZ

��0
d�id�jpmð�iÞpnð�jÞ

¼ 2

RR
��0 d�id�je

��½W ð�iÞþW ð�jÞþwmþwn�RR
d�id�je

��½W ð�iÞþW ð�jÞþwmþwn�
: (2)

Here, we omitted �i inwmð�iÞ [�j inwnð�jÞ] for simplicity.

Assuming that [W ð�iÞ þW ð�jÞ] is a slowly varying

function compared to the window potentials in the region
where the majority of �i and �j are populated, the PMF

terms in the numerator and the denominator of Eq. (2) can
be factored out. Since w is a harmonic function, the result-
ing equation becomes an integral of Gaussian functions

Pa ¼
ffiffiffiffiffiffiffiffiffiffiffi
kmkn

p
�kBT

ZZ
��0

d�id�je
��½wmð�iÞþwnð�jÞ�: (3)

The above approximation is reasonable because we con-
sider the exchange between neighboring windows, and the
contribution of integrands in Eq. (2) becomes negligible in
the region where the window potential is sufficiently high.
When km ¼ kn ¼ k, which is the usual case for the um-
brella sampling simulations, an analytic expression for
Eq. (3) can be obtained as

PaðzÞ ¼ erfcðzÞ þ e�z2
X1
j¼0

2F1ð1; 1=2; jþ 2;�1Þffiffiffiffiffiffiffi
2�

p ðjþ 1Þ!2j z2jþ1;

(4)

z ¼ d

ffiffiffiffiffiffiffiffiffiffiffi
k

2kBT

s
; (5)

where d ¼ j�n � �mj, erfcðzÞ � 1� erfðzÞ is the comple-
mentary error function, and

2F1ða; b; c; dÞ ¼
X1
l¼0

ðaÞlðbÞl
ðcÞl

dl

l!
; (6)

with ðaÞl ¼ aðaþ 1Þ � � � ðaþ l� 1Þ. As shown in Fig. 1,
PaðzÞ obtained using Eq. (4) agrees well with the Pa

calculated from WEUSMD simulations of a TM helix-
dimer model (see below). Indeed, Eq. (4) works well for

various systems with different k and d (data not shown),
indicating its general applicability.
To estimate the parameter set in an optimal range for

WEUSMD, we adopt the first passage time optimization
method [13], in which the optimized parameter set is
determined by minimizing the mean round-trip time (�R)
of a replica across temperature space [14,15]. Let us define
the indices of N windows as 0; 1; . . . ; N � 1 (d ¼ �mþ1 �
�m > 0). Then, one can define the even pairs as
ð0; 1Þ; ð2; 3Þ; . . . and the odd pairs as ð1; 2Þ; ð3; 4Þ; . . . . At
each step, the exchange pairs can be chosen either alter-
natively between the even and odd sequential pairs or
randomly. In this study, only the former exchange-pair
selection scheme is considered because it shows better
performance for temperature REXMD (TREXMD) [14].
The �R of a window along � is minimized when

@�R
@z

/ @

@z

�
1

z2

�
1

PaðzÞ � 1

��
¼ 0: (7)

The solution of Eq. (7) is zopt ¼ 0:8643, and the corre-

sponding Pa is 0.3875. With zopt, the parameter set for

WEUSMD (i.e., the relationship between d and k) is read-
ily available from Eq. (5).
Using the optimal parameter set, we have applied

WEUSMD to a pVNVV TM helix-dimer model [16] under
the helix-helix distance restraint potential [17] and com-
pared various results with those obtained from the
TREXMD and USMD simulations to illustrate the efficacy
and advantage of WEUSMD in TM helix assembly. The
sequence of pVNVV is LLLLV LLLLL LNLLL LLLVL
LLLLL VL, which is a membrane-soluble analogue of
GCN4 leucine zipper (PDB:2ZTA) [18]. The helix-dimer
interface involves hydrogen bonds (H bonds) between Asn
residues [19,20]. The helix-helix distance (rHH) and cross-
ing angle (�) of the pVNVV dimer generated based on the
leucine zipper are 9.23 Å and 29.3�, respectively [21]. To
get the reference data, a 100-ns TREXMD simulation was
performed with 16 replicas in a temperature range of 300–

550 K starting from the configuration whose rHH ¼ 20 �A
and � ¼ 29:3� (left-handed dimer). The initial configura-
tions for WEUSMD and USMD were generated by trans-
lating each helix along rHH and then rotating one helix
randomly along its helical axis in order to randomize the
TM helix contact interface. A total of 72 windows whose

FIG. 1 (color online). The average acceptance probability
PaðzÞ [Eq. (4)] compared with Pa calculated from the
WEUSMD simulation for a pVNVV TM helix-dimer model.
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� ¼ �29:3� (right-handed dimer) were generated in

a rHH range of 6.8–21 Å with 0.2 Å interval. With d ¼
0:2 �A and zopt ¼ 0:8643, an optimal force constant of k ¼
22 kcal=ðmol � �A2Þ was determined from Eq. (5) for the
helix-helix distance restraint potential to restrain rHH
around each target value [17]. In this study, for computa-
tional efficiency, the EEF1=IMM1 implicit membrane
model with a hydrophobic thickness of 23 Å was used to
mimic a dimyristoylphosphatidylcholine (DMPC) mem-
brane bilayer [22]. For each system, 100-ns Langevin
dynamics simulations were performed. All simulations
were performed using CHARMM [23] with the default
IMM1 option, and window exchanges were controlled by
the MMTSB toolset [24]. A time step of 2 fs was used for all
the simulations with the SHAKE algorithm. The analysis of
TREXMD was done for the last 90-ns trajectory, and those
of WEUSMD and USMD were performed for the last
70-ns trajectory.

The population of the configuration space sampled at
300 K from TREXMD is shown as a function of rHH and
�, i.e., PðrHH;�Þ, in Fig. 2(a), and is bounded by

½9 �A; 11 �A� � ½0�; 40�� with a peak around rHH ¼
10:1 �A and � ¼ 16:4�. In the same panel, the PMFs as a
function of rHH from WEUSMD and USMD are shown,
which were calculated by the integration of the mean force
acting along rHH [16]. Each PMF minimum agrees well
with the peak of PðrHH;�Þ, and the association free energy
�G is �5:83 kcal=mol (WEUSMD) and �5:89 kcal=mol
(USMD) in the IMM1 model. The thermally accessible

range of rHH, ½9 �A; 11 �A�, sampled in TREXMD, corre-
sponds to the range where jW ðrHHÞ � �Gj � 2kBT for
WEUSMD and USMD. While both PMFs appear to be

similar, the error bars up to rHH ¼ 14 �A are significantly
larger in the USMD PMF than the WEUSMD PMF, in-
dicating that the conformational and configurational sam-
pling at short or intermediate rHH is more efficient in
WEUSMD and thus the PMF converges faster. Indeed,
the 10-ns block average WEUSMD PMFs converged to
the average PMF within 0:48 kcal=mol after the first 10-ns
simulation, while the block average USMD PMFs showed

a deviation up to 1:41 kcal=mol even after 100-ns simula-
tions. In addition, a small deviation between the

WEUSMD and USMD PMFs around rHH ¼ 14 �A arises
from the incomplete sampling of USMD (see below).
The sampling efficiency in WEUSMD is illustrated in

Figs. 2(b) and 2(c). In Fig. 2(b), USMD samples wide

helix-helix configurations at rHH > 14 �A where two TM
helices do not strongly interact. But the configurational
sampling in USMD is very restricted and strongly de-

pendent on the initial configurations at rHH < 14 �A (no-
tably in the thermally accessible rHH) due to the strong
interactions between interfacial residues. As shown in
Fig. 2(c), however, the configurations in the thermally
accessible rHH from WEUSMD agree well with those
from TREXMD.
The enhanced sampling efficiency in WEUSMD arises

from the fact that the configurations at different rHH can be
exchanged, which helps the system at each window over-
come certain hidden (artificial) barriers introduced by the
restraint potential and sample energetically favorable con-
figurations. Therefore, other degrees of freedom for helix
motion (�, helix rotation angles, etc.) can be sampled
more efficiently by regular exchanges between windows
along � (rHH in this study). This feature is particularly
important in TM helix assembly study for finding both
critical TM-TM interfacial residues and the association
energetics. In the case of the pVNVV dimer, since the
Asn residues at the bilayer center can form H bonds, it is
critical to examine how different sampling approaches
describe such important interactions. Since the Asn resi-
dues show the closest contact in the thermally accessible
rHH, we simply consider the Asn side chain rotation angles
�1 and �2 [see Fig. 3(a) for definition]. The population of
�1 and �2, Pð�1; �2Þ, from TREXMD in Fig. 3(b) shows
three distinct peaks around ð�1; �2Þ ¼ ð�30�; 30�Þ,
ð�30�;�30�Þ, and ð30�;�30�Þ with a minor peak around
ð30�; 30�Þ. As shown in Fig. 3(c), Pð�1; �2Þ sampled in
WEUSMD agrees well with the TREXMD result.
However, Pð�1; �2Þ sampled in USMD is significantly
different [Fig. 3(d)]. These results clearly demonstrate

FIG. 2 (color online). (a) The population of rHH and�, PðrHH;�Þ, sampled in TREXMD (density map) and the PMF as a function of
rHH from WEUSMD and USMD (solid lines). PðrHH;�Þ was calculated using the ensemble structures at 300 K with the bin widths
�rHH ¼ 0:1 �A and �� ¼ 2�, which are normalized by the highest population. The error bars for the PMFs are the standard
deviations, which were calculated from the block averages of seven 10-ns trajectories. The population PðrHH;�Þ from (b) USMD and
(c) WEUSMD were calculated over all the windows with the same bin widths as those for TREXMD.
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that WEUSMD can be an efficient method in finding
optimal interfaces for TM helix assembly (in a given
potential energy function) due to the facilitated sampling
of unrestrained degrees of freedom for helix motion.

In summary, the application of WEUSMD to a pVNVV
TM dimer model demonstrates its efficacy and advantage
in searching critical interfaces for TM helix assembly (in a
given potential energy function) without sacrificing the
availability of the PMF along the reaction coordinate for
helix motion. Starting from an initially randomized TM-
TM orientation, WEUSMD was able to sample very simi-
lar H-bonding patterns as in TREXMD, in addition to the
PMF along the helix-helix distance. Although the PMF
calculated from USMD is comparable to that from
WEUSMD, USMD was not able to explore the configura-
tion space for optimal interfaces of helix assembly due to
the strong interactions between residues at short and inter-
mediate separations. As the terminology implies,
WEUSMD combines the advantages of REXMD and
USMD. A notable advantage of WEUSMD is that it does
not require extra simulations, which is typical in TREXMD
(replicas at different T than that of interest). In addition,
with a predetermined parameter set in an optimal range by
Eqs. (5) and (7), the iterative determination of an optimal
parameter set can be avoided, which makes its application
simple and straightforward. We have developed various
helix restraint potentials [25,26]; therefore, it is possible
to use any of these restraints or their combinations in
WEUSMD for efficient and important sampling, especially
in all-atom explicit membranes, to dissect the helix-helix
and helix-lipid contributions along various helix motions
in lipid membranes.
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FIG. 3 (color online). (a) Asn side chain rotational angles �1 and �2. For two helices i and j, �1 is defined by the angle between

qðjÞ � qðiÞ and rðiÞ� � qðiÞ, where qðiÞ and qðjÞ are the projections of rðiÞ� , the Asn C� position in helix i, and rðjÞ� onto their helix axes,

respectively. �2 is defined similarly. The population of �1 and �2, Pð�1; �2Þ, sampled from (b) TREXMD, (c) WEUSMD, and
(d) USMD. In the calculation of Pð�1; �2Þ for WEUSMD and USMD, only the configurations with rHH in the thermally accessible
range, ½9 �A; 11 �A�, were considered.
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