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Abstract. We study the stability and instability of periodic traveling waves for Korteweg–de
Vries-type equations with fractional dispersion and related, nonlinear dispersive equations. We show
that a local constrained minimizer for a suitable variational problem is nonlinearly stable to period
preserving perturbations, provided that the associated linearized operator enjoys a Jordan block
structure. We then discuss when the linearized equation admits solutions exponentially growing in
time.
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1. Introduction. We study the stability and instability of periodic traveling
waves for a class of nonlinear dispersive equations, in particular, equations of Korteweg–
de Vries (KdV) type

(1.1) ut −Mux + f(u)x = 0.

Here, t ∈ R denotes the temporal variable and x ∈ R is the spatial variable in the
predominant direction of wave propagation; u = u(x, t) is real valued, representing
the wave profile or a velocity. Throughout we express partial differentiation either by
a subscript or using the symbol ∂. Moreover M is a Fourier multiplier, defined as
M̂u(ξ) = m(ξ)û(ξ) and characterizing dispersion in the linear limit, while f is the
nonlinearity. In many examples of interest, f obeys a power law.

Perhaps the best known among equations of the form (1.1) is the KdV equation

ut + uxxx + (u2)x = 0

itself, which was put forward in [13] and [33] to model the unidirectional propagation
of surface water waves with small amplitudes and long wavelengths in a channel;
it has since found relevance in other situations such as Fermi–Pasta–Ulam lattices.
Observe, however, that (1.1) is nonlocal unless the dispersion symbolm is a polynomial
of iξ; examples include the Benjamin–Ono equation (see [7, 38], for instance) and the
intermediate long wave equation (see [29], for instance), for which m(ξ) = |ξ| and
ξ coth ξ − 1, respectively, while f(u) = u2. Another example, proposed by Whitham
[44] to argue for breaking of water waves, corresponds to m(ξ) =

√
(tanh ξ)/ξ and

f(u) = u2. Incidentally the quadratic nonlinearity is characteristic of many wave
phenomena.
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STABILITY OF PERIODIC WAVES 3529

A traveling wave solution of (1.1) takes the form u(x, t) = u(x− ct), where c ∈ R

and u satisfies by quadrature that

Mu− f(u) + cu+ a = 0

for some a ∈ R. In other words, it steadily propagates at a constant speed without
changing the configuration. Periodic traveling waves of the KdV equation are known
in closed form, namely, cnoidal waves; see [33], for instance. Moreover Benjamin in
[7] calculated periodic traveling waves of the Benjamin–Ono equation. For a broad
range of dispersion symbols and nonlinearities, a plethora of periodic traveling waves
of (1.1) may be attained from variational arguments. To illustrate, we shall discuss
in section 2 a minimization problem for a family of KdV equations with fractional
dispersion.

Benjamin in his seminal work [8] (see also [10]) explained that solitary waves of
the KdV equation are nonlinearly stable. By a solitary wave, incidentally, we mean a
traveling wave solution which vanishes asymptotically. Benjamin’s proof hinges upon
the KdV “soliton” arising as a constrained minimizer for a suitable variational problem
and spectral information of the associated linearized operator. Later it developed into
a powerful stability theory in [23], for instance, for a general class of Hamiltonian
systems and led to numerous applications. In the case of m(ξ) = |ξ|α, α � 1, and
f(u) = up+1, p � 1, in (1.1), in particular, solitary waves were shown in [11] (see also
[41, 43]) to arise as energy minimizers subject to the conservation of the momentum
and to be nonlinearly stable if p < 2α whereas they are constrained energy saddles
and nonlinearly unstable if p > 2α.

We shall take matters further in section 4 and establish that a periodic traveling
wave of a KdV equation with fractional dispersion is nonlinearly stable with respect to
period preserving perturbations, provided that it locally minimizes the energy subject
to conservation of the momentum and the mass and that the associated linearized
operator enjoys a Jordan block structure. Moreover we relate the latter condition
with the momentum and the mass as functions of Lagrange multipliers arising in
the traveling wave equation, generalizing that in [11], for instance, in the solitary
wave setting. In the case of generalized KdV equations, i.e., m(ξ) = ξ2 in (1.1), the
nonlinear stability of a periodic traveling wave to the same period perturbations was
determined in [27], for instance, through spectral conditions, which were expressed
in terms of eigenvalues of the associated monodromy map (or the periodic Evans
function); see also [3, 5, 15, 20, 21]. Confronted with nonlocal operators, however,
spectral problems may be out of reach by Evans function techniques. Instead we make
an effort to replace ODE-based arguments by functional analytic ones. The program
was recently set out in [14].

As a key intermediate step we shall demonstrate in section 3 that the linearized
operator associated with the traveling wave equation is nondegenerate at a periodic,
local constrained minimizer for a KdV equation with fractional dispersion. That is to
say, its kernel is spanned merely by spatial translations. The nondegeneracy of the
linearization proves a spectral condition, which plays a central role in the stability of
traveling waves (see [43, 35] among others) and the blowup (see [32], for instance) for
the related, time evolution equation, and therefore it is of independent interest. In the
case of generalized KdV equations, the nondegeneracy at a periodic traveling wave was
identified in [27], for instance, with the wave amplitude not being a critical point of
the period. Furthermore it was verified in [34], among others, at solitary waves. These
proofs utilize shooting arguments and the Sturm–Liouville theory for ODEs, which

D
ow

nl
oa

de
d 

12
/0

5/
16

 to
 1

29
.2

37
.4

6.
8.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3530 V. M. HUR AND M. A. JOHNSON

may not be applicable to nonlocal operators. Nevertheless, Frank and Lenzmann [22]
obtained the property at solitary waves for a family of nonlinear nonlocal equations,
which we follow. The idea lies in finding a suitable substitute for the Sturm–Liouville
theory to count the number of sign changes in eigenfunctions for a linear operator
with a fractional Laplacian.

The present development may readily be adapted to other, nonlinear dispersive
equations. We shall illustrate this in section 5 by discussing equations of regularized
long wave type. We shall remark in section 6 about Lin’s approach [35] to linear
instability.

2. Existence of local constrained minimizers. We shall address the stability
and instability mainly for the KdV equation with fractional dispersion

(2.1) ut − Λαux + (u2)x = 0,

where 0 < α � 2 and Λ =
√−∂2

x is defined via the Fourier transform as Λ̂u(ξ) =
|ξ|û(ξ).

In the case of α = 2, notably, (2.1) recovers the KdV equation, and in the case
of α = 1 it corresponds to the Benjamin–Ono equation. In the case1 of α = −1/2,
furthermore, (2.1) was argued in [24] to have relevances to surface water waves in
two dimensions in the infinite depths. Observe that (2.1) is nonlocal for 0 < α < 2.
Incidentally fractional powers of the Laplacian occur in numerous applications, such
as dislocation dynamics in crystals (see [16], for instance) and financial mathematics
(see [19], for instance).

The present treatment extends mutatis mutandis to general power-law nonlinear-
ities; see Remark 2. We focus on the quadratic nonlinearity, however, to simplify the
exposition.

Throughout we’ll work in the L2-based Sobolev spaces over the periodic interval
[0, T ], where T > 0 is fixed although at times it is treated as a free parameter. For
0 < α < 2 let

‖u‖2
H

α/2
per ([0,T ])

=

∫ T

0

(u2 + |Λα/2u|2) dx.

We employ the standard notation 〈· , ·〉 for the L2
per([0, T ]) inner product.

Notice that (2.1) may be written in the Hamiltonian form

(2.2) ut = JδH(u),

where J = ∂x is the symplectic form,

(2.3) H(u) =

∫ T

0

(
1

2
|Λα/2u|2 − 1

3
u3

)
dx =: K(u) + U(u)

is the Hamiltonian, and δ denotes variational differentiation; K and U correspond
to the kinetic and potential energies, respectively. Notice that (2.1) possesses, in
addition to H , two conserved quantities

P (u) =

∫ T

0

1

2
u2 dx(2.4)

1Note that Λα∂x is not singular for α � −1.
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STABILITY OF PERIODIC WAVES 3531

and

M(u) =

∫ T

0

u dx,(2.5)

which correspond to the momentum and the mass, respectively. Conservation of P
implies that (2.1) is invariant under spatial translations thanks to Noether’s theorem
while M is a Casimir invariant of the flow induced by (2.1) and is associated with the
kernel of the symplectic form being spanned by a constant. Notice that

(2.6) δP (u) = u and δM(u) = 1.

Moreover (2.1) remains invariant under

(2.7) u(x, t) �→ λαu(λ(x − x0), λ
α+1t)

for any λ > 0 for any x0 ∈ R.
Remark 1 (well-posedness). In the range α � −1, one may work out the local

in time well-posedness for (2.1) in H
3/2+
per ([0, T ]), combining an a priori bound and a

compactness argument. Without recourse to dispersive effects, the proof is identical
to that for the inviscid Burgers equation, i.e., α = 0. We omit the details.

With the help of techniques in nonlinear dispersive equations and specific proper-
ties of the equation, the global in time well-posedness for (2.1) may be established in

H
−1/2+
per ([0, T ]) in the case of α = 2, namely, the KdV equation (see [18], for instance),

and in H0+
per([0, T ]) in the case of α = 1, the Benjamin–Ono equation (see [37], for

instance). For noninteger values of α, however, the existence matter for (2.1) seems
not adequately understood in spaces of low regularity. The global well-posedness in
Hα/2(R) was recently settled in [32] for (2.1) in the case of 1 < α < 2 and up+1 in
place of u2, p � 2α, but the proof seems to break down in the periodic functions
setting.

In what follows we shall work in a suitable subspace, say, X of H
α/2
per ([0, T ]), where

the initial value problem associated with (2.1) is well-posed for some interval of time
and H,P,M : X → R are smooth.

A periodic traveling wave of (2.1) takes the form u(x, t) = u(x− ct− x0), where
c ∈ R represents the wave speed, x0 ∈ R is the spatial translate, and u is T -periodic,
satisfying by quadrature that

(2.8) Λαu− u2 + cu+ a = 0

for some a ∈ R (in the sense of distributions). Equivalently, it arises as a critical point
of

(2.9) E(u; c, a) = H(u) + cP (u) + aM(u).

Indeed

(2.10) δE(u; c, a) = 0

agrees with (2.8).
Henceforth we shall write a periodic traveling wave of (2.1) as u = u(· ; c, a). In

a more comprehensive description, it is specified by four parameters c, a and T , x0.
Note, however, that T > 0 is arbitrary and fixed. Corresponding to translational
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3532 V. M. HUR AND M. A. JOHNSON

invariance (see (2.7)), moreover, x0 is inconsequential in the present development.
Hence we may mod it out.

In the present notation, a solitary wave whose profile vanishes asymptotically
corresponds, formally, to a = 0 and T = +∞.

In the case of α = 2, periodic traveling waves of (2.1), namely, the KdV equation,
are well known in closed form, involving Jacobi elliptic functions; see [33], for instance.
In the case of α = 1, moreover, Benjamin [7] exploited the Poisson summation formula
and explicitly calculated periodic traveling waves of (2.1). In general, the existence
of periodic traveling waves of (2.1) follows from variational arguments, although one
may lose an explicit form of the solution. In the energy subcritical case, in particular,
a family of periodic traveling waves of (2.1) locally minimizes the Hamiltonian subject
to conservation of the momentum and the mass, generalizing “ground states” in the
solitary wave setting.

Proposition 2.1 (existence, symmetry, and regularity). Let 1/3 < α � 2. A

local minimizer u for H subject to that P and M are conserved exists in H
α/2
per ([0, T ])

for each 0 < T < ∞ and it satisfies (2.8) for some c 	= 0 and a ∈ R. It depends upon
c and a in the C1 manner.

Moreover u = u(· ; c, a) may be chosen to be even and strictly decreasing over the
interval [0, T/2], and u ∈ H∞

per([0, T ]).
Below we develop integral identities which a periodic solution of (2.8), or equiv-

alently (2.10), a priori satisfies and which will be useful in various proofs.

Lemma 2.2 (integral identities). If u ∈ H
α/2
per ([0, T ]) ∩ L3

per([0, T ]) satisfies (2.8)
or, equivalently, (2.10), then

2P − cM − aT = 0,(2.11)

2K + 3U + 2cP + aM = 0.(2.12)

Proof. Integrating (2.8) or, equivalently, (2.10), over the periodic interval [0, T ]
leads to (2.11). Multiplying it by u and integrating over [0, T ] lead to (2.12).

Proof of Proposition 2.1. We claim that it suffices to take a = 0 and c = 1.
Suppose on the contrary that a 	= 0. We then assume without loss of generality
that c and M are of opposite sign and a > 0. For, in case c and M are of the
same sign, since (2.1) is time reversible, we make the change of variables t �→ −t in
(2.1) to reverse the sign of c in (2.8) while leaving other components of the equation
invariant. Once we accomplish that c and M are of opposite sign, a � 0 must follow
since P � 0 and T > 0 by definition. We shall then devise the change of variables
u �→ u+ 1

2 (
√
c2 + 4a− c) and rewrite (2.8) as

(2.13) Λαu− u2 + γu = 0, where γ =
√
c2 + 4a > 0.

Therefore it suffices to take a = 0 in (2.8). This is reminiscent of (2.1) enjoying
Galilean invariance under u(x, t) �→ u(x, t)+u0 for any u0 ∈ R. By virtue of scaling in-
variance (see (2.7)), we shall further devise the change of variables u(x) �→ 1/γu(x/γα)
and rewrite (2.13) as

(2.14) Λαu− u2 + u = 0.

To recapitulate, it suffices to take a = 0 and c = 1 in (2.8) and seek a local minimizer
for H+P . (But we shall not a priori assume that a = 0 or c = 1 in the stability proof
in section 4.)

D
ow

nl
oa

de
d 

12
/0

5/
16

 to
 1

29
.2

37
.4

6.
8.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STABILITY OF PERIODIC WAVES 3533

Since H
α/2
per ([0, T ]) in the range α > 1/3 is compactly embedded in L3

per([0, T ]) by
a Sobolev inequality, it follows from calculus of variations that for each parameter2

(abusing notation) U < 0 there exists u ∈ H
α/2
per ([0, T ]) such that

(2.15) K(u) + P (u) = inf
{
K(φ) + P (φ) : φ ∈ Hα/2

per ([0, T ]), U(φ) = U
}
.

The proof is rudimentary. We merely pause to remark that K(φ) + P (φ) amounts to

‖φ‖2
H

α/2
per ([0,T ])

and the constraint is compact in H
α/2
per ([0, T ]). Moreover, u satisfies

Λαu+ u = θu2

for some θ 	= 0 in the sense of distributions. By a scaling argument, we may choose U

to ensure that θ = 1. Consequently (abusing notation), u ∈ H
α/2
per ([0, T ]) attains the

constrained minimization problem (2.15) and satisfies (2.14). Note from (2.12) that
2K(u) + 3U(u) + 2P (u) = 0.

Furthermore we claim that

(2.16) E(u) = inf{E(φ) : φ ∈ Hα/2
per ([0, T ]), φ 	≡ 0, 2K(φ) + 3U(φ) + 2P (φ) = 0}.

Since

(2.17) E(φ) = H(φ) + P (φ) = K(φ) + U(φ) + P (φ) =
1

3
(K(φ) + P (φ)) = −1

2
U(φ)

and 2K(φ) + 2P (φ) = −3U(φ) > 0 whenever 2K(φ) + 3U(φ) + 2P (φ) = 0, φ 	≡ 0, it
suffices to show that

(2.18) U(u) = sup{U(φ) : φ ∈ Hα/2
per ([0, T ]), φ 	≡ 0, 2K(φ) + 3U(φ) + 2P (φ) = 0}.

Suppose that φ ∈ H
α/2
per ([0, T ]), φ 	≡ 0, and 2K(φ) + 3U(φ) + 2P (φ) = 0. We define

b =

(
U(u)

U(φ)

)1/3

,

and observe that (2.18) follows if b � 1 so that 0 � U(u) > U(φ). Indeed we infer
from (2.17) that

2K(bφ) + 3U(bφ) + 2P (bφ) = 2b2K(φ) + 3b3U(φ) + 2b2P (φ)

= 2b2(1 − b)(K(φ) + P (φ)).

Moreover, since U(bφ) = b3U(φ) = U(u) and since u attains the constrained mini-
mization problem (2.15), it follows that

K(u) + P (u) � K(bφ) + P (bφ).

Consequently

0 = 2K(u) + 3U(u) + 2P (u) � 2K(bφ) + 3U(bφ) + 2P (bφ)

= 2b2(1 − b)(K(φ) + P (φ)),

2Note from (2.12) that if u ∈ H
α/2
per ([0, T ]), α > 1/3, satisfies (2.14) then K(u) + P (u) > 0 and

U(u) < 0 unless u ≡ 0.
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3534 V. M. HUR AND M. A. JOHNSON

whence b � 1. This proves the claim. Since

〈δH(φ) + δP (φ), φ〉 = 2K(φ) + 3U(φ) + 2P (φ)

for all φ ∈ H
α/2
per ([0, T ]), furthermore, u solves the constrained minimization problem

(2.16) if and only if u minimizes H + P among its critical points. The existence
assertion therefore follows. Clearly, u depends upon c and a in the C1 manner.

To proceed, since the symmetric decreasing rearrangement of u does not increase∫ T

0
|Λα/2u|2 dx for 0 < α < 2 (see [39], for instance, for a proof in the solitary wave

setting) while leaving
∫ T

0
u3 dx invariant, it follows from the rearrangement argument

that a local minimizer for H subject to conservations of P and M must symmetrically
decrease away from a point of principal elevation. The symmetry and monotonicity
assertion then follows from translational invariance in (2.7). (Note that unlike in the
solitary waves setting, for which a = 0 and T = +∞, a periodic, local constrained
minimizer need not be positive everywhere.)

It remains to address the smoothness of a periodic solution of (2.8) or, equiva-
lently,

(2.19) u = (Λα + 1)−1u2

after reduction to a = 0, c = 1 and after inversion. The validity of (2.19) is to be

specified in the course of the proof. We claim that if u ∈ H
α/2
per ([0, T ]) satisfies (2.19)

then u ∈ L∞
per([0, T ]). In the case of α > 1 this follows immediately from a Sobolev

inequality, whereas in the case of 1/3 < α � 1 a proof based upon resolvent bounds
for (Λα + 1)−1 is found in [22, Lemma A.3], for instance, albeit in the solitary wave

setting. Indeed, the Fourier series 1̂
|n|α+1 lies in 
r(Z) for 0 < α < 1 for r > 1

1−α by the

Hausdorff–Young inequality, whence u ∈ L∞
per([0, T ]) after iterating (2.19) sufficiently

many times.

We then promote u ∈ H
α/2
per ([0, T ])∩L∞

per([0, T ]) toH
α
per([0, T ]) since the Plancherel

theorem leads to

‖Λαu‖L2 =

∥∥∥∥ Λα

Λα + 1
u2

∥∥∥∥
L2

=

∥∥∥∥ |ξ|α
|ξ|α + 1

û2

∥∥∥∥
L2

� ‖û2‖L2 = ‖u2‖L2 � ‖u‖L∞‖u‖L2 < ∞.

Furthermore the fractional product rule (see [17], for instance) leads to

‖Λ2αu‖L2 =

∥∥∥∥ Λ2α

Λα + 1
u2

∥∥∥∥
L2

� ‖Λαu2‖L2 � C‖u‖L∞‖Λαu‖L2 < ∞

for C > 0, a constant independent of u. After iterations, therefore, u ∈ H∞
per([0, T ])

follows.
Remark 2 (power-law nonlinearities). One may rerun the arguments in the proof

of Proposition 2.1 in the case of the general power-law nonlinearity

(2.20) ut − Λαux + (up+1)x = 0

and obtain a periodic traveling wave, where 0 < α � 2 and 0 < p < pmax is an integer
such that

(2.21) pmax :=

{
2α
1−α for α < 1,

+∞ for α � 1.
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STABILITY OF PERIODIC WAVES 3535

It locally minimizes in H
α/2
per ([0, T ]) the Hamiltonian∫ T

0

(
1

2
|Λα/2u|2 − 1

p+ 2
up+2

)
dx

subject to conservation of P and M , defined in (2.4) and (2.5), respectively. Note
that 0 < p < pmax, which is vacuous if α � 1, ensures that (2.20) is Hα/2-subcritical

and H
α/2
per ([0, T ]) ⊂ Lp+2

per ([0, T ]) compactly. In the case of p = 1, it is equivalent to
α > 1/3.

Remark 3 (periodic versus solitary waves). In the nonperiodic functions setting,
Weinstein [43] (see also [22]) proved that (2.8) in the range α > 1/3 admits a solitary
wave, for which a = 0 and T = +∞. In the case of α > 1/2 so that (2.8) is
L2-subcritical, the solitary wave further arises as an energy minimizer subject to
the conservation of the momentum. Periodic, local constrained minimizers for (2.8),
constructed in Proposition 2.1, are then expected to tend to the solitary wave as their
period increases to infinity. This in some sense generalizes the homoclinic limit in the
case of α = 2.

In the case of 1/3 < α < 1/2, on the other hand, local constrained minimizers
for (2.8) exist in the periodic wave setting, but they are unlikely to achieve a limiting
state with bounded energy (the Hα/2-norm) as the period increases to infinity.

In the L2-critical case, i.e., α = 1/2, periodic traveling waves with small energy
tend to the solitary wave as their period increases to infinity. Their stability is,
however, delicate and outside the scope of the present development. We refer the
reader to [32], for instance.

For a broad range of dispersion operators and nonlinearities, including α � −1
in (2.1), one is able to construct periodic traveling waves of (1.1) at least with small
amplitudes from perturbation arguments such as the Lyapunov–Schmidt reduction;
see [25], for instance. In the solitary wave setting, in stark contrast, Pohozaev iden-
tities techniques dictate that (2.8) (a = 0) in the range α � 1/3 does not admit any
nontrivial solutions in Hα/2(R) ∩ L3(R).

3. Nondegeneracy of the linearization. Throughout the section, let u(· ; c, a)
be a periodic traveling wave of (2.1), whose existence follows from Proposition 2.1. We
shall examine the L2

per([0, T ])-null spaces of the linearizations associated with (2.8)
as well as (2.1).

Proposition 3.1 (nondegeneracy). Let 1/3 < α � 2. If u(· ; c, a) ∈ H
α/2
per ([0, T ])

for some c 	= 0, a ∈ R, and for some T > 0 locally minimizes H, subject to P and M
being conserved, then the associated linearized operator

(3.1) δ2E(u; c, a) = Λα − 2u+ c

acting on L2
per([0, T ]) is nondegenerate. That is to say,

ker(δ2E(u; c, a)) = span{ux}.
The nondegeneracy of the linearization associated with the traveling wave equa-

tion is of paramount importance in the stability of traveling waves and the blowup
for the related, time evolution equation; see [43, 35, 32], among others. To prove the
property is far from being trivial, however. Indeed, one may cook up a polynomial
nonlinearity f , say, for which the kernel of −∂2

x − f ′(u) at a periodic traveling wave
u is two dimensional at isolated points.
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3536 V. M. HUR AND M. A. JOHNSON

In the case of generalized KdV equations, for which α = 2 in (2.1) but the
nonlinearity is arbitrary, the nondegeneracy of the linearization at a periodic traveling
wave was shown in [27], for instance, to be equivalent to the amplitude not being a
critical point of the period; the proof uses the Sturm–Liouville theory for ODEs.
Furthermore it was verified in [34], among others, at solitary waves in all dimensions.
Amick and Toland in [1] demonstrated the property in the case of α = 1 in (2.1),
namely, the Benjamin–Ono equation, in the periodic and solitary wave settings, by
relating via complex analysis techniques the nonlocal, traveling wave equation to
a fully nonlinear ODE; unfortunately, the arguments are specific to the equation.
Angulo Pava and Natali in [6] made an alternative proof based upon the theory
of totally positive operators, but it necessitates an explicit form of the solution. A
satisfactory understanding of the nondegeneracy of the linearization thus seems largely
missing for nonlocal equations. The main obstruction is that shooting arguments and
other ODE methods, which seem crucial in the arguments for local equations, may
not be applicable.

Nevertheless, Frank and Lenzmann in [22] recently showed the nondegeneracy
of the linearization at solitary waves for a family of nonlinear nonlocal equations
with fractional derivatives. Their idea is to find a suitable substitute for the Sturm–
Liouville theory to estimate the number of sign changes in eigenfunctions for a frac-
tional Laplacian with potential. Our proof of Proposition 3.1 follows along the same
line as the arguments in [22, section 3], but with appropriate modifications to accom-
modate the periodic nature of the problem.

Lemma 3.2 (oscillation of eigenfunctions). Under the hypothesis of Proposi-

tion 3.1, an eigenfunction in H
α/2
per ([0, T ])∩C0

per([0, T ]) corresponding to the nth eigen-
value of δ2E(u), n = 1, 2, 3, changes its sign at most 2(n− 1) times over the periodic
interval [0, T ].

We present the proof in Appendix A.
Remark 4 (oscillation of higher eigenfunctions). Lemma 3.2 holds for all n =

1, 2, 3, . . . . See [26], where the proof and applications will be discussed.
Below we gather some facts about δ2E(u).
Lemma 3.3 (properties of δ2E(u)). Under the hypothesis of Proposition 3.1, the

following hold:
(L1) ux ∈ ker(δ2E(u)) and it corresponds to the lowest eigenvalue of δ2E(u) re-

stricted to the sector of odd functions in L2
per([0, T ]);

(L2) 1 � n−(δ2E(u)) � 2, where n−(δ2E(u)) means the number of negative eigen-
values of δ2E(u) acting on L2

per([0, T ]);
(L3) 1, u, u2 ∈ range(δ2E(u)).
Proof. Differentiating (2.8) with respect to x implies that δ2E(u)ux = 0. More-

over Proposition 2.1 implies that u may be chosen to satisfy ux(x) < 0 for 0 <
x < T/2. The lowest eigenvalue of δ2E(u) acting on the sector of odd functions
in L2

per([0, T ]), denoted L2
per,odd([0, T ]), on the other hand, must be simple and the

corresponding eigenfunction is strictly positive (or negative) over the half-interval
[0, T/2]; a proof based upon the Perron–Frobenious argument is rudimentary and
hence we omit the detail. Therefore zero is the lowest eigenvalue of δ2E(u) restricted
to L2

per,odd([0, T ]) and ux is a corresponding eigenfunction.

To proceed, recall that ux belongs to the kernel of δ2E(u) and attains zero twice
over the periodic interval [0, T ]. Since an eigenfunction associated with the lowest
eigenvalue of δ2E(u) is strictly positive (or negative), δ2E(u) acting on L2

per([0, T ])
must have at least one negative eigenvalue.
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STABILITY OF PERIODIC WAVES 3537

Moreover, since u locally minimizes H , and hence E, subject to conservation of
P and M , necessarily,

(3.2) δ2E(u)|{δP (u),δM(u)}⊥ � 0.

This implies by Courant’s mini-max principle that δ2E(u) has at most two negative
eigenvalues, asserting (L2).

Lastly, differentiating (2.10) with respect to c and a, respectively, we use (2.6) to
obtain that

(3.3) δ2E(u)uc = −δP (u) = −u and δ2E(u)ua = −δM(u) = −1.

Therefore 1, u ∈ range(δ2E(u)). Incidentally

Mc(u(·; c, a)) = 〈δM(u), uc〉 = 〈−δ2E(u)ua, uc〉(3.4)

= 〈ua,−δ2E(u)uc〉 = 〈ua, δP (u)〉 = Pa(u(·; c, a)).
Since

δ2E(u)u = Λαu− 2u2 + cu = −u2 − a

by (2.8), moreover, u2 ∈ range(δ2E(u)).
Proof of Proposition 3.1. Consider the orthogonal decomposition

L2
per([0, T ]) = L2

per,odd([0, T ])⊕ L2
per,even([0, T ]).

Since u may be chosen to be even by Proposition 2.1, it follows that L2
per,odd([0, T ])

and L2
per,even([0, T ]) are invariant subspaces of δ2E(u). Since (L1) of Lemma 3.3

implies that

ker(δ2E(u)|L2
per,odd([0,T ])) = span{ux},

moreover, it remains to show that ker(δ2E(u)|L2
per,even([0,T ])) = {0}.

Suppose on the contrary that there were a nontrivial function v ∈ L2
per,even([0, T ])

such that δ2E(u)v = 0. Since δ2E(u) has at most two negative eigenvalues by (L2)
of Lemma 3.3, it follows from Lemma 3.2 that v changes its sign at most twice over
the half-interval [0, T/2]. Consequently, unless v is positive (or negative) throughout
the periodic interval [0, T ], either there exists T1 ∈ (0, T/2) such that v is positive (or
negative) for 0 < |x| < T1 and negative (or positive, respectively) for x ∈ (−T/2, T1)∪
(T1, T/2), or there exist T1 < T2 in [0, T/2) such that v is positive for |x| < T1 and
T2 < |x| < T/2 (with the understanding that the first interval is empty in case T1 = 0)
and v is negative for x ∈ (−T2,−T1) ∪ (T1, T2).

Since v lies in the kernel of δ2E(u), on the other hand, it must be orthogonal to
range(δ2E(u)) and, in turn, to the subspace span{1, u, u2} by (L3) of Lemma 3.3. In
particular, 〈v, 1〉 = 0, whence v cannot be positive (or negative) throughout [0, T ]. In
case v positive for 0 < |x| < T1 and negative for T1 < |x| < T/2, for instance, since
u is symmetrically decreasing away from the origin over the interval (−T/2, T/2), we
find that

u(x)− u(T1) > 0 for |x| < T1 and u(x)− u(T1) < 0 for T1 < |x| < T/2.

Consequently 〈v, u − u(T1)〉 > 0, and v cannot be orthogonal to {1, u}. In case v
changes sign at x = ±T1 and x = ±T2, where T1 < T2, correspondingly, we find
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3538 V. M. HUR AND M. A. JOHNSON

that (u − u(T1))(u − u(T2)) is positive in (−T/2,−T2) ∪ (−T1, T1) ∪ (T2, T/2) and
negative in (−T2,−T1)∪ (T1, T2), deducing that v cannot be orthogonal to {1, u, u2}.
A contradiction therefore proves that ker(δ2E(u)|L2

per,even([0,T ])) = {0}.
Remark 5 (power-law nonlinearities). One may rerun the arguments in the proof

of Proposition 3.1 for (2.20) in the range 0 < α � 2 and 0 < p < pmax, where pmax

is in (2.21), and establish the nondegenracy of the linearization associated with the
traveling wave equation at a periodic, local constrained minimizer, provided that

up+1 − up+1(T1)− up+1(T2)

u(T1)− u(T2)
u+

u(T1)u(T2)(u
p(T1)− up(T2))

u(T1)− u(T2)

for T1 < T2 ∈ [0, T/2) changes its sign at x = ±T1 and x = ±T2 but nowhere else
over the interval (−T/2, T/2). Indeed 1, u, up+1 ∈ range(δ2E(u)) in place of (L3) of
Lemma 3.3, but otherwise the proof is identical to that in the case of the quadratic
nonlinearity.

Unlike in the solitary wave setting, where n−(δ2E) = 1 at a ground state, δ2E
may have up to two negative eigenvalues at a periodic, local constrained minimizer,
which is characterized by

n−(δ2E(u; c, a)) = n−

(
Ma(u(· ; c, a)) Pa(u(· ; c, a))
Mc(u(· ; c, a)) Pc(u(· ; c, a))

)
= # of sign changes in 1,Ma(u(· ; c, a)), (MaPc −McPa)(u(· ; c, a)),(3.5)

provided that

(3.6) (MaPc −McPa)(u(· ; c, a)) 	= 0.

More generally,

n−(δ2E(u)|{δM(u),δP (u)}⊥ ) = n−(δ2E(u))− n−

(
Ma(u(· ; c, a)) Pa(u(· ; c, a))
Mc(u(· ; c, a)) Pc(u(· ; c, a))

)
.

A proof based upon “an index formula” may be found in [14, Lemma 19]. The latter is
particularly useful when a constrained critical point of E is indeed a (local) minimizer.

The condition (3.6) ensures that the mapping (c, a) �→ (P,M) is of C1 and locally
invertible. Below we show that it moreover ensures that the generalized L2

per([0, T ])-
null space of the linearized operator associated with (2.1) supports a Jordan block
structure, which plays a central role in the stability proof in the subsequent section.

Proposition 3.4 (Jordan block structure). Let 1/3 < α � 2. If u(· ; c, a) ∈
H

α/2
per ([0, T ]) for some c 	= 0, a ∈ R, and for some T > 0 locally minimizes H, subject

to P and M being conserved, and if it satisfies (3.6) then zero is an L2
per([0, T ])-

generalized eigenvalue of

(3.7) Jδ2E(u(· ; c, a)) = ∂x(Λ
α − 2u+ c)

with algebraic multiplicity three and geometric multiplicity two.
Proof. The proof follows from the Fredholm alternative and may be found in [14,

Lemma 6]; see [15] in the case of generalized KdV equations. Here we merely hit the
main points.

Differentiating (2.2) with respect to x, a, and c, we use (2.6) to find that

Jδ2E(u)ux = Jδ2E(u)ua = 0 and Jδ2E(u)uc = −ux.
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Note from Proposition 2.1 that ua, uc are even and ux is odd. Since ker(Jδ2E) is
at most two dimensional by Proposition 3.1, therefore, ker(Jδ2E) = {ux, ua}. By a
duality argument and the Fredholm alternative, we find that the kernel of the adjoint
of Jδ2E is spanned by 1 and u. Therefore, if φ ∈ ker((Jδ2E(u))2)/ ker(Jδ2E(u)) then
Jδ2E(u)φ = ux by the Fredholm alternative and (3.6). This, in turn, has no solution
other than uc by the Fredholm alternative and (3.6).

In the solitary wave setting, zero is an L2(R)-eigenvalue of Jδ2E(u) with alge-
braic multiplicity two and geometric multiplicity one, provided that Pc 	= 0 at the
underlying wave. Incidentally a solitary wave corresponds to a = 0 and T = +∞ in
(2.8), and hence it depends, up to spatial translations, merely upon the wave speed.
Proposition 3.4 indicates that (3.6) is a natural analogue in the periodic wave setting
of the well-known condition in the solitary wave setting.

In the case of α = 1, namely, the Benjamin–Ono equation, (3.6) holds for all
periodic traveling waves; see [14, section 3.4] for the details. Concluding the section
we shall verify (3.6) in the solitary wave limit for other values of α.

Lemma 3.5 (solitary wave limit). Let 1/2 < α � 2. If u(· ; c, a, T ) locally

minimizes H in H
α/2
per ([0, T ]), subject to P and M being conserved for some c 	= 0,

a ∈ R, and T > 0 then

Ma(u(· ; c, a, T )) < 0 and (MaPc −McPa)(u(· ; c, a, T )) > 0

for |a| sufficiently small and T sufficiently large.
Proof. The proof may be found in [14, Lemma 20]. Here we include the details

for completeness.
We recall from Remark 3 that in the range 1/2 < α � 2 periodic traveling waves

of (2.1), constructed in Proposition 2.1 as local constrained minimizers, tend to the
solitary wave as a → 0 and T → +∞ satisfying aT → 0, namely, in the solitary wave
limit, which minimizes the Hamiltonian subject to the conservation of the momentum.
It follows from (2.7) that (2.8) remains invariant under

u(· ; c, a, T ) �→ c−1u(· ; 1, c−2a, c−1/αT ).

Accordingly we may take without loss of generality c = 1 and we find that

P (1, a, T ),M(1, a, T ), Pc(1, a, T ),Mc(1, a, T ) = O(1)

for |a| sufficiently small and T > 0 sufficiently large; see [14, Lemma 3.10] for the
details. Differentiating (2.11) with respect to a and evaluating near the solitary wave
limit, we use (3.4) to obtain that

Ma(1, a, T ) = −T + 2Mc(1, a, T ) = −T +O(1) < 0

for |a| sufficiently small and T > 0 sufficiently large. Since an explicit calculation
dictates that Pc(u(· ; 1, a, T )) > 0, furthermore,

(MaPc −McPa)(1, a, T ) = (MaPc −M2
c )(1, a, T ) = −Pc(1, a, T )T +O(1) < 0

for |a| sufficiently small and T > 0 sufficiently large.

4. Stability of constrained energy minimizers. We turn our attention to
the stability of a periodic, local constrained minimizer for (2.8) with respect to period
preserving perturbations.
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Recall from section 2 that the initial value problem associated with (2.1) is well-

posed in X ⊂ H
α/2
per ([0, T ]) for some interval of time, where H,P,M : X → R are

smooth. It suffices to take X = Hβ
per([0, T ]), β > 3/2.

Throughout the section let 1/3 < α � 2, fixed, and let u0(· ; c0, a0) ∈ H
α/2
per ([0, T ])

locally minimize H , subject to P and M being conserved for some c0 	= 0, a0 ∈ R,
and for some T > 0. In light of Proposition 2.1, u0 ∈ X and it makes a T -periodic,
traveling wave of (2.1).

Notice that the evolution of (2.1) remains invariant under a one-parameter group
of isometries corresponding to spatial translations. This motivates us to define the
group orbit of u ∈ X as

Ou = {u(· − x0) : x0 ∈ R}.

Roughly speaking, u0(· ; c0, a0) is said orbitally stable if a solution of (2.1) remains
close to the group orbit of u0 under the norm of X for all future times whenever the
initial datum is sufficiently close to Ou0 under the norm of X . Below we elaborate
this. Let

Σ0 = {u ∈ X : P (u) = P0, M(u) = M0},

where

(4.1) P0 = P (u0(· ; c0, a0)) and M0 = M(u0(· ; c0, a0)).

Note that Ou0 ⊂ Σ0 and the solution of (2.1) with an initial datum in Σ0 remains in
Σ0 at all future times.

Theorem 4.1 (orbital stability). Let 1/3 < α � 2. If u0(·; c0, a0) ∈ H
α/2
per ([0, T ])

for some c0 	= 0, a0 ∈ R, and for some T > 0 locally minimizes H, subject to P and
M being conserved and if the matrix

(4.2)

(
Ma(u(· ; c, a)) Pa(u(· ; c, a))
Mc(u(· ; c, a)) Pc(u(· ; c, a))

)
is not singular at u0(· ; c0, a0) then for any ε > 0 sufficiently small there exists a
constant C = C(ε) > 0 such that if φ ∈ X and ‖φ‖X � ε and if u(·, t) is a solution of
(2.1) for some interval of time with the initial condition u(·, 0) := u0 + φ then u(·, t)
may be continued to a solution for all t > 0 such that

(4.3) sup
t>0

inf
x0∈R

‖u(·, t)− u0(· − x0)‖X � C‖φ‖X .

The condition that the matrix (4.2) is not singular at the underlying wave ensures
that the mapping (c, a) �→ (P,M) is of C1 and locally invertible. Moreover Propo-
sition 3.4 ensures that the generalized L2

per([0, T ])-null space of Jδ2E0(u0(· ; c0, a0))
possesses a Jordan block structure. At a solitary wave u0(· ; c0) of (2.1), let P (u) =∫
R

1
2u

2 dx denote the momentum and note that Σ0 consists of all functions such that
P (u) = P (u0(· ; c0)). The condition that the matrix (4.2) is not singular then reduces
to that Pc(u(· ; c)) 	= 0 at u0(· ; c0).

To interpret Theorem 4.1, therefore, a periodic, local constrained minimizer for
(2.8) is orbitally stable with respect to period preserving perturbations, provided that
the matrix (4.2) is not singular at the underlying wave so that the linearized operator
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associated with (2.1) enjoys a Jordan block structure. In particular, nearby solutions
need not be in Σ0. Note, however, that they are near Σ0.

A solitary wave u0(· ; c0) of (2.1) (not necessarily a ground state) was shown in
[23], for instance, to be orbitally stable, provided that

(4.4) ker(δ2E0(u0)) = span{u0x}, n−(δ2E0(u0)) = 1, Pc(u0(· ; c0)) > 0.

(Note that the assumption in [23] that the symplectic form of a Hamiltonian system
be onto is dispensable in the proof; see the remark directly following [23, Theorem 2].)
Conditions in (4.4) were, in turn, shown in [11] (see also [41, 43]) to hold if and only
if α > 1/2. In the range α > 1/2, incidentally, a solitary wave of (2.1) minimizes the
energy subject to the conservation of the momentum; see Remark 3. Theorem 4.1
may therefore be regraded as to extend the well-known result about solitary waves.

In the case of α > 1/2, recall from Remark 3 that periodic, local constrained
minimizers for (2.8) are expected to tend to the solitary wave as the period increases
to infinity, and which are orbitally stable near the solitary wave limit by Theorem 4.1
and Lemma 3.5, and the limiting solitary wave is orbitally stable, as well; see [11],
for instance. In the case of 1/3 < α < 1/2, on the other hand, Theorem 4.1 indicates
that orbitally stable, local constrained minimizers for (2.8) may exist in the periodic
wave setting, but they are unlikely to achieve a limiting wave form with finite energy
as the period increases to infinity.

An obvious approach toward Theorem 4.1 is to rerun the arguments in the proof in
[23] (see also [42]) and derive stability criteria, analogous to (4.4); see [27], for instance,
where the last condition in (4.4) was suitably modified in the case of generalized
KdV equations. However, it is in general difficult to count the number of negative
eigenvalues in the periodic wave setting. We instead exploit variational properties of
the equation—the underlying wave arises as a local constrained minimizer and the
associated linearization is nondegenerate—and follow the method in [31, Chapter 5].
Our proof of Theorem 4.1 does not require information about n−(δ2E0), apart from
the upper bound in Lemma 3.3.

The present account of orbital stability is inspired by the Lyapunov method. Let

(4.5) E0(u) = H(u) + c0P (u) + a0M(u).

Proposition 2.1 implies that δE0(u0) = 0, i.e., u0 is a critical point of E0. Moreover,
Proposition 3.1 implies that the kernel of δ2E0(u0) is spanned by u0x. Intuitively, u0

is expected to be orbitally stable if E0 is “convex” at u0. As a matter of fact, one
may easily verify that if the spectrum of δ2E0(u0), except the simple eigenvalue at
the origin due to translation invariance, were positive and bounded away from zero
then u0 would indeed be orbitally stable.

However, (L2) of Lemma 3.3 indicates that δ2E0(u0) admits one or two negative
eigenvalues and one zero eigenvalue. In other words, u0 is a degenerate saddle point
of E0 on X . The Lyapunov method, therefore, may not be directly applicable. In
order to control potentially unstable directions and achieve stability, nevertheless,
observe that the evolution under (2.1) does not take place in the entire space X , but
rather on the submanifold Σ0. We shall demonstrate the “convexity” of E0 on Σ0 in a
neighborhood of the group orbit of u0, provided that the matrix (4.2) is not singular.
Let

(4.6) Σ′
0 = {δP (u0), δM(u0)}⊥

be the tangent space in X to the submanifold Σ0 at u0.
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3542 V. M. HUR AND M. A. JOHNSON

Lemma 4.2. Under the hypothesis of Theorem 4.1,

inf
{〈

δ2E0(u0)v, v
〉
: ‖v‖X = 1, v ∈ Σ′

0, v ⊥ u0x

}
> 0.

In particular, there exists a constant C > 0 such that〈
δ2E0(u0)v, v

〉
� C‖v‖2X

for all v ∈ Σ′
0 with v ⊥ u0x.

Proof. Let Π : L2
per([0, T ]) → Σ′

0 be the self-adjoint projection onto Σ′
0, and

consider

Πδ2E0(u0) : Σ
′
0 ⊂ X → Σ′

0.

Since u0 locally minimizes H and, hence, E0, subject to P = P0 and M = M0,
necessarily,

(Πδ2E0(u0))|Σ′
0
� 0.

Since Σ′
0 is an invariant subspace of Πδ2E0(u0), the (periodic) spectrum of Πδ2E0(u0)

acting on Σ′
0 is real and purely discrete, consisting of infinitely many eigenvalues with

no finite accumulation points. Since Πδ2E0(u0) acting on Σ′
0 is positive semidefinite,

furthermore, its spectrum may be listed, without respecting multiplicity, as

0 = λ1 < λ2 < λ3 < · · · → +∞.

Notice a spectral gap between the zero eigenvalue and the remainder of the (strictly
positive) spectrum of Πδ2E0(u0). Let

Π0 : Σ′
0 → ker

(
Πδ2E0(u0)

) ∩ Σ′
0

denote the self-adjoint spectral projection, and note that

spec
(
(I −Π0)Πδ

2E0(u0)
)
= spec

(
Πδ2E0(u0)

) \ {0}.
In particular,

inf{〈δ2E0(u0)v, v
〉
: ‖v‖X = 1, v ∈ Σ′

0, v ∈ ker(Πδ2E0(u0))
⊥} = λ2 > 0.

It then follows at once that 〈
Πδ2E0(u0)v, v

〉
� λ2‖v‖2L2

for all v ∈ Σ′
0 satisfying v ∈ ker(Πδ2E0(u0))

⊥. Recalling the definition X , clearly,
there exists a constant C > 0 such that〈

Πδ2E0(u0)v, v
〉
� C‖v‖2X

for all v ∈ Σ′
0 satisfying v ∈ ker(Πδ2E0(u0))

⊥; see [30, Lemma 5.2.3], for instance.
The assertion therefore follows by Proposition 3.1, provided that

(4.7) ker(Πδ2E0(u0)) = ker(δ2E0(u0)) = span{u0x}.
Note that u0x ∈ Σ′

0 and Πδ2E0(u0)u0x = 0. The kernel of Πδ2E0(u0) is thus at least
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STABILITY OF PERIODIC WAVES 3543

one dimensional, containing u0x. Since 1, u0 ∈ ker(δ2E0(u0))
⊥, and δ2E0(u0)

−1(1) =
−∂au0, δ2E0(u0)

−1(u0) = −∂cu0; moreover, an “index formula” (see [30, Theo-
rem 2.1], for instance) implies that

dim(ker(Πδ2E0(u0))) = dim(ker(δ2E0(u0))) +

{
1 if MaPc −McPa = 0,

0 if MaPc −McPa 	= 0.

This completes the proof, since MaPc − McPa 	= 0 by the hypothesis of Theo-
rem 4.1.

Remark 6. To better understand (4.7), note from (3.3) that

Πδ2E0(u0)(Mc∂au0 −Ma∂cu0) = Π(−Mc +Mau0) = 0

and Mc∂au0−Ma∂cu0 ∈ Σ′
0 if and only if (4.2) is singular. In other words, Mc∂au0−

Ma∂cu0 belongs to the T -periodic kernel of Πδ2E0(u0) (and is linearly independent
of u0x) only if (4.2) is singular.

To proceed, we introduce the semidistance ρ : X → R, defined by

ρ(u, v) = inf
x0∈R

‖u− v(· − x0)‖X

and rewrite (4.3) as supt>0 ρ(u(·, t), u0) � C‖u(·, 0) − u0‖X . Below we establish the
coercivity of E0 on Σ0, provided that (4.2) is not singular.

Proposition 4.3 (coercivity). Under the hypothesis of Theorem 4.1 there exist
ε > 0 and C = C(ε) > 0 such that if u ∈ Σ0 with ρ(u, u0) < ε then

(4.8) E0(u)− E0(u0) � Cρ(u, u0)
2.

Proof. The proof closely resembles that of [23, Theorem 3.4] or [27, Proposi-
tion 4.3]. Here we include the detail for completeness.

Throughout the proof and the following, C means a positive generic constant; C
which appears in different places in the text need not be the same.

Thanks to the implicit function theorem (see [11, Lemma 4.1], for instance), for
ε > 0 sufficiently small and for an ε-neighborhood Uε := {u ∈ X : ρ(u, u0) < ε} of
Ou0 , we find a unique C1 map ω : Uε → R such that

ω(u0) = 0 and 〈u(·+ ω(u)), u0x〉 = 0

for all u ∈ Uε. Since E0 is invariant under spatial translations, it suffices to show
(4.8) along u(· + ω(u)). Since u0 locally minimizes H , and hence E0, constrained to
P = P0 and M = M0, necessarily,

(4.9) δ2E0(u0)|Σ′
0
� 0,

where Σ′
0 is defined in (4.6). We fix u ∈ Uε ∩ Σ0 and write

(4.10) u(·+ ω(u)) = u0 + C1δP (u0) +

(
C2 − C1

〈δM(u0), δP (u0)〉
〈δM(u0), δM(u0)〉

)
δM(u0) + y,

where C1, C2 ∈ R and y ∈ Σ′
0 ∩ {u0x}⊥. Note that C1 = C2 = y = 0 at u = u0.

Let φ = u(·+ω(u))− u0. We may assume that ‖φ‖X < ε possibly after replacing
u0 by u0(· − x0) for some x0 ∈ R. Since P and M remain invariant under spatial
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3544 V. M. HUR AND M. A. JOHNSON

translations, Taylor’s theorem manifests that

(4.11)
P (u) = P (u(·+ ω(u))) = P (u0) + 〈δP (u0), φ〉+O(‖φ‖2X),

M(u) = M(u(·+ ω(u))) = M(u0) + 〈δM(u0), φ〉+O(‖φ‖2X).

Since 〈δM(u0), φ〉 = C2〈δM(u0), δM(u0)〉 = C2T by (4.10) and (2.6), we infer from
the latter equation in (4.11) that C2 = O(‖φ‖2X). Similarly, since

〈δP (u0), φ〉 = C1

(
〈δP (u0), δP (u0)〉 − 〈δM(u0), δP (u0)〉2

〈δM(u0), δM(u0)〉
)
+ C2〈δP (u0), δM(u0)〉

= C1

(
‖u0‖2L2

per(0,T ]) −
M2

0

T

)
− C2M0,

the Cauchy–Schwarz inequality, the former equation in (4.11) and (2.6) lead to that
C1 = O(‖φ‖2X).

Since E0 remains invariant under spatial translations, furthermore, Taylor’s the-
orem manifests that

E0(u) = E0(u(·+ ω(u))) = E0(u0) +
1

2
〈δ2E0(u0)φ, φ〉 + o(‖φ‖2X).

We then use (4.10) and C1, C2 = O(‖φ‖2X) to find that

E0(u)− E0(u0) =
1

2
〈δ2E0(u0)φ, φ〉 + o(‖φ‖2X) =

1

2
〈δ2E0(u0)y, y〉+O(‖φ‖2X).

Since y ∈ Σ′
0 ∩ {u0x}⊥, it follows by Lemma 4.2 that

〈δ2E0(u0)y, y〉 � C‖y‖2X .

Finally a straightforward calculation reveals that

‖y‖X �
∣∣∣∣‖φ‖X −

∥∥∥∥C1δP (u0) +

(
C2 − C1

〈δM(u0), δP (u0)〉
〈δM(u0), δM(u0)〉

)
δM(u0)

∥∥∥∥
X

∣∣∣∣
� ‖φ‖X − C‖φ‖2X ,

whence

E0(u)− E0(u0) � C‖φ‖2X = C‖u(·+ ω(u))− u0‖2X � Cρ(u, u0)
2.

Proof of Theorem 4.1. The proof resembles that of [27, Lemma 4.1] in the case of
generalized KdV equations.

Let ε0 > 0 be such that Proposition 4.3 holds and let φ ∈ X satisfy ρ(u0+φ, u0) �
ε for some 0 < ε < ε0 sufficiently small. By replacing φ by φ(· − x0) for some x0 ∈ R,
if necessary, we may assume without loss of generality that ‖φ‖X � ε. Since u0 is a
critical point of E0, Taylor’s theorem then implies that E0(u0 + φ) − E0(u0) � Cε2.
Furthermore, notice that if u0 + φ ∈ Σ0 then the unique solution u(·, t) of (2.1) with
the initial condition u(·, 0) = u0 + φ must lie in Σ0 as long as the solution exists.
Since E0(u(·, t)) = E0(u(·, 0)) = E0(u0 + φ) independently of t, on the other hand,
Proposition 4.3 implies that ρ(u(·, t), u0)

2 � Cε2 for all t � 0.
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In case u0 + φ is not required to be in Σ0, we utilize the nondegeneracy of the
constraint set, i.e., the mapping

(c, a) �→ (P (u(·; c, a)),M(u(·; c, a)))

is a period-preserving diffeomorphism from a neighborhood of (c0, a0) onto a neigh-
borhood of (P0,M0). We may, therefore, find c, a ∈ R such that |c|+ |a| = O(ε) and
uε(· ; c0 + c, a0 + a) is a T -periodic traveling wave of (2.1) satisfying

P (uε(·; c0 + c, a0 + a)) = P (u0 + φ) and M(uε(·; c0 + c, a0 + a)) = M(u0 + φ).

Let

Eε(u) = E0(u) + cP (u) + aM(u).

We may furthermore assume that uε minimizes Eε, subject to P and M being con-
served. We then rerun the argument in the proof of Proposition 4.3 and show that

Eε(u)− Eε(uε) � Cρ(u, uε)
2

so long as ρ(u, uε) is sufficiently small. Since uε is a critical point of Eε, moreover,
Eε(u(·, t)) − Eε(uε) = Eε(u0 + φ) − Eε(uε) � Cε2 for all t � 0. Finally the triangle
inequality implies that

ρ(u(·, t), u0)
2 � C

(
ρ(u(·, t), uε)

2 + ρ(uε, u0)
2
)

� C(Eε(u(·, t)) − Eε(uε)) + ‖uε − u0‖X � Cε2

for all t � 0. In other words, u0(· ; c0, a0) is orbitally stable to small perturbations
that “slightly” change P and M .

One may rerun the arguments in the proof of Theorem 4.1 mutatis mutandis to
establish the orbital stability of a periodic, local constrained minimizer for (2.20) in
the range 0 < α � 2 and 0 < p < pmax, where pmax is in (2.21), provided that the
matrix (4.2) is not singular at the underlying wave.

5. Adaptation to equations of regularized long wave type. The results
in section 2 through section 4 are readily adapted to other, nonlinear dispersive equa-
tions. We shall illustrate this by discussing equations of regularized long wave type

(5.1) ut − ux + Λαut + (u2)x = 0,

where 0 < α � 2.
In the case of α = 2, notably, (5.1) recovers the Benjamin–Bona–Mahony (BBM)

equation, which was advocated in [9] as an alternative to the KdV equation. In fact
solutions of the initial value problem associated with the BBM equation were argued
to enjoy a better smoothness property than those with the KdV equation, whereby it
was named the regularized long wave equation. For other values of α, similarly, (5.1)
“regularizes” its KdV counterpart in (2.1). In a small amplitude and long wavelength
regime, where ux + ut = o(1), furthermore, (5.1) is formally equivalent to (2.1).

The present treatment extends mutatis mutandis to general power-law nonlinear-
ities; see Remark 2. We choose to work with the quadratic nonlinearity, however, to
simplify the exposition.
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3546 V. M. HUR AND M. A. JOHNSON

In the range α � 0, one may work out the local in time well-posedness for (5.1)
in Hβ

per([0, T ]), β > max(0, (3 − α)/2), via the energy method, corroborating that
(5.1) regularizes (2.1); see Remark 1. The proof is rudimentary. Hence we omit the
detail. With the help of the smoothing effects of (1− ∂2

x)
−1, the global in time well-

posedness for (5.1) may be established in H0+(R) in the case of α = 2, namely, the
BBM equation; see [12], for instance. In the periodic functions setting, however, the
existence matter for (5.1) seems not adequately understood in spaces of low regularity.

Throughout the section we shall work in a suitable subspace (abusing notation)

X of H
α/2
per ([0, T ]), where the initial value problem associated with (5.1) is well-posed

for some interval of time; T > 0, the period, is fixed.
Notice that (5.1) possesses three conserved quantities (abusing notation)

H(u) =

∫ T

0

(
1

2
u2 − 1

3
u3

)
dx,(5.2)

and

P (u) =

∫ T

0

1

2
(u2 + |Λα/2u|2) dx,(5.3)

M(u) =

∫ T

0

u dx,(5.4)

which correspond to the Hamiltonian and the momentum, the mass, respectively.
Throughout the section we shall use H and P,M for those in (5.2) and (5.3), (5.4).
Notice that H,P,M : X → R are smooth. Notice moreover that (5.1) may be written
in the Hamiltonian form

ut = JδH(u),

where J = (1 + Λα)−1∂x.
We seek a periodic traveling wave u(x, t) = u(x− ct− x0) of (5.1), where c ∈ R,

x0 ∈ R, and u is T -periodic, satisfying by quadrature that

(5.5) c(1 + Λα)u + u− u2 + a = 0

for some a ∈ R or, equivalently (abusing notation),

(5.6) δE(u; c, a) := δ(H(u) + cP (u) + aM(u)) = 0.

We’ll write a periodic traveling wave of (5.1) as u = u(· ; c, a) with the understanding
that T > 0 is arbitrary but fixed and that we may mod out x0 ∈ R.

Below we record the existence, symmetry, and regularity properties for a family
of periodic traveling waves of (5.1), which arise as local energy minimizers subject to
conservations of the momentum and the mass.

Lemma 5.1 (existence, symmetry, and regularity). Let 1/3 < α � 2. A local
minimizer u for H, defined in (5.2), subject to P and M , defined in (5.3) and (5.4),

respectively, being conserved exists in H
α/2
per ([0, T ]) for each 0 < T < ∞ and it satisfies

(5.5) for some c 	= 0 and a ∈ R. It depends upon c and a in the C1 manner.
Moreover u = u(· ; c, a) may be chosen to be even and strictly decreasing over the
interval [0, T/2], and u ∈ H∞

per([0, T ]).
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Proof. If u(x; c, a) is T -periodic and satisfies (5.5) for some c 	= 0 and a ∈ R then,
by a scaling argument,

(c+ 1)u

((
c+ 1

c

)1/α

x; 1, c2a

)

is ( c+1
c )1/αT -periodic and satisfies

(1 + Λα)u+ u− u2 + c2a = 0.

Therefore it suffices to take c = 1 in (5.5), which brings us to (2.8), where c = 2. The
proof is then identical to that of Proposition 2.1. We omit the details.

We promptly address the nondegeneracy of the linearization associated with (5.6)
at a periodic, local constrained minimizer for (5.5).

Lemma 5.2 (nondegeneracy). Let 1/3 < α � 2. If u(· ; c, a) ∈ H
α/2
per ([0, T ])

for some c 	= 0, a ∈ R, and for some T > 0 locally minimizes H, defined in (5.2),
subject to P and M , defined in (5.3) and (5.4), respectively, being conserved then the
associated linearized operator

(5.7) δ2E(u; c, a) = c (1 + Λα) + 1− 2u

acting on L2
per([0, T ]) satisfies that

ker(δ2E(u; c, a)) = span{ux}.
Proof. Notice that Lemma 3.2 holds for δ2E(u) in (5.7); indeed one may modify

the arguments in Appendix A and prove it. Notice moreover that (L1) and (L2) of
Lemma 3.3 hold for (5.7); see section 3 for the details.

We claim that (L3) of Lemma 3.3 holds for δ2E(u) in (5.7). Differentiating (5.6)
with respect to c and a, respectively, we obtain that

δ2E(u)uc = −δP (u) and δ2E(u)ua = −δM(u).

Since

δP (u) = (1 + Λα)u and δM(u) = 1,

moreover, 1, (1+Λα)u ∈ range(δ2E(u)). Unfortunately (1+Λα)u may not be strictly
monotone over [0, T/2]. Appealing to (5.5), on the other hand, we find that

c(1 + Λα)u = u2 − u− a.

Therefore u2 − u ∈ range(δ2E). Since

δ2E(u)u = c(1 + Λα)u+ u− 2u2 = −u2 − a,

furthermore, u, u2 ∈ range(δ2E). This proves the claim. The proof is then identical
to that of Proposition 3.1. We omit the detail.

Repeating the arguments in the proofs of Theorem 4.1 and Proposition 4.3, we
ultimately establish the orbital stability of a periodic, local constrained minimizer
for (5.5), provided that the associated linearized operator supports a Jordan block
structure. We summarize the conclusion.

Theorem 5.3 (orbital stability). Let 1/3 < α � 2 and u0(· ; c0, a0) ∈ H
α/2
per ([0, T ])

for some c0 	= 0, a0 ∈ R, and for some T > 0 locally minimizes H, defined in (5.2),
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3548 V. M. HUR AND M. A. JOHNSON

subject to P and M , defined in (5.3) and (5.4), respectively, being conserved. If the
matrix (

Ma(u(· ; c, a)) Pa(u(· ; c, a))
Mc(u(· ; c, a)) Pc(u(· ; c, a))

)
is not singular at u0(· ; c0, a0) then for any ε > 0 sufficiently small there exists a
constant C = C(ε) > 0 such that if φ ∈ X and ‖φ‖X � ε and if u(·, t) is a solution
of (5.1) for some time interval with the initial condition u(·, 0) = u0 + φ then u(·, t)
may be continued to a solution for all t > 0 such that

sup
t>0

inf
x0∈R

‖u(·, t)− u0(· − x0)‖X � C‖φ‖X .

Related stability results in the case of α = 1, 2 are found, respectively, in [2] and
[28], among others.

6. Remark on linear instability. We shall complement the nonlinear stability
result in section 4 by discussing the linear instability of periodic traveling waves for
the KdV-type equation

(6.1) ut −Mux + f(u)x = 0.

Here M is a Fourier multiplier defined as M̂u(ξ) = m(ξ)û(ξ), satisfying

(6.2) C1|ξ|α � m(ξ) � C2|ξ|α, |ξ| � 1

for some α � 1 and for some C1, C2 > 0, while f : R → R is C1, satisfying

(6.3) f(0) = f ′(0) = 0 and lim
u→∞

f(u)

u
= ∞.

Clearly (2.1) fits into the framework. We assume that (6.1) possesses two conserved
quantities

P (u) =

∫ T

0

1

2
u2 dx

and

M(u) =

∫ T

0

u dx,

interpreted as the momentum and the mass, respectively.
We assume that (6.1) supports a smooth, four-parameter family of periodic trav-

eling waves, denoted u = u(· − x0; c, a, T ), where c and a form an open set in R2,
x0 ∈ R is arbitrary (and hence we may mod it out), T0 < T < ∞ for some T0 > 0,
and u is T -periodic, satisfying by quadrature that

(6.4) Mu− f(u) + cu+ a = 0.

For a broad range of dispersion symbols and nonlinearities, the existence of periodic
traveling waves of (6.1) follows from variational arguments, e.g., the mountain pass
theorem applied to a suitable functional whose critical point satisfies (6.4).
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Linearizing (6.1) about a (nontrivial) periodic traveling wave u = u(·; c, a, T ) in
the frame of reference moving at the speed c, we arrive at

(6.5) vt = ∂x(M− f ′(u) + c)v =: ∂xL(u; c, a)v.
Seeking solutions of the form v(x, t) = eμtv(x), moreover, we arrive at the spectral
problem

(6.6) μv = ∂xL(u; c, a)v.
We say that u is linearly unstable if the L2

per([0, T ])-spectrum of L(u) intersects the
open, right half-plane of C.

We shall derive a criterion governing linear instability of periodic traveling waves
of (6.1), which do not necessarily arise as local constrained minimizers. In light of
Theorem 4.1, a local constrained minimizer for (6.4) is expected to be nonlinearly
stable under the flow induced by (6.1) under certain assumptions.

Theorem 6.1 (linear instability). Under the assumptions (6.2) and (6.3), let
u = u(· ; c, a, T ) be a nontrivial, periodic traveling wave of (6.1) for some c 	= 0, a ∈ R,
and for some T > T0 > 0. Let Π : L2

per([0, T ]) → L2
per([0, T ]) denote the orthogonal

projection onto the subspace of L2
per([0, T ]) of mean zero functions, defined by

Πu = u− 1

T

∫ T

0

u(x) dx.

Assume that ΠL(u; c, a) acting on ΠL2
per([0, T ]) satisfies

(6.7) ker(ΠL(u; c, a)) = span{ux}.
Then (6.5) admits a nontrivial solution of the form eμtv(x), v ∈ Hα

per([0, T ]), and
μ > 0, provided that either

(1) n−(ΠL(u; c, a)) is odd and Pc(u(·; c, a, T )) < 0, or
(2) n−(ΠL(u; c, a)) is even and Pc(u(·; c, a, T )) > 0.
Recall that n−(ΠL(u; c, a)) is the number of negative eigenvalues of ΠL(u; c, a)

acting on ΠL2
per([0, T ]).

A complete proof is found in [35], for instance, albeit in the solitary wave setting;
see also [4] for a Boussinesq equation. The arguments in [35, section 4] readily extend
to the periodic wave setting. Here we merely hit the main points.

Notice that (6.6) has a nontrivial solution in Hα
per([0, T ]) for some μ > 0, namely,

a purely growing mode, if and only if

Aμ := c− c∂x
μ− c∂x

(M− f ′(u))

has a nontrivial kernel in Hα
per([0, T ]). Since

c∂x
μ− c∂x

→ 0 as μ → +∞

while

c∂x
μ− c∂x

→ Π as μ → 0+
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strongly in L2
per([0, T ]) (see [35] for the detail), the spectra of Aμ lie in the right

half-plane of C for μ > 0 sufficiently large while Aμ converges to ΠL(u)Π strongly in
L2
per([0, T ]) as μ → 0+. We then examine eigenvalues of Aμ near the origin in the

left half-plane of C from those of ΠL(u) via the moving kernel method. Specifically,
(6.7) ensures that for μ > 0 sufficiently small a unique eigenvalue eμ of Aμ exists in
the vicinity of the origin that depends upon μ analytically. A lengthy but explicit
calculation moreover reveals that

lim
μ→0+

eμ
μ

= 0 and lim
μ→0+

eμ
μ2

= −Pc(u(·; c, a, T )).

Theorem 6.1, therefore, follows since if Aμ admits an odd number of eigenvalues in
the left half-plane of C, signaling that the spectrum of Aμ crosses the origin at some
μ > 0, then a purely growing mode is found.

Concluding the section, we shall contrast Theorem 6.1 with Theorem 4.1 as it
applies to (2.1) near the solitary wave limit. It may not be immediately obvious
how they complement each other since Theorem 4.1 is variational in nature whereas
Theorem 6.1 uses spectral information of the associated linearized operator.

Below we relate spectral properties of ΠL(u) to those of L(u).
Lemma 6.2 (ΠL versus L). Let 1/3 < α � 2. If L(u) := L(u; c, a) is the

linearized operator associated with (2.1), which agrees with (3.1), then

n−(ΠL(u)) = n−(L(u))−
{
1 if Ma � 0,

0 if Ma < 0.

Moreover

dim(ker(ΠL(u))) = dim(ker(L(u))) +
{
1 if Ma = 0,

0 if Ma 	= 0.

The proof follows from the index formula in [30, Theorem 2.1], for instance. We
merely note that 1 ∈ ker(L(u))⊥ and (L(u))−11 = −ua.

In the case of 1/2 < α � 2, we recall from Lemma 3.5 that Ma(c, a, T ) < 0 and
(MaPc − McPa)(c, a, T ) > 0 for |a| sufficiently small and T > 0 sufficiently large.
Lemma 6.2, Proposition 3.1, and (3.5) therefore imply that

n−(ΠL(u)) = n−(L(u)) = 1

near the solitary wave limit.
In the case of 1/2 < α � 2, furthermore, Lemma 3.5 and (3.4) dictate that

Pc(c, a, T ) > 0 for |a| sufficiently small and T > 0 sufficiently large. Theorem 6.1 is
therefore inconclusive of local constrained minimizers for (2.8), in the L2-subcritical
case, near the solitary wave limit. This is consistent with the result in Theorem 4.1.
Indeed one may appeal to [23], for instance, to argue that local constrained minimizers
for (2.8) with large periods and small a’s in the range α > 1/2 are orbitally stable
under the flow induced by (2.1).

Appendix A. Proof of Lemma 3.2. Note that an L2
per eigenfunction of δ2E(u)

is continuous and bounded; see [22] in the solitary wave setting. Note moreover that it
may be chosen to be real valued. We say that φ ∈ C0

per([0, T ]) changes its sign n times,
n � 1 an integer, if φ(xk) 	= 0 for k = 1, 2, . . . , n+1 and sgn(φ(xk)) = −sgn(φ(xk+1))
for k = 1, 2, . . . , n for some 0 � x1 < x2 < · · · < xn+1 < T .

D
ow

nl
oa

de
d 

12
/0

5/
16

 to
 1

29
.2

37
.4

6.
8.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STABILITY OF PERIODIC WAVES 3551

Note that Λα, 0 < α < 2, may be viewed as the Dirichlet-to-Neumann operator for
a suitable local problem in the periodic half-strip [0, T ]× [0,∞). For φ ∈ Hα

per([0, T ]),
specifically, (see [40, Theorem 1.1], for instance, for the details)

C(α)Λαφ := lim
y→0+

y1−αwy(·, y),

where w =: Eφ ∈ C∞((0,∞);Hα
per([0, T ])) ∩C([0,∞);L2

per([0, T ])) solves the elliptic,
boundary value problem

Δw +
1− α

y
wy = 0 in [0, T ]per × (0,∞), w = φ on [0, T ]per × {0},

and C(α) is an explicit constant. Accordingly we may derive a variational charac-
terization of eigenvalues and eigenfunctions of (3.1) in terms of the Dirichlet-type
functional∫∫

[0,T ]per×(0,∞)

|∇w(x, y)|2y1−α dxdy +

∫ T

0

(−2u(x) + c)|w(x, 0)|2 dx

in a suitable function class. Note that if v ∈ H
α/2
per ([0, T ]) ∩ C0([0, T ]) is an eigen-

function of (3.1) then the extension Ev belongs to C0([0, T ]per × [0,∞)). Let N =
{(x, y) ∈ [0, T ]per × [0,∞) : Ev(x, y) = 0}, which is closed in [0, T ]per × [0,∞). We
define the nodal domains of Ev to be the connected components of the open set
[0, T ]per × [0,∞) \N in [0, T ]per × [0,∞).

Lemma A.1 (nodal domain bound). Let 0 < α < 2. Suppose that (3.1) possesses
eigenvalues

λ1 � λ2 � · · · � λn � · · · .
If vn ∈ H

α/2
per ([0, T ]) ∩ C0

per([0, T ]) is a (real) eigenfunction of (3.1) associated with
eigenvalue λn then its extension Evn has at most n nodal domains in [0, T ]per×[0,∞).

The proof follows from the nodal domain bound à la Courant and may be found
in [22, Theorem 3.9]. Hence we omit the details.

Proof of Lemma 3.2. It follows from the Perron–Frobenius argument that the
eigenvalue λ1 is simple and a corresponding eigenfunction may be chosen to be strictly
positive (or negative) over [0, T ). Moreover it follows from the arguments of the proof
of [22, Theorem 3.4] that an eigenfunction v2 associated with the eigenvalue λ2 changes
its sign at most twice over [0, T ). This proves the claim for n = 1, 2. Incidentally v2
changes its sign at least once and therefore its extension Ev2 has at least two nodal
domains in [0, T ) × [0,∞). We then infer from Lemma A.1 that it has exactly two
nodal domains in [0, T )× [0,∞).

Let v3 denote an eigenfunction associated with eigenvalue λ3. Suppose that v3
changes its sign at least five times over [0, T ). We then find six points

0 < x1 < ξ1 < x2 < ξ2 < x3 < ξ3 < T

such that, up to multiplication by −1,

v3(xk) > 0 and v3(ξk) < 0 for k = 1, 2, 3.

By continuity, moreover,

Ev3(xk, ε) > 0 and Ev3(ξk, ε) < 0 for k = 1, 2, 3,
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and 0 � ε � ε0 for some ε0. Clearly Ev3 has at least two nodal domains in [0, T )×
[0,∞). Furthermore, Ev3 has at least three nodal domains in [0, T )× [0,∞). For, if
it has exactly two nodal domains, it follows from the proof of [22, Theorem 3.4] that
v3 cannot change its sign more than twice. We then infer from Lemma A.1 that Ev3
has exactly three nodal domains in [0, T )× [0,∞).

Since nodal domains are open and connected, and hence pathwise connected, in
[0, T )× [0,∞), we may find a continuous curve γ ∈ C0([0, 1]; [0, T ]× [0,∞)) such that

γ(0) = xk, γ(1) = x�, 1 � k < 
 � 3,

and

Ev3(γ(t)) > 0 for all t ∈ [0, 1].

In particular, γ(t) belongs to the same nodal domain for all t ∈ (0, 1), denoted Ω1.
Indeed, if (xk, ε)’s, k = 1, 2, 3, and 0 < ε < ε0, belong to separate nodal domains then
Ev3 has at least four nodal domains, since (ξk, ε)’s belong to different nodal domains.

Suppose k = 1 and 
 = 2. The Jordan curve theorem implies that there cannot
be a continuous curve in [0, T )× [0,∞) which connects ξ1 to either ξ2 or ξ3. Therefore
(ξ1, ε), 0 < ε < ε0, belongs to a second nodal domain, denoted Ω2, which is disjoint
from the nodal domain containing (ξ2, ε) or (ξ3, ε), denoted Ω3. Since Ev3 has exactly
three nodal domains, (x3, ε), 0 < ε < ε0, must then belong to the nodal domain Ω1.
However, this implies by the Jordan curve theorem that (ξ2, ε) and (ξ3, ε), 0 < ε < ε0,
must lie in separate nodal domains. A contradiction proves that x1 and x2 cannot
belong to the boundary of the same nodal domain.

To proceed, suppose k = 1 and 
 = 3. The Jordan curve theorem similarly implies
that there cannot be a continuous curve in [0, T )× [0,∞) which connects ξ3 to either
ξ1 or ξ2. Therefore, (ξ3, ε), 0 < ε < ε0, belongs to a second nodal domain, which is
disjoint from the nodal domains containing (ξ1, ε) and (ξ2, ε). Since Ev3 has exactly
three nodal domains, (x2, ε), 0 < ε < ε0, must then belong to the nodal domain
containing (x1, ε) and (x3, ε), which is impossible by the same line of the argument
as above.

Lastly, suppose k = 1 and 
 = 2. The Jordan curve theorem implies that there
cannot be a continuous curve in [0, T )× [0,∞) which connects ξ2 to either ξ1 or ξ3.
Therefore, (ξ2, ε), 0 < ε < ε0, belongs to a second nodal domain, which is disjoint
from the nodal domains containing (ξ1, ε) and (ξ3, ε). This is impossible by the same
line of the argument as above.

A contradiction therefore completes the proof.
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