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Abstract. Following a disturbance, why does one tree survive while another dies? Physiological

mechanisms may explain varying responses to disturbance between different tree species, but fewer

studies have investigated conspecific variation in resilience to forest disturbance. We propose that a

dynamic signal found in trees may provide clues to their post-disturbance fate. Specifically, linear versus

nonlinear growth dynamics of a tree may be an indicator of its likelihood to survive a disturbance. Here,

we investigate stands of red oak (Quercus rubra L.) that experienced disturbances in the form of drought

and insect attack. Earlier work indicated that oaks dying during these disturbances had faster growth rates

in their first years of life, but there was no obvious difference in canopy status, size, age, or microsite

habitat between trees that survived and those that died. To investigate potential differences in growth

dynamics between these trees, we quantified radial growth of individual trees and used two forecasting

models to classify tree growth dynamics as linear or nonlinear. Trees were classified as healthy, declining,

or dying based on crown cover, and dynamic patterns of growth were related to these health

classifications. Contrary to expectations, we found healthy Q. rubrawere significantly more likely to exhibit

nonlinear growth dynamics relative to declining and dying trees. The drivers of this effect remain unclear,

but nonlinear growth dynamics in healthy trees may represent an enhanced ability to benefit from resource

pulses, in turn promoting greater resilience. Our work suggests that forecasting models offer a means of

predicting tree survival during forest disturbances and thus represent an increasingly valuable tool as

forest disturbances increase in frequency and severity.
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INTRODUCTION

Ecosystems can exhibit strong responses to

disturbance events, which are defined broadly as

periodic interferences in the availability of

resources, substrate or environmental conditions

that impact the system’s ecological functioning

(White and Pickett 1985). Whether and why an

ecosystem exhibits either resistance or resilience

to a disturbance has been a subject of ecological

study for decades (Holling 1973, Folke et al.

2004). Projections of increasing frequency and

severity of disturbance events linked to anthro-

pogenic climate change (Adams et al. 2009, IPCC
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2013) have prompted a proliferation of recent
studies exploring these issues, particularly in
forests (e.g., Stephen et al. 2001, Breshears et al.
2005, Haavik et al. 2011, Haavik et al. 2012,
Scheffer et al. 2012, Clark et al. 2014, Filotas et al.
2014, Jones et al. 2014). Many forests already
appear to be experiencing increasing frequency
of disturbance (Dale et al. 2001) with related tree
mortality due to land use change, pollution, and
apparently natural events like drought, wind-
throw, and pest infestations (Hanson and Weltzin
2000, Ulanova 2000, Dale et al. 2001, Haavik et al.
2008). Because of forests’ capacity to feedback to
climate (Adams et al. 2009) and their inherent
economic, habitat, recreational, and aesthetic
values (Bonan 2008), predicting how forested
systems will respond to disturbances is an
important societal goal.

In spite of the importance of accurate predic-
tions of forest response to disturbance, such
predictions remain problematic. The spectrum of
potential forest responses to disturbance is broad,
ranging from catastrophic regime shift (Scheffer
et al. 2001) to far subtler responses such as the
alteration of tree productivity (Ciais et al. 2005).
Between these extremes, many forests are resil-
ient, experiencing widespread tree mortality in
response to disturbance while still maintaining
their basic functioning as forested ecosystems
(Holling and Gunderson 2002, Breshears et al.
2005, Small et al. 2005, McDowell et al. 2010),
sometimes with tree species composition similar
to the pre-disturbance ecosystem (Haavik et al.
2012, Knapp et al. 2013). For forests that do not
experience a regime shift in spite of widespread
mortality, tools for predicting how they might
fare in response to disturbance are generally
limited to characterizing species’ distinct physi-
ological responses to specific disturbance types,
and using those physiological parameters to
predict which trees might exhibit resilience.

Recent regional-scale forest disturbances,
many characterized by drought, offer opportuni-
ties to test species-specific, physiological tools.
For example, investigators have elucidated dis-
tinct physiological responses of different co-
occurring tree genera (Breshears et al. 2005,
2009, Eilmann and Rigling 2012, Mitchell et al.
2013) and co-occurring oak species (Hu et al.
2013, Renninger et al. 2014) to drought. Such
studies help investigators predict which tree

species may be relatively resilient to this type of
disturbance. Fewer studies explore variation in
response to disturbance across individuals with-
in a population. Though it might appear reason-
able to assume that intra-species variation in
disturbance response is smaller than inter-species
variation, especially when variation in resource
availability across microsites is controlled, some
studies suggest otherwise. For example, growing
evidence suggests that intra-specific variation in
response to environmental conditions can be as
great as or greater than variation across species
(Clark et al. 2004, Clark 2010). Other studies
suggest that varied responses to environmental
conditions within a species can be linked to
survival post-disturbance. Sevanto et al. (2014)
highlight how individuals of one pine species
(piñon pine, Pinus edulis) can exhibit distinct
strategies for coping with drought that, in turn,
appear linked to survival time during persistent
drought. Similarly, variation in conspecific tree-
ring width early in life has been linked to tree
survival during an insect outbreak (Haavik et al.
2011).

These examples suggest that a meaningful
degree of variation in response to disturbance
can occur within some species that is unrelated to
microsite differences, but rather reflects inherent
variation in functioning among individuals. If so,
this phenomenon might be an important feature
driving patterns of within-species tree mortality
following disturbance. Such patterns prompt
basic questions about trees’ susceptibility to
disturbance: why might some trees in a popula-
tion subjected to a disturbance die, while others
survive, especially among intermingled, co-oc-
curring trees with apparently similar access to
resources? Aside from the physiologically-based
approaches described above that are typically
relevant only for a select disturbance type (e.g.,
drought), few tools exist to address this intrigu-
ing and important question.

One clue might lie in the dynamic signal found
in metrics of tree growth. Tree-ring growth
indices reflect a tree’s bole growth response to
the environment. If we assume that bole growth
is indicative of tree growth more generally, as is
the norm in dendrochronology studies (Speer
2010), and that sampled trees adequately repre-
sent the dominant forest species, such indices
would be broadly representative of forest growth
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responses to environmental change. These
growth responses over time may be particularly
useful given recent advances in our understand-
ing of forests as dynamical, complex systems (De
Grandpré et al. 2009). Work in a multitude of
complex systems suggests that the presence of
nonlinear dynamics, whereby small differences
in driving conditions can result in divergent
system responses (Lorenz 1963), may be an
indicator of disturbance or stress and increase
the likelihood of system collapse (Berryman 1991,
Jing et al. 2003, Mullon et al. 2005, Anderson et
al. 2008, Vandermeer and Lin 2008, Glaser et al.
2014). These studies contrast with work indicat-
ing that nonlinear behaviors are linked to greater
survival of human neonates (Sugihara et al.
1996); the mechanisms driving these contrasts
remain unclear. If linkages between nonlinear
growth dynamics and eventual collapse ob-
served in a variety of other systems (e.g., Berry-
man 1991, Jing et al. 2003, Mullon et al. 2005,
Vandermeer and Lin 2008) are robust in forests,
the detection of such behavior could be a useful
means of beginning to understand why some
trees die while other survive and, more broadly,
for predicting a forest’s response to disturbance.
This may be particularly valuable given that tree
cores, and thus tree-ring indices from multiple
years’ growth, are readily obtainable.

We investigate whether the presence of non-
linear dynamics in growth of tree populations
subjected to disturbance could serve as a
predictor of disturbance-related mortality. If so,
detecting historical tree growth dynamics using
tree cores may provide a rapid means of
predicting the fate of a forest stand during a
disturbance. In this context, nonlinear refers to
tree radial growth patterns reflecting variable
responses to environmental cues, as opposed to
linear patterns that reflect more constitutive
growth as the environment changes. Though
the behavior of nonlinear dynamical systems is
by definition difficult to predict, particularly over
long time frames (Glaser et al. 2014), systems
exhibiting nonlinear dynamics possess qualities
that may permit an investigator to assess their
sustainability: their very complexity may lend
itself to predicting their fate in response to
disturbance. We explored the relationship be-
tween tree response to disturbance and temporal
dynamics of historic tree growth using a recent,

regional-scale, oak decline event in northwest
and west-central Arkansas, USA. The decline and
eventual mortality of a significant fraction of red
oaks (Quercus subgenus Erythrobalanus) in these
forests has been linked to cyclical droughts in the
1950s and 1960s and subsequent wood-boring
insect outbreaks (Haavik et al. 2012). After two
severe droughts, wood-boring insect populations
began to increase in the mid-1970s. Severely
infested trees experienced declines in growth
rates, and many of these trees eventually
experienced mortality in the early 21st century
(Haavik and Stephen 2010). Though all trees’
growth responded in a similarly positive manner
to a calculated index of historical moisture
availability, trees most susceptible to this distur-
bance event exhibited greater growth rates early
in their lives relative to trees that survived
(Haavik et al. 2011). The association between
faster growth early in life and mortality during a
disturbance is consistent with genetically-based
growth strategies influencing differences in sur-
vival (Johnson and Abrams 2009), and prompted
us to ask if dynamical signals differed in tree-ring
growth patterns between dying and surviving
trees.

We use this disturbance event, the juxtaposi-
tion of surviving and dying trees following the
disturbance, and the availability of time-series,
tree growth data to assess the degree to which
antecedent tree growth dynamics are linked to
tree survival after a disturbance. Consistent with
studies indicating that nonlinear dynamics can
be linked to population collapse (Berryman 1991,
Jing et al. 2003, Mullon et al. 2005, Vandermeer
and Lin 2008), we hypothesized that trees
experiencing mortality post-disturbance would
exhibit nonlinear growth dynamics, and that
linear growth dynamics would be exhibited by
trees apparently resistant to the disturbance
event. Testing this hypothesis cannot discern
the mechanism driving tree survival or suscep-
tibility to disturbance. However, unlike more
mechanistic studies exploring trees’ physiological
response to a particular disturbance type (Bre-
shears et al. 2005, 2009, Eilmann and Rigling
2012, Hu et al. 2013, Mitchell et al. 2013,
Renninger et al. 2014), our approach is applicable
to a multitude of disturbance types. We use the
results of our work to begin to disentangle the
mystery of why some trees appear susceptible to
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disturbance, while conspecifics with apparently
similar access to resources and co-dominance
status in the canopy succumb. Our work can
guide future, more mechanistic studies critical for
predicting trees’ probability of survival during
disturbance events.

METHODS

Study sites
The study relied on ring width indices of Q.

rubra radial growth developed from the Boston
Mountains (24 trees) and the Ouachita Moun-
tains (46 trees), two forested regions in north-
western and west-central Arkansas, USA that
experienced widespread oak mortality during a
red oak borer (Enaphalodes rufulus (Haldeman)
(Coleoptera: Cerambycidae)) outbreak. These are
the same stands in which previous work indicat-
ed that Q. rubra growing the fastest during their
youth were most susceptible to the recent insect
disturbance (Haavik et al. 2011). The sites are
characterized by deep valleys, steep ledges, and
cliffs with elevations ranging from 370 to 700 m
and rock formations of limestone, sandstone, and
shale (Fenneman 1938, Adamski et al. 1995).
Mean annual temperature for both regions is
168C. They experience hot summers and mild
winters, with an average summer high of 328C
and an average winter low of �1.38C. Average
precipitation totals 1240 mm in the Boston
Mountains and 1500 mm in the Ouachita
Mountains, with most precipitation occurring
during spring and fall (National Climatic Data
Center 2009). Site quality for Q. rubra in the
region is primarily determined by the depth and
texture of the A horizon. Soils are fine sandy
loams in the Boston Mountains and shallow,
permeable loams in the Ouachita Mountains (Soil
Survey 2012), and are generally rocky, with low
organic matter content.

Tree-ring sampling and analysis
Tree radial growth is an integrated measure of

many factors influencing the annual carbon
source and sink dynamics of a tree (Schweing-
ruber 1996), and therefore often is employed to
understand tree growth, ecosystem function, and
population dynamics. As such, established meth-
odologies exist for quantifying radial growth
across time (Douglass 1941). Using these meth-

ods as a guide, we measured ring widths for four
radii located along each of the four cardinal
directions for each of 24 cross-sectional slabs (ca.
5 cm thick) from trees felled in 2007 in the Boston
Mountains, and from two radii located along the
east and west axes for each of 46 cores from trees
felled in 2009 in the Ouachita Mountains. Minor
directional adjustments were made if reaction
wood was encountered (Fritts 1976). We sampled
trees that were close neighbors (i.e., either
immediately adjacent or within ;3 m) and
ensured as much as possible that differences in
canopy status and evident rooting conditions
among sampled trees were minimized. All
sampled trees were broadly representative of
other red oaks in the stand. We averaged these
ring width measurements to derive one tree-ring
growth series per tree (Fig. 1). We consider
averaged tree-ring growth series as an indicator
of incremental, annual bole growth; though this
approach cannot account for growth of branches,
foliage, or roots, the approach permits valuable
inferences about tree growth over time (Speer
2010). Importantly, because oaks are ring-porous
trees, they form relatively large earlywood
vessels early in each growing season, making
missing rings unlikely and each ring easy to
discern (Zimmermann 1983, Abrams 1990).

We assigned each sampled tree to one of three
health status classifications. In the Boston Moun-
tains the classification integrated percent crown
dieback and abundance of wood-boring insect
scars (Fierke et al. 2005). In the Ouachita
Mountains, tree health was classified using
percent crown cover. We defined health status
as healthy in trees with percent crown dieback 1%
or percent crown cover 99%; declining in trees
experiencing moderate levels of woodboring
insect infestation and crown dieback or percent
crown cover of 33–66%; and dying in trees
experiencing high levels of boring insect infesta-
tions and crown dieback .66% or percent crown
cover ,44% (Fierke et al. 2005).

We measured annual ring width using Image-J
software (Rasband 1997–2005), and standardized
these raw measures (mean¼1.0) to generate ring-
width indices (R) for each tree (Fritts 1976).
Further details on the adapted methods are
provided in Haavik et al. (2008) and Haavik et
al. (2011). We provided average radii measure-
ments for each tree to ARSTAN (Cook and
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Holmes 1986), a freely-available program that
develops standardized, individual tree-ring se-
ries. We analyzed six healthy, nine declining, and
nine dying, well-interspersed, neighboring trees
from the Boston Mountains, and 24 healthy, nine
declining, and 13 dying, well-interspersed, neigh-
boring trees from the Ouachita Mountains. Each
tree-ring growth series represented at least 50
years of growth, but no tree was older than 100
years.

Nonlinear time series forecasting models
Nonlinear forecasting models are one method

of detecting nonlinear dynamics in systems for
which the structural form of a mechanistic model
is unknown. This modeling approach has been
applied in dynamic systems ranging from bio-
logical (Sugihara et al. 1996, Hsieh et al. 2005,
Glaser et al. 2011) and astronomic (Kilcik et al.
2009) to economic (Schittenkopf 2000). We used a
theoretical framework developed in Sugihara
and May (1990) and Sugihara (1994) to charac-
terize dynamic signatures in tree-ring time series,
and we related these signatures to the health
status of co-occurring tree populations. A math-
ematical description of these models can be
found in numerous publications (e.g., Sugihara
and May 1990, Sugihara 1994, 2012, Sugihara et

al. 1996, Hsieh et al. 2005, Glaser et al. 2011,
2014). An R package for implementing the
methods is available at https://github.com/
ha0ye/rEDM.

The term ‘nonlinear’ can have different but
related meanings depending on its use. For
example, the discrete logistic model is a nonlin-
ear model insofar as its output is not linearly
proportional to its input. However, depending on
the choice of intrinsic growth rate (r) in the
model, the resulting dynamics may reflect
linearity (equilibrium), stable limit cycles, or
chaos (May 1974). We adopt here a definition
of nonlinear that applies to time-evolving dy-
namics (Tong 1993): nonlinear dynamics describe
‘‘time series that lack a symmetrical waveform
and, as such, cannot be well described as sums of
sine and cosine functions’’ (Sugihara et al. 1996).
By this definition, stable limit cycles are not an
example of nonlinear dynamics even if they
represent a function whose output is not propor-
tional to its input, but chaotic dynamics resulting
from small differences in initial conditions
(Lorenz 1963) are nonlinear.

We classified tree-ring growth over time as
linear or nonlinear using the forecasting model S-
map (Sugihara 1994). First, we estimated the
dimensionality of the time series using a related

Fig. 1. Tree ring growth series with raw ring width (mm) plotted across time. Data presented are representative

of a random sample of tree rings from the tree populations described in the text.
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method, simplex projection (Sugihara and May
1990). Dimensionality, which is related to the
number of driving variables (e.g., temperature
and rainfall) that structure system dynamics (i.e.,
tree-ring growth; Whitney 1936, Deyle and
Sugihara 2011), is estimated by deconstructing a
time series into E consecutive points (Takens
1981; Fig. 2). We selected the best E for each time
series by varying E from 1 to 10, producing a
series of forecasts of radial growth R, and
comparing the observed values of R to model-
produced forecasts using the Pearson correlation
coefficient (q) and mean absolute error (MAE).
While E could theoretically be higher than 10,
following Glaser et al. (2014) we restricted our
analysis to E � 10 because of the length of our
time series; for a time series of length 60 years, an
E of 10 results in only 6 vectors to use for
forecasting, and exceeding vector lengths of 10
further reduces the number of vectors available.
We used the model, or attractor (Fig. 2), of
dimension E that produced forecasts with the
lowest MAE and highest q to define system
dimensionality. That dimensionality was then
used as an input to S-map modeling to define the

shape of the dynamic attractor in the data.
S-map models classify system dynamics as

linear or nonlinear by comparing a linear versus
nonlinear model of the time series, and revealing
the model that produces the best out-of-sample
forecasts of R (Sugihara 1994, Hsieh et al. 2005,
Glaser et al. 2014). First, the system attractor was
reconstructed using a dimensionality of E mea-
sured by simplex projection. Second, a tuning
parameter in the model, h, was tuned from linear
(h ¼ 0) to nonlinear (h . 0 in steps of 0.1, up to h
¼ 10). To assess whether a nonlinear model
exhibited significantly improved forecasting abil-
ity compared to a linear model, we assigned a P
value to the improvement in MAE of the
nonlinear model over the linear model (DMAE)
using a randomization procedure outlined in
Hsieh and Ohman (2006). As in simplex projec-
tion, the best model of system dynamics was
chosen by comparing observed to forecast values
using statistics of q and MAE. In both simplex
projection and S-map modeling, we analyzed
standardized (mean ¼ 0, standard deviation¼ 1),
first differenced time series (Rtþ1� Rt, where t is
time) to reduce the effects of autocorrelation on

Fig. 2. Hypothetical example of a lagged coordinate embedding used to reconstruct system dynamics (state

space reconstruction) to facilitate simplex projection and S-map modeling. The model, an attractor, is constructed

by plotting consecutive lags at various time steps (t) (Rt, Rt�1, Rt�2) of the system variable in question (here, tree

radial growth represented by R). The number of axes (and therefore number of time lags used) equals the

embedding dimension, E, of the state space. Each coordinate in the attractor is therefore a vector of length E that

is used to create library and prediction vectors for our two forecasting models. In our approach, the model is built

from a set of library vectors ( joined by solid lines) used to forecast one prediction vector (the dot, located along

the dashed line).
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modeling. Models were built from a subset of
‘library’ vectors, and forecast metrics were
calculated from a distinct, prediction set of
vectors withheld from the model, permitting
production of true, out-of-sample forecasts.

Linking growth dynamics to tree resilience
We employed logistic regression (R Core Team

2013; v.2.15.2) to test for a relationship between
the health class of a tree and the classification of
dynamics (linear or nonlinear). Only those time
series that produced statistically significant S-
map models (qmax corresponding to p-value �
0.05) were included in this analysis (62 of 70 trees
total); trees that did not produce robust S-map
forecasts lacked reliable classifications. We used
MAE in the randomization test to classify
dynamics, but the overall fit of the model was
measured by the significance of qmax. First, we
tested for a difference between regions (Boston
versus Ouachita Mountains) by including region
as a control variable (both independently and as

an interaction with health class). Finding no
regional difference ( p . 0.05), we dropped the
region term in subsequent regression model runs.
We tested two versions of the regression model:
maintaining three separate health classes
(healthy, declining, and dying) and combining
poor health classes for a total of two classes
(healthy, and declining or dying). Results were
robust to either specification, and we focus here
on the latter for simplicity. We also tested the
sensitivity of excluding the 8 trees that lacked
reliable classifications from the regression;
whether we included them or not, results were
qualitatively similar.

RESULTS

In contrast with our hypothesis, nonlinear
forecasting models revealed that healthy trees
were significantly more likely to exhibit nonlin-
ear dynamics relative to declining or dying trees
(logistic regression, p ¼ 0.015; Fig. 3). Declining
or dying trees were one-fourth as likely to have
nonlinear dynamics as healthy trees (odds-ratio
on the coefficient for health class ¼ 0.25). The
majority (66%) of healthy trees from the Boston
Mountains exhibited nonlinear dynamics. In the
Ouachita Mountains, 11% of declining and 15%
of dying trees exhibited nonlinear dynamics,
compared to 46% of healthy trees in that region
(Table 1).

DISCUSSION

Forecasting models highlight the nonlinear
nature of many systems for which we can obtain
time-series data, in a multitude of disciplines
(Sugihara et al. 1996, Schittenkopf 2000, Hsieh et
al. 2005, Glaser et al. 2014). Applied here, they
reveal their utility for working with tree-ring
data to assess forest responses to disturbance
events. Specifically, they highlight how nonlinear
growth dynamics of trees can be associated with
survival during a disturbance, while linear
growth dynamics appear linked to mortality.
Univariate forecast models do not reveal the
mechanisms at work driving these contrasting
growth dynamics (see Sugihara et al. 2012 for
multivariate extensions that can test environmen-
tal drivers). However, detection of nonlinear
dynamics in individuals surviving disturbance

Fig. 3. S-map-classified dynamics from healthy and

declining or dying trees from red oaks in Arkansas,

USA. Healthy trees were significantly more likely to

have nonlinear dynamics ( p¼ 0.015). Analysis shown

here combines declining and dying trees into one

unhealthy class.
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events can serve as an important guide for
investigators attempting to understand the costs
and benefits of nonlinear dynamics in different
systems. Specific to forests, we can use this tool
to assess tree strategies for long-term survival.
More fundamentally, we can begin to develop a
means of addressing a deceptively simple ques-
tion for which we currently have few answers:
why do some trees die following disturbance
when nearby, well-interspersed conspecifics ap-
pear to flourish? Fully addressing this question is
beyond the scope of any individual project, but
the current study offers a way forward by
indicating that different growth strategies adopt-
ed by neighboring conspecifics may confer
different capacities to respond to external distur-
bance.

Our results contradict our initial hypothesis:
we found that healthy trees surviving this
disturbance were significantly more likely to
have nonlinear dynamics than trees that suc-
cumbed to mortality following the disturbance.
Previous work on the same trees (Haavik et al.
2011) showed those with slower growth rates
early in life were more likely to survive distur-
bance; we add to the understanding of this
system by demonstrating these same resilient
trees also displayed nonlinear dynamics in
growth. While these findings contradict studies
of populations under external stress that guided
our initial hypothesis (Berryman 1991, Mullon et

al. 2005, Anderson et al. 2008, Glaser et al. 2014),
it corroborates other work linking nonlinear
dynamics to healthy individuals (Sugihara et al.
1996). In that study, human infants experiencing
stress exhibited heart rhythms with underlying
linear dynamics compared to their healthier
counterparts (Sugihara et al. 1996). Our findings
appear consistent with this work and suggest
nonlinear dynamics can be linked to an increased
ability to adapt to variable conditions, while
linear dynamics may represent decreased adap-
tive coping abilities. Indeed, inter-individual
differences in resource allocation strategies may
cause inter-individual differences in senescence
(Benton et al. 2006). The explanation for these
apparently contradictory findings may lie in the
scale of observation: studies that show stress is
associated with nonlinear dynamics have been
conducted at the population level, while studies
reporting an association between stress and
linear dynamics have been conducted on indi-
viduals. Our study falls into and corroborates the
latter scale of observation. In so doing, our work
highlights how ‘‘demographic performance het-
erogeneities’’ (Benton et al. 2006) among indi-
viduals within a population can have not just
important, dynamical consequences for a popu-
lation (Benton et al. 2006), but for individuals
comprising the population as well.

Our approach to discerning different growth
dynamics among surviving and dying trees has

Table 1. Results of nonlinear forecast modeling for tree ring growth series from the Boston Mountain (17 trees)

and Ouachita Mountain (45 trees) regions. Health class is defined in the text; we present results for declining

and dying trees as a merged category (‘‘Decl. þ dying’’), as well as separately. Dynamics were classified as

linear or nonlinear by S-map models; percent (%) nonlinear shows the proportion of each health class

exhibiting nonlinear dynamics. Series length represents the number of forecasts made by the model, related to

the length of the time series and dimensionality. E, dimensionality (determined by simplex projection), is

presented because of its importance for generating S-map output. qmax is the maximum Pearson correlation

coefficient (or forecast skill) for the best S-map model of each series. Standard errors (6) are shown for each

metric averaged over health class and dynamic classification.

Region Health class n % non-linear

Linear growth patterns Nonlinear growth patterns

Series length E qmax Series length E qmax

Boston Mtns. Healthy 5 80 89 6 0 2.0 6 0.0 0.31 6 0.0 74 6 2 3.5 6 0.6 0.36 6 0.0
Decl.þ Dying 12 33 75 6 4 4.5 6 1.0 0.31 6 0.0 75 6 1 3.5 6 0.6 0.40 6 0.1
Decl. 7 29 75 6 4 3.8 6 1.1 0.32 6 0.0 76 6 3 4.0 6 1.0 0.37 6 0.1
Dying 5 40 75 6 4 5.7 6 2.3 0.27 6 0.0 73.5 6 1 3.0 6 1.0 0.43 6 0.1

Ouachita Mtns. Healthy 24 46 65 6 4 5.0 6 0.7 0.57 6 0.0 60 6 4 4.7 6 0.5 0.64 6 0.0
Decl.þ Dying 21 14 57 6 4 3.6 6 0.3 0.57 6 0.0 64 6 4 2.3 6 0.7 0.62 6 0.0
Decl. 8 13 58 6 5 2.9 6 0.3 0.57 6 0.0 70 6 0 1.0 6 0.0 0.65 6 0.0
Dying 13 15 57 6 6 4.0 6 0.4 0.57 6 0.0 62 6 5 3.0 6 0.0 0.61 6 0.0
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several features important for research investi-
gating forest resilience to disturbance. First, it can
be employed at the level of the individual
(Sugihara et al. 1996) or the population (Berry-
man 1991, Mullon et al. 2005, Anderson et al.
2008, Glaser et al. 2014). Second, it does not rely
on the acquisition of ancillary environmental
data. This is related to and expanded upon in our
next point. Third, this approach does not require
all individuals to be born at the same time (i.e., of
the same cohort). When an investigator is
analyzing dynamics of a set of organisms that
might have been born at different times, the path-
dependent nature of expressed traits such as
mortality presents a challenge: an individual’s
response to a disturbance depends on both the
current and past environments to which it has
been exposed (Benton et al. 2006). When working
with one cohort, these past and current environ-
mental effects are essentially controlled. Howev-
er, when the sample population is composed of
individuals who represent multiple cohorts
(perhaps dozens or hundreds of cohorts in the
case of a forest of long-lived trees), controlling for
both current and past environmental exposure is
nearly impossible without a concurrent set of
ancillary environmental data. Such datasets are,
unfortunately, rare.

In spite of the advantages of using nonlinear
forecasting models, the approach does not permit
us to explore fully the mechanisms governing
individual mortality or survival of trees with no
obvious differences in microsite habitat, canopy
status, or other features that might drive differ-
ences in resource availability. There are multiple
mechanisms that could have driven the observed
results. First, environmental forcing may be
linear, but integrated in a nonlinear fashion by
healthy trees (Hsieh et al. 2005, Hsieh and
Ohman 2006). Second, and conversely, environ-
mental forcings may express nonlinear dynamics
but be integrated by dying trees in a linear
fashion (Greenman and Benton 2003). Third,
nonlinear dynamics in growth rings may be a
manifestation of intricate and poorly defined
interactions between environmental variables
(e.g., temperature may drive growth only in the
presence of sufficient moisture availability).
Fourth, nonlinear dynamics may be driven by
patterns of suppression and release amongst
competing individual trees. Fifth, nonlinear

dynamics may be driven by processes that
require substantial C allocation not captured by
radial growth indices such as tree C investment
in masting, roots, foliage, or branches. Though
any combination of these potential features could
represent a possible means of generating nonlin-
ear growth dynamics, it remains unclear why
any such phenomena would influence healthy vs.
dying trees differently.

Given that tree growth dynamics are the net
result of a tree’s ability to capture multiple
resources, it is feasible that nonlinear growth
dynamics were associated with surviving trees to
a greater extent than with dying trees because
these two growth strategies reflect differences in
trees’ abilities to capitalize on stochastic resource
pulses. The nonlinear growth dynamics identi-
fied in this study may reflect a more nimble
response by healthy trees to environmental cues
which, in turn, may confer varying competitive
advantages during changes in resource availabil-
ity. Such phenomena are known drivers of
differential survival in plants (Sher et al. 2004).
Indeed, links between leaf nitrogen (N) concen-
trations and carbon accrual of healthy trees in
this population (A. S. Boone and S. A. Billings, in
review) suggest that capturing pulses of soil N
may be important for growth responses of these
oak trees and, more broadly, an important part of
the N budget for N-limited vegetation (Gebauer
et al. 2002). This seems feasible, given the
generally N-limited nature of forests such as
these (Nadelhoffer et al. 1999). Other studies
emphasize the importance of light availability as
a regulator of established oaks’ growth; en-
hanced availability of light can result in suffi-
ciently enhanced productivity of established oaks
to prompt forest managers to reduce stand basal
area by up to 40% to promote growth of the
remaining oaks (Loftis 1990). Trees adhering to
invariant growth strategies, observed as under-
lying linear growth dynamics, may have less
capacity to capitalize on pulses of resources such
as N, light or other necessary resources, perhaps
ultimately resulting in increased vulnerability to
mortality.

This work highlights several features of these
trees’ growth patterns important for beginning to
understand why some trees survive disturbance
while other conspecifics do not, as well as for the
broader community of ecologists using dendro-
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chronology as a tool. First, healthy trees’ growth
dynamics differed relative to dying and declining
trees over a time series spanning their full
lifespan, not just immediately before the distur-
bance. Our analyses thus imply that nonlinear
growth dynamics throughout a tree’s life can
incur an advantage during forest disturbances.
Thus, growth dynamics established well prior to
the disturbance were a predictor of eventual
mortality. The research that inspired this work
demonstrated that healthy trees in both the
Boston and Ouachita Mountains tended to grow
more slowly early in their lives relative to trees
succumbing to disturbance, though not to the
extent that tree canopy class or bole diameter was
evidently affected (Haavik et al. 2011). The
current study expands on this knowledge by
highlighting the apparent importance of nonlin-
ear dynamics in some systems as a determinant
of susceptibility to disturbance. Given that these
patterns appear established early in a tree’s life,
their discovery well before a mortality-inducing
disturbance could result in enhanced ability to
predict tree susceptibility. Though we do not
understand the mechanisms behind the observed
pattern, its existence in these forests as well as in
other, unrelated systems (Sugihara 1994, Mullon
et al. 2005, Anderson et al. 2008, Vandermeer and
Lin 2008, Glaser et al. 2011) suggests the
importance of exploring the evolutionary advan-
tages of nonlinear growth dynamics across taxa.
This research goal is particularly pressing given
predictions of increasing numbers and intensity
of disturbance events in the coming decades.

Next, our work highlights an underappreciat-
ed feature of tree radial growth relevant for the
dendrochronology community. Our observation
of nonlinearity in tree growth dynamics is
interesting given the widely-invoked assumption
in many dendrochronological studies of station-
ary responses of tree growth to environmental
conditions (Fritts 1976, Johnson et al. 1988,
Graumlich 1991, Orwig and Abrams 1997). The
presence of nonlinear dynamics in forest ecosys-
tems may be a result of non-additive interactions
between driving variables (Dixon et al. 1999),
mis-matches between the time scale of environ-
mental forcing and life history traits like gener-
ation time (Hsieh and Ohman 2006), or biological
assimilation of low-frequency environmental
variability (Greenman and Benton 2003). These

phenomena, if indeed they are at play in forested
systems, highlight the difficulties of assuming a
constant relationship between environmental
forcing and tree growth responses. Even when
correlations between tree growth and a particular
environmental variable can be found, tree-ring
growth and environmental forcing may correlate
only over a well-defined, finite time period. Over
longer periods, such correlations in nonlinear
systems usually break down (Sugihara et al.
2012). These so-called ‘mirage correlations’ could
create a problem for climate-growth reconstruc-
tions; nonlinear dynamics may result in variable
growth responses to environmental forcing,
resulting in tree-ring chronologies that do not
accurately reflect environmental variation. Such a
phenomenon may help generate the sometimes
large proportion of growth variation left unex-
plained by environmental drivers.

Lastly, we highlight the utility of applying
forecast modeling to time-series data already
well-developed by the dendrochronology com-
munity. There is an ever-greater need for
forecasting models to assist with sustainable
ecosystem management, species abundance fore-
casts, and predictions of ecosystem boundary
shifts given increased uncertainties about future
ecosystem functioning. This approach appears
particularly useful for tree-ring studies, which
reveal integrated tree responses to a varying
environment and often are characterized by
lengthy time series. Applying these models to
tree-ring time series thus represents an important
way forward for understanding forest responses
to environmental forcings.
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Schäfer. 2014. Physiological strategies of co-occur-
ring oaks in a water- and nutrient-limited ecosys-
tem. Tree Physiology 34:159–173.

Scheffer, M., S. R. Carpenter, J. A. Foley, C. Folke, and
B. Walker. 2001. Catastrophic shifts in ecosystems.
Nature 413:591–596.

Scheffer, M., M. Hirota, M. Holmgren, E. H. Van Nes,
F. S. Chapin, III. 2012. Thresholds for boreal biome
transitions. Proceedings of the National Academy
of Sciences 109:21384–21389.

Schittenkopf, C. 2000. On nonlinear, stochastic dynam-
ics in economic and financial time series. Studies in
Nonlinear Dynamics and Econometrics 4:101–121.

Schweingruber, F. H. 1996. Tree rings and environ-
ment: dendroecology. Paul Haupt, Bern, Germany.

Sevanto, S., N. G. McDowell, L. T. Dickman, R. Pangle,
and W. T. Pockman. 2014. How do trees die? A test
of the hydraulic failure and carbon starvation
hypotheses. Plant, Cell and Environment 37:153–
161.

Sher, A. A., D. Goldberg, and A. Novoplansky. 2004.
The effect of mean and variance in resource supply
on survival of annuals from Mediterranean and
desert environments. Oecologia 141:353–362.

Small, M. J., C. J. Small, G. D. Dreyer. 2005. Changes in
a hemlock-dominated forest following woolly
adelgid infestation in southern New England.
Journal of the Torrey Botanical Society 132:458–470.

Soil Survey. 2012. Web soil survey. Natural Resources
Conservation Service, United States Department of
Agriculture. http://websoilsurvey.nrcs.usda.gov/

Speer, J. H. 2010. Fundamentals of tree-ring research.
University of Arizona Press, Tuscon, Arizona, USA.

Stephen, F. M., V. B. Salisbury, and F. L. Oliveria. 2001.
Red oak borer, Enaphalodes rufulus (Coleoptera:
Cerambycidae), in the Ozark Mountains of Arkan-
sas, USA: an unexpected and remarkable forest
disturbance. Integrated Pest Management Review
6:247–252.

Sugihara, G. 1994. Nonlinear forecasting for the
classification of natural time series. Philosophical
Transactions of the Royal Society A 348:477–495.

Sugihara, G., W. Allan, D. Sobel, and K. D. Allan. 1996.
Nonlinear control of heart rate variability in human
infants. Proceedings of the National Academy of
Science USA 93:2608–2613.

Sugihara, G., and R. M. May. 1990. Nonlinear
forecasting as a way of distinguishing chaos from
measurement error in time series. Nature 344:734–
741.

Sugihara, G., R. M. May, H. Ye, C. Hsieh, E. Deyle, M.
Fogarty, and S. Munch. 2012. Detecting causality in
complex ecosystems. Science 338:496–500.

Takens, F. 1981. Detecting strange attractors in
turbulence. Lecture Notes in Mathematics
898:366–381.

Tong, H. 1993. Nonlinear time series analysis: a
dynamical systems approach. Oxford University
Press, London, UK.

Ulanova, N. G. 2000. The effects of windthrow on
forests at different spatial scales: a review. Forest
Ecology and Management 135:155–167.

Vandermeer, J., and B. B. Lin. 2008. The importance of
matrix quality in fragmented landscapes: under-
standing ecosystem collapse through a combina-
tion of deterministic and stochastic forces.
Ecological Complexity 5:222–227.

White, P. S., and S. T. Pickett. 1985. The ecology of
natural disturbance and patch dynamics. Academic
Press, Orlando, Florida, USA.

Whitney, H. 1936. Differentiable manifolds. Annals of
Mathematics, Second Series 37:645–680.

Zimmermann, M. H. 1983. Xylem structure and the
ascent of sap. Page 143 in T. E. Timell, editor.
Springer series in wood science. Springer-Verlag,
Berlin, Germany.

v www.esajournals.org 13 November 2015 v Volume 6(11) v Article 242

BILLINGS ET AL.


