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Cosmic ray propagation is diffusive because of pitch angle scattering by waves. We demonstrate

that if the high-amplitude magnetohydrodynamic turbulence with ~B=hBi � 1 is present on top of the

mean field gradient, the diffusion becomes asymmetric. As an example, we consider the vertical

transport of cosmic rays in our Galaxy propagating away from a point-like source. We solve this dif-

fusion problem analytically using a one-dimensional Markov chain analysis. We obtained that the

cosmic ray density markedly differs from the standard diffusion prediction and has a sizable effect

on their distribution throughout the galaxy. The equation for the continuous limit is also derived,

which shows limitations of the convection-diffusion equation. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4928942]

I. INTRODUCTION

Propagation of charged particles whose Larmor radii, rL,

are much smaller than the field inhomogeneities is ballistic

along the field lines, neglecting drifts. When small-scale tur-

bulence is also present, it can induce pitch-angle diffusion,

so the parallel propagation becomes diffusive, and the par-

ticles can also jump across fields lines through a distance

�rL. It is this type of propagation of low energy cosmic rays

(CR) through the Galaxy that is believed to occur. Indeed,

the characteristic field correlation scale, k, of the galactic

magnetic field is of the order of a few parsecs.1,2 Hence,

rL � k for the CR below the knee, E � PeV, so they nearly

follow field lines in a diffusive manner. The small-scale

Alfvenic turbulence responsible for the pitch-angle diffusion

is believed to be self-generated by the streaming cosmic

rays.3

The presence of strong magnetohydrodynamic (MHD)

turbulence in the interstellar medium (ISM)1,2 also results in

chaotic distribution of the filed lines in the galaxy. Such a

chaotic field line topology leads to an additional, very effi-

cient three-dimensional (3D) diffusion of CR throughout the

entire ISM.4,5 Moreover, the MHD (likely Alfvenic) turbu-

lence in the ISM is known to be of high amplitude at the

outer scale, that is, ~B=hBi� 1. Such high-amplitude mag-

netic field fluctuations affect diffusion via mirroring and

transient trapping effects as well.5–7 In addition, trapping in

MHD turbulence is intermittent and transient because large-

amplitude, quasi-coherent Alfv�enic wave-forms (“magnetic

traps” or “magnetic bottles”) are not static but exist for a cer-

tain life-time—the Alfvenic time.

Finally, the mean field in the Milky Way (and all other

galaxies too) is non-uniform. There is a net gradient of B to-

ward the galactic mid-plane and the center of the galaxy.

The exponential scale-height, H, of the galactic disk region

dominated by magnetic fields is about a kiloparsec.2

Interestingly, particle diffusion with magnetic trapping in

the presence of the net field gradient has, to our knowledge,

never been addressed before, except for our earlier paper,

where we argued for such a possibility.8 In this paper, we

demonstrate that the mean field gradient modifies diffusion

drastically, so that it becomes asymmetric in which transi-

tion probabilities from a current particle’s position onto

neighboring ones are unequal. We stress that asymmetric

diffusion is not to be confused with the standard anisotropic

diffusion, in which the probabilities are equal but the diffu-

sion coefficient can be inhomogeneous and anisotropic, in

general.

II. TRANSPORT IN A “MULTIPLE-MIRROR MACHINE”

Here, we first discuss the effect of magnetic trapping on

the transport of particles using the example of a “multiple-

mirror machine” illustrated in Fig. 1. This model serves as a

good toy model of statistically isotropic high-amplitude

MHD turbulence in the ISM. Let us assume that the machine

consists of a chain of N � 1 identical magnetic traps, each

of length k, the low-field strength is B0, and the mirror field

is Bm > B0; hence, the mirror ratio is R ¼ Bm=B0. Efficient

confinement requires that rL � k, so we assume it is satis-

fied. The angular size of the loss cones, h, is sin2 h ¼ 1=R.

Next, we assume that there is pitch-angle diffusion of

particles, so they can be trapped and de-trapped in the mag-

netic bottles while they propagate from one trap to another.

The most efficient regime is, of course, when the mean free

path, lpa, due to the pitch angle diffusion (i.e., the length

over which the pitch angle changes appreciably, by about

p=2) is comparable to k. If otherwise lpa � k, then the sys-

tem is highly collisional, so the effect of trapping is sup-

pressed. Alternatively, if lpa � k, the particles can move

through several traps in one ballistic run, before they become

trapped again. This effectively increases the trap size and

diminished the effect of trapping too. For the sake of argu-

ment, we assume that the rate of pitch-angle diffusion is opti-

mal: lpa ’ k. For cosmic rays in the galaxy, the pitch-angle

diffusion coefficient is energy dependent, so does the above

relation. Here, we also introduce the effective collision time-
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scale s � lpa=vth, where vth � c is the thermal speed being of

the order of the speed of light for CR, of course.

Transport in such multi-mirror machines has first been

studied elsewhere.9 Obviously, such transport is diffusive:

upon de-trapping from ith trap, a particle will randomly go to-

ward ðiþ 1Þ th or ði� 1Þ th one with 50% chance. Next, we

note that transport is the flux of streaming particles, i.e., the

particles in the loss cones. Their fraction is about �1=R,

therefore the number of streaming particles is nstream � n0=R,

where n0 is the total particle number. The particle flux is

�nstreamvth � n0vth=R, that is, the effective plasma drift speed

through the traps is v � vth=R. Finally, the effective diffusion

coefficient through the traps is suppressed by a factor of 1=R2,

namely,

Dtraps � v2s � v2
ths
R2
� D

R2
; (1)

where D � v2
ths is the collisional diffusion coefficient in the

absence of magnetic traps. We again mention that here we

considered the most optimal case of lpa ’ k, which can be

written as k�vths=R� L, where L is the size of the whole

system.

Using this result for CR propagation, we conclude that

high-amplitude MHD turbulence present in the ISM sup-

presses their diffusion coefficient by a factor of the order of

R2 � hBi þ ~B

hBi

 !2

; (2)

that is, by about an order of magnitude if ~B=hBi � 2 for

example.

III. ASYMMETRIC DIFFUSION

Now, we turn to the case with non-vanishing mean field

gradient. For this, we modify the previous multi-mirror

machine toy model by imposing a long-scale variation of the

global field. The magnetic traps become asymmetric, as

shown in Fig. 2. This is the simplest, yet much more realistic

one-dimensional model of the ISM, in which the global field

strength has a gradient toward the galactic plane (i.e., to the

left, in Fig. 2). The characteristic gradient scale is H � 1:5
kpc, which is the observed galactic magnetic scale-height.

The trap sizes are of the order of the outer scale of MHD tur-

bulence. They vary across the Galaxy but typically of the

order of k � 1� 10 pc.1

The most important difference with the previous model

is the slight asymmetry of the mirrors of individual traps,

which leads to the substantial difference in the particle distri-

bution function, see Fig. 3. An asymmetric magnetic trap has

mirror fields B1 > B2 � B0, where B0 is the field at its cen-

ter. Correspondingly, the loss cones differ too, h2 > h1. The

loss cones, shown in green, correspond to the streaming pop-

ulation of particles. The trapped population (shown in blue)

is, in contrast, symmetric. Finally, the red population is the

particles moving to the left. They will be reflected from the

left mirror and, in a half of the bounce time, will leak out

from the trap through the weaker right mirror. White arrows

illustrate pitch angle diffusion.

Obviously, the particle populations escaping through

both ends are not equal and proportional to the volumes of

the spherical cones with the opening angles, h1;2, namely,

FIG. 2. The cartoon representing magnetic bottles in the presence of the

mean field gradient. This is also a simplified one-dimensional model of the

Galaxy. Here, the small waves in the trap centers stand for the low-

amplitude Alfenic turbulence responsible for pitch-angle scattering of cos-

mic rays. The trap size, k, is the effective correlation length on the outer

scale of Alfvenic turbulence in the Galaxy.

FIG. 3. The particle distribution function in a center of an asymmetric mag-

netic trap with B0 � B2 < B1, where B0 is the field at its center. Green

wedges along vk are the loss-cones with the corresponding opening angles

H1 < H2, the blue wedges are the regions of trapperd particles, red wedges at

vk < 0 are the “semi-trapped” particles representing the “leaking out” popula-

tion—they are reflected from the stronger field region on the left and then leak

our from the trap through the right end. White arrows represent the effect of

the pitch angle diffusion which traps and de-traps particles inside the trap.

FIG. 1. A set of N equivalent symmetric magnetic traps or “magnetic

bottles.” The minimum of the magentic field, B0, is in the center, the maxi-

mum field, Bm, is at the magnetic mirrors on both ends of the bottle.

091504-2 M. V. Medvedev and V. V. Medvedev Phys. Plasmas 22, 091504 (2015)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  129.237.46.8 On: Wed, 07 Dec

2016 16:00:29



X1 ¼
2p
3

� �
1� cos h1ð Þ ¼ 1� DB1

B1

� �1=2

; (3)

X2 ¼
2p
3

� �
1� cos h2ð Þ þ cos h1 � cos h2ð Þ½ �

¼ 1þ DB1

B1

� �1=2

� 2
DB2

B2

� �1=2

; (4)

where DB1 ¼ B1 � B0 and DB2 ¼ B2 � B0 and we used that

cos h ¼ ð1� sin2 hÞ1=2 ¼ ð1� B0=BÞ1=2 ¼ ðDB=BÞ1=2
.

To proceed further, we introduce a mathematical model

of a one-dimensional Markov chain.10,11 It is shown in

Fig. 4. Here, every magnetic trap is represented by a site,

where a particle stays for some collision time, s, before it de-

traps and rapidly jumps left or right into a neighboring site.

As for any diffusive process on a Markov chain, we assume

for simplicity that such de-trapping/re-trapping events occur

at regular intervals, s. The number of sites is N ¼ L=k with L
being the system size. In order to account for the leakage

from the system, we have to add two “absorbers” at both

ends of the chain—the �-states, often referred to as the

“limbo”-states. Finally, we have to have a source of par-

ticles. For example, and without loss of generality, we allow

for the in-flux of particles, Jin, through the right boundary.

The left and right transition probabilities at each time

step are r and g, respectively. Standard diffusion is known to

have equal probabilities to go left or right—this is the classi-

cal mathematical problem, the “drunken sailor problem.” In

asymmetric diffusion, in contrast, the probabilities of the for-

ward and backward transitions are not equal. In general,

these probabilities may be different for different sites. Here,

we assume that they are constant throughout the chain.

The values of r and g are the fractions of the left- and

right-streaming particles, respectively, that is, they are

r ¼ X1=ðX1 þ X2Þ and g ¼ X2=ðX1 þ X2Þ. It is convenient

to cast them into the form

r ¼ 1=2� �; g ¼ 1=2þ �; (5)

where

� ¼ dB

4B2

B0

B2 DB2ð Þ1=2
1� DB2

B2

� �1=2
" #

(6)

and dB ¼ B1 � B2. Since the mean field varies only slightly

on the scale of a single trap, we can estimate that

dB � kjrBj � ðk=LÞB0: (7)

The factor k=L can be interpreted as the ratio of the turbu-

lence outer scale to the characteristic mean field gradient

scale. We can also estimate that DB2 ¼ ðB2 � B0Þ � ~B and

B1=B0 ’ B2=B0 � R, so that

� � 1

8R2

k
L
: (8)

Note the appearance of the 1=R2 suppression factor akin the

one obtained in Sec. II.

The dynamics of a Markov chain is determined by the

“continuity equations” written for each site. They are

dtn1 ¼ �ðr1 þ g1Þn1 þ r2n2; (9)

dtn2 ¼ �ðr2 þ g2Þn2 þ g1n1 þ r3n3;

… (10)

dtnj ¼ �ðrj þ gjÞnj þ gj�1nj�1 þ rjþ1njþ1;

… (11)

dtnN ¼ �ðrN þ gNÞnN þ gN�1nN�1 þ Jin; (12)

where dt stands for the time derivative and nj is the probabil-

ity of a particle to be at the jth site. Note that the first and

last equations describe the left and right boundaries of our

system. For an ensemble of CR particles, nj is also the rela-

tive number density of particles in the jth trap. Hereafter, we

FIG. 4. The Markov chain representing

the toy model of one-dimensional

asymmetric diffusion. The transition

probabilities to the left, r, and to the

right, g, are constants but generally

r 6¼ g. The in-flux of particles, Jin, into

the system occurs through the right

boundary. Each cell represents a mag-

netic trap; there separation is of the

order of the cell size, k, which plays a

role of the effective mean free path.
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assume the steady state, for simplicity, so that all time deriv-

atives vanish, dtnj ¼ 0.

We solve the system of N coupled equations (9)–(12) by

calculating the generating function10,11 defined as follows:

FðnÞ �
XN

j¼0

njnj; (13)

where n is a dummy variable having no physical meaning

whatsoever. Then, nk at some kth site is simply the kth deriv-

ative of FðnÞ evaluated at n¼ 0, namely,

nk ¼
1

k!

dkF nð Þ
dnk

����
n¼0

: (14)

The generating function is obtained, in turn, from the

Markov chain equations as follows. One multiplies, the first

equation by the first power of n, the second equation by n2,

and so on until the last equation being multiplied by nN.

Then, we sum up all the resulting equations. Upon straight-

forward manipulations to isolate the combinations
PN

j¼0 njnj,

we obtain

F nð Þ ¼ n nNJin=r � nNþ1anN � n1

� �
1þ að Þn� 1� an2

� � ; (15)

where we introduced the asymmetry parameter a ¼ g=r.

Using Eq. (14), we obtain

nk ¼ 1þ aþ a2 þ 	 	 	 þ ak�1ð Þ n1 ¼
ak � 1

a� 1
n1 (16)

valid for 1 
 k 
 N. Next, we apply the right boundary con-

dition, namely, that the ðN þ 1Þth site is a limbo state, so

nNþ1 is identically zero. Thus,

nNþ1 ¼ �Jin þ
aNþ1 � 1

a� 1
n1 � 0 (17)

defines the yet unknown n1.

The final result—the analytical solution of the set of

Markov chain equations (9)–(12)—is

nk ¼ Jin
ak � 1

aNþ1 � 1

� �
; 1 
 k 
 N: (18)

This result is presented in Fig. 5, which shows the particle

densities as a function of coordinate (to be precise, of the

trap number, k). The salient feature of asymmetric diffusion

is the non-linear particle density gradient. Depending on the

value of a, one sees exponential suppression/enhancement of

the density. The linear gradient is recovered in the case of

symmetric, i.e., standard, diffusion for which a¼ 1.

IV. GALACTIC EXAMPLE

We now give an illustrative example pertinent to

cosmic rays: the asymmetric CR diffusion in the direction or-

thogonal to the galactic plane. Fig. 6 illustrates the Markov

chain for this system. The Galaxy is seen edge-on and the ga-

lactic plane is vertical and located between sites N=2 and

N=2þ 1. The source of CR is a supernova located inside the

galaxy at some site with the number kNS ¼ N=2þ m, which

is mth site to the right from the plane. The CR particle flux,

JCR, is ejected in both directions. As we have mentioned ear-

lier, the size of the system is set by the exponential scale

height, L ¼ 2H with H � 1:5 kpc and the size of magnetic

traps being comparable to the outer scale of the ISM turbu-

lence, k � 1� 10 pc. Thus, we estimate the chain length to

be N � L=k � 1000.

The magnetic field is inhomogeneous: it decreases away

from the galactic plane toward both ends. Therefore, r and g
probabilities differ on the left (–) and on the right (þ) from

the mid-plane. By symmetry, gþ ¼ r� and g� ¼ rþ.

This Markov chain can be solved analytically in the

same way outlined in Sec. III. Alternatively, one can use the

generic solution, Eq. (18), to piece-wise construct the global

solution by matching the solutions with a < 1 and a > 1 at

the mid-plane and the SN location. The resulting equation is

cumbersome but not instructive, so we just plot the solution

in Fig. 7. This solution has N¼ 1000, kSN¼ 300 and several

a ¼ 16� with � ¼ 0; 10�5; 10�3; 10�2. Which one does cor-

respond to our Galaxy? Assuming that the asymmetric

diffusion-induced anisotropy should not exceed the observed

CR anisotropy, which is about 0.1%, we estimate � to be

�� 10�3. This corresponds to the blue curve, which shows

about 50% difference compared to the standard diffusion

picture.

V. COMMENT ON A CONTINUUM LIMIT

It is instructive to determine how a finite-step-size diffu-

sion on a Markov chain can be extrapolated to a continuum

limit. To do this, we consider the generic Markov chain

equation

dnj

dt
¼ nj�1gj�1 þ njþ1rjþ1 � nj gj þ rjð Þ (19)

FIG. 5. The solution of the one-dimensional Markov chain model with con-

stant coefficients g and r. Asymmetric diffusion corresponding to the asym-

metry parameter a � g=r 6¼ 1 is shown by red curves. For comparison, the

linear density gradiant predicted by the standard diffusion, a¼ 1, is shown

with the blue curve. Here, we took N¼ 100 and normalized al the curves to

the same value at k¼ 50 to ease comparison.
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and treat j as a continuous variable—a dimensionless dis-

tance, x, measured in the units of a diffusion mean-free-path,

that is, k. Time is also dimensionless here because it is meas-

ured in the units of the collisional time-step, s. As long as

j� 1, one can Taylor expand in small Dj ¼ 1� j and sub-

stitute j with x, for convenience. Upon doing so, the transi-

tion term from the ðj� 1Þth site to the jth results in the

following substitution:

nj�1gj�1 ! n xð Þg xð Þ �
d ngð Þ

dx
þ 1

2!

d2 ngð Þ
dx2

� 1

3!

d3 ngð Þ
dx3

þ 	 	 	 :

(20)

Similarly, we treat the ðjþ 1Þth site.

Eq. (19) readily becomes, assuming r and g being

constants,

@n

@t
¼ r � gð Þ

@n

@x
þ r þ gð Þ

2

@2n

@x2
þ

r � gð Þ
3!

@3n

@x3
þ 	 	 	 : (21)

The first two terms here are the constituents of the famous

convection-diffusion equation

@n

@t
¼ v

@n

@x
þ D

@2n

@x2
: (22)

Thus, the convection-diffusion equation is the expansion of

the Markov chain equation up to the second order. Hence, it

holds only when the higher order derivative terms are small

enough. The drift (flow) velocity and the diffusion coeffi-

cient are identified as follows:

v ¼ r � g; D ¼ ðr þ gÞ=2: (23)

We also note that the density profile, Eq. (18), becomes in

the continuum limit and large x

nðxÞ / ex ln a; (24)

if a > 1, that is, exponential, and

nðxÞ / 1� ex ln a; (25)

if a < 1.

VI. CONCLUSIONS

We demonstrated that asymmetric diffusion of particles

can occur in high-amplitude MHD turbulence with non-zero

mean magnetic field gradient. The predicted density profiles

are markedly different from the standard diffusion paradigm.

We argued that accounting for asymmetric diffusion of CR

in our galaxy can change their predicted density distribution

by a factor of two. We also indicated that the familiar

convection-diffusion equation of particle transport is just the

first two terms of expansion of the more generic Markov

chain equations.

FIG. 6. The Markov chain representing

CR diffusion in the Galaxy. The

Galaxy is seen edge-on with the galac-

tic plane being vertical. The galactic

north is to the right. The system size is

set by the galactic magnetic field scale-

height, so the strongest field is at the

mid-plane. Thus, the g and r probabil-

ities are unequal on either side and, by

symmetry, gþ ¼ r� and g� ¼ rþ. The

cosmic rays are injected by a super-

nova (SN) located at some mth site to

the right, i.e., at kSN ¼ N=2þ m site.

FIG. 7. The solution of the one-dimensional Markov chain model of our

Galaxy with N¼ 2000, and the cosmic ray source located 300 cells away from

the Galactic mid-plane toward the galactic north (i.e., to the right), that is, at

kSN¼ 1300. The standard diffusion prediction (a¼ 1) is shown with the

dashed line. The orange, blue, and magenta curves represent the cosmic ray

densities for asymmetric diffusion with a ¼ 16� with � ¼ 10�5; 10�3; 10�2,

respectively.
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We stress that the asymmetric diffusion discussed here

should not be mixed with anisotropic diffusion. The former

deals with different probabilities of a particle to jump left or

right, whereas the standard (even anisotropic) diffusion has

those probabilities equal, though they may be position- and

orientation-depend.

Second important point to stress is that asymmetric dif-

fusion results in a non-zero particle flux through the system,

even though the plasma and the magnetic fields are com-

pletely static. This is in contrast with a conventional lore that

the global (“bulk”) motion of CR in the galaxy may only be

associated with global motions of the ISM, i.e., winds. This

may particularly be important for the interpretation of the

particle transport to/through the recently observed “Fermi

bubbles.”
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