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Abstract 

 Chromatography is widely used as a technology for separating mixtures of compounds by 

partitioning into the mobile and stationary phases. A mathematical model is essential not only for 

predicting the retention time and the peak shape of the chromatography analyte concentration 

distribution, but also for understanding the separation mechanism of chromatography and 

detecting whether the conditions were correct (e.g., whether there was an overload of the 

sample). A variety of statistical distribution functions such as exponential, Gaussian (normal), 

exponential modified Gaussian, Weibull, log-normal have been used to approximate the 

chromatography analyte concentration distributions, and were further applied to the 

deconvolution of stacked peaks. 

The dissertation consists of five chapters. The first chapter presents an overall 

introduction of the current prevailing mathematical models of chromatography analyte 

concentration distributions, the generalized chromatography theorem derived from 

chromatography table and its proof, the relation between on-chromatography analyte 

concentration distributions and out flow analyte concentration distributions, the asymptotic 

distribution of on-chromatography analyte concentration distributions and out flow analyte 

concentration distributions and their applications. 

The second chapter presents the mathematical model for the separation process of 

chromatography. In this chapter the first generalized theorem for modeling almost all types of 

chromatography was developed, and was found to match the mathematical formulas for well-

known discrete distribution functions. These empirical formulas were rigorously proven by 

mathematical induction based on chromatography principle and chromatography process 

assumptions. The outflow chromatography analyte concentration distributions are demonstrated 
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by simulation to be better approximated by the mathematical model that matches the negative 

binomial distribution function versus using a Gaussian distribution function, which currently is 

widely used for approximation. 

The third chapter establishes the mathematic bridge between on-chromatography and 

outflow analyte concentration distributions. In following with the previous chapter, which found 

the on chromatography and outflow analyte concentrations distributions to mathematically match 

the binomial and negative binomial distributions, respectively, this mathematical bridge can 

apply to relate these statistical distributions given they mathematical formulas are the same. This 

theorem is rigorously proved by mathematical induction. This relation is also demonstrated by 

3D-plot of on-chromatography and outflow analyte concentration distributions for the first 

several stages. 

The fourth chapter proposed the transformation of data collected by chromatography (i.e., 

the analyte concentration distributions from chromatography experiments) into data that can be 

used for estimation to the approximate the underlying parameters that govern a particular 

chromatography process. Outflow chromatography analyte concentration distribution from 

original data were used to demonstrate this process and to compare the approach derived in this 

work using parameter estimated by method of moment (MOM) to the currently approach based 

on the Gaussian statistical distribution’s formula 

The fifth chapter is the summary of my dissertation work.  
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Chapter 1: Introduction 

 

Many mixtures appear to be homogeneous. For example if salt and sugar are grinded 

together, the resulting powder appears to be uniform; however, it is still a combination of two 

different components. In many occasions people realize that uniform powder may not only be 

composed of a single pure component and try different methods to separate them such as the 

recrystallization method developed in the ancient time to separate the table salt from the sea salt.  

In early 1900s, chromatography was developed as a convenient and important method to 

separate different component that were dispersed uniformly in a mixture. A Russian-Italian 

botanist Mikhail Semyonovich first discovered that different coloured component in plant (plant 

pigment) can be separated by using liquid chromatography with calcium carbonate as stationary 

phase and petroleum ether/ethanol mixture as eluent. [1] Chromatography is applied in many 

fields such as toxicology, environmental science and criminal science investigations as the 

rigorous method to confirm the existence of a certain chemical compound. For example, gas 

chromatography (GC) and high pressure liquid chromatography (HPLC) were used to separate 

and confirm the blood and urine drug metabolites in these human fluid samples. HPLC was also 

applied in detecting the concentration level of lead, mercury and arsenic in bodies of waters such 

as lakes, rivers and reservoirs to protect people from potential heavy metal poisonings.   

Different compounds have different affinities to the stationary phase as “temporary 

binder” when traveling through chromatography with mobile phase known as “eluent” and thus 

they are to be collected at different times in the solution that flows through the chromatography, 

called the outflow solution. The time a particular compound spent in the chromatography is 
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called its “retention time”. By partitioning into the mobile and stationary phases, the 

chromatography is widely applied as technology for separating mixtures of compounds [2].  

1.1 Chromatographic Models. 

To date, many theoretical and experimental attempts have been made to understand the 

separation mechanism of chromatography and optimized its conditions [3]. The retention time 

and the peak shape of the chromatography analyte concentration distribution are the two 

important factors that researchers would like to be able to predict based on the previous 

experimental data. Empirical or semi-empirical peak shape-matching have been applied to 

approximate the chromatography peaks using a variety of mathematical functions that represent 

statistical distribution functions such as exponential, Gaussian (normal), exponential modified 

Gaussian, Weibull, log-normal distributions [4]. However, this type of empirical peak shape-

matching can cause confusions since the statistical distribution functions and corresponding 

parameters to match chromatography separation are anecdotal. Moreover, most researchers 

attempt to pick different statistical distribution functions as model to match the chromatography 

shape without considering the mechanism of chromatography separation process. 

To solve these problems, a universal mathematical model needs to be developed for the 

separation process of almost all type of chromatography based on chromatography principle and 

assumptions of the chromatography process. In this work, the first generalized theorem to model 

the peaks, or analyte concentration distributions, for all types of chromatography using 

chromatography tables will be proposed. The binomial distribution was the correct numeric 

function for mathematically modeling on-chromatography analyte concentration distributions, 

and the negative binomial distribution was the correct numeric formula for mathematically 

modeling outflow analyte concentration distributions.  These proposed conjectures will be 
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rigorously proved by mathematical induction. Simulations were conducted to demonstrate that 

outflow analyte concentration distributions governed by our stated chromatography process 

assumptions are better approximated using the mathematical formula used for the negative 

binomial distribution in contrast to the widely utilized Gaussian distribution’s mathematical 

formula. 

The dispute among researchers regarding what type of mathematical function is more 

suitable to describe the on-chromatography and outflow analyte concentration distributions went 

on for decades without agreement. Very few efforts have been made to the understanding of the 

difference and relationship between on-chromatography analyte concentration distribution and 

outflow analyte concentration distribution [5], which is the key to solve this dispute. We have 

established the generalized theorem of the chromatography model: on-chromatography analyte 

concentration distributions follow the same mathematical formula as the binomial distribution, 

and outflow analyte concentration distributions follow the same mathematical formula as the 

negative binomial distribution. 

The binomial and negative binomial distributions have been of both theoretical and 

application interest for decades [6]. However, outside of their probabilistic context where they 

are defined by a series of independent Bernoulli trials, the relation between mathematical 

formulas for the binomial and negative binomial distributions is not clear. In this work the 

relation between the mathematical formulas binomial and negative binomial distribution will be 

unambiguously established and rigorously proved using mathematical induction—outside of the 

context of probability. The chromatography analyte concentration distribution for the first 

several stages will be plotted in 3 dimensions, which assists the visualization of this relationship. 
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The Gaussian distribution is the current prevailing numerical model to approximate many 

types of chromatography by empirically matching observed peaks to match. It was not justified 

by the chromatography principle and mechanism of the chromatography separation process. In 

this work, we have proved that as number of theoretical plates approaches infinity, both on-

chromatography and outflow analyte concentration distributions, which mathematically match 

the binomial and negative binomial distributions, respectively, approaches (mathematically) the 

Gaussian distribution. Thus, using the mathematical formula of the Gaussian distribution to 

approximate the analyte concentration distribution is appropriate for chromatography with 

continuous measures/peaks such as gas chromatography (GC), high pressure liquid 

chromatography (HPLC). (Continuous peaks are defined by the equation         ( )   ( ) 

where   represents the time,   represents the analyte concentration distribution height as a 

function of time and   is constant.) 

The chromatography analyte concentration distributions are usually reproducible if 

research retain same conditions, thus the parameters of chromatography are relatively constant 

across multiple separation process. The estimation of chromatography parameter is of research 

interest with many applications such as chromatography peak (analyte concentration distribution) 

simulation, analyte component selection and multiple peaks deconvolution [7]. To date, 

chromatography parameters are determined by separate sets of experiments [8], which is costly 

and time consuming. In this work, we develop a transform method that converts measured 

chromatography analyte concentration distributions into the form of data commonly collected as 

statistical sampling data so that statistical methods can be used for parameter estimation. Lastly, 

this transformation method was applied to convert a set of experimental data collected during a 

chemical compound separation experiment into the form of statistical sampling data, and the 
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chromatography parameters were then estimated. Simulated outflow peaks based on estimated 

chromatography parameters better resembled the outflow peak plot from the observed 

experimental data as compared to current prevailing Gaussian peak matching method. 

1.2 Definition of Chromatographic Terms. 

Mobile phase is the phase that moves in a direction toward outlet 

Stationary phase is the materials fixed in position during the separation process for the 

chromatography 

Note: Mobile phase and stationary phase are the two phases in chromatography 

Analytes are the substances to be separated through the chromatographic process  

Note: The analytes are partitioned in both mobile phase and stationary phase governed by 

specific partition coefficients.  

Analytes concentration distribution is the curve representing analyte concentration versus the 

stage. 

Note: The general term “distribution” refers to a probabilistic or statistical distribution, whereas 

the term “analytes concentration distribution” refers to the chromatography analyte concentration 

distribution curve, which is commonly described as distribution of chromatography peak in field 

of chromatography separation  

Eluent is the solvent that dissolve the analytes (solute) and it flows in mobile phase carrying 

analytes down the stream to the outlet of the chromatography. 

Partition coefficient   is a constant ratio of the concentration of an analyte in mobile phase to 

the concentration of this analyte in stationary phase at equilibrium.  

Proportion constant   is proportion of the analyte in mobile phase at equilibrium, and 

  
 

   
 

On chromatography denotes the analyte that is still on the chromatography column. 

Outflow denotes the state that analyte flow out of chromatography system. 

Retention time is the length of time an analyte is retained on a chromatography column. 
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Dead volume is the total volume of the liquid phase in the chromatographic column. It is a 

parameter which is independent of the types of analytes and mobile phase. 
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Chapter 2: Mathematical Model for the Separation Process of 

Chromatography  

2.1. Introduction 

Chromatography is widely used as a technology for separating mixtures of compounds by 

partitioning into the mobile and stationary phases.[9] A mathematical model is essential not only 

for predicting the retention time and the peak shape of the chromatography analyte  

concentration  distribution, but also for understanding the separation mechanism of 

chromatography and detecting whether the conditions were correct (e.g., whether there was an 

overload (excessive amount of analyte was added to the chromatography system) of the 

sample.[10] A variety of statistical distribution functions such as exponential, Gaussian (normal), 

exponential modified Gaussian, Weibull, log-normal have been used to approximate the 

chromatography analyte concentration distributions, and were further applied to the 

deconvolution of stacked peaks[10][11]. However, the empirical or semi-empirical “peak shape-

matching” (i.e., matching the chromatography analyte concentration distributions) to the 

mathematical formulas from known statistical distribution functions have been anecdotal, and as 

a result the empirically chosen statistical distribution functions and corresponding parameters 

applied within the context of the chromatography separation can cause confusion when utilizing 

the statistical terminology. It also cannot be stated with sufficient confidence that 

chromatographic models based on matching peak shapes or numerical simulations generalize to 

all types of chromatography. Furthermore, although it had been reported that the outflow 

chromatography peaks often followed skewed distributions [12], in many cases researchers still 

apply use mathematical formulas for distributions such as Gaussian, and other symmetric 
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distributions to model outflow chromatographic peaks analyte concentration distributions and 

conduct deconvolutions based on these symmetric distributions formulas. To date very few 

studies had been conducted on understanding the intrinsic mechanism of chromatography 

separation and distinguish the statistical distribution function formulas used s for on-

chromatography peaks analyte concentration distributions versus outflow peaks analyte 

concentration distributions by their mechanism of formations/chromatographic principles [13]. 

Numerous attempts have been made to derive numerical model for the separation process 

of certain type chromatography, such as thin layer chromatography (TLC) [14], column 

chromatography [15], gas chromatography (GC) [16], high performance liquid chromatography 

(HPLC)[17], and gel permeation chromatography (GPC) [18]; however there is currently no 

universally-accepted underlying mathematical model for the separation process that governs all 

types of chromatography [19]. Yang et al. first postulated a numerical model for counter current 

chromatography (CCC) that distinguished the on-chromatography analyte concentration 

distributions as governed by the mathematical formula for the binomial distribution and outflow 

analyte concentration distributions as the mathematical formula of the negative binomial 

distribution, and they came to this by enumerating the first several stages in a table [20]. They 

then extrapolated their results as the basis of their theory (theory of counter current extraction 

table, TCCET) [20]. However, their postulations of the formula for the binomial distribution for 

on-chromatography analyte concentration distributions and the formula for the negative binomial 

distribution for outflow analyte concentration distributions were based on tabulated enumeration 

of only the first several stages—they were not rigorously proved for all stages. Moreover 

TCCET limited to only counter current chromatography.  
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In this paper, the first generalized theorem to model the analyte concentration distributions 

for all types of chromatography is proposed using chromatography tables, but we also provide a 

proof of this theorem using mathematical induction. This proposed theorem states that, for any 

number of theoretical plates, the on-chromatography analyte concentration distributions exhibit 

the same formula as binomial distribution, and outflow analyte concentration distributions 

exhibit the same formula as negative binomial distribution. In both case, we assume diffusion is 

negligible.  We also distinguished the interpretations of the components of the on-

chromatography analyte concentration distributions from the interpretations of the random 

variable and parameters that define the commonly known binomial distribution and share the 

mathematical formula. Similarly for the outflow analyte concentration distribution we compared 

the interpretations to the random variable and parameters for the commonly known negative 

binomial distribution from statistics that shares this mathematical formula. This helps to reduce 

confusion between the differing interpretations and ramifications of these shared mathematical 

formulas.     

  

2.2 Method 

2.2.1 Model Description  

2.2.1.1 The Principles of Chromatography Separation 

Mobile phase and stationary phase are the two phases in chromatography. The mobile 

phase is the phase that moves in a direction toward outlet. It is usually an eluent solution of 

analytes (substances to be separated). The stationary phase is the materials fixed in position 
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during the separation process for the chromatography. The analytes are partitioned in both 

mobile phase and stationary phase governed by specific partition coefficients.  The separation 

occurs when eluent flows in mobile phase carrying analytes down the stream and stationary 

phase traps a portion of substances, which keeps them temporarily at fixed position. The 

substances that partition more in mobile phase travel faster than those that partition less in 

mobile phase. To assist the mathematical derivation of the model, the entire chromatography 

path (usually column) is divided into discrete sections (known as theoretical plate) in which the 

partition in which partitioning of the solute between the stationary phase and the mobile phase is 

assumed to reach equilibrium. In practice, the total chromatography separation process is divided 

into n discrete stages, and each stage solvent front travels a distance of stage length and stage 

length is equal to theoretical plate length.  

2.2.1.2 Model Assumptions 

(1) We assume that the ratio of solute in mobile phase versus in stationary phase is same 

throughout the chromatography process for the same compound, i.e., the partition coefficient 

remains constant throughout chromatography process. (2) Equilibrium of partitioning is assumed 

for each stage of chromatography process. (3) We assume that diffusion of solute is negligible. 

(4) We assume that the eluent flow rate is constant throughout the chromatography process. (5) 

The initial feeding the analytes containing solution occurs only in stage 1, and after that the only 

intake is the pure eluent. (6) For convenience and without loss generality, we normalized the 

total amount of analyte that initially had been added to system as the dimensionless quantity 1 to 

represent the total weight the analyte. Note that this assumption does not change the shape of the 

chromatography analyte concentration distribution, and that it is the distributions relative shape 



11 
  

that is essential in parameter estimation. Normalization is a technique used for quantitatively 

assessing a chromatography analyte concentration distribution to provide a quantitative analysis 

of the mixture being separated.  

 2.2.2 The Chromatography Process 

In order to visualize the chromatography process, we used figure 1 to assist description of 

the mechanism of chromatography analyte concentration  distribution of single analyte. We 

define partition coefficient   as the ratio of the concentration of an analyte in mobile phase to the 

concentration of this analyte in stationary phase at equilibrium. We also denote the proportion 

constant   as  

   
 

   
  

It is the proportion of the analyte in mobile phase at equilibrium.  

2.2.2.1 The Flow Chart 

At initial stage (stage 1), we assume that analytes containing solution fed to 

chromatography is partitioned to both mobile and stationary phase and established equilibrium so 

that mobile phase contains   portion of total analyte whereas the stationary phase contains     

portion of total analyte. In this stage, the frontier of the analyte containing solution reaches the 

length of one theoretical plate thus as shown in figure 1, analyte is only contained in first plate of 

chromatography, with   portion in mobile phase and     portion in stationary phase.  
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At stage 2, in plate 1 of the chromatography the mobile phase is replaced by blank eluent 

and the mobile phase from stage 1 flows from plate 1 to plate 2. Since the stationary phase 

temporarily fixed the analyte at the plate 1 from stage 1, plate 1 contains     portion of the 

total analyte. And since there is no analyte in plate 2 of stationary phase from the stage 1, at 

stage 2 the plate 2 contains   portion of the total analyte. Once the partition reach equilibrium for 

this stage (2),     portion of the analyte remaining in all plates is partitioned to the stationary 

phase and   portion of the analyte in all plates is partitioned to the mobile phase. Hence at stage 

2: in the mobile phase in plate 1 there is (   )  potion of total analyte, and in the stationary 

phase of plate 1 there is (   )(   ) portion of total analyte; whereas in the plate 2 mobile 

phase there is    portion of total analyte, and in the plate 2 stationary phase there is  (   ) 

portion of total analyte.  

At stage 3, the mobile phase in plate1 is again replaced by blank eluent, and the mobile 

phase from stage 1 flows from plate 1 to plate 2, and from plate 2 to plate 3. Since the stationary 

phase temporarily fixed the analyte at plate 1 from stage 2, plate 1 contains (   )  portion of 

the total analyte. Plate 2 contains analytes from mobile phase of the plate 1 in stage 2 and the 

stationary phase of plate 2 in stage 2, and both combined are (   )  portion of total analyte. 

Therefore, in stage 3 plate 2 contains  (   )  portion of the total analytes. The stationary 

phase of plate 3 does not contain any analyte at stage 2, thus at stage 3 all analyte contained in 

plate 3 are from the mobile phase of plate 2 in previous stage, which is    portion of total 

analyte. After the partition reach equilibrium,     portion of the analyte in all plates is 

partitioned to the stationary phase, and   portion of the analyte in all plates is partitioned to the 

mobile phase. At this stage, there are (   )   portion of total analyte in the mobile phase of 

plate 1, (   ) (   ) portion of total analyte in the stationary phase of plate 1,  (   )   
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portion of total analyte in the mobile phase of plate 2,  (   ) (   ) portion of the total 

analytes in stationary phase of plate 2,     portion of the total analytes in mobile phase of plate 

3, and   (   ) portion of the total analytes in the stationary phase of plate 3.  

Figure 2.1 Flow chart of analyte concentration in chromatography 

 

This process continues in same manner for each stage, i.e., blank eluent replaces the 

solution in plate 1, and the mobile phase in each plate from the previous stage carries analyte in 

the mobile phase to the next plate, whereas the stationary phase temporarily holds the anaylte in 

same plate as the previous stage. Once the equilibrium is reached, the ratio of anaylte in mobile 

phase to anaylte in stationary phase in any plate of chromatography is same as the partition 

coefficient  , so 
 

   
 portion of analyte is in mobile phase and 

 

   
 portion of analyte is in 

stationary phase. Thus the recursion relationship for the chromatography can be described as 
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equation below. The proportion of analytes in mobile phase, stationary phase and combined 

phases for each plate of chromatography at first four stages are summarized in table 2.1 (similar 

to [12]).  

2.2.2.2 The Chromatography Analyte Concentration Distribution Derived 

Using Chromatography Table. 

Table 2.1 Solute analyte concentration distribution on-chromatography with four theoretical 

plates. 

Plate  Stage 1 Stage 2 Stage 3 Stage 4 

 Mobile phase 

1    (   )  (   )   (   )  
2        (   )    (   )  

3         (   ) 
4       

Sum          

 Stationary phase 

1     (   )  (   )  (   )  

2  (   )    (   )    (   )  
3     (   )    (   )  
4      (   ) 

Sum                 

 Combined  

1 1 (   ) (   )  (   )  
2     (   )    (   )  

3         (   ) 
4       
Sum 1 1 1 1 

For these stages, the combined proportion of analytes in both mobile phase and stationary 

phase is distributed with same formula as binomial distribution as shown in Figure 2.2. Assume 

that we set a cutoff to begin outflow collection at the plate number 2, as shown in figure 2.3. The 

proportion of analytes in the mobile phase of this second plate from the previous stage represents 

the proportion of analytes that flow out in the current stage. For example, in stage 2 the outflow 
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is from the plate 2 mobile phase from stage 1 which is 0; and in stage 4 the outflow is the plate 2 

mobile phase from stage 3, which is    (   ). The proportion of analytes at the flow-out point 

after passing 2 plates is distributed with same mathematical formula as negative binomial 

distribution. Generally, for any cut off plate r, in the stage x the outflow is from the plate x-1 

mobile phase which is  (
   
   

)   (   )   .  

Figure 2.2 On-chromatography analyte concentration distribution  
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Figure 2.3 Outflow analyte concentration distribution 

 

We have derived on-chromatography and outflow analyte concentration distribution for 

initial stages first by tabulation similar to Yang’s approach [12]. We then extend Yang’s 

approach [12] to infinite stages for both on-chromatography and flow-out distributions using 

proof by induction. 

2.3. Results 

By mathematical induction we prove the formula for the on-chromatography analyte 

concentration distributions matches the formula for the binomial distribution. Similarly, using 

induction we prove the formula for outflow analyte concentration distributions match the 

formula for the negative binomial distribution. These proofs follow. 
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2.3.1 Notation 

For   
 
 ,   denotes the relative amount of analyte in mobile phase, the subscript   

denotes the stage number, the superscript   denotes the number of theoretical plate.  

Similarly, for   
 
,   denotes the relative amount of analyte in stationary phase, the 

subscript   denotes the stage number, and the superscript   denotes the number of theoretical 

plate. 

2.3.2 Proof of on-Chromatography and Outflow Analyte Concentration 

Distributions 

2.3.2.1 Initial Condition 

Equation (1) describes the first stage of the chromatography process when the analyte 

was added to the column. 

{
  

         

  
     

    (1) 

2.3.2.2 Recurrence Relation:  

Following the initial conditions, blank eluent is added to the column. Equation (2) represents the 

change in the entire distribution of the analyte concentration along the chromatography (for the 

specific stage, stage    ) in comparison to the analyte concentration distribution in the previous 

stage (stage  ) as the equilibrium between the mobile and stationary phase are established within 

each plate along the chromatography. 
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{
    

   
 (  
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2.3.2.3 Proof by Induction. 

Next we prove that the on-chromatography analyte concentration distribution as following: 

 Part (a) proof for the plate (superscript)   {      } 
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First let us prove that it is true for the stage 1: 
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 Let us show that for stage      
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Therefore, by recursion relation (2) for mobile phase we have: 
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By recursion relation (2), for stationary phase we have: 
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is proved for plate    {    } 

And thus plate      {      } 
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Part (b) proof for the plate (subscript)   { } 

The analyte concentration for mobile and stationary phases of the first plate   
  and   

    

       

 The recursion relation is: 
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 )      
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 )      

 (   ) 

Since after initial addition of analyte only pure eluent was flushed through the system, we have 

    
              

From initial condition: 

  
      

And   
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Thus   
  (   )  and   
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Combining the results from part (a) and part (b) we have:  

For stage     ,{
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is proved for plate   {      } 
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And hence for stage   {
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Denote   
 
 as the total analytes in j

th 
plate of i

th
 stage then, 
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which has the same mathematical formula as the binomial distribution. Therefore it is proved 

that the on-chromatography analyte concentration is distributed by the mathematical formula of 

the binomial distribution for all stages. 

  
 
 (

   
   

)   (   )         {       }       {     }   ( ) 

which has same mathematical formula as the negative binomial distribution. Therefore it is 

proved that the outflow analyte concentration distribution is distributed by the mathematical 

formula of the negative binomial distribution for all stages. Note: the outflow analyte quantity of 

current stage is analyte quantity of the mobile phase of the last plate of the chromatography 

column. 

2.3.3 Statistical Distribution Functions versus Chromatography Analyte 

Concentration Distributions 

In statistics, the binomial distribution was used to represent a sequence of independent 

Bernoulli trials with fixed success rate of   . Although the on chromatography distribution of 

analyte concentration exhibits the same formula as statistical binomial distribution, it bears 
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different meaning. The chromatography analyte concentration distribution is a result of the 

sequence of partitions of analytes in each plate of the chromatography with a particular partition 

coefficient,  . The result of Bernoulli trials is either “success” or “failure,” whereas the partition 

of analytes occurs in proportions. The proportion of analyte in mobile phase   
 

   
 only after 

equilibrium is established. Therefore we would like to summarize the comparisons between 

statistical distribution versus chromatography analyte concentration distributions in table 2.  

 

Table 2.2. Contrast between statistical and chromatography terms. 

 Terminology 

Parameter/Formula Statistics Chromotography 

i Number of independent 

Bernoulli trials (often denoted 

as n) 

Stage number, and also the 

total number of plates in a 

given stage 

 “Success” probability of a 

each of the single independent 

Bernoulli trials; for each 

Bernoulli trial, the sample 

space for possible outcomes is 

the set 

{“Success”, “Failure”} 

Proportion of the analyte in 

the mobile phase at its 

equilibrium; more specifically, 

this is: 1) the proportion that 

can be found by summing the 

proportion of the analyte in 

the mobile phase across the 

chromatography; and 2) the 

proportion of the analyte in 

the mobile phase within a 

given plate (within a given 

stage) 

j Number of “successes” across 

the i (n) independent Bernoulli 

trials (often denoted as Y) 

Location, or plate number, on 

the chromatography; this is 

also the number that, using the 
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binomial distribution formula, 

allows one to determine how 

the proportion of the analyte is 

distributed across the 

choromotography (this is the 

proportion in both the mobile 

and stationary phases at that 

location/plate) 

(
 
 
)   (   )    

Probability mass function of 

the number of “successful” 

independent Bernoulli trials (j, 

which is often denoted as Y) 

across the total number of 

these trials (i, which is often 

denoted as n) 

The proportion of the analyte 

on the chromatography at 

plate j in stage i 

2.4. Simulations  

We simulated the outflow analyte concentration distributions from a chromatography 

process by using the initial condition (eq. 1) and recursion relationships (eq. 2). We also assume 

that the random measurement error follows normal distribution with mean 0 and (small) variance 

0.0009 (standard deviation of 0.03). The simulated analyte concentration distribution is 

compared with negative binomial distribution and Gaussian distribution in different scenarios 

listed in Figure 2.4. For each scenario, all three distributions are exhibited in same plot.  

The distribution function of negative binomial distribution is: 

 ( )  (
   
   

)   (   )      

Where λ=
 

   
 and   is the partition coefficient, j is the total number of theoretical plates and n is 

the total number of stages. 
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Gaussian model is obtained by matching the mode and variance with negative binomial model. 

     
(   )(   )

 
 

         
(   ) 

  
 

The distribution function of Gaussian model is: 
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√  
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The simulation program is develop using a statistical software SAS and for detailed code 

see appendix. 

As shown in figure 2.4, the simulated analyte concentration distribution is closer to the 

negative binomial distribution in that both are right skewed with a heavy tail, whereas the 

Gaussian model peak is symmetric. If we use the Gaussian model to predict outflow the 

chromatography peaks in separation process, we may misestimate the cutoff point for collecting 

one of the components, and thus result in impurities in the later component. For example, assume 

that  =0.8, j=5, n=50, as shown in figure 2.5, if we specify a 95% desired recovery, then the 

cutoff should be at  stage 18 by using Gaussian model, however, the real recovery by simulation 

is 87%, similar to the negative binomial distribution.  By using Gaussian model,  we would 

assume that 5% of this analyte will be carried over to the next analyte component, however it is 

underestimated by 160%. In fact, accord to simulation 13% of this analyte will be carried over to 

the next analyte component. 
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Figure 2.4 Simulated outflow chromatography analyte concentration distributions  

=0.2, j=10, n=100 =0.4, j=10, n=100 

  

=0.6, j=10, n=100 =0.8, j=10, n=100 

 
 

=0.2, j=5, n=50 =0.4, j=5, n=50 
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=0.6, j=5, n=50 =0.8, j=5, n=50 
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Figure 2.5 Simulated outflow chromatography analyte concentration distributions for =0.8, 

j=5, n=50 and 95% desired recovery. 

 

2.5. Conclusions 

In this work we have demonstrated that in general chromatography analyte concentration 

distributions can be described with formulas that are analogous to formulas for the binomial 

distribution or the negative binomial distribution. The out-flow analyte concentration distribution 

formulas are analogous to those of the negative binomial distribution, and the on-

chromatography analyte concentration distributions also match the formula for the binomial 

distribution. Although this result has been tabulated by enumeration of first several stages, there 

was previously no rigorous proof such that chromatography with infinite stages can be covered. 

In this study, we not only established the on-chromatography and out-flow analyte concentration 
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distributions using mathematical proof by induction, but also demonstrated that the simulated 

outflow analyte concentration distributions match the negative binomial distribution and not the 

Gaussian distribution, which is often used in practice, by simulations. 
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Chapter 3: Binomial-Negative Binomial Theorem, the Mathematic Bridge 

between the Distribution of the on-Chromatography and the Outflow Analyte 

Concentration Distributions 

3.1. Introduction 

The binomial and negative binomial distribution had been of research interest for decades 

[21]. For example, negative binomial distribution was well known for its fitting to the over-

dispersed count data produced by a Poisson mechanism [22]. The binomial distribution was used 

as the numeric model for chromatography analyte concentration distributions [23].  Recently, the 

mathematical formula for the negative binomial distribution was shown to be a better numeric 

model for chromatography analyte concentration distributions in counter current chromatography 

(CCC) outflow peaks [24]. However, other than under the assumptions of a series of independent 

Bernoulli trials, the mathematical relation between binomial and negative binomial distribution is 

still to be explored. 

The chromatography is a type of laboratory techniques that separate the mixture of 

compounds to obtain the compounds of interest. The substance to be separated is called analyte. 

The chromatography analyte concentration distribution is measured by partitioning of this 

analyte between mobile and stationary phases. The mobile phase is the phase that moves the 

mixture in a certain direction and the stationary phase is the phase that fixes, or holds, some of 

the analyte from the mixture in the place. In chromatography separation the analyte 

concentration distribution, which is the distribution of the quantity of analyte as it flows out of 

the chromatography as function of time, provides the theoretical guidance for analyte  

concentration distribution simulations so that researcher could be able to predict the peak 

location by using previous experimental data. 
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Despite a several decades effort to specify the chromatography analyte  concentration  

distribution correctly, the best mathematical model for chromatography separation process is still 

under debate. For example, Yuri Kalambet et al believes that exponentially modified Gaussian 

function is the best formula for describing chromatographic peak shape [25] however according 

to F.C. Denizot and M.A. Delaage the chromatography analyte  concentration  distribution 

converge toward Laplace-Gaussian distribution[26]. None of these studies account for the 

difference between the skewness of analyte’s outflow and on-chromatography analyte 

concentration distribution.  

In our preceding work, we proved that the on-chromatography analyte concentration 

distribution is matches that of a binomial distribution, and that the outflow analyte concentration 

distribution matches that of a negative binomial distribution. This work clarifies the difference 

and finds the relationship between the on-chromatography analyte concentration distribution and 

outflow analyte concentration distribution [27]. This relationship between on-chromatography 

analyte concentration distribution and outflow analyte concentration distribution is important, 

and is unknown to most researchers in the field of chromatography separation.  

Casella and Berger have demonstrated the relationship between binomial and negative 

binomial cumulative distribution functions, e.g. ex 3.12. [27] They prove this result in their 

solution manual based on a sequence of Bernoulli trials. In the context of this work, we are 

unable to rely on the probabilistic relationships that advance their proof. This work relies purely 

on mathematical relationships between on-chromatography analyte concentration outflow 

analyte concentration distributions. 
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3.2. Process of Chromatography Separation 

Denote mobile phase’s     stage and     plate as   
 
 and stationary phase’s     stage and 

    plate as   
 
. Similiarly, denote total analyte in the mixture during the     stage at the     plate 

as   
 
. We define partition coefficient  , as the ratio of the concentration of an analyte in mobile 

phase to the concentration of this analyte in stationary phase at equilibrium. We also denote the 

proportion constant   as  

   
 

   
  

It is the proportion of the analyte in the mobile phase of the mixture at equilibrium.  

In chapter 2, we proved that 

{
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as function of j represents the total on chromatography analyte concentration as 

function of (or located at) plate numbers. This analyte concentration distribution has the same 

formula as the binomial distribution from statistics.  
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 ( )      
   

 (
 
 
)   (   )    

When we fix the cutoff at plate number  , the proportion of analyte in mobile phase at last 

plate across all stages is function of total number of plate   and is the outflow analyte 

concentration distribution; and this outflow analyte concentration distribution has same as the 

mathematical formula as negative binomial distribution: 

 ( )    
 
 (

   
   

)   (   )     

Assume the     stage is the stage to complete the dead volume (dead volume is defined 

as the total volume of the mobile phase in the chromatographic column). 

When we fix total number of plates  ,  at     stage (   ) the total analyte remaining on 

the chromatography is: 

∑ (
 
 
)   (   )   

   

   

 

At     stage the total analyte in collection of outflow solutions are: 

∑(
   
   

)   (   )    

 

   

 

Thus the proposition of our (mathematically-based) binomial-negative binomial theorem 

in this setting is: 

∑ (
 
 
)   (   )    
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                  ( )        
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This implies that the combination of the sum of the on-chromatography analyte 

concentration distribution from plate 1 to plate   and the sum of outflow chromatography analyte 

concentration distribution from the stage   to   is one (1). 

We illustrated this relationship (eq 1.) by an example as shown in Figure 3.1. Suppose we 

set the cutoff for the flow out distribution of analyte at 20
th

 Plate and set the total stage number to 

be 50. Then, the on chromatography analyte concentration distribution is the sum of analyte 

concentrations from plate 1 to plate 19, the red crosses in Figure 3.1 and the out-flow analyte 

concentration distribution is the sum of analyte concentrations in mobile phase of 19
th

 plate from 

stage 20 to stage 50, the blue circles in Figure 3.1. If we add these two sums together it should 

equal the total of all or the analyte concentrations, or one (1). 

Figure 3.1. Diagram of chromatography process  

 

The relation between the on-chromatography analyte concentration distribution (which 

has been shown in Chapter 2 to match the binomial distribution) and the outflow analyte 
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concentration distribution (which has been shown in Chapter 2 to match the negative binomial 

distribution) can be better visualized in figure 3.2, a 3-D plot of how the on-chromatography 

analyte concentration distribution changes over the first 9 stages, assuming the partition 

coefficient to be 1 and thus the proportion constant      . In each stage the quantity of the 

analyte concentration for each plate is represented by the bars in a particular color, which again, 

notably, mathematically matches the binomial distribution (indicated by   
 
 above). Suppose we 

set the cutoff for chromatography at the 3
rd

 plate, and thus the outflow analyte concentration 

distribution at each stage equals to the concentration of the analyte in last plate multiplied by the 

proportion constant   in the previous stage (the analyte concentration in the mobile phase of last 

plate). Therefore analyte concentration distribution across the highlighted pane multiply the 

proportion constant   represents the outflow analyte concentration distribution over the first 9 

stages, which matches the mathematical formula for the negative binomial distribution 

 

Figure 3.2 3-D plot of on-chromatography analyte concentration distribution (top). 3-D plot of 

on-chromatography analyte concentration distribution taking off the first two plates for clarity of 

display of outflow analyte concentration distribution (bottom)  
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The data for the plot of figure 3.2 is listed in table 3.1. The bordered data colored in green 

and yellow represent a particular example that follows the mathematically-derived binomial-

negative binomial theorem ∑ (
 
 
)   (   )       

   ∑ (
   
   

)   (   )     
     . In this 

example, the on-chromatography binomial portion  ∑ (
 
 
)   (   )      

    are the cells colored in 

yellow and the outflow negative binomial potion ∑ (
   
   

)   (   )     
   are the cells colored 

in green multiply the proportion constant      . Through addition, it can be shown 

that                           
                       

 
  . And if we set the cutoff of 

the chromatography to be the 4
th

 plate then at stage 8, the on-chromatography portion (that 

matches the formula for the binomial distribution)  ∑ (
 
 
)   (   )      

    are the cells colored in 

pink, and ∑ (
   
   

)   (   )     
   (the outflow that matches the formula for the negative 

binomial distribution) are the cells colored in blue multiplied by the proportion constant   

   . Summing these quantities again adds to one (1): 

0.078125+0.0546875+0.1640625+0.2734375+0.5*(0.125+0.25+0.3125+0.3125)=1. 

 Table 3.1Analyte concentration at first 9 stages across first 9 plates 

Plate # Stage1 Stage2 Stage3 Stage4 Stage5 Stage6 Stage7 Stage8 Stage9 

1 1 0.5 0.25 0.125 0.0625 0.03125 0.015625 0.0078125 0.003906 

2 
 

0.5 0.5 0.375 0.25 0.15625 0.09375 0.0546875 0.03125 

3 
  

0.25 0.375 0.375 0.3125 0.234375 0.1640625 0.109375 

4 
   

0.125 0.25 0.3125 0.3125 0.2734375 0.21875 

5 
    

0.0625 0.15625 0.234375 0.2734375 0.273438 

6 
     

0.03125 0.09375 0.1640625 0.21875 

7 
      

0.015625 0.0546875 0.109375 

8 
       

0.0078125 0.03125 

9 
        

0.003906 
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Now if we let                    . We make this switch to match more commonly 

used notation for the formulas of the binomial and negative binomial distributions as follows. 

Let analyte concentration be a function  ( ) of plate number ( ) for on-chromatography analyte 

concentration distribution.  

And let analyte concentration be a function  ( ) of stage number ( ) for the outflow analyte 

concentration distribution.  

 ( )  (
 
 
)   (   )      ( )  (

   
   

)   (   )    

3.3 Proof of Binomial-Negative Binomial Theorem Based Solely on 

Mathematical Relationships 

Proposition (Binomial-Negative Binomial Theorem) 

∑ (
 
 
)   (   )    

   

   

∑ (
   
   

)   (   )    

 

   

                                                                  ( ) 

Before prove this Proposition we need to prove the following Lemma: 

      (   )                  

     ( )                                      
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Based on the assumption that   ( )    we have that  (   )                        

         and the Binomial-Negative Binomial Theorem is proved based solely on their 

mathematical formulas. 

 

3.4 Conclusions 

In this work, we have demonstrated how the on-chromatography analyte concentration 

distribution, which matches the mathematical formula used for the binomial distribution, is 

related to outflow analyte concentration distribution, which matches the mathematical formula 

for the negative binomial distribution, by the proportion constant,  . This is visualized by 3-D 

plot of an on-chromatography analyte concentration distribution example for the first several 

stages. Based on this relationship we have proposed and proved the binomial-negative binomial 

theorem by mathematical induction.  It can be applied in establishment of relationship between 
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the on-chromatography and outflow analyte concentration distributinos in chromatography 

separation processes. This work enables researcher to visualize chromatography separation 

process by the two simultaneous analyte concentration distributions on-chromatography 

(matching the binomial distribution formula mathematically) and the outflow (matching the 

negative binomial distribution formula mathematically), which further helps to clarify the current 

misunderstanding of chromatography applications that estimate analyte concentration 

distributions using the same formula (or analyte concentration distribution) for both on-

chromatography and outflow chromatography analyte concentration distributions. 
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Chapter 4: Estimating Parameters in the Chromatography Separation 

Process  

4.1 Introduction 

Chromatography is a widely applied technique for the separation of various mixtures 

based on their difference in partition coefficient between mobile and stationary phase. Correct 

identification of the mathematical model of the chromatographic separation process was an 

essential preliminary step understanding the mechanism of separation and for prediction of 

retention time of analytes during this process. Many different numeric models such as 

exponential, Gaussian (normal), exponential modified Gaussian, Weibull, log-normal were 

proposed to fit the chromatography analyte concentration distributions [28-32] by empirical peak 

matching; however, most of these models did not follow the mechanism of chromatography 

separation. The mathematical formulas for the binomial distribution and negative binomial 

distribution were postulated as the numeric models for on-chromatography and outflow analyte 

concentration distributions, respectively, for the counter current chromatography (CCC) by Yang 

et al using theory of countercurrent extraction table (TCCET)[33]. In chapter 2, we proved that 

the on-chromatography analyte concentration distribution mathematically matches the formula 

for the binomial distribution, and that the outflow analyte concentration distribution 

mathematically matches the formula for the negative binomial distribution, and further that this 

was the case for all type of chromatography separation processes. Since the chromatography 

analyte concentration distribution has already been rigorously determined (in Chapter 2), we 

extend this to provide a means of parameter estimation of chromatography analyte concentration 

distributions by mapping  previous established estimation methodology to the types of data or 

measures collected by chromatography processes. The estimation of the analyte concentration 
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distribution parameter leads to the estimation of partition coefficient using chromatographic data. 

This builds the foundation for many applications such as chromatography analyte concentration 

distribution simulation, analyte component selection, and deconvolution when there are more 

than one analyte concentration to be separated [34]. 

To date, the estimation of partition coefficient has been conducted by either a separate set 

of experiments [35] or by some optimization algorithm, e.g., the particle swarm optimization 

(PSO) algorithm in certain types of chromatography such as immobilized metal affinity 

expanded bed adsorption chromatography [36]. The limitations of these methods are: (1) it is 

time consuming and costly for conducting a different set of experiments; and (2) the particle 

swarm optimization (PSO) algorithm is only suitable for a particular type of chromatography 

(immobilized metal affinity expanded bed adsorption chromatography). In this work, we apply 

the standard statistical methods, (e.g., the method of moment and maximum likelihood 

estimation) to estimate the chromatography analyte concentration distribution parameters such as 

number of theoretic plates and partition coefficient between mobile and stationary phase.  

Previously we have developed the mathematical model for the separation process of 

chromatography using discrete formulas in chapter 2. This is more suitable to model the types of 

chromatography that have a relatively small number of theoretical plates, such as column 

chromatography, thin layer chromatography (TLC) and counter current chromatography (CCC) 

since peaks are discrete. However for the types of chromatography with large number of 

theoretical plates, such as gas chromatography (GC), high pressure liquid chromatography 

(HPLC), the analyte concentration distributions are closer to continuous, therefore it is more 

desired to develop a mathematical model using continuous formulas. As plate height approaches 

zero and the number of plates approaches infinity, the on-chromatography and outflow discrete 
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distributions become approximately continuous. We apply Taylor expansion and use moment 

generating functions to approximate the discrete on-chromatography analyte concentration 

distributions (which were proven in Chapter 2 to match the binomial distribution formula) and 

discrete outflow analyte concentration distributions (which were proven in Chapter 2 to match 

the negative binomial distribution formula) with continuous mathematical formulas, which 

match the formulas for Gaussian distributions. Notably, most of the current application utilized 

this distribution to simulate outflow analyte concentration distributions for most types of 

chromatography.[37] 

 

4.2 Chromatography Data  

Chromatography experiments produce two data variables. They can either provide peak 

intensity and retention time for the chromatography with continuous concentration distributions, 

or the weight of analyte and the volume of mobile phase (eluent) that has run through the column 

for the chromatography with discrete analyte concentration distribution. The raw column 

chromatography data for 1,4-dibutoxylbezene from Bai et al. previous chemical compound 

separation work [38] is exhibited in table 4.1, in which the weight of analyte and the volume of 

mobile phase (eluent) were recorded. The weight of analyte was obtained by measurement of the 

dried analyte from the collection of the chromatography outflow solution. The experimental data 

produced are analogous to a histogram, and notably histograms can be generated from typical 

data produced by experiments to be statistically analyzed. Notably, chromatography date 

collected are generally out of scale on both axes as compared to the relative frequencies of a 

histogram, and thus the outflow chromatography data need to be transformed to be more similar 

to data generated from typical statistical analyzed experiment in order to apply the established 
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parameter estimation processes; and because the chromatography data provide the relative shape 

for a histogram, this become possible. 

In chromatography separation, the estimation of the parameters, such as the partition 

coefficient and number of theoretical plates to use, are of research interest since it can provide 

information assisting prediction of the location of analyte concentrations. In this study, we 

transformed data to convert the chromatography data to statistical data with following 3 steps: 

(1) adjustment by an offset (i.e., the theoretical plate volume); (2) conversion of the weight to 

frequency to unfold the data as ordered data; and (3) randomize the ordered data. 

 

Table 4.1 Example of raw data from chromatography separation of 1,4-dibutoxylbezene 

Volume(mL) Weight(mg) Volume(mL) Weight(mg) Volume(mL) Weight(mg) 

2 0 114 21 128 20 

4 0 116 30 130 13 

    118 38 132 9 

106 0 120 41 134 5 

108 1 122 39 136 3 

110 5 124 34 138 2 

112 12 126 27 140 1 

 

We need to transform volume into plate number by the appropriate offset value. This 

offset serves to normalize the distribution and also match its domain of the outflow analyte 

concentration distribution, which was found to have the same formula as the negative binomial 

distribution. The offset is 2 mL (the volume of theoretical plate) in this example, and thus the 

data is transformed as shown is table 4.2. The volume divided by the offset produces the 
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theoretical plate number. The volume of theoretical plate can be calculated by dividing dead 

volume by the total theoretical plate number. 

 Table 4.2 Transformed data where volume is divided by the offset 

Plate# Weight(mg) Plate# Weight(mg) Plate# Weight(mg) 

1 0 57 21 64 20 

2 0 58 30 65 13 

    59 38 66 9 

53 0 60 41 67 5 

54 1 61 39 68 3 

55 5 62 34 69 2 

56 12 63 27 70 1 

 

Without loss of generality, the weight of the analyte is converted to observed frequencies 

by one count per milligram (see Note below) and the data is transformed to order statistics as 

shown in table 4.3. There is a point for each milligram weight of analyte in this table  

 Table 4.3 Converted raw data 

 ( ) 54  ( ) 56  (  ) 56 

 ( ) 55  ( ) 56  (  ) 56 

 ( ) 55  ( ) 56  (  ) 56 

 ( ) 55  (  ) 56  (  ) 56 

 ( ) 55  (  ) 56  (  ) 56 

 ( ) 55  (  ) 56  (  )   
 

Note: The conversion of observed frequencies by the choice of scale for weight (e.g., milligrams, 

grams, etc.) of the analyte is relative. Both method of moments (MOM) and maximum likelihood 

estimator (MLE) are invariant of conversions of frequency counts to different choices of scaling 

for the weight of the analyte recovered. In other words, the multiplicative change of count per 
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unit of scale renders same estimation of parameter because the relative shape of the histogram 

produced by the data derived from the chromatogram results is constant across different scales 

(Invariance property of MLE is well known and the proof of invariance property of MOM in 

weight to frequency conversion, see section 4.4.1) 

 

4.3 Continuity Approximation by Asymptotic Chromatographic Analyte 

Concentration Distributions 

In chapter 2, we have proved that the mathematical model for on-chromatography analyte 

concentration distributions matches the binomial distribution, and the outflow analyte 

concentration distribution distribution matches the negative binomial distribition for discrete 

types of chromatography, such as column chromatography. In this chapter we propose the 

formula for the Gaussian distribution to approximate both on-chromatography and outflow 

analtye concentration distributions for the continuous chromatography analyte concentration 

distribution large number of theoretical plate (when partition coefficients are not near their 

boundaries of zero (0) and one (1)). 

4.3.1 Gaussian Approximation of on-Chromatography Analyte Concentration 

Distribution 

In statistics, the normal distribution has been shown to provide a good approximation for 

the binomial distribution by the central limit theorem [39]. However, in chromatography, 

although the on-chromatography and outflow analyte concentration distributions as functions of 

stage and plate number were proved to have the same formula as statistical binomial and 
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negative binomial distributions, respectively, the functions of analyte concentration distributions 

are not probabilistic, but rather are deterministic. Therefore, in this work, we present a purely 

mathematical proof of the validity of Gaussian approximation of analyte concentration 

distributions—both on-chromatography and outflow—without relying on probability-based 

relationships.  

 Assumptions: 

Since partition coefficient   is assumed to be not close to 0 or infinity, we have the 

proportion constant    
 

   
 not close to 0 or 1 (i.e., range of   is (   )). 

Denote   
 
 as the total analytes in j

th 
plate of i

th
 stage then, from equation (2)  

  
 
 (  

 
   

 
)  (

   
   

)   (   )    (
   
   

)     (   )     

 (
   
   

)     (   )            

For fixed total number of theoretical plates  ,   
 
 as function of     has the same formula as that 

for the binomial distribution    (     ) 

For simplicity, we switch to commonly used binomial distribution formula parameter notation 

conventions. 

Let  ( ) have the same mathematical formula as    (   )  and assume that      

 ( )   (
 
 
)  (   )    

Let us show that  ( ) has the same formula as  (     (   ))     
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)  (   )    

  

  (   ) 
  (   )    

Approximate the factorial to exponential using Stirling’s equation 
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which is same as: 
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Or with bounds: 
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 ( ) is a function, defined as order of n.    is of the order of  ( )and  (   ) is also of the 

order of  ( ) 

As      since   is constant in (   ), it implies that       (   )    and    should be 

at the vicinity of   

Thus, let         then         
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By Taylor expansion:  
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 ( )  √
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   ( 

(    ) 
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) 

Since      and      (   ) for binomial distribution, the on-chromatography 

analyte concentration distribution approaches Gaussian distribution as theoretical plate number 

approaches infinity. 

4.3.2 Gaussian Approximation of Outflow Analyte Concentration Distribution 

In chapter 2, we have proved that the outflow chromatography analyte concentration 

distribution has the same formula as negative binomial distribution.  The common knowledge 

from empirical curve fitting is that outflow chromatography analyte concentration distributions 

have the same formula as the Gaussian distribution as theoretical plate number approaches 

infinity [40].  We assume that this observation is true and let us prove it. 

Assumptions: 

Since partition coefficient   is assumed to be not close to 0 or infinity, we have the 

proportion constant    
 

   
 not close to 0 or 1. And the theoretical plate number   approaches 

infinity. 

The outflow quantity of analyte as function of stage is the mobile phase of the last plate 

(the plate at the cutoff) which is: 

  
 
 (

   
   

)   (   )     

For simplicity, we switch to commonly known negative binomial distribution conventions for 

parameters for its mathematical formula: 
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Let  ( )has the same formula as   (   )  and assume that      
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By Taylor expansion: 
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Therefore   has same formula as the distribution  (
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As the number theoretical plates approaches infinity, we can approximate the outflow 

chromatography analyte concentration distribution as following: 
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4.4. Parameter Estimation  

4.4.1 Method of Moments Estimator (MOM) 

The method of moments (MOM) estimator can be obtained by solving the following 

simultaneous equations to (match the first and second moments) observed to their theoretical 

values, or: 

{
 
 

 
    

∑    

 
                

  
 

 

   
∑   

 
 

 
                

  (
 

 
)
 

 
 (   )

  

 

{
 

  ̅  
 

 

  ̅̅ ̅  (
 

 
)
 

 
 (   )

  

 

{

   ̅ 

  ̅̅ ̅  (
 

 
)
 

 
 (   )

  

 

So, 

  ̅̅ ̅  (
 ̅ 

 
)
 

 
 ̅ (   )

  
 

The solution is: 

{
 
 

 
  ̃  

( ̅) 

  ̅̅ ̅   ̅  ( ̅) 

 ̃  
 ̅

  ̅̅ ̅   ̅  ( ̅) 

 



63 
  

From the transformed data, the sample mean and sample square mean is  

 ̅              ̅̅ ̅          

Thus the MOM estimator for the total plate number and proportional constant is  

{
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Proof of the invariance property of MOM in weight-frequency conversion: 

Assume that instead of 1 milligram per count, we use   milligram per count as conversion 

criteria. Then the total number of each     in the dataset become the number of    in original 

converted dataset multiply  , therefore (∑    )     (∑    )  and (∑   
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Thus invariance property of MOM is proved for the analyte weight to frequency conversion. 

  

4.4.2 Maximum Likelihood Estimator (MLE) 

The maximum likelihood estimator can be solved by numerical method such as Newton-

Ralphson   

Denote   (   ) , then the likelihood function is : 
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The gradient vector is 
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and the hessian matrix is   
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We can set initial guess of maximum likelihood estimator by using MOM estimator 
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The recursion relationship is: 
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And the convergence criteria: 
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4.5. Simulation  

Simulation of the outflow peaks from chromatography was conducted by negative 

binomial model using the parameters estimated by MOM in previous section with correct offset 

of 2mL/plate. An unadjusted offset 1mL/plate was also used, and this served to demonstrate the 
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importance of the correct offset specification. These results were compared to original 

experimental data and also to results derived under the current standard approach of empirically 

matching to a Gaussian model [12]. Results are presented in Figure 4.1. All analyte 

concentration distributions are overlayed in same plot.  

Figure 4.1Chromatography analyte concentration distribution of compound 1, original 

experimental data compared to Gaussian model and model with same formula as negative 

binomial distribution.

 

The simulation of the outflow peaks modeled utilizing negative binomial distribution 

with parameter obtained by MOM estimator using correct offset renders the closest results to the 

actual, original data. The simulation of outflow analyte concentration distribution with Gaussian 

model is slightly off in that it did not catch the skewness characteristic of the experimental 

outflow analyte concentration distribution. The simulation of the outflow analyte concentration 
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distributions modeled utilizing negative binomial distribution with the unadjusted offset is 

largely deviated from the experimental outflow data, particularly as compared to the negative 

binomial simulation with correct offset currently and also compared to the prevailing Gaussian 

model. Therefore it is important to find offset correctly so that chromatography analyte 

concentration distribution parameters can estimated more accurately.  

 Objective measures to compare the simulated analyte concentration distributions is 

examined by using a “chromatogram information criterion” (CIC), which is the sum of squares 

of deviation of expected frequencies from the observed frequencies normalized by the expected 

frequency. It is the same formula as the Pearson    goodness-of-fit test statistics; however, we 

do not compare this to    distribution as done in context of goodness-of-fit testing because the 

sample size of data created from the chromatogram can be arbitrarily increased multiplicatively. 

 We use this formula with fixed total frequency of data points produced from 

chromatogram to compare different models that are estimated. The larger number of this 

criterion indicate a worse fit of the model that generate these data and it is a relative comparison 

between model and is not absolute comparison to    distribution. 

    ∑
(     )

 

  

 

   

 

Here, the    indicates the observed frequencies in transformed data, and    indicates the 

expected frequencies. If we assume that the correct model is the negative binomial, then 

expected frequencies is shown in table 4.4 
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Table 4.4 Expected frequencies estimated by negative binomial model with correct offset and 

parameters estimated by MOM and compared to observed frequencies  

              

54 1 1.452 63 27 26.709 

55 5 5.004 64 20 19.569 

56 12 11.709 65 13 13.356 

57 21 20.928 66 9 8.547 

58 30 30.471 67 5 5.16 

59 38 37.632 68 3 2.952 

60 41 40.533 69 2 1.608 

61 39 38.862 70 1 0.834 

62 34 33.681    
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The                  of        is very small, which indicate that probably of outflow 

peak the deviate from negative binomial model with correct offset and parameters estimated by 

MOM is very small. 

Similarly we can calculate CIC criterion for the Gaussian model and the negative 

binomial model without adjustment by offset and parameters estimated by MOM. 
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Based on CIC criterion, the formula for the negative binomial model with correct offset 

and parameters estimated by MOM best approximated the chromatography outflow peak data.  

 

4.6. Conclusion 

In this work, we have successfully estimated both parameters that determine the shape 

and location of chromatography peak (partition coefficient and total number of theoretical plate) 

simultaneously by using statistical method without any additional experiment. The comparison 

the simulated outflow peaks using current prevailing Gaussian formula, unadjusted negative 

binomial formula, to the negative binomial formula using parameters estimated by MOM with 

correct offset shows that the negative binomial formula using parameters estimated by MOM 

with correct offset most closely matched to the experimental data. We have also proved that as 

total plate number approach infinity, and the proportion constant not approaching 0 or 1 the 

outflow distribution (negative binomial distribution) converges to Gaussian distribution. 

 In the future work, the maximum likelihood estimator (MLE) for the chromatography 

parameters will be computed by Newton-Ralphson method described in chapter 4 using SAS 

proc IML. The simulated peak based on MLE will be compared with that based on MOM 

estimator and original data, as well as the commonly used Gaussian formula. The separation 

process of the chromatography that separates of several analytes will be modeled similarly.  The 

chromatography data would contain more than one analyte concentration distribution. This type 

of chromatography data containing multiple components will be analyzed in a similar way and 

the partition coefficients of multiple components will be estimated by both MOM and ML 

method.  
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Chapter 5: Summary 

In summary, this dissertation work not only developed the mathematical model for 

chromatography separation process and applied statistical method in estimation of 

chromatography parameters, but also proposed and proved the relation (binomial-negative 

binomial theorem) between on-chromatography and outflow analyte concentration distributions. 

Furthermore, this dissertation work proved that for large theoretical plate number, the formula 

for the Gaussian distribution provides good approximations of both on-chromatography analyte  

concentration distributions and outflow analyte concentration distributions.  

Chapter 2 proposed and proved that for chromatography with relatively small number of 

theoretical plate, the on-chromatography analyte concentration distribution mathematically 

matches the binomial distribution, and outflow analyte concentration distribution matches the 

formula for the negative binomial distribution. In this chapter, the chromatography table was 

utilized for visualization of chromatography process and the on-chromatography and outflow 

analyte concentration distributions. Simulations conducted based on the principle of 

chromatography shows that the proposed negative binomial distribution formula is more suited 

to fit the outflow analyte concentration distribution than the prevailing Gaussian distribution 

formula.  

Chapter 3 proposed and proved binomial-negative binomial theorem to elucidate the 

relationship between the discrete on-chromatography and outflow analyte concentration 

distributions. In this chapter, the on-chromatography analyte concentration distribution and 

outflow analyte concentration distribution were plotted in a 3D graph to facilitate the 
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visualization the corresponding chromatography process and understanding relationship between 

the discrete on-chromatography and outflow analyte concentration distributions. 

 Chapter 4 is combination of theoretical development in asymptotic chromatography 

analyte concentration distribution and the application of statistical method for chromatography 

parameter estimation.  In this chapter, the developed  asymptotic chromatography analyte 

concentration distribution theory build a bridge between discrete mathematical model for the 

chromatography with relatively smaller number of theoretical plates and the continuous Gaussian 

distribution model that majority researchers are using to approximate the chromatography 

analyte concentration distributions. The Gaussian distribution formula is only valid for 

approximate the outflow peaks when the number of theoretical plate is sufficiently large. We 

have also established the method for transformation of chromatography data to statistical 

sampling data so that statistical method of parameter estimation can be conducted. The 

simulation shows that the negative binomial distribution’s mathematical formula using 

parameters estimated by MOM using correct offset best approximate the outflow analyte 

concentration distribution from actual experimental data in comparison to: the negative binomial 

distribution’s formula using parameters estimated by MOM without correct offset; and 

prevailing Gaussian distribution formula matching method.  
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Appendix 

Chapter 2 Codes 

SAS code for chromatography analyte concentration distribution simulation 

 

/***********************************************************/ 

/*********** chromatography peak simulation ****************/ 

/***********         10/09/2015                *************/ 

/***********        by xueyi chen              *************/ 

/***********************************************************/ 

 

Proc iml; 

/*specify parameters*/ 

p=0.8754; 

n=500; 

r=53.2; 

m=0*J(n,n); 

s=0*J(n,n); 

t=0*J(n,n); 

 

m[1,1]=p; 

S[1,1]=1-p; 

t[1,1]=1; 

do i =2 to n; 

 do j=1 to i; 

 

  if j=1 then do; 

   m[i,j]=p*s[i-1,j]; 

   s[i,j]=(1-p)*s[i-1,j]; 

    

  end; 

 

  else do;  

   m[i,j]=p*(m[i-1,j-1]+s[i-1,j]); 

   s[i,j]=(1-p)*(m[i-1,j-1]+s[i-1,j]); 

  end; 

  t[i,j]=m[i,j]+s[i,j]; 

 

 end; 

end; 

 

 

 

outflow=m[,r]; 

*print outflow; 

t=n-r+1; 

sigma_sq=0.001; 

outsim=0*j(t,1); 

do i =1 to t; 
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err=rand('NORMAL',0,sigma_sq); 

if err<-outflow[i+r-1] then do;  

err1=0; 

end; 

else do;  

err1=err; 

end; 

  

outsim[i]=outflow[i+r-1]+err1; 

end; 

 

*print outsim; 

out_theo=0*j(t,1); 

 

do i=1 to t; 

out_theo[i]=PDF('NEGBINOMIAL',i-1,p,r);  

end; 

 

stage=0*j(t,1); 

do i=1 to t; 

stage[i]=i+r; 

end; 

ID1=1*j(n+1,1); 

ID2=2*j(n+1,1); 

 

theo_dat=(stage||out_theo); 

sim_dat=(stage||out_sim); 

 

print dat; 

 

dv_stage=0*j(r,1); 

do i=1 to r; 

dv_stage[i]=i; 

end; 

dv_theo=0*j(r,1); 

dv_sim=0*j(r,1); 

 

dat1=(((dv_stage||dv_theo)//(stage||out_theo))||ID1)//(((dv_stage||dv_sim)//(

stage||outsim))||ID2); 

*print dat1; 

 

 

 

 

 

stage1=0*j(n+1,1); 

 

do i=1 to n+1; 

stage1[i]=i; 

end; 

 

mode=(1-p)*(r-1)/p; 

Var=(1-p)*r/(p**2); 

sd=sqrt(Var); 

 

out_normal=0*j(n+1,1); 

do i=1 to n+1; 
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a=i+t-(n+1); 

out_normal[i]=PDF('NORMAL',a,mode,sd);  

end; 

ID3=3*j(n+1,1); 

 

dat2=stage1||out_normal||ID3; 

dat=dat1//dat2; 

print dat; 

 

 

create ChrSim from dat[colname={"stage" "outflow_distn" "ID"}]; 

append from dat; 

close ChrSim; 

print dat; 

quit; 

 

data ChrSim1; 

set ChrSim; 

if ID=1 then ID1='outflow_distn_by_theory'; 

if ID=2 then ID1='Negative_binomail_model'; 

if ID=3 then ID1='Gaussian_model'; 

drop ID; 

run; 

 

 

proc sgplot data=ChrSim1; 

  scatter x=stage y=outflow_distn / group=ID1; 

  YAXIS LABEL = 'peak intensity' GRID VALUES = (0 TO 0.5 BY 0.02); 

  XAXIS LABEL = 'retention' GRID VALUES = (95 TO 180 BY 5); 

run; 

 

ods csv file='C:\passport_data\disertation\BNB_paper\comp1x.csv'; 

proc print data=ChrSim1 (firstobs=50 obs=72); 

run; 

ods csv close; 

 

 

data ChrSim2; 

set ChrSim1; 

where stage>=50 and stage<=75; 

run; 

 

 

ods csv file='C:\passport_data\disertation\BNB_paper\comp1g.csv'; 

proc print data=ChrSim2 ; 

run; 

ods csv close; 

 


