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ABSTRACT
We introduce a new estimator of the peculiar velocity of a galaxy or group of galaxies
from redshift and distance estimates. This estimator results in peculiar velocity estimates
which are statistically unbiased and have Gaussian distributed errors, thus complying with the
assumptions of analyses that rely on individual peculiar velocities. We apply this estimator
to the SFI++ and the Cosmicflows-2 catalogues of galaxy distances and, since peculiar
velocity estimates of distant galaxies are error dominated, examine their error distributions.
The adoption of the new estimator significantly improves the accuracy and validity of studies
of the large-scale peculiar velocity field that assume Gaussian distributed velocity errors and
eliminates potential systematic biases, thus helping to bring peculiar velocity analysis into the
era of precision cosmology. In addition, our method of examining the distribution of velocity
errors should provide a useful check of the statistics of large peculiar velocity catalogues,
particularly those that are compiled out of data from multiple sources.

Key words: galaxies: kinematics and dynamics – galaxies: statistics – cosmology: observa-
tions – cosmology: theory – distance scale – large-scale structure of Universe.

1 IN T RO D U C T I O N

The Doppler effect provides a remarkably accurate method to infer
the velocity of a galaxy towards or away from us by measuring the
blue or red-shift of its spectral lines, respectively. However, since
cosmological expansion also causes a redshift, determination of
the peculiar (local) motion v also requires the measurement of the
galaxy’s distance r, so that

v = cz − H0r , (1)

where c is the speed of light, z is the redshift and H0 is Hubble’s
constant. This formula assumes a linear Hubble relation. For more
accuracy, particularly at large distances, we can include the effects
of cosmic acceleration by replacing z with zmod, where

zmod = z[1 + 0.5(1 − qo)z − (1/6)(1 − qo − 3q2
o + 1)z2] , (2)

where qo is the deceleration parameter (see also Davis & Scrimgeour
2014; Springob et al. 2014). In addition, we can achieve additional
accuracy by accounting for the fact that redshift is not an additive
quantity. Rather than czmod = H0r + v, we instead should write
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(1 + zmod) = (1 + H0r/c)(1 + v/c), which reduces to the familiar
formula at low redshift. Solving for v, we obtain

v = czmod − H0r

1 + H0r/c
≈ czmod − H0r

1 + zmod
, (3)

where in the second expression we replaced H0r/c with zmod, a good
approximation since the difference between them, which is approx-
imately v/c, is always much less than 1. The second expression
is easier to work with in practice since it does not introduce new
factors of r, a quantity that has large uncertainties.

Whereas redshift can be measured very accurately, distance
measurements typically have uncertainties of �20 per cent, so
that the uncertainty, δv, in a peculiar velocity is approximately
δv ≈ 0.20H0r. Since typical peculiar velocities are thought to be
�500 km s−1, we see that for H0 ≈ 70 km s−1 Mpc−1 the uncertain-
ties in peculiar velocities become of the order of their magnitudes
for objects at distances r � 35 Mpc, which includes the region
that we would like to use peculiar velocities as a tool to probe
large-scale structure. Thus individual peculiar velocity measure-
ments have very low signal-to-noise, which makes it is necessary
to have a large sample in order to extract meaningful information.

Two major approaches have been used to analyse peculiar veloc-
ity catalogues (for reviews, see Jacoby et al. 1992; Strauss & Willick
1995). The first forgoes calculating individual peculiar velocities
altogether, and instead uses distance and redshift information to
estimate parameters of a model of the peculiar velocity field (for

C© 2015 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society

 at U
niversity of K

ansas on D
ecem

ber 2, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/213419889?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:rwatkins@willamette.edu
mailto:feldman@ku.edu
http://mnras.oxfordjournals.org/


Gaussian estimator of peculiar velocity 1869

recent usage of this method, see Nusser & Davis 2011; Courtois
et al. 2012; Hong et al. 2014; Johnson et al. 2014). This approach
has the disadvantage that it is difficult to quantify how the different
parts of the sample volume are contributing to the final parameter
estimates. For example, peculiar velocity samples typically have
much more information at small distances than in the outer parts of
the sample. This is due both to the higher density of nearby objects
and the higher accuracy with which their peculiar velocities can be
determined. Thus the results of these analyses can end up mostly
reflecting the nearby peculiar velocity field.

The second approach involves combining many individual pecu-
liar velocities into moments of the peculiar velocity field that have
much smaller uncertainties, for example, the bulk flow of a sample
volume (Kaiser 1988; Lynden-Bell et al. 1988; Courteau et al. 1993,
2000; Feldman & Watkins 1994, 2008; Watkins & Feldman 1995,
2007; Willick 1999; Juszkiewicz et al. 2000; Nusser et al. 2001;
Hudson 2003; Feldman et al. 2003; Hudson et al. 2004; Sarkar,
Feldman & Watkins 2007). This approach has the advantage that
the contribution of different parts of the sample to a moment can be
controlled by using various weighting schemes. For example, the
Minimum Variance method (Watkins, Feldman & Hudson 2009;
Feldman, Watkins & Hudson 2010; Agarwal, Feldman & Watkins
2012; Watkins & Feldman 2015) can be used to create moments that
probe a volume in a known, standardized way. It is also straight-
forward to quantify how these moments probe the power spectrum,
making it possible to compare their values to what would be ex-
pected, given a particular cosmological model.

This second approach relies on reducing the errors by averaging
over many noisy measurements. It is important to emphasize that if
the distribution of measurement errors is not symmetric about zero,
then the averaging process will result in an incomplete cancellation
of the noise leading to a systematic bias, which can suggest an
appearance of flows that do not exist, or mask flows that do. In
addition, most analyses make the stronger assumption that the error
distribution is Gaussian. If this assumption is violated, then the
validity of the results could be called into question.

As peculiar velocity surveys become larger and the uncertain-
ties in derived quantities like the bulk flow become smaller, it
is important to revisit the validity of our assumptions about the
measurement error distribution. For example, peculiar velocities
calculated using the traditional estimator are known to have non-
Gaussian errors. This comes about because the quantity estimated
in distance determinations is actually the distance modulus, the
difference between the apparent magnitude and the absolute mag-
nitude, which is related to the logarithm of the distance. The abso-
lute magnitude is determined through its empirical relation to some
distance-independent quantity. For example, in the Tully–Fisher
(TF) relation, absolute magnitude is related to rotational velocity,
or equivalently, emission line widths. The scatter about the empiri-
cal relations for absolute magnitude are typically Gaussian, as one
would expect from the Central Limit Theorem, leading to Gaus-
sian errors in distance moduli (for the TF relation, see e.g. Masters
et al. 2006; Springob et al. 2007). Exponentiating distance mod-
uli to obtain distances skews the distribution of the errors, hence
leading also to skewed errors in the peculiar velocities (this issue
is also discussed in Johnson et al. 2014). Corrections for homo-
geneous and inhomogeneous Malmquist bias typically account for
this skewness (see e.g. Lynden-Bell et al. 1988; Freudling et al.
1999); however, as we shall see below, in the surveys we ex-
amine this correction is not as effective as the new estimator at
eliminating skewed tails in the distribution. Skewed, non-Gaussian
errors invalidate the statistical assumptions of the analysis meth-

ods, and further, may lead to biases in the analyses’ results and
conclusions.

In this paper, we introduce an unbiased estimator of peculiar ve-
locity that has Gaussian distributed errors. The use of this estimator
will greatly increase the accuracy and reliability of any analysis that
relies on individual peculiar velocity measurements. We also exam-
ine the statistics of several large-scale peculiar velocity surveys with
both our new estimator and the traditional estimator to determine
the validity of our assumptions about measurement errors.

In Section 2, we describe in detail the peculiar velocity estimator.
In Section 3, we discuss the statistics of peculiar velocity surveys.
We conclude in Section 4.

2 PECULI AR V ELOCI TY ESTI MATO R

Our goal is to obtain an estimate, ve, of the peculiar velocity of a
galaxy or group from the galaxy’s redshift cz and an estimate of its
distance re. Given equation (1), the most straightforward estimator
is

ve = cz − H0re , (4)

and this is typically the estimator used in peculiar velocity anal-
yses. However, from a statistical point of view, this estimator has
several undesirable qualities. (For a general discussion of the statis-
tics of estimators, see Lupton 1993.) First, distance indicators give
distance moduli or log-distances with Gaussian distributed errors.
Exponentiating skews the error distribution, resulting in distance
errors that are not Gaussian distributed. Secondly, this estimator is
biased in a statistical sense: the average of an ensemble of velocity
estimates with different errors is not the true value, i.e. 〈ve〉 �= v.
This is the result of the skewness of the distribution of distance
errors, which gives rise to 〈re〉 �= r. These undesirable features can
lead to biases in our analyses and in general invalidate our statisti-
cal assumptions about the errors in peculiar velocities. They suggest
that we should be investigating other estimators that might be better
behaved statistically.

Instead we propose calculating peculiar velocities using the esti-
mator

ve = cz log(cz/H0re) . (5)

While this estimator may look unfamiliar, it has the statistical
properties that we desire in an estimator. First, since it uses the
log-distance (or equivalently, the distance modulus), it has Gaussian
distributed errors. It is easy to see that the uncertainty in the peculiar
velocity, δve, is given by δve = czδle, where δle is the uncertainty in
the log-distance. Secondly, we can use 〈log (re)〉 = 〈log r〉 to show
that this estimator is unbiased, as long as the true v � cz, which is
a good assumption for distant galaxies,

〈ve〉 = −cz(〈log(H0re)〉 − log(cz))

= −cz(log(H0r) − log(cz))

= −cz(log(cz − v) − log(cz))

= −cz(log(1 − v/cz))

≈ v , (6)

where we have used equation (1) to replace H0r with cz − v, and we
have assumed that the uncertainties in the redshift cz are negligible.
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From equation (3), we see that a more accurate estimator at large
redshift is given by

ve = czmod

(1 + zmod)
log(czmod/H0re) , (7)

with uncertainty δve = czmodδle/(1 + zmod). We stress that the as-
sumption that we are making is that the actual velocity of the galaxy
or group (v) is small compared to the redshift, not the estimated ve-
locity (ve). While estimates of peculiar velocities can be a few× 103

km s−1, it is thought that most actual peculiar velocities are at most
a few× 102 km s−1. Our assumption should hold quite well for
galaxies at distances � 20 Mpc.

3 STATISTICS O F PECULIAR V ELOCITY
SURV EYS

The defining characteristic of large-scale peculiar velocity surveys
is that they have low signal-to-noise ratio. However, if our goal is
to determine the distribution of the noise, then we can turn this to
our advantage. In particular, if we consider objects with peculiar
velocity errors σ such that σ 	 σ v, where σ v is the spread in
actual peculiar velocities, then we can be assured that the objects’
measured peculiar velocities are dominated by noise, with negligible
contributions from actual motions.

Here we will examine the error distribution in two large peculiar
velocity surveys. The SFI++ (Masters et al. 2006; Springob et al.
2007) is a sample of 4052 spiral galaxies with TF distances. The
Cosmicflows2 (hereafter CF2; Tully et al. 2013) galaxy catalogue is
a compendium of distances to 8135 galaxies measured with various
methods, including TF, Fundamental Plane, SNIa, surface bright-
ness fluctuations and tip of the red giant branch (TRGB). While
the CF2 contains the SFI++ as one of its largest components, in
compiling the CF2 a reanalysis of the literature distances was done
to ensure consistency between data sets. For both samples, we use
the more accurate expressions given by equation (3) for the old
estimator and equation (7) for the new estimator, following Tully
et al. (2013) in assuming the standard cosmological model with
�m = 0.27 and �� = 0.73, so that qo = 0.5(�m − 2��) = −0.595.

Another difference in the catalogues is that the SFI++ catalogue
provides distances in km s−1 and so are scaled relative to the Hubble
constant. In contrast, the CF2 sample attempts to determine an
absolute scale, and so reports distances in Mpc. Thus to calculate
peculiar velocities from the distances in the CF2, we must assume
a value for the Hubble constant. The nominal value given by the
authors of the CF2 in Tully et al. (2013) is 74.4 km s−1 Mpc−1.

In Fig. 1, we show histograms for the values of the peculiar
velocity divided by their uncertainty, vi/σ i, calculated using both
the new estimator and the traditional estimator for galaxies with
σ i > 1000 km s−1 in the CF2 survey. If our statistical assumptions
are correct, and if actual motions make only a small contribution,
then the values vi/σ i should be unit Gaussian variates, and the
histograms should match the Gaussian of unit standard deviation
shown in the figure. We see that the histogram using the new esti-
mator is a good match to the unit Gaussian, but that the traditional
estimator results in a skewed distribution.

As seen in the figure, the exponentiation of the Gaussian dis-
tributed log-distances results in a distribution of errors that is skewed
in a complicated way, with the peak shifted towards negative veloc-
ities but with a shortened tail on the negative side and an elongated
tail on the positive side. This effect is more clearly seen in Fig. 2
where we plot the histogram using a logarithmic scale. This skew-
ness cannot be corrected for by simply shifting the centre of the

Figure 1. The histograms for the values of the peculiar velocity over their
uncertainty, vi/σ i, calculated using both the traditional estimator (left-
hand panel) and the new estimator (right-hand panel) for galaxies with
σ i > 1000 km s−1 in the CF2 survey. The area of the histograms is normal-
ized to unity. We also show a Gaussian of unit area and unit variance.

Figure 2. Same as Fig. 1 using the logarithm of the histograms to show
better the behaviour of the tails of the Gaussian distribution of the traditional
(left-hand panel) and new (right-hand panel) estimators.

Figure 3. The same as Fig. 2 for the SFI++ survey. We show both the
Malmquist-corrected traditional estimator (left-hand panel) and Malmquist-
uncorrected new estimator (right-hand panel) distances.

distribution. Nor can the skewness be corrected by adjusting only
negative velocities, as is proposed by Tully et al. (2013) to correct
for what they call ‘error bias’.

In Fig. 3, we show vi/σ i histograms for galaxies in the SFI++
survey, again for σ i > 1000 km s−1. As in Fig. 2, we plot the
histograms on a logarithmic scale to accentuate the tails of the dis-
tributions. The catalogue provides both Malmquist-corrected and
-uncorrected distances. Malmquist bias correction methods account
for the skewness of the distribution of distance errors, and Lynden-
Bell et al. (1988) showed that velocities calculated with Malmquist-
corrected distances should be approximately Gaussian distributed.
It does not make sense to use Malmquist-corrected distances with
the new estimator, since, as we discuss below, different corrections
apply for distance moduli or log-distances than for distances. We
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Figure 4. The same as Fig. 3 with a 400 km s−1 coherent outflow in the
survey volume added.

thus show histograms for the new estimator using uncorrected val-
ues and the traditional estimator using corrected values. First, we
see that the histograms for the new estimator and the traditional
estimator using Malmquist-corrected distances do in fact have the
same peak. However, the histograms are not centred on zero.

One possible explanation for the skewing of the error histograms
from zero in Fig. 2 is a coherent outflow in the volume occupied by
the survey. While random velocities, or even bulk motions, should
have little effect on the histograms since their affect would average
out over different directions, a coherent outflow would be expected
to shift the peak of the histograms towards positive velocities, ex-
actly the effect we see in the figure. We can test this explanation
by considering a simple model where the outflow adds a constant
peculiar velocity to each galaxy in the survey. In Fig. 4, we show
the same histograms as in Fig. 2 except that we have subtracted
400 km s−1 from the peculiar velocity of each galaxy. We see that
subtracting a relatively modest outflow has resulted in an error dis-
tribution that is Gaussian and centred on zero. The existence of a
coherent outflow would support recent arguments that we live in a
low-density region, dubbed the ‘local hole’ (Whitbourn & Shanks
2014).

The disagreement between the CF2 and SFI++ catalogues re-
garding the existence of a coherent outflow is a consequence of the
addition of new data and the reanalysis of literature distances that
was done when the CF2 catalogue was assembled. Tully et al. (2013)
compared distance estimates for galaxies and groups that appeared
in more than one component sample and used this comparison to
rescale and reanalyze distances to achieve statistical consistency
between all the components of the CF2 sample. This reanalysis was
anchored by the zero-point provided by Cepheid and TRGB dis-
tances. They found that the resulting CF2 catalogue was consistent
with a Hubble constant H0 = 74.4 km s−1 Mpc−1 that did not vary
with redshift. It is worth noting that although this relatively low
redshift (cz � 0.1) measurement of H0 is in tension with microwave
background results, it agrees well with a recent measurement of H0

using SNIa at much higher redshift (Neill et al. 2014).
It is possible that the rescaling of the SFI++ could have inad-

vertently ‘erased’ a real coherent outflow. However, this suggests
another explanation of the skewness in the error distribution of
the SFI++ survey, a systematic error in the scaling of distances.
In Fig. 5, we show the same histograms as in Fig. 3, but with
all distances increased by 5 per cent. This scaling is equivalent
to changing the zero-point of the SFI++ or increasing its Hubble
constant. Again, we see that there is good agreement between the
new estimator histogram and the unit Gaussian centred on zero.
This roughly corresponds to the rescaling of the SFI++ in the CF2.
A direct comparison of the distances given in the SFI++ and the

Figure 5. The same as Fig. 3 with all distances increased by 5 per cent for
the SFI++ survey.

distances for the same galaxies in the CF2, using H0 = 74.4 km s−1

Mpc−1, shows that CF2 distances are about 6.8 per cent larger on
average.

In both Figs 4 and 5, we see that although the histogram using
the traditional estimator with Malmquist-corrected data is indeed
approximately Gaussian, the tails of this distribution are still no-
ticeably skewed. This demonstrates that our new estimator is more
effective at correcting for the skewness of peculiar velocity errors
than the Malmquist bias corrections used in the SFI++ survey.
Since these correction methods are substantially similar to those
used in other surveys, it is likely that this is true in general.

4 D I SCUSSI ON

Peculiar velocity analysis methods that work with velocity mea-
surements for individual galaxies, groups or clusters assume that
the errors in velocity measurements have a Gaussian distribu-
tion. However, the estimator that is traditionally used is known
to have a skewed, non-Gaussian error distribution. Malmquist bias
corrections include a correction that shifts the peak of the error
distribution to zero, but these corrections do not remove the skew-
ness in the tails of the distribution. These tails are particularly im-
portant since they represent objects with measurement errors that
are larger than expected given their uncertainties. Given that mea-
surement uncertainties typically dominate over the true velocities,
these objects have large ratio of estimated peculiar velocity to un-
certainty. Since analyses of velocity moments typically weight by
uncertainty, these velocities may have a large impact on results,
and can potentially introduce biases if the uncertainties are not
distributed symmetrically about the central value.

As peculiar velocity catalogues become larger, with a correspond-
ing decrease in the calculated uncertainties in low-order moments
such as the bulk flow, it becomes increasingly important to ad-
dress potential systematic errors arising from non-Gaussian velocity
error distributions. We have introduced a simple, easy-to-use pe-
culiar velocity estimator that results in velocities with unbiased,
Gaussian errors. We have shown that this estimator works well
when applied to the CF2 catalogue and, with some adjustment, the
SFI++ catalogue of galaxy distances. This new estimator is an im-
portant step in bringing peculiar velocity analyses into the era of
precision cosmology.

Our new estimator should not be used to estimate peculiar ve-
locities with Malmquist-corrected distances, since currently im-
plemented Malmquist correction procedures already account for
the skewness of the traditional estimator. While we have shown
that Malmquist correction does result in approximately Gaussian
velocity errors in the SFI++ survey, we have seen that our new
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estimator does a better job of producing a distribution with sym-
metric tails.

Modifying Malmquist correction methods to be used with the
new estimator is straightforward. Specifically, in the SFI++ sur-
vey, Malmquist bias corrections to distances are implemented by
calculating the corrected probability p(ri) of a galaxy being at a
distance ri through the convolution (Springob et al. 2007)

p(ri) = k1pTF(ri)pmag(ri)plss(ri), (8)

where k1 is a normalization constant, pTF(ri) is the probability dis-
tribution for the galaxy being at a position ri as given by the TF
measurement, pmag(ri) is the probability of finding a galaxy with
its apparent magnitude at a distance ri and plss(ri) is the density
distribution along the line of sight as given by a redshift survey.
To use the new peculiar velocity estimator, we instead calculate
the corrected probability p(μi) of finding a galaxy with a distance
modulus μi as

p(μi) = k1pTF(μi)pmag(μi)plss(μi), (9)

where the probabilities pTF, pmag and plss have now been expressed
in terms of the distance modulus. Note that in these expressions
pTF(μi) is calculated using the distance modulus, while pTF(ri) is
not. Note also that the maximum of p(ri) will not correspond to
the distance modulus that maximizes p(μi), so that Malmquist-
corrected values of ri cannot be used in our new estimator; instead,
Malmquist-corrected values of μi must be calculated using p(μi).

As a specific example, consider the simple case of a uniform
density of galaxies, where, for mathematical simplicity, we will
work with the equivalent log-distance li = log (ri) instead of the
distance modulus μi. In this case there is a bias, sometimes called
the homogeneous Malmquist bias, whereby galaxies are more likely
to have scattered from larger than smaller radius due the increasing
This comes into our calculations through the fact that in this case
plss(ri)dri ∝ r2dri, so that plss(li)dli ∝ e3li dli . Assuming that pmag(li)
is constant and that pTF(li) is a Gaussian distribution centred on the
value lo with uncertainty �, we have

p(li) ∝ exp(−(li − lo)2/2�2)e3li

∝ exp(−(li − (lo + 3�2))2/2�2). (10)

Thus we see that p(li) remains Gaussian, with the effect of the
Malmquist bias correction being to shift the peak of the distribution
outwards by 3�2. The size of this shift matches the result of a similar
calculation given in Lynden-Bell et al. (1988). More generally, this
calculation suggests that as long as the product pmag(ri)plss(ri) can
be approximated by a power law in ri in the region around the
galaxy’s location, the effect will be to shift the peak of p(μi) relative
to pTF(μi) while maintaining a Gaussian distribution. Since pmag

and plss are typically slowly varying compared to pTF, it is thus
reasonable to expect that Malmquist-corrected μi will still have
Gaussian errors. We will investigate this issue in more detail in
future work.

Large-scale motion analyses require estimates of both the radial
peculiar velocities and positions of a set of galaxies. While we must
use both redshift and a distance estimate to calculate peculiar ve-
locity, either of these quantities can be used to estimate position.
Analyses that use distance estimates to estimate position are said to
be done in ‘real space’, while those that use redshift are said to be
done in ‘redshift space’. While it may seem more intuitive to use a
distance estimate to estimate position, it is important to remember
that redshift is often a more accurate estimate of distance, particu-
larly in situations where distance units of h−1 Mpc or km s−1 are

used, so that uncertainty in the value of the Hubble constant does
not enter the calculation. Due to the small uncertainty in redshift,
the scatter of the redshift about the distance (as measured in km s−1)
is caused almost entirely by peculiar velocities, which are thought
to be of the order of 500 km s−1 at most. This is to be contrasted
with distance estimates, which for many distance indicators have
uncertainties of the order of 20 per cent. Thus redshift begins to be
a more accurate measure of a galaxy’s position around distances
of 2500 km s−1, or 25h−1 Mpc, and for distances of the order of
100 h−1 Mpc, redshift can be a factor of 4 more accurate than dis-
tance estimates on average. We note that the advantage of redshift
over distance estimates can be somewhat smaller for clusters and
groups of galaxies, where distance uncertainties can be reduced by√

N , where N is the number of galaxies in the cluster with measured
distances, and for SNIa, where distance uncertainties are closer to
5 per cent. Because position uncertainties are much smaller in red-
shift space, particularly for objects at large distances, Malmquist
bias effects that are caused by position uncertainties are much less
important and can be neglected. However, in redshift space one
must account for other forms of Malmquist bias that affect the
determination of distance relation parameters, e.g. the slope and
zero-point of the TF relation. For a more detailed discussion of
Malmquist bias in real and redshift space, see Strauss & Willick
(1995).

The new estimator we introduced here will prove particularly
useful for peculiar velocity analyses that are done in redshift space
with data that has not been Malmquist corrected. In this case, pecu-
liar velocities calculated with the traditional estimator have an error
distribution that is biased in addition to being skewed. For example,
the estimator we have introduced alleviates the problem of ‘error
bias’ noted in Tully et al. (2013). We have shown that peculiar
velocities calculated from CF2 distances using the new estimator
have a symmetric, Gaussian error distribution and do not require
any further correction.

We have also presented a method to check large catalogues of pe-
culiar velocities to confirm that they have the expected distribution
of errors. We stress that skewness or non-Gaussianity in velocity
error distributions can lead to results which do not accurately reflect
the large-scale flows we are trying to study. This method should pro-
vide a useful tool for compiling large peculiar velocity catalogues,
particularly when combining data from different sources.

Finally, we have seen that the distribution of errors in the SFI++
survey is not centred on zero. This can be explained by an approx-
imately 400 km s−1 coherent outflow in the survey volume or by
a systematic error in the scaling of distances of about 5 per cent.
Which of these explanations is correct is an interesting question that
should be pursued in further research.
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