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Abstract

MULTI-AGENT systems are a common paradigm for building distributed sys-

tems in different domains such as networking, health care, swarm sensing,

robotics, and transportation. Systems are usually designed or adjusted in order to re-

flect the performance trade-offs made according to the characteristics of the mission

requirement.

Research has acknowledged the crucial role that communication plays in solv-

ing many performance problems. Conversely, research efforts that address commu-

nication decisions are usually designed and evaluated with respect to a single predeter-

mined performance goal. This work introduces Goal-Driven Communication, where

communication in a multi-agent system is determined according to flexible perfor-

mance goals.

This work proposes an evolutionary approach that, given a performance goal,

produces a communication strategy that can improve a multi-agent system's perfor-

mance with respect to the desired goal. The evolved strategy determines what, when,

and to whom the agents communicate. The proposed approach further enables tun-

ing the trade-off between the performance goal and communication cost, to produce a

strategy that achieves a good balance between the two objectives, according the system

designer's needs.
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CHAPTER 1

Introduction

1.1 Motivation

THE PRIMARY goal of research in many computing systems is to improve performance (Kin-

ney & Tsatsoulis, 1998). In multi-agent systems (MAS), however, performance can be mea-

sured with respect to multiple, conflicting metrics, which can be viewed as different dimensions of

the system's performance. The consideration and importance of each metric depend merely on the

characteristics of the application domain and preferences of the system's designer.

Multi-agent systems have been commonly used for modeling and solving distributed and com-

plex problems in different domains such as networking, health care, swarm sensing, robotics, trans-

portation, and military. These domains vary in their specifications, requirements, and costs, and

consequently in their performance goals. For example, some application domains are time-critical

such as robot rescuers, where minimizing time has the first performance priority. In such domains

the system designer might be willing to increase communication and energy consumption if it can

help save more lives (Preist & Pearson, 1998). However, other applications are energy-critical,

such as space/undersea operations, where energy is limited, and hence agents are required to com-

1



plete their assigned task with the minimum possible amount of energy (Balch & Arkin, 1994).

Therefore, the choice of a performance goal in MAS is a crucial decision to make (Kinney &

Tsatsoulis, 1998; Balch & Arkin, 1994).

A powerful tool to customize performance is communication, which facilitates coordination

of agents' actions. A number of research efforts have investigated the importance of communi-

cation and its impact on the performance of multi-agent systems. Studies are usually conducted

by varying the communication conditions and testing the performance of the system. The work

in (Balch & Arkin, 1994) and (Wei et al., 2014), carried out experiments to study the effect of

communicating different types of information when agents are assigned different tasks. As shown

in Figure 1.1a, the process starts by manually determining the type of information that agents are

allowed to communicate, namely, none, only goals, only beliefs, or goals and beliefs. Then, the av-

erage performance of the system over multiple runs is calculated with respect to different metrics

such as time to complete, interference, communication efficiency, and duplication of efforts. In

their work, whenever agents are allowed to communicate information, they broadcast every value

update once obtained. Results suggested that varying the type of information that agents commu-

nicate can significantly affect the performance of the multi-agent system with respect to different

metrics, especially if no implicit communication is present. Moreover, their results showed that

more communication does not always guarantee better performance, which has a crucial implica-

tion. It indicates that even in applications where communication is free, system designers should

not allow full communication and assume that the system is performing at its best level.

Another related work, (Dowell & Stephens, 2001), investigated the effect of changes in co-

ordination and communication parameters on the multi-agent performance with respect to time,

number of moves, and the weighted linear combination of the average time and maximum time for

three teams involved in multiple team pursuit problem. The authors' goal was to manually deter-

mine improved values for the parameters by running experiments with variant parameters' values.

Three parameters were considered, one communication parameter, the n-th move value, represent-

ing the number of moves a team must wait before trying to communicate, and two coordination

2



parameters, namely time-out counter, and time-distance threshold. Improved values for the param-

eters were identified, yet they only outperformed the other values considered, and hence cannot

be considered the best values nor the result performance as the best performance. Another work

by (Rybski et al., 2007) compared the time that it took a group of robots to perform a forage

task with three implicit communication strategies, namely, no communication, reflexive commu-

nication (state communication), and deliberative communication (target location communication).

Moreover, (Hurt, 2005) compared the performance of two bee-inspired communication strategies,

namely, hives communication and site communication, and (Conforth & Meng, 2008) varied the

amount of communication (none, low, or high) and compared the communication benefits.

State of the art research has made progress in understanding the impact of communication

variation on MAS performance, as well as emphasized the fact that system designers must choose

a performance goal. However, results obtained are only consequences of manual communication

modification, which open the door to many questions. For further explanation, we assume that the

system has the best performance with respect to time when agents are allowed to communicate

their beliefs. The following questions can be asked:

• Is it really necessary to communicate all agents beliefs in order to achieve the reported time

performance?

• Are the communicated beliefs the best set of information instances that can be communicated

to improve the system's performance with respect to time?

• Is it really necessary to broadcast all value updates of the communicated information in-

stances to achieve the reported good performance?

• Is this the best performance that the system can achieve with respect to time?

The first question examines the contribution of the communicated information instances in

minimizing the time that agents take to complete the assigned task. We argue that, for some cases,

it is likely that only a subset of the communicated information had considerably contributed in

3



helping agents finish the task in shorter time. This takes us to the second question, which suggests

that since more communication does not guarantee better performance, it might be the case that

restricting communication to only a subset of the beliefs can further decrease the time to complete

the task. Likewise, combining a subset of the beliefs with a subset of the goals can probably result

in further improved performance. The third question concerns the communication efficiency, as

it argues that the same good performance can possibly be achieved with less communication by

combining values into one message or communicating only important value updates to recipients

who can make use of them.

The fourth question is specifically inspiring to us. It implies that better performance that re-

sults from manually designed communication decisions does not necessarily represent the best

performance of the system. Going back to the point where we emphasized the fact that system

designers must decide on their performance goal based on the domain's characteristics, it would

be extremely useful if the process presented in Figure 1.a can be reversed. Therefore, rather than

manually creating different communication conditions, the system designer can start from select-

ing the performance goal for one task, feed it to some learning system, and then results determine

what, when, and to whom information instances should be communicated in order to achieve the

best performance of the system with respect to the selected goal (Figure 1.1b).

The prominence of this approach comes from the fact that information instances, which can

be obtained by agents during task execution, are of varying quality, and each information instance

has changing effects on the performance with respect to different metrics. Besides, communica-

tion is usually costly, and system designers have specific performance preferences according to

the domain's requirements. This lends itself well to the concept of goal-driven communication.

Therefore, depending on the performance goal, the communication strategy should address the

question of whether each information instance should be communicated, and if so, the strategy

should determine when and to whom it should be communicated.
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(a) Investigating the impact of varying communica-
tion conditions on MAS performance, e.g. (Balch &
Arkin, 1994; Wei et al., 2014).

(b) Learning a goal-driven communication strategy
for improving MAS performance with respect to a
user-defined goal.

Figure 1.1: Reversal of the (a) communication-to-performance investigation process to obtain (b)
performance-to-communication learning process.

1.2 Problem Statement

Given a set of k information instances, a performance goal P, and performance goal's weight α ,

determine what, when, and to whom information instances should be communicated among agents

that achieve reasonable system performance with respect to P, and a good trade-off, according to

α , between the communication cost and performance with respect to P.

1.3 Research Hypothesis

We hypothesize that communication strategies in multi-agent systems, namely what, when, and

to whom agents communicate, can be learned in order to improve the performance of the system

with respect to flexible performance goals, resulting in learning of goal-driven communication

strategies.

In order to test the research hypothesis, we will utilize Genetic Algorithms to learn goal-driven
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communication strategies. It is expected that the evolved strategies will vary according to the

performance goals, and the performance of the multi-agent system will improve when using the

corresponding communication strategies.

1.4 Contributions

The work in this dissertation draws on scholarly work that examine the impact of communication

variation on performance, and will contribute to addressing multi-agent communication decisions

as well as performance improvements. The practical contributions of proposing, designing, and

evaluating an evolutionary learning approach for goal-driven multi-agent communication are five-

fold:

1. The learned communication strategy guides agents on all their communication decisions.

2. The proposed approach allows system designers to easily vary the goal and automatically

obtain the corresponding communication strategy. Therefore, the system designer does not

need to know or analyze the properties of each information instance and its effect on the

performance goal of the system, which can eliminate a significant design task in developing

a multi-agent system.

3. The approach provides a tool for customizing the tradeoff between the system's performance

and communication cost.

4. The proposed approach can assist system designers to figure out the potentially best perfor-

mance that the system can achieve with respect to a specific goal, such as the minimum time

or energy that a task takes to complete. Therefore, a system designer will be able to choose

among the performance of the system with multiple communication strategies of varying

goals and select the one that has the best fit to the system's needs.

5. Analysis of the system's performance with respect to different performance metrics while
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executing communication strategies of varying goals and under different conditions can pro-

vide insights into how the different performance metrics are related to each other.

The theoretical contributions of this work are as follows:

1. We demonstrate that what, when, and to whom agents communicate, and consequently their

performance, can vary significantly when different goals or parameter settings are applied.

2. We show under which conditions a communication strategy with goal P1 may outperform

another with goal P2, with respect to P2.

3. We show under which conditions increasing performance goal's weight does not result in

better performance with respect to the desired goal.

4. We classify information instances into three categories according to their influence on a

performance goal, namely favorable, neutral, and unfavorable information instances.

We will revisit, later in this dissertation, some of the contributions in each category to explain

in more details how they have been accomplished.

1.5 Dissertation Structure

This dissertation is organized into seven chapters:

• Chapter 2 provides background information on multi-agent systems and Genetic Algorithms

(GA), and presents an overview of related work.

• Chapter 3 defines communication strategy, and its components, as well as analyzes the

problem of designing a goal-driven communication strategy for a multi-agent system, and

presents how we utilize a genetic algorithm to design a learning system that automatically

generates an effective goal-driven communication strategy.
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• Chapter 4 introduces our two case studies, and discusses the research methodology that we

adopt to conduct this research. It also explains parallelization of GA.

• Chapter 5 provides details on the Wumpus World, the first multi-agent case study, and

presents the results we obtained for this domain along with analysis.

• Chapter 6 presents the second multi-agent case study, Collective Construction, as well as the

results obtained from the application of the proposed approach.

• Chapter 7 provides concluding remarks. We further describe the contributions, limitations,

and future work.
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CHAPTER 2

Background and Related Work

2.1 Multi-Agent Systems (MAS)

Whenever a new concept emerges in Computer Science, efforts are directed towards defining it,

and the field of Multi-Agent Systems (MAS) is not an exception. Multi-agent systems are classi-

fied as distributed systems. Yet, characteristics of the computational entity, i.e., agent, that consti-

tutes multi-agent systems are what distinguish the two paradigms. One of the popular definitions

of MAS is that of (Barbuceanu & Fox, 1996), which states “a Multi-Agent System is a loosely

coupled network of software agents that interact to solve problems that are beyond the individual

capacities or knowledge of each problem solver" . The main components of a MAS are agents and

an environment.

Environments are characterized by their observability, determinism, episodism, stasis, and dis-

creteness (Russell & Norvig, 2003). Variations in these characteristics result in different types of

environments, which is the main factor in deciding on a solution method. If an agent is operating

in a fully observable environment, it can observe the complete state (has a global view) of the

environment at any point in time. A deterministic environment (versus stochastic) is completely
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predictable since the state is determined entirely by the current state and agents' actions. Further,

episodic environment divides the problem into independent episodes, where an episode consists of

an agent sensing the environment followed by its action. When the environment's states are finite,

we say that the environment is discrete. Yet, we say that an environment is static if it remains

unchanged while an agent is acting.

Agents are situated in the environment, which they perceive and interact with. Several defini-

tions of an agent have been proposed in the past, such as(Russell, 1997; Shoham, 1993; Franklin &

Graesser, 1996). However, the main agent’s properties are included in the definition by (Wooldridge

& Jennings, 1994), which suggests that an agent is “a hardware or (more usually) a software-based

computer system that enjoys the following properties: autonomy - agents operate without the di-

rect intervention of humans or others, and have some kind of control over their actions and internal

state; social ability - agents interact with other agents (and possibly humans) via some kind of

agent-communication language; reactivity: agents perceive their environment and respond in a

timely fashion to changes that occur in it; pro-activeness: agents do not simply act in response to

their environment, they are able to exhibit goal-directed behavior by taking initiative". At any point

in time, an agent’s decision and action (output) depend on several inputs including prior knowledge

of the environment and other agents, observations, and goals. When communication is allowed,

information received from others are also used to make decisions. Agents can be divided into many

types with variant complexity, depending on how they perceive and interact with the environment

(Russell & Norvig, 2003). The first and simplest type, known as Simple Reflex Agent, operates

successfully in only fully observable environments. The behavior of this type of agent is based

on condition-action rules, where conditions are the current percept. When the percept’s history is

considered, agents need to maintain an internal model of the world, hence the Model-based Reflex

Agents. Unlike simple agents, model-based agents can operate successfully in partially observ-

able environments. The third type of agents are further enhanced by including goal information.

Goal-based agents are aware of the goal states, which allow them to evaluate possible decisions

and choose the one that yields a goal state. Utility-based agents can further compute a utility value
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of each state, which measures how happy the agent would be in the corresponding state, and hence

its goal is to maximize its happiness. Learning Agents can operate in unknown environment and

improve their performance using feedback for behavior.

2.2 Communication in MAS

Empowering artificial agents with the ability to communicate with each other involves tackling

multiple problems. For instance, similar to humans, communicating agents need a mutual lan-

guage to be able to understand each other. Agents also need the ability to decide when they should

talk, to whom, and what to say, as communication incurs cost. Research efforts exist in the liter-

ature that focus on solving these communication problems. In this section, we shed light on the

main communication challenges in multi-agent systems; namely, timing, selection, language, pro-

tocols, interpretation, and ambiguity, and we discuss the corresponding approaches that have been

proposed in the literature for solving each problem.

2.2.1 Communication Timing

At each time-step, an agent makes a decision as to whether to communicate or not. This decision is

dependent on the benefit of communicating the available information at the current time-step to the

overall performance. Yet, this communication decision is critical because over time, information

may lose its value. For example, sending information at the current time-step could save a team

member from re-deriving the same information, or it could correct old no-longer-true information,

while delaying the communication decision may result in the team member obtaining the informa-

tion by itself. Factors to be considered for this decision are not only whether communication is

beneficial, but also whether it is worthwhile to communicate, given the communication cost. The

trade-off between communication benefit and cost is further discussed in a later section.

Multiple approaches have been proposed in the literature to guide agents on when to commu-

nicate. Some works let agents communicate only at fixed predetermined points in time (Speranzon
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& Johansson, 2003), or if a specific situation takes place. Examples of the latter include if history

inconsistency occurs (Wu et al., 2009), when the agent's current plan cannot be achieved (Xuan

et al., 2000), when their sub-goals are achieved (Goldman & Zilberstein, 2003), or when an agent

has to backtrack, or after assigning a certain number of variables (Mammen & Lesser, 1997). In the

work by (Xuan et al., 2001), all agents are enforced to synchronize their local states if at least one

agent decides to communicate. A research effort by (Zhang, 2007) adopted a decision-theoretic ap-

proach to allow agents to reason online about their communication decision, based on two factors

to value information: timeliness (using the most recent received but potentially outdated value),

and relevance (waiting for the new value). In this approach, researchers designed multiple commu-

nication strategies for information provider agents as well as information needer agents to choose

from. A provider agent can either ProactiveTell or Silence, for information obtained, or it can

Reply, WaitUntilNext, or Reject, for each request received from others. A needer agent can Ac-

tiveAsk, Silence, or Wait, for information needed, or it can either Accept or RejectNeed received

information.

One of the popular decision-theoretic models of multi-agent decision making is Dec-MDP,

whose solution is intractable due to the high complexity (NEXP-complete) (Bernstein et al., 2002).

Therefore, wide range of research efforts have focused on sub-classes of the problem that have less

complexity, such as (Becker et al., 2004a) and (Becker et al., 2004b). Also, researchers usu-

ally base their work on one or more simplified assumptions to reduce computation. In the work

by (Roth, 2007), an algorithm called ACE_PJB_COMM is proposed to provide agents with the

heuristic to decide when to communicate. The algorithm is designed such that an agent should

communicate only when the communicated information is likely to change the joint action of the

team, which is accessible to all agents. Specifically, this joint action change has to increase the

expected reward by more than the cost of the communication for the agent to communicate (Roth,

2007). Furthermore, (Mostafa & Lesser, 2009) focused on problems with structured interactions

and introduced a new model, Event-Driven Interactions with Complex Rewards (EDI-CR) for of-

fline communication planning. Their work proposed heuristics that analyze interactions among
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the agents' sub-problems and identify potential communication points. The proposed heuristics

include adding communication after critical actions, after actions with very different outcomes,

and lastly where it causes most belief change. The work by (Abdelmoumène & Belleili, 2015)

exploits problem structure in order to limit communication decisions in theoretic decision models

that operate under time pressure having uncertain actions durations. Some researchers borrow in-

spirations from other areas to design communication-timing heuristics. Examples include the work

by (Reddy et al., 2012), which uses a game theory approach and (Dutta et al., 2007), which uses

information redundancy to address when agents should communicate. The computation, however,

is usually based on myopic assumptions, where each agent evaluates the benefit of communication

in isolation for 1-step horizon assuming others never communicate.

Another direction of research is to let agents learn when to communicate. In the work of

(Kinney & Tsatsoulis, 1998), agents learn the frequency with which information should be com-

municated to a neighbor agent using a system of equations that generates probability tables. More-

over, (Ghavamzadeh & Mahadevan, 2004) introduced Com-Cooperative Hierarchical Reinforce-

ment Learning (HRL) to allow agents make rational communication timing decisions as well as

action decisions. Using the HRL, the main task, to be completed by agents, is broken down by the

system designer into subtasks; each with a set of termination states. Subtasks, whose performance

can improve by agents cooperation, are called cooperation subtasks and placed at a higher level of

the hierarchy, called the cooperative level. However, subtasks that need no cooperation are placed

a lower level in the hierarchy. A communication level is added to the task hierarchy under each

cooperation level, and a multi-agent policy is defined for cooperative tasks, while a single-agent

policy is defined for non-cooperative tasks. The authors proposed an action-value function for

executing a subtask in the context of a parent task when the agent is in a state s, which can be

used to decide whether to communicate (perform the communication subtask) or not. The function

sums the value of executing the sub-task and the value of completing the parent task afterward.

The decision is made by comparing the value of the function with communication and without

communication.
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2.2.2 Communication Selection

Communication selection refers to selecting information to communicate, i.e., what to commu-

nicate, and selecting communication recipients, i.e., who to communicate with. During task ex-

ecution, agents can obtain different types of information, such as observations, state, results of

subtasks, and goals. Deciding which of the obtained information is essential to communicate and

to whom it is essential is an important and challenging problem. It is important because if an agent

is unable to make such communication decisions, then whenever it decides to communicate, it

will broadcast its whole information history. The problem is also challenging because agents need

information about their teammates' states in order to be able to make such decisions, which is, in

practice, inaccessible.

One common approach to the selection problem is synchronization, which works as follows.

If at least one agent decides to communicate, then all agents are forced to communicate their

information with their teammates. The communicated information include only newly obtained

information since the last communication. This approach has been adopted by many researchers

(Xuan et al., 2001; Carlin & Zilberstein, 2009; Wu et al., 2009) because it has the advantage of

ensuring that agents share the same belief about the world, whenever communication takes place.

Some researchers overlook the recipients' selection problem and assume that whenever an agent

chooses to communicate, it broadcasts its message to all teammates (Goldman & Zilberstein, 2003;

Roth et al., 2006; Reddy et al., 2012). Although some researchers adopted this strategy, it proved

to be ineffective because recipients may not need the communicated information, or agents may

communicate duplicated information, and hence waste communication resources.

The work by (Kinney & Tsatsoulis, 1998) assumed that information is classified into multiple

classes. The authors proposed an approach to allow agents learn from each class of information,

whether to communicate or not and to whom. This is achieved by having agents send feedback

about received information to the sender. Moreover, (Roth, 2007) proposed an algorithm called

Selective ACE_PJB_COMM, which works as follows. The algorithm takes as input two parame-
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ters k and n, where k is the maximum number of observations that can be communicated and n is

the frequency with which agents can communicate. The algorithm starts with checking whether

communication is allowed in the current time-step by comparing it with n, and if so, the algo-

rithm uses a hill-climbing heuristic to choose at most k observations that are most beneficial if

communicated. In the work by (Zhang, 2007), agents are classified to either provider of or needer

for each information instance, hence each agent applies the utility function for each information

to choose a communication strategy based on whether it is a provider or a needer. Furthermore,

(Reddy et al., 2012) uses a game theory approach to address what agents should communicate by

modeling communication as an extensive form game.

2.2.3 Communication Language and Protocol

Early research efforts in the field of communication in MAS were interested in formalizing and

producing standards to facilitate agents' communication. This is important to allow heterogeneous

agents that are developed by different designers and/or live in different environments to commu-

nicate. Most of the concepts used were inspired by research in human communication, of which

the most fundamental is Speech Act Theory (Austin & Urmson, 1962). This theory explains how

utterance is used to achieve goals and intentions, and it divides communication messages into dif-

ferent types such as inform, query, answer, request or command, promise or offer, acknowledge,

and share. (Searle, 1976) introduced Indirect Speech Acts, which emphasizes the psychological in-

terpretation of speech acts and classifies them as representative, commissive, directive, declarative,

and expressive.

There are mainly two common standard languages for MAS that have been developed in the

literature: Agent Communication Language (ACL), developed by the Foundation for Intelligent

Physical Agents (FIPA-ACL) (for Intelligent Physical Agents, 2002), and Knowledge Query and

Manipulation Language (KQML) (Finin et al., 1994). Both languages rely on Speech Act Theory

(Searle, 1976). The main idea is that the different types of messages that agents exchange during

communication are based on performatives proposed in Speech Act Theory (Chopra et al., 2013).
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Different performatives have been proposed for each language, and for each message structure, a

communication protocol is designed. Examples of FIPA-ACL performatives include but are not

limited to inform, request, confirm, cancel, agree, propose, and refuse. A message in FIPA-ACL is

structured to include parameters such as sender, receiver, content, reply-with, reply-by, in-reply-to,

language, ontology, protocol, and conversation-id. Communication protocols define the flow of

messages between two communicating agents for a specific purpose. More background, review,

and critique of the literature of Agents' standard languages can be found in (Dignum, 2004; Dignum

& Greaves, 2000; Singh, 2003)

What is more interesting than manually designing communication languages and protocols is

to learn them. A large number of research efforts exist in the literature that propose and evaluate

algorithms for learning communication language and protocols. For example, (Mackin & Tazaki,

2000) proposed an approach to evolve a communication protocol for negotiating agents using Ge-

netic Programming (GP) in a multi-agent transaction system (e-commerce). The system consists of

two types of agents: client agents and service provider agents, which negotiate and trade multiple

different services. In their work, GP is used to evolve two programs for the negotiation process,

message construction program (sender action), and messages handling program (receiver reaction).

While a timer call is used to decide when the agents will execute the former program, receiving a

message calls for executing the later program. If an agent decides to send a message, it can send

it either to a specific agent or can use a pheromone model to leave a message object recognized by

only agents in a specific surrounding domain. The fitness function of the GP computes the value

of services received by the client agents. This work was extended in (Mackin & Tazaki, 2002) to

evolve multiple negotiation protocols for agents with different objectives. Another example is the

work by (Abdullah, 2005), where communication protocols are generated by learning performa-

tives of ACL messages, performed in two steps. First, agents' conversations are transformed into

markup agent communication language. Next, the language is used to develop communication

protocols. Other research efforts have focused on learning a mutual language among agents. Ex-

amples include the work by (Giles & Jim, 2002; Froese, 2003; Khasteh et al., 2006b; Rawal et al.,
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2012; Gmytrasiewicz et al., 2002), where evolution is utilized to allow agents to learn a mutual

language. A good source in this area is the work by (Bussink, 2004), which compares between

communication protocols and language evolution in MAS.

2.2.4 Communication Interpretation and Ambiguity

This topic concerns the meaning of messages that agents exchange. Similar to humans, misunder-

standing or misinterpretation of the intended meaning can occur between communicating agents,

even if a mutual language exists. One reason that may cause misunderstanding is when agents

are facing a new situation, such as recognizing a new object (Allen et al., 2005). Ambiguity can

occur when a message carries multiple meanings. Existing of misinterpretation and/or ambiguity

among agents may result in miscoordination and low overall performance (Goldman et al., 2004).

Some works study the problem of messages misinterpretation. For example, the work by (Allen

et al., 2005) relates to messages' meaning as the recipients' reaction to them. The authors compute

the degree to which a message recipient understands the sender using messages that the receiver

is likely to send. Specifically, the meaning of a message received is a distribution over the recip-

ient's own messages. Moreover, in the work by (Goldman et al., 2004), the language spoken by

the sender may not be completely understood by the recipient. Reinforcement learning is used to

enable agents learn each other's languages. Each agent has a translation table, where rows are pos-

sible meanings and columns are received messages. Once an agent receives a message, it tries to

interpret it by computing the probability distribution over possible meanings of its own language.

Depending on the meaning, the agent takes an action and receives a reward, which is used to adjust

the translation table. Furthermore, (Wang & Gasser, 2002) introduced a machine learning tech-

nique called Mutual Online Concept Learning (MOCL), where each agent can play a teacher, who

teaches a concept, and a learner, who learns a concept. The learning framework consists of the

following elements: concept (weight vector/function), instances (inputs to the concept), instance-

producing mechanism (given a concept, produce an instance), instance interpreting mechanism

(given instance, interpret using function to produce a value), and concept adaption mechanism (or
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online concept learning, given an instance from another agent, adapt the concept). The learning

process takes place as follows. A teacher chooses a label in the range {-1,1}, produces a consistent

instance, and sends it to the learner. Next, the learner predicts a label for the instance and sends it

to the teacher, who in turn sends a feedback. Then, the learner updates his concept based on the

feedback. In the work by (Kvasnicka & Pospichal, 1999), a listener agent decodes the received

message and adapts its Artificial Neural Network (ANN) to decrease the difference between the

speaker and listener meaning vector of the message. A Genetic Algorithm is utilized to evolve

mutual pairwise communication.

In short, existing solutions for the misinterpretation and ambiguity problems in multi-agent

systems are based on feedback from either a reward function or a teacher. When a reward function

is used, usually interpretation of a message is viewed as the reaction of the agent to receiving a

message, hence the receiver should interpret the message to the meaning that results in actions that

maximize the reward function. However, when a teacher gives feedback, the specific meaning of

the teacher should be predicted in order to achieve a successful interpretation.

2.3 Genetic Algorithm

Genetic Algorithm (Holland, 1975), is the most common algorithm in the Evolutionary Algorithm

(EA) family. Unlike Genetic Programming (GP), where trees are used to represent solution can-

didates, GA's solution candidates are represented by a string of genes called chromosomes, which

can take on binary, real, integer, or other forms of values. The representation of the chromosomes

is problem-dependent, and can basically be in any format as long as it represents all properties of

candidate solutions. Besides the genes' values, the position of the genes can be used to encode

some features of the solution (as in, for example, (Wu et al., 2004)), hence permutations of the

same chromosome represent different solutions. Moreover, depending on the problem, solutions

can be of fixed or varying length.

There are mainly two different implementations of Genetic Algorithm (GA): generational and
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steady state (Noever & Baskaran, 1992). The main distinction between the two is the reproduc-

tion method. Generational GA replaces the whole or most of the population at each generation

by performing a large number of crossover and mutation, which produce offsprings that replace

individuals in the original population. However, steady-state GA replaces only a few individu-

als, usually two, by performing crossover and mutation and producing two offsprings (Syswerda,

1991). In the following sections, we explain each step in the evolution process using GA, and

provide a short review of the literature for each step.

2.3.1 Principle of Evolution

Evolutionary Algorithm (EA) is a family of algorithms that borrow inspirations from the theory of

evolution by (Darwin, 1859). Evolution is the slow and gradual modification of the ancestors' char-

acteristics to generate descendants. A key mechanism in evolution is natural selection, by which

better or fitted individuals survive, as opposed to mechanisms used in other learning algorithms,

such as reinforcement (Blute, 1979). Evolutionary algorithms are defined as generic, population-

based, meta-heuristic optimization algorithms (Bäck, 1996), which have been introduced to solve

complex optimization problems. They are generic because, unlike other algorithms such as gra-

dient descent that assumes differentiable function, EA makes no assumptions about the function

landscape, and hence can be applied to any problem, (Potter, 1992). Moreover, EA are population-

based since they evolve (or improve) a population of solution candidates, in contrast to algorithms

that try to improve a single solution such as simulated annealing. EA includes multiple different

algorithms that can be applied to problems of varying types. Examples include but are not limited

to Genetic Algorithms (GA), Genetic Programming (GP), Evolutionary Programming (EP), and

Evolution Strategy (ES). In the following section, we focus on GA as it represents our method to

learn goal-driven communication strategies in MAS.
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2.3.2 Process of Evolution

Initial population: The first step in running GA is to create an initial population, which consists

of a set of individuals/chromosomes/candidate solutions. The number of individuals in a GA pop-

ulation can vary from a problem to another and can be set by the system designer. Research efforts

exist in the literature that study the effect of varying the population size on GA's convergence

and solution quality (Koljonen & Alander, 2006; Reeves, 1993; Roeva et al., 2013). A common

practice in GA community is to find a good population size empirically (Eiben et al., 1999). Re-

searchers in the past have argued that small population size can make GA converge faster but

produce poor solutions (Koumousis & Katsaras, 2006; Pelikan et al., 2000; Piszcz & Soule, 2006),

while large population size can prolong the evolution process but produce high quality solutions

(Harik & Lobo, 1999; Lobo & Goldberg, 2004; Lobo & Lima, 2005; Koumousis & Katsaras, 2006;

Rylander & Gotshall, 2002). However, this argument was negated by (Haupt, 2000) as it was found

that running GA with small population size (as low as 16) can outperform large population size if

the mutation rate is increased (to 5-20%). An offline adaptive approach, (Harik & Lobo, 1999),

and online adaptive approach, (Arabas et al., 1994), were proposed in the literature to automate

the process of selecting the best population size. In the former, the best size is found prior to

running GA and remains fixed throughout the evolution process, while in the latter, the population

size changes during the evolution process depending on some parameters such as the fitness value.

More studies on how to choose the population size can be found at (Yu et al., 2006; Knaepkens

et al., 2004; Smith & Smuda, 1995).

Besides the population size, generating the initial population is another issue that has been

studied by the GA community. The common practice followed by the GA community is to gen-

erate the initial population randomly. However, researchers have argued that the quality of the

initial population has a direct effect on the quality of solution found (Maaranen et al., 2007), and

hence a number of metrics have been proposed to help measure the quality of the initial popu-

lation. For example, (Diaz-Gomez & Hougen, 2007) proposed metrics to measure the diversity
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of the initial population at three levels: the gene level, the chromosome level, and the population

level. (Goldberg et al., 1991) argued that there are building blocks (BB) that should be fed to GA

in order to obtain solutions of high quality. Moreover, some efforts exist that apply different search

algorithms to generate the initial population for GA, resulting in Memetic Algorithm (MA), (Devi

et al., 2011). Examples include the work by (Kumar et al., 2013), where hill-climbing algorithm

was used to generate the initial population, which shows to improve performance of typical Ge-

netic Algorithm. (Kazimipour et al., 2014) conducted a survey of existing population initialization

techniques, which were categorized with respect to randomness, compositionality, and generality.

Selection: After generating and evaluating the initial GA population, the evolution process

starts by selecting parents for producing offsprings. This is a key step as it distinguishes GA from

other learning algorithms by applying a biological theory called natural selection, which was in-

troduced by (Darwin, 1859) as, “a principle by which each slight variation [of a trait], if useful,

is preserved". In biology, this theory is observed as the likelihood of survival and reproducing of

individuals or individuals' characteristics is more for those adaptive to the environment. In GA, this

principle is translated, as the likelihood of survival and reproducing of solutions or sub-solutions

is more for those fitted or better solve the problem. Therefore, solutions with high fitness are more

likely to be selected as parents for producing offsprings because they are more likely to produce

highly fit individuals. The fitness of a solution is evaluated using the fitness function, which is

designed to measure the quality of the problem's solutions. The implementation of the fitness pro-

portionate selection method is called roulette-wheel selection. A number of variations have been

proposed in the literature for the selection method in GA and other evolutionary algorithms. Exam-

ples include truncation selection (Mühlenbein & Schlierkamp-Voosen, 1993), stochastic universal

sampling (Baker, 1987), and tournament selection (Miller & Goldberg, 1995; Goldberg & Deb,

1991). Although in nature, mating and reproduction occur between two parents, researchers found

that, for some problems, better solutions can be produced if multiple parents are involved (Elsayed

et al., 2011; Patel & Raghuwanshi, 2010; Bonilla-Huerta et al., 2011).

Genetic operators: This represents the main means for reproduction of offsprings in genetic
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algorithms. In nature, a child inherits half of the genes from each parent, which are copied and

combined to compose the child's DNA. Sometimes, small changes in the passed DNA may oc-

cur during the copy process, which result in the child having a bit different DNA strand than the

parents. The occurrence of this natural modification is called mutation. Genetic operators in GA

correspond to these natural processes, although multiple variations of each operator have been used

in the literature (Syswerda, 1989; Caruana et al., 1989). The performance of GA is significantly

affected by the choice of operators; hence great attention has to be paid to them during implemen-

tation (Yao, 1993). In this section, we explain the main genetic operators in GA, namely, crossover

and mutation, and present some of the research efforts in the literature to improve them.

Crossover: is a process of combining sub-solutions (genes) from two solutions (chromo-

somes), where segments of genes are exchanged between parents to form offsprings. As have

mentioned previously, it is analogous to how DNA strands from parents are combined and passed

to children. In GA, however, two parameters have to be identified in order to implement crossover.

The first parameter is the crossover point, which specifies the point at which parents' chro-

mosomes are divided and hence the number of segments exchanged. For sometime, the most

common types were one-point and two-points crossover (Holland, 1975). However, some re-

searchers reported that multi-point crossover can improve GA performance especially for ordered

chromosomes, where the bit's position carries information about the solution (Eshelman et al.,

1989; Syswerda, 1989; De Jong & Spears, 1992). This is due to the positional bias introduced by

one- and two-points crossover (Eshelman et al., 1989). Crossover variants that can avoid this issue

are the uniform crossover (Syswerda, 1989) and shuffle crossover (Caruana et al., 1989). With the

uniform crossover, multiple crossover points may be used, which works as follows. For each gene

in the offspring, a probability value (mixing rate) is used to determine whose gene, i.e., which

parent, in the corresponding position will be copied. For example, if the mixing rate is 0.5, then

each parent will contribute to 50% of the offspring's genes. With the shuffle crossover, however,

only one crossover point is used. Positions of parents' genes are shuffled prior to the crossover

and positions of offsprings' genes are unshuffled post the crossover. A comparative study between
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different forms of crossover can be found at (Magalhaes-Mendes, 2013; De Jong & Spears, 1992).

The second parameter is the crossover rate, which represents the probability with which a

crossover occurs between parents at each generation. As crossover helps GA exploit known so-

lutions (i.e., parents) to obtain close, but new, and hopefully better solutions (i.e., offsprings),

crossover rate determines how much exploitation GA performs. One advantage of GA over other

optimization algorithms is the balance between exploitation (crossover) and exploration (mutation,

that is explained later), which can be controlled by tuning crossover and mutation rates (Eshelman

et al., 1989). Hill climbing is an example of algorithm that is good at exploitation but makes little

exploration (Vekaria & Clack, 1998). Research efforts to automate the process of optimizing the

crossover operator are, for example, the work by (Lin et al., 2003; Vekaria & Clack, 1998; Schaf-

fer & Morishima, 1987; Davis, 1989; White & Oppacher, 1994; Srinivas & Patnaik, 1994), where

approaches for adaptive crossover operators are introduced.

Mutation: When offsprings are produced, they go through mutation, where some genes in the

chromosomes are altered. As mentioned previously, genetic mutation is analogous to biological

mutation where small changes may occur to DNA during the copy process. Multiple forms of

mutation exist that depend on the solution representation of the problem. For example, flip bit

mutation is a variation that can be applied to chromosomes with binary genes only, and in which

a randomly selected bit is flipped (from 0 to 1, or 1 to 0). Other mutation forms are random and

min-max mutation, which can be applied to chromosomes with integer or real genes only. The

former exchanges randomly selected bits with random values in a specific range, and the latter

exchanges a randomly selected bit with its minimum or maximum values.

Similar to crossover, mutation rate has to be tuned to optimize GA performance. Mutation

goal is to preserve diversity during the evolution process as it helps GA explore new solutions. A

common practice in GA community is to set mutation rate to a very small value in order to allow

GA to converge, hopefully to a global maximum. A very high mutation rate can turn GA into

random search (Vekaria & Clack, 1998). A good mutation rate is problem-specific and is usually

found empirically. However, research efforts have tried to automate the process, such as (Libelli &
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Alba, 2000; Zhang et al., 2010; Thierens, 2002; Blum et al., 2001; Korejo et al., 2009; Lin et al.,

2003; Srinivas & Patnaik, 1994).

Termination: The process of evolution (selection, crossover, and mutation) continues until

a termination criterion is met. A number of different termination criteria have been used in the

literature. The most common one is setting a maximum number of generations (Koumousis &

Katsaras, 2006; Lee & Yao, 2004; Lim et al., 2006; Ong & Keane, 2004; Ong et al., 2006; Tu &

Lu, 2004; Yao et al., 1999; Zhou et al., 2007). Other common termination criteria are when a global

maxima/minima is closely reached (Ong et al., 2006; Tsai et al., 2004; Zhong et al., 2004; Hansen

& Kern, 2004), or when a predetermined number of generations do not improve the fitness (Leung

& Wang, 2001). The work by (Safe et al., 2004) presents a critical analysis of the different existing

termination criteria in genetic algorithms and highlights the main challenges associated with such

decisions. The literature includes some research efforts to design heuristics that help GA decides

when to stop. Examples include the work by (Bhandari et al., 2012), where a termination criterion

was designed based on the variance of the best fitness values obtained during the evolution process.

Moreover, (Hedar et al., 2007) proposed an Automatic Accelerated Termination (G3AT), where the

amount of exploration that GA made is employed as a termination criterion.

2.3.3 Evolution of Communication

A wide range of research efforts exist in the literature that study the evolution of communication

in software and robotic agents. Evolving a communication system has both advantages and disad-

vantages over using a predefined communication protocol (Bussink, 2004). Different researchers

have different goals from evolving communication, such as demonstrating the capacity of Artificial

Intelligence (AI), and understanding the origin of language and how human (or animal) commu-

nication has evolved. In a survey of existing work, communication systems may emerge from the

interactions between evolutionary agents or robots, or evolved through artificial evolution.

In a pioneering contribution to the emergence of communication with the aim of showing AI

capacity, MacLennan (Maclennan, 1990) emerged communication in a population of simple ma-
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chines, detected by comparing simulations where communication was allowed with those in which

it was suppressed. In that work, communication is stigmergic, as it refers to an agent putting in-

formation about its local environment in the global environment, which is accessible by all agents.

Communication comes in different forms, including indirect/stigmergic communication, direct in-

teraction, which involves observing teammates behaviors, and direct communication through mes-

sages passing (Trianni et al., 2004). An example of emergence of direct interaction is the work by

Quinn (Quinn, 2001), where two simulated robots are assigned the task of coordinated motion, i.e.,

to move while staying close to each other and without colliding. The robots evolved a communi-

cation strategy such that the first robot aligns to face the other robot adopts the follower role, while

the second to align becomes the leader. Direct communication has also been emerged in the litera-

ture (Marocco & Nolfi, 2005; Werner & Dyer, 1992; Werner & M, 1991; Baray, 1997). In the work

by (Marocco & Nolfi, 2005), evolutionary robots were able to emerge a direct communication sys-

tem based on five signals of different values that represent important features of the environment.

In (Werner & Dyer, 1992), authors emerged communication in a population of female and male

agents for the ability to mate. Female agents, which were deaf and immobile, evolved to emit

signals when a male is in the same row or column to guide it to its position, whilst male agents,

which were blind and cannot signal, evolved to turn when on the same row or column as a female.

Other researchers, such as (Floreano et al., 2007; Nolfi, 2005; Wischmann et al., 2012), focused

on investigating the evolutionary and non-evolutionary conditions required for the emergence of

communication. Further, emergence of communication has also been applied to gain insight into

the origin and evolution of communication. Examples include investigating the evolutionary ori-

gins of robots' communication system (Marocco & Nolfi, 2006a), and studying the development of

a communication system in evolutionary robots that are initially non-communicating (De Greeff

& Nolfi, 2010; Marocco & Nolfi, 2006b; Nolfi & Mirolli, 2009). The work by (Wagner et al.,

2003) provides a review of computational models of communication emergence via learning and

evolution, based on agents situatedness and whether communication is structured or not.

Due to the complexity of human language (Nolfi, 2013), research efforts that model its evolu-
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tion usually focus on only parts of the language, such as evolution of signals, evolution of symbols

(symbolic communication), and evolution of words and syntax. The work by (Cangelosi, 2001)

explains the difference between words, signals, and symbols, and applies it to differentiate be-

tween models for the evolution of communication. It is explained in (Steels & Bleys, 2005) how

the work had progressed to gradually cover elements of natural language. The work by (Marocco

et al., 2003) made efforts to evolve signals and verbs in two separate experiments. A simple

domain-specific language for the predator-prey pursuit problem was successfully evolved when

predators communicate to a message board (Jim & Giles, 2000), and through message passing

with one blind and another stationary predators (Rawal et al., 2012). More details on evolution

of natural language can be found in (Cangelosi, 1999; Galantucci & Steels, 2008; Steels, 2003a,b,

2015).

Other aspects of communication have also been evolved in the literature. For example, evolu-

tion has been applied to learning a mutual language between agents (Giles & Jim, 2002; Froese,

2003; Khasteh et al., 2006a), evolving communication protocols (Gerard & Singh, 2013), evolv-

ing ontology such that each agent learns its own concepts (Afsharchi & Far, 2006), and evolving

understanding between a group of agents, defined as the ability to accurately derive the internal

state of other agents from their observable external state (Levin, 1995), or number of times that

agents understand each other (Enee et al., 2004). The work by (Agah & Bekey, 1998) found out

that agents tend to communicate more, and hence perform better, if their cognitive architectures

are evolved.

2.4 Communication and Overall Performance

The root of research that studies the effects of communication on group performance can be traced

back to the work about human groups (Leavitt, 1951) studying the influence of four different

communication patterns (channels) on the overall performance and members behaviors. The com-

munication patterns include circle, chain, Y shape, and wheel (or X shape), and they determine
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whom each team member can talk to. A simple data collation experiment was conducted, and it

showed that the performance of the group and behavior of the members could be ordered as circle,

chain, Y shape, and wheel, where the circle was the most erratic, had largest number of messages

exchanged, and leaderless, but satisfying to its members, while the wheel was the least erratic, had

fewer messages exchanged, and had a leader, but less satisfying to the members. This conclusion

was quickly negated by the work of (Guetzkow & Simon, 1955), who stated that communication

limitation only affects the way people organize themselves, and once this happens, they will have

the same task performance. (Heise & Miller, 1951) conducted experiments with three different

problems, similar to (Leavitt, 1951), but with the task declared complete when all members find

the solution. They tested the performance of the group with five different communication net-

works, which determine directive communication channels. They found that the nature of the task

plays an important role in determining the suitable communication network, and hence called for

a way to classify groups' problems.

Multiple studies were published afterwards that proposed ways to classify tasks, such as (Shaw,

1973; Herold, 1978; Tushman, 1979; Steiner, 1972), of which one of the prominent ones is (Mc-

Grath, 1984), according to (Goodman, 1986; Stewart & Barrick, 2000). According to (McGrath,

1984), tasks can be classified according to the degree of which they are conceptual or behav-

ioral. Consequently, tasks can be categorized to generating ideas and plans, choosing between

alternatives, negotiating conflicts of interests, and executing work. Another related research effort

is that by (Hirokawa, 1980), in which a study is conducted to compare communication patterns

between effective and non-effective decision-making groups. The result states that a significant

difference exists between the two groups, where effective decision-making groups spend more

time discussing procedural matters and ensure that agreement is reached on substantial matters

before starting a different discussion. (Mullen et al., 1991) studied the effect of centrality, in terms

of degree, betweenness, and closeness, in communication on members' behavior of leadership,

satisfaction, and participation. Results indicate that elements of centrality can be used to predict

members behavior.

27



Recent research on communication and teams performance has focused on the effect of in-

formal connections patterns or social networks structures on teams performance (Baldwin et al.,

1997; Reagans & Zuckerman, 2001; Rosenthal, 1997; Wasserman & Faust, 1994; Sparrowe et al.,

2001; Gloor et al., 2007). Conflicting results have been reported in the literature where some

results indicate that social networks have impact on teams performance (Reagans & Zuckerman,

2001) and others indicate the opposite (Sparrowe et al., 2001). The work by (Balkundi & Harri-

son, 2006) carried out experiments to resolve the debate. Authors considered two different types

of ties connecting individuals in a network according to the content exchanged: instrumental (for-

mal relationship) and expressive (friendship) (Lincoln & Miller, 1979). The results indicate that

better performance and more viable teams have been observed in teams with denser expressive and

instrumental social networks (Balkundi & Harrison, 2006).

Successful project management has always been characterized by effective communication

planning (Allen et al., 1980). A common practice in business organizations nowadays is to build a

communication matrix/plan, which controls information flow within team's members and between

team's members and other external parties such as stakeholders. The goal of communication plans

is to deliver the right information (what), to the right people (who), at the right time (when) (Darnall

& Preston, 2012). The importance of such practice comes from the fact that in the absence of com-

munication plan, one of two situations could happen. Communication can be lower than required,

and hence critical information can be easily missed or delayed, or more than required, where all

available information is communicated to all parties, and hence recipients will be flooded with the

large amount of information. This can prevent team members from concentration and make de-

termining relevant information a difficult and time-consuming task. Developing a communication

plan starts with identifying all parties who contribute to, are affected by, or can affect the project

(Darnall & Preston, 2012). This can include individuals inside the organization such as team mem-

bers, leaders, and colleagues, or others outside the organization such as stakeholders, customers,

sponsors, vendors, and professionals (Kirchenbauer, nd). The second step is to determine informa-

tion that needs to be provided to each party (Darnall & Preston, 2012). Examples include strategy
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changes and updates, timelines and deadlines, and technical reviews (Kirchenbauer, nd; Darnall

& Preston, 2012). The third step is planning when such information should be communicated to

recipients; such as daily, weekly, monthly, or quarterly (Kirchenbauer, nd). Moreover, communi-

cation planning can as well include how communication is carried out, such as through reports,

physical meeting, phone call, e-mail, social media, an event, or online meeting (Kirchenbauer, nd).

Table 2.1 shows an example of a communication plan.

Table 2.1: An example of communication plan/matrix.

Information Recipients Frequency Means
Project progress Project's manager Weekly Meeting

Project risks Business manager As needed Conference call
Project update Project's team As needed E-mail

Technical issues IT manager As needed E-mail
Funding requests Sponsors Monthly Phone call
Schedule changes Project's team and manager As needed E-mail

Project Status Steering committee By 2 p.m. every Mon. Meeting

In Multi-agent Systems, the related work that links communication and performance can be

broadly classified into two main categories: (1) those that address a specific performance prob-

lem using communication, and (2) those that address communication needs according to a single

predetermined performance goal.

2.4.1 Communication as A Solution

(Kinney & Tsatsoulis, 1998) emphasized in their work that variety of performance problems in

distributed artificial intelligence and multi-agent systems, such as idle time, work duplication,

and coherency, can be reduced to addressing communication. Further, they argued that research

addressing other MAS’s problems, such as agents' topology, coordination, and knowledge repre-

sentation, are in essence addressing communication.

Examples of existing work that belong to the this category include using communication to

address uncertainty (Xuan & Lesser, 2002), agents' idle time (Clair & Matarić, 2011), load balanc-

ing (Yahaya et al., 2011; Bigham & Du, 2003), and coordination (Szer & Charpillet, 2004). Other

researchers used communication to improve policies computation and representation (Nair et al.,
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2004), decrease online planning complexity (Wu et al., 2011), and learning social rules and com-

pensating for limited sensing (Mataric, 1995). Another research effort is that of (Dutta et al., 2005),

which proposed a post-task-completion communication protocol to improve distributed learning of

the states of other agents.

The limitation of this direction of research is that the proposed communication approaches

are exclusively designed to improve or optimize the performance of the system with respect to

the particular performance goal in consideration. Therefore, if a system suffers from multiple

performance problems or needs to improve its performance with respect to a different goal/metric

in different times or situations, a different approach needs to be taken for each case.

2.4.2 Communication as A Problem

Our work is more related to the second category, where research efforts are directed towards ad-

dressing the tradeoff between performance and communication cost. Despite the variations in

modeling and designing the system, a rule of thumb is that information is communicated only if

doing so is beneficial to the system's performance (Becker et al., 2009), based on Information Value

Theory (Howard, 1966). Many approaches have been proposed in the literature to determine when

communication is beneficial. For example, research efforts, such as (Chakraborty & Sen, 2007;

Melo & Spaan, 2011; Roth, 2007), consider communication beneficial if the difference between

the expected performance improvement with communication and the expected improvement with-

out communication is larger than the communication cost. (Ghavamzadeh & Mahadevan, 2004)

compares the expected value of communication plus communication cost with the expected value

of not communicating. Value Of Communication (VOC), computed as the difference between the

expected value when communicating and the expected value for remaining silent, is applied in

(Becker et al., 2009; Carlin & Zilberstein, 2009; Tian et al., 2013), where communication is al-

lowed only if VOC>0. Other works, such as (Williamson et al., 2008; Dutta et al., 2007), propose

approaches based on Kullback-Leibler (KL) divergence and information redundancy, respectively.

Zhang (Zhang, 2006) considers two factors to value information: timeliness (using the most recent
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received but potentially outdated value), and relevance (waiting for the new value). The work by

(Unhelkar & Shah, 2016) proposes ConTaCT, an online communication decision algorithm. At

each time step, each agent computes three rewards; the team's reward using previously chosen

policy, the team's reward using locally modified policy and no communication of the modification,

and the team's reward using globally modified policy and communication of an observation. An

agent decides to communicate only if the latter reward is larger than the former two rewards. In

this work, a fitness function is designed to balance between the system performance with respect

to a given goal and communication cost, according to flexible weights.

2.5 Communication with a Goal

The notion of goal-driven (or goal-oriented) communication has been proposed and studied in the

literature. Researchers, however, have used the term goal to refer to varying concepts. For ex-

ample, (Goldreich et al., 2012) proposed a mathematical theory of goal-oriented communication,

where a formal definition of the communicating parties and goals is given. In their study, com-

munication is considered as a way to accomplish goals of communication parties in a user-server

setting, such as computer-printer, with no mutual protocol/language. Goal is defined as “the way

we (the users) wish to affect the environment and/or to the information we wish to obtain from

it" (Goldreich et al., 2012). In particular, the authors proved that if a notion of (sensing) is avail-

able, which allows the communicating parties to check whether a progress has been made towards

the goal as an affect of communication, then no priori mutual language is required; rather there

exists universal user strategies that are able to accomplish the goal. As the approach can suffer

exponential overhead, work by (Juba & Vempala, 2011) proposed an approach that can reduce the

complexity to polynomial.

In (Juba, 2011), the author distinguished between finite and infinite goals, where the former

represents an agent's desire to reach a state of being, and the latter represents the agent's desire to

maintain a state of being. Moreover, (Van Oijen et al., 2011) designed a goal-based dialogue sys-
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tem using BDI agents, where an argument was developed, which states that ontology can structure

information exchange between agents as well as the agents' knowledge. In their work, a communi-

cation goal is defined as a single ontology-driven dialogue between two agents, of which examples

are persuasion/informing, information seeking/querying, and deliberation/ordering.

Furthermore, (Cheong & Winikoff, 2005) proposed a goal-oriented approach to interaction

protocol between agents, which is unlike other protocols where no messages sequence is defined,

rather agents use interaction goals, available actions, and constraints to define them. Goals are

defined to be of the interaction not agents; hence an interaction is declared successful if its goals are

achieved. In addition, every goal can be broken down into smaller goals, which can be connected

using temporal dependencies that add order constraints on executing the interaction. The work

by (Braubach & Pokahr, 2007) proposed a goal-oriented communication protocol, where authors

distinguished between two levels of interaction goals, namely, macro and micro. In the macro

level, the overall goals of the system need to be identified, whilst in the micro level, every agent's

goal is identified.

2.6 Limitations of Current Approaches for Addressing Com-

munication

Communication decisions in cooperative MAS can be either centralized, where a coordinator agent

that has a full observation of the global state computes a central strategy, or decentralized, where

each agent with local observation computes its own strategy. In the latter case, however, cooper-

ative agents need access to states and actions of their teammates to be able to estimate the overall

communication benefits, and hence make good communication decisions. Therefore, researchers

have designed different approaches to allow agents obtain such information. For example, (Kinney

& Tsatsoulis, 1998) allowed agents to send feedback about the usefulness of the information they

received to senders, (Roth et al., 2005) allowed agents to take actions based on shared information,

and hence know the actions taken by the teammates, and (Zhang, 2006) extended agents' observ-
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ability to enable agents to track team members' mental states, and hence infer what teammates

know and when. Based on the domain characteristics, some research efforts, such as (Roth et al.,

2005, 2006; Tian et al., 2013; Williamson et al., 2008), proposed approaches based on modeling the

team's decision problem using variations of Markov Decision Process (MDP), such as Dec-MDP

and Dec-POMDP, to enable agents to estimate the impact of communication, and hence compute

their communication policies. The computation, however, is usually based on myopic assumptions,

where each agent evaluates the benefit of communication in isolation for 1-step horizon assuming

others never communicate. The work in (Becker et al., 2009; Carlin & Zilberstein, 2009) proposed

approaches that relax these assumptions, yielding better performance. As mentioned previously,

the work presented in this dissertation addresses this issue by adapting a centralized learning offline

and distributed execution at runtime.

Further, most of the works, presented in this chapter, address only part of the communication

decisions in MAS. For example, (Becker et al., 2009; Carlin & Zilberstein, 2009; Chakraborty &

Sen, 2007; Dutta et al., 2007; Ghavamzadeh & Mahadevan, 2004; Iba et al., 1997; Melo & Spaan,

2011; Roth et al., 2005; Williamson et al., 2008) address only when agents communicate, (Roth

et al., 2006) addresses what agents communicate, and (Goldman & Zilberstein, 2003; Tian et al.,

2013; Zhang, 2006), address what and when agents communicate. Similar to our work, (Kinney

& Tsatsoulis, 1998) addresses what, when, and to whom agents communicate. However, authors

provided agents with only one timing strategy, which is frequency of communication, equivalent

to one of our timing strategy, EveryTimeInterval, which will be explained in a later section.

Different metrics have been used in the literature to value communication decisions of agents.

Examples include performance-based metrics such as minimum communication cost (Kinney &

Tsatsoulis, 1998; Zhang, 2006), task progress (Williamson et al., 2008), minimum time (Goldman

& Zilberstein, 2003; Iba et al., 1997), and avoiding coordination errors (Roth et al., 2005). Also,

information-based metrics have been used such as timeliness and relevance (Zhang, 2006), infor-

mation redundancy (Dutta et al., 2007), and KL divergence (Williamson et al., 2008). Some works,

such as (Bouslimi et al., 2014; Gutiérez et al., 2009), proposed metrics to evaluate the quality and
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balance of communication in multi-agent systems. The advantage of the proposed approach in this

dissertation over existing ones is that it is designed with no assumptions about the desired system's

performance. Therefore, system designers have the ability to develop their own metric, with which

they would like to improve the system's performance, with the desired trade-off with communica-

tion. This contrasts with an implicit assumption made by researchers in this area, which suggests

that the system's performance has to always be improved with respect to a single predetermined

goal.
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CHAPTER 3

Goal-Driven Communication

3.1 System Design

IN THIS work, the learning problem of goal-driven communication is to find a communica-

tion strategy that (1) improves the global performance of the system with respect to flexible

performance goals, and (2) achieves a good user-defined trade-off between the performance and

communication cost. Unlike most of the research efforts that address communication, our work

does not aim to enable agents to reason about their communication decisions by valuing each com-

municating decision in isolation. Rather, we value a communication strategy and aim to develop a

mechanism for learning a central strategy at plan time that, when followed by agents in a decentral-

ized manner, achieves a global behavior in favor of a specific performance goal. We achieve this by

utilizing Genetic Algorithm, and designing a fitness function that values a given communication

strategy according to the two aforementioned factors.

Definition: a Communication Strategy (CS) is a set of m sub-strategies that determines what infor-

mation is to be communicated, when, and to whom, such that 06m6 (k∗c), where k is the number

of information instances, and c is the number of agent types. Each sub-strategy is a communication
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rule for one information instance (e.g., ISi) that determines whether ISi is communicated, and if so

to whom (recipients) and when (timing), it is communicated.

Other important notions that should be distinguished are information instances and value up-

dates of information instances. For example, target's position is an information instance, but an

observed target's position ,e.g., (1,1), is a value. The information instances that agents communi-

cate during task execution can be classified into two categories:

1. Single-value: Information instances that, at any time-step, an agent is allowed to have only

one value. Examples include agents' goals since an agent can have only one goal at any point of

time.

2. Multi-value: Information instances that an agent can possess multiple values, such as ob-

jects' locations since an agent may have a list of all locations where it observed an object.

3.1.1 Recipients Strategy

This strategy determines the recipients of value updates of an information instance ISi. When mul-

tiple types of agents exist, this strategy defines the recipients group (e,g., G), as well as the number

of recipients from the group based on the proximity of the recipient. The following strategies are

considered (illustrated in Figure 3.1):

Peer-to-Peer (P2P): Allows communicating value updates of the information instance to only

the closest agent, from a group G, to the sender.

Subset (((xxx === [[[222−−− (((nnn−−− 111)))]]]))): Allows sending value updates of the information instance to the

closest x agents, from group G, to the sender, where n is the total number of agents.

Broadcast (Bcast): Allows communicating value updates of the information instance to all

agents from group G.
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Figure 3.1: Recipients Strategies.

3.1.2 Timing Strategy

The timing strategy corresponds to the time-steps, at which value updates of an information in-

stance are communicated. Three timing strategies are considered, and are illustrated in Figure

3.2:

Every update (EU): Agents are allowed to communicate at all time-steps, and hence value

updates are communicated at the same time-step that they are obtained. In case of single-value

information instances, a new value update is communicated once obtained; whilst for multi-value

information instances, agents communicate whenever a new value is added to the values list of the

information instance. This strategy is ideal for information instances that need immediate response,

or reaction from others, or when delay is not tolerated.

Every time interval (T I=[2-i]): Agents are allowed to communicate only at specific time-

steps, separated by an evolved time interval. For instance, if T I=3, then agents are allowed to

communicate value updates of an information instance every 3 time-steps. If the information

instance is single-value, an agent will check every 3 time-steps and communicate only if the value
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is updated since the last communications time. Therefore, if multiple updates occur before the next

communication time, only the last update is communicated. However, if the information instance

is multi-value, then all newly added values for the information instance are communicated. One

advantage of this timing strategy is that it is more communication efficient, as it combines multiple

values into one message.

In a state: Agents are allowed to communicate only value updates that are obtained when the

agent is in a specific state s, hence communicating only specific values of the information instance.

An advantage of this strategy is that it is ideal when only specific values of an information instance

can contribute to improving the performance. For instance, in work by (Balch & Arkin, 1994),

robots performing forage task are only interested to know if another robot is in the acquire state,

because they found useful work, and hence if others follow them, they will potentially find useful

work too.

Figure 3.2: Illustrations of timing strategies.

38



3.2 Problem Formulation

The problem can be formulated as: Given a set IS of k information instances and a performance

goal P, find a communication strategy CS that achieve a good trade-off between the communication

cost and the system's performance with respect to P.

We shall evaluate the complexity of the search space. For an information instance ISi, it is assumed

that there are t alternatives for when it can be communicated, and h alternatives for who it can be

communicated to. Therefore, the total number of distinct sub-strategies S is:

|S(ISi)|= t ∗h+1

The number of alternatives for the when component multiplied by the number of alternatives for

the who component plus the option of not communicating the information instance. Hence, for a

set IS of k information instances, and c types of agents, the total number of possible communication

strategies (CS) can be computed as:

|CS(IS)|= (t ∗h+1)k∗c

The number of possible communication strategies increases exponentially with the number of in-

formation instances k and number of agent types c. Besides, due to the non-determinism in multi-

agent systems, it is usually not clear upfront which communication strategy will be effective with

respect to the task and performance goal (Preist & Pearson, 1998; Balch & Arkin, 1994; Wei

et al., 2014), and it is difficult and time-consuming to manually try all possible communication

strategies. Yet, combinations of different sub-strategies for each information instance may result

in unexpected performance. This calls for an automated approach for determining an effective

communication strategy with respect to the performance goal, which is proposed in this research.

We only consider explicit communication by sending and receiving messages. We assume that a

communication language already exists, and that communication is always reliable.
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3.3 Algorithmic Approach

We use steady state genetic algorithm to evolve goal-driven communication strategies. Unlike

generational GA, in which a large portion of the population go through crossover and mutation and

replaced by new offsprings, in steady state GA only two parents are selected from the population

and crossed over generating two offsprings, which are then possibly mutated and placed in the

population to form the new generation. A flowchart of the general steps to evolve goal-driven

communication is depicted in Figure 3.3.

3.3.1 Solution Representation

A communication strategy, represented as a GA individual, is defined to be a vector of m cells.

A cell, representing a sub-strategy, is a 4-tuple vector (((IIISSSiii,,,GGG,,,RRR,,,TTT ))), which defines when, and to

whom value updates of an information instance are communicated, where:

IIISSSiii is an identifier for the Information instance

GGG defines the recipients agent type

RRR is recipients strategy

TTT is the timing strategy

mmm is the number of communicated information instances, and m = [0,k ∗ c].

The first two elements, IIISSSiii and GGG, combined identify a cell, which indicates that value updates of an

information instance IIISSSiii are communicated to RRR agents from GGG, only at time-steps that conform to

TTT . The length of a communication strategy may range from zero, which means that communication

is not allowed at all, up to k ∗ c cells, which means that the strategy allows communicating value

updates of all k information instances to all c agent types. This flexibility allows learning what

information instances are communicated that would improve the stated performance goal.
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Table 3.1: Possible values for each token in a cell/sub-strategy.

Token Values Notes
ISi [1, k] k: number of information instances in the domain.
RT [1, c] c: number of agent types in the domain.

R
P2P (1)
Subset [2, (n-1)]
Broadcast (n)

n: total number of agents

T
EveryUpdate (1)
EveryTimeInterval [2, i]
InState [(i+1), (i+s)]

i: maximum time interval
s: number of possible agents states

Figure 3.3: Evolution of goal-driven communication strategy.
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3.3.2 Fitness Function

Despite the desired performance goal, there are two factors that contribute to the fitness of a com-

munication strategy. The first factor is performance of the system using the strategy with respect

to the goal, and the second is the strategy's communication cost. Since higher values for the per-

formance goals that are considered in this work imply greater utilization of resources, we consider

both factors to be costs; i.e., goal cost and communication cost, hence for both lower values implies

better fitness. Therefore, the fitness function is designed as a weighted sum of the two costs, where

the weight assigned to each cost reflects the designer's priorities. The GA goal is to minimize

the total cost. Higher weight assigned to a cost implies greater contribution to the final fitness, and

hence higher priority of being minimized. Further, since the two costs have different units and may

not be directly summed, each cost is divided by the maximum value, which is obtained empirically

from a large number of simulation runs, hence bringing the scale of each cost to [0,1]. We, further,

multiply each cost by 100, as shown in Eq. 1.

f itness =α( goal_cost
max_goal_cost ∗100)+β ( comm_cost

max_comm_cost ∗100)+p (1)

Where,

α: is weight for goal cost.

β : is weight for communication cost, and β = 1−α .

p: is domain-based penalty term, for example p = 1,000∗ob jects_le f t in a forage task.

The penalty term is necessary to avoid evolving strategies with good fitness that do not allow the

agents to complete the task. In order to minimize variance across simulation runs, the fitness is

computed as the average fitness of n runs as follows.

avg_ f itness =1
n

n
∑

i=1
f itness (2)
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3.3.3 Genetic Operators

Additional operators as well as modification to some existing operators are required for the GA

to produce valid individuals/communication strategies. This section illuminates the main genetic

operators used in this approach and how our adopted modifications contributed to better perfor-

mance.

Crossover: Since each solution candidate consists of multiple cells corresponding to sub-

strategies for different information instances, a special crossover operator that swaps a subset of

cells between two parents is needed. Allowing crossover point to only take place between cells

and never divide a cell can enforce this (see Figure 3.4). This special crossover operator has been

used previously in another work (Wu et al., 2004), where a cells-like GA individual representation

has been used. This has the advantage of producing valid offsprings, as well as preserving GAs

property of maintaining and using successful cells, a.k.a., sub-solutions or sub-strategies, found

in previous generations as a building block to discover new valid solutions. In this work, we use

one-point crossover, where the crossover point is randomly chosen for each parent. Figure 3.4

shows an example of two parents going through crossover.

Mutation: When two offsprings are produced after crossover, they go through mutation. While

crossover helps GA exploit the good solutions found so far, mutation makes sure that GA explores

new solutions. In this work, mutation rate is the probability that one token of a cell will be changed.

Selection Many approaches have been proposed in literature for GA selection method (Gold-

berg & Deb, 1991). In this paper, roulette wheel selection is adopted as our selection method.

Roulette wheel selection is a fitness proportionate selection method, in which fitted individuals are

more likely to be chosen to produce new offsprings, since they have more potential to produce

highly fitted individuals.

Replacement: When new offsprings are produced, a good replacement strategy must be used

to choose which individuals in the population are eliminated to make spots for the new individuals.

A trivial strategy could be eliminating the least fit individuals in the population. However, this
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Figure 3.4: Crossover and correction operations.

strategy will quickly expel diversity out of the population (Luke, 2013; Gupta & Ghafir, 2012).

A replacement strategy for steady state genetic algorithm has been proposed in (Lozano et al.,

2005) that takes into account two factors, namely, diversity contribution to the population and

fitness function. In this work, we follow (Thierens, 1997) in assuming that parents are the most

similar individuals to the new offsprings; and therefore, the four individuals, two parents and two

offsprings, compete for insertion in the population. The best two out of the four individuals are

inserted in the population in order to form the new generation.

Correction: When subsets of cells are exchanged during crossover to form new offsprings, it

is likely that the new offspring could contain duplicated cells. The duplication does not necessarily

mean that the two cells are exactly the same, but two cells define communication strategies for the

same information instance and to the same recipient type, i.e., the first two elements of the cells

are the same, such as; (2,0,5,3) and (2,0,3,1). If this occurs after crossover and mutation, one of

the duplicated cells will be chosen randomly and deleted.
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CHAPTER 4

Research Methodology

WE ADOPT an experimental methodology to evaluate the effectiveness of the proposed ap-

proach (Althnian & Agah, 2015). For this purpose, we conduct experiments on two

different, well-known multi-agent testbeds, namely, The Wumpus World and Collective Construc-

tion . Following, we briefly introduce the two case studies. A detailed description is provided in

the next two chapters.

4.1 Case Studies

4.1.1 The Wumpus World

The Wumpus World is originally a computer game called Hunt the Wumpus, developed by Gregory

Yob (Yob, 1975). The game became a popular testbed for intelligent systems and is discussed in

the leading AI book (Russell & Norvig, 2003), after a suggestion by Michael Genesereth.

In this work, we develop a multi-agent version of the Wumpus World Problem, similar to

(Zhang, 2006), where a team of carriers and fighters cooperate to collect gold and kill wumpuses,

present in the environment. Further, we enhance the simulation environment to include several
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rooms that contain the gold and wumpuses. This new feature provides a variety of information

instances, which adds a key property that makes the domain effective for evaluating communication

strategies.

This problem domain is closely related to a class of real-world application domains such as First

Responders on a mission to rescue victims of natural or wars disasters. It is a common practice in

AI and Robotics to use games to test the efficacy of newly proposed approaches, although the goal

of research has always been solving real-life and complex problems. The rationale is that testing

and application of algorithms to real-life problems is expensive and difficult, while games are easy

to explain, understand and implement, and more importantly have direct correspondence to real-

life problems as they are designed to encode all the challenging aspects of real-life problems. For

instance, in case of the Wumpus World, rooms correspond to different buildings and locations,

while the drop-off room corresponds to the ambulance or emergency rooms. In addition, gold

represents victims to be rescued, while wumpuses are obstacles or hazards. Finally, carriers and

fighters are the rescuing individuals and special-task individuals, such as emergency personnel,

respectively. More details about the Wumpus World domain is provided in Chapter 5.

4.1.2 Collective Construction

The origin of the Collective Construction domain is inspired by the blind bulldozing behavior

found in certain species of social insects, such as wasps and ants (Werfel & Nagpal, 2006; Parker

& Zhang, 2002), where a colony use mud and wax to build a 3-dimensional nest. We adopt a simple

version of this domain, where a group of different software agents cooperate to build a user-defined

2-dimensional structure using square blocks. Automated construction systems have been of interest

to reseachers recently as it is useful in environments where traditional construction methods that

involve human cannot be applied (Meng & Jin, 2012; Werfel & Nagpal, 2006; Wawerla et al.,

2002; Schuil et al., 2006; Petersen et al., 2011). The reasons are that human involvement could be

inconvenient or prohibitively expensive, such as in extraterrestrial or underwater environments, or

dangerous such as in disaster areas (Werfel, 2012). Many researchers have described this problem
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domain as crucial to the success of robotic missions to the planet Mars (Parker et al., 2003; Parker

& Zhang, 2006).

In this work, three types of agents are developed, namely, bulldozers, collectors, and builders,

to perform three main tasks required for the construction of a structure, including (1) preparing the

construction site; (2) searching for, collection, and transportation of the building materials to the

construction site; and (3) building the structure by sorting the building materials into the proper

form, respectively (Parker et al., 2003). More details about the Collective Construction domain is

provided in Chapter 6.

4.2 Evaluation Criteria

The following three criteria are used to evaluate and compare the learned goal-driven communica-

tion strategies:

1. Performance of the system with respect to the stated goal using the learned communication

strategy.

2. Communication cost of the learned communication strategy.

3. Fitness of the learned communication strategy with respect to different performance goals.

4.3 Experimental Design

4.3.1 Fitness Parameters

The first set of experiments focuses on finding a communication strategy that, for a given goal,

achieves a customized trade-off between two desirable but incompatible costs: a goal cost and

communication cost. Evidently, a pressing question arises in this situation: What is the relative

importance of each cost? This concept is expressed in weights associated with each cost, namely

α for goal cost and β for communication cost, in the fitness function. We consider three cases:

(1) goal cost is more important than the communication cost, (2) communication cost is more
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Table 4.1: Fitness parameters settings

Costs Weights α β ac cc

ac=cc
α<β 0.25 0.75 1 1
α=β 0.50 0.50 1 1
α>β 0.75 0.25 1 1

ac<cc
α<β 0.25 0.75 1 2
α=β 0.50 0.50 1 2
α>β 0.75 0.25 1 2

ac>cc
α<β 0.25 0.75 2 1
α=β 0.50 0.50 2 1
α>β 0.75 0.25 2 1

important than goal cost, and (3) both costs are of the same importance.

If the goal cost is more important than communication cost, we assign a high value to α (>0.5).

This applies to situations when the goal performance is critical, which demands minimization of

the associated cost to the lowest possible value. This can, in turn, cost more communication that

is enabled by assigning a lower value to β (1- α). This conveys the fact that communication is not

free; hence the system's designer is willing to allow high communication, but still desires to limit it

to only what could lower the goal cost (hence, remove unrelated communication). For the second

case, communication has higher priority than the goal performance. Therefore, α is assigned a low

value (<0.5), whereas β is assigned a high value (1- α). The third case lays in the area between

the previous two cases, where the goal performance and communication cost have equal priority,

hence both α and β are assigned the same value (0.5). Besides the weights, another key factor that

we studied is the action cost (ac) and communication cost (cc). Actions include moving, picking

up and dropping off gold, and killing a wumpus. Similar to weights, we consider three cases: (1)

action cost is greater than communication cost, (2) communication cost is greater than action cost,

and (3) both costs are equal. Therefore, fitness parameters include weights {α , β} and costs {ac,

cc}. Combination of the aforementioned variations of costs and weights result in nine settings

(Table 4.1), which we carried out for each performance goal.
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4.3.2 Fitness Goals

Since the purpose of this work is evolving goal-driven communication strategy, it seems natural

to run experiments with different goals. The second set of experiments focuses on how changing

the performance goal, for a given parameter's setting, can affect the evolved strategy and hence the

performance. The desired performance goal is expressed in the GA fitness function. In this work,

four goals are considered, specifically, time, travel distance, effort duplication, and energy.

Time measures the number of time-steps needed to complete the task. In the Wumpus World

domain, the task is considered completed when the last piece of gold in the environment is col-

lected, while in the Collective Construction domain, the task is finished when the structure is

completely built. This metric can be used if the user needs the task to be completed as fast as

possible.

Travel distance measures the total number of moves, performed by all agents, until the task is

complete. A move is defined as changing position. This metric can be used if the user needs the

task to be completed with minimum travel distance.

Effort duplication occurs when two agents target the same goal at the same time, or when one

performs a previously completed work.

For the Wumpus World domain, this metric measures the duplication of efforts for carriers and

fighters. For carriers, it measures the number of times two or more carriers explore a room at the

same time, and number of times a carrier fails to pick up gold because someone else has already

collected it. For fighters, it measures the number of times two or more fighters target the same

wumpus.

For the Collective Construction domain, this metric measures the duplication of efforts for

builders, bulldozers, and collectors. For builders, it measures the number of times a builder fails to

attach a block to a structure site because it is already occupied, and when a builder fails to pick up

a block from a supply zone because it is already collected. For bulldozers, it measures the number

of times a bulldozer fails to remove debris because it has already been cleared. For collectors, it
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measures the number of times a collector fails to pick up a block because it is already collected,

and the number of times it fails to place a block in a supply zone because it is full.

Energy measures the total amount of energy consumed by all agents to finish the task. Agents

consume energy when they perform actions, such as moving, picking up and dropping off an object,

and when they communicate. This performance metric can be used if the user needs the task to be

completed with minimum energy cost. Unlike the previous goals, energy is a single-objective goal

as communication cost is already included in energy.

4.3.3 Simulation Environment

There are many variations that could be applied to the simulation environment in order to test the

proposed approach in different scenarios. We study the impact of variations of two features, namely

Task Complexity (TC) and Agent Population (AP), which constitute a sufficient representation of

the simulation environment.

The Wumpus World: Task complexity is defined as the number of wumpuses and amount

of gold present in the environment, whilst agent population is the total number of carriers and

fighters. Variations in these two features on this domain can be classified into three categories,

as shown in Table 4.2. These include variations where (1) Task complexity is greater than agent

population, (2) Task complexity is lower than agent population, and (3) Task complexity is equal

to agent population.

Collective Construction: Task complexity is defined as the size of the structure, number of

blocks, and amount of debris present in the environment, whilst agent population is the total num-

ber of collectors, builders, and bulldozers. Variations in these two features on this domain are

shown in Table 4.3.
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Table 4.2: Variation in the Wumpus World simulation environment.

Agent Population
(AG)

Task Complexity
(TC)

Carrier
(C)

Fighter
(F) Total Gold

(G)
Wumpuses

(W) Total

Basic Case 5 3 8 10 6 16

TC>AG 5 3 8 20 12 32
5 3 8 30 18 48

TC<AG 15 9 24 10 6 16
20 12 32 10 6 16

TC=AG 10 6 16 10 6 16
5 3 8 5 3 8

Table 4.3: Variation in the collective construction simulation environment.

Agent Population
(AG)

Task Complexity
(TC)

Builder
(B)

Bulldozer
(Bz)

Collector
(C)

Blocks
(Bk)

Obstacles
(O)

Structure Size
(SS)

Basic Case 3 5 5 200 100 10

TC+ 3 5 5 300 150 15
3 5 5 400 200 20
3 5 5 500 250 25

AG+ 6 10 10 200 100 10
9 15 15 200 100 10

12 20 20 200 100 10
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4.4 Experimental Setup

In order to compute the fitness of one communication strategy, we need a value for the maximum

goal cost for each performance goal that we consider as well as the communication cost. Empir-

ically, we find these values by running the simulation repeatedly a large number of times. The

maximum values for the Wumpus World and Collective Construction domains are presented in

Tables 4.4 and 4.5, respectively.

A total of 162 experiments are run in two phases. In each phase, the effect of one independent

variable (fitness parameter vs simulation environment) is investigated, as explained below. Fitness

goal, the main independent variable in this work, is involved in both phases.

The first phase is the fitness parameter phase, and it includes 30 experiments for each domain,

resulting in 60 experiments, where the fitness goal and fitness parameters are varied. Each experi-

ment is run three times, hence a total of 180 experiments. The following command is used for both

domains:

java GA PerGoal α β ac cc

Where:

α is the goal weight.

β is the communication weight

ac is the action cost

cc is the communication cost

This phase investigates the impact of the fitness parameters on the evolved strategies, and

hence goal performance and communication cost. Specifically, this phase is trying to answer the

following:

• Does increasing α guarantee better goal performance?

• Does increasing ac and/or cc, with fixed α and β values, affect the goal performance and

total communication cost?
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• For one parameter setting and one goal, is it guaranteed that the goal-driven communication

strategy always has the best goal performance compared to strategies of other goals?

Table 4.4: Maximum values for the Wumpus World domain.

Carriers Fighters Wumpus Gold
Max.
Time

Max.
Travel Dis.

Max.
Energy

Max
Eff. Dup.

Max.
Comm.

5 3 6 10 1200 7503 9050 95 915
10 6 6 10 1000 11537 14410 279 2863
15 9 6 10 1000 14668 22698 555 5710
20 12 6 10 1000 19809 25959 995 11039
5 3 12 20 2000 10327 11235 108 1555
5 3 18 30 2500 12947 13362 126 2263
5 3 3 5 1000 4501 6231 50 519

Table 4.5: Maximum values for the collective construction domain.

Builders Bulldozers Collectors Blocks Debris
Structure

Size
Max.
Time

Max.
Travel Dis.

Max.
Energy

Max
Eff. Dup.

Max.
Comm.

3 5 5 200 100 10 1800 22316 24182 2865 3090
6 10 10 200 100 10 1200 24339 30865 2959 14692
9 15 15 200 100 10 1200 34030 39571 3756 19563

12 20 20 200 100 10 1200 42636 80534 4703 54533
3 5 5 300 150 15 2100 22580 23490 3427 6984
3 5 5 400 200 20 2400 25871 29337 3053 5904
3 5 5 500 250 25 2700 29750 32815 4185 6500

The second phase of experiments is the simulation environment phase, and it includes 24

experiments for each application domain, where each is run three times, resulting in the total of

144 experiments. In this phase, the fitness goal as well as the simulation environment are varied,

while fitness parameters are fixed to unbiased values (α=0.5, β=0.5, ac=1, cc=1). The following

command is used for the Wumpus World domain:

java GA PerGoal C F W G

Where:

C is the size of carrier population

F is the size of fighter population

W is the size of wumpus population

G is the amount of gold
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And the following command is used for the Collective Construction domain:

java GA PerGoal B Bz C Bk D S

Where:

B is the size of builder population

Bz is the size of bulldozer population

C is the size of collector population

Bk is the number of blocks

D is the amount of debris

S is the structure size

This phase investigates the impact of the simulation characteristics on the evolved strategies,

and henceforth goal performance and communication cost. Specifically, this phase is trying to

answer the following:

• Does the proposed approach have a consistent performance as the scenario gets simpler

and/or more complex?

• How do the evolved strategies differ when the population/task complexity change?

4.5 Parallelization of Genetic Algorithm

As mentioned previously, we utilize a steady-state Genetic Algorithm to evolve goal-driven com-

munication strategies. Therefore, at each generation, fitness of two off-springs (two CSs) are

evaluated, which involves running the simulation 20 times (ten per CS) to compute the average fit-

ness scores. This results in 20 independent simulation runs at each GA generation, which indicates

natural parallelism found in the fitness evaluation of GA evolution.
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4.5.1 Hardware Configuration

We use multi-core processing to exploit the natural parallelism in GA and increase the efficiency

of our computation. Our experiments run on different nodes on the Advanced Computing Facility

(ACF) supercomputing cluster at the University of Kansas. Each experiment is submitted as a

separate batch job. In general, jobs ran on three different types of CPUs, including E5-2660, E5-

2660 v2, and E5-2670 v2, and a mix of memory (128GB, 256GB, and 512GB). However, the

minimum hardware requirements are 20-core CPU and 120 GB memory for each Wumpus World

job, and 12-core CPU and 90-110 GB memory for each Collective Construction job.

Due to limitation of data availability, we present hardware utilization for only the time period

from May 01, 2015 to March 31, 2016, which represents mostly jobs running the Wumpus World

domain, in Figures 4.1, 4.2, and 4.3. All charts are taken from KU's ACF XD Metrics on Demand

(Furlani et al., nd).

Figure 4.1 depicts the average CPU hours (number of CPU cores x wall time hours) per job.

According to source, the CPU usage is aggregated. For example, if a job used 1000 CPUs for one

minute, it would be aggregated as 1000 CPU minutes or 16.67 CPU hours. Additionally, Figure

4.2 shows the total number for jobs running per month for the specified time period, and Figure

4.3 illustrates the wall hours per job, which is the average time, in hours, a job takes to run.
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Figure 4.1: CPU hours per job.

Figure 4.2: Number of jobs running.
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Figure 4.3: Wall hours per job.

4.5.2 Software Configuration

We use multithreading in Java to parallelize fitness evaluation in GA, by implementing java.

util.concurrent.Callable interface. GA implementation consists of four Java classes, namely,

GA.java, Population.java, Individual.java, and Evolution.java. The class, presented in

Figure 4.4, is inserted in the Individual.java. Additionally, the code in Figure 4.6 is inserted

in the function GetFitness() in Individual.java class. Another part of the evolution process

that could be parallelized is evaluating the fitness of individuals in GA's initial population. For this

we use Java FixedThreadPool. The following two attributes are added to the Population.java

class. Also, the code in Figure 4.5 is inserted in Population constructor.

public static ExecutorService executor;
public static List<Future<String>> futures;
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Figure 4.4: Callable class appended to Individual.java.

Figure 4.5: Code appended to the constructor of Population.java.
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Figure 4.6: Code added to GetFitness() in Individual.java.
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CHAPTER 5

Case Study: The Wumpus World

5.1 Scenario

AMULTI-AGENT version of the Wumpus World Problem (Russell & Norvig, 2003; Zhang,

2006) is developed using Repast Simphony (Althnian & Agah, 2015, 2016; North et al.,

2005). The world consists of 12 rooms in a 140x140 grid, where one room is the drop-off room,

and others either contain gold and/or wumpuses or are empty. The world contains five carriers,

three fighters, six wumpuses, and ten pieces of gold, all of which are distributed randomly at

the beginning of each simulation run. Carriers have the information about rooms' locations, but

not their contents. Carriers are capable of finding gold and wumpuses, picking up and dropping

off gold, and fighters are capable of killing wumpuses. Similar to (Zhang, 2006), the only way

that fighters can know about the location of a wumpus is by receiving a message from a carrier that

observed it (IS4 in Table 5.1). Therefore, communication of this information instance is considered

mandatory to enable agents to complete the task.

The information instances that agents can communicate in this domain are listed in Table 5.1.

Single-value information instances include IS1, IS2, IS6, and IS7, while multi-value information
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Figure 5.1: Screenshot of the Wumpus World.

instances are IS3, IS4, IS5, and IS8.

Table 5.1: Information instances of the Wumpus World and their values.

Identifier Information Instance Possible Values Producer

IS1 Carrier's Goal
ExploreRoom
PickUpGold
DropOffGold

Carrier

IS2 Carrier's Goal Room [1,12] Carrier

IS3 Gold Location (x,y)
140>x,y>0 Carrier

IS4 Wumpus Location (x,y)
140>x,y>0 Carrier

IS5 Empty Room [2,12]
1 is drop-off room Carrier

IS6 Fighter's Goal FindWumpus
KillWumpus Fighter

IS7 Fighter's Goal Room [2,12] Fighter
IS8 Safe Room [2,12] Fighter

At each time-step, every agent performs (observe, communicate, act) task cycle. In observe,

agents are able to make the observations IS3, IS4, IS5, IS8, as well as decide on a goal and goal

room. In the communicate step, each agent refers to the communication strategy to see if it should

communicate any information at the current time-step. In the act step, all agents are able to move
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UP, DOWN, RIGHT, and LEFT. In addition, carriers are able to PICK UP, and DROP OFF gold,

and fighters are able to KILL a wumpus. Carriers and fighters maintain inner states, Sc and S f ,

respectively, defined as:

Sc = {s1,s2}

S f = s1, Where: s1,s2 = {0,1,φ}.

The first element s1 indicates agent's location, whether inside a room (1), in the hallway (0), or

disregarded (φ ). Although agents can recognize what room that they are in, this is abstracted in

the state to only three cases to deliver a coherent choice to when an agent can communicate. The

second element s2 indicates the carriers' possession of gold, whether it holds gold (1), nothing (0),

or disregarded (φ ). While states keep track of agents' locations and possession, agents goals (Table

5.1) maintain what they want to achieve. Initially, all carriers have the ExploreRoom goal, and have

to decide on a goal room. The choice of goal and goal room depends on the information available

to each carrier about the rooms. For example, a carrier will choose the closest room that contains

gold, but if it has no information about gold locations, it will choose the closest room it has never

visited to explore. Needless to say, carriers avoid empty and wumpus rooms. The latter rooms can

be reconsidered for exploration or gold collection if a carrier receives that the room is safe (IS8)

or contains gold (IS3), respectively. By communicating goal and goal rooms, carriers can avoid

exploring a room that is currently being explored by another carrier. In a similar manner, fighters

choose the closest wumpus room, if multiple requests received, and avoid targeting a wumpus that

is currently the goal of another fighter.

5.2 Experimental Results

5.2.1 Fitness Parameters

We present the experimental results for each performance goal when values of the fitness param-

eters are varied in Figures 5.2, 5.3, 5.4, and 5.5 (Althnian & Agah, 2016). As shown, each bar

represents the goal performance for one fitness parameter setting, which has been hierarchically
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labeled by the goal and communication weights and further by the action and communication costs.

The line chart for each cost setting represents the communication cost trend as the goal's weight

increases. The performance results reported are the average of three evolution runs. Unless other-

wise indicated, the evolved strategies for a single experimental setting are mostly consistent, with

sometimes a slight variation in the timing strategies, such as three versus four time-steps, which

does not affect the strategy's fitness and result performance. For each result, the error bar shows

the standard error, computed as STDEV/SQRT (n), across n GA runs, where n=3.

The observed performance can be further justified and understood by comparing the actual

evolved communication strategies (Tables 5.2, 5.3, 5.4, 5.5). Although it is enigmatic as to pre-

cisely which part of the evolved strategy caused such performance, we compare and contrast, In

the forthcoming subsections, between strategies and their performance to deduce which part of the

strategy, including information instances, timing, and recipient strategies, contributes to the result

performance. In the tables, each row shows the strategy evolved for one parameter setting, and

each column represents an information instance. Dark shaded cells represent invalid communica-

tion, or communication that only increases cost with no contribution to performance improvement.

Such communication includes sending carriers goals to fighters, or vice versa, and sending gold

locations to fighters. Light shaded cells convey that no communication is allowed for the corre-

sponding information instance in the corresponding parameter setting (strategy). For clear cells,

the upper line represents the recipient strategy, i.e., P2P, Bcast, or subset [2-max], and the lower

line represents the timing strategy, which can take either every update (EU), in a state ({0,1,φ},

{0,1,φ}) for carriers (C), and ({0,1,φ}) for fighters (F), or every time interval ([2-20] TS).

5.2.1.1 Time

Figure 5.2 shows the time performance and communication cost across different values for the

fitness parameters. Firstly, in all cases of action and communication costs, the time performance

of agents improves as a result of increasing its weight, which in turn costs more communication,

enabled by decreasing the communication weight. ANOVA test indicates that the decrease in time
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is statically significant when the goal weight is increased across all action and communication

costs, with (p<0.005). Secondly, doubling communication cost, (ac<cc), causes GA to evolve

strategies with lower communication, and hence worse goal performance. This can be observed

by comparing each time performance and associated communication in case of (ac<cc) with the

corresponding performance and communication of other costs, i.e., bars of the same shading, in

other cases (ac=cc and ac>cc).

Moreover, the time performance when (ac=cc) is almost the same as the corresponding time

performance when (ac>cc). As communication cost remains the same in both cases, action cost

does not affect the time fitness of the strategy. Further, it appears that low communication weight

can sometimes be compensated by higher corresponding cost, which results in cases where the per-

formance and communication is nearly similar with different goal weights. This can be observed,

in Figure 5.2, when the two cases (α=β , ac=cc) and (α>β , ac<cc) are compared.

Figure 5.2: Performance of time strategies.

As can be seen in Table 5.2, the wumpus location (IS4) is communicated to fighters in all cases,

though broadcasting the information is avoided when communication cost doubles and when com-

munication weight is higher, in efforts to minimize communication. Apparently, for one cost
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setting, the communicated information instances increase as a consequence of decreasing commu-

nications' weight (β ). Also, the evolved strategies of one weight setting have lower number of

communicated information instances when the communication cost is high, compared to the other

two cost settings. For example, when (α<β ), agents can communicate IS4 and IS8, both when

(ac=cc) and (ac>cc), while only IS4 is allowed to be communicated when (ac<cc).

Table 5.2: The evolved time communication strategies.

Fitness Parameters Information Instances (ISi)
Costs Weights IS1 IS2 IS3 IS4 IS5 IS6 IS7 IS8

C
4

(2TS)
α<β

F
2

(10TS)

C
2

(3TS)
Bcast
(EU)

P2P
(9TS)

α=β
F

Bcast
(5TS)

P2P
(14TS)

C
P2P

(5TS)
2

(1,0)
Bcast
(EU)

4
(17TS)

ac=cc

α>β
F

Bcast
(9TS)

C

α<β
F

2
(EU)

C
3

(1,1)
P2P

(19TS)
α=β

F
2

(2TS)

C
3

(5TS)
Bcast
(EU)

P2P
(1)

ac<cc

α>β
F

2
(3TS)

C
2

(4TS)
α<β

F
2

(10TS)

C
2

(2TS)
Bcast
(EU)

P2P
(1)

α=β
F

Bcast
(15TS)

P2P
(1)

C
P2P

(5TS)
2

(1, 0)
Bcast
(EU)

4
(17TS)

ac>cc

α>β
F

Bcast
(9TS)

Moreover, the value of each information instance to time performance could be evaluated by

investigating the circumstances (or parameter settings) under which each information instance is
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allowed to be communicated. For example, mandatory information, such as IS4, is communicated

to fighters in all parameter settings, although with different strategies. On the contrary, communi-

cating IS1 and IS4 to carriers, and IS5, IS6 and IS7 to fighters is not allowed in any setting, hence

we can conclude that these information has no contribution to minimizing time. However, we still

cannot confirm whether they are neutral or unfavorable to time performance. The second most

important information to time appears to be the safe room (IS8) to carriers, as it is avoided in

only a single case that is when both communication weight and cost are high (α<β , ac<cc). The

prominence of this information comes from the fact that it draws carriers attentions to formerly

dangerous rooms, which have been avoided by all carriers that observed the wumpus. The contri-

bution of this information in minimizing time is noticeable by comparing the time performance of

the strategies when (α<β , ac<cc) and (α<β , ac>cc) or (α<β , ac=cc), which has been confirmed

by t test (p=0.0007). It seems that communicating carriers goal room (IS2) can decrease time, but

appears to cost high communication as carriers update their goal rooms frequently. Therefore, it is

only communicated when time outweighs communication and further communication cost is not

high. It appears that the next influential information is the empty room (IS5), followed by the gold

location (IS3). The former is dropped from three strategies, when communication outweighs time,

whilst the latter seems to be either more expensive or less influential as it is dropped from four

strategies; three of them when communication outweighs time and one when weights are equal but

communication cost is higher. The later parameter setting is the only case when IS5 is communi-

cated to only three carries if the sender is in a room and holding gold, as opposed to broadcasting

every update in all other settings.

Another observation is that carriers' goal (IS1) is not communicated in all strategies. Since

initially all carriers have the ExploreRoom goal and each carrier knows that others have this goal,

not communicating any update of the goal will make each carrier believe that others always have

ExploreRoom goal. Since carriers do not explore a room that is currently explored by others, hence

if carriers' goal room (IS2) is communicated, then carriers will not explore a room that is currently

explored or even visited by another carrier to pick up gold. This behavior seems to work better
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in minimizing time than the originally implemented behavior, and thus has been enforced by the

evolved strategies.

5.2.1.2 Travel Distance

Mutual observations can be made for the performance of travel communication strategies in Fig-

ure 5.3. For instance, the distance traveled by agents decreases as a result of increasing the travel

distance weight. However, for one cost setting, increasing the goal weight does not necessarily

result in significant improvement in the goal performance. This can be seen, in Figure 5.3, when

the goal weight increases from 0.25 to 0.5, with (ac>cc), as (p=0.13). This can occur if any further

significant improvement in goal performance would require a significant increase in communi-

cation that, given the current weight setting, would result in worse fitness. The steep increase

in communication when goal's weight increases to 0.75, for the same cost setting, confirms this.

Moreover, similar performance is obtained with two different fitness parameter settings: (1) (α>β ,

ac<cc), and (2) (α=β , ac=cc), with (p=0.47), which can be verified by the close evolved strategies

in Table 5.3. Although the difference in weights, the variations of the action and communication

costs in the two cases even out the importance of the two costs, resulting in a similar strategies

and performance. The strategy (α=β , ac>cc) shares a close performance and strategy with the

two previous ones for the same aforementioned reason, i.e., any further significant improvement in

goal performance over the strategy (α<β , ac>cc) would require a significant increase in communi-

cation. Unlike the time fitness, increasing the action cost does impact the travel fitness, and hence

the evolved strategies, since action cost includes the cost of travelling. By comparing the system's

performance in the three cases of cost settings, it can be seen that, on one hand, the evolved strate-

gies, when (ac<cc), maintains the minimum amount of communication, and hence maximum travel

distance, comparing to its counterparts in (ac=cc and ac>cc). On the other hand, strategies evolved

with (ac>cc) tend to communicate more and travel shorter distance, compared to its counterparts in

(ac=cc and ac<cc). Moreover, we notice that, except for the high communication cost setting, the

evolved strategies have higher communication standard error when the communication weight is
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low (β=0.25), compared to other weight settings. The reason for this is that when communication

is given relatively low weight (and cost), compared to goal, as in (α>β , ac>cc), GA may sometime

exaggerate in communication, in efforts to further minimize the cost of travel. Therefore, any extra

communication evolved, represented in more recipients or too often communication, is actually

neutral that increases communication, but does not negatively affect the goal performance, verified

by the low goal's standard error.

Figure 5.3: Performance of travel distance strategies.

Table 5.3 compares the travel communication strategies. Unlike the time strategies, broadcast-

ing the wumpus information (IS4) is avoided in all parameter settings since it triggers response

from all fighters, and hence increases the total travel distance. Moreover, IS3 is avoided in all but

one strategy, when (α>β , ac>cc), due to over communication. Therefore, communicating IS3 does

not contribute to minimizing travel distance. Rather, IS3 may, in some scenarios, attract carriers

to the gold locations, which may result in carriers ignoring nearby rooms and travelling longer

distance to collect gold. IS8 seems to be less important to travel than time, as it is dropped from all

strategies where communication cost is higher and when it costs as much as action but has higher

weight.
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Table 5.3: The evolved travel distance communication strategies.

Fitness Parameters Information Instances (ISi)
Costs Weights IS1 IS2 IS3 IS4 IS5 IS6 IS7 IS8

C

α<β
F

P2P
(EU)

C
P2P

(20TS)
Bcast
(EU)

P2P
(11TS)

α=β
F

2
(1,0)

C
P2P
(1,0)

2
(EU)

Bcast
(20TS)

P2P
(15TS)

ac=cc

α>β
F

P2P
(EU)

C

α<β
F

P2P
(EU)

C
3

(1,1)
α=β

F
P2P
(EU)

C
P2P

(13TS)
Bcast
(EU)

P2P
(1)

ac<cc

α>β
F

2
(4TS)

C
Bcast
(EU)

P2P
(12TS)

α<β
F

P2P
(EU)

C
P2P

(1, φ )
Bcast

(16TS)
P2P

(15TS)
α=β

F
P2P
(EU)

C
P2P

(8TS)
2

(7 TS)
P2P

(17 TS)
Bcast
(EU)

P2P
(17TS)

ac>cc

α>β
F

2
(1, φ )

P2P
(6TS)
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Similar to time, carriers' goal rooms (IS2) is allowed to be communicated in only two strategies,

when goal weight is high and communication cost is not high. Also, IS5, IS6, and IS7 are never

communicated to fighters, and IS1 is never communicated to carriers for the same reason explained

previously. IS5 appears to be as important to travel as it is to time. However, since doubling action

cost affects travel fitness as oppose to time fitness, IS5 is communicated when (α<β , ac>cc) as

well. This information can help carriers avoid empty rooms, hence focus more on exploring rooms

with potential gold. Moreover, unlike time, travel distance allows communicating IS4 to carriers,

and similar to gold locations (IS3) to time, this information instance is avoided only when com-

munication outweighs travel distance and when their weights are equal but communication cost is

higher. IS4 is communicated to the closest single or two carriers, hence the number of working car-

riers continually decreases as the task progresses, which results in shorter travel distance. However,

broadcasting or communicating IS4 to multiple carriers is avoided, as doing so causes most carriers

to reach idle state early, which leaves more work to only one or a few carrier(s), and hence increase

total travel distance. The safe room (IS8) appears to be less important to travel distance than it is to

time, since it is dropped from three travel strategies, as oppose to one time strategy. Further, when

IS8 is communicated, it is only sent to the closest carrier (P2P), while in some time strategies, IS8

is communicated to two and four carriers. The gold location (IS3) is only communicated in one

strategy, when (α>β , ac>cc), and to the closest two carriers. We notice that travel strategies are

very considerate to sharing potential gold locations to carriers (by communicating IS3 and IS8). It

is believed that communicating such information to remote carriers can increase travel distance,

as those carriers are distracted from nearby rooms and encouraged to travel to farther rooms that

contain gold or just became safe. Similar to time, carriers' goal (IS1) is not communicated in all

strategies for the same aforementioned reason.

5.2.1.3 Energy

As previously stated, energy is a single-objective performance goal; hence only costs variation

is applicable. Figure 5.4 shows the energy performance of the evolved strategies, presented in
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Table 5.4, when action and communication costs are varied. We observe that, on one hand, when

communication cost is doubled (ac<cc), communication is significantly reduced, compared to the

case when communication cost is low (ac=cc), with (p=0.004), though the total amount of energy

consumed is significantly higher when (ac<cc), with (p=0.001). On the other hand, communication

is significantly increased when (ac<cc), comparing to (ac=cc) with (p=0.001), as a consequence

to doubling the action cost, yet no difference in the amount of energy consumed, between the two

cost settings, is obtained, (p=0.25). Therefore, we believe that any extra communication, evolved

in the strategy of the cost setting (ac>cc), is not indeed necessary, as the strategy for the setting

(ac=cc) can perform as good as the former strategy, yet with significantly less communication.

Energy consumption can be minimized by traveling shorter distance and/or communicating

fewer messages. Unlike other (multi-objective) performance goals, the absence of goal and com-

munication weights can yield GA to accept communication strategies with any communication

cost as long as it consumes less energy. Therefore, it may not be clear as to why a specific infor-

mation instance is communicated or avoided, and hence comparing the evolved energy strategies

in different cost settings is ineffectual.

Figure 5.4: Performance of energy strategies.
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Table 5.4: The evolved Energy communication strategies.

Fitness Parameters Information Instances (ISi)
Costs IS1 IS2 IS3 IS4 IS5 IS6 IS7 IS8

ac=cc C
P2P

(10TS)
3

(7 TS)
Bcast
(1, 0)

2
(1)

F
P2P
(EU)

ac<cc C
P2P

(10TS)
Bcast

(1, Phi)
P2P
(EU)

F
2

(2 TS)
2

(2 TS)

ac>cc C
P2P

(7 TS)
P2P

(10 TS)
3

(4 TS)
2

(4 TS)
Bcast
(1, 0)

P2P
(5 TS)

F
2

(2 TS)
2

(5 TS)

5.2.1.4 Effort Duplication

As the main aim of this performance goal is to prevent two agents from targeting the same goal,

we notice the popularity of P2P as the recipient strategy in all parameter settings. The purpose is

that no two agents are told about the same information to avoid triggering them to the same goal.

We observe close performance, in Figure 5.5, for the corresponding strategies when (ac=cc) and

(ac>cc). Yet, an interesting observation can be made by comparing the strategies evolved for the

two settings (α>β , ac=cc) and (α>β , ac>cc). Due to the recipient strategy evolved for communi-

cating IS4 to fighters in the latter setting (2 versus P2P), GA further evolved communicating IS6,

IS7, and IS8 to fighters. Communicating IS8 to fighters is always paired with communicating the

wumpus location (IS4) to a subset of 2, rather than P2P. As one might imagine, sending a wum-

pus location to two fighters increases the likelihood of targeting the same wumpus. Therefore,

communicating the news that the wumpus has been killed, i.e., safe room (IS8), can reduce the

occurrence of this situation. Due to the low communication weight, GA has additionally evolved

communicating the fighters goals (IS6) and goal rooms (IS7), to further prevent targeting one wum-

pus by multiple fighters. T test suggests that the two strategies have close effort duplication fitness

(p=0.18), due to the low weight, and hence contribution, of communication cost to the fitness.

We observe (Figure 5.5) that the performance is close when goal's weight increases from 0.25

to 0.5, when (ac<cc), for the same reason mentioned previously. Once more, any further reduction
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Figure 5.5: Performance of effort duplication strategies.

in duplication of effort, requires a significant increase in communication, which, given the cost

setting, results in worse fitness. This can be verified by the significant increase in communication

when goal's weight increases to 0.75. However, strategies evolved at the weight setting (α=β ,

ac<cc) are more variant that those evolved at (α<β , ac<cc). The reason is that when both commu-

nication weight and communication cost are high, GA ensures that minimal communication is the

best strategy. However, when communication weight is equalized with goal weight, GA has once,

out of three runs, evolved a strategy with higher communication than minimal communication in

effort to improve goal performance. The evolved strategy is similar to that at (α=β , ac=cc), which

has worse fitness in this parameter setting than minimal communication.

The evolved effort duplication strategies (Table 5.5) suggest that IS2 is communicated in three

strategies, where goal outweighs communication. This confirms our previous observation that

communicating IS2 is costly, hence it was communicated, in time and travel distance strategies,

only when goal outweighs communication and communication weight is not high. In this perfor-

mance goal, however, IS2 is allowed to be communicated when communication cost is high, due to

the crucial role it plays in reducing effort duplication. Moreover, IS2 is communicated more often
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Table 5.5: The evolved effort duplication communication strategies.

Fitness Parameters Information Instances (ISi)
Costs Weights IS1 IS2 IS3 IS4 IS5 IS6 IS7 IS8

C

α<β
F

P2P
(EU)

C
P2P

(19 TS)
α=β

F
2

(7 TS)
P2P

(2 TS)

C
P2P

(3 TS)
Pcast
(1, φ )

P2P
(13 TS)

ac=cc

α>β
F

P2P
(EU)

C

α<β
F

P2P
(EU)

C

α=β
F

P2P
(EU)

C
P2P
(EU)

P2P
(14 TS)

ac<cc

α>β
F

P2P
(EU)

C

α<β
F

P2P
(EU)

C
P2P

(19TS)
α=β

F
2

(7 TS)
P2P

(1, φ )

C
P2P

(2 TS)
P2P

(2 TS)
P2P

(12 TS)
ac>cc

α>β
F

2
(9 TS)

P2P
(0, φ )

P2P
(0, φ )

2
(12 TS)
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than it is in the previous two goals. Communicating empty rooms (IS5) seems to be less important

and hence is only communicated in two strategies. It is observed that gold locations (IS3) are not

communicated at all because sharing gold locations causes more carriers to target the same gold,

which increases duplication of effort. Moreover, communicating the wumpus location (IS4) to car-

riers is avoided in all strategies, as it results in carriers avoiding all wumpus rooms and hence left

with few room choices, which increases simultaneous rooms exploration. Communication of the

safe rooms (IS8) to carriers seems to be important in lowering effort duplication, as it is avoided

only when communication outweighs goal performance and in cases where communication has

equal weight to that of performance, but with high cost.

5.2.2 Fitness Goal

In this section we examine the strategies evolved from a different angle. We consider each case

of fitness parameters, and study the impact of changing the fitness goal on the evolved strategies

and goal performance of the system. This is done by considering each case of weight setting

separately and comparing the fitness and performance of communication strategies of various goals

with respect to each performance goal. Each of the Figures in this section include the fitness and

performance of the minimum communication strategy, which communicates every update of the

wumpus location (IS4) as P2P to fighters, as evolved by GA when the fitness function was set to

only the communication cost. This enables the comparison between the evolved strategies and the

minimum communication strategy.

5.2.2.1 α>β

With this weight setting, the goal performance is given the most weight of the fitness. Therefore,

GA can increase communication. A small improvement in the goal performance, attained by a

greater increase in communication is accepted, as a consequence of the relative weight of goal

performance versus communication.

Figure 5.6 compares the time performance of the time communication strategy with strategies
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of other goals. In the Wumpus World domain, minimization of time and minimization of travel

distance are not always conflicting goals. If the goal is to minimize travel distance, one would

suppose that GA should evolve communication what leads agents to collecting gold and avoiding

empty and wumpus rooms, and thus every move is worthwhile. This behavior may in some cases,

concurrently, reduce the time needed to complete the task, as agents waste no time on actions that

make no progress in the assigned task.

That being the case, we observe a close, yet inequivalent, time performance (p=0.28) and fitness

(p=0.27) for the two strategies in Figure 5.6b. However, when the communication cost is not high

(Figures 5.6a and 5.6c), minimizing travel distance does not yield fast performance for the system.

In fact, it results in a significantly higher time (p=0.02 and p=0.02) and fitness (p=0.01 and p=0.04)

when (ac=cc and ac>cc), respectively.

Similarly, minimizing time achieves a comparable travel distance to that of travel strategy

(p=0.09), when communication cost is high (ac<cc), as shown in Figure 5.6b. Yet, the travel

strategy performs significantly better in the other two parameter settings, (p=0.01) when (ac=cc),

and (p=0.02) when (ac>cc). As travel strategy communicates less in Figure 5.7a, it achieves a sig-

nificantly better fitness (p=0.0003) than the time strategy, whilst the high communication in Figure

5.6c yields no significant travel fitness than that of the time strategy, (p=0.12). To understand

why, we shall examine the evolved strategies for the two goals, given in Tables 5.2 and 5.3 in the

previous section.

When action and communication costs are equal, key differences in the evolved time and travel

strategies exist that are believed to achieve the significant performance. First, time strategy broad-

casts the wumpus locations to fighters and allows communicating the safe room (IS8) to four closest

carriers as well as gold locations to the two closest carriers. These together guarantee quick col-

lection of gold that exist in wumpus rooms. In the travel strategy, however, only the closest fighter

is informed about the wumpus location, hence one fighter will target the wumpus, which may take

longer time as the fighter could be responding to another request, but definitely costs less travel

distance as only one fighter is traveling, rather than three. In addition, only the closest carrier
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is informed when a wumpus is killed. Therefore, only the closest carrier to the room considers

exploring the room and yet never shares gold locations with others, if any is found. As explained

before, travel strategies are cautious about sharing potential gold locations among carriers, by

communicating IS3 and IS8, as it may cause longer travel distance. Moreover, the travel strategy

communicates the wumpus locations to not only fighters, but also to the closest two carriers. This

means that these carriers will avoid the wumpus room, which limits their room choices, and hence

soon come to a standstill. Therefore, the number of working carriers will continually decrease

as the task progress, which results in lower total travel distance and longer time to complete the

task, comparing to the time strategy. Second, both time and travel strategies allow broadcasting

empty rooms (IS5) to carriers, although time strategy allows communicating it right away, while

with the travel strategy, carriers have to wait 20 time-steps to communicate it. Moreover, both

strategies communicate the carrier goal room (IS2) to the closest carrier. These two information

instances can help carriers not to waste time travelling to rooms that cannot make any progress

in the assigned task or rooms that are already targeted by another neighbor carrier. With the ef-

fort duplication strategy, only the closest carrier is told that a room is empty. Broadcasting such

information is avoided in this case because it limits carriers'room choices, and thus increases the

possibility that multiple carriers target an unempty room. This strategy for sharing IS5 along with

disallowing communication of IS4 to carriers cause a remarkably higher travel distance, compared

to the travel strategy (p=0.0002), while this strategy combined with communicating IS8 as P2P

cause the significant longer time to finish the task, comparing to the time strategy (p=0.0001).

When communication cost is high, time and travel strategies share equivalent strategies for

communicating IS4, IS5, and IS8. The difference between the two strategies is that time strategy

communicates the gold locations IS3, while travel strategy communicates IS4 to carriers. As men-

tioned previously, this information is beneficial to improving the corresponding goal performance.

However, it seems that the current strategies used for sharing the two information instances, for

example, only the closest carrier is informed about the wumpus location in the travel strategy, do

not make such a significant difference in the corresponding performance goal. Effort duplication
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(a) ac=cc (b) ac<cc (c) ac>cc

Figure 5.6: Time performance of communication strategies of various goals (α>β )

(a) ac=cc (b) ac<cc (c) ac>cc

Figure 5.7: Travel performance of communication strategies of various goals (α>β )

(a) ac=cc (b) ac<cc (c) ac>cc

Figure 5.8: Energy performance of communication strategies of various goals (α>β )
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(a) ac=cc (b) ac<cc (c) ac>cc

Figure 5.9: Effort duplication performance of communication strategies of various goals (α>β )

strategy has further disallowed communicating IS5, hence it costs significantly higher in terms of

time and travel distance.

When the action cost is high, time strategy maintains a similar performance as well as strategy

to the cost setting (ac=cc), because the action cost has no effect on the time fitness. The travel

strategy, however, increases communication to reduce action (i.e. travel) cost. As shown in Table

5.3, the travel strategy allows communicating the wumpus locations to two fighters, rather than

one. The analysis revealed that the two recipient strategies for communicating IS4 to fighters (P2P

vs 2) costs less travel distance in different scenarios, depending on the locations of fighters and

wumpuses. For example, if wumpuses are located in nearby or the same room(s), then P2P would

cost less in travel distance, while the other strategy costs less if they are apart. Yet, the difference

is not significant. Though to guarantee that two fighters do not target the same wumpus, the

strategy allows sending the safe room to the closest fighter, hence making every step worthwhile.

In addition, the strategy communicates every update of IS5, rather than every 20 time-steps, as

when (ac=cc), and also allows sending the gold location (IS3). This strategy costs significantly less

in travel distance than the time strategy, but due to the significant higher communication cost, no

significant improvement in travel fitness is achieved over the time strategy. The effort duplication

has lower time and travel distance, compared to the previous two cost settings. The reason is

that the strategy allows communicating IS4 to two fighters, rather than one, and to ensure that

duplication of effort is minimized; it further communicates fighters' goal and goal rooms, as well

as information about killed wumpuses to fighters.
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Energy performance of the strategies is depicted in Figure 5.8. As can be seen, the strate-

gies' relative performance resemble their corresponding's travel performance. The reason is that

cost of traveling amounts to most of the energy consumed. As stated previously, agents consume

energy when they perform actions, such as move, pick up, drop, and shoot, and when they com-

municate. Although energy strategy has a close performance to the travel strategy with respect to

both travel distance and energy, it does so with a higher amount of communication. Since com-

munication cost makes up only a quarter of the total strategy's fitness, we observe a slight increase

in the fitness of the energy strategy comparing to the travel strategy's fitness. Recall that energy

is a single-objective goal and travel distance is a multi-objective goal, we conclude that assigning

weights to the goal and communication costs can lead to better balance between the two costs.

As time and effort duplication fitness do not take into account action cost, we observe the high

energy consumed by the two strategies when action cost doubles, comparing to travel and energy

strategies.

Figure 5.9 presents the strategies performance with respect to effort duplication. The effort

duplication strategy outperforms all other strategies with the best goal performance and fitness.

We observe that time strategy has the maximum duplication of effort, compared to other strategies,

in both (ac=cc) and (ac>cc). We suggest that the first reason is due to broadcasting the wumpus

location to all fighters as oppose to one and two fighters in the other strategies, and yet not com-

municating IS8 to fighters as in other strategies when IS4 is communicated to multiple fighters.

Second, the time strategy communicates IS8 to four carriers, compared to one in the other two

strategies. When communication cost is high, effort duplication of time strategy increases slightly,

while for travel strategy, it increases significantly to be close to that of the time strategy. The reason

for the increase in effort duplication is disallowing communication of carriers' goals (IS2) in both

strategies. Yet, the increase for the time strategy is not significant as IS4 is not broadcast, compared

to other cost settings. While for the travel strategy, it communicates IS4 to more fighters, compar-

ing to other cost settings, and further does not communicate IS8 to fighters, hence the close effort

duplication performance for the two strategies. In all cost settings, minimum communication strat-
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egy has high effort duplication, although no effort duplication happens among fighters as only one

fighter is informed about each wumpus location. The reason is due to the lack of communication,

and hence coordination, among carriers.

5.2.2.2 α=β

In this case, goal and communication costs contribute equally to the total strategy's fitness. As a

result, GA approves increasing communication cost only if it improves goal performance for the

same, or close, proportion. Figure 5.10 depicts the time performance of the strategies. Unlike the

previous weight setting, we observe disparity between the time performance of the time and travel

strategies when communication cost is high (p=0.04), and close time performance when action

and communication costs are equal (p=0.07) and when action cost is high (p=0.11). However, no

significant travel performance is observed for the travel strategy over the time strategy in all cost

settings, (p=0.11, 0.06, 0.25), for Figures 5.11a, 5.11b, 5.11c, respectively.

A comparison of time and travel strategies in Tables 5.2 and 5.3, when (ac<cc), highlights the

importance of communicating IS8 to carriers in minimizing the time needed to complete the task,

along with sending IS4, 'wumpus location', to two fighters rather than only one fighter. Since the

difference between the two strategies serves only the time performance, as the difference between

IS4 recipient strategies that affects travel performance is not significant, we observe close travel

performance between the time and travel strategies, in Figure 5.11b. The energy strategy allows

agents to complete the task in significantly less time than the time strategy does, (p=0.017), due

to broadcasting IS5 to carriers and communicating IS8 to two fighters. Communicating the latter

information instance and IS4 to a carrier contribute to significantly lowering the distance traveled by

agents than that of the travel strategy (p=0.0001), as well as that of the time strategy (p=0.0002).

Both effort duplication and minimum communication strategies communicate minimally; hence

the notable longer time to complete the task.

In the two cost settings (ac=cc) and (ac>cc), no significant performance differences are ob-

tained between the time and travel strategies with respect to both time and travel distance. The dif-
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(a) ac=cc (b) ac<cc (c) ac>cc

Figure 5.10: Time performance of communication strategies of various goals (α=β )

(a) ac=cc (b) ac<cc (c) ac>cc

Figure 5.11: Travel performance of communication strategies of various goals (α=β )

(a) ac=cc (b) ac<cc (c) ac>cc

Figure 5.12: Energy performance of communication strategies of various goals (α=β )
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(a) ac=cc (b) ac<cc (c) ac>cc

Figure 5.13: Effort duplication performance of communication strategies of various goals (α=β )

ference between the evolved strategies resembles that of the previous weight setting when (ac<cc).

In both cost settings, the difference between the two strategies is that time communicates the gold

locations (IS3), while travel strategy communicates IS4 to a carrier. In addition, the time strategy

broadcasts IS4 to fighters but minimizes their travel distance by communicating IS8 to fighters,

while the travel strategy communicate IS4 to the closest one or couple of fighters. The effort dupli-

cation strategy takes significantly longer time to complete the task, comparing to the time strategy,

due to not communicating empty rooms (IS5). Yet, it takes shorter time than the minimum com-

munication strategy, since it communicates IS8.

The relative energy performance of the strategies is shown in Figure 5.12, and it is similar

to that of travel performance for the aforementioned reasons. We observe that although energy

strategy has lower amount of energy consumed than that of the travel strategy, it is surpassed by the

latter with respect to energy fitness, due to the high communication. Figure 5.13 shows the effort

duplication performance for the strategies. The time strategy has the worst performance in all cost

settings, with similar performance for the travel strategy when (ac<cc), due to not communicating

IS8 to carriers. The negative effect of sharing IS5 to many carriers can be observed by comparing

the travel and effort duplication strategies when communication cost is high.
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5.2.2.3 α<β

Communication cost outweighs the goal cost in this setting. The system designer is usually very

concerned about communication cost, but still interested in seeing whether low communication

can improve the system's performance. Thus, the aim is to improve the goal performance, but with

minimum cost of communication.

Figure 5.14 shows the time performance of the strategies. Aside from energy, the time strategy

outperforms all other strategies, (Figure 5.14a), as they communicate minimally. The time per-

formance of the strategies become closer, in Figure 5.14b, as the time strategy drops IS8, while

all others maintain minimum communication. In Figure 5.14c, the travel strategy completes the

task almost as fast as the time strategy (p=0.06), as it increases communication over other cost

settings, in efforts to minimize the high travel cost. While the time strategy has the advantage

of communicating wumpus locations to two fighters and safe rooms to two carriers, rather than a

single recipient in the travel strategy, the latter has the advantage of broadcasting empty rooms to

carriers. The pros and cons in both strategies result in close time performance. However, because

of the high communication in travel strategy comparing to time strategy, the latter has significantly

better time fitness (p=0.04). Since the energy strategy was evolved with a single-objective fitness

function, it is not affected by varying the fitness weights. Therefore, in both (ac=cc) and (ac>cc)

cost settings, we observe insignificant lower time consumed by this strategy comparing to the time

strategy, (p=0.07 and p=0.17, respectively). Yet, its time fitness is significantly worse than the time

strategy (p=0.00006, p=0.0009, respectively), due to the high amount of communication. In the

(ac<cc) cost setting, however, the energy strategy consumes significantly less time than the time

strategy to complete the task, (p=0.00001), but again time fitness of the time strategy is signifi-

cantly better than that of the energy strategy (p=0.0007).

In Figure 5.15a, although time strategy has lower travel distance than the travel strategy (p=0.01),

due to high communication, no significant difference is found between the travel fitness of the two

strategies (p=0.30). The two evolved strategies are close when the communication cost doubles

(ac<cc), as they both communicate only IS4 to fighters, whereas the travel strategy travels signifi-
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(a) ac=cc (b) ac<cc (c) ac>cc

Figure 5.14: Time performance of communication strategies of various goals (α<β )

(a) ac=cc (b) ac<cc (c) ac>cc

Figure 5.15: Travel performance of communication strategies of various goals (α<β )

(a) ac=cc (b) ac<cc (c) ac>cc

Figure 5.16: Energy performance of communication strategies of various goals (α<β )
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(a) ac=cc (b) ac<cc (c) ac>cc

Figure 5.17: Effort duplication performance of communication strategies of various goals (α<β )

cantly shorter distance (p=0.005), Figure 5.15c, as a result of doubling the action cost that makes

communicating IS5 worthwhile.

When it comes to the energy performance (Figure 5.16), and aside from the admittedly energy

strategy's performance, the time strategy wins the best performance, when (ac=cc), as it commu-

nicates more (p=0.003 comparing to the travel strategy). However, no significant difference in

energy fitness is obtained (p=0.1). When action cost is high, travel strategy significantly outper-

forms the time strategy with respect to both energy and energy fitness, (p=0.004 and p=0.008,

respectively). All strategies, except for energy, have roughly the same energy performance when

the communication cost doubles as they all communicate minimally.

Figure 5.17 shows the effort duplication performance of the strategies. When action and com-

munication costs are equal, time strategy has the worst performance because it communicates IS4

to two fighters, does not communicate IS8 to fighters, and communicates IS8 to four carriers. All

other strategies have the same performance as they all communicate minimally. When action cost

is high, travel strategy has higher effort duplication than the other two cost settings, where its

performance is similar to effort duplication and minimum communication strategies because of

broadcasting IS5.
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5.2.3 Simulation Environment

Next, we evaluate the algorithm in difficult scenarios, where the task complexity is greater than

agent population, and simple scenarios, where the task complexity is less than agent population.

In these experiments, we seek unbiased communication strategies where no preference is made

between goal and communication cost. Therefore, we consider one specific case of fitness param-

eters where (α=β , ac=cc) to further investigate the impact of variation of simulation environment

on the evolved strategies and goal performance.

In some simple scenarios, we notice that GA becomes less consistent with respect to the

evolved strategies, by evolving neutral information instances in some runs, which results in higher

standard error for the communication cost. In these cases, we report the strategy with best fitness.

5.2.3.1 Agent Population

Agent population in this domain is the total number of carriers and fighters, which is fixed at eight

(five carriers and three fighters), in the basic setting adapted in all previous experiments. In this

section, we show the performance of the proposed approach with larger populations.

Figure 5.18 illustrates the performance of evolved strategies, presented in Tables 5.6, 5.7, 5.8,

and 5.9, for different populations, with respect to different performance goals. For time, increasing

population to move the scenario from the case (TC>AP) to (TC=AP) enables finishing the task

in significantly shorter time. However, extra agents, to move the scenario to simple case where

(TC<AP), make no significant difference in the time consumed to finish the task (p=0.19, for 24

versus 32). Communication cost, however, significantly increases up to the first simple scenario,

i.e., 24 agents, where GA was successfully able to evolve strategies with the same communication

cost, although with higher standard error, which implies evolving neutral information instances (at

32). As shown in Table 5.6, the reason for the continuous increase in communication cost, only up

to population of 24, is broadcasting empty rooms (IS5) to all population 8, 16, 24, but restricting it

to only 10 carriers in case of 32.
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(a) Time (b) Travel distance

(c) Energy (d) Effort duplication

Figure 5.18: Various-goals performance with increasing agent population.
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Multiple observations can be made about the changes that took place in the evolved time strate-

gies in Table 5.6. We notice that the gold locations (IS3) to carriers as well as the safe room (IS8)

to fighters become less important and hence are not communicated in strategies for larger popula-

tions. Instead, agents are allowed to communicate their goal room (IS2), and are also encouraged to

communicate the safe room (IS8) to more carriers. When the number of carriers is small, we care

more about guiding these agents to the gold locations, where they can go and collect it. However,

when the number of carriers increases, the focus will be more on spreading these agents out to

simultaneously explore as many rooms as possible, which is achieved by communication of goal

rooms. This may cause that more carriers are exposed to wumpus rooms, which they would avoid

for good, unless they are informed that a wumpus is killed, hence more recipients of IS8. In a

similar manner, when the number of fighters is small, and wumpus requests (IS4) are broadcast,

delay response to simultaneous requests are more frequent as fighters might be busy responding to

a closer request. Therefore, a fighter is told when a request is completed (IS8), such that it can ful-

fill another request. When the number of fighters is larger, although we still need to send requests

to the same number of recipients (3-4 fighters), we no longer need to inform them about completed

requests, as recipients of each request are probably different fighters.

In the travel distance goal, GA has successfully evolved strategies to maintain the same travel

distance even with larger population in two cases; first when population increases from 8, where

TC>AP, to 16, where TC=AP, and second from 24, where TC<AP, to 32, where TC<AP, by in-

creasing communication. The total travel distance increases when the scenario moves from 16,

where TC=AP to 24, where TC<AP.

Table 5.7 shows that communicating the wumpus location to carriers has less contribution

to decreasing travel distance, and hence is dropped from the strategy, as population increases.

The reason is that, in simple scenarios, the task is completed well before each carrier visits all

rooms, hence sending the wumpus locations to carriers will not reduce the total travel distance,

as carriers are less probable to reach idle state before the task is complete. Moreover, we observe

that, although more fighters are added to the population, the travel strategy is consistent with the
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fighters' recipient strategy of IS4, as no more fighters are needed to complete a request. Carriers are

not allowed to communicate their goal room, except with large population, where it is worthwhile

to do so to avoid carriers performing the same work.

Table 5.6: The evolved time communication strategies for larger populations.

Agent Population Information Instances (ISi)
C F IS1 IS2 IS3 IS4 IS5 IS6 IS7 IS8

Total

5
8

3
C

2
(3 TS)

Bcast
(EU)

P2P
(9 TS)

F
Bcast
(5 TS)

P2P
(14 TS)

10
16

6
C

P2P
(0, 0)

Bcast
(EU)

8
(EU)

F
4

(6 TS)

15
24

9
C

3
(0, 0)

Bcast
(1, φ )

9
(5 TS)

F
3

(EU)

20
32

12
C

2
(φ , 0)

10
(13 TS)

14
(17 TS)

F
3

(10 TS)

Table 5.7: The evolved travel communication strategies for larger populations.

Agent Population Information Instances (ISi)
C F IS1 IS2 IS3 IS4 IS5 IS6 IS7 IS8

Total

5
8

3
C

P2P
(20 TS)

Bcast
(EU)

P2P
(11 TS)

F
2

(1, 0)

10
16

6
C

8
(1, 0)

3
(9 TS)

F
P2P
(EU)

15
24

9
C

7
(10 TS)

3
(6 TS)

F
P2P
(EU)

20
32

12
C

4
(1, 0)

14
(1, φ )

4
(7 TS)

F
P2P
(EU)

In consistence with previous observations, communication costs obtained from multiple runs

of GA, with energy as the performance goal, become even more variant as the agent population
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Table 5.8: The evolved energy communication strategies for larger populations.

Agent Population Information Instances (ISi)
C F IS1 IS2 IS3 IS4 IS5 IS6 IS7 IS8

Total

5
8

3
C

P2P
(10 TS)

3
(7 TS)

Bcast
(1, 0)

2
(1)

F
P2P
(EU)

10
16

6
C

P2P
(0, 0)

P2P
(EU)

6
(12 TS)

Bcast
(EU)

F
P2P
(EU)

2
(13 TS)

P2P
(4 TS)

15
24

9
C

P2P
(5 TS)

4
(2 TS)

13
(1,φ )

12
(15 TS)

F
2

(18 TS)
4

(7 TS)

20
32

12
C

P2P
(0, φ )

P2P
(0, φ )

14
(5 TS)

18
(EU)

F
2

(4 TS)
3

(1, φ )

Table 5.9: The evolved effort duplication communication strategies for larger populations.

Agent Population Information Instances (ISi)
C F IS1 IS2 IS3 IS4 IS5 IS6 IS7 IS8

Total

5
8

3
C

P2P
(19 TS)

F
2

(7 TS)
P2P

(2 TS)

10
16

6
C

5
(0, 0)

6
(1, 1)

6
(EU)

F
2

(8 TS)
3

(11 TS)

15
24

9
C

2
(2 TS)

3
(19 TS)

F
P2P
(EU)

20
32

12
C

6
(φ , 0)

13
(8 TS)

F
2

(1, φ )
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increases. Energy strategies are provided in Table 5.8. Similar to travel strategies, communicating

wumpus locations to carriers is dropped as population grows, and similar to effort duplication,

gold location is allowed in larger population, in effort to minimizing time and hence the amount of

energy consumed.

The effort duplication strategies go through two main changes as the population increases, in

Table 5.9. The first change happens at population size of 16, as carriers' goal room (IS2) and gold

locations (IS3) are added to the strategy. As explained before, duplication of effort can take three

forms. First, when two or more carriers explore a room simultaneously. Second, when two or

more carriers target the same piece of gold. Third, and last, is when two fighters or more target

the same wumpus. In all sizes of population, duplication of fighters' efforts can be prevented, or

minimized, by avoiding broadcasting wumpus locations to fighters. For duplication of carriers' ef-

forts, however, both gold collection duplication as well as room exploration duplication occur in

small population. As the population increases, with fixed task complexity, majority of effort du-

plication occurs as room exploration, rather than gold collection. Therefore, agents are allowed

to communicate their goal rooms. In the original small population size, though, this information

instance is not communicated unless goal outweighs communication, due to its high cost. In larger

population, carriers are actually encouraged to communicate gold locations with many neighbors,

although this might increase gold collection duplication slightly, since the world contains only a

few pieces of gold, it accelerates task completion, and hence minimizes duplication of room explo-

ration. In the case when agent population and task complexity are equal, fighters are still allowed

to communicate safe rooms with many carriers, as it helps prevent carriers from overcrowding in

non-wumpus rooms. The impact of this information instance reduces as population grows, be-

cause wumpuses are killed instantly due to the availability of more fighters; hence fewer carriers

are exposed to wumpuses.
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(a) Time (b) Travel distance

(c) Energy (d) Effort duplication

Figure 5.19: Various-goals performance with increasing task complexity

5.2.3.2 Task Complexity

This feature refers to how complex the task is to agents, represented by the amount of gold and

number of wumpuses present in the world. Figure 5.19 depicts the system's performance with

respect to various goals, as the task complexity increases, while the evolved strategies are presented

in Tables 5.10, 5.11, 5.12, and 5.13. The basic task complexity, used in all previous experiments,

is the second case, i.e., 16.

Unlike the previous feature, the time needed to complete the task experiences a steep increase

as the task gets more complex, while the communication curve has gentle gradient, as a result

of applying evolved strategies. The same trend applies to the travel distance goal, although it

experiences a greater error rate in the most complex scenario.

Aside from communicating IS8 to fighters in the strategy for the basic task complexity, time
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Table 5.10: The evolved time communication strategies for more complex tasks.

Task Complexity Information Instances (ISi)
Gold Wumpus IS1 IS2 IS3 IS4 IS5 IS6 IS7 IS8

Total

5
8

3
C

2
(17 TS)

P2P
(20 TS)

3
(2 TS)

F
2

(1, φ )

10
16

6
C

2
(3 TS)

Bcast
(EU)

P2P
(9 TS)

F
Bcast
(5 TS)

P2P
(14 TS)

20
32

12
C

2
(1, 0)

P2P
(10 TS)

P2P
(15 TS)

F
Bcast
(2 TS)

30
48

18
C

3
(14 TS)

P2P
(1, φ )

P2P
(2 TS)

F
2

(EU)

Table 5.11: The evolved travel communication strategies for more complex tasks.

Task Complexity Information Instances (ISi)
Gold Wumpus IS1 IS2 IS3 IS4 IS5 IS6 IS7 IS8

Total

5
8

3
C

2
(17 TS)

P2P
(20 TS)

P2P
(12 TS)

F
P2P
(EU)

10
16

6
C

P2P
(20 TS)

Bcast
(EU)

P2P
(11 TS)

F
2

(1, 0)

20
32

12
C

P2P
(8 TS)

Bcast
(1, φ )

P2P
(13 TS)

F
P2P
(EU)

30
48

18
C

P2P
(EU)

3
(1, 0)

P2P
(1, φ )

F
P2P
(EU)
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Table 5.12: The evolved energy communication strategies for more complex tasks.

Task Complexity Information Instances (ISi)
Gold Wumpus IS1 IS2 IS3 IS4 IS5 IS6 IS7 IS8

Total

5
8

3
C

P2P
(15 TS)

4
(5 TS)

3
(1, φ )

P2P
(17 TS)

F
P2P
(EU)

10
16

6
C

P2P
(10 TS)

3
(7 TS)

Bcast
(1, 0)

2
(1)

F
P2P
(EU)

20
32

12
C

P2P
(4 TS)

2
(12 TS)

Bcast
(9 TS)

Bcast
(4 TS)

P2P
(16 TS)

F
P2P
(EU)

30
48

18
C

P2P
(4 TS)

2
(13 TS)

2
(13 TS)

Bcast
(1, 0)

P2P
(15 TS)

F
P2P
(EU)

2
(1, φ )

Table 5.13: The evolved effort duplication communication strategies for more complex tasks.

Task Complexity Information Instances (ISi)
Gold Wumpus IS1 IS2 IS3 IS4 IS5 IS6 IS7 IS8

Total

5
8

3
C

P2P
(0, 0)

F
P2P

(16 TS)

10
16

6
C

P2P
(19 TS)

F
2

(7 TS)
P2P

(2 TS)

20
32

12
C

2
(0, 0)

P2P
(17 TS)

F
P2P
(EU)

30
48

18
C

P2P
(0, 0)

P2P
(15 TS)

F
P2P
(EU)

95



strategies are consistent, with respect to the communicated information instances, for different

cases of task complexity (Table 5.10). However, we notice a difference in the recipient strategy of

IS5. We have seen that, in the basic task complexity, IS5 is always broadcast to carriers whenever

communication is allowed, in all parameter settings. When the task becomes less complex 8 or

more complex 32, 48, however, IS5 is communicated only to the closest carrier. The reason is that,

on one hand, the world in the simple scenario contains only five pieces of gold, hence if carriers

inform each other about the locations of these gold, they will be able to complete the task well

before they consider exploring an empty room. On the other hand, difficult scenarios incorporate

large amount of gold, i.e., 20 and 30, in the world, which makes the possibility of having an

empty room in the early stage of task execution, i.e. when carriers explore rooms, very low as the

world includes only 12 rooms, and hence makes broadcasting it not significant to minimizing time.

Therefore, the focus, when minimizing time is to share gold locations, rather than empty rooms.

Similarly, in the simple scenario of the travel distance goal, where only a small amount of

gold is present in the environment, carriers are allowed to communicate the gold locations to the

closest two carriers. It seems that, in such cases, completing the task as quick as possible is the

best approach to minimize the distance traveled by all agents, as in such situations the task might

be completed even before all wumpuses are killed.

The logic is different, however, in more complex scenarios. Communicating gold locations is

avoided, as the focus is more on helping each carrier do the work in nearby rooms by communi-

cating safe rooms as P2P, and avoiding empty and wumpus rooms by broadcasting empty rooms

(IS5), and communicating wumpus locations (IS4).

Similar to time and travel distance, the amount of energy consumed experiences a steep in-

crease as the task complexity increases. However, unlike the two performance goals, the amount

of messages exchanged increases significantly, as well, with more complex scenarios. We believe

that the same, or close, performance could be achieved with less communication, especially in the

two most complex scenarios.

Figure 5.19d illustrates that the amount of effort duplication increases when the scenario moves
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from simple 8, where TC=AP, to difficult 16, where TC>AP. In the simple scenario, amounts of

gold and number of carriers are equal and numbers of wumpuses and fighters are equal. Therefore,

we can avoid fighters' effort duplication by sending wumpus locations (IS4) to one fighter, and

similarly, we can avoid carriers' efforts duplication by allowing communication of goal rooms

(IS2), as shown in Table 5.13.

When task complexity doubles with the same agent population, agents take longer time to

complete the task, and hence change goal rooms more often than the previous case. GA disallows

communication of goal rooms as it is too expensive, for the current weight settings, which results

in increase in effort duplication. Rather, as the world contains more wumpuses, and hence more

carriers are likely to observe them and avoid their rooms, GA evolves communication of safe rooms

(IS8) to only the closest carrier. In addition, to prevent recipients of a wumpus location to target

the same wumpus, IS8 is communicated to fighters as well.

As the task complexity doubles once more and twice, 32, 48, communication of goal rooms

seems to be worthwhile again. The reason is that as the amount of gold and wumpuses increases,

time to complete increases as well, and hence carriers are more likely to duplicate each other's

work. Safe rooms are still allowed to be communicated to the closest carrier, for the same afore-

mentioned reason.

5.3 Summary

Our findings indicate that GA has successfully evolved strategies for communicating information

that contribute to improving the goal performance of the system according to the desired parame-

ters. Applying the weighted sum method in the fitness function to make trade-off between the goal

performance and communication cost has played an important role in the success of this approach,

as results produced form communication-inclusive goal (energy, in this case) were less promising

due to over communication.

We have shown that information instances can be classified, with respect to each goal perfor-
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mance, into favorable, unfavorable, or neutral information instance. We have also shown that the

the class that an information instance belongs to or their importance to a goal performance may

change in response to changes in the simulation environment. The favorability of communicating

an information instance is said to be reduced when it is not allowed to be communicated or com-

municated to fewer recipients, compared to the original case. The favorability of communication

is considered increased when the opposite holds true.

In the case of time performance, communicating the information instances IS2, IS3, IS5, and IS8

to carriers and IS4 to fighters are considered favorable in the original case. Yet, we observed that

with larger agent populations the importance of communicating IS2 and IS8 to carriers increased,

while the importance of IS3 to carriers and IS4 to fighters decreased as they are communicated to

fewer recipients or not communicated at all. Additionally, in more complex scenario, we observed

decrease in the importance of communicating IS5 to carriers.

When the goal is to reduce the total travel distance, the information instances IS2, IS4, IS5,

and IS8 to carriers and IS4 to fighters are considered favorable. As the agent population increases,

the favorable impact of communicating IS4 and IS5 to carriers decreased, while the impact of

communicating IS2 and IS8 to carriers increased. With more complex scenarios, the influence of

communicating IS5 to carriers increased.

In the case of effort duplication, our results have shown that favorable information instances

include IS2, IS5, and IS8 to carriers and IS4 and IS8 to fighters. With larger populations, the fa-

vorable impact of communicating IS2 and IS3 to carriers increased, while the favorable impact

of communicating IS8 to both carriers and fighters decreased. In more complex scenarios, we

observed decrease in the impact of communicating IS8 to fighters and increase in favorability of

communicating IS2 to carriers.

The evolved strategies avoided invalid, unfavorable, and neutral information. However, assign-

ing a relatively low weight to communication cost or evolving a strategy for simple scenarios may

sometimes result in higher standard error for communication, as GA may evolve a communication

strategy that allows communicating neutral information. Furthermore, we observed that increasing
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weight for the performance goal may not necessarily result in better performance, as it depends on

the cost of communication needed to further improve the performance, and whether it results in

better fitness, given the assigned weights.
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CHAPTER 6

Case Study: Collective Construction

6.1 Scenario

WE HAVE designed, developed, and implemented a Collective Construction domain using

Repast Simphony (North et al., 2005). The simulation environment is a grid of 140x140

cells, which includes two zones; the Main Search Zone (MSZ), which represents the whole world,

and the Construction Zone (CZ), which is a sub-zone of the former, located in the middle and

occupies a space of 50x50 cells. The search zone represents the area where the building blocks,

which come in six different colors, are randomly distributed at the beginning of each simulation.

Inside the construction zone is a H-shaped map, where the color of each site corresponds to the

block that needs be attached. The construction zone, including sites that belong to the structure,

namely, the Structure Sites (SS), are covered randomly by debris. Around the construction zone

exists six small zones, which are sub-zones of CZ, and called the Supply Zones (SZ). Each supply

zone has a maximum capacity of three blocks. The color of each supply zone corresponds to the

blocks that can be placed.

The main search zone contains five collectors and two hundreds blocks, divided equally into
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six different colors. The construction zone contains three builders, five bulldozers, and amount of a

hundred debris, all of which are distributed randomly, in the corresponding zone, at the beginning

of each simulation experiment. Each agent type is assigned a task out of three main tasks required

for the construction of a structure, including preparation, collection, and building. First, bulldoz-

ers are responsible for preparing the construction site by clearing it from debris. They do so by

performing random walk to find and remove debris. Each bulldozer is able to carry a maximum

amount of 20 debris, in which case it has to dispose of the debris at the borders of the search zone.

Second, collectors are in charge of searching for, collecting, and delivering of the building mate-

rials to the supply zones. Third, builders build the structure by consulting the shape map, visiting

a supply zone, collecting a block, and placing the block into the designated structure site. The

construction process of the structure is depicted in Figure 6.1. Gray area is the construction site

and dark x’s are debris. Structure sites and supply zones are highlighted with the color of blocks

to be occupied with; Builders are depicted as black circles, collectors are red circles, and bulldoz-

ers are yellow circles. The information instances that agents can communicate in this domain are

Figure 6.1: Snapshot of the Collective Construction of an H-shaped structure.

listed in Table 6.1. Unlike the Wumpus World domain, all information instances of this domain are

considered multi-value, where an agent may have a list of all values that belong to an information
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instance. Further, information instances in this domain are categorized into two groups, according

to their durability.

1. Long-term: Information instances, whose values once obtained are irreversible. Examples

include structure updates (IS2), sufficient supply (IS4), and clear structure sites (IS12).

2. Short-term: Information instances, whose values once obtained, are valid temporarily.

Examples include empty supply zones (IS6) and full supply zones (IS11), as supply zones are visited

regularly by both builders and collectors who can alter their contents. For this purpose, we designed

builders and collectors to forget values of these information instances that are one hundred time-

steps old.

Table 6.1: Information instances of the Collective Construction domain and their values.

Identifier Information Instance Possible Values Producer

IS1 Target (x,y),where:
0 < x, y < 140 Builder

IS2 Structure Update (x,y),where:
x, y ∈ SS Builder

IS3 Insufficient Supply
(sz, n), where:
sz=[1,6]
n= needed-present

Builder

IS4 Sufficient Supply [1, 6] Builder

IS5 Decrease in a Zone's Supply
(sz, n), where:
sz=[1,6]
n: sz size

Builder

IS6 Empty Supply Zone [1,6] Builder

IS7 Debris Location (x,y)
x, y ∈ SS Builder

IS8 Block Location (x,y)
x, y ∈MSZ Collector

IS9 Collected Block Location (x,y)
x, y ∈MSZ Collector

IS10 Increase in a Zone's Supply
(sz, n), where:
sz=[1,6]
n: sz size

Collector

IS11 Full Supply Zone [1,6] Collector

IS12 Clear Structure Site (x,y)
x, y ∈ SS Bulldozer

At each time-step, every agent performs (observe, communicate, act) task cycle. In observe,

agents are able to make observations. For example, bulldozers can observe debris and clear struc-

ture sites (IS12), collectors can observe blocks (IS8), and builders can observe structure updates

(IS2), debris (IS7), and empty supply zones (IS6). In communicate, agents consult their commu-
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nication strategy to decide whether they should communicate at the current time-step. In the act

step, all agents are able to move UP, DOWN, RIGHT, and LEFT as well as PICK UP, and DROP

OFF objects, whether blocks or debris.

Additionally, all agents maintain inner states. Builders can be in one of four states: Find,

obtain, build, and dispose. All builders begin in the Find state, where one decides which supply

zone to visit next to find a block. Once a builder encounters the desired block, it transits to the

obtain state. A builder remains in this state until it picks up a block, when a transition to the

build state is triggered. If a builder succeeds in attaching a block to the designated structure site,

it switches to the Find state. However, if a builder finds a debris or a block in the structure site,

and is unable to find another proper site, it is considered fail and the builder transits to the dispose

state. In this state, a builder transports the block back to the supply zone, and then transits to the

Find state. Builders update their shape map with every visit to the structure, or if they receive

information about structure updates (IS2) or debris location (IS7).

Collectors can be in one of four states: wander, obtain, deposit, and dispose. A collector starts

and remains in the wander state, where it performs random walk, until it observes a block. This

triggers transit to the obtain state, as a collector targets and collects the block. Next, the collector

moves to the deposit state, in which a collector travels to the designated supply zone and places

the block. If a collector is able to place a block in the SZ successfully, it switches to the wander

state. However, if the collector fails at placing the block due to the SZ being full, it transits to the

dispose state, where it goes to the search zone and drops off the block at a random location.

Bulldozers can be in one of three states: wander, clear, and dispose. Similar to collectors,

bulldozers begin in the wander state, as they walk randomly, until debris is observed. If a bulldozer

senses debris, it transits to the clear state, where it targets the debris and removes it. Each bulldozer

can carry a maximum amount of 20 debris. Should a bulldozer reach its full capability, it transits

to the dispose state, as it moves to the borders of the search zone and gets rid of the debris that

it carries. Once this is complete, or if the bulldozer is still able to clear more debris, transition to

the wander state is triggered. Figures 6.2, 6.3, and 6.4 show the Finite State Machines (FSM) for
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builders, collectors, and bulldozers, respectively.

Figure 6.2: Builder FSM.

Figure 6.3: Collector FSM.
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Figure 6.4: Bulldozer FSM.

6.2 Experimental Results

6.2.1 Fitness Parameters

The experimental results for each performance goal with varied values of the fitness parameters are

presented in Figures 6.5, 6.6, 6.7, and 6.8. As shown, each bar represents the goal performance for

one fitness parameter setting, which has been hierarchically labeled by the goal and communication

weights and further by the action and communication costs. The line chart for each cost setting

represents the communication cost trend as the goal's weight increases. The performance results

reported are the average of three evolution runs. For each result, the error bar shows the standard

error, computed as STDEV/SQRT (n), across n GA runs, where n=3.

Further, the evolved communication strategies are shown in Tables 6.2, 6.3, 6.4, and 6.5. Each

row shows the strategy evolved for one parameter setting, and each column represents an infor-

mation instance. Dark shaded cells represent invalid communication, or communication that only

increases cost with no contribution to performance improvement. Such communication includes

sending structure's updates to bulldozers or collectors, and debris locations to collectors. Light
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shaded cells convey that no communication is allowed for the corresponding information instance

in the corresponding parameter setting (strategy). For clear cells, the upper line represents the re-

cipient strategy, i.e., P2P, Bcast, or subset [2-max], and the lower line represents the timing strategy,

which can take either every update (EU), in a state {find, obtain, build, dispose} for builders (B),

{wander, clear, dispose} for bulldozers (Bz), and {wander, obtain, deposit, dispose} for collectors

(C), or every time interval ([2-20] TS), as explained previously.

6.2.1.1 Time

We present the time performance for the evolved strategies with different values for the fitness

parameters in Figure 6.5. We notice that communication is very responsive to its assigned weight

as lower weight always results in higher communication and higher weight results in lower com-

munication, yet this does not always hold true for time.

Theoretically, the minimum amount of communication, and hence worst performance, is evolved

for the parameter setting (α<β , ac<cc), which is the case when communication is assigned high

weight and high cost. Figure 6.5 shows that this is attained for this parameter setting, as well

as the two corresponding cases when communication cost is not high (α<β , ac=cc) and (α<β ,

ac>cc), with (p=0.8). As shown in Table 6.2, GA evolved close strategies for these parameter

settings, where sufficient supply (IS4) is communicated to collectors and debris location (IS7) is

communicated to bulldozers. We notice that when communication cost is high (α<β , ac<cc), IS4

is communicated as P2P, i.e., to only the closest collector, while in the other two cases, IS4 is com-

municated to a subset of the collectors. However, in the case of high communication cost, IS4 is

communicated more often. When IS4 is communicated to collectors, builders send messages when

they have sufficient supply of blocks of one color. As explained previously, although building

blocks are available in six colors, only three colors are picked randomly at the beginning of each

simulation run to be used to assign a color to each structure site at random. As the shape map is

only accessible to builders, collectors may spend their time collecting blocks that are not needed.

Other cases include when all structure sites belonging to a color have already been occupied, or
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when the available blocks in a supply zone are equal to or more than what is needed. Communicat-

ing this information allows collectors to use their time efficiently by focusing on collecting blocks

of other colors that are still needed, hence providing blocks faster to the supply zones. This means

that builders experience no delay in building the structure as they always have available supply of

needed blocks. Debris location (IS7) allows builders to send structure sites to bulldozers where

debris has been observed. Due to the large amount of debris present in the environment, bulldozers

may take long time to find the debris in structure sites and clear them, and hence the task of build-

ing the structure may consequently take longer time as builders have to wait until debris is cleared

to be able to attach blocks in the corresponding sites. Communicating IS7 helps avoid this scenario

as builders notify bulldozers about debris locations in the structure.

The next time performance is achieved in the parameter setting when communication cost is

high with equal weights (α=β , ac<cc). In this case, in addition to communicating IS4 to more

collectors and IS7 to more bulldozers, builders are allowed to communicate structure updates (IS2)

with each others; and bulldozers are allowed to communicate clear structure sites (IS12) to builders.

T test suggests that communicating IS2 and IS12 has improved the time performance significantly

(p=0.002), which implies that the two information instances are favorable to time performance.

When the goal's weight is increased to switch to the case (α>β , ac<cc), agents are allowed to

communicate more due to the lower communication's weight (Figure 6.5), yet the improvement in

the system performance is not significant (p=0.05), compared to the case (α=β , ac<cc). In addition

to the information instances communicated in the previous case (α=β , ac<cc), namely, IS2, IS4,

IS7, and IS12, builders are allowed to communicate insufficient supply (IS3) to the closest collector.

It is believed that this information instance may be valuable to time in some cases, such as when a

block is needed to be attached to a structure site, but the corresponding supply zone is empty. In

this case, sending insufficient supply (IS3) for this block to a collector can lead to quick completion

of the task.

It can be observed in Figure 6.5 that corresponding strategies at the two weight settings (α=β )

and (α>β ) when communication cost is not high (ac=cc) and (ac>cc) have close time performance
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(p=0.26 and p=0.38, respectively), since increasing action cost has no effect on time fitness. By

comparing the two communication strategies when (α=β ), in Table 6.2, we notice that both strate-

gies are very similar as both broadcast IS2, IS10, and IS12 to builders, communicate IS4 to three

collectors, and communicate IS7 to two bulldozers. Yet, while the strategy (α=β , ac=cc) commu-

nicates IS10 to collectors, the strategy (α=β , ac>cc) allows communicating IS3 to them. It appears

that the two information instances have close impact on time as the former keeps collectors in-

formed about the status of the supply zones, and the latter gives them updates about supply needed

to complete the task.

Further, we notice that the system performs closely when the time weight increases to switch

from (α=β ) to (α>β ) in both cost settings (p=0.24 and p=0.32, respectively). The ANOVA re-

sults allow us to state with 95% confidence that all four communication strategies, namely, (α=β ,

ac=cc), (α>β , ac=cc), (α=β , ac>cc), and (α>β , ac>cc), are equivalent (p=0.66). By compar-

ing the four communication strategies in Table 6.2, we observe that the two strategies with high

time's weight (α>β ) communicate all information instances that are communicated by the two

strategies with lower time's weight (α=β ) with close recipient and timing strategies. However, the

former strategies further communicate other information instances, such as IS5, IS6, and IS11. As

four strategies perform closely with respect to time, these information instances can be considered

neutral to time performance as they were allowed to be communicated due to the low communi-

cation's cost and weight and fail to improve performance. The four strategies achieve the fastest

time performance, and significantly outperform strategies with slowest performance (α<β ) with

(p<0.00001) and strategies with the next longest time performance (α=β ,ac<cc) and (α>β , ac<cc)

with (p<0.00001).

As shown in Table 6.2, the information instances IS4, IS7 are communicated in all strategies,

yet more often or to more recipients in some cases. For example, IS7 is communicated as P2P when

(α<β ), but to more bulldozers when (α=β ) and (α>β ). Therefore, we conclude that these are the

most influential information instances to time performance in this domain. The second important

information instance to time seems to be structure updates (IS2) and clear structure spots (IS12) as
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they are communicated in six strategies, when communication's weight is equal to/less than the

goal's weight. When builders share structure updates with each other, they will waste no time

trying to place a block in a spot already occupied. It appears that the next influential information

is the insufficient supply (IS3) and zone supply increase (IS10), as both are communicated in four

strategies. Three information instances, namely, builders' targets (IS1), block location (IS8) and

collected block location (IS9) were not communicated at all as they either have no effect on time,

i.e., neutral, or are too expensive.

Figure 6.5: Performance of time strategies.
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Table 6.2: The evolved time communication strategies.

Fitness Parameters Information Instances (ISi)
Costs Weights IS1 IS2 IS3 IS4 IS5 IS6 IS7 IS8 IS9 IS10 IS11 IS12

B
α<β Bz

P2P
(18TS)

C
2

(18TS)

B
Bcast

(14TS)
Bcast

(Wander)
Bcast

(10TS)
α=β Bz

2
(14TS)

ac=cc

C
3

(7TS)
2

(Wander)

B
Bcast

(13TS)
P2P

(Build)
P2P

(18TS)
Bcast
(4TS)

P2P
(13TS)

Bcast
(18TS)

α>β Bz
4

(3TS)

C
P2P

(15TS)
Bcast

(15TS)
P2P

(9TS)
B

α<β Bz
P2P

(Build)

C
P2P

(6TS)

B
Bcast
(7TS)

2
(12TS)

α=β Bz
2

(Build)
ac<cc

C
3

(17TS)

B
Bcast
(9TS)

P2P
(15TS)

α>β Bz
P2P

(5TS)

C
P2P

(Find)
2

(14TS)
B

α<β Bz
P2P

(20TS)

C
3

(20TS)

B
Bcast
(2TS)

Bcast
(15TS)

Bcast
(7TS)

α=β Bz
2

(20TS)
ac>cc

C
P2P
(EU)

3
(EU)

B
Bcast
(6TS)

P2P
(20TS)

P2P
(18TS)

P2P
(18TS)

Bcast
(20TS)

2
(10TS)

α>β Bz
2

(5TS)

C
2

(20TS)
3

(8TS)
P2P

(Build)
3

(Build)
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6.2.1.2 Travel Distance

The performance of the travel strategies is presented in Figure 6.6. A major performance differ-

ence in this goal compared with time is that increasing action cost does affect fitness. Therefore,

we observe asymmetrical performance for the two cost settings (ac=cc) and (ac>cc). When com-

paring the performance in cases where communication's weight is low (α<β ) across different cost

settings, we notice that the maximum distance traveled is when communication has higher cost

than action (ac<cc), as agents communicate minimally, where only sufficient supply (IS4) and de-

bris location (IS7) are communicated, followed by the case when communication and action have

equal costs (ac=cc), as clear structure site (IS12) is further communicated to builders, and lastly

when communication has lower cost than action (ac>cc), where both structure updates (IS2) and

empty supply zone (IS6) are communicated to builders as well as communicating IS4, IS7, and

IS12. ANOVA test suggests that the performance difference between the three strategies is signifi-

cant (p=0.007), which confirms the importance of communicating IS2, IS6, and IS12 to builders on

travel performance.

As shown in Figure 6.6, three strategies of different parameter settings, namely (α>β , ac<cc),

(α=β , ac=cc), and (α=β , ac<cc) have close travel performance to the latter strategy (α<β , ac>cc),

confirmed by ANOVA test (p=0.69). The former two strategies along with (α<β , ac>cc) support

the argument that inverse variations between the weight and cost of goal and communication can

even out their importance, which results in similar strategies and performance.

The evolved strategies for these parameter settings (Table 6.3) indicate that they all allow com-

municating five information instances, of which four are mutually communicated, namely, IS2,

IS4, IS7, and IS12. Each strategy communicates a different fifth information instance, which even-

tually results in close travel performance. Minimizing the total distance traveled by agents can be

achieved by minimizing the distance traveled by builders, bulldozers, collectors, or all of them. In

the four equivalent communication strategies, information instances are communicated to all agent

types to improve their travel performance, yet with one unique component. The strategy (α=β ,

ac=cc) communicates builders target (IS1) to builders to avoid having two builders that target the
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same structure site or supply zone, the strategy (α=β , ac<cc) communicates empty supply zone

(IS6) to collectors to encourage them to deposit supply if needed, while (α<β , ac>cc) commu-

nicates IS6 to builders to help them avoid empty supply zones, and (α>β , ac<cc) communicates

debris locations IS7 to builders to help them avoid targeting structure sites that contain debris for

attaching a block.

As we increase the travel's weight in the two equivalent strategies (α=β , ac=cc) and (α<β ,

ac>cc) to switch to the two strategies (α>β , ac=cc) and (α=β , ac>cc), the distance traveled de-

creases significantly (p=0.0008 and p=0.014), respectively, and we encounter another two equiv-

alent strategies that support the aforementioned argument of the effect of inverse variations, con-

firmed by t test with p=0.42. Despite the difference in values of the fitness parameters in the two

strategies, travel distance remains the more valuable goal in both cases. In the former strategy,

travel distance has greater weight that communication, but action and communication costs are

equal, whilst the opposite holds true in the latter strategy.

Table 6.3 shows that both communication strategies (α>β , ac=cc) and (α=β , ac>cc) commu-

nicate IS2, IS4, IS7, IS10, and IS12. Yet, while the former communicates decrease in zone's supply

(IS5) to builders and collected block's location (IS9) to collectors, the latter communicates empty

supply zone (IS6) to builders and block's location (IS8) to collectors. We also notice, in Figure 6.6,

that strategy (α=β , ac>cc) is able to achieve close travel performance, although more variant, to

the strategy (α>β , ac=cc), but with less communication. The reason is due to the equal weights

assigned for travel distance and communication in the strategy (α=β , ac>cc), as oppose to the

low communication weight in the strategy (α>β , ac=cc). This made GA yield that, unlike (α>β ,

ac=cc), keeping all builders updated about the status of the supply zones, i.e., broadcasting IS5, is

not necessary in the strategy (α=β , ac>cc) to achieve the same travel performance. Rather, GA

evolved informing only the closest builder when a supply zone is empty (IS6) to help the builder

make better zone decisions.

The strategy that wins the best performance is the case when the travel distance is assigned high

weight and high cost (α>β , ac>cc). T test suggests that travel distance has decreased significantly
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(p=0.03), compared to the previous strategy (α=β , ac>cc). As shown in Table 6.3, this strategy

broadcasts most information instances to builders as well as communicating IS5, IS6, and IS9 to

collectors. Based on the aforesaid observations and analysis, it is believed that the most influential

information instances are IS4 and IS7 as they are communicated in all parameter settings. The next

most influential information instance appears to be IS12 as it is dropped from only one strategy,

followed by IS2 as it is dropped from two strategies. Communicating IS10 and IS6 to builders

seems to be the next important information instance as they are communicated in three strategies,

and then IS1 to builders, and IS6 and IS9 to collectors. The information instances with the least

impact on travel performance appear to be IS5, IS8, IS11 to collectors as they are communicated in

only one case. Unlike time, IS3 is not allowed to be communicated at all.

Figure 6.6: Performance of travel strategies.
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Table 6.3: The evolved travel communication strategies.

Fitness Parameters Information Instances (ISi)
Costs Weights IS1 IS2 IS3 IS4 IS5 IS6 IS7 IS8 IS9 IS10 IS11 IS12

B
2

(17TS)
α<β

Bz
P2P

(4TS)

C
Bcast
(EU)

B
Bcast
(Find)

Bcast
(2TS)

Bcast
(4TS)

α=β
Bz

P2P
(4TS)

ac=cc

C
Bcast
(3TS)

B
Bcast
(7TS)

Bcast
(3TS)

Bcast
(9TS)

Bcast
(EU)

α>β
Bz

4
(18TS)

C
Bcast
(2TS)

3
(14TS)

B
α<β

Bz
P2P

(18TS)

C
Bcast
(2TS)

B
Bcast
(8TS)

Bcast
(Wander)

α=β
Bz

P2P
(17TS)

ac<cc

C
Bcast
(Find)

P2P
(6TS)

B
Bcast

(13TS)
P2P

(Obtain)
P2P

(9TS)
α>β

Bz
2

(8TS)

C
Bcast
(6TS)

B
Bcast

(11TS)
P2P

(2TS)
P2P

(12TS)
α<β

Bz
P2P

(2TS)

C
Bcast

(19TS)

B
Bcast
(5TS)

P2P
(13TS)

Bcast
(5TS)

2
(19TS)

α=β
Bz

2
(15TS)

ac>cc

C
Bcast
(EU)

2
(Wander)

B
Bcast
(EU)

Bcast
(3TS)

Bcast
(Build)

Bcast
(Obtain)

Bcast
(4TS)

P2P
(9TS)

Bcast
(5TS)

α>β
Bz

3
(15TS)

C
Bcast
(3TS)

P2P
(16TS)

4
(Build)

P2P
(16TS)

114



6.2.1.3 Energy

Energy is a single-objective performance goal, hence only costs variation is applicable. Figure

6.7 shows energy performance of the evolved strategies, presented in Table 6.4, when action and

communication costs are varied. We notice that, unlike the Wumpus World, when communication

cost is doubled (ac<cc), the amount of communication remains almost the same, although more

variant, compared to the case when communication and action costs are equal (ac=cc). Yet, the

total amount of energy consumed significantly decreases when (ac<cc), with p=0.03.

Minimization of energy can be achieved by minimizing travel distance and/or minimizing com-

munication. Therefore, a strategy with high communication may outperform another with less

communication with respect to energy, if the former enables agents to travel significantly shorter

distance. Yet, unlike other multi-objective goals, increasing communication cost does not neces-

sarily mean same or lower communication. Instead, GA may become more restrictive with com-

munication and evolves only what really contributes to reducing travel distance and hence energy.

In some cases, communication may also increase when its cost increases, if the evolved strategy

reduces travel distance significantly. Energy fitness does not involve assignment of weights to

performance goal and communication, which implies uncontrolled communication, and hence GA

may accept communication strategies with any communication cost as long as it consumes less

energy. This contrasts with other (multi-objective) performance goals, where the fitness balances

between the goal performance and communication, according to the assigned weights. Therefore,

communication strategies with communication amount that does not comply with its assigned

weight are avoided, even if they achieve better goal performance. For this reason, comparing the

evolved energy strategies when action and communication costs are varied is ineffectual, yet the

evolved strategies with highest fitness in each cost setting are presented in Table 6.4.

In the case of high action cost (ac>cc), the amount of energy considerably reduces, (p=0.0006

and p=0.0007), compared to the cases (ac=cc) and (ac<cc), respectively, and communication sig-

nificantly increases. Due to the high standard error for communication versus energy in the case

(ac>cc), it is believed that GA evolved a large amount of neutral communication, in efforts to
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reduce energy consumption. The ANOVA results allow us to state with 95% confidence that

the amount of energy consumed by the three communication strategies are significantly different

(p=0.0003).

Figure 6.7: Performance of energy strategies.

Table 6.4: The evolved Energy communication strategies.

Fitness Parameters Information Instances (ISi)
Costs IS1 IS2 IS3 IS4 IS5 IS6 IS7 IS8 IS9 IS10 IS11 IS12

B
Bcast
(5TS)

Bcast
(4TS)

Bcast
(3TS)

ac=cc Bz
2

(8TS)

C
P2P

(Build)
3

(5TS)
3

(18TS)
P2P

(19TS)

B
P2P

(16TS)
Bcast
(EU)

P2P
(4TS)

P2P
(12TS)

Bcast
(3TS)

2
(13TS)

Bcast
(3TS)

ac<cc Bz
4

(17TS)

C
Bcast
(EU)

P2P
(16TS)

P2P
(16TS)

B
Bcast

(Build)
Bcast
(Find)

P2P
(17TS)

P2P
(Find)

Bcast
(10TS)

2
(EU)

Bcast
(13TS)

ac>cc Bz
2

(16TS)

C
P2P

(9TS)
Bcast
(3TS)

3
(10TS)

4
(17TS)

P2P
(10TS)

6.2.1.4 Effort Duplication

Similar to the Wumpus World domain, we notice the popularity of P2P as a recipient strategy in

Table 6.5, to prevent informing two agents about the same information, and hence avoid triggering

the same decision/action. This is negated in the case of communicating structure updates (IS2),
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which is always broadcast, to keep builders continuously updated with the progress of the task,

and hence avoid targeting already occupied structure sites.

Within each cost setting, in Figure 6.8, we observe that improvement in performance as a result

of goal's weight increase is significant, confirmed by ANOVA test with (p=0.00001 and p=0.008)

for (ac=cc and ac>cc), respectively. However, in the cost setting (ac<cc), the effort duplication

decreases significantly only when the goal's weight increases from α=0.25 to α=0.5, (p=0.0001),

as it maintains the same performance when the goal's weight further increases to reach α=0.75

(p=0.1). The reason is that due to the high communication cost, GA favors a strategy with less

communication and higher duplication of effort, since reducing the effort duplication requires high

amount of communication that given the goal's weight and communication cost would result in

worse fitness.

Similar to time, we observe close performance, in Figure 6.8, as well as strategies, in Table 6.5,

for the corresponding strategies when (ac=cc) and (ac>cc) because increasing action cost does not

affect effort duplication fitness. In addition, when communication cost is high (ac<cc), GA evolves

strategies with less communication, compared to the corresponding strategies when (ac=cc) and

(ac>cc), and hence agents duplicate each other's efforts more often, as (p=0.00001) when (α<β ),

and (p=0.00001) when (α>β ). Yet, this does not hold true when communication and effort dupli-

cation have equal weights (α=β ), as explained previously, because increasing communication cost

did not affect the evolved strategy and performance (p=0.96), as shown in Table 6.5, where IS4 is

communicated to the nearest collector, and IS7 to the closest bulldozer.

When both weight and cost of communication are high (α<β , ac<cc), GA evolved no commu-

nication strategy, as shown in Table 6.5. The corresponding strategies when (ac=cc) and (ac>cc)

communicate IS7 to bulldozers as P2P. Although these strategies reduce the effort duplication ap-

proximately by half, compared to the no communication strategy, it is believed that the information

instance have no direct contribution to the reduction of effort duplication. As explained previously,

communicating IS7 to bulldozers enable them to clear debris from the structure site quickly, and

hence soon a block will be attached to complete the structure. Evidently, this information instance

117



has significant effect in reducing the time taken to complete the task, as it was communicated in

all time strategies, which implicitly reduce duplication of effort.

When goal's weight is increased (α=β ), GA further evolved communicating sufficient supply

IS4 to the closest collector in all cost settings. This information instance prevents collectors from

finding and collecting unneeded blocks and placing them in their supply zones that builders never

visit, and hence reduces duplication of effort (p=0.001), as collectors will not continuously try

to place a block in a full supply zone. However, this information instance is not broadcast to all

collectors in order to provide them with more supply zone options, and hence preventing them

from targeting a small number of zones.

When effort duplication has higher weight than communication (α>β ), builders are allowed

to broadcast structure updates (IS2) to each other, but are not allowed to communicate sufficient

supply (IS4). Instead, they communicate insufficient supply (IS3) to the closest collector. The latter

information instance enables collectors to know what blocks are still needed, which together with

(IS2) have significant effect on reducing duplication of efforts (p=0.0002). We conclude that the

most influential information instances to effort duplication are IS7, which is communicated in eight

strategies, followed by IS4, which is communicated in four strategies, and then IS2 and IS3 as they

are communicated in two strategies.
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Table 6.5: The evolved effort duplication communication strategies.

Fitness Parameters Information Instances (ISi)
Costs Weights IS1 IS2 IS3 IS4 IS5 IS6 IS7 IS8 IS9 IS10 IS11 IS12

B
α<β Bz

P2P
(Build)

C
B

α=β Bz
P2P

(Build)
ac=cc

C
P2P

(14TS)

B
Bcast
(4TS)

α>β Bz
P2P

(Build)

C
P2P

(2TS)
B

α<β Bz
C
B

α=β Bz
P2P

(Build)
ac<cc

C
P2P

(10TS)
B

α>β Bz
P2P

(Build)

C
P2P

(19TS)
B

α<β Bz
P2P

(18TS)
C
B

α=β Bz
P2P

(Build)
ac>cc

C
P2P
(EU)

B
Bcast

(10TS)
α>β Bz

P2P
(15TS)

C
P2P
(EU)
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Figure 6.8: Performance of effort duplication strategies.

6.2.2 Fitness Goal

6.2.2.1 α>β

In this weight setting, the system's designer is interested in improving the goal performance of

the system more than minimizing communication. Therefore, a small improvement in the goal

performance, attained by a greater increase in communication is accepted, as a consequence of

the relative weight of goal performance versus communication. In this domain, and similar to the

Wumpus World domain, minimization of time and minimization of travel distance are not always

conflicting goals. We shall explore in this and forthcoming sections the cases where time and travel

distance conflict and the cases where they do not.

Figures 6.9 and 6.10 compare the time and travel performance, respectively, between strate-

gies of varying goals. When communication cost is high, (Figures 6.9b and 6.10b), we observe

similar time performance (p=0.40) and fitness (p=0.49) between the time and travel strategies, yet

improved travel performance (p=0.02) and fitness (p=0.01) is achieved by the travel strategy. By
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comparing the two strategies, in Tables 6.2 and 6.3, we notice that the travel strategy communi-

cates all information instances that are essential to achieving the corresponding time performance,

namely, IS2, IS4, IS7, and IS12, hence the close time performance. However, we also notice that

the time strategy communicates IS3, which was avoided in all travel strategies, and also the travel

strategy broadcasts IS4 to all collectors, compared to two collectors in the time strategy. First,

we believe that communicating IS3 may result in increasing the distance traveled by collectors as

when collectors receive requests for insufficient supply, they would focus on finding blocks of the

color they received insufficient supply for, and hence ignore any block of other colors that they

come across. Although this may, in some cases, allow for faster completion of the structure, it

costs collectors long distances of travel. Second, broadcasting IS4 to collectors help decrease the

distance traveled by them as they all would focus on finding blocks needed for completing the

structure. The energy strategy, although communicates more time and travel favorable information

instances, performs as well as the time strategy and travel strategy with respect to time (p=0.22)

and travel distance (p=0.06), respectively. The reason is due to the previously reported communi-

cation's large standard error for the energy strategy. As explained earlier, energy fitness does not

consider weights for goal and communication. Therefore, strategies with less energy consumption

are considered better, despite their communication cost. This uncontrolled communication feature

of the energy fitness produces highly variant communication strategies that, while consume close

amount of energy, produce diverse behavior and performance with respect to other performance

goals. Since the effort duplication strategy does not communicates IS2 and IS12 to builders, it does

not perform favorably with respect time (p=0.005), and since it further does not broadcast IS4, it

makes agents travel significantly long distance (p=0.0003), compared to the travel strategy.

When action and communication costs are equal, and similar to the previous cost setting, time

and travel strategies have close time performance (p=0.09) and time fitness (p=0.18), while the

latter strategy (as it communicates IS9) outperforms the former (which communicates IS3) with

respect to travel performance (p=0.01) and travel fitness (p=0.02). The travel strategy performs as

well as the time strategy with respect to time because it communicates all important information
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instances to time, namely, IS2, IS4, IS7, IS10, and IS12, using close recipient and timing strategies.

The travel strategy also outperforms the energy strategy with respect to travel distance (p=0.0002)

and travel fitness (p=0.001), as the latter does not broadcast IS4 and does not communicate IS9.

The energy strategy is outperformed by the time strategy with respect to time (p=0.03) and time

fitness (p=0.04), since energy strategy communicates full supply zone (IS11) to collectors, which

was avoided in all time strategies. The reason is that when every collector shares with the closest

one the news that a supply zone is full, the recipient collector will avoid finding and collecting

blocks that belong to the supply zone for a hundred time-steps, which may delay the progress

of the building task. The effort duplication takes significantly longer time to complete the task,

compared to the time strategy (p=0.0004), and also travels longer distance (p=0.0007), compared

to the travel strategy, as it does not allow communication of IS4 and IS9 to collectors, and IS10 and

IS12 to builders.

When action cost is high, the travel strategy performs as well as the time strategy with respect

to time (p=0.11) and time fitness (p=0.11), as it communicates the most influential (favorable)

information instances to reduce the time taken to complete the task. In addition, the travel strategy

outperforms the time strategy with respect to travel (p=0.006) and travel fitness (p=0.008) for four

reasons. The first reason is that the time strategy communicates IS3, which is believed to increase

the distance traveled by collectors. The other three reasons are associated with the travel strategy,

which are: (1) it broadcasts IS4 to collectors, (2) it communicates IS9, and (3) it communicates IS1.

The energy strategy has close time performance (p=0.32) and travel performance (p=0.25) to the

time and travel strategies, respectively, for the same aforementioned reason. However, due to the

high amount of communication, it has significantly worse time fitness (p=0.017) and travel fitness

(p=0.01).

Figure 6.11 depicts the performance of strategies of varying goals with respect to energy. When

communication cost is high (ac<cc), the energy strategy outperforms the time strategy (p=0.003)

as the latter does not communicate IS10 to builders. Yet, the latter performs as well as the travel

strategy (p=0.13), with respect to energy. Although the travel strategy does not communicate IS10,
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it broadcasts IS4 to collectors. Due to the high communication cost incurred by the energy strategy,

it achieves close energy fitness to time (p=0.12) and travel (p=0.11) strategies. When action and

communication costs are equal, the energy strategy has close energy performance (p=0.05) and

fitness (p=0.1) to the time strategy, but is outperformed by the travel strategy with respect to energy

(p=0.0004) and fitness (p=0.001), as the latter communicates IS9. When the action cost is high, and

similar to the case (ac=cc), the energy strategy has close energy performance (p=0.13) and fitness

(p=0.18) to the time strategy, but is outperformed by the travel strategy with respect to energy

(p=0.02) and fitness (p=0.01), as the latter communicates IS9.

The effort duplication performance of different strategies is presented in Figure 6.12. The

effort duplication strategy outperforms all other strategies in all cost settings, with respect to effort

duplication and fitness, as they communicate more information instances, such as IS5, IS6, and

IS10, or same information instance but to more recipients, such as IS4.
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(a) ac=cc (b) ac<cc (c) ac>cc

Figure 6.9: Time performance of communication strategies of various goals (α>β )

(a) ac=cc (b) ac<cc (c) ac>cc

Figure 6.10: Travel performance of communication strategies of various goals (α>β )

(a) ac=cc (b) ac<cc (c) ac>cc

Figure 6.11: Energy performance of communication strategies of various goals (α>β )
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(a) ac=cc (b) ac<cc (c) ac>cc

Figure 6.12: Effort duplication performance of communication strategies of various goals (α>β )

6.2.2.2 α=β

In this case, goal and communication costs contribute equally to the total strategy's fitness. As a

result, GA approves increasing communication cost only if it improves goal performance for the

same, or close, proportion.

Figure 6.13 depicts the time performance of the strategies. When action and communication

costs are equal, the time strategy outperforms the travel strategy with respect to time (p=0.04) and

performs as well as the travel strategy with respect to travel distance (p=0.24). The reason for

the variant time performance is that the time strategy communicates a time-favorable information

instance (IS10) to all builders, which is not communicated by the travel strategy. Yet, the latter

communicates instead travel-favorable information instances, namely IS1 and broadcast IS4, hence

the close travel performance. When it comes to the fitness of the two strategies, the opposite

holds true, due to the high communication incurred by the time strategy. Therefore, the travel

strategy has close time fitness (p=0.09) and significantly better travel fitness (p=0.01), compared

to the time strategy. As the energy strategy communicates all necessary information instances to

both performance goals, it performs comparably, with respect to time (p=0.19) and travel distance

(p=0.31), to the time and travel distance strategies. Due to its high amount of communication, it

has significantly worse time (p=0.04) and travel fitness (p=0.005).

When the communication cost is high, both time and travel strategies perform closely with re-
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spect to time (p=0.3) and time fitness (p=0.5), as the latter communicates all information instances

that are communicated by the former, yet the latter outperforms the former with respect to travel

distance (p=0.003) and travel fitness (p=0.01), as it broadcasts IS4 to collectors, as oppose to three

collectors in the time strategy. The energy strategy is able to complete the task faster than the time

strategy (p=0.04) and with travel distance shorter than that of the travel strategy (p=0.02). The

reason is that it allows communication of time and travel favorable information instances, which

were disallowed in the time and travel strategies due to communication restriction (β=0.5), such

as IS10 and IS1. Since the energy strategy communicates larger number of messages, it achieves

close time (p=0.1) and worse travel (p=0.03) fitness values.

When action cost is high, time and travel strategies have close time performance (p=0.49) and

fitness (p=0.29), as the travel strategy, similar to the previous case, communicates all necessary in-

formation instances to reduce time to a comparable performance to the time strategy. However, the

travel strategy excels with respect to travel distance (p=0.019) and travel fitness (p=0.013) because

the time strategy communicates IS3 and the travel strategy broadcasts IS4 to all collectors. The

energy strategy performs closely with respect to time (p=0.20) and travel distance (p=0.1), com-

pared to the the time and travel strategies, respectively. However, since it communicates signifi-

cantly large number of messages, it has significantly unfavorable time (p=0.02) and travel fitness

(p=0.02).

Figure 6.15 shows the energy performance of strategies of different performance goals in three

different cost settings. In the case of (ac=cc), both time and travel strategies have comparable

energy performance (p=0.42 and p=0.11, respectively) to that of the energy strategy. Since they

both communicate less than the energy strategy, they achieve better energy fitness than the energy

strategy (p=0.04 and p=0.01), for the time and travel strategies, respectively. When communication

cost is high, the energy strategy outperforms the time strategy with respect to energy (p=0.0004),

but performs closely to the travel strategy (p=0.08), as it broadcasts IS4 to collectors. When action

cost is high, the energy strategy performs significantly better than the time energy (p=0.004) but

close to the travel strategy (p=0.49) with respect to energy for the same aforementioned reason.
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The effort duplication performance for strategies of different goals is depicted in Figure 6.16. In

the case of equal action and communication costs, the travel strategy performs as well as the effort

duplication strategy (p=0.46), as the former communicates IS1. The latter outperforms all other

strategies. When communication cost is high, the time and travel strategies perform closely to the

effort duplication strategy (p=0.11 and p=0.25, respectively), although the former two strategies

communicate significantly higher. As Tables 6.2 and 6.3 indicate, both strategies communicate IS2,

a duplication-effort-favorable strategy, and S11, which speeds up completion of the building task

as bulldozers notify builders once a structure site is cleared, yet they did not outperform the effort

duplication strategy. The reason is that both strategies communicate sufficient supply zone (IS4) to

three or more collectors, which increase duplication of efforts as collectors will have fewer choices

of supply zones, and hence continuously try to deposit blocks in full zones. It is believed that the

pros and cons of the time and travel strategies on one side and the effort duplication strategy on

the other side even out the effect of these practices, and hence the close performance. When action

cost is high, the effort duplication strategy outperforms all other strategies.
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(a) ac=cc (b) ac<cc (c) ac>cc

Figure 6.13: Time performance of communication strategies of various goals (α=β )

(a) ac=cc (b) ac<cc (c) ac>cc

Figure 6.14: Travel performance of communication strategies of various goals (α=β )

(a) ac=cc (b) ac<cc (c) ac>cc

Figure 6.15: Energy performance of communication strategies of various goals (α=β )
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(a) ac=cc (b) ac<cc (c) ac>cc

Figure 6.16: Effort duplication performance of communication strategies of various goals (α=β )

6.2.2.3 α<β

This parameter setting is usually used when communication is costly, and hence minimizing it has

high priority. At the same time, the system designer is interested in whether low communication

can improve the system’s performance. Therefore, the aim is to improve the goal performance, but

with minimum cost of communication.

The time and travel performance of the strategies are displayed in Figures 6.17 and 6.18, re-

spectively. Although, when (ac=cc), the travel strategy allows completing the task faster than the

time strategy (p=0.02), the time fitness values for both strategies are close (p=0.21). The reason

is that the travel strategy communicates more as it allows sending IS12, a time-favorable infor-

mation instance. Since IS12 is also a travel-favorable information instance, besides broadcasting

IS4 to collectors, the travel strategy outperforms the time strategy with respect to travel distance

(p=0.006), yet due to the high communication (and high communication weight), the strategies

have close travel fitness (p=0.07). As the energy strategy does not consider parameter setting, it

communicates more time-favorable information instances, including IS2, IS10, and and IS12, and

hence outperforms the time strategy with respect to time (p=0.005). For the same reason, the time

strategy has better time fitness than the energy strategy (p=0.009). However, since the energy strat-

egy does not broadcast IS4 to collectors, it does not outperform the travel strategy with respect

to travel distance (p=0.1), yet the latter has significantly better travel fitness (p=0.002) due to the
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energy strategy's high communication.

When the communication cost is high (ac<cc), both time and travel strategies communicate

only IS7 and IS4, although the travel strategy broadcasts the latter information instance. Therefore,

the time and travel strategies have close time performance (p=0.05), and the latter has significantly

better travel performance (p=0.02). Due to the higher communication incurred by the travel strat-

egy, the travel fitness values for both strategies are close (p=0.11), but the time strategy achieves

higher time fitness (p=0.03). As the travel strategy communicates only two information instances,

and although the energy strategy does not broadcasts IS4, the energy strategy outperforms both the

time (p=0.002) and travel (p=0.001) strategies with respect to time and travel distance, respectively.

Yet, due to the energy strategy's high communication, both strategies have better goal fitness, with

(p=0.02) for travel distance, and (p=0.02) for time.

When action cost is high, the travel strategy increases communication, in efforts to reduce

the total distance traveled by agents. Therefore, we observe in Table 6.3 that the travel strategy

communicates IS2, IS4, IS6, IS7, and IS12, as oppose to the time strategy that only communicates

IS4 and IS7. For this reason, the travel strategy outperforms the time strategy with respect to both

time (p=0.002) and travel distance (p=0.0009). The travel strategy also has better travel fitness

(p=0.006), but the time fitness values for both strategies are close (p=0.09). Due to the absence of

communication weight in case of energy strategy, and hence the high communication, the energy

strategy outperforms both time (p=0.0002) and travel strategies (p=0.003) with respect to their

goals. However, the time and travel strategies have better time (p=0.02) and travel (p=0.02) fitness

values, respectively.

The energy performance of the strategies is shown in Figure 6.19. The comparison between the

energy and travel strategies with respect to energy performance resembles that of the travel perfor-

mance. Both strategies have close energy performance when action and communication costs are

equal (p=0.33), while the energy strategy has better performance when communication cost is high

(p=0.002) and when action cost is high (p=0.004). The former outperforms the time strategy in all

cost settings (p=0.006 , p=0.0004 , and p=0.004) when (ac=cc), (ac<cc), and (ac>cc). As commu-
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nication has high weight in this parameter setting, which is not considered by the energy strategy,

and hence the high communication, the energy fitness of the energy strategy is significantly worse

than that of both time and travel strategies in all cost settings.

In Figure 6.20, the effort duplication performance of the strategies is presented. As the effort

duplication strategy communicates minimally, it is outperformed by the time and travel strategies

in all cost settings. However, due to the strategies' high communication, they are both surpassed

by the effort duplication strategy with respect to the effort duplication fitness. In the case (ac<cc),

the energy strategy as well outperforms the effort duplication strategy, as the latter avoids com-

munication at all, but since the former incurs high communication, it scores significantly worse

fitness (p=0.04), compared to the effort duplication strategy. In the other two cost settings, the

effort duplication strategy outperforms the energy strategy with respect to both goal performance

and fitness.
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(a) ac=cc (b) ac<cc (c) ac>cc

Figure 6.17: Time performance of communication strategies of various goals (α<β )

(a) ac=cc (b) ac<cc (c) ac>cc

Figure 6.18: Travel performance of communication strategies of various goals (α<β )

(a) ac=cc (b) ac<cc (c) ac>cc

Figure 6.19: Energy performance of communication strategies of various goals (α<β )
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(a) ac=cc (b) ac<cc (c) ac>cc

Figure 6.20: Effort duplication performance of communication strategies of various goals (α<β )

6.2.3 Simulation Environment

This section provides results for evaluating the proposed approach in difficult scenarios, where

the task complexity increases with fixed agent population, and simple scenarios, where agent pop-

ulation increases with fixed task complexity. Similar to the Wumpus World, we seek unbiased

communication strategies where no preference is made between goal and communication cost.

Therefore, we consider one case of fitness parameters where (α=β , ac=cc) to further investigate

the impact of variation of simulation environment on the evolved strategies and goal performance.

6.2.3.1 Agent Population

Agent population in this domain is the total number of builders, bulldozers, and collectors, which

is fixed at 13 (three builders, five bulldozers, and five collectors), in the basic setting adapted in

all previous experiments in this chapter. In this section, we show the performance of the proposed

approach with larger populations.

Figure 6.21 illustrates performance of the evolved strategies, presented in Tables 6.6, 6.7, 6.8,

and 6.9, for different populations, with respect to different performance goals. For time, increas-

ing population to double (i.e., 26) allows agents to complete the task in significantly shorter time

(p=0.0007), as shown in Figure 6.21a. Yet, the impact of larger population reduces as extra agents

make less (p=0.04 for 26 versus 39), and no (p=0.37 for 39 vs 52) difference in the time consumed
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to finish the task. Communication cost, however, continuoulsy increases with larger population.

The evolved strategies, presented in Table 6.6, show consistency with respect to what to commu-

nicate. For example, IS2, IS4, IS7, and IS12 are communicated in all populations. In addition,

and aside from the case of 26 agents, GA always evolves communicating supply zones updates

to builders, either by communicating IS5 or IS10. Further, we notice that the importance of some

favorable information instances, such as structure updates (IS2) and sufficient supply (IS4), reduces

as agent population increases. For example, IS2 is broadcast to builders in case 13 and 26 agents,

yet it is communicated to only a subset when the total population is 39 and 52. The reason is

that when the goal is to complete the task in short time, the focus would be on speeding up the

progress of building the structure (as oppose to adjusting agents behavior in other performance

goals). Therefore, when the number of builders is small (3 and 6), they all need to be updated

when a builder attaches a block to a structure site, in order to allow them to use their time effec-

tively by focusing on unoccupied structure sites. However, in case of large number of builders (9

and 12), broadcasting IS2 is probably unnecessary for quick completion of the task, as only a sub-

set of builders need to focus on attaching blocks to unoccupied sites. Moreover, sufficient supply

(IS4) is communicated to most collectors in case of 13, 26, and 39 agents. However, the number

of recipients of this information instance drops to only a small subset of collectors in case of 52

agents. Similar to structure updates (IS2) in large populations, it is sufficient to inform some col-

lectors about having no longer needed blocks to steer their focus to what is still needed to complete

the structure.

Unlike the Wumpus World domain, the total distance traveled by agents continuously increases

with larger agent populations, as shown in Figure 6.21b, since bulldozers and collectors walk ran-

domly to find debris and blocks, respectively, hence more agents always result in longer travel

distance. The evolved travel strategies, in Table 6.7, show consistency as all information instances

that are communicated in the original population, namely, IS1, IS2, IS4, IS7, and IS12, are com-

municated in all other populations, albeit changes occurred to the recipient strategies of some

information instances. For instance, builder's target IS1 is only broadcast to builders in the orig-
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inal population case as it is only communicated to a subset in larger populations. It is believed

that, since broadcast is a costly recipient strategy, especially in large population, GA restricted

recipients of builders' targets (be it structure site or supply zone) to only a subset because builders

change their targets frequently. However, builders are still able to broadcast the news that a block

has been attached to a site (IS2) in larger population. This contrasts with the recipient strategy

evolved for IS2 for time strategies, explained earlier, since when the goal is to minimize the total

travel distance, the focus would be to make every step of every agent worthwhile. Therefore, no

builder should pick up a block and target an already occupied structure site, no matter how many

builders there are.

Similar to travel distance, the amount of energy consumed continuously increases with larger

populations, yet the amount of communication is kept close in the two largest populations. As

energy is a single-objective goal, minimizing energy can be achieved by minimizing communica-

tion and/or travel distance. Therefore, in the two largest populations, agents may communicate the

same amount of communication, but travel longer distances in the largest population, which results

in the high energy consumption.

When agent population is doubled, i.e., 26, GA has successfully evolved a strategy to keep

duplication of efforts very close (p=0.06) to the previous case of 13 agents. Yet, effort duplication

sharply increases afterwards with larger populations. The opposite holds true for communication,

as it increases significantly when population is doubled to 26, remains the same with 39 agents,

and increases again with the largest population.

The evolved strategies for this performance goal are shown in Table 6.9. We notice that in case

of 26 agents, GA evolved a strategy that allows builders to further broadcast structure updates (IS2)

to each other to avoid having a builder that targets an already occupied structure site. In addition,

builders are allowed to communicate IS4 to six collectors, rather than one collector in case of 13

agents. As explained previously, in the original population, communicating IS4 to many collectors

is avoided in order to provide collectors with more supply zones to deposit to, and hence less likely

to target a full supply zone. However, in case of larger populations, this no longer holds true. The
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reason is that larger population means larger number of both builders and collectors. While more

builders result in more pick ups from supply zones, and hence less likelihood of full supply zones,

more collectors result in the opposite. On one hand, if most collectors are not informed about

sufficient supply zones (as in the original population), then they would continuously try to deposit

blocks to full supply zones. On the other hand, if all collectors are informed about sufficient supply

zones, then they all would focus on a small number of zones, which will make blocks deposit larger

than blocks pick up, and hence more likely to deposit to full supply zones. Therefore, we observe

that IS4 is communicated to a subset of collectors in larger populations.

In the case of 39 agents, builders are allowed to share their targets (IS1), rather than structure

updates (IS2), and further allowed to communicate insufficient supply (IS3). When builders are

allowed to communicate IS1, they send each other the supply zone or structure site they are target-

ing. Communicating IS3 is believed to speed up the building task. In the largest population (52),

builders are allowed to communicate both IS1 and IS2, in addition to IS4, IS7, and IS12. Similar

to IS3, the latter information instance helps builders complete the task faster, as bulldozers inform

builders about clear structure sites.

Table 6.6: The evolved time communication strategies for larger populations.

Agent Population Information Instances (ISi)
B Bz C IS1 IS2 IS3 IS4 IS5 IS6 IS7 IS8 IS9 IS10 IS11 IS12

Total

3
13

5 5
B

Bcast
(14TS)

Bcast
(Wander)

Bcast
(10TS)

Bz
2

(14TS)

C
3

(7TS)
2

(Wander)

6
26

10 10
B

Bcast
(12TS)

3
(15TS)

Bz
7

(Build)

C
9

(Find)

9
39

15 15
B

2
(4 TS)

7
(EU)

Bcast
(7TS)

Bz
6

(20TS)

C
13

(3TS)

12
52

20 20
B

6
(14TS)

9
(12TS)

Bcast
(16TS)

Bcast
(7TS)

Bz
10

(Build)
9

(12TS)

C
5

(14TS)
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(a) Time (b) Travel distance

(c) Energy (d) Effort duplication

Figure 6.21: Various-goals performance with increasing agent population.
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Table 6.7: The evolved travel communication strategies for larger populations.

Agent Population Information Instances (ISi)
B Bz C IS1 IS2 IS3 IS4 IS5 IS6 IS7 IS8 IS9 IS10 IS11 IS12

Total

3
13

5 5
B

Bcast
(Find)

Bcast
(2TS)

Bcast
(4TS)

Bz
P2P

(4TS)

C
Bcast
(3TS)

6
26

10 10
B

4
(20TS)

Bcast
(18TS)

2
(10TS)

Bz
3

(9TS)

C
5

(Build)
7

(9TS)

9
39

15 15
B

2
(Find)

Bcast
(7TS)

8
(12TS)

Bz
4

(9TS)

C
12

(6TS)
9

(Find)

12
52

20 20
B

7
(8TS)

Bcast
(12TS)

P2P
(2TS)

Bz
6

(5TS)

C
19

(3TS)
8

(2TS)
P2P

(14TS)

Table 6.8: The evolved energy communication strategies for larger populations.

Agent Population Information Instances (ISi)
B Bz C IS1 IS2 IS3 IS4 IS5 IS6 IS7 IS8 IS9 IS10 IS11 IS12

Total

3
13

5 5
B

Bcast
(5TS)

Bcast
(4TS)

Bcast
(3TS)

Bz
2

(8TS)

C
P2P

(Build)
3

(5TS)
3

(18TS)
P2P

(19TS)

6
26

10 10
B

Bcast
(2TS)

P2P
(EU)

3
(Find)

2
(16TS)

Bcast
(EU)

3
(14TS)

Bz
3

(8TS)

C
9

(EU)
2

(Deposit)

9
39

15 15
B

Bcast
(15TS)

6
(7TS)

3
(12TS)

4
(EU)

Bz
7

(3TS)

C
Bcast

(20TS)
P2P

(13TS)
P2P

(20TS)

12
52

20 20
B

Bcast
(6TS)

P2P
(18TS)

8
(11TS)

2
(2TS)

Bz
4

(6TS)

C
12

(Build)
15

(12TS)
P2P

(7TS)
3

(8TS)
14

(Wander)
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Table 6.9: The evolved effort duplication communication strategies for larger populations.

Agent Population Information Instances (ISi)
B Bz C IS1 IS2 IS3 IS4 IS5 IS6 IS7 IS8 IS9 IS10 IS11 IS12

Total
3
13

5 5
B

Bz
P2P

(Build)

C
P2P

(14TS)

6
26

10 10
B

Bcast
(5TS)

Bz
P2P

(15TS)

C
6

(Find)

9
39

15 15
B

P2P
(Find)

Bz
3

(Build)

C
5

(Obtain)
4

(EU)

12
52

20 20
B

10
(Find)

6
(10TS)

3
(2TS)

Bz
3

(5TS)

C
8

(4TS)

6.2.3.2 Task Complexity

In this domain, task complexity refers to: (1) number of blocks available in the environment, (2)

amount of debris, and (3) structure size. These three features of the environment were fixed in

all previous experiments to 310 (200 blocks, 100 debris, and 10 structure size). The performance

of the system with respect to different performance goals and with increasing task complexity is

depicted in Figure 6.22. In addition, the evolved communication strategies are presented in Tables

6.10, 6.11, 6.12, and 6.13.

As the assigned task increases in complexity, with fixed population, the time needed to com-

plete the task inevitably increases (Figure 6.22a). Yet, GA evolved a strategy with close communi-

cation cost to the cases with less task complexity. Table 6.10 reveals that the evolved strategies for

all complexity cases are mostly consistent, as they all mutually communicate IS2, IS4, IS7, IS10, and

IS12. Further, we notice that in more complex tasks, where sufficient supply (IS4) is not broadcast,

builders are allowed to communicate insufficient supply (IS3) to the closest builder. As explained

previously, communicating this information instance can reduce the time needed to complete the
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task, especially in cases when only one or a few structure sites left and no blocks exit in the corre-

sponding supply zones. Another information instance that is communicated in more complex tasks

is empty supply zone (IS6) to builder and/ore collectors. In case of bigger structures, builders need

longer time to complete the task, hence informing them that a supply zone is empty can help them

use their time more effectively. Also, communicating the same information instance to collectors

encourages them to deposit more blocks in case they are still needed.

The trend for the travel performance of strategies with more complex tasks is similar to that of

the time performance, as illustrated in Figures 6.22b and 6.22a, respectively. There are multiple

changes that the travel strategies go through as the task complexity increases. First, builder's target

(IS1) is only communicated in the original case. As the task gets more complex, including bigger

structure size, builders do not need to avoid each others targets (such as structure site and supply

zone), as it is less likely that two or more builders would target the same structure site, and if that

happens, it is more likely that they will find a close structure size that need the block that they carry.

Second, we notice that insufficient supply (IS3) is allowed to be communicated in more complex

scenarios. The reason is that as the task gets more complex, collectors need to concentrate on

finding blocks needed for the completion of the structure. Third, in the second and third scenarios,

builders are kept informed about the status of the supply zones, by communicating IS5, and IS10 or

IS11. In the most complex scenario, builders are only informed when a supply zone is full (IS11). It

is believed that the reason is that since the importance of travel equals that of communication, with

continuous increase of travel distance, GA may try to decrease communication to improve fitness.

Figure 6.22c shows the energy performance of the energy strategies as the task gets more

complex. We notice that the energy consumed in each case is very close to the corresponding

distance traveled in Figure 6.22b. The reason is due to the high communication in energy strategies,

which enables further decrease in the travel distance, and hence less energy consumption. We

observe a sudden decrease in communication in the most complex scenario. As explained earlier,

the amount of energy consumed can be reduced by reducing travel distance and/or communication.

As energy has no weights that control the trade-off between the two objectives, results of energy
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can be random in this matter.

The strategies performance with respect to effort duplication for more complex scenarios is

shown in Figure 6.22d. We observe that duplication of efforts decreases with the second complex

scenario, which happened for two reasons. First, as the number of available blocks, amount of

debris, and structure size increase, it is less likely that two or more collectors target the same

block, two or more bulldozers target the same debris, and two or more builders target the same

structure site. Second, as shown in Table 6.13, GA found it worthwhile to further communicate

structure updates (IS2) and increase recipients of IS4, hence resulting in less duplication of efforts.

When the task is further complicated, although the first argument still holds true, agents take longer

time to complete the task, hence builders and bulldozers may duplicate each others' efforts when

they pick up or deposit a block in a supply zone, respectively. We observe that the evolved effort

duplication strategies in Table 6.13 for more complex tasks are consistent .

Table 6.10: The evolved time communication strategies for more complex tasks.

Task Complexity Information Instances (ISi)
Blocks Debris Structure IS1 IS2 IS3 IS4 IS5 IS6 IS7 IS8 IS9 IS10 IS11 IS12

Total Size

200
310

100 10
B

Bcast
(14TS)

Bcast
(Wander)

Bcast
(10TS)

Bz
2

(14TS)

C
3

(7TS)
2

(Wander)

300
465

150 15
B

Bcast
(3TS)

P2P
(3TS)

Bcast
(2TS)

P2P
(5TS)

Bz
2

(7TS)

C
Bcast
(2TS)

P2P
(16TS)

400
620

200 20
B

Bcast
(13TS)

Bcast
(19TS)

Bcast
(5TS)

Bz
3

(19TS)

C
P2P

(3TS)
3

(7TS)
P2P

(11TS)

500
775

250 25
B

Bcast
(3TS)

P2P
(Build)

Bcast
(5TS)

P2P
(3TS)

Bz
2

(19TS)

C
P2P

(5TS)
2

(19TS)
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(a) Time (b) Travel distance

(c) Energy (d) Effort duplication

Figure 6.22: Various-goals performance with increasing task complexity.

Table 6.11: The evolved travel communication strategies for more complex tasks.

Task Complexity Information Instances (ISi)
Blocks Debris Structure IS1 IS2 IS3 IS4 IS5 IS6 IS7 IS8 IS9 IS10 IS11 IS12

Total Size

200
310

100 10
B

Bcast
(Find)

Bcast
(2TS)

Bcast
(4TS)

Bz
P2P

(4TS)

C
Bcast
(3TS)

300
465

150 15
B

Bcast
(12TS)

P2P
(18TS)

P2P
(17TS)

Bcast
(19TS)

Bz
P2P

(9TS)

C
2

(Find)
Bcast

(12TS)

400
620

200 20
B

Bcast
(4TS)

P2P
(4TS)

P2P
(2TS)

2
(6TS)

Bz
P2P
(EU)

C
2

(EU)
Bcast
(8TS)

P2P
(19TS)

500
775

250 25
B

Bcast
(14TS)

P2P
(EU)

Bcast
(EU)

Bz
P2P

(18TS)

C
P2P

(3TS)
4

(3TS)
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Table 6.12: The evolved energy communication strategies for more complex tasks.

Task Complexity Information Instances (ISi)
Blocks Debris Structure IS1 IS2 IS3 IS4 IS5 IS6 IS7 IS8 IS9 IS10 IS11 IS12

Total Size

200
310

100 10
B

Bcast
(5TS)

Bcast
(4TS)

Bcast
(3TS)

Bz
2

(8TS)

C
P2P

(Build)
3

(5TS)
3

(18TS)
P2P

(19TS)

300
465

150 15
B

Bcast
(15TS)

Bcast
(7TS)

Bcast
(9TS)

Bcast
(6TS)

2
(5TS)

2
(20TS)

Bz
P2P

(10TS)

C
P2P

(5TS)
Bcast
(4TS)

Bcast
(9TS)

3
(7TS)

400
620

200 20
B

P2P
(13TS)

Bcast
(11TS)

Bcast
(15TS)

Bcast
(20TS)

Bz
P2P

(2TS)

C
P2P

(Find)
Bcast
(EU)

2
(14TS)

2
(Find)

P2P
(20TS)

3
(8TS)

2
(14TS)

Bcast
(7TS)

500
775

250 25
B

Bcast
(9TS)

P2P
(9TS)

Bz
P2P

(12TS)

C
P2P

(9TS)
4

(8TS)
P2P

(17TS)

Table 6.13: The evolved effort duplication communication strategies for more complex tasks.

Task Complexity Information Instances (ISi)
Blocks Debris Structure IS1 IS2 IS3 IS4 IS5 IS6 IS7 IS8 IS9 IS10 IS11 IS12

Total Size
200
310

100 10
B

Bz
P2P

(Build)

C
P2P

(14TS)

300
465

150 15
B

Bcast
(Find)

Bz
P2P

(11TS)

C
2

(11TS)
P2P

(Build)

400
620

200 20
B

Bcast
(13TS)

Bz
P2P

(18TS)

C
2

(9TS)

500
775

250 25
B

Bcast
(4TS)

Bz
P2P

(Build)

C
2

(11TS)
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6.3 Summary

The Collective Construction is a more complex domain than the Wumpus World, as it includes

more information instances and more agent types. Yet, the experimental results, presented in this

chapter, support our findings on the Wumpus World domain. We list some of these findings in this

section and provide more detailed discussion in the next chapter.

We have demonstrated that, similar to the Wumpus World, information instances in this do-

main can be classified to favorable, unfavorable, and neutral information instances, with respect to

each performance goal, and that specification of each information instance and its impact on goal

performance can differ when the simulation environment changes. For example, communicating

the information instances IS2, IS10, and IS12 to builders, IS7 to bulldozers, and IS3, IS4, and IS10 to

collectors are considered favorable information instances to time performance. In addition, com-

municating IS1 to builders, IS9 to collectors, and IS6 is considered neutral to the time performance,

while IS11 to collectors is considered unfavorable. In scenarios with larger population, we observed

reduction in the favorable impact of communicating IS2 to builders on time performance, and in-

crease in the favorable impact of communicating IS7 to bulldozers. In cases with more complex

tasks, we observed increase in the favorable impact of communicating IS3 to collectors and IS6,

and decrease in communicating IS10 to collectors.

In the case of travel distance, the favorable information instances include communicating IS1,

IS2, IS6, IS10, and IS12 to builders, and IS7 to bulldozers, and IS4, IS6, and IS9 to collectors. Com-

municating IS3 is considered unfavorable to the travel performance. We observed reduction in the

favorable impact of communicating IS1 in scenarios with larger populations and scenarios with

more complex tasks, while communicating IS3 to collectors became favorable in scenarios with

more complex tasks.

When the goal is to reduce duplication of efforts, the most influential information instances are

IS2 to builders, IS7 to bulldozers, and IS3 and IS4 to collectors. Moreover, we observed increase in

the influence of communicating IS2 to builders and IS4 to collectors in scenarios with larger pop-
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ulations and scenarios with more complex tasks. Additionally, the favorability of communicating

IS1 to builders increased in scenarios with larger populations.

Furthermore, we have shown that inverse variation between costs and weights of goal and com-

munication can even out their importance, and hence results in similar communication strategies

and performance. Besides, our results indicate that the proposed approach works less favorably

with single-objective performance goal (energy in this case), due to uncontrolled communication.

145



CHAPTER 7

Conclusion

7.1 Summary

This dissertation has proposed, examined, and evaluated the validity of the hypothesis that:

Communication strategies in multi-agent systems, namely what, when, and to

whom agents communicate, can be learned in order to improve the performance

of the system with respect to flexible performance goals, resulting in learning

of goal-driven communication.

In support of this claim, we conducted research to investigate the plausibility of evolving goal-

driven communication using Genetic Algorithm. We provided our definition of Communication

Strategy, including two components; recipients and timing strategies, and we designed a fitness

function that balances between goal performance and communication cost, according to user-

defined weights. We applied the proposed approach to two different, well-known, multi-agent case

studies, namely, the Wumpus World and Collective Construction, based on thoroughly-designed

experiments that consider variations of three different factors. We, further, supported our analysis
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and evaluation of the obtained results with statistical evidence to validate the effectiveness of the

approach from different angles.

Our experimental results indicate that GA has successfully evolved goal-driven multi-agent

communication strategies. Our research shows that the system's performance can not only be sig-

nificantly affected by communication variation, but further highly tuned by controlling communi-

cation. The presented approach has been confirmed to possess significant utilization in improving

the performance with respect to the desired performance goal and trade-off between performance

and communication cost.

Variation of the performance goal with fixed weights has shown that a goal-driven strategy

cannot be outperformed with respect to goal-based fitness by strategies of other goals. However,

other strategies may outperform a goal-driven strategy with respect to its goal if they communicate

more to the extent that results in better performance, but causes worse fitness. Further, evolv-

ing single-objective communication strategies, i.e., energy-driven strategies, with the absence of

trade-off between performance goal and communication produced less quality results due to over-

communication.

Variation of goal's weight, with the same goal, reveals that with a greater value for the weight,

our approach is able to produce strategies with same or better performance, compared to others

with smaller goal's weight. In the worst case of evolving strategies with same performance, one

of two situations could be the case. First, increasing communication does not improve perfor-

mance, as the best performance that the system can achieve was already evolved with smaller

goal's weight, and is evolved again for greater weight. Second, increasing communication can

improve performance, but the associated communication cost results in worse fitness, hence GA

favors same strategies, evolved for less goal's weight, with worse performance and higher fitness.

Variation of features of simulation environment, including agent population and task complexity,

indicates that the evolved strategies are bound up with the considered simulation environment,

and that the proposed approach may perform less favorably in some cases of simple scenarios, as

evolved strategies were less reliable, confirmed by high standard error of communication.
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Information instances (IS) are classified, with respect to each performance goal, into three cat-

egories, favorable IS, unfavorable IS, and neutral IS. Favorable information instances are those

that, if communicated, can improve the goal performance, whilst unfavorable ones affect the goal

performance negatively. Neutral information have no influence on the goal performance, but only

increase communication. Our results show that the favorable impact of some information instances

and the class that they belong to may change in response to changes in the simulation environment.

In addition, the results indicate that GA has success in evolving strategies that allow communicat-

ing favorable information to the stated goal and avoid invalid and unfavorable, and neutral informa-

tion. Yet, assigning a relatively low weight to communication cost or evolving a strategy for simple

scenarios may sometimes result in higher standard error for communication, as GA may evolve a

communication strategy that allows communicating neutral information. Therefore, even in case

of communication at no cost, it is recommended to assign communication a low, yet comparable,

weight with that of the goal.

7.2 Contributions

The work presented in this dissertation has made multiple contributions to the state of the art,

which we enumerate below:

1. We have developed an evolutionary approach that given a performance goal, produces

a communication strategy that can improve a multi-agent system's performance with

respect to the desired goal. We have evolved strategies with four different performance

goals, and examined, in Sections 5.2.2 and 6.2.2, the impact of the chosen performance goal

on the actual evolved communication strategy, the system's performance and the strategy's

fitness . Further, we have demonstrated under which conditions a communication strategy

with goal P1 may outperform another with goal P2, with respect to P2.

2. We have demonstrated how our approach provides a tool for customizing the tradeoff

between the system's performance and communication cost. We considered nine cases
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of fitness parameters; including goal's and communication's weights and action and com-

munication costs. We presented, in Sections 5.2.1 and 6.2.1, the evolved strategies and re-

sult performance with each considered performance goal. We, further, showed under which

conditions increasing performance goal's weight does not result in better performance with

respect to the desired goal.

3. We have classified information instances into three categories according to their influ-

ence on a performance goal, namely favorable, neutral, and unfavorable information

instances. This classification is based on the cases at which an information instance has

been allowed to be communicated for each performance goal and its impact on the result

performance with respect to the goal.

4. We demonstrated how different environments features, such as more complex task or

larger populations, may call for different behavior to improve performance, reflected

in modifications in the evolved strategies. We have shown examples of this situation in

Sections 5.2.3 and 6.2.3. It is partially due to the fact that the value of an information

instance to a goal may vary with different environment features.

5. We have demonstrated how our approach can assist system designers to figure out the

potentially best performance that the system can achieve with respect to a specific goal,

such as the minimum time or energy that a task takes to complete. As previous research

confirmed that full communication may hinder performance, finding how well a system can

perform with respect to a goal, with no design changes, may become difficult. Therefore,

this approach enables a system designer to find out the best performance of a system, and

then choose among the performance of the system with multiple communication strategies

of varying goals and select the one that has the best fit to the system's needs.
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7.3 Limitations And Future Work

There are number of limitations that this work has been subject to. This section lists these lim-

itations, explains their impact on our findings, and provides suggestions on how they could be

overcome in future research.

1. Both multi-agent case studies, considered in this research, have static environment, although

real-world environments are dynamic. The work presented in this dissertation is considered

a proof of concept, in which we try to verify the usefulness and feasibility of learning goal-

driven communication in Multi-Agent systems. Therefore, similar to other research of this

kind, we test our hypothesis on a simple case, in preparation of moving to more complex

scenarios, if successful. In future research, we would like to expand this research to be able

to apply it on dynamic environments.

2. In this work, recipients of value updates of an information instance are chosen only based

on their distance from the sender. In the future, we plan to incorporate other criteria such as

agents in a specific range, or based on their location.

There are several future directions of research to either improve the proposed approach or to further

enhance its evaluation:

1. The goal-driven communication strategy can be enhanced to include not only what, when,

and to whom agents communicate, but also how agents communicate, such as by a message

board, pheromone, or other means.

2. Future work includes applying the approach to different application domains, with more

groups of agents and different metrics, such as work progress, quality of solution, and

agents' idle time.
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3. Utilizing Multi-Objective Genetic Algorithm enables evolving the Pareto front, hence the

the system designer may decide which the best communication strategy is.

4. Rather than evolving a single goal-driven strategy, this work can be extended to evolve a

separate strategy for each agent.

5. Future work can include evolving strategies for each sub-task that agents perform, and allow

them to switch between strategies according to the task that they are currently performing.
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