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Abstract 

 

RNA-Seq has become the most recently and widely accepted method to evaluate gene 

expression.  Though with RNA-Seq being a fairly green technology, analytical methods for its 

output data have not been fully investigated as they have for preceding technology; such as those 

methods used in analyses of microarray data.  This is likely the result of the potential breadth of 

information that can be obtained from the different applications of RNA-Seq.  Analyses of RNA-

Seq data include: detecting differentially expressed genes, transcriptome profiling, and 

interpretation of gene functions.  As with any advanced technology medical or otherwise, the 

longer it is available, the price of the technology, in general, decreases and the technology itself 

becomes more refined.  This has been true for genomic sequencing—costs per sample have 

continued to decrease; and the accuracy and precision of results has improved greatly.  

Synchronously, more physicians have opted to have more of their patients’ genetic material 

sequenced.  This has caused both challenges in the development of accurate, efficient, and 

consistent statistical methods; and much debate regarding the ethics involved in genomic 

sequencing.  To provide insight into two statistical challenges that are common with analyzing 

RNA-Seq data, we conduct extensive simulation studies.  These simulations studies include: 1) 

investigation of fitting complex models which account for pairedness across subject’s 

measurements in terms of the power gained and control of Type I error rate; and 2) evaluation of 

clustering performance of various clustering methods in transformed RNA-Seq data.  In addition 

to investigating the aforementioned statistical challenges, we develop a protocol for a survey 

study which has the potential to provide insight into cancer patients’ opinions towards genomic 

sequencing as there is much ethics related controversy that surrounds the topic.   
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It is highly unlikely that Charles Darwin, Gregor Mendel, and Frederick Miescher, the 

first fathers of genetics, fully understood the greatness of their historic scientific discoveries.  

Beginning in 1859, the field of genetics was established with Charles Darwin’s discovery of 

natural selection, where generations of organisms were shown to reproduce and survive through 

evolution, mutation, migration, and genetic drift; Gregor Mendel’s experiment which revealed 

heritability in 1865; and Frederick Miescher’s detection and isolation of DNA for the first time 

in 1869 (Darwin, 1872, Fisher, 1930, Dahm, 2005, Bateson and Gregor, 1913).  Nearly a century 

later, James D. Watson and Francis H. Crick made another significant, well-known, discovery.  

With some help from X-ray diffraction images contributed by Rosalind Franklin, Watson and 

Crick discovered that the molecular structure of DNA was a three-dimensional, double helix 

(Wilkins, 1963, Watson and Crick, 1953, Heather and Chain, 2016).   

Crick furthered his research in 1970 through his documentation of the Central Dogma of 

Biology which explains the transfer of genetic information from the three major molecular 

components, DNA, RNA, and protein, which are responsible for structure and function in any 

living organism (Crick, 1970).  Figure I-1 contains a simplified version of the Central Dogma of 

Biology.  The general information transfers that can occur are: DNA transcribed into RNA, RNA 

translated into proteins, DNA and RNA replicate into copies of themselves, RNA reversed 

transcribed in DNA, and the rare phenomena of DNA to protein depending on the cellular 

environment (Crick, 1970).  As the Central Dogma of Biology became widely accepted across 

the life sciences’ research community, the race to expand its three branches began with the 

overall goal to better understand the molecular basis of life.  Thus, it became highly important to 

be able to identify genetic transcripts (i.e., read the sequence of nucleic acid), quantify genes and 

their expression values, and understand functional responsibilities of genes and proteins.  To 
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address these important topics, a collective approach needs to be taken where biological, 

statistical, and informatics techniques are heavily utilized together.  

 

Figure I-1.  The Central Dogma of Biology (Your Genome, 2016). The Central Dogma of 

Biology is the flow of genetic information.  DNA is made into RNA through a process called 

transcription; and RNA is made into proteins through translation.  Both DNA and RNA have the 

ability to replicate itself.  Both DNA and RNA are made up of four nucleic acid bases.  In DNA, 

the nucleic acid bases are Adenine (A), Thymine (T), Cytosine (C), and Guanine (G), which pair 

A to T and G to C.  In RNA, the nucleic acid bases are the same with the Thymine being 

exchanged for Uracil (U), where the new pairings become A to U and G to C (Your Genome, 

2016) Figure credit: Genome Research Limited. 
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 The advent of genomic sequencing, along with its advancements, have been an integral 

part to better understand the molecular components of life.  Initially said by Frederick Sanger, 

“knowledge of sequences could contribute much to our understanding of living matter” (Sanger, 

1980).  Ideas and efforts amongst many in the molecular biology and chemistry research 

communities were focused on developing techniques to read the nucleic acid sequence present in 

DNA.  The mid 1960s gave way to the first-generation of sequencing, sequencing capable of 

reading up to approximately one killobase (kb), through paralleling work completed by Robert 

Holley and Frederick Sanger and their respective colleagues in fragments of RNA, and 

contributions of sequencing DNA fragments from Maxam and Gilbert (Heather and Chain, 2016, 

Holley, 1965, Maxam and Gilbert, 1977).  This first-generation of sequencing was termed 

Sanger sequencing (Heather and Chain, 2016).  It was this first-generation of sequencing that set 

the stage for second- and third-generations of sequencing which currently have the capability to 

sequence vast amounts of genetic material by running multiple samples at the same times, and 

even single molecule real time (SMRT) sequencing (Heather and Chain, 2016, Van Dijk et al., 

2014).   

The improvements of sequencing led to additional development of innovative technologies 

that have the ability to determine genetic expression levels.  Microarrays were invented in the 

1990s to conduct gene expression studies on a large-scale and was used religiously by the 

science community to solve a multitude of scientific problems (Zhao et al., 2014).  However, the 

mid 2000s gave rise to an updated method to quantify gene expression.  That next generation 

sequencing (NGS) method was RNA-sequencing which has come to be known as RNA-seq.  

While obtained gene expression is the end result between each of these technologies, the basis 

behind each of them is very different.  Microarray technologies utilizes relative mRNA which is 
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measured using pre-defined probe sets via fluorescence to determine expression value; whereas, 

RNA-Seq experiments measure gene expression levels from the total number of reads that fall 

into the exons of a gene.  Hence, the output data from these two technologies is dissimilar.  Gene 

expression values from microarrays are continuous and have a tendency to follow a Gaussian 

distribution, while gene expression values from RNA-Seq are count in nature and follow either 

over-dispersed Poisson or Negative Binomial distributions. 

1.1 RNA-Seq Studies 

With microarray technology having tenure amongst most of the biological research 

community, there have been debates about adoption of the newer RNA-Seq technology.  Prior to 

the mid 2000s, many, Schena (1995), DeRisi et al. (1997), Brown and Botstein (1999), Neilsen 

et al. (2002), and Monti et al. (2005) to name a few, worked extensively to quantify patterns in 

gene expression present in particular disease states, environmental or biological conditions, and 

different tissue types.  Since 2008, RNA-Seq has rapidly become a forerunner in next-generation 

sequencing (NGS) when it comes to analysis of high-throughput gene expression analysis (Reeb, 

2013). The saturation of the current literature discussing studies that use RNA-Seq and its 

applications is proof of its rise in popularity.  The RNA-Seq platform itself has the ability to 

address many applications outside of obtaining determining gene expression values.  

Specifically, scientists have used the RNA-Seq platform for discovery of novel transcripts and 

isoforms, RNA editing, alternative splicing, allele-specific expression, and exploration of non-

model-organism transcriptomes (Anders et al., 2013, Wang et al., 2009, Mortazavi, 2008).   

With the adoption and wide-spread use of RNA-Seq, new analysis methods have been 

developed.   As the implication of these analysis have the potential to play roles in treatment 

plans for patients or future diagnostics, it is important that sound, accurate statistical methods 
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need to be implemented.  That is, the statistical analysis should consider both experimental 

design and the unique characteristics of “omic” study type (Reeb, 2013).  All “omic” studies 

(i.e., genomics, proteomics, metabolomics, etc) have unique characteristics that are solely unique 

to said study.  The potential amount of information that can be derived from these types of 

studies is highly impressive.  Concurrently, the amount of physical data that is output from these 

types of studies requires much storage as sequencers for a single sample can produce more than 

500 gigabases for a single run depending on the platform used (Trapnell et al., 2012).  However, 

concerns about the difficulties involved in analyzing the massively complex gene expression 

datasets often containing expression information for 60K+ gene IDs have also been published.  

Some of the questions that arise are centered around the challenges that come with the analyses 

of RNA-Seq data, or benefit gained from the abundance of data that is provided using RNA-Seq.  

In order to move forward with the advancement of the area of genomics, statisticians and 

bioinformaticians need to work together seamlessly to insure that all of the analyses that are 

taking place are correct and computationally efficient.  Such analyses takes much practice, 

patience, careful revision, and understanding of both biological processes and statistical 

methodologies.   

To investigate some of the statistical challenges and difficulties that arise when working 

with RNA-Seq data, two extensive simulation studies were conducted.  Our first study was 

motivated by the poor overlap similarly found differentially expressed genes when comparing 

commonly used differential expression methods when using paired measurement data.  We 

sought to determine if the basic models that were fit within the differential expression methods 

controlled Type I error rate or has sufficient power when data were of a paired structure.  In our 

second study, we aim to evaluate clustering performance of RNA-Seq data that were subjected to 
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a variety of data transformations to make them “look” more normally distributed.  In planning 

these two studies, an interest in the ethics behind personalized medicine via genomic sequencing 

was sparked.   

1.2 Ethics in Precision Medicine 

According to the National Human Genome Research Institute (NHGRI) through the National 

Institutes of Health (NIH), medical science will take on an extremely personalized view in the 

next 50 years.  Their hope was to use genome-based research to develop “highly effective 

diagnostic tools”, “better understand the health needs of people based on their individual genetic 

make-ups”, and “design new and highly effective treatments for disease” (National Human 

Genome Research Institute et al., 2010).  Moreover, the goal is to have individualized analysis 

based on a given person’s genome to gather information to regarding the types of preventative 

measures that can be prescribed, lifestyle changes, and even molecular understanding of diseases 

such as diabetes, heart disease, or cancer which are make up a large portion of the amount of 

medical expenditures in any given year in the United States (National Human Genome Research 

Institute et al., 2010).  Formally defined, precision medicine, or also synonymously termed 

personalized or individualized medicine, is the tailoring of disease treatments and/or 

interventions to the unique characteristics, both genotypic and phenotypic, that an individual has 

(Ciardiello et al., 2014).  However, with the idea of using genomic sequencing to tailor medical 

treatment, concerns over the ethics behind such approach to medical care ensue.  There are 

numerous concerns regarding how incidental finds should be handled, identification of the 

individual, and many others to be mentioned in Chapter IV.  As advances in personalized 

medicine through way of genomic sequencing continue, it will be crucial to understand cancer 

patients’ opinions regarding the topic.  Thus, a protocol was developed to carry out a pilot survey 
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study which contains a 22-item survey with questions regarding patient’s demographic 

information and their opinion towards genomic testing. 

The studies involved in this dissertation are motivated by the need for accurate, efficient, 

and consistent statistical methods to analyze RNA-Seq data; as well as, the ethical concerns that 

arise with genomic sequencing.  Chapter 2 contains a comparison study of paired and unpaired 

methods for Differential Expression Analysis of RNA-Seq.  An empirical study is completed 

comparing the number of similar genes found between sets of overlapping methods.  

Additionally, we conducted a simulation study to examine consequences of improperly analyzing 

data structures common in RNA-Seq studies.  Chapter 3 is comprised of a lengthy simulation 

study which assesses data transformations and clustering methods for RNA-Seq data.  Clustering 

is completed under the assumption that the number of clusters is known or unknown.  Chapter 4 

describes the setup our patient’s opinion survey study which can potentially be extended to a 

large-scale, national survey.  This dissertation concludes with an overall discussion and possible 

future work that are motivated or can be extended by these works (Chapter 5). 
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2.1 Abstract 

 

Discovery of differentially expressed (DE) genes is imperative for the understanding of 

the genomic basis of complex diseases and phenotypes.  Thus, the development of powerful 

computational methods with control of the Type I error rate for analysis is crucial.  In this study, 

we applied multiple DE analysis methods to an RNA-Seq study involving paired ovarian tumor 

samples pre- and post- treatment with carboplatin from 11 subjects.  Our objective was to 

investigate how much statistical power is gained by using a paired analysis method for RNA-Seq 

data when a generalized linear model is fit with either subject effect modeled as a covariate or as 

a random effect which can be difficult for small sample sizes.  Moreover, we wanted to gain 

insight into whether fitting a more complex model, which accounts for pairedness across 

subject’s measurements for small sample size (i.e., n = 11), is more beneficial than ignoring the 

paired data structure and proceeding with an unpaired analysis method.  Additionally, we sought 

to see how results changed between various distributional models for RNA-Seq count data—

Negative Binomial, Poisson, of Gaussian.  To accomplish these objectives, we compared the 

results between a number of DE methods that do and do not account for the paired nature of the 

study to assess the power gained and/or increase and Type I error rates using this ovarian study 

and an extensive simulation study.   Results from our empirical study found that the DE methods 

do not select the same set of DE genes, with only a few DE genes found to be in common 

between the different analyses.  To investigate the root cause of poor overlap of determined DE 

genes, a simulation study was conducted with the objective to examine Type I error rates and 

power.  The simulation study contained multiple scenarios which varied the following:  from 

which distribution the data were simulated, the sample size in each group (i.e., N = 100, 150, and 

200 samples), and the level of correlation / dependency between the measurements (i.e., 𝜌 =
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0, 0.3, and 0.5).  Data were simulated under the null hypothesis to assess the control of the Type 

I error rate, assuming correlated (paired) or uncorrelated (unpaired) data measurements from 

Bivariate Normal, Bivariate Poisson, and Bivariate Negative Binomial distributions.  Following 

the simulation of the data, two types of models where then fit to determine DE genes; method 

that account for the correlation or paired-ness of the data and ones that do not. The simulation 

results demonstrated that Type I error was controlled for all paired and unpaired scenarios where 

data were simulated from the Bivariate Normal distribution.  However, this was not the case for 

data simulated using Bivariate Poisson and Bivariate Negative Binomial Distributions.  Type I 

error rate was only controlled at the 0.05 level when data were unpaired and analyzed using a 

Generalized Linear Model (GLM).  Concurrently, fitting the more complex Generalized Linear 

Mixed Model (GLMM) resulted in controlled Type I error rate in the Bivariate Poisson and 

Bivariate Negative Binomial paired data when measurements were correlated at 𝜌 = 0.3 and 𝜌 =

0.5, respectively.  Furthermore, empirical power was calculated for those scenarios for which 

Type I error rate was controlled (Type I error < 0.05).  Overall results suggest that data structure 

should not be ignored when conducting analyses, especially if study sample size is lower.   While 

control of the Type I error rate was not affected by sample size, the power to conduct analyses 

that reached control of the Type I error rate did vary with sample size, specifically power 

increased with larger sample size regardless of simulated correlation and distribution framework 

as expected.  Additionally, our findings showed that if Type I error rate was controlled beyond < 

0.05, that power would be loss in comparison to those scenarios controlled at right around 0.05.  

In conclusion, our results advocate that it is more beneficial to fit the more complex model to 

account for pairedness of subjects’ measurements.  
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2.2  Introduction 

 

RNA Sequencing (RNA-Seq) studies can be used to address many critical research 

questions.  Most commonly, RNA-Seq studies address questions relating to the relative 

abundance of read expression counts that are present for a given gene.  One of the most 

fundamental analysis that is performed on RNA-Seq count data is differential expression (DE) 

analysis.  As its name suggests, DE analysis is the comparison of gene expression values among 

samples from varying experimental conditions.  Some examples of experimental conditions that 

might lead to genes that are differentially expressed include comparisons of: normal tissue verses 

tumor tissue; different tissue types; and tissue samples before, during or after a given treatment 

or exposure.  Inherently, one could assume that the different experimental conditions have the 

potential to produce expression differences across samples for a given gene; however, some 

genes may remain unaffected (Hardcastle, 2016).  At face value, analysis for DE seems rather 

simple.  Although, according to Trapnell et al. (2013), two major challenges exist: (1) obtaining 

gene and isoform expression values accurately from raw sequencing data, and (2) handling the 

variation that is present across biological replicates within an experiment.  The resulting goal of 

DE analysis is to determine in a gene-wise fashion those genes that are differentially expressed 

according to a specified cutoff of a given evaluation criteria (i.e., p-value or False Discovery 

Rate (FDR)) when ranked (Love et al., 2014, Trabzuni et al., 2014).   

Quantification of gene expression via read counts is based on how many reads absolutely 

or probabilistically align with the reference genome (Conesa et al., 2016).  These read counts can 

be modelled through the use of a discrete distribution; such as the Poisson distribution or the 

Negative Binomial distribution (Anders, 2010, Robinson, 2007).  However, it should be noted 
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for RNA-Seq analysis that it is important to know the background of the samples that have been 

processed.  In RNA-Seq type experiments, typically more than one sample is obtained—rather 

multiple samples, or replicates, are obtained for a given condition.  These replicates can be 

technical replicates meaning that they are from the same organism; or they can be biological 

replicates meaning that they are from different individuals.  This is relevant in selecting the 

distribution that best fit the data.  The Poisson distribution is typically chosen when the data are 

comprised of technical replicates (Marioni et al., 2008).  Though, for biological replicates, the 

Negative Binomial distribution is more appropriate as the overdispersion parameter can be tuned 

to account for the variation between people.  Additionally, data from RNA-Seq studies tends to 

be collected in a paired data structure that is represented by varying (e.g., samples from different 

tissue types) or contrasting conditions (e.g., before and after treatment) (Chung et al., 2013).  

Microarray data also have technical and biological replicates.  However, when fitting and 

analyzing microarray data the Gaussian framework is applied as expression values are 

continuous.  

Working with count distributions is often less appealing than normal distributions as the 

mathematical theory restricts “performance and the usefulness of RNA-Seq analysis methods” 

(Law et al., 2014).  Even with the rapid advancement of technology, limitations exist in the range 

of statistical tools available to handle count distributions as compared to normal distributions 

(Law et al., 2014).  While current statistical tools used to analyze RNA-Seq count data have 

attempted to incorporate many types of count distributions and models, no tool has been 

universally adopted.  The arguments when analyzing RNA-Seq data, in general, have been a 

continued debate as to whether or not the data “needs” to be analyzed using discrete distributions 

or is it possible to use a Normal distribution which is continuous.  Though, as any type of 
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sequencing experiment is highly costly, small sample sizes may be ideal for researchers 

(Hardcastle and Kelly, 2010).  However, these small sample sizes can cause major challenges 

and issues for statisticians.  Statisticians are constantly working to improve the statistical theory 

to allow for analyses that are hindered by the type of study data, sample size availability, and 

model / data assumptions.  There is evidence in statistical literature showing that correct 

modeling of the mean-variance relationship inherent in a count data generating process is key to 

designing statistically powerful methods of analysis (McCullagh and Nelder, 1989).  

Additionally, in conducting DE analysis, consideration needs to be given regarding the multiple 

testing that occurs—separate hypothesis is test for each of the thousands of genes (Trabzuni et 

al., 2014). 

Count data alone are fairly straightforward; however, the attributes of sequencing count 

data make it unique.  In sequencing data, sequencing depth and library size are taken into 

consideration when preforming analysis.  Additionally, transcripts are not independent from one 

another; and across the genome much of the information is shared (Trabzuni et al., 2014). 

However, the Generalized Linear Model (GLM) has the capability to adapt and handle the for 

mentioned sequencing attributes and ability to handle complex experiments (Anders et al., 2013).  

Linear Mixed Models (LMMs) have also been used in the analysis of gene expression data.  One 

caveat to fitting a LMM is that they are limited as they do not allow for the differences in 

expression variability that are typically present in RNA-Seq data (Trabzuni et al., 2014).  

When it comes to the analysis of paired structured count data, many have tried using 

many variations of the above listed discrete distributions.  In earlier years prior to the invention 

of the microarray or next-generation sequencing, Farwell and Sprott (1988) and Lee (1996) 

considered the use of a mixture model to handle the nuances of count data.  However, these early 
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attempts at testing paired structured data assume independence of the paired data which is 

conditioned on the samples mean (Chung et al., 2013).  In general, the Poisson model can be 

utilized when samples are independent of one another, rather no replicates are present.  However, 

in recent years it has been recognized that the paired nature of the data should be analyzed 

accordingly.  The Negative Binomial model and the Bivariate Poisson model have been proposed 

to be used when handling paired samples as they can account for correlation between 

observations (Chung et al., 2013, Karlis and Ntzoufras, 2006, Khafri et al., 2008).   

In the sections that follow, we investigate how much statistical power is gained by using 

a paired analysis method for RNA-Seq data when a generalized linear model is fit with either 

subject effect modeled as a covariate or as a random effect which can be difficult for small 

sample sizes.  Moreover, we wanted to gain insight into whether fitting a more complex model, 

which accounts for pairedness across subject’s measurements for small sample size (i.e., n = 11), 

is more beneficial than ignoring the paired data structure and proceeding with an unpaired 

analysis method.  Additionally, we seek to know how results change between various 

distributional models for RNA-Seq count data—Negative Binomial, Poisson, of Gaussian.   To 

do so, we conduct multiple comparisons between seven differential expression methods that do 

and do not account for the paired nature of the study to assess the power gained and/or increase 

in Type I error rates using an ovarian cancer study and a simulation study.  Summaries are then 

provided for both the empirical and simulation studies.  

2.3  Materials and Methods 

 

To build upon the current knowledge in the literature, we address the aims of this study 

through an empirical study of several differential expression (DE) methods to find genes that are 
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differentially expressed.  Conducting analyses that assess the differences expression, rather 

differences among the counts in transcripts or exons, across varying experimental conditions is a 

fundamental building greater understanding about the human genome (Robinson et al., 2010).  A 

consensus has yet to be reached regarding which of the developed tools for evaluating is best.  

This likely is due to the general complexities of RNA-Seq data, and in turn model variations that 

serve as the basis in each of the DE methods.  Often DE methods are capable of addressing data 

that are paired and/or unpaired.  Hence, it is important when running the methods to correctly 

specify the fit models to insure that they are consistent with the structure of the data.  This leads 

us to a second investigation.  Additionally, we explore the model basis for testing for differential 

expression for each of the DE methods.  We wanted to look at the shear basic models that are fit 

to test for differentially expressed genes without influence from any other tuning factors that are 

implemented by “black box” programs or packages.  This is accomplished through a simulation 

study which simulates paired and unpaired data structures from varying distributions and varied 

levels of pairedness, and investigates control of the Type I error rate when data structure is 

considered in test for differential expression.  All analyses for this study were conducted in R 

statistical software (R Development Core Team, 2016). 

2.3.1 Empirical Study 

To date, many studies have been completed for comparing DE methods.  Searching for 

genes that are differentially expressed when different experimental conditions have been 

exhibited, has been said to be the most popular use of transcriptome profiling (Soneson and 

Delorenzi, 2013).  In 2013, several similarly themed articles were published that compared 

analyses methods for differential expression by Rapaprot et al. (2013), Soneson and Delorenzi 

(2013), Guo et al. (2013), and Seyednasrollah et al. (2013).  However, there has been limited 
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results on comparison of methods that account for the paired-ness in the study design.  In our 

study, we chose to compare DE methods based on whether or not the method can handle both 

paired (i.e., measurements taken from the same subject at different time points) and unpaired 

samples (i.e., assuming that all samples and measurements are independent from one another). 

Currently, there are nearly 15 developed methods that can conduct differential expression 

analysis each of which use different normalization techniques, read count distribution 

assumptions, methods for estimating the over-dispersion parameter in the negative binomial 

distributional model, or in the or type of test used to determine differential expression.   

In our empirical study, we investigated seven commonly used methods to determine 

differentially expressed genes between two groups of samples (e.g, tumor-normal, treatment – 

no treatment).  These seven methods consisted of BaySeq, CuffDiff, DESeq2, EdgeR, EBSeq, 

PairedBayes, and Voom.  Most of these methods are commonly used in practice and are 

contained within packages in Bioconductor (Gentleman et al., 2004).  Methods were selected 

based on their ability to handle either or both paired (i.e., matched pairs) and unpaired (i.e., 

independent) data.  Additionally, they were selected to reflect both Frequentist and Bayesian 

theoretic backgrounds.  Table II-1 provides a summary of the aforementioned method’s design 

and theoretical attributes.  In Table II-1, it can be noticed that the DE evaluation criteria are not 

the same for all DE methods.   

By default, the evaluation criteria are the p-value, False Discovery Rate (FDR), and 

posterior probability of equal expression (PPEE).  Recall, the p-value is the probability of 

obtaining an observed or greater result assuming that given null hypothesis holds true.  FDR is a 

metric that evaluates “the proportion of errors committed by falsely rejecting the null 

hypotheses” when multiple test are conducted  (Benjamini and Hochberg, 1995).  From Bayesian 
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statistics, the posterior probability is the probability of observations being assigned to relative 

groups given the data (Gelman, 2013).  The cutoffs for each of the method’s evaluation criteria 

were determine to reflect those value which would traditionally be used for such type of analysis.  

It should also be mentioned each method was carried out using only the default codes and 

functions.  Additionally, it should be noted that baySeq, DESeq2, edgeR, and EBSeq apply 

filters to remove those  genes that are not expressed; also, in Cuffdiff genes with low expression 

are removed (Leng et al., 2013).   

 

 

Table II-1.  Summary of Differential Expression methods.  Differential Expression (DE) 

methods are summarized based upon their design capabilities (i.e., the ability to handle data that 

are paired in nature and those that are truly independent from one another); as well as, the 

theoretical backgrounds behind each method.  The DE methods use False Discovery Rate (FDR), 

p-value, or Posterior Probability of Equal Expression (PPEE). 

 

Following the analyses that used solely defaults, we extended our analysis in converting 

our evaluation criteria to be similar across all methods so that we might make stronger 

conclusions about the number of DE genes that are determined by each of the methods.  To 
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accomplish this, we needed to find an evaluation criteria that would be suitable across all DE 

methods.  For our scenarios, it was decided to change our p-values and PPEE to a FDR.  

Converting PPEE is fairly simple as the way in which it is calculated is actually an estimate for 

the FDR (Leng et al., 2013).  It is also possible to convert p-values to FDR using theory 

developed my Benjamini and Hochber (1995), Efron et. al. (2001) , Storey (2010), and Storey et. 

al. (2015).  This procedure has been simplified by the development of the qvalue package in 

Bioconductor (Storey et al., 2015, Gentleman et al., 2004).  A list of p-values can be supplies to 

the qvalue() function within the package.  Calculations are carried out to determine the local 

FDR (lFDR) which can be used as an estimation of FDR.  Specifically, the lFDR in an extension 

of the FDR developed by Benjamini and Hochberg (1995) which allows for a posterior 

probability for each feature level (Chong et al., 2015).  Details on this calculation can be found in 

Appendix A.  

2.3.1.1 Ovarian Tumor Study  

The study data that we empirically evaluated came from Dr. Jeremy Chien in the 

Department of Cancer Biology at the University of Kansas Medical Center.  In Dr. Chien’s study 

11 matched pair ovarian cancer samples were obtained.  These matched samples were obtained 

from the same patient taken pre- and post-treatment of intravenous Carboplatin.  Carboplatin is a 

chemotherapy medication that damages genetic material in cells making it harder for repair of 

any genetic material (Rozencweig et al., 1983).  Each patient was consented for tumor collection 

and DNA testing.  Tissue samples were flash frozen to preserve their attributes and further 

processed by cryosection at 20-30 micron sections.  RNA from these sections was extracted 

through the use of Trizol.  Furthermore, the Illumina RNA-Sequencing kit was used to generate 

the sequencing libraries.  Sequencing was completed using Illumina HiSeq 2000 using eight 
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samples per lane.  Running eight samples per lane helped to combat variations due to lane effects 

which include “any errors that occur from the point at which the sample is input to the flow cell 

until data are output from the sequencing machine” (Auer and Doerge, 2010).  Output for each of 

the samples contain read counts for approximately 63K Ensembl gene IDs.  Figure II-1 displays 

the relationship between the log-transformed mean and variance of this RNA-Seq data from the 

ovarian tumor study.  As we expect from RNA-Seq data, we observe that our data are 

overdispersed with respect to the mean and variance relationship.   

 

Figure II-1.  Comparison of log-transformed mean and log-transformed variance across 

samples per Ensemble gene ID from the empirical study data.  Log-mean and log-variance of 

gene express counts were calculated and plotted verses each other to show overdispersion 

present in the data.  The red 45 degree line is representative of equal mean and variance (i.e., 

equal dispersion). 
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Figure II-2.  Distribution of gene-wise correlation from the empirical study data.  

Histogram displays the frequency of correlations that were found in data from the empirical 

study.  Correlations were calculated for individual genes between pre- and post-treatment 

samples. 

 

The data from the ovarian tumor study are paired in nature as the RNA-Seq expression 

measurements were taken prior to the patient being treated with Carboplatin and post completion 

of the study.  The correlation between all 63K+ Ensembl gene IDs range from -1 to 1.  Seventy-

five percent of the gene correlations were seen between -0.25 and 0.5 (Figure II-2).  In our 

empirical study, we sought to conducted differential expression analysis for this study using 

methods that do or do not account for the pairedness in the measurements.  Additionally, we 

broke the relationship between the pairedness of the samples and analyzed them as if they were 

independent observations (i.e., ignoring the paired-nature of the data).  This relationship is 

broken so that we can gain a better understanding of the consequences that arise when the data 

structure is not considered in the statistical analysis. The structure of the data for the paired and 

unpaired are given below. 
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For this empirical study, let 𝑿 be the 𝐺 by 𝑁 matrix where 𝑥𝑔𝑖 is the raw RNA-Seq 

expression count for the 𝑔th gene (𝑔 =  1, … , 𝐺) and the 𝑖th sample (𝑖 =  1, … ,𝑁).  Here, 𝐺 =

62,897 Ensembl gene IDs and 𝑁 = 22 samples which reflects the 11 patients that have two 

measures recorded to reflect pre- and post-treatment expression levels 

𝑿 = [

𝑥11 𝑥12 ⋯ 𝑥1𝑁

𝑥21 𝑥22 … 𝑥2𝑁

⋮ ⋮ ⋱ ⋮
𝑥𝐺1 𝑥𝐺2 ⋯ 𝑥𝐺𝑁

]. 

In the paired analyses, we define an additional 22 𝑥 1 vector that defines when sample were 

taken say q.  Values for q are assigned as such: 

𝑞𝑖 = {
0  𝑖𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑡𝑎𝑘𝑒𝑛 𝑝𝑟𝑒 − 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡
1 𝑖𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑡𝑎𝑘𝑒𝑛 𝑝𝑜𝑠𝑡 − 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡

. 

Thus, 𝒒 =

[
 
 
 
 
 
 
 
0
0
⋮
0
1
1
⋮
1]
 
 
 
 
 
 
 

.  Additionally, we have a subject vector, 𝒔 =

[
 
 
 
 
 
 
 
1
2
⋮

11
1
2
⋮

11]
 
 
 
 
 
 
 

.  Using 𝑿, 𝒒 and 𝒔 an 

appropriate model or design matrix can be defined.  The unpaired analysis does not utilize 𝒒 as 

we assume that there is no dependency between the treatment groups and treat measurements as 

if they were independent. 

2.3.1.2 Methods Used in Differential Expression Analysis 

Testing for differentially expressed genes from two or more conditions requires 

conducting a statistical test for each gene 𝐺 = 1,… , 𝑔.  The most simple hypothesis for 

differential expression is assuming that one experimental condition which yields a “prior to” 

condition and an “after” condition.  Rather, in looking at differential expression, we test the null 
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hypothesis that the expression of a gene remains equal when comparing two or more conditions 

(i.e., equally expression regardless of experimental condition)  

𝐻𝑜: 𝜇𝑔,   𝐴 = 𝜇𝑔,   𝐵 

where 𝜇𝑔,   𝐴 or 𝜇𝑔,   𝐵 is the mean expression of the 𝑔th gene in condition A or B.  Rejecting this 

null hypothesis results in the conclusion that the gene of interest is differentially expressed.  The 

goal with any method that conducts differential expression analysis is to minimize the number of 

type I errors (controlling at a given alpha level), while have the most power to detect a true 

difference.  

baySeq 

baySeq employs an empirical Bayesian method for identifying differential expression in 

sequence count data; and has the capability of considering more than just pairwise comparisons 

by borrowing information across the dataset unlike its counterparts, edgeR, DEGSeq, and DESeq 

(Hardcastle and Kelly, 2010).  Specifically, the empirical Bayesian method is used to estimate 

posterior likelihoods for patterns of differential expression by gene (Hardcastle, 2016).  These 

posterior probabilities are assessed through the consideration of a parametrically defined 

distribution for which some prior distribution exists (Hardcastle and Kelly, 2010).  

Determination of DE genes is based upon similarity of their prior distributions—genes that are 

similar will have the same prior distribution, while genes that are different will have different 

prior distributions (Hardcastle and Kelly, 2010).  In this approach, new estimates for the prior 

probabilities for each model can be obtained by an iterative procedure starting at an initial choice 

(Hardcastle and Kelly, 2010).  Once convergence of this iterative process is reached, the estimate 

is assumed to be found.  Through the use of this numerical Bayesian method the structure of the 
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original data is maintained (Hardcastle and Kelly, 2010).  Details of this method can be found in 

Hardcastle and Kelly (2010).   

Cuffdiff  

Cuffdiff, a program within Cufflinks, is a differential expression analysis method that 

models variability of RNA-Seq library fragments by using individual transcript and across all 

replicates (Trapnell et al., 2012, Trapnell et al., 2013).  The method seeks to test statistical 

significance of the observed change in gene expression between two or more samples for a given 

condition.  Statistical significance is tested through the use of a mixture model containing a Beta 

and Negative Binomial Distribution, a Beta Negative Binomial distribution model, which 

assumes that the number of reads per transcript is proportional to its abundance (Trapnell et al., 

2013, Trapnell et al., 2012).  The Beta distribution accounts for the uncertainty in the transcript 

fragment counts while the Negative Binomial distribution considers the overdispersion that is 

present across counts (Trapnell et al., 2013).  An advantage that Cuffdiff has is that upstream 

analysis from Cufflinks has the ability to remove the source bias that is a result of the protocol 

used in the library preparation prior to completion of assessing genes that are differentially 

expressed (Trapnell et al., 2012). 

DESeq2 

DESeq2 is another RNA-Seq method which tests for differential expressions under the 

Negative Binomial Generalized Linear Model (GLM) framework for paired samples (Love et al., 

2014, Love et al., 2016).  DESeq2 is the improved version of DESeq (Anders and Huber, 2010) 

with the addition of its capability to use shrinkage to estimate fold change and dispersion (Love 

et al., 2014).  The implementation of the DESeq2 method follows below.  Read counts are 

modeled as 𝑁𝐵~(𝜇𝑔𝑖, 𝛼𝑔) where 𝜇𝑔𝑖 = 𝑠𝑔𝑖𝑞𝑔𝑖.  𝑞𝑔𝑖 is a quantity that is proportional to the 
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concentration of cDNA fragments scaled by 𝑠𝑔𝑖 for the 𝑔th gene and the ith sample (Love et al., 

2014).  The link function for the GLM is log2 𝑞𝑔𝑖 = ∑ 𝛽𝑔𝑟𝑥𝑖𝑟𝑟 .  Following closely to the 

empirical Bayes procedure mentioned in baySeq, empirical Bayes shrinkage is used to obtain the 

new estimates for dispersion and fold change.  Utilizing a shrinkage type estimation is highly 

beneficial for moderating “noisy estimates” that may be the result of controlled experiments with 

small sample size (Love et al., 2014).  To test for differential expression, a Wald test is used to 

compare 𝛽 coefficients. 

EdgeR 

EdgeR is a Bioconductor package that performs differential expression analysis between 

two or more groups through the use empirical Bayes estimation (Robinson et al., 2010, 

Robinson, 2008, Robinson, 2007).  One constraint that this software implements is that 

replicated measurements must be present for at least one of the groups (Robinson et al., 2010).  

EdgeR utilizes read counts from multiple unpaired or paired samples that are compiled into 

FASTQ files and later processed into BAM files.  EdgeR is highly flexible in that it can account 

for samples that are independent or paired/matched.  Raw read counts are model using an 

overdispersed Poisson model which can be written as a Negative Binomial(Robinson et al., 

2010).  Formally, the count data are model as 

𝑌𝑔𝑖~𝑁𝐵(𝑀𝑖𝑝𝑔𝑗, 𝜙𝑔) 

for gene 𝑔 and sample 𝑖; where 𝑀𝑖 is the library size or total number of reads, 𝑝𝑔𝑗 is the relative 

abundance of gene 𝑔 in experimental group 𝑗, if appropriate, to which sample 𝑖 belongs, and 𝜙𝑔 

the dispersion for the gene 𝑔 (Robinson et al., 2010).  It follows that the mean and variance for 

this parameterization are 𝜇𝑔𝑖 = 𝑀𝑖𝑝𝑔𝑗 and 𝜇𝑔𝑖(1 + 𝜇𝑔𝑖𝜙𝑔), respectively.  It should be noted that 
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when the dispersion parameter is equal to zero, the model becomes Poisson.  The combination of 

the overdispersed Poisson or Negative Binomial distribution to model the data and the empirical 

Bayes estimation procedure help to account for the technical and biological variability present 

across genes and allow for information to be borrowed between genes (Robinson, 2007).  

EBSeq 

EBSeq is another empirical Bayesian approach to determining differential expression.  

Though this method is not limited to solely DE in genes, it has the ability to identify DE 

isoforms when inputs are estimates of isoform expression (Leng et al., 2013).  Prior to testing, 

expression values are normalized using Median Normalization which accounts for the variability 

across samples (Anders and Huber, 2010).  Following the empirical Bayes process mentioned 

above in baySeq and DESeq2, posterior likelihoods are estimated to determine genes that are 

differentially expressed (Seyednasrollah, 2013).  Specific details can be found in Leng et al. 

(2013). 

pairedBayes 

The last of the Bayesian methods investigated is paired Bayes.  As the name suggests, 

this method utilizes a Bayesian hierarchical approach that is capable of handling paired gene 

expression data—both within and between sample variation are accounted for in this method 

(Chung et al., 2013).  The over-arching goal is to determine differential expression through the 

estimation of the posterior probability of a given gene (Chung et al., 2013).  The Poisson-Gamma 

mixture model that is used has priors assigned to some of its parameters.  Following Chung et al. 

(2013), we start with the paired design we have two observations (𝑌𝑔𝑖1, 𝑌𝑔𝑖2) where 𝑌𝑔𝑖1 is the 

observed expression level before treatment, 𝑌𝑔𝑖2 is the observed expression level after treatment,  

𝑔 = 1,… , 𝐺 genes and 𝑖 = 1,… , 𝑛 samples.  When conditioning 𝑌𝑔𝑖1 and 𝑌𝑔𝑖2 on their true 
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baseline relative expression to the library size (i.e., 𝜆𝑔𝑖), and the expression level fold chance 

after treatment (i.e., 𝒳𝑔), the basis of our mixture model, the Poisson portion, takes shape as: 

𝑌𝑔𝑖1|𝜆𝑔𝑖, 𝒳𝑔~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝑁𝑖1𝜆𝑔𝑖) 

𝑌𝑔𝑖2|𝜆𝑔𝑖, 𝒳𝑔~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝑁𝑖2𝜆𝑔𝑖𝒳𝑔) 

where 𝑁𝑖1 and 𝑁𝑖2 are the sizes of the libraries.  Here, the goal is to test if there is any treatment 

effect, or rather, where 𝒳𝑔 ≠ 1.  Furthermore, the Gamma portion of the mixture model which is 

used to account for overdispersion takes on the form 

𝑓𝜆(𝜆𝑔𝑖) =
𝛽𝑔

𝛼𝑔

𝛤(𝛼𝑔)
𝜆𝑔𝑖

𝛼𝑔−1𝑒−𝛽𝑔𝜆𝑔𝑖  

where the shape and rate parameters are 𝛼𝑔 and 𝛽𝑔, respectively.  In this two-component mixture 

model we are able to describe the fold change distribution through a latent variable 𝑧𝑔.  

𝑧𝑔 = {
0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑞𝑢𝑎𝑙 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 (𝐸𝐸), 𝜋0

1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 (𝐷𝐸), 𝜋1
}. 

Within the model hierarchy above, prior distributions are assigned to many of the parameters.  

Those priors are as follows: log(𝒳𝑔)|(𝑧𝑔 = 0)~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑜
2) ; log(𝒳𝑔)|(𝑧𝑔 =

1)~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇1, 𝜎1
2);  non-informationve priors for 𝛼𝑔 and 𝛽𝑔; (𝜋0, 𝜋1 )~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(1,1); 𝜇1 has 

an improper prior; 𝑝(𝜎0
2) ∝  1

𝜎0
2⁄ ; and 𝑝(𝜎1

2) ∝  1
𝜎1

2⁄ .  It should be noted that joint 

independency exists between all the parameters.   
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Voom 

Variance modeling at the observation level, termed Voom, is a method located within the 

limma software package (Smyth, 2005, R Development Core Team, 2016) which aims to 

conduct differential expression while considering the mean-variance relationship that exists 

among counts (Law et al., 2014).  Voom does so by applying precision weights to normalized 

counts while considering the trend of the mean-variance (Law et al., 2014).  Estimation of the 

mean-variance trend of log transformed reads is completed non-parametrically (Law et al., 

2014).  Once the estimates are obtained, they are used to predict the variance of each of the log 

counts per million (cpm) values (Law et al., 2014).  The predicted variance is then incorporated 

into inverse weights for corresponding log-cpm values (Law et al., 2014).  A summary of the 

procedure to find the associated weights continues as such: using the normalized log-cpm values 

gene-wise linear models are fitted; residual standard deviations for each gene are produced and a 

robust trend is fitted; results from the linear model and standard deviation trend produce 

predicted count and count size, respectively; and weights for a given observation are specified by 

the inverse squared predicted standard deviation for said observation (Law et al., 2014).  From 

here, the information, log-cpm values and associated weights, can be put into the limma pipeline 

to for differential expression. 

2.3.2  Simulation Study  

In this section, we describe the setup of the conducted simulation which investigates 

controlling Type I error rate when testing for differential expression of paired and unpaired data 

with methods that account for the study design / repeated measurements nature of the data.  

Conduction of this type of simulation study to determine the validity of a statistical model for 

differential expression has become the most popular method used (Reeb, 2013).  The following 
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simulation study extends from a recent study conducted by Reeb and Steibell (2013).   In our 

simulation study, we simulate both paired and unpaired data from Normal, Poisson, and the 

Negative Binomial distributions.  These distributions were specifically selected as each have 

been used to simulated gene expression data at some point in history.  The Normal distribution 

has been used in the past to simulate continuous microarray data; whereas, the Poisson, and 

Negative Binomial distributions have been used to simulate RNA-Seq data.  Though, some 

researchers apply data transformations to the count data with the aim to make the count data 

more normal which allows for the use of methods that suitable for continuous data.  One of the 

data transformation that is used is log(“expression count value” + 1). 

Recently, the most common way to simulate RNA-Seq data has been through use of 

variations of the Negative Binomial distribution.  In addition to simulating data from different 

distributions, we further consider different sample sizes (i.e., N = 100, 150, and 200 subjects).  

As an aside, it should be mentioned that smaller sample sizes were attempted in our simulation 

study prior to settling on the aforementioned sample sizes.  The initial smaller sample sizes we 

used were N = 5, 10, and 25.  However, when fitting the Generalized Linear Mixed Models 

(GLMM) using these smaller sample sizes caused convergence issues.   

In addition to simulating data with different sample sizes, we varied levels of pairedness 

through variations in correlation (i.e., 𝜌 = 0, 0.3, and 0.5).  Correlation of 𝜌 = 0 means that the 

data have no link with each other and can be considered to represent an “unpaired design”.  

When correlation is present, data have the potential to be deemed as paired in nature depending 

on the context of the research study.  Each scenario undergoes analysis to test whether a 

treatment effect is present (i.e., differential gene expression between the two conditions/groups).  

Paired (or repeated measures or correlated) data are analyzed using both paired and unpaired 
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statistical methods.  Similarly, unpaired simulated data are also analyzed using both paired and 

unpaired statistical methods.  In doing so, we further address the aims of this study to determine 

how well the Type I error rate is controlled and statistical power considering relationships 

between the data structure and capabilities of statistical methods.  Data corresponding to a single 

gene for N subjects were simulated for each scenario, with 1,000 datasets simulated for each 

simulation scenario.  Though it should be mentioned that the original goal of this study was to 

address the same aim mentioned above in small sample sizes (i.e., Is there a loss of control of 

Type I error rate or loss of power?).  Due to convergence issues, sample sizes were increased.  In 

Section 2.5, we discuss some of the future work that may combat the convergence issue.  

2.3.2.1  Data Simulation 

 For purposes of this study, data were simulated gene-wise (i.e., one gene at a time) for N 

= 100, 150, and 200 subjects for paired and unpaired data structures.  Utilizing information from 

the ovarian tumor study conducted at KUMC, we observed that nearly 70% of correlation 

between the paired samples were between the vales of -0.25 and 0.5.  Hence, it was decided to 

use correlations values of 𝜌 = 0, 0.3, and 0.5 as more positive correlation was exhibited in the 

genes pre- and post-treatment in the empirical study.  Those data that are simulated to have 𝜌 = 0 

are considered as unpaired data, while those simulated at 𝜌 = 0.3 and 0.5 are referred to as paired 

data in this study.  To simulate the desired correlations, we used Cholesky Decomposition 

developed by André-Louis Cholesky and Trivariate Reduction depending on which distributional 

framework is being used (Rencher and Christensen, 2012, Mardia, 1970).  Data for all 

distributions were simulated bivariately to account for the pairedness between pre- and post-

treatment observations we wish to induce for each gene.  Under the null, genes are simulated to 

have equal means between repeated measurements.  Conversely, when investigating power, 
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genes are simulated with unequal means between pre-and post-treatment measurements—one of 

the treatment measurements is simulated with the addition of a given effect size. 

Normal Distribution 

 Following a similar approach used to simulate pairwise single nucleotide variants (SNPs), 

we are able to simulate paired gene expression data while using the Normal distribution and 

assistance from a Cholesky Decomposition matrix (Liu et al., 2010, Rencher and Christensen, 

2012).  To do so, we first simulate a vector of two groups of independent Standard Normal 

random variables, 𝑍.  The groups follow to identify those expression values pre- and post-

treatment.  We then define a 2x2 correlation matrix (𝑅), 𝑅𝜌 = [
1 𝜌
𝜌 1

],  to reflect the pairedness 

that we would like to simulate.  In our study, we have 𝑅𝜌=0.3 = [
1 0.3

0.3 1
] and 𝑅𝜌=0.5 =

[
1 0.5

0.5 1
] which are positive definite (i.e., 𝑅 is symmetric and 𝑥𝑇𝑅𝑥 > 0 for all 𝑥) (Rencher 

and Christensen, 2012).  𝑅𝜌=0.3 and 𝑅𝜌=0.5 undergo Cholesky Decomposition to obtain a lower 

triangular matrix, 𝐿, which can be multiplied by 𝑍 to obtain the correlated, or paired, random 

variables 𝑋.  𝐿 is calculated as [
1 0

𝜌 √1 − 𝜌2], which implies 𝐿𝜌=0.3 = [
1 0

0.3 √1 − 0.32
] =

[
1 0

0.3 0.9539
] and 𝐿𝜌=0.5 = [

1 0

0.5 √1 − 0.52
] = [

1 0
0.5 0.866

].  Thus, the correlated random 

variables are calculated as 𝑋𝜌 =  𝐿𝑍 →    [
𝑥1

𝑥2
] = [

1 0

𝜌 √1 − 𝜌2] [
𝑧1

𝑧2
].  The end result when 

simulating data under the null is a bivariate normal distribution 𝒁~𝑁2(𝟎, 𝜮).  Conversely, 

simulation of the unpaired data (𝜌 = 0) was done so solely using the Standard Normal 

distribution (i.e., 𝑁~(0,1)) for each of the group of subjects.  For those data simulated until the 
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alternative hypothesis that the mean gene expression values are different, an effect shift, ∆, of 

either 0.3 or 0.5 was added to measurements to one of the simulated conditions; such as,  

[
𝑍11

𝑍12
] ~𝑁2 [[

0
∆
] ,  𝜮].  

Poisson Distribution 

 Simulation of paired and unpaired data from the Poisson distribution for two groups has 

most commonly been done through the use Trivariate Reduction proposed by Mardia (1970).  

Many other researchers have implemented this type of simulation in their count data simulation 

studies (Barbiero and Ferrari, 2014, Yahav and Shmueli, 2011, Johnson et al., 1997).  This 

elegant method of simulation relies on the theoretical property that a sum of independent Poisson 

random variables is also distributed as a Poisson (Casella and Berger, 2002).  Following 

Mardia’s Trivariate Reduction, we begin by generating three independent Poisson (i.e., 

𝑍1~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆1), 𝑍2~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆2), and 𝑍12~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆12)).  These variables are combined to 

generate two new dependent random variables--𝑋1 = 𝑍1 + 𝑍12 distributed 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆1 + 𝜆12) 

and 𝑋2 = 𝑍2 + 𝑍12 distributed (𝜆2 + 𝜆12).  Correlation between these two new dependent 

random variables becomes  

𝜌𝑋1,𝑋2
=

𝐶𝑜𝑣(𝑋1, 𝑋2)

𝜎𝑋1
𝜎𝑋2

=
𝜆12

√(𝜆1 + 𝜆12)(𝜆2 + 𝜆12)
 

(Yahav and Shmueli, 2011).  However, prior to any data simulation using this approach, we 

needed to determine the rates, the λs, for each of the three Poisson random variables to relate this 

simulation to simulations from the other distributions used.  Through some basic algebra, the 

rates were determined.  Rates used in this simulation are found in Table II-2.  By plugging in the 

respective rates into the three Poisson random variables, we achieve the desired correlation 
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within our pre- and post-treatment data for 1,000 genes.  It should be mentioned that the rate 

values are not unique.  There are many other rate values that would satisfy the correlations that 

are utilized throughout our simulation study. 

 

Table II-2.  Rates for Poisson random variables.  Table contains a summary of the rates that 

are required to be used in the simulation of the three Poisson random variables to achieve desired 

correlation through the Trivariate Reduction. 

 

 Similarly to simulating data under the alternative for the normal distribution, an effect 

shift was added to a portion of the simulated Poisson distributed data.  It follows 

𝑍1~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆1 + ∆), 𝑍2~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆2),  and 𝑍12~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆12) were generated.  Though 

Mardia’s Trivariate reduction, we are left with 𝑋1~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆1 + ∆ + 𝜆12) and 

𝑋2~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆2 + 𝜆12).  The same rates from Table II-2 were used for this simulation of data 

under the null.   

Negative Binomial Distribution 

 While simulation of Bivariate Negative Binomial data can also be accomplished using 

Trivariate Reduction, the method is not as straightforward due to number of parameters that are 

involved in calculating the mean and variance.  To simulate our Bivariate Negative Binomial 

data, we use an approach that uses conditional sampling that is based on decomposition of two 

dimensional distribution of bivariate copulas (Erhardt and Czado, 2008).  The use of the copulas 

aid in setting up the dependency (i.e., correlation) between the simulated random variables; as 
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well as, help to obtain multivariate count distributions (Erhardt and Czado, 2008).  The desired 

correlations remain the same as in above simulations (i.e., 𝜌 = 0, 0.3, and 0.5).  Specific details 

of this simulation approach can be Erhardt and Czado (2008).  Fortunately, Erhardt and Czado 

have created an R package, corcount, that easily allows for the implementation of this type of 

simulation of bivariate data (Erhardt, 2009).  

2.3.2.2  Application of Statistical Analysis Methods to Simulated Data  

Completion of the simulation study looking at the statistical analysis of the paired verses 

unpaired data can be broken into two sections: 1) control of Type I error rate and 2) power.  

Once simulated data were generated, we were able to conduct analyses to evaluate how well the 

various statistical tests controlled the Type I error rate in settings where observations were 

uncorrelated and correlated.  Additionally, if the Type I error rate ended up being controlled for a 

given scenario, we proceeded to determine the empirical power.   

In this portion of the simulation, we assume the null hypothesis where the means of pre- 

and post-treatment expression values are the same (i.e., 𝐻𝑜: 𝜇𝑔,   𝐴 = 𝜇𝑔,   𝐵).  For data simulated 

from the Bivariate Normal distribution, we use the T-Test or Linear Model (LM) and the paired 

T-Test or Linear Mixed Model (LMM) (assuming equal variances) to test if there is a difference 

in the mean gene expression.  For data simulated from the Bivariate Poisson and Bivariate 

Negative Binomial distributions, we use Generalized Linear Models (GLM) and Generalized 

Linear Mixed Models (GLMM).  In the GLM, expression count values and treatment group were 

the response and predictor variables, respectively.  In the GLMM, the response variable was also 

expression counts; however, treatment group and paired sample relation were modeled as fixed 

and random effects, respectively.  The use of the generalized-type linear models allow us to 

describe how the mean depends on the linear predictor through some link function, 𝑔 (i.e., 
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𝑔(𝜇𝑖) = 𝜂𝑖, and how variance depends on the mean.  In our scenarios where the generalized 

models are used, the log link function is used.  All statistical test, were set to test for a difference 

in treatment effect.  A summary of the tested models (i.e., LM, LMM, GLM, and GLMM) and be 

found in Table II-3. Control of the Type I error rate was established if the empirically calculated 

Type I error rate was <  𝛼 where 𝛼 = 0.05.  By setting 𝛼 = 0.05, we are in acceptance that five 

percent of the time we end up with a false positive result--rejecting the null hypothesis given that 

the null hypothesis is true. 

 

 

Table II-3.  Unpaired and paired models fit in simulation study.  Table summarizes the 

models that are fit to conduct the paired and unpaired simulation study and corresponding Type I 

error rate and power analyses.  Models are presented in vector notation. 

 

 

Once results for all of the scenarios are evaluated to determine their Type I error rate is 

controlled, we can continue by conducting an empirical power analyses.  Power analyses can 

only be conducted if scenarios have control over the Type I error rate.  The empirical simulation 

of power is nearly identical to the setup of the simulation for the empirical Type I error rate.  

However, in the empirical simulation, one of the treatment measurements, either pre- or post-
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treatment is simulated to have a shift applied to it’s mean expression values.  Essentially, an 

effect size is introduced between treatment measurements in the simulations.   

2.4  Results 

 

2.4.1 Comparison of Differential Expression Methods in Empirical Study 

In comparing the results from all seven of the DE methods, we begin by looking at how 

many genes were determined to be DE based upon set cutoff values for each method’s default 

evaluation criteria.  All methods determined that the ovarian cancer samples contained genes that 

are DE in both a paired and unpaired design capability (Table II-4).  The number of DE genes 

range from 20 genes to ~ 4,600 genes, with the most and fewest DE genes being determined by 

DESeq2 and BaySeq, respectively.  An FDR of <  0.2 was selected as an equivalent evaluation 

criteria cutoff for DE genes for comparing methods with evaluation criteria of p-value and PPEE 

of <  0.05.  The cutoff value for methods using the FDR criteria needed to be set higher as it is 

more stringent due to the way it accounts for multiple testing.  We also observe that when 

comparing methods that are capable of both paired and unpaired designs that the unpaired design 

calls an increased number of DE genes verses the paired design (e.g., EdgeR unpaired design 

determines that there are 552 DE genes, while EdgeR paired design found 672 DE genes) (Table 

II-4). 
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Table II-4.  Number of genes found to be differentially expressed (DE) based on evaluation 

criteria cutoff.  Each of the seven differential expression (DE) methods were executed for their 

respective design capabilities.  The number of DE genes were determined by those genes which 

met the respective evaluation criteria cutoff.  The DE methods use False Discovery Rate (FDR), 

p-value, and Posterior Probability of Equal Expression (PPEE) for their evaluation criteria. 

 

 Furthermore, to assess how well each of these seven methods performed in terms of 

selecting the same DE genes, comparisons of the intersection of similar DE Ensembl gene IDs 

were completed in both a pairwise and a multi-way manner.  We began by making comparisons 

between those methods that were capable of paired and unpaired designs which include BaySeq, 

DESeq2, and EdgeR.  Both DESeq2 and EdgeR contain an overlap of the DE genes that are 

selected; however, no overlap exists in the BaySeq comparison (Figure II-3).  We also see that 

EdgeR resulted in the greatest proportion of DE genes found between the paired and unpaired 
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designs (Figure II-3). 

 

Figure II-3. Comparison of Differential Expression (DE) methods capable of paired and 

unpaired designs.  The Venn diagrams above are contain of the number of DE genes that were 

determined by each method.  The overlapping portion of the Venn diagrams represent the 

number of DE genes that were selected by both design context—unpaired verses paired.  A) 

depicts DE genes found using BaySeq, B) depicts DE genes found using DESeq2, and C) depicts 

DE genes found using EdgeR. Criteria for DE genes in A) was FDR<0.2, and for B) and C) 

criteria was p-value<0.05. 

 

 Without altering the evaluation criteria to be similar across all methods, we proceeded in 

making comparisons across all unpaired and paired methods.  Paired methods initially have less 

DE genes found (Table II-4).  As the number of intersecting methods increase, we see that the 

number of DE genes that are the same between all methods reduce in number significantly for all 

multi-way comparison scenarios.  The number of same DE genes found between all paired 

methods is ten genes, while only two genes were found in the unpaired methods (Figure II-4).    
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Another comparison was also made to consider the number of same DE genes found between the 

overlap of Bayesian and Frequentists methods.  This resulted in zero and 14 genes, respectively 

for the Bayesian and Frequentists methods (Figure II-5).  Lastly, combinations of five DE 

methods were compared.  After combinatorically looking at all combinations of any five DE 

methods while using default evaluation criteria, it was found that the greatest number of same 

DE genes to overlap was 35 DE genes (Figure II-6).  The five methods that determined 35 of the 

same DE genes were paired EdgeR, unpaired EdgeR, Paired DESeq2, Cuffdiff, and Voom.  

Although, when we continued to compare more than five DE methods, we noticed that with each 

additional DE method added to the comparison that there was a decrease in the number of genes 

that were determined to same as was also previously mentioned.  When comparing all of the DE 

methods together, no similar DE genes were found. 
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Figure II-4.  Comparison of Differentially Expressed (DE) genes found in unpaired and 

paired methods.  The Venn diagrams above contain the number of Differentially Expressed 

(DE) genes that were determined by each method.  The overlapping portions of the Venn 

diagrams represent the number of DE genes selected to be the same between the compared DE 

methods.  A) contains comparisons of DE gens found using paired designs; and B) contains 

comparisons of DE genes found using unpaired designs minus results from unpaired BaySeq.  

Default evaluation criteria were used for all DE methods. 
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Figure II-5.  Comparison of Differentially Expressed (DE) genes found Bayesian and 

Frequentist theoretical backgrounds.  The Venn diagrams above contain the number of 

Differentially Expressed (DE) genes that were determined by each method.  The overlapping 

portions of the Venn diagrams represent the number of DE genes selected to be the same 

between the compared DE methods.  A) contains comparisons of DE gens found using Bayesian 

methods; and B) contains comparisons of DE genes found using Frequentist methods without 

results from CuffDiff.  Default evaluation criteria were used for all DE methods. 
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Figure II-6.  Comparison of Differential Expression (DE) methods which find the most 

overlapping DE genes.  The Venn diagrams above contain the number of Differentially 

Expressed (DE) genes that were determined by each method.  The overlapping portions of the 

Venn diagrams represent the number of DE genes selected to be the same between the compared 

DE methods.  The five methods in this figure produce the highest number of similar DE genes 

between comparison of all combinations of five DE methods. 

 

In addition to conducting comparisons based off of default evaluation criteria.  We 

converted all evaluation criteria to estimated FDR. While we would expect the number of DE 

genes that meet the criteria to decrease somewhat in using FDR, we notice that there are some 

extreme differences.  The pattern that the unpaired designs contained larger numbers of DE 
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genes verses that of the paired designs remains the same.  Similar comparisons to those found 

using the default evaluation criteria were investigated.  However, the results ended up being very 

poor in terms of methods selecting the same DE genes after re-evaluation.  Most multi-way 

comparisons resulted in few to no DE genes that were selected to be the same.  This was also the 

case for some two-way comparisons. 

 

 

Table II-5.  Summary of genes that meet re-evaluation criteria of False Discovery Rate 

(FDR) < 0.2.  Each of the seven Differential Expression (DE) methods were executed for their 

respective design capabilities.  All evaluation criteria, p-values, and Posterior Probability of 

Equal Expression (PPEE), were converted to False Discovery Rates (FDR).  No conversion took 

place for BaySeq.  * Denotes that all DE genes met criteria. 
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2.4.2 Simulated Data 

In our simulation study, data were simulated in paired and unpaired structures from the 

following Bivariate distributions: Normal, Poisson, and Negative Binomial distributions.  Prior 

to conducting any analyses, we verified that our simulated data contained the desired correlations 

between our repeated measures of 𝜌 = 0, 0.3, and 0.5.  Each of the simulated data scenarios 

under the null resulted in having average correlations matching those which were desired (Figure 

II-7(A) and Table II-6) with acceptable standard deviations (Figure II-7(B) and Figure II-A3).  

As there are no extreme deviations from the average correlations when compared to the desired 

correlations, we can assume that the distribution from which the data are simulated does not 

affect the outcome of the correlated data as long as the data simulation algorithm is set up 

correctly.  An example for one gene with similar correlations to 𝜌 = 0, 0.3, and 0.5 is plotted in 

Figure II-7(C).  The solid red line that is plotted through the panels of Figure II-7(C) depict the 

relationship between the pre- and post-treatment simulated expression values. 
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Figure II-7.  Correlation summary for simulated data from the Bivariate Normal 

distribution under the null.  Figure contains numeric and graphical summary of the correlations 

found in the simulation study for 𝜌 = 0, 0.3, and 0.5.  Data are simulated from the Bivariate 

Normal distribution.  A) contains a table summarizing the average correlations from the 

simulated data for N = 100, 150, and 200 for correlations 𝜌 = 0, 0.3, and 0.5. B) depicts the 

variability of correlations in simulated data for N = 100, 150, and 200 and 𝜌 = 0, 0.3, and 0.5.  

C) Simulated data for one gene are plotted for N = 100 samples for 𝜌 = 0, 0.3, and 0.5.  

Correlation trend lines are plotted in red. 

 



47 

 

 
Table II-6.  Correlation summary for simulated data from the Bivariate Poisson and 

Negative Binomial distributions under the null.  Table contains a summary of average 

correlations from the simulated data N = 100, 150, and 200 for simulated correlations of 𝜌 =

0, 0.3, and 0.5. 

 

2.4.3 Comparison of Paired Verses Unpaired Analyses Techniques 

With confirmation that our simulated data contained the correlations that we desired to 

allow for both paired and unpaired data structures, we proceeded with our analyses.  Our 

objective of our simulation study was to determine if paired and unpaired analysis techniques 

controlled the Type I error rate when corresponding data structures were paired and unpaired, 

respectively.  Likewise, we investigated whether or not Type I error rate was controlled if 

analyses were conducted where the data structure and analyses methods were not the same.  

Furthermore, if Type I error rate was controlled for a given scenario, we continued our 

simulation and analyzed empirically how well powered are analyses were.  Rather, we wanted 

investigate the potential power gained from using a paired analysis method when the simulated 

study data are also paired; and to see if results varied based on the distribution that was used to 

simulate the data. 
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Beginning with our simulation results from the Bivariate Normal distribution simulated 

data, we observe that the empirically calculated Type I error rate is relatively controlled for all 

scenarios at the 𝛼 = 0.05 level (Table II-7).  As correlation, or pairedness, is introduced into the 

simulated data, 𝜌 = 0.3 and 𝜌 = 0.5, we see that when using the LM to test for mean differences 

in gene expression values that the Type I error rate is over controlled or conservative in nature 

(Table II-7).  For 𝜌 = 0.5, the Type I error rate becomes very small under analysis using the LM 

framework—much less than the control threshold that was previously set to be < 0.05.  

However, analyses of the simulated paired data while using a LMM seems to provide control of 

the Type I error rate.  Although it should be noted that Type I error rate control is slightly missed 

for  𝜌 = 0.3 and sample sizes of N = 150 and N=200; as well as, for 𝜌 = 0.5 and N=200 (Table 

II-7). 

 

 

Table II-7.  Empirical Type I error rates from paired and unpaired analyses using the 

Bivariate Normal distribution under the null.  Table contains a summary of empirical Type I 

error rates from the simulation study were the Bivariate Normal distribution was used to simulate 

study data.  Error rates were calculated from 1,000 simulations.  Cells shaded in green and blue 

have Type I error rate controlled near 0.05 and <  0.05, respectively. 
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  Next, we examine the results for data that were simulated from discrete distributions.  

Recall from above, GLMs and GLMMs are fit to model the dependency of both the linear 

predictors and variance with respect to the mean in our unpaired and paired analyses, 

respectively.  Some of the same trends regarding control of the Type I error rate exist in the 

paired and unpaired analyses of the simulated count data.  Particularly, in the Poisson and 

Negative Binomial results we observe that when the simulated correlation was 𝜌 = 0 and 

analysis was completed using a GLM, Type I error rate was controlled at the <  0.05 level 

(Table II-8).  Though, no control was observed for 𝜌 = 0 when the GLMM was implemented—

all empirically calculated Type I error rates are greater than 0.05.   Additionally, we observe that 

control of the Type I error rate occurs 𝜌 = 0.3 and 𝜌 = 0.5 for in the scenarios using GLM for 

the Poisson and the Negative Binomial distributions used to simulate the paired data (Table II-7).  

Though, the same issue still arises that was seen in the Normal results found in Table II-6.  The 

empirically calculated Type I error rate becomes very small in the aforementioned scenarios 

where 𝜌 = 0.5.  Control over the Type I error rate also exists for 𝜌 = 0.5  using GLMM for 

analyses of data simulated from Poisson, and it is nearly controlled for the Negative Binomial.  

All other scenarios fail to control for Type I error rate.  
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Table II-8.  Empirical Type I error rate from paired and unpaired analyses using the 

Bivariate Poisson and Bivariate Negative Binomial distributions under the null.  Table 

contains a summary of empirical Type I error rates from the simulation study.  Bivariate Poisson 

and Bivariate Negative Binomial distributions were evaluated for N = 100, 150, and 200 for 

simulated correlations 𝜌 = 0, 0.3, and 0.5.  Error rates were calculated from 1,000 simulations.  

Cells shaded in green, blue, and red have Type I error rate controlled near 0.05,<  0.05, 𝑎𝑛𝑑 >

 0.05, respectively. 

 

 For those scenarios in which the Type I error rate was controlled, we calculated the 

empirical power for such tests.  Under all distributional frameworks, simulated correlation and 

all N, there was at least one scenario which contained a Type I error rate that was controlled.  

Thus, we simulated data under the alternative hypothesis (i.e., 𝐻𝑎: 𝜇𝑔,   𝐴 ≠ 𝜇𝑔,   𝐵).  

Consideration was given for two mean shifts in all pre-treatment gene expression simulated 

values.  The two mean shifts that were considered were 0.3 and 0.5.  Similarly to the null 

scenarios, correlations of the simulated data were examined to see how closely they matched the 

desired correlations.  The mean correlations in the simulated data resembled the desired 
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correlations for both mean shifts (Table II-9 and Table II-A1).  Here, the mean correlation again 

does not appear to be affected by distributional framework.  Thus, we are confident that the 

applied mean shifts were implemented in the simulation correctly. 

 

 

Table II-9.  Correlation summary for simulated data from the Bivariate Normal, Bivariate 

Poisson, and Bivariate Negative Binomial distributions under the alternative with one 

measurement having a shift of 0.3.  Table contains a summary of average correlations for the 

simulated data for N = 100, 150, and 200 for simulated correlations 𝜌 = 0, 0.3, and 0.5.  Data 

were simulated to reflect unequal means by the addition of a mean shift of 0.3. 

 

 As the desired correlations have been met on average, we continued with our empirical 

power simulation for those scenarios in which Type I error rate was controlled.   Observed able 

in Table II-7, we see that all of the scenarios resulted in a Type I error rate that was controlled 

which allows us to determine the empirical power to conduct such test.  Using the Normal 

framework, we first observe that the empirical power is highly variable among all simulations.  
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Most notably, we notice that as the number of samples increases for all simulated correlation 

values that the empirical power also increases (Table II-10).  This is also the case when the mean 

shift was increased from 0.3 to 0.5 (Table II-10).  Another comprehensive observation we 

observe is found when keeping the fitted model constant across the simulated correlation values, 

we notice that the empirical power decreases as simulated correlation increase (e.g., LM with 

𝜌 = 0, 0.3, and 0.5 yields empirical power of 0.548, 0.26, and 0.097 for N = 100) (Table II-10). 

In the scenarios when 𝜌 = 0, there are only minimal differences between statistical test that 

utilize a LM verses that of a LMM with respect to the calculated empirical power (Table II-10).  

This is not apply for 𝜌 = 0.3 or 𝜌 = 0.5.  When comparing LM verses LMM, we see that the 

empirical power is greater for all sample sizes when fitting a LMM when the structure of the data 

are simulated in a paired way (Table II-10).  Reaching 80% power is almost always obtained for  

a mean shift of 0.5 with exceptions at 𝜌 = 0.5 for N = 100 and N = 150 samples. 

In reviewing the simulation scenarios for the discrete distribution framework which 

controlled for Type I error rate above, it was determined that not all scenarios were controlled.  

Therefore, empirical power simulations only needed to be run for those scenarios in which Type 

I error rate was controlled.  The results for the discrete distribution framework scenarios for both 

mean shifts are provided in Table II-11.  The grayed out cells present in the table are 

representative of those scenarios where the Type I error rate was not controlled (Table II-11).  

According to the empirical simulation results using discrete distribution frameworks found in 

Table II-11, we observe that only a few scenarios reach 80% power.  These scenarios that have 

empirically calculated power of at least 80% exist only for a mean shift of 0.5.  When fitting a 

GLMM using the Poisson distribution, 81.4% and 90.8% power is reached when 𝜌 = 0.3 for N = 

150 and N = 200, respectively (Table II-11).  Additionally, for 𝜌 = 0.5 and GLMM model 
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greater than 80% empirical power was achieved when N = 150 and N=200 (Table II-11).  

Concurrently for 𝜌 = 0.5, the Poisson and GLM distribution framework and fit model resulted in 

86.2% power (Table II-11).   None of the scenarios for 𝜌 = 0 reached 80% empirical power for 

either the Poisson or Negative Binomial distributional frameworks (Table II-11).  Lastly, 

empirical power was obtained for all 𝜌 = 0.5 scenarios when the model fit was a GLMM and the 

distribution from which the data were simulated was the Negative Binomial for all sample sizes 

(Table II-11).  The only other combination of simulation components that yielded at least 80% 

empirical power was for N = 200, 𝜌 = 0.5, GLM, and Negative Binomial distribution framework 

(Table II-11). 

 

 

Table II-10.  Empirical power for paired and unpaired analyses using the Bivariate Normal 

distribution with varying mean shifts under the alternative.  Table displays a summary of 

empirical power from the simulation study where the Bivariate Normal distribution was used to 

simulated the study data.  Data sere simulated to reflect mean shifts of 0.3 and 0.5 applied to on 

of the treatment measurement’s gene expression values.  Cells shaded in green have reached 

power of at least 80% 
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Table II-11.  Empirical power for paired and unpaired analyses using the Bivariate Poisson 

and Bivariate Negative Binomial distributions with varying mean shifts under the 

alternative.  Table displays a summary of empirical power from the simulation study were the 

Bivariate Poisson and Negative Binomial distributions were used to simulate the study data.  

Data were simulated to reflect mean shifts of 0.3 and 0.5 applied to one of the treatment 

measurement’s gene expression values.  Those scenarios that do not contain power information 

did not have control of the Type I error (< 0.05) in the null scenarios (Table II-7). 

 

2.5  Discussion 

 

Differential expression (DE) analysis has become a very popular type of analysis among 

researchers that work with RNA-Seq data.  However, current comparison studies of DE 

methods do not seem to explain the rationale behind why certain methods were used verses 

other methods.   To that, there is very little information regarding the impact that different data 
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structures (i.e., paired and unpaired data) have within DE methods that are capable of 

accommodating varying data structures when selecting genes that are truly differentially 

expressed.   

From our empirical study, our results provide insight to the considerations that research 

may need to make when conducting DE analyses.  First, we recognize that comparison of DE 

methods, with default setting used, perform poorly in determining the same genes to be 

differentially expressed.  This was the case for all types of comparisons that were made—

comparisons between Frequentists and Bayesian theoretical backgrounds; as well as, looking at 

the comparisons between methods capable of handling all paired or unpaired data structures.  

Although, when comparing the paired verses unpaired DE methods, we found that more DE 

genes that were similar between the methods are found in the paired context.  This is a result 

that was expected as the structure of our original ovarian tumor data was paired in nature.  The 

study DE methods does not utilize statistical models that account for the pairedness by using 

models that allow for mixed effects—fixed or random.  It is more common for the pairedness to 

be modeled as a fixed covariate.  In terms of the theoretical background behind the DE methods, 

we observed that few DE genes overlapped between any two methods, let alone in the 

comparison of all Bayesian methods; these are crucial finding.  It is expected that the Bayesian 

methods would find different DE genes as the Bayesian approaches can highly vary from one 

method to another due to set up of prior distributions and other model parameters.  After 

summarizing the results, we think that it is fair to add to the challenges mentioned by Trapnell 

et al. (2013).  An additional challenge of conducting DE analyses is that the varying attributes 

found in the different DE methods make it difficult to determine similar genes that are DE. 
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As the results from our empirical study using the ovarian cancer data were poor in terms 

of the number of similar overlapping DE genes that were found when comparing the many DE 

methods, we decided to conduct a simulation study to determine if our findings from the 

empirical study were inhibited by data structure and/or the model which was fit.  Our simulation 

study was solely conducted from a Frequentist viewpoint and sought to determine how well 

varying scenarios through sample size, correlation values between repeated measures, and fit 

model controlled the Type I error rate.  Furthermore, if the Type I error rate was controlled, we 

investigated if the statistical test performed had adequate power by introducing a mean shift in 

the simulated expression values (i.e., 𝐻𝑜: 𝜇𝑔,   𝐴 ≠ 𝜇𝑔,   𝐵).  Both portions of this simulation study 

were done in an empirical matter, and we purposefully analyzed data structures in correct and 

incorrect fashions.  The latter, helped to provide insights to the consequences that arise when 

performing incorrect analyses. 

The results for the portion of the simulation which explored control of the Type I error 

rate were as expected, especially for the analyses using the Bivariate Normal distribution.  For 

the Bivariate Normal scenarios, we observed that as the simulated correlation increased Type I 

error rate remained controlled right around the 0.05 value when a Linear Mixed Model (LMM) 

was fit and tested.  This is likely due to the fact that in fitting the mixed model we are able to 

account for the pairedness between observations that is a result of the simulated correlation.  We 

observe that the empirically calculated Type I error rate when fitting a Linear Model (LM) for 

data simulated using the Bivariate Normal distribution decreases drastically as the correlation in 

the simulated data increases.  While having a small Type I error rate according to its statistical 

definition is ideal, here it is probably a result of not have enough power to detect a difference in 

some given difference in mean expression values which we will discuss later. 
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Similar trend exists in the Bivariate Poisson and Bivariate Negative Binomial distribution 

scenarios in terms of control of the empirically calculated Type I error rate.  For the Poisson and 

Negative Binomial scenarios, when data  had no correlations, or were unpaired, the fit 

Generalized Linear Model (GLM) had control over the Type I error rate for all sample sizes.  

Type I error rate was not controlled at the 0.05 level for the aforementioned scenarios when a 

paired model, a Generalized Linear Mixed Model (GLMM), which is designed to account for 

paired data was fit.  Again as correlation increases, for all GLM scenarios, it is observed that the 

empirically calculated Type I error rate decreases likely for the same rationale explained for the 

Bivariate Normal distribution scenarios.  These results are what one would expect.  If data are 

unpaired or without correlation between observations (i.e., pre- and post-treatment), then the 

models fit to test such data likely should not contain paired capabilities.   

The simulation results for all scenarios which fit a GLMM are not as aligned with what 

we would expect for 𝜌 = 0.3 and 𝜌 = 0.5.  When considering the Poisson scenarios, it was 

observed that Type I error was controlled at 𝜌 = 0.3; however, at 𝜌 = 0.5 it becomes slightly 

less than 0.05 with empirically calculated Type I error rates ranging between 0.013 and 0.017.  

The results at 𝜌 = 0.3 are as expected a mirror the correspond scenario from the Bivariate 

Normal.  Though, at 𝜌 = 0.5, not having control at the 0.05 level not as expected.  For the 

Bivariate Negative Binomial scenarios, Type I error rate control was only nearly obtained when 

𝜌 = 0.5 using the GLMM—no Type I error rate control was attained at the 0.05 level for 𝜌 =

0.3.  These results are also not as expected as one would expect.  Fitting a model that accounts 

for data pairedness to data that have a paired structure should result in control over the Type I 

error rate. 
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In those scenarios for which Type I error rate was controlled at 0.05 or lower, the portion 

of the simulation which calculated empirical power provided some logic as to the values which 

were obtained.  For those conservative Type I error rate values significantly lower than 0.05 for 

scenarios that simulated data using the Bivariate Normal distribution, it was notice that the 

empirical power is extremely low.  Hence, conducting statistical tests using a model which does 

not agree with the structure of the data has been shown to have low power.  Empirical power 

increased with both an increase in mean shift and sample size which is typical in any simulation 

study of this type.  When the sample size was large enough, empirical power was achieved 

regardless of which type of model was fit to any of the data structures in the Normal scenarios.  

However, when sample size was smaller, modeling the data structure correctly becomes more 

important in reaching a desired power to conduct such test.  This was a result that we expected 

to observe across scenarios where Type I error rate was controlled.  

With multiple testing of numerous genes, there is potential for statistical significance 

failing to lead to meaningful clinically relevant findings.  Thus, it should be advised that once 

differential expression analysis is completed that supplementary investigations should be 

completed. Empirical Type I error rates that are significantly lower than 0.05 are said to be 

conservative as the probability of rejecting the null hypothesis when the null hypothesis is true 

is very low.  This translates to a decrease of statistical power.   

In general, several types approximations are considered for the statistical methods 

developed for RNA-Seq studies (Law et al., 2014).  One of the prevalent issues we discovered 

when fitting the GLMM model when we decreased our sample size was that our models did not 

converge in their analyses.  This is likely due to the fact that many statistical tests that are only 

asymptotically valid or theoretically accurate only when the dispersion is small which is not the 
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case in RNA-Seq data types (Law et al., 2014).  This is problematic as many RNA-Seq studies 

contain smaller sample sizes due to funding constraints.  Thus, methods that allow for analysis 

of paired RNA-Seq data that have small sample sizes need to be investigated.  Moreover, these 

smaller sample size studies would need further investigate Type I error rate and power for 

conducting tests; as well as, adapt models and method approaches to handle small sample sizes.  

Within the scope of our study, we tried to troubleshoot why our models in the paired Poisson 

and Negative Binomial context would not converge at sample sizes less than 100 samples.  A 

simple fix that was suggested in many forums, was to increase the number of iterations in the 

optimizer.  Implementing this method provided no increase in performance.  Additional 

limitations for our simulation study exists-- we only investigated negative correlation present in 

our simulated data and only considered gene expression values measures pre- and post-

treatment.  Future studies may seek to extend our study by using smaller sample sizes, a greater 

range of correlations (negative and positive) within the data, and including data that are have 

additional replicates. 

Other methods that can be used for future work include implementing (1) a sandwich 

estimator, or (2) use method of moments as the estimator.  The sandwich estimator would be 

able to better handle the paired structure of the data through the use of a robust covariance 

matrix estimator or the empirical covariance matrix estimator (Kauermann and Carroll, 2000).  

We propose implementing the sandwich estimate from Kaurman and Carroll as it has already 

been implemented for Poisson type data (Kauermann and Carroll, 2000).  Further adjustments 

would need to be made to adapt the estimator to be used with the Negative Binomial 

distribution.  
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Findings from our empirical study may be a result of our small sample size of N = 11 

subjects, our approach of using only default stings in DE methods, and number of measures 

taken on each subject. Others have found higher numbers of DE genes that were similar across 

methods they compared.  There is also evidence that by increasing the number of replications, 

other have seen through simulation that the percentage of DE genes that are called also increase 

(Robles, 2012).  Additionally, this study, specifically the simulation study, is limited as only 

positive correlation values were considered when simulating the data.   

In conclusion, we determined that differential expression analysis methods, when 

multiple are compared, lack precision in determining similar genes that are differentially 

expressed for small sample size and low number of replicates.  Our results suggest that EdgeR 

and DESeq2 are most robust to incorrect specification of data structure in terms of determining 

differentially expressed genes.  All-in all, we agree with the conclusion that was made by 

Rapaport et al. (2013) and have results that suggest that no individual DE method appears to be 

best in determining DE genes.  However, taking in combination the results from our empirical 

study and the simulation study, our recommendation (as expected based on statistical theory) is 

to use analysis techniques that coincide with the study design as Type I error rate is more likely 

to be controlled.  Additionally, we conclude that statistical test will have greater power when 

study design and statistical model for analysis align with one another.  

While statisticians have the ability to fit numerous statistical models to RNA-Seq data, it 

is crucial for them to keep in mind how to interpret their findings so that researchers can know 

the clinical implications.  This is also the case when RNA-Seq data are transformed.  

Furthermore, it is fundamental that any analysis complete be evaluated and validated in terms of 
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its performance and accuracy.  All-in-all with any type of research study, there needs to be a 

balance that exists between considering clinical relevance and statistical relevance.  
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3.1 Abstract 

 

 The analysis of RNA-Seq data comes with some different and additional challenges, as 

compared to microarray based data.  In contrast to microarray based mRNA data in which 

relative mRNA is measured for pre-defined probe sets via fluorescence, RNA-Seq experiments 

measure the gene expression levels from the total number of reads that fall into the exons of a 

gene. Therefore, the quality control, global biases, normalization and analysis methods for RNA-

Seq data are quite different than those for microarray based data. In particular, where the 

assumption of normality was a reasonable assumption for microarray based data, RNA-Seq data 

tends to follow an over-dispersed Poisson or Negative Binomial distribution.  Little research has 

been done to assess how cluster methods perform for analysis of RNA-Seq data and if 

transformation of the data can improve the performance.  Hence, we conducted an extensive 

simulation study to assess the performance of combinations of data transformations and 

clustering methods with respect to clustering performance and accuracy in estimating the correct 

number of clusters. Data were simulated based on RNA-Seq data collected on 56 serous ovarian 

cancer tumor samples.  In total, 192 unique scenarios were investigated with variations in data 

transformation, clustering method, number of simulated clusters, and size of clusters.  Within 

these scenarios, considerations are given to whether or not the number of clusters found in the 

data are known or unknown. Each scenario’s performance was evaluated by the adjusted rand 

index, clustering error rate, and concordance index.  Evaluation results revealed that data 

transformations which cause the data to look more normal in combination with model-based 

clustering methods perform better with respect to all performance evaluation metrics when the 
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number of clusters is said to be known.  The K Unknown simulation branch revealed the 

difficulty in algorithmically selecting the number of clusters present in a given dataset when no 

expert advice is available.  Globally, we conclude that model-based clustering (MC) approach 

may be the best starting place for exploratory clustering analysis of RNA-Seq data types when 

the number of clusters is backed by prior knowledge.   

Keywords:  Clustering; genomics; RNA-Seq; Negative Binomial; Simulation Study 
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3.2 Introduction 

 

 The analysis of RNA-Seq data comes with some different and additional challenges, as 

compared to microarray based data.    In contrast to microarray based mRNA data, in which 

relative mRNA is measured for pre-defined probe sets using fluorescence, RNA-Seq experiments 

measure the gene expression levels from the total number of reads that map to the exons of a 

gene.  Furthermore, RNA-Seq experiments have the potential, in theory, to answer many more 

research questions as compared to mRNA microarray studies, such as splicing, fusion detection 

and allelic specific expression (ASE).  Additionally, the quality control, global biases, 

normalization and analysis methods for RNA-Seq data are quite different than those for 

microarray based data.   

Microarray data are continuous verses that of sequencing data which are count-based.  

Microarray data can be simulated using continuous distributions with varied parameters and 

many have accepted that microarray data can be measured using the Normal, or Gaussian, 

distribution.; whereas, sequencing data needs to be simulated from discrete distributions such as 

the Poisson (or over-dispersed Poisson) or the Negative Binomial distribution. Within the last 

few years, several researchers have evaluated and compared clustering methods in microarray 

analysis (Jiang et al., 2004, Shannon, 2003, Quackenbush, 2001, Eisen et al., 1998, Sorlie et al., 

2001, Makretsov et al., 2004, Allison et al., 2006, Qu and Xu, 2004).  Applications of clustering 

in microarray data were completed through the use of unsupervised classification as no 

hypotheses or data assumptions were needed (Allison et al., 2006).  One of the earliest studies 

using hierarchical clustering in microarray data showed that genes with common role and 

function in the cellular process would cluster together (Eisen et al., 1998).  Others have found 



66 

 

that unsupervised, hierarchical clustering has the capability to determine prognostic clusters, 

clusters that are based upon some marker of health status; as well as, identify subtypes of 

invasive cancers (Makretsov et al., 2004, Sorlie et al., 2001).  Despite that other studies support 

genes that share common function cluster together, clustering outcomes can be greatly affected 

by the dependency of a particular method used relative to the clustering algorithm used for 

classification, normalization across and within experiments, and the measure of similarity or 

dissimilarity that is used (Quackenbush, 2001).  Some have also argued that if you have some 

prior insight as to what cluster may be, that using supervised model-based clustering algorithms 

is superior (Qu and Xu, 2004). Knowledge of these variations have suggested that researchers 

should select a couple clustering methods to summarize their results (Jiang et al., 2004, Shannon, 

2003).    

A common practice in statistics is to apply transformations to a given set of data to make 

the analysis methodologies more efficient and induce better statistical properties.  RNA-Seq data 

have been said to have three problematic properties when it comes to statistical analysis--a 

skewed distribution, variability among the read counts for individual genes, and likelihood of 

extreme values (Zwiener et al., 2014).  Two of these problematic properties can be addressed 

using simple algebraic approaches.  The skewness of the distribution can be addressed by using a 

data transformation.  Likewise, the variability can be handled through many types of 

normalization procedures.  While this study will not cover types of normalization, a 

comprehensive procedure can be found by Dillies et al. (2012).     

Clustering analysis can be viewed as one of the first steps when exploring data.  Clustering 

analysis is purely exploratory and for hypothesis building as clustering methods will form 

clusters even in data that is unrelated and completely independent (Quackenbush, 2001, 
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Shannon, 2003).  The challenge for clustering analysis lies in obtaining a “good” clustering 

method and in turn coming up with the “correct” number of clusters (Yeung, 2001).  The 

collective goal of clustering methods is to accurately group data objects of interests based on 

some type of mathematical calculation of similarity or dissimilarity to assess whether the object 

belongs to a cluster (Eisen et al., 1998).  Common measures of similarity that are used in 

clustering methods for a variety of data domains include: Euclidean distance, cosine similarity, 

Jaccard correlation coefficient, and relative entropy (Huang, 2008).   

Clustering methods tend to fall into two categories—supervised clustering and 

unsupervised clustering.  Supervised clustering methods use algorithms that cluster objects into 

some pre-defined category.  Whereas, unsupervised clustering methods aim to discover 

categories by grouping objects by one of the similarity measures mentioned above (Allison et al., 

2006).  Nevertheless, both of these clustering methods’ categories seek to reduce the data to be 

able to better explain potential relationships that may exist.  Selection of the most appropriate 

clustering method is not always straightforward and is often driven by the context of the specific 

study (Chalise et al., 2014). Within the different clustering methods, analyses have been 

completed to cluster based upon genes (i.e., gene-based clustering) or clustering based upon 

subject samples (i.e., sample-based clustering) (Liu and Si, 2014).   

 In the early era of the microarray, many researchers sought to apply clustering analysis to 

the gene expression data as the importance to identify specific patterns of gene expression and 

groups of genes or groups of participant samples for that could provide greater insight into 

biological function (Quackenbush, 2001).  The pioneered reports of researchers executing 

clustering analysis in expression data date back to 1997 (Weinstien, 1997).  Weinstien et al. 

(1997) implemented a hierarchical clustering approach to a set of targets that contained different 
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compounds and ordered them based upon Pearson correlation coefficients relating activity and 

target patterns.  As time progressed, clustering methods for microarray data included: 

hierarchical clustering, graph-theoretical approaches, model-based clustering, K-Means, density-

based hierarchical clustering, and self-organizing maps (SOMs) (Jiang et al., 2004, 

Quackenbush, 2001).  A comprehensive evaluation and comparison of clustering methods for 

microarrays was completed in 2006 by Thalamuthu et al..  They compared six different gene 

clustering methods and found that model-based clustering outperformed non-model based cluster 

methods in a simulation study and applied to real data (Thalamuthu et al., 2006). 

When it comes to the analysis of RNA-Seq data the literature is saturated with studies 

regarding differential expression as it relates to varied experimental conditions.  The trend in 

clustering analysis followed thereafter.  After reviewing the available literature, it was apparent 

that the evaluation and comparison of clustering methods has only been completed in microarray 

analyses--microarray technology predates RNA-Sequencing by approximately 10-15 years.  

Moreover, little research has been done to assess how cluster methods perform for analysis of 

RNA-Seq data and if transformation of the data can improve the performance.  The current 

literature contains three closely related studies to this topic that have looked at performance of 

clustering methods—one investigates classification and clustering of sequencing data using a 

variety of methods (Witten, 2011), another used clustering analysis to identify features of the 

gene space in RNA-Seq and microarrays (Sibru et al., 2012), and the other study provides an in 

depth look at model based clustering for RNA-Seq data (Si, 2013).    

In this paper, we aim to assess four data transformations applied to count data (RNA-Seq 

data type) and up to five clustering methods to provide insight into clustering using RNA-Seq 

data.  Using an extensive simulation study that contains 192 simulation scenarios, we investigate 
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several previously purposed data transformations and clustering methods that have been used in 

microarray analysis.  Data for this simulation were simulated from parameters obtained from an 

actual RNA-Seq dataset.  We limited the number of genes in our simulated datasets to account 

for the significant computational resources that were needed for our methods.   

All simulation scenarios fit into four parent categories depending on how the genes were 

selected to be included in the clustering analyses. The factors varied in the simulation studies 

include: (1) how genes were selected to be included in the clustering analyses (top 100 genes 

according to their median absolute deviation (MAD), or random sample of a 100 genes); (2) size 

of the clusters (equal cluster sizes or extremely unequal cluster sizes); (3) number of clusters; (4) 

data transformations; (5) clustering methods; (6) whether K was known or unknown.  The 

simulation scenarios assessed the following data transformations: naïve, logarithmic base 2 

(Log), Blom (Beasley et al., 2009), and variance stabilizing transformation (VST) (Durbin et al., 

2002).  Concurrently, using the transformed datasets the following clustering methods were 

assessed: Hierarchical Clustering (HC), Model-based Clustering (MC), Non-Negative Matrix 

Factorization (NMF), Recursively Partitioned Mixture Model Clustering (RPMM), and K-Means 

Clustering (KM).   Each of the clustering methods carried out a sample based clustering 

approach (i.e., interested in clustering patient tumors to determine molecular subtypes).   

In the following sections of this paper, we will describe how our data were simulated 

using Negative Binomial maximum likelihood estimation (MLE), provide details of our 

simulation study, and further discus the data transformations and clustering methods used.  We 

then summarize the normality and performance findings from all simulation scenarios.  To our 

knowledge, this is the first comprehensive assessment of clustering for RNA-Seq data.  
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3.3 Materials and Methods 

 

To address the aims of this study, an extensive simulation study was conducted.  This 

simulation study has four major components—1) simulating data that is similar to actual RNA-

Seq data collected from a set of ovarian tumors, 2) implementing various data transformations, 3) 

utilizing many clustering methods when the number clusters within the data is either 

approximately known by an expert or completely unknown requiring the use of model-based 

algorithms or the Gap Statistic (Tibshirani, 2001), and 4) evaluating all simulation scenarios 

using the Adjusted Rand Index (ARI), Clustering Error Rate (CER), and Concordance Index (C-

Index).  The schematic in Figure III-1 provides a brief overview of the entire simulation study.  It 

should be noted that for scenarios in which the number of clusters is known and set a priori will 

be referred to as “K Known” scenarios; whereas, those scenarios where the number of clusters in 

the data is completely unknown will be denoted as the “K Unknown” scenarios.  All analysis for 

this study were conducted in R statistical software (R Development Core Team, 2016). 
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Figure III-1.  Simulation schematic to assess aims of study.  Prior to simulating our data, we 

began by obtaining Negative Binomial (NB) parameters from 100 top genes and 100 randomly 

selected genes based upon Median Absolute Deviation (MAD) of expression values.  Data were 

then simulated for both an equal number of samples in each cluster and an unequal number of 

samples in each cluster for three classes of 𝐾 (𝐾 = 1, 2 and 3) using the NB parameters for D = 

100 datasets.  Furthermore, data transformations were applied to all data sets; and K Known and 

K Unknown clustering methods were applied.  Data transformations were evaluated according to 

normality measures (i.e., skewness and kurtosis) and clustering methods were assessed by 

common clustering accuracy metrics (i.e., ARI, CER, and CI). 
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Before assessing our data transformations and clustering methods, great consideration 

was given to the way in which the data are simulated to ensure that data are similar to what 

would be found in a real RNA-Seq experiment to ensure our results are robust and relevant.  

Most often researchers have simulated RNA-Seq count data from either an overdispersed 

Poisson distribution or a Negative Binomial distribution. The usage of both of these distributions 

can be found throughout the literature as they are able to deal with the unique challenges that 

arise when simulating RNA-Seq data.  These difficulties include the nonnegative, integer-valued 

structure of RNA-Seq data; as well as, the highly variable total number of sequence reads across 

different samples (Witten, 2011).  Recently more researchers have preferred the use of the 

Negative Binomial distribution when it comes to RNA-Seq studies.  The Negative Binomial 

distributions allow for two distributional parameters to be controlled—the mean and shape 

parameters.  Controlling the mean and shape parameters allow researchers to model the 

overdispersion, which typically exists in sequencing data.  Overdispersion occurs when there is 

greater observed variance in the data than expected (e.g., under the Poisson distribution 

assumption the mean and variance are equal).  In this simulation study we chose to simulate the 

data from a Negative Binomial distribution, in which we used parameter estimates for simulation 

based on the RNA-Seq data from an ovarian cancer study out of the Mayo Clinic (Rochester, 

MN) headed by Dr. Ellen L. Goode in the hope that our simulated data will better resemble that 

of “real-life”.   

3.3.1 Mayo Clinic Ovarian Cancer Study 

The Mayo Clinic data contains data collected on 56 patients with invasive epithelial 

ovarian cancer.  Women who were eligible for the study needed to have a diagnosis that was less 
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than one year prior and be ≥20 years of age.  All participant samples were of Serous (SER) 

histology as confirmed by re-review by a gynecologic pathologist (GLK).  RNA was extracted 

from these samples at the Tissue Microarray facility at the Mayo Clinic and sent to be sequenced 

by BGI Americas.  Prep for the sequencing of the samples included riboZero treatment of 1 𝜇g 

of RNA and using the Illumina TruSeq Stranded Total RNA kit to make libraries.  After samples 

were prepped, sequencing was completed using the Illumina HiSeq 2000 with 100bp paired end 

reads, six samples were multiplexed per lane.  The resulting FASTQ files were sent to Dr. 

Fridley’s lab at The University of Kansas Medical Center (KUMC).  At KUMC, the FASTQ 

files were aligned to the human genome (G = 63,152 ensemble gene IDs) using TopHat2, 

followed by application of HTSeq to generate gene count.  To further understand the behavior of 

this study data, we calculated the mean and variance for each of the ~63K Ensemble genes across 

all participant samples.  In computing the log transformations on the count data, an additional 

count of 1 was added avoid undefined values.  Figure III-2 displays the relationship between the 

transformed mean and variance of the RNA-Seq data.  It can be noticed that the data are over-

dispersed as expected. 
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Figure III-2.  Comparison of log-transformed mean and log-transformed variance across 

samples per Ensemble gene ID.  It is common among RNA-Seq data that overdispersion will 

be present.  That is, the variance is greater with respect to the mean.  The red 45 degree line is 

representative of equal log-mean and log-variance. 

 

3.3.1.1 Data Selection 

The Mayo Clinic data contains gene abundance estimates for 𝐺 = 63,152 Ensembl genes 

on 𝑁 = 56 participants.  Let 𝑿∗ be the 𝐺 by 𝑁 matrix where 𝑥∗
𝑔𝑖 is the raw RNA-Seq count for 

the 𝑔th gene (𝑔 =  1, … , 𝐺) and the 𝑖th sample (𝑖 =  1, … ,𝑁). 

𝑿∗ = [

𝑥∗
11 𝑥∗

12 ⋯ 𝑥∗
1𝑁

𝑥∗
21 𝑥∗

22 … 𝑥∗
2𝑁

⋮ ⋮ ⋱ ⋮
𝑥∗

𝐺1 𝑥∗
𝐺2 ⋯ 𝑥∗

𝐺𝑁

] 

As with any sequencing dataset, data size is often a concern for statistical analysis and 

computational processing time. Additionally, we have the classic “small n, large p” phenomena 
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that is often encountered in RNA-Seq studies (i.e., there is a much lower number of samples (i.e., 

small n) with respect to the large number of covariates or genes (i.e., large p) that are taken for a 

given sample).  Hence, we decided to reduce the size of our data, specifically reduce the number 

of genes that whose attributes we would use to simulate our datasets.  This was accomplished 

using two fairly intuitive ways: 1) selecting 100 of the top most variable genes according to the 

Median Absolute Deviation (MAD) (most common practice in selecting genes for clustering), 

and 2) selecting a random sample of 100 genes. 

The top 100 most variable genes were selected by calculating each gene’s median 

absolute deviation (MAD).  The MAD is calculated by obtaining the median count value across 

all 𝑁 samples, subtracting it from each of the sample’s counts for a given gene, and further 

taking the median of all those differences.  Rather, MAD is defined as:  

𝑀𝐴𝐷(𝒙𝑔.
∗ ) = 𝑀𝑒𝑑𝑖𝑎𝑛𝑖(|𝑥𝑔𝑖

∗ − 𝑀𝑒𝑑𝑖𝑎𝑛(𝒙𝑔.
∗ )|). 

The MADs for all of the genes were then ordered in decreasing value and subset to those 100 

genes with the highest deviations.  Here, let the subset of data be 𝑿𝑇, a 𝐺𝑇
∗
 by 𝑁 matrix where 

𝐺𝑇
∗ = 100 Ensembl gene IDs, similar to 𝑿∗.  It follows: 

𝑿𝑇 = [

𝑥11 𝑥12 ⋯ 𝑥1𝑁

𝑥21 𝑥22 … 𝑥2𝑁

⋮ ⋮ ⋱ ⋮
𝑥𝐺𝑇

∗1 𝑥𝐺𝑇
∗2 ⋯ 𝑥𝐺𝑇

∗𝑁

], 

where 𝑥𝑔𝑖 is the raw RNA-Seq count for the 𝑔th top 100 most variable gene (𝑔 =  1, … ,  𝐺𝑇
∗
) 

and the 𝑖th sample (𝑖 =  1, … , 𝑁).  The creation of the dataset that contains 100 randomly 

selected genes follows similarly to that of the dataset containing the top 100 MAD genes.  

Though, prior to obtaining a random sample of 100 genes, we filtered out the lower 50% MAD 

genes, ordered in decreasing order, as a majority of them have zero counts for all 𝑁 samples.  



76 

 

Thus, from the residual 50%, 100 genes were randomly sampled using a random number 

generator within R (R Development Core Team, 2016).  For this subset, let the data be 𝑿𝑅, a 𝐺𝑅
∗
 

by 𝑁 matrix where 𝐺𝑅
∗ = 100 Ensembl gene IDs.  It follows: 

𝑿𝑅 = [

𝑥11 𝑥12 ⋯ 𝑥1𝑁

𝑥21 𝑥22 … 𝑥2𝑁

⋮ ⋮ ⋱ ⋮
𝑥𝐺𝑅

∗1 𝑥𝐺𝑅
∗2 ⋯ 𝑥𝐺𝑅

∗𝑁

], 

where 𝑥𝑔𝑖 is the raw RNA-Seq count for the 𝑔th top 100 most variable gene (𝑔 =  1, … ,  𝐺𝑅
∗
) 

and the 𝑖th sample (𝑖 =  1, … , 𝑁).   

The resulting selections of genes are plotted in blue against the original Mayo Clinic data 

along with their corresponding expression levels in Figure III-3 A) and Figure III-3 B), 

respectively.  The distinct way in which the data were selected can be observed.  In Figure III-3 

A) observe that all of the selected genes contain the highest log means and log variances.  

Additionally, notice the completely ransom selection of the genes in Figure III-2 B).  For both 

types of data selections, there is a lack of distinct patterns of expression (Figure III-3: A and B). 

Though it should be noted that the distributions for the color breaks in the heatmaps in Figure 

III-3 are very different between the different ways the data were select.  This was purposely done 

to allow for the variation in expression to be better depicted.  Even though the scale for the color 

breaks differ from one another, genes with lower read counts are represented in red and those 

gene with higher counts are in blue. 
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Figure III-3.  Gene selection for both the top 100 genes and random 100 genes according to 

their Median Absolute Deviation (MAD).  Highlighted in blue are the top 100 most variable 

genes in both panel A) and B).  A) contains the top 100 MAD genes, and B) contains the random 

subset of 100 genes. 

 

Figure III-4:  Heatmaps of most variable genes.  Each heatmap represents low, moderate, and 

high expression count values through the use of red, yellow, blue color scheme, respectively for 

one of the 100 simulated datasets.  The color breaks that were used for the red, yellow, blue color 

scheme differed depending on the category of gene selection.  Panel A) contains the top 100 

MAD genes had color breaks corresponding the following gene expression values [0, 500, 1000, 

5000, 9000, 14000, 25000, 50000, 75000, 100000, 500000, 1000000, 1789200].  Similarly panel 

B) contains the 100 randomly selected MAD genes at [0, 0.5, 1, 2, 3, 5, 10, 20, 50, 100, 500, 

1000, 100000, 1789200].  
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3.3.1.2 Maximum Likelihood Estimators for the Negative Binomial Parameters  

Vector Generalized Linear Models (VGLMs) are an inclusive class of models of various 

multivariate response types that are highly generalizable (Yee, 2003, Yee, 1996).  VGLMs are 

able to handle problems that stem from uni- and multivariate distributions, categorical analysis, 

generalized estimating equations and many more (Yee, 2003).   VGLMs are models of the form 

𝑓(𝒚|𝒙; 𝑩) = ℎ(𝒚, 𝜂1, … , 𝜂𝑀, 𝜑) 

for some known function ℎ(∙), where 𝑩 = (𝛽1𝛽2 …𝛽𝑀) is 𝑝 𝑥 𝑀, 𝜑 is an optional scaling 

parameter, and 𝜂𝑗 = 𝜷𝑗
′𝒙 = 𝛽(𝑗)1𝑥1 + ⋯+ 𝛽(𝑗)𝑔𝑥𝑔 is the 𝑗th linear predictor (Yee, 2003).  The 

only assumption for VGLMs is that the regression coefficients must be comprised of a set of 

linear predictors.  Once the form of the model is established, the log-likelihood function can be 

obtained and Maximum Likelihood Estimates (MLEs) can be found for the parameters in the 

parent distribution through Iteratively Reweighted Least Squares (IRLS) using either the 

Newton-Raphson or Fisher-scoring algorithm(Green, 1984, Yee, 2003).  Details of this process 

can be found in the Yee and Hastie paper from 2003.  In 2015, Yee has made available an R 

package to that carries out the MLE process above for a specified distribution—the VGAM 

package.  To obtain data that reflect that of “real-life”, we will utilize VGLMs to obtain MLEs 

from fitted NB models for each gene, and use those MLEs in the simulation of the datasets. 

For each of the resulting datasets from the gene selections, 𝑿𝑇 and 𝑿𝑅 above, we fit 100 

vector generalized linear models (VGLMs), one for each gene, using a Negative Binomial 

parameterization.  The NB parameterization that was used to fit each of the models in both gene 

selection datasets was 

𝑃(𝑋 = 𝑥;  𝜇,  𝑘) =  (
𝑥 + 𝑘 − 1

𝑥
) (

𝜇

𝜇 + 𝑘
)

𝑥

(
𝑘

𝑘 + 𝜇
)
𝑘

, 𝜇 > 0,  𝑘 > 0  
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with mean 𝜇, variance 𝜇 +
𝜇2

𝑘
, and dispersion parameter 

1

𝑘
.  Additionally, the linear predictors for 

our VGLM are log(𝜇) =  𝜂1 = 𝜷1
′ 𝒙 and log(𝑘) =  𝜂2 = 𝜷2

′ 𝒙 where the log link is used here due 

to the range restrictions that are present for 𝜇 and 𝑘.  Utilizing the IRLS method, the MLEs for 𝜇 

and 𝑘, 𝜇̂ and 𝑘̂, were obtained for each gene, resulting in creation of  𝝁̂𝑇 = [

𝜇̂1

⋮
𝜇̂𝐺𝑇

] and 𝒌̂𝑇 =

[
𝑘̂1

⋮
𝑘̂𝐺𝑇

] for those genes from the selection dataset containing the top 100 genes, and 𝝁̂𝑅 = [

𝜇̂1

⋮
𝜇̂𝐺𝑅

] 

and 𝒌̂𝑅 = [
𝑘̂1

⋮
𝑘̂𝐺𝑅

] from the dataset containing 100 randomly selected genes.    

 

3.3.2. Simulation Study  

 To address the specific aims proposed, an extensive simulation study was conducted. The 

simulation of the data in this study has many unique attributes to insure that our scenarios and 

results are generalizable.  We further simulated these data to include exploring different numbers 

of clusters and clusters on different sizes.  In our simulation study, we simulate data that 

considers one (i.e. no clusters) to three clusters (i.e., 𝐾=1 cluster, 𝐾=2 clusters, and 𝐾=3 

clusters).  Additionally, given the behavior of some clustering methods wanting to cluster so that 

cluster sizes are equivalent, we simulate data that is of equal cluster size and extremely unequal 

cluster sizes.  The cluster sizes for K=2 clusters and K=3 clusters for equal and unequal cluster 

size can be found in Table III-1. 
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Table III-1.  Cluster sizes for different number of clusters.  Equal and Unequal cluster sizes 

were used in the simulation study.  𝑐𝑘 for 𝑘 = 1, 2, or 3 designate the number of samples in a 

given cluster. 

 

For organizational purposes of this simulation, we utilize the way data were selected to 

obtain the MLEs (i.e., top 100 MAD genes or Random 100 MAD genes) and the size of the 

clusters (i.e., equal or unequal cluster sizes) to define four parent categories of scenarios for all 

K.  The 4 parent categories will be defined as: 1) Top 100 MAD Genes with Equal Cluster Sized 

(TE); 2) Random 100 MAD Genes with Equal Cluster Sizes (RE); 3) Top 100 MAD Genes with 

Unequal Cluster Sizes (TX); and 4) Random 100 MAD Genes with Unequal Cluster Sizes (RX). 

3.3.2.1 Datasets Simulation 

We generate 100 datasets (D=100 datasets) for each of the 4 parent categories previously 

mentioned.  The data for these datasets were simulated from a NB distribution using the 

respective sets of MLEs (i.e., 𝝁̂𝑇 and 𝒌̂𝑇, or 𝝁̂𝑅 and 𝒌̂𝑅).  Specifically, 

𝑥𝑔𝑖~𝑁𝐵(𝜇̂𝑔, 𝑘̂𝑔) 

where 𝜇̂𝑔 is the MLE of the mean and 𝑘̂𝑔 is the MLE for the dispersion parameter for the 𝑔th 

gene.  The data are simulated under the assumption that subjects are independent from one 

another and that the gene expression between genes is also independent.  Though, in order to 
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simulate data that resembled different clusters, we incorporated effect size shifts to 𝜇̂𝑔 and 𝑘̂𝑔 to 

a proportion of genes which would represent genes that were up-expressed in this cluster group.  

We set 10% of the genes in any dataset up-expressed for 𝐾 = 2 and for 𝐾 = 3 there would be a 

step progression for the percentage of genes that were up-expressed—10% for 𝑐2  and 20% for 

𝑐3 of which 10% would be simulated with the same effect size as that of 𝑐2 .  Figure III-5 depicts 

specifically how genes were simulated for each cluster and up-expressed genes. 

 

 

Figure III-5.  Data simulation with clusters and up-expressed genes.  Datasets were 

simulated so that clusters would be present (i.e., 𝑐1, 𝑐2, and 𝑐3) through a shift to make certain 

percentages of genes up-expressed.  A) depicts how data were simulated for 𝐾 = 2, and B) 

depicts how data were simulated for 𝐾 = 3. 

 

 

3.3.2.2 Empirical Power Simulation to Determine Effect Size 

The effect size shifts for the mean and dispersion parameters, parameters from the 

Negative Binomial distribution, were determined through an empirical pilot study.  Data were 

simulated for the K=2, TE parent category using ranging combinations of shifts for each of the 
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parameters.  The rationale behind adding shifts to the mean and the dispersion parameters is to 

reflect the behavior that is present in simulating data from a Negative Binomial distribution—as 

mean values increases, so to do the variance, or overdispersion, values increase.  Additionally, it 

should be noted that caution should be taken when specifying these shifts.  The shifts applied to 

both the mean and overdispersion parameters needed to be substantial enough so that the 

clustering method would have the ability to distinguish clusters.  Shifts too large would lead to 

the clustering method always obtaining the “truth” or correct cluster assignment for a given 

sample.  Conversely, the shifts could not be too minimal which would result in no clusters being 

determined by the clustering method.   

After determining a set range of shifts for the parameters, one hundred datasets were 

simulated for each unique combination of shifts.  These datasets then underwent model-based 

clustering to determine which percentage of samples clustered identically with their simulated 

cluster.  Adequate power was said to be achieved if the 100 datasets for a given combination of 

effect size shifts resulted in clusters that had samples that perfectly matched the simulated 

sample-cluster assignment at least 80% of the time.  The empirical simulation showed that a 

mean shift of exp(3.375) and a dispersion shift of 1.01 would yield correct cluster assignment 

~80% of the time.  Additionally, it was determined for the K=3 simulation scenarios that in 

addition to the K=2 effect size shifts that exp(5.5) and 1.03 would be used for a percentage of 

genes in 𝑐3 .  For our simulation proposes, let ∆𝜇̂1
= exp(3.375) , ∆𝜇̂2

= exp(5.5) , ∆𝑘̂1
= 1.01, and 

∆𝑘̂2
= 1.03 for the simulation of datasets. 

3.3.2.3 Data Transformations 

In a similar fashion to Zwiener et. al. (2014) and Witten (2011), we explore many RNA-

Seq data transformations in regards to their performance in non-parametric and model-based 
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approaches. The following sections describe the four data transformations that have been applied 

to all of the scenarios for of the simulated data prior to clustering.  Even though, clustering 

methods can be executed using raw count RNA-Seq, clustering methods may run more 

efficiently and have higher accuracy in assigning samples to clusters when they are transformed 

(Shannon, 2003).  The four data transformations assessed were: Naïve transformation, Log 

transformation, Blom transformation, and Variance Stabilizing Transformation (VST).  The data 

transformations were evaluated in terms of skewness and kurtosis to assess which transformation 

yielded the “most normal” transformed RNA-Seq data.  Skewness is the measure of symmetry 

and kurtosis measures flatness or peakedness for a distribution of values (Casella and Berger, 

2002).  When data are normally distributed, skewness equals zero (i.e., 𝑆𝑘 = 0) and kurtosis 

equals three (i.e., 𝐾𝑡 = 3) (Rencher and Christensen, 2012).  𝑆𝑘 > 0 denotes positive skewness; 

whereas 𝑆𝑘 < 0 denotes negative skewness (Rencher and Christensen, 2012).    Similarly, 𝐾𝑡 >

3 means that kurtosis is positive or more peaked; whereas 𝐾𝑡 < 3 means negative kurtosis or a 

flatter distribution (Rencher and Christensen, 2012).  Following the clustering analyses, the data 

transformations in combination with each different clustering method were further considered for 

how they may have played a role in the results. 

Naïve Transformation 

The naïve transformation is the untransformed or null, simulated RNA-Seq data.  

Denoted as  

𝑥𝑔𝑖
𝑛𝑎𝑖𝑣𝑒 = 𝑥𝑔𝑖 , 

the naïve transformed data contains all of the original attributes of the raw simulated data.  This 

transformation often times does not yield accurate results in any type of statistical analysis when 

the dataset of interest includes highly variable data that span a wide range of values or are 
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skewed.  The naïve transformation will be used as a baseline to compare all other 

transformations with.  

Log Transformation 

Logarithm transformations are very useful when it comes to scaling a dataset that has a 

skewed wide range of data values; such as that of RNA-Seq data (Zwiener et al., 2014).  

Following suit from the popular Bioconductor Package, edgeR (Robinson et al., 2010), the 

specific logarithm transformation that will be used is the log base 2 data transformation.  The log 

base 2 transformation is applied to the data plus some constant c as follows:  

𝑥𝑔𝑖
𝑙𝑜𝑔2 = 𝑙𝑜𝑔2(𝑥𝑔𝑖 + 𝑐) 

Here, we are using 𝑐 = 1 to allow for the transformation of those zero count values to be non-

infinite.   

Blom Transformation 

 In the realm of statistical genomics, Blom transformations have become popularized as 

they allow for the data to be converted back to more or less the standard normal distribution 

(Beasley et al., 2009).  This is accomplished through the use of an Inverse Normal, ϕ−1, rank-

based algorithm where 𝑐 = 3/8. 

𝑥𝑔𝑖
𝐵𝑙𝑜𝑚 = ϕ−1(𝑟𝑎𝑛𝑘(𝑥𝑔𝑖) − 𝑐)/(𝑛 − 2𝑐 + 1) 

Variance-Stabilizing Transformation 

The Variance-Stabilizing Transformation (VST) is carried out in the DESeq2 R package 

in Bioconductor, and was initially proposed by Anders and Huber (Anders and Huber, 2010).  

VST allow for covariates with variances independent of the mean value to be obtained (Zwiener 

et al., 2014).  The mean-variance relationship for the transformation can be written as  
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𝑥𝑔𝑖
𝑣𝑠𝑡 = ∫

1

𝑉(𝜇𝑔)
𝑑𝜇𝑔

𝑥𝑔𝑖

0

, 

where 𝜇𝑖 are the mean expression values and 𝑉(𝜇𝑔) is defined as the variance of the Negative 

Binomial distribution (i.e., 𝑉(𝜇𝑔) ≔  𝜇𝑔 + 𝑎𝑔𝜇𝑔
2) with dispersion parameter 𝑎𝑔 = 𝑎0 +

𝑎1

𝜇𝑔
, 

where 𝑎0 and 𝑎1 are specific estimates based on the GLM (Zwiener et al., 2014). Furthermore, 

the delta method used with a Taylor expansion which considers squared Euclidean distances 

between pairs of samples (Durbin et al., 2002).  Details of this transformation can be found in the 

DESeq2 R package documentation (Love et al., 2014, Love et al., 2016).  Utilization of the VST 

transformation lends itself while to RNA-Seq data as it based on the Negative Binomial 

Distribution (Witten, 2011). 

3.3.2.4 Clustering Methods K Known and K Unknown Scenarios 

 In this section, we will describe each of the clustering methods that will be assessed in 

terms of how well they perform in terms of their accuracy in assigning samples to clusters.  The 

clustering analysis portion of this simulation study can be divided into two branches.  Branch 1 

consist of those scenarios where the number of cluster(s) is considered “known” based upon 

expert’s knowledge and literature.  These scenarios will be denoted as “K known” scenarios.  To 

know the number of clusters in a given dataset would be ideal.  However, this is rarely the case.  

Thus, branch 2 consists of simulation scenarios where the number of cluster(s) is entirely 

unknown.  Not knowing the number of clusters tasks the researcher to either make a subjective 

guess about the number of clusters based on graphical representations (i.e., a dendrogram or a 

scatterplot) of the data or use an algorithm based calculation (e.g., BIC, GAP statistics).   
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3.3.2.4.1 Clustering Methods for the K Known Scenarios 

 The K Known scenarios utilizes three clustering methods—Hierarchical Clustering (HC), 

Model-Based Clustering (MC) through the mclust package in R, and Nonnegative Matrix 

Factorization (NMF).  For each of these clustering methods, the number of clusters, 𝐾, was 

purely determined by how many clusters were simulated in a given simulated dataset.  Rather, if 

a dataset were simulated using 𝐾 = 2 clusters, then the 𝐾 fed to the clustering method would be 

two.  By specifying a particular 𝐾 for the clustering method, we force the method to partition the 

samples of the data into 2 clusters.   

Hierarchical Clustering 

One of the most common nonparametric clustering methods that is used in this study is 

Hierarchical clustering (HC).   HC was developed by Eisen et al. in 1998 (Eisen et al., 1998). 

The HC utilizes all of samples and proceeds to divide them into smaller groups in an iterative 

manner.  HC is a relatively simple type of clustering approach which provides a graphical 

representation of the results assuming that some hierarchical structure of the data exists 

(Shannon, 2003, Quackenbush, 2001).  HC consists of two different variations—agglomerative, 

a type of bottom up approach, and divisible, a top-down approach.  Furthermore, HC can be 

classified by the way in which clusters are formed or distance between clusters (Chalise et al., 

2014).  The formation of clusters is commonly termed as linkage which can be complete, 

average, and single.  In this study, we use only the agglomerative variation with a complete 

linkage where all samples begin as their own cluster.  Specifically, we let each sample be defined 

as 𝑆𝑖, it’s own cluster, for 𝑖 = 1,… ,𝑁.  From the individual clusters, pairwise distance 

comparisons are made in terms of the linkage.  Since we use complete linkage in our method 

which seeks to maximize the distance between any pair (i.e, {𝑆𝑖, 𝑆𝑖+1}) of individual clusters, the 
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algorithm goes through all pairs and separates samples based upon furthest distance between 

them so that samples of 𝑐1 are furthest from any sample in 𝑐2 (Chen et al., 2002, Chalise et al., 

2014).  This procedure has been written into an R function, hclust in the basic stats package (R 

Development Core Team, 2016).  Within this function, set up our parameters to reflect the prior 

type of HC clustering that we would like to use. 

Model-Based Clustering  

Model-Based Clustering (MC) comes in many different forms from methods that use 

mixture models (McLachlan et al., 2002, Yeung, 2001, Fraley et al., 2012, Farley and Raftery, 

2002) to Bayesian model-based methods (Medvedovic and Sivaganesan, 2002, Medvedovic et 

al., 2004).  Though, in clustering the incorporation of a “well-grounded” statistical model into a 

clustering method may serve to be beneficial in determining the best, most accurate clustering 

method (Yeung, 2001).  In MC the data is assumed to be from some finite mixture of probability 

distributions (i.e., a mixture of Gaussian models) (Chalise et al., 2014, Yeung, 2001).  Moreover, 

the likelihood of the mixture model can be written as:  

𝐿(𝜃1, … , 𝜃𝐾|𝑿) = ∏∑ 𝜏𝑐𝑓𝑐(𝒙𝒊|𝜃𝑐)

𝐾

𝑐=1

𝑁

𝑖=1

 

where 𝐾 is the number of clusters or components in the data, 𝒙𝒊 are the independent multivariate 

observations, 𝑓𝑐 is the density of the some multivariate normal distribution distributional model 

with mean of 𝜇𝒄 and covariance matrix ∑𝑐, 𝜃𝑐 are the parameters for the 𝑐th component which 

can be thought of as the kth cluster, and 𝜏𝑐 is the probability that an observation belongs to the 

𝑐th component-- 𝜏𝑐 has two restrictions 𝜏𝑐 ≥ 0 and ∑ 𝜏𝑐
𝐾
𝑐=1 = 1 (Yeung, 2001).  Through, 

eigenvalue decomposition and an EM algorithm the number of clusters, 𝐾, is estimated.  Within 
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the eigenvalue decomposition, different parameterizations are used to define the model type that 

is being used.  A wide range of model types exists: equal and unequal volume spherical models, 

unconstrained models, and elliptical models.  Utilizing the mclust package in R, we are 

seamlessly able to implement this model-based clustering approach as proposed by Farley and 

Raftery in 2002 (Fraley et al., 2012, Farley and Raftery, 2002).  As we wanted to optimize 

clustering performance in every method that we used in the simulation, we selected to use the 

mclustBIC() which determines the most optimal model characteristics (R Development Core 

Team, 2016, Fraley et al., 2012).  This function has the flexibility to have the number of clusters 

specified or not specified. 

Non-negative Matrix Factorization 

 Non-negative Matrix Factorization (NMF) is a parts-based machine learning technique 

that uses a series of matrix manipulations to determine potential groups or likeness among 

objects (Devarajan, 2008, Lee and Seung, 1999).  NMF has primarily been used to detect 

patterns in faces and text documents (Lee and Seung, 1999).  However, recently NMF has been 

applied gene expression data from microarrays to discover molecular patterns (Brunet et al., 

2004). The aim of NMF is to reduce the dimensionality of the data to find a small number of 

genes which are defined as a nonnegative linear combination of 𝑝 genes (Devarajan, 2008).  For 

our clustering analysis, we let our 𝑁 𝑥 𝐺 transformed matrix of counts be 𝑉 which is 

decomposed into two matrices with non-negative counts (i.e., 𝑉~𝑊𝐻). 𝑊 and 𝐻 are matrices 

that are 𝑝 𝑥 𝑘 and 𝑘 𝑥 𝑛, respectively. The algorithm look for rank 𝑘 of the factorization which 

represents the number of clusters (Lee and Seung, 1999).  The rank is chosen to satisfy  

(𝑝 + 𝑛)𝑟 < 𝑝𝑛 (Lee and Seung, 1999).  It should be mentioned that the NMF algorithm may not 

always converge to the same solution for any given run (Brunet et al., 2004).  To combat this 
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challenge, Brunet et al. amended the initial NMF method proposed by Lee and Seung (1999) by 

adjusting the algorithm so to avoid numerical underflow (Brunet et al., 2004). 

Some of the data transformations that were applied to the simulated datasets resulted in 

negative values which are unacceptable in NMF.  Values for the NMF algorithm need to be 

nonnegative as the name suggests—a restriction that is unique to NMF.  Hence, the minimum 

absolute value count in the dataset was added to all values of the dataset.  NMF will not perform 

well if the dataset contains too much sparseness or values that are 0.  Thus, for those dataset from 

the RE and RX categories, we added an additional count to all of the data values in the data set. 

Furthermore, for the NMF clustering method, the standard NMF method was used, “Brunets” 

method.   

3.3.2.4.2 K Unknown Scenarios 

The K Unknown scenarios would be most representative to that which would be faced in 

“real-life” when conducting a cluster analysis as the number of clusters is rarely known.  The 

clustering analysis for K Unknown branch utilize all of the clustering methods that were used in 

the K Known clustering analysis with the addition of two different clustering methods.  The two 

additional clustering methods include Recursive Partitioned Mixture Model (RPMM) clustering, 

and K-Means (KM) clustering.  RPMM is a relatively new clustering methodology in 

comparison to KM which has been around for quite some time.  The addition of these two 

clustering methods to the common exploratory analyses, K Unknown-type analyses, allows for a 

more comprehensive evaluation of available clustering methods.  In this K Unknown scenarios, 

the number of clusters is unknown.  Here we are ignoring how  the data were simulated in 

clusters and use a data driven - algorithmic approach in combination with each of the five K 

Unknown clustering methods to estimate the number of clusters.   
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Recursively Partitioned Mixture Model Clustering 

Recursively Partitioned Mixture Model (RPMM) clustering is another method that relies 

on mixture models to aid in the clustering of samples similarly to MC.  Additionally, RPMM 

clustering also assumes that the data have some hierarchical structure as in HC.  The 

combination of these two attributes make allow for model-based hierarchical clustering method 

for high-dimensional data; such as, RNA-Seq data (Houseman et al., 2008, Koestler, 2013). One 

caveat to this clustering method is that it will only cluster to a maximum of 2𝑟 where 𝑟 is the 

number of partitions algorithmically determined.  In R, the rpmm() was used from the RPMM 

package (Houseman, 2014, R Development Core Team, 2016). 

K-Means Clustering  

K-Means (KM) clustering is one of the older clustering methods dating back to its first 

application nearly 40 years ago.  KM groups objects into (𝑘) fixed number of clusters so that the 

within-cluster sum of squares is minimized (Hartigan, 1979). The algorithm essentially shuffles 

all samples around searching for 𝐾 clusters that have which have their respective within-cluster 

sum of squares minimized.  For this type of clustering 𝐾 must be known.   Similarly to all other 

clustering methods mentioned above, the KM also has a function in R that will complete the 

procedures—kmeans() (R Development Core Team, 2016). 

3.3.2.4.2.1 Selection of K Number of Clusters 

Few formally defined algorithmic approaches have been developed to determine the 

number of clusters to be selected in clustering analyses.  Most studies select 𝐾 in a subjective 

manner as previously mentioned.  Determination of the number of clusters for a specific analysis 

is a difficult task.  Number of clusters are typically approximated based upon an experts advice 
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or information from prior studies.  Although, when no prior information is known about the data 

to be clustered, we turn to algorithmic approaches.  In our study, we use two algorithmic 

approaches to estimate the number of clusters: (1) the Gap Statistic (Tibshirani, 2001), and (2) a 

model-based approach through using the best Bayesian Information Criterion (BIC) from the 

mclust package in R (Farley and Raftery, 2002, Fraley et al., 2012).  When implementing the 

Gap Statistic, we developed code that would allow for the algorithm to work seamlessly with 

each of the five K Unknown clustering methods.  The code modifications let the Gap Statistic 

select the number of appropriate clusters for the data while keeping the innate clustering method 

unaltered.  However, execution of the model-based approach was conducted slightly different; 

rather than utilizing all of the five K Unknown clustering methods, only MC was used.  In this 

instance, MC can determine the best BIC from the results of its EM (expectation-maximization) 

algorithm.  The BIC that resembles the first decisive local maximum is indicative of the best 

model and in turn an estimation for the number of clusters that are present in the data (Fraley and 

Raftery, 1998). 

Gap Statistic 

Tibshirani et al. (2001) came up with a method that would select K such that the Gap 

Statistic would be optimized.  The Gap Statistic is a measure that compares the within-cluster 

dispersion to that of the dispersion under the null (Tibshirani, 2001).  According to Tibshirani, 

calculation of the Gap Statistic begins by clustering the data by varying the range of values for 

K; as well as, the within-dispersion measures (𝑊𝑘) for 𝑘 = 1, 2, … , 𝐾.  From here, 𝐵 reference 

datasets (𝑏 = 1,… , B) are generated where the features are from a uniform distribution.  Each 

dataset is then clustered to produce new within-dispersion measures (𝑊𝑘𝑏
∗ ).  The formula for the 

Gap Statistics becomes: 
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𝐺𝑎𝑝 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 = 𝐺𝑎𝑝(𝑘) = (1 𝐵⁄ )∑ log(𝑊𝑘𝑏
∗ ) − log(𝑊𝑘)

𝑏

. 

For this particular study, we restricted the range K to 1 − 10 clusters and the number of 

bootstraps, B, to 10.  Once, the Gap Statistic is calculated for all variations of 𝐾, the estimated 

number of clusters can be calculated as:  

𝑘̂ = 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑘 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐺𝑎𝑝(𝑘) ≥ 𝐺𝑎𝑝(𝑘 + 1) − 𝑠𝑘+1 

where 𝑠𝑘 = 𝑠𝑑𝑘√(1 + 1/𝐵) and 𝑠𝑑𝑘is the standard deviation of the Gap Statistic for k.  𝑘̂ is the 

new estimated number of clusters for a given dataset. For each of our transformed datasets from 

the four parent categories, we conducted a small simulation for each of the D datasets with 𝐵 =

10 bootstraps of the reference datasets for the calculation of the Gap Statistic for each of the 

clustering methods used in the K Unknown scenarios.  This small simulation generated 100 

values of 𝑘̂ –one for each of the D datasets for any given combination of data transformation and 

clustering method.  For each distinct combination mean 𝑘̂ was calculated and used as the 

specified number of clusters.  K Unknown clustering methods were then reran with the 

corresponding mean 𝑘̂. 

K Selection using Mclust 

 A model-based algorithm is another option to use to determine the number of clusters in a 

particular dataset.  Recall from the MC section above, the 𝑓𝑐 density from some multivariate 

normal distribution model with mean of 𝜇𝒄 and covariance matrix ∑𝑐.  Using different 

parameterizations for ∑𝑐, allows for different models to be passed through the EM algorithm as 

the number of clusters are varied (Fraley and Raftery, 1998).  BICs are calculated for every 
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possible combination of number of clusters and covariance matrix parameterization (Fraley and 

Raftery, 1998).  The combination with the highest BIC yields the estimation of the number of 

clusters, say 𝑘̂𝑀𝐶 , as previously mentioned above.  Unlike the Gap Statistic implementation, we 

were only able to determine the number of clusters for each of the 100 simulated datasets that 

had been transformed.  The estimated 𝑘̂𝑀𝐶  were then also re ran through all K Unknown 

clustering methods and evaluated.   

3.3.2.5 Clustering Evaluation Methods 

 To summarize and compare the transformations and clustering methods, the following 

three evaluation criteria were used: Adjusted Rand Index (ARI) (Hubert and Arabie, 1985), 

Clustering Error Rate (CER) (Witten et al.), and the Concordance Index (CI or C-Index) (Harrell 

et al., 1996).  The ARI ranges in value between 0 and 1 and is computed as a measure of cluster 

similarity (Sibru et al., 2012, Hubert and Arabie, 1985). The decision to use the ARI instead of 

the Rand Index (Rand, 1971) was made because a constant value is not allowed for the expected 

value of two clustering (Rokach and Maimon, 2005).  Values near 0 represent a lack of samples 

clustering to their “true” cluster; whereas, 1 indicates that samples cluster perfectly.  ARI can be 

easily implemented using adj.rand.index() function in the fossil package in R (R Development 

Core Team, 2016, Rand, 1971, Hubert and Arabie, 1985).  The CER is similar to the ARI; 

however, it is essentially the complimentary calculation without the adjustment. Lastly, the CI 

the probability that Sample 1 will cluster to 𝑐1 if the sample was initially from 𝑐1.  Formally it is 

the probability between the predicted and the observed cluster assignments (Harrell et al., 1996).  

A CI value equal to 0.5 means that the probability of predicting the correct cluster assignment is 

no better than that of random chance or that there is no predictive ability.  Values of CI that are 
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closer to 1 indicate high predictive ability for objects to be clustered perfectly (Harrell et al., 

1996).  All of the distinct formulas or steps for each of these three evaluation criteria can be 

found in Appendix D. 

3.4 Results 

 

3.4.1 Simulated Data 

For all simulation scenarios, data were simulated from a Negative Binomial distribution 

to represent four parent categories.  As a reference, the four parent are: Top 100 MAD Genes 

with Equal Cluster Sized; 2) Random 100 MAD Genes with Equal Cluster Sizes; 3) Top 100 

MAD Genes with Unequal Cluster Sizes; and 4) Random 100 MAD Genes with Unequal Cluster 

Sizes, abbreviated TE, RE, TX, and RX, respectively.   Within each panel of Figure III-6, the x-

axis contains the 𝑁 samples and the y-axis the 𝐺 genes.  Each of the heatmaps are ordered by the 

correlation that is present between the different genes.  Figure III-6 displays the variation 

between the parent scenarios; in addition, to the distinction of the clusters which are represented 

by the vertical dashed red lines.  The varying number of clusters are a direct result of the effect 

size shifts that were applied to the mean and overdispersion parameters of the Negative Binomial 

distribution.  As expected those parent categories that were selected randomly (RE and RX) from 

the Mayo Clinic data show more variation among the read counts that are present globally in the 

simulated datasets; whereas, less variation is present in the parent categories that were selected 

from the top 100 MAD genes (TE and TX).   
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Figure III-6.  Heatmaps for all four parent categories and for all 𝑲.  Heatmaps from each of 

the four cateegories are plotted with each of the three different number of clusters (i.e., 𝐾 = 1 as 

no clusters, 𝐾 = 2 as two clusters, and 𝐾 = 3 as three clusters).  The dashed red lines help to 

display where clusters divide. 
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3.4.1.1 Comparison of Data Transformations  

To compare the data transformations, we first looked at the measures of skewness and 

kurtosis, where data sampled from a Gaussian distribution would be around 0 and 3, 

respectively. All data transformation which numerically changed the data (i.e., Blom, Log, and 

VST) had on skewness values that more similar to that of a Gaussian distribution as compared to 

the naïve transformation (Table III-2).  Though, the corresponding kurtosis values to those 

skewness values that are more normal all are platykurtic or have kurtosis values ≤ 3.  Skewness 

values were closest to 0 for the RE and RX parent scenarios came from the Blom transformation 

and from the VST transformation for the TE and TX scenarios (Table III-2).  This can also be 

visually seen in Figure III-7 where the best results of skewness are listed as the following 

combinations for the four parent categories: TE--VST transformation and 𝐾 = 1; RE--Blom 

transformation and 𝐾 = 3; TX--VST transformation and 𝐾 = 1; and RX--Blom transformation 

and 𝐾 = 1.  We see that the Q-Q plots only minimal deviation from the theoretic quantile line 

which is an indication that data are approximately normal (Figure III-7).  Figure III-7 also shows 

that the tails of the distribution are heavy, which correspond to the case when kurtosis value ≤ 3.  

Values for both skewness and kurtosis remained the same when 𝐾 = 1 across all transformations 

selection-based parent scenarios of TE and TX, and RE and RX implying that method of data 

selection does not play a role in determining normality.  For simulated clusters of 𝐾 = 2 or 𝐾 =

3, it is likely that the combination of varied cluster sizes and the effect shifts implemented in the 

NB distribution to form clusters play a role in the differences in normality between parent 

categories.  
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Table III-2.  Normality summary of data transformations.  Mean skewness (Sk) and mean 

kurtosis (Kt) values were calculated for each of the data transformations for each of 𝐾 simulated 

clusters in the four parent categories.  Those values that are bolded in red represent the closet 

value of skewness to the Normal distribution. 
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Figure III-7.  Q-Q plots from data transformations whose skewness was most similar to 

Gaussian distribution.  All Q-Q plots are from a sample of data from the scenario of those best 

skewness values highlighted in red in Table III-2.  A) Q-Q plot for parent category TE, VST 

transformation, and, 𝐾 = 1. B) Q-Q plot for parent category RE, Blom transformation, and, 𝐾 =

3. C) Q-Q plot for parent category TX, VST transformation, and, 𝐾 = 1. D) Q-Q plot for parent 

category RX, Blom transformation, and, 𝐾 = 1.  The red 45 degree line present in each panel 

provides a reference to where points should fall if from Gaussian distribution. 

 

3.4.1.2 Comparison of Clustering Methods 

Clustering method performance was measured for both the K Known (Table III-3 and Table 

III-4) and K Unknown (Table III-5) simulations.  Assessment of 𝐾 = 1 scenario for K Known and 
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K Unknown scenarios are not presented in either of the summary tables as there were no clusters 

to compare sample assignment.  This is due to the way in which 𝐾 = 1 datasets were simulated to 

not reflect any clusters.  However, we calculated the proportion of times in which the clustering 

algorithm selected the correct number of simulated clusters.  This was completed for not only K 

Unknown for K=1, but for all other scenarios as well.  Comparisons between the Gap Statistic’s 

findings and the MC based selection for K were also made. 

K Known Scenarios 

For the K Known simulation scenarios, combinations of all clustering methods for most 

data transformations and known 𝐾 values had performance values that were better than random 

chance.  That is, their mean CI values are greater than 0.5.  Conversely, for the NMF clustering 

method, there are only minimal differences from 0.5.  The small variations ranged between CI 

values or 0.48 to 0.55.  When looking at the ARI and CER it is apparent that differences do exists 

between the pairing of data transformation and type of clustering method used.  Notably, model-

based clustering does not perform well in regards to selecting the correct clustering assignment 

when the Blom transformation is used with data that are highly variable prior to the transformation 

or rather for those data that represent the top 100 MAD genes (Table III-3 and Table III-4).  The 

best overall performance was observed when model-based clustering was carried out on data that 

were simulated with three clusters and when a log transformation was applied (Table III-3, Figure 

III-8 and Figure III-9).   For this combination of simulation parameters, parent category did not 

play a role. 

Model-based clustering on average appears to have the greatest performance when it comes 

to correct cluster assignment evaluated by our clustering metrics.  In Figure III-8 and Figure III-9, 

corresponding clustering evaluation metrics are present on the y-axis and data transformations on 
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the x-axes.  We can see that the model-based clustering (MC) line, in red, tends to be higher than 

the other clustering methods for ARI and CI and lowest for CER (Figure III-8 and Figure III-9).  

On the contrary, it appears that NMF performs the worst across data transformations.  Though, 

there are a few instances where NMF works better when the data have not been transformed (i.e., 

the naïve transformation).  This may also be due to the lack of assumptions required to carry out 

non-parametric methods--the assumption of normality is not needed.  For all of the clustering 

performance metrics, there are drastic differences when comparing the Naïve transformation to the 

other data transformations.  The Blom, Log, and VST transformations have similar results across 

the evaluation metrics for HC and MC clustering methods for data that were simulated from the 

selected random 100 MAD genes.  Additionally, it appears that the performance of HC follows 

that of MC, and has only slightly poorer performance according to all metrics. 
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Table III-3. Summary of evaluation metrics by clustering method and data transformation 

for K Known TEK and TXK parent categories.  Three different evaluation metrics were used 

to evaluate the performance of the data transformation paired with clustering method..  The 

evaluation metrics include: Adjusted Rand Index (ARI), Clustering Error Rate (CER), and 

Concordance Index (CI). Mean (𝜇) and standard deviation (sd) values were calculated for each 

metric. Fields with gray represent the highest performing transformation for K and clustering 

method by parent category.  Note that some ties regarding performance exist. 



102 

 

 

Table III-4. Summary of evaluation metrics by clustering method and data transformation 

for K Known REK and RXK parent categories.  Three different evaluation metrics were used 

to evaluate the performance of the data transformation paired with clustering method..  The 

evaluation metrics include: Adjusted Rand Index (ARI), Clustering Error Rate (CER), and 

Concordance Index (CI). Mean (𝜇) and standard deviation (sd) values were calculated for each 

metric.  Fields with gray represent the highest performing transformation for K and clustering 

method by parent category.  Note that some ties regarding performance exist. 



103 

 

 

Figure III-8.  Metric evaluation summary for all parent categories for 𝑲 = 𝟐.  Mean 

Adjusted Rand Index (ARI), Clustering Error Rate (CER), and Concordance Index (CI) are 

plotted for each of the four parent categories for 𝐾 = 2.  The Hierarchical Clustering (HC), 

Model-based Clustering (MC), and Non-Negative Matrix Factorization (NMF) are represented 

by the blue, red, and green lines, respectively.  
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Figure III-9.  Metric evaluation summary for all parent categories for 𝑲 = 3.  Mean 

Adjusted Rand Index (ARI), Clustering Error Rate (CER), and Concordance Index (CI) are 

plotted for each of the four parent categories for 𝐾 = 3.  The Hierarchical Clustering (HC), 

Model-based Clustering (MC), and Non-Negative Matrix Factorization (NMF) are represented 

by the blue, red, and green lines, respectively.  
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K Unknown scenarios  

For the K Unknown branch of the simulation, the same clustering performance metrics 

were used.  Two additional clustering methods were also assessed— Recursively Partitioned 

Mixture Model (RPMM) and K-Means (KM).  Prior to evaluation of the clustering methods, two 

algorithms were implemented.  Both the Gap Statistic and model-base clustering via Bayesian 

Information Criteria (BIC) values were used to determine the optimal K.  Results from the Gap 

Statistic and model-based approach can be found in Table III-5, and Table III-6, respectively.  

The Gap Statistic method often resulted with the choice of the data having no clusters 𝑘̂ = 1 

regardless of the simulated number of clusters across all of K Unknown clustering methods the 

exception was for 𝐾 = 1 the Gap Statistic tended to select 𝑘̂ = 1 correctly.  At most, the Gap 

Statistic errored 23% of the time for the 𝐾 = 1 scenarios.  For 𝐾 = 2 and 𝐾 = 3, the Gap 

statistic failed in determining the correct number of simulated clusters nearly 100% regardless of 

parent category, clustering method, or data transformation.  With the performance being so poor 

for the Gap Statistic in selecting the simulated K, we knew that our evaluation methods would 

not provide any useful additional information.  This proved to be the case after brief evaluation.  

The mean CER and CI values for HC, MC, NMF, RPMM, and KM were very poor at values of 

0.51 and 0.68 for 𝐾 = 2 and 𝐾 = 3, respectively.  This was the case across all combinations of 

clustering methods, number of simulated clusters, and parent scenarios. 



106 

 

 

Table III-5. Summary of the percentage (%) of times the Gap Statistic incorrectly selected 

the number of K simulated clusters.  Percentages are given for each of the K Unknown 

clustering methods by K used in data simulation, data transformation, and parent category. 
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 The poor performance of the Gap Statistic led us to explore other methods that are 

capable of algorithmically selecting the number of clusters present in a given dataset.  We 

proceeded by implementing the model-based method for selecting K through the mclust R 

package.   The results in terms of how often the algorithm selected the correctly the number of 

clusters were also discouraging.  For all parent scenarios and all K, the algorithm incorrectly 

selected the number of clusters 100% of the time.  We observe that the algorithm selects 𝑘̂𝑀𝐶  

higher than the simulated number of clusters in the datasets.  For 𝐾 = 1, 𝐾 = 2, 𝐾 = 3,  𝑘̂𝑀𝐶  

ranged from 2 clusters to 7 clusters, 3 clusters to 9 clusters, and 4 clusters to 9 clusters, 

respectively.  While the algorithm does not directly pick up the exact number of clusters that 

were simulated in the datasets nor does the algorithm select 𝑘̂𝑀𝐶  to be equal to one nearly 

always, we can proceed with cluster evaluation as the as the greater value of 𝑘̂𝑀𝐶  still contains 

the number of simulated clusters.  Rather, if 𝑘̂𝑀𝐶 = 4 and our simulated datasets has 𝐾 = 3, 

cluster assignments have the possibility to pick up all three clusters with potential that an 

outlying sample would be assigned to the fourth cluster.    

Figure III-10 and Figure III-11 summarize the mean values of the clustering evaluation 

metrics similarly to Figures III-8 and III-9 for the K Known scenarios.  K-Means, represented as 

the black line, clustering appears to perform the best when the number of optimal clusters is 

selected using the model-based clustering method’s built in approach for 𝐾 = 2 𝑎𝑛𝑑 𝐾 =

3 (Figure III-10 and Figure III-11).  Conversely, Recursively Partitioned Mixture Model 

clustering performed worse than all other methods.  We can also observe that HC, MC, and NMF 

clustering methods followed similar trends that were observed in the K Known scenarios. 

Specifically, for values of ARI and CER, we see drastic differences for the Naïve data 

transformation (Figure III-8, Figure III-9, Figure III-10, and Figure III-11).  For the other three 
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data transformations, it is difficult to select the one that might yield the most benefit to RNA-Seq 

in terms of clustering.  According to the evaluation metrics that we used, different parent 

categories suggest that different data transformations are most beneficial.  Another notable 

difference in these summaries is the lack of trends that exist across parent categories for all 

clustering methods; whereas, trends did exist in in the K Known clustering evaluation summary.  

We speculate that this is an artifact of carrying over 𝑘̂𝑀𝐶  from the MC selection algorithm 

applied to the transformed datasets and directly imputing it into each of the K Unknown 

clustering methods.  No information was incorporated into the model-based algorithm regarding 

unique attributes present in each of the individual clustering method which may lead to the semi-

irregular results.  An interesting result of the 𝐾 = 2 Unknown scenarios comes from comparing 

evaluation criteria across TX and RX (Figure III-10).  KM, in black, has the highest performance 

when looking at ARI and CER.  However, when looking at CI, we see that KM remains flat at 

0.5 meaning the probability that the sample will cluster correctly is no greater than chance alone.  

This is a result that we wouldn’t expect to have considering the mean values plotted for ARI and 

CER.  KM evaluation criteria behavior in the K Unknown scenarios for 𝐾 = 3 does not appear to 

have this drastic of a disagreement between any of the methods.   
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Figure III-10.  Metric evaluation summary for all parent categories for 𝑲 = 𝟐 for model-

based clustering selection of K.  Mean Adjusted Rand Index (ARI), Clustering Error Rate 

(CER), and Concordance Index (CI) are plotted for each of the four parent categories for 𝐾 = 2.  

The Hierarchical Clustering (HC), Model-based Clustering (MC), Non-Negative Matrix 

Factorization (NMF), Recursively Partitioned Mixture Model (RPMM), and K-Means (KM) are 

represented by the blue, red, green, gold, and black lines, respectively.  
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Figure III-11.  Metric evaluation summary for all parent categories for 𝑲 =3 for model-

based clustering selection of K.  Mean Adjusted Rand Index (ARI), Clustering Error Rate 

(CER), and Concordance Index (CI) are plotted for each of the four parent categories for 𝐾 = 3.  

The Hierarchical Clustering (HC), Model-based Clustering (MC), Non-Negative Matrix 

Factorization (NMF), Recursively Partitioned Mixture Model (RPMM), and K-Means (KM) are 

represented by the blue, red, green, bold, and black lines, respectively.  
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3.4.1.3 Computational Resources 

 All K Unknown scenarios required much more computational time in comparison to K 

Known scenarios.  The average time for the K Known scenarios was approximately 6,224.80 

seconds or ~1.73 hours with standard deviation of .16 hours; whereas, the average time for the K 

Unknown scenarios was approximately 136,806.70 seconds or ~38 hours with standard deviation 

of ~4.3 hours.  These average times were computed over all simulations in each of the given 

categories.  In general, it was also true that as the simulated number of clusters in the simulation 

increased so did the amount of time it took to complete all of the calculations (Figure III-12).  

Additionally, there were no differences in computational time if the cluster sizes were equivalent 

or not.  Computational time for simulations scenarios from both types of the data selection were 

similar to one another in both the K Known and K Unknown scenarios (Figure III-12).  Rather, 

the amount of time for TE and TX scenarios and the scenarios from RE and RX were similar.  

RE and RX scenarios for the K Unknown had longer computational time than the TE and TX 

scenarios (Figure III-12).  In the K Known scenarios the opposite is true—the TE and TX 

scenarios took longer to complete than did the RE and RX scenarios. 
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Figure III-12.  Computational time for 𝑲 𝒌𝒏𝒐𝒘𝒏 and 𝑲 𝑼𝒏𝒌𝒏𝒐𝒘𝒏 scenarios.  Plots show 

the computational time that was taken to complete the simulations for each of the four parent 

scenarios. A) depicts the computational time for the 𝐾 𝐾𝑛𝑜𝑤𝑛 scenarios; whereas, B) the 

𝐾 𝑈𝑛𝑘𝑛𝑜𝑤𝑛 scenarios.  

3.5 Discussion 

 

 For RNA-Seq data there have not been many studies that have looked at the clustering 

performance of multiple clustering methods in combination with data transformations.  Hence, 

there is little guidance for researchers as to which data transformations should be used for RNA-

Seq data when conducting clustering analyses.  Even if clustering analyses are exploratory in 

nature, they can provide valuable information regarding the relationship between genes or 

samples.  In order to provide this information, it is important to have accurate and efficient 

statistical methods.  In light of the minimal information and studies that are currently available, 

we conducted and compared the results of an extensive simulation study to assess clustering 

method performance when data selection, data transformations, number of simulated clusters, 

and clustering method were varied.  Results from our simulation study provide insight to what 

could potentially be done to increase correct cluster assignment for samples; with or without 

prior information about how many clusters there might be.  Additionally, the simulation study 

has revealed some of the challenges and difficulties that still remain for completing clustering 

analysis in RNA-Seq data.  To combat biasing our performance results for our clustering 

methods, datasets were simulated to represent four parent categories that considered the way in 

which the data were selected and the size of the clusters. 

 We feel that the structure of the simulated data was improved upon from the Witten study 

from 2010 as parameters were obtained from “real-life” dataset.  In Witten’s simulation study, 
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the distributional parameters appeared to be arbitrarily selected.  Values for the over-dispersion 

parameter, ϕ, appear to reflect values which are typically used to show over-dispersion within the 

data.  Additionally, the mean of her model was composed of a multiplicative mixture of 

Uniform, Exponential, and Log-Normal distributions.  While this way of approaching such 

simulation is typical, unique attributes from “real-life” data are missed.  To better preserve the 

unique attributes that are present in actual RNA-Seq data samples, we obtained the NB MLEs to 

be used to simulate our datasets.  Looking at Figure III-2 and Figure III-3 in Section 3.3, our 

simulated data appear to match the Mayo Clinic data well. 

 As RNA-Seq data do follow a NB distribution with high variability among gene read 

counts, implementation of data transformations are warranted.  Without data transformations, the 

overdispersed nature of RNA-Seq create problems with many types of statistical methods.  

Moreover, many statistical methods, clustering methods included, are better adapted to handle 

data that follow more of a normal distribution.  Hence, we applied the Blom, Log, and VST 

transformations to our simulated RNA-Seq data.  In terms of skewness, we determined that all 

simulations made the data more normal.  Specifically, the Blom transformation on average 

obtained the most normal data according to the mean skewness values (Table III-2).  The data 

transformations; however, did not provide any benefit in handling tail behavior as denoted by 

mean kurtosis values presented in Table III-2. 

 Each data transformation was used for each of our clustering methods for the K Known 

and K Unknown simulation branches.  In the assessment of clustering method performance in 

combination with the data transformations, we observed many expected results based off of 

previous literature from Witten, Yeung et al., and Thalamuthu et al..  While these authors’ 

studies were completed in microarray data, model-based clustering (MC) was found to produce 
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higher quality of clusters (Witten, 2011, Yeung, 2001, Thalamuthu et al., 2006).  Notably, 

model-based clustering using mclust out-performed all other clustering methods in the K Known 

branch across all data transformations and evaluation metrics.  Since the primary model used for 

MC is the Gaussian mixture model, it is reasonable that transforming data to look more normal 

would be highly beneficial for the performance of the MC method.  Contrariwise, NMF lacks the 

level of performance in comparison to HC and MC.  However, there does appear to be some 

benefit in using NMF when no transformation is made to the data.  NMF does not use any model 

constraints to assign clusters as it is nonparametric, rather it seeks to minimize the generalized 

Kullback-Leibler divergence which is similar to conventional least squares.  HC falls in the 

middle regarding its performance in comparison to MC and NMF.  Though, performance could 

potentially be gained from using single linkage verses complete linkage especially in our parent 

scenario categories where the data selected were based on the top 100 MAD genes.  Single 

linkage is better when outliers are present as the outliers are merged into clusters last rather than 

first (Chalise et al., 2014).  The presence of potential outliers can be seen in Figure III-3. 

 Results from our K Unknown simulation branch revealed the difficulty in algorithmically 

selecting the number of clusters present in a given dataset when no expert advice is available.  

Implementation of the Gap Statistic purposed by Tibshirani et al. (2001) to determine the optimal 

number of clusters, 𝑘̂, did not prove to provide any benefit in performance of any of the 

clustering methods assessed.  In our Gap Statistic analysis to determine what the optimal 𝑘̂ 

would be for any scenario, we nearly always ended up with the algorithm selecting our data to 

have no clusters, 𝑘̂ = 1, even when the data were purposefully simulated to have 𝐾 = 2 and 𝐾 =

3 clusters.  After reviewing why this pneumonia was occurring, it was determined that the results 

are likely due to the fact that our data our data are not standardized nor may the effect shifts used 
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to simulated the clusters in our datasets be large enough.  This is likely the reason for the poor 

performance evaluation metrics in our clustering methods’ analysis. 

 In addition to the Gap Statistic results for the K Unknown scenarios, the results from the 

second approach which used a model-based algorithm in combination with BIC, verified that any 

transformation to RNA-Seq data to make it more normal will be beneficial for downstream 

clustering analyses.  Though, the utilization of an additional algorithm to select optimal K, did 

not provide much evidence regarding best practices when there is no information available 

regarding potential number of clusters.  We can, however, say that our results suggest that using 

K-Means clustering is highly robust to missed assignment of clusters as it consistently performed 

better than all other clustering methods across our evaluation metrics.  K-Means was also the 

only clustering method that had a relatively consistent performance trend across all parent 

categories.  This is an interesting finding as K-Means clustering tends to perform best when 

clusters are of equal size.  However, further investigation into the evaluation criteria of the 𝐾 =

2 Unknown scenarios for TX and RX is needed to fully understand why the mean concordance 

index has such low performance for K-Means.  Overall, the K Unknown performance results 

compared to the K Known performance results were worse for the mutual clustering methods 

used, HC, MC, and NMF, which is not unexpected.  It would not be expected that by increasing 

uncertainty, which is present in our K Unknown branch of the study, that clustering performance 

would improve.  Thus, not knowing the number of clusters in a given dataset is a challenge that 

researchers and statisticians will continually have to navigate.    

 This study does provide similar results to those which were found in microarray studies 

that looked at performance of clustering methods when the number of clusters is known.  In 

particular, that model-based clustering demonstrates the highest level of performance when it 
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comes to correctly assigning samples to their said clusters.  Additionally, our results highly favor 

the use of the Log, base 2, transformation when it comes to conducting clustering analysis of 

RNA-Seq data.  However, at this point, we feel that the results of the K Unknown simulation 

branch are inconclusive.  The data and clustering performance would likely benefit from adding 

an additional step that would further standardize the data.  Furthermore, there would be an 

opportunity to improve upon the Gap Statistic algorithm to better handle data that are not 

standardized.  Likewise, there is room to advance those clustering methods used in this study, 

aside from MC, by developing algorithms to select the optimal number of clusters in a way that 

considers the method’s theoretical background. There is also the potential to re-engineer MC’s 

prominent Gaussian framework into a framework that is capable of handling discrete based 

distributions.  More specifically, to design a model-based clustering algorithm that was built 

using a mixture of negative binomial distributions.   

Other limitations of this study include that only a subset of data transformations and 

clustering methods are assessed.  It is highly likely that there is not one best data transformation 

or clustering method for all scenarios.  Additionally, this study is limited in that NB MLE 

parameters were only obtained from one type of cancer and histology type, ovarian cancer of the 

Serous histology, which many slightly bias the generalizability of the results across clustering 

methods for all types of genes or samples from different tissue or cancer types.   Also, our study 

does not consider if selected features were linked or unlinked to producing inherit clusters.  

Future work to extend this study include: examining different effect sizes to apply to parameters 

of the NB distribution, varying 𝑁 and 𝐺, normalizing the RNA-Seq data so that they are more 

standardized, and implementing any new clustering methods that have been adapted for count-

type data.  Furthermore, a natural extension of this study would be to look at clustering 
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performance at the isoform level as it has the potential to further advance the knowledge behind 

different cancer signatures.   

 In conclusion, we found that RNA-Seq data requires caution when conducting clustering 

analyses.  This is supported by our efforts to improve the performance of clustering methods 

through data transformations and common methods used to determine the number of clusters in a 

dataset.  Our results suggest that a model-based clustering (MC) approach may be the best 

starting place for exploratory clustering analysis of RNA-Seq data types when the number of 

clusters is backed by prior knowledge.  However, if no information is known about the number 

of clusters, one may want to investigate using K-Means clustering.   
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4.1 Abstract 

 

 The technologic advancements, specifically in high-throughput sequencing, that have 

recently occurred in the field of genomics have changed the way in which providers approach 

making treatment decisions.  Phenotypes and clinical information are no longer are the primary 

determinant in the treatment decision process.  By taking phenotypic and genotypic information 

together, more tailored treatments can be precisely selected.  This approach to the treatment of 

cancer is becoming increasingly popular as in many cases the personalized treatments exhibit 

higher efficacy and provide patients with better quality of life.  However, there is much ethical 

controversy that surrounds genomic sequencing in terms of patient privacy and security of the 

large amounts of data collected.  Many survey studies have been completed to assess cancer 

patients’ attitudes and perspective towards genomic sequencing and the ethics involved in the 

topic.  Though, only few have been targeted solely towards cancer patients.  As cancer patients 

are the largest population that has the potential to be affected by personalized medicine through 

genomic sequencing, it is critical that researchers and providers alike understand their opinions.  

We have developed a protocol to conduct a survey-based pilot study within the local University 

of Kansas network.  We propose to conduct 8 one-on-one interviews and a focus group with 10 

participants to aid in revision of a survey prototype.  Upon revision of the pilot survey prototype, 

we hope to recruit approximately 32 participants, or more, who will attend a Saturday morning 

survey session.  Participants will be given an approximately 22-item survey to complete which 

contains questions regarding their knowledge and opinion of genetic testing and its applications.  

Subsequently within the survey, participants will be asked demographic questions and be 

provided with a brief, educational overview of cancer and genomic sequencing.  Results from 
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this pilot study can later be used in defining and implementing a larger-scale, potentially national 

study. 

Keywords: Precision Medicine, Genetic Sequencing, Medical Ethics, Sporadic Cancer, 

Hereditary Cancer, Patient Opinion Survey 
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4.2 Introduction 

 

The big “C”, as cancer is often referred to, has become one of the hallmark diseases that 

has impacted nearly every individual in some way or another—a family member, oneself, or 

otherwise.  There are likely many reasons this is the case; some of those reasons include risk 

factors such as tobacco, obesity, alcohol, infectious agents; as well as, potential environmental 

exposures (American Cancer Society, 2016).  Although, potentially the number one reason for its 

high impact within the population is the sheer number of people have cancer or who were 

previously diagnosed with cancer and are in remission or disease free. 

According to the World Health Organization (WHO), cancer has been recorded as one of 

the leading causes of death worldwide (World Health Organization, 2014).  The trends of 

incidence and prevalence of cancer among the top three most populated countries in the world 

are very interesting.  In China, the most populated country in the world, cancer is listed as the 

leading cause of death with an estimate of ~3 million cancer deaths having occurred in 2015 

(Chen et al., 2016).  However, in India, cancer does not even rank within the top 10 causes of 

death (Centers for Disease Control and Prevention1, 2015).  The estimated cancer mortality in 

India reported from GLOBOCAN 2012 was only 683,000 individuals (Ferlay et al., 2013).  

Continuing to the third highest populated country in the world, the United States, cancer again 

makes its way onto the list of leading causes of death.  Several nationally recognized reports for 

the top leading causes of death in the United States rank cancer as the second most frequent 

causes of death (Centers for Disease Control and Prevention2, 2015).   

In 2013, in the United States there were 14,140,254 people living with cancer according 

to the latest published prevalence numbers (National Cancer Institute1, 2016).  While the national 
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surveillance programs have not updated the prevalence numbers for 2016, they do provide 

estimates for the estimated number of new cases and deaths per 100,000 people.  The estimated 

incidence, or new, cases of cancer and cancer deaths for 2016 are 448.7 per 100,000 and 168.5 

per 100,000 people, respectively regardless of sex or type of cancer (National Cancer Institute1, 

2016).  This translates into ~1,604,000 cancer incidence cases and ~617,000 cancer deaths 

(Ferlay et al., 2013).  Furthermore, the estimated number of people in the United States that will 

have cancer or previously had cancer is approximately 19 million by the year 2024 (National 

Cancer Institute2, 2016).  The aforementioned collection of people have cancer types that are 

numerous and vast, and vary in terms of stage, grade, and histology.  As there are so many cases 

associated with cancer, the costs that are associated with treatment of all of those patients is very 

high.  The National Cancer Institute (NCI) estimated expenditure for cancer care in the United 

States increase by approximately $31 billion from 2010 to 2020 (National Cancer Institute2, 

2016).  The estimated costs of cancer in the United States in 2010 was $124.57 billion (Mariotto 

et al., 2011).  In addition to the dollar amount associated with cancer care, are both the difficult 

to quantify emotional and physical burden of the patient.  Thus, there is a great need to research 

cancer from all aspects from cancer care treatment to performing good research, and to ensuring 

that patients, providers, and researchers have the best possible information available to them at 

any given cross section of time. 

To promote collective efforts within the United States to reduce and prevent threats to the 

health in the general public, the government publishes an agenda of national topics and 

objectives for critical health related issues to be addressed (Office of Disease Prevention and 

Health Promotion, 2016).  The overall goal of this agenda is to “attain high-quality, longer lives 

free of preventable disease, disability, injury, and premature death; achieve health equity, 
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eliminate disparities, and improve the health of all groups; create social and physical 

environments that promote good health for all; and promote quality of life, healthy development, 

and healthy behaviors across all life stages” (Centers for Disease Control and Prevention: 

Division for Heart Disease and Stroke Prevention, 2014).  The most recent agenda, Healthy 

People 2020, includes both “cancer” and “genomics” in its list of topics to be addressed (Office 

of Disease Prevention and Health Promotion, 2016).  Specifically, for cancer the goal is to 

“reduce the number of new cancer cases; as well as, the illness, disability, and death caused by 

cancer” (Office of Disease Prevention and Health Promotion, 2016).  Additionally, for genomics 

the goal is to “improve health and prevent harm through valid and useful genomic tools in 

clinical and public health practices” (Office of Disease Prevention and Health Promotion, 2016).  

The topic of genomics was never previously included in list of topics nor did it show up in any 

objectives to be addressed prior to the current rendition of the agenda.  We believe this is directly 

related to the recent advancements of genomic technologies and understanding of the vast realm 

of genomics.  While the two agenda topics items mentioned above can stand alone, the two have 

in recent years become fittingly married together as the field of cancer genomics.  Though to 

better understand this marriage, we first look at each agenda item separately. 

DNA is not a stagnant nor unchanging molecule. DNA is a forever changing molecule,  

in a person’s lifetime their DNA can undergo a multitude of changes from repairs (i.e., DNA 

repair) to mutations (i.e., single nucleotide polymorphisms (SNP), insertions, deletions, etc.) and 

structural changes (i.e., chromosome duplication or altered chromosome structure) which results 

in variations of genetic material (Aguilera and Garcia-Muse, 2013).  These variations taken 

together are often referred to as the hallmarks of cancer (Figure IV-1).  Nearly all cancers found 

in humans can be categorized by these hallmarks (Negrini et al., 2010).  The list of hallmarks 
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proposed by Negrini et al. (2010) provide a fairly comprehensive overview of possible rationales 

which leads to the development of cancer.   

Cancer is a very complex disease which utilizes a great amount of research hours and 

personnel.  There are three groups which classify a majority of the cancers: familial cancers, 

hereditary cancers, and sporadic cancers.  Familial cancers are caused by multiple variants that 

are often difficult to define.  Those variants range from a unique combination of multiple genes, 

family history of cancer, and environmental stimuli (Coriell Personalized Medicine 

Collaborative, 2016, Sijmons, 2010).  While the relationships between the hallmarks are not 

specifically depicted in Figure IV-I, we would expect there to be multiple hallmarks that had 

directional arrows pointing to other hallmarks as high variation of causes is characteristic of 

familial cancer.  Families with familial cancer exhibit trends in cancer type greater than that 

expected by chance alone due to genetic syndromes and mutations in known cancer genes 

(Coriell Personalized Medicine Collaborative, 2016, National Cancer Institute3, 2016). 

Sporadic cancer are slightly easier to define as there are not as many components that are 

linked to its cause.  Although, not all causes of sporadic cancers can be determined.  Sporadic 

cancers (i.e., non-hereditary cancers) are classified by the lack of family history of given cancer 

and the absence of the individual having any type of genetic risk factor through an inherited gene 

mutation (National Cancer Institute6, 2016).  The genetic alterations that are found in these types 

of cancers are called somatic mutations (i.e., mutations which are observed in the tumor’s 

genetic material but not in a person’s inherited genetic material) and occur after conception 

(National Cancer Institute7, 2016).  The pathway in which these types of cancers develop is 

through an activation of the cell grow signaling which leads to DNA damage and DNA 

replication stress (Figure IV-1: Panel C) (Luo et al., 2009, Negrini et al., 2010).  This causes 
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downstream problems with genomic instability and  reproduced cells evading cell death and 

senescence (Figure IV-1: Panel C) (Luo et al., 2009, Negrini et al., 2010).  The initial activation 

of the cell grow signaling can be the result of a lifetime of genetic damage. Sporadic cancers 

account for approximately 60% of all cancers and tend to occur later in life (Coriell Personalized 

Medicine Collaborative, 2016, Anderson, 1992). 

Hereditary cancers are different than sporadic cancers in that they are linked to genetic 

inheritance from parents (i.e., genomic instability, mutations in key cancer causing genes) 

(Figure IV-I: Panels A and B).  Rather, hereditary cancers are associated with a mutation in 

determined susceptible germline gene that cause an individual to have an increased risk to 

develop cancer (Coriell Personalized Medicine Collaborative, 2016).  If an individual develops 

cancer that has been determined to be linked to such mutation of a gene, likely through genetic 

sequencing, is termed a hereditary cancer.  Cases of hereditary cancers are generally found in 

younger individuals (Anderson, 1992).  Unfortunately, some of the susceptible germline gene 

mutations have been tracked and shown to have a lifetime risk up to an 85% chance of 

developing cancer (Coriell Personalized Medicine Collaborative, 2016).  The most published 

hereditary cancers occur from mutations in BRCA1 and/or BRAC2 resulting in breast and 

ovarian cancer (National Cancer Institute4, 2015, Walsh et al., 2010, King et al., 2003).  A 

summarized list of mutated genes and the related cancer types of the identified 50 hereditary 

cancer syndromes can be found on the National Cancer Institute’s website (National Cancer 

Institute5, 2013).  While the actual percentage of hereditary cancers is small, the syndromes 

which arise from them is consistently growing (Strahm and Malkin, 2006).  It should be noted 

that it is not always the case that if an individual has a germline mutation that if they get cancer 

that it will be a direct result of the germline mutation.  A different mutation may be linked to the 
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cause of the cancer.  Moreover, on occasion genes that are inherited and mutated through the 

germline, genes which predispose an individual to cancer, also play a role in pathogenesis in 

mutated counterparts in sporadic cancers (Strahm and Malkin, 2006). 
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Figure IV-1.  Overview of the hallmarks of cancer (Luo et al., 2009, Negrini et al., 2010).  

Found within the sections of the circle are many of the identified hallmarks that play a role in the 

development of cancer (Panel A).  Those hallmarks that lack shaded backgrounds are those 

hallmarks that were added in 2010.  The arrows in the inner circle of panel B) and Panel C) 

depict the relationships hallmarks have with each other in hereditary and sporadic cancers, 

respectively (Luo et al., 2009, Negrini et al., 2010).
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Cancer is fueled by changes in an individual’s genetic material that occur irregularly or 

changes that are prompted by the environment (i.e., radiation exposure, smoking, sun exposure, 

etc.).  Hence, it is fitting that a large component to understanding and treating cancer would be to 

understand the variations present in genetic material.  The field of study which studies genes, 

gene function, and their technologies is genomics (World Health Organization2, 2002).  To gain 

insight into genetic material, genetic sequencing, can be performed which determines the 

combination of the nucleic acids in DNA and/or RNA.  Together, these combinations make up 

the genetic sequence, which provides genes that are present and information about the structure 

and function of those genes (National Human Genome Research Institute2, 2015).  However, it 

should be noted that genetic testing is not exclusively limited to DNA and RNA, analyses can be 

performed on chromosomes, proteins, and metabolites.  Also, there are also three different types 

of DNA sequencing that are utilized—whole genome and targeted (i.e., sequencing of specific 

areas and exome). 

Sequencing technologies have improved greatly over the years.  Prior to 2004, microarray 

technology was used to determine genetic sequence, but it was drastically limited in the amount 

of sequencing information that could be output.  Recent advancements in technology have led to 

the popularity of using Next-Generation Sequencing (NGS) for genetic sequencing.  The advent 

of NGS technologies has not been around for that long of a time frame, but it has already enabled 

researchers to study genetic material at a level that surpassed early expectations (Van Dijk et al., 

2014).  It wasn’t until 2004 that NGS became commercially available (Mardis, 2008).  

Sequencing technology has improved greatly over the years in terms of increased speed, 

efficiency, lower costs, and higher accuracy to provide “exquisite sensitivity and resolution” 

(Walsh et al., 2010, Mardis and Wilson, 2009).  Currently, cost for whole genome sequencing 
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(WGS) is ≤ ~$1,000 which make it available for smaller labs, research centers, clinics, and 

population-wide (Van Dijk et al., 2014, Shen et al., 2015, Ku et al., 2013).  Addressing the 

objective listed in Healthy People 2020 for genomics, it is fitting that in the near future providers 

and patients would be encouraged to utilize the application of genomics in the treatment of 

common diseases. 

The fields of genomics and cancer are projected to weave together more so in coming 

years than they are currently.  Today our understanding of the molecular nature of cancer is due 

largely in part to next-generation sequencing (NGS) techniques (Yang et al., 2012).  

Additionally, some of the largest advancements in the field of genomics have been in the area of 

cancer biology (Balmain et al., 2003).  More specifically, genomic sequencing and molecular 

profiling gained popularity as their results led to better understanding of the complexities of 

cancer (Balmain et al., 2003).  As put by Catenacci et al. (2014), we are at a “critical point” in 

modern-day medicine where cancer treatment and care decisions are being driven by the plethora 

of data produced by NGS.  With the costs of sequencing becoming more reasonable, more 

providers are regularly using it for purposes of cancer diagnostics in both a discovery and 

confirmatory context (Shen et al., 2015, Ku et al., 2013).  In familial cancer, researchers are able 

to conduct WGS within the family to determine if offspring have germline mutations of genes 

which predisposed them to cancer (Shen et al., 2015, Ku et al., 2013).  Furthermore, sequencing 

can determine single changes in a nucleic acid base of a portion of DNA which can disrupt 

proteins responsible for normal cell function (The Cancer Genome Atlas, 2010).  However, the 

primary goal of genomic sequencing is to identify those somatic or germline mutations that 

might be candidates for targeted drug therapies (Gingras et al., 2016). 
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This is a form of precision medicine.  As its name suggests, precision medicine, or also 

synonymously termed personalized or individualized medicine, is the tailoring of disease 

treatments and/or interventions to the unique characteristics, both genotypic and phenotypic, that 

an individual has (Ciardiello et al., 2014).  Next-Generation Sequencing is becoming more 

commonly used to determine “best” drug therapy through a data-informed decision when it 

comes to placing a patient on a treatment that they will likely benefit from based upon given 

molecular biomarkers (Yang et al., 2012, Gingras et al., 2016).  The goals of personalized 

medicine are to “increase the probability of efficacy and/or decreasing the probability of serious 

adverse events”(Vicini et al., 2016).  Cancer is at the “frontline” of personalized medicine as 

additional considerations are now being given to molecular biomarkers and not solely 

phenotypes when developing eligibility criteria in clinical trials (Ciardiello et al., 2014).  Many 

clinical therapies in development are largely associated with defined biomarkers (Ciardiello et 

al., 2014).  As more cancer therapeutics are being developed specifically for certain biomarkers, 

it is essential that researchers document their findings to allow other researchers to further 

advance personalized medicine in the cancer patient population.  In the last 10 years, few 

databases (i.e., The Genomics of Drug Sensitivity in Cancer (GDSC) database, Mutations and 

Drugs Portal (MDP) database, and canSAR) have been created to keep track of which molecular 

features influence a drug response in cancer cells through a combination of cell line drug 

sensitivity data, genomic data, and data from the analyses of genomic features (Yang et al., 2012, 

Taccioli et al., 2015, Bulusu et al., 2014).   

While great progress has been made in the area of precision medicine for cancer, it has 

not been without challenges—scientific challenges do to cancer’s complexity, and otherwise due 

to ethical considerations.  There is much controversy that surrounds genetic testing.  At the 
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center of the controversy is that genomic sequencing has the ability to identify an individual, 

reveal if the individual is at an increased risk of developing certain types of cancer, expose other 

diseases that the individual may have which leads to valid concerns of patient privacy, 

discrimination, and security of the large amounts of data (Ciardiello et al., 2014).  More 

specifically, whole genome and exome sequencing produces large-scale data of which has the 

potential to have both medical and social influence as levels of result’s uncertainty can still be 

present (Fiore and Goodman, 2015).  While much genetic data has been released and stored in 

publicly available databases without any direct link to individuals, there are still some medical-

Sequencing databases that contain patient identifying variables such as: demographic 

information, clinical information, etc. (Foster and Sharp, 2006).  That being said, data that is 

obtained from sequencing should be stored using the same degree of security that is used to 

protect other entities that house personal health information (i.e., electronic medical records and 

some databases).  

Fortunately and unfortunately with genetic sequencing there is no way to tune the results.  

Rather, intermittently sequencing reveals a medical finding that is different from that which a 

researcher was looking for—referred to as “an incidental finding”.  Incidental findings can 

expose information about paternity, risks of certain diseases or syndromes, etc. which may have 

drastic implications mental health, well-being, or even how an individual proceeds care.  The 

question that often arises with these incidental findings is, “Do you tell your patient of them?”  

This has created much controversy in recent years with genomic sequencing becoming more 

readily used in diagnosing patients.  In general, there are two sides to this argument.  Side one, 

should providers only present results and findings for the current medical issue that a patient has; 

or side two, should a provider lay out any findings from medical tests.  Previously proposed 
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guidelines in general seem to advise patient providers to communicate such findings when they 

are found, especially if results are analytically valid and clinically significant (Fabsitz et al., 

2010, Wolf et al., 2012, Zawati and Knoppers, 2012).   

In general, current practice for reporting and communicating incidental findings to 

patients is dependent on the following subjective criteria: “variant frequency, the potential for 

medical intervention to mitigate disease, the strength of association between specific gene 

abnormalities and the condition, and penetrance (i.e., proportion of individuals carrying a 

particular variant of a gene) of those genes” (McGuire et al., 2013, Green et al., 2013, Middlelton 

et al., 2016).  Following this recommendation, only approximately 1% of patients would have a 

qualifying incidental finding (Green et al., 2013).  However, much debate is still had about those 

incidental findings that are of uncertain significance (Hofman, 2016).  When patients were asked 

whether or not they would want to know about any incidental findings, the consensus was to 

allow the individual patient to decide based upon their moral, political, and religious values 

(Townsend et al., 2012, Freedman, 1987, Foster and Sharp, 2006). 

Several other ethical concerns that arise from genetic testing are: adequacy of patient 

consent; familial genetic testing; additional germline testing for individuals with early onset 

sporadic cancers (i.e., if patient was diagnosed prior to age 55); targeted vs. whole genome 

sequencing; unnecessary treatment due to false positive results of testing; 

stereotyping/stigmatization; disparities in access to additional testing, counseling, and the way in 

which insurance companies reimburse; and additional privacy and discriminatory concerns 

(Fiore and Goodman, 2015, Foster and Sharp, 2006).  Although, governmental bodies are 

helping address some of the ethical concerns that have developed surround genetic sequencing.  

In 2008, the Genetic Non-Discrimination Act (GINA) was passed which forbids employers and 
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health insurance companies to discriminate against individuals based on genetic test or family 

history (Fiore and Goodman, 2015).  While GINA was a step in the right direction, there is still 

work to be done to protect patients and address ethics associated with genomic sequencing.  It is 

highly likely that as the general community becomes more educated about genomic sequencing 

as a whole, acceptance of its implementation will increase.  

4.3 Motivation and Objectives for the Survey 

 

Understanding cancer patients’ opinions regarding precision medicine in terms of 

genomic sequencing is critical, especially as there are many ethical concerns that arise.  By 

obtaining patients’ opinions, providers can potentially deliver better, more efficacious treatment 

to their patients.  Additionally, it provides insight to surveillance groups that develop guidelines 

which address approaches to care of patients.  Current literature is saturated with surveys that 

have been given to providers regarding their opinion to the use of genomic sequencing in 

patients with varying types of cancer.  This is likely due to the fact that providers have acquired 

some education regarding genomic testing.  Other surveys that seek individuals’ opinions 

towards genomic sequencing in cancer care utilize participants that are from some type of health 

care profession or science researcher area, or participants that from the general public 

(Middlelton et al., 2016, Henneman et al., 2013).  The few published studies that use patients’ 

opinion towards genomic sequencing, are not enough to fully gain a consensus of the general 

cancer patient population.  Hence, we propose a protocol for implementing a local patient 

opinion survey targeting cancer patients, which could later be evaluated for content validity, 

reliability, and duplicity.  Upon this evaluation, the survey could be revised and executed in a 

larger population at a later date.  Prior to the development of the survey, we plan to conduct a 
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series of one-on-one interviews and a host a focus group with various types of cancer patients.  

The primary objective of the survey would be to determine basic cancer patients’ opinions 

towards genomic sequencing in a pilot study with the hopes conduct a larger-scale study.  

Additionally, we would like to gain some insight to patient opinions regarding targeted drug 

therapies, and briefly germline sequencing. 

4.4  Proposed Pilot Study Design 

 

 In developing a protocol to implement our survey, there are many topics that needed to be 

addressed; such as, what are the concerns that patients have, who the study will be given to, how 

many participants will take the survey, participant recruitment, questionnaire development, and 

potential statistical analyses.  For this pilot survey study, we plan to use a convenience sample of 

cancer patients being treated within the University of Kansas network of providers.  Using a 

small sample of varied providers, we will aim to schedule up to 8 one-on-one interviews or a 

focus group which contains up to 10 people as recommended.  Once data is summarized from 

those participants in either the one-on-one interviews, we will recruit participants to take our 

pilot survey study. Those participants that agree to participate in a morning survey session group 

will be given a survey questionnaire to complete.  After completion of the survey questionnaire, 

participants will also be given the opportunity to voice opinions and discuss with other survey 

participants about their questions and concerns of having genomic testing completed, and in turn 

completed to determine treatment options.  In the following section, we describe each of these 

topics. 
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4.4.1  Pilot Study Approval 

Prior to moving forward with the conduction of the one-on-one interviews, focus group, 

and future pilot survey study, approval needs to be attained from the Institutional Review Board 

(IRB).  This protocol, interview/focus group questions, supplementary documents including the 

consent form, recruitment “Save the Date”, and potential survey questionnaire will be submitted 

to the electronic IRB system to be reviewed by the IRB committee.  We assume that since this 

study would involve “no more than minimal risk” that it would receive an expedited review by 

the committee.  Once approval is given from the IRB to proceed with the study, we would begin 

reaching out to providers to help recruit participants for our study.  This pilot survey study will 

be conducted in compliance with this protocol and Good Clinical Practice (GCP) guidelines.  

Any changes to this protocol or study documents will be submitted to the IRB as an amendment 

for review and approval.  All copies of completed consent forms and survey questionnaires will 

be securely retained for five years after the completion of the study the Principal Investigator 

(PI).  Furthermore, the master electronic data will be encrypted with password protection.  Only 

necessary members of the research team will be given data files.  No patient identifying 

information will be collected on the survey.  Lastly, all survey administrators and research team 

members will undergo brief training and detailed instruction regarding to insure that everyone is 

competent in their respective roles. 

4.4.2  One-on-one Interviews and Focus Group 

 In order to develop a survey that accurately obtains patients’ opinions towards the 

previously mentioned topics, we propose to conduct multiple one-on-one interviews and/or a 

small focus group to gain deep insight into areas where cancer patients have concerns in terms of 

the ethics behind precision medicine and genetic sequencing.  The use of one-on-one interviews 
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and a focus group, we hope, will provide a comfortable environment for participants to 

thoughtfully respond to our questions or ask for clarification; and provide awareness to areas or 

domains that we may need to consider to be addressed in our questionnaire.  Recruitment of 

participants for either the one-on-one interviews or focus groups will be recruited from other 

principal investigators that we have worked with in the past.  These providers will discuss with 

their patients about the opportunity to be a part of our study.  Depending on the patient’s interest 

level, the provider will attempt to schedule a 30 minute interview with a member from our 

research team at their next follow-up appointment or they will be given a “Save the Date” 

(Appendix E) regarding when the focus group session would be help.  The exact date of the 

focus group will be determined by research team upon approval from the IRB. 

4.4.3  Sample Frame and Sample Size Justification 

 Participants for these one-on-one interviews, focus group, and future survey will be 

obtained from a convenience sample made up from cancer patients within the University of 

Kansas network.  Providers within the University of Kansas network will be asked to aid in our 

recruitment effort of patients by discussing our on-going study and handing their eligible patients 

one of the “Save the Date” cards to attend our focus group or survey session depending on where 

we are at in our study timeline (Appendix E).  In the early stages of our study, providers will also 

be responsible for scheduling one-on-one interviews at an agreeing patient’s next follow-up visit 

with a designated research team member interviewer.   As we are targeting recruitment of cancer 

patients, we plan to reach out to previous PIs that our research team has worked with for filling 

out one-on-one interviews and focus groups.  For our pilot survey portion of the study, we plan 

to recruit from providers from The University of Kansas Cancer Center (KUCC), the Medical 

Oncology Division in the Department of Internal Medicine at the University of Kansas Medical 



137 

 

Center (KUMC), and the Hematology/Oncology Division at KU’s Westwood campus.  We 

assume that we will have adequate success in recruiting from previous PIs that we have worked 

with to fill our one-on-one interviews.   

Our justification for recruiting providers and in turn participants from three different 

locations is to reach the widest range of cancers amongst pilot survey participants.  Within each 

of the three recruitment locations that we will utilize to recruit patients from, there are 

approximately 80 listed providers with credentials of M.D. (i.e., medical doctor), O.D. (i.e., 

osteopathic doctor), or P.A. (i.e. physician assistant).  Reaching out to these providers to see if 

they would be willing to assist us in completing this pilot survey study will be fairly feasible as 

e-mail, phone number, and/or office location are available through either the KUMC website 

(www.kumc.edu), KUMC email directory through Microsoft Outlook, or through “Find a 

Doctor” on the health grades website (www.healthgrades.com).  However, we believe that not all 

internet-listed providers see patients in the clinic or if the websites includes the most up-to-date 

list of providers which would reduce our sample of providers, say to 40 providers if we are being 

conservative.  Furthermore, due to the busy schedule of providers, we assume that only half of 

those providers that see patients in the clinic will be able and willing to take on the additional 

responsibility in helping us recruit participants.  Assuming during a one week period a provider 

sees at least two patients that have been diagnosed within the last year, our potential sample size 

of individuals over the course of four weeks would be 160 individuals.  Our hopes are that up to 

20% of those patients whom received the information from their provider and “Save the Date” 

card will actually attend the scheduled pilot survey session (Appendix E).  This equates to ~32 

participants, or more.  Ideally, both the focus group and pilot survey session would be held on a 

Saturday morning around 10:00 a.m. at a University of Kansas facility that had easy-assessable 

http://www.kumc.edu/
http://www.healthgrades.com/
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parking near the facility.  The exact date of the survey session would be determined by research 

team following the study approval from the IRB. 

4.4.4  Eligibility Criteria and Compensation 

  For a patient to be eligible to participate in any portion of our study, they must meet two 

criteria.  First, the patient must have been diagnosed with any stage of cancer within the last year 

from the date of the study event they are attending.  Secondly, the patient must be at least 20 

years of age.  Any participant in either a one-on-one interview, the focus group, or in the pilot 

study will receive $50 for their time.   

4.4.5  Questionnaire Development for Interviews, Focus Group, and Pilot Study 

 The study questionnaires for this research study includes questions asked to the patient 

regarding the following: demographics, understanding of genomics and genetic testing, and 

opinions related genomic sequencing.  Questions used in the initial one-on-one interviews and in 

the focus group will follow closely to those found in Appendix F.  However, the both the 

research team member interviewer and the focus group moderator will be trained to inquire 

further to facilitate more discussion on topics that participants fill strongly about.  Specifically 

the survey questionnaire will be divided into three sections to better facilitate the flow of the 

survey.  Section one contains only basic demographic questions that address the background of 

the individual filling out the survey.  Section two will briefly educate the individual about 

genetics, cancer, and genetic testing.  Lastly, section three will contain questions to obtain 

patient’s opinion which will be broken into appropriate domains in our pilot survey study (i.e., 

education, precision medicine ethics, etc.).  Responses to each of the survey questions were 

designed to be highly inclusive and provide insight.  To minimize non-response to questions, 

most questions are given the response option “Prefer Not to Answer”.  The proposed prototype 
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of the survey questionnaire can be found in (Appendix F).  Revisions to this prototype would be 

made to reflect the findings from the one-on-one interview and focus group to better address our 

objectives.  Additional questions that were asked by either the interviewer or moderator will be 

considered by research team to determine best way to include them in the pilot survey study. 

4.4.6  Data Collection 

4.4.6.1  One-on-one Interview and Focus Group Study Portion 

Participants that take part in either a one-on-one interview or the focus group will be 

asked to sign a consent form prior to being asked any information pertaining to the study.  In the 

one-on-one interview the research team member interviewer will ask the participant to fill our 

questions similar to those found in Section one of the survey prototype found in Appendix F.  

Once these responses were recorded, interviewer would start a digital voice recorder to capture 

all dialect.  Interviewer would take notes as interview took place and would use digital voice 

playback to fill in any missed information after completion of the interview. Collection of focus 

group data would be collected very similarly to that of the one-on-one interviews.  The only 

difference that would occur is that the prototype pilot survey in its entirety would be given to all 

participants.  Once participants complete the prototype pilot survey, moderator will facilitate 

open session for questions, comments, and clarification.  A digital voice recording of this open 

session will be taken and turned into a transcript for research team to review.  Relevant responses 

and notes as determined by research team member would be summarized for review.  Changes to 

the pilot survey prototype will then be made reflect participants, moderator, and interview’s 

feedback and comments. 
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4.4.6.2  Pilot Survey Study Portion 

Participants that show up to the survey session will also be asked to sign a consent form 

prior to receiving the survey questionnaire to complete.  The entire survey session will be led by 

two independent survey administrators each of whom were educated about the survey topics and 

instructed on how to run the survey session.  We propose to collect data from a 22-item, paper-

based survey consisting of primarily check box responses and few free text questions.  This 22-

item questionnaire would be revised to reflect those findings from the one-on-one interviews and 

focus groups.  Additionally, study participants are given a space at the end of the survey to 

provide feedback and comments about the survey and/or session.  Study participants will be 

given a paper copy of the survey to record their responses and be directed to turn in their 

completed survey to one of the survey session administrators.   

Data from paper survey are then entered manually into a digital database (i.e., Microsoft 

Excel) by two research team members.  Data will then be matched to determine agreement of 

entered responses to aid with Quality Control.  Any disagreeing results between the two datasets 

entered by the research team members will be adjusted by a different research team member 

through review of paper survey responses.  Each of the survey questionnaires will be assigned a 

questionnaire ID which will allow for rectification of disagree responses.  Free text fields, 

comments, and feedback will be summarized in a list format.  Once Quality Control is conducted 

by the research team members, data will be sent to statisticians for analysis. 

4.4.7  Data Analysis   

 After the data are given to the statistician, descriptive analyses will be completed for all 

survey questions.  For all of the check box questions, frequency and percentage of response will 

be calculated.  However, for those free text questions, inclusive lists of all responses will be 
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developed.  If it is applicable for frequencies and percentages to be reported, the statistician 

would create such list.  Shell tables for these analyses can be found in Appendix G.  It would be 

left up to the statistician’s digression for what type of statistical software (i.e., R Statistical 

Software or SAS) they wanted to use to complete the analysis.  Data will be examined for ceiling 

and/or flooring effects for ordered responses to see if responses would need to be adjusted in the 

larger study.  Additionally, missing values would be tracked for each question.  Depending on 

the percentage of missing values, data imputation may be considered.  Furthermore, for 

Questions 14, 20, and 21 mean response would be calculated.  Questions 14 and 20 will be 

assigned the following values for given responses: 0 = “Unknown or Prefer Not to Answer”, 1 = 

“Disagree”, 2 = “Neither Disagree or Agree”, and 3 = “Agree”.  Similarly, for Question 21, 0 = 

“Unknown or Prefer Not to Answer”, 1 = “I would decline additional genetic testing”, 2 = “I 

would accept additional genetic testing”. 

Under this current pilot study, no subsequent statistical analysis would be complete.  

Although, in the larger-scale study it might be useful to compare differences among responses 

based on age group.  For instance look at responses for patients <50 years of age vs. 50 years or 

older through a chi-square test.  With a larger-scale study, more elaborate statistical analyses can 

be conducted as larger sample size would although for many statistical methods to be adequately 

powered.   

4.5 Discussion 

 

 The need for additional survey studies that target cancer patients’ opinions towards their 

care is evident from our review of the literature.  As genomic sequencing is become more 

regularly used in diagnosing and decisions about treatment options, it makes sense to survey the 
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opinions of cancer patients regarding the topic.  To expand the current literature, we developed a 

protocol for a patients’ opinion study including one-on-one interviews, a focus group, and a pilot 

survey study which would be implemented within the University of Kansas network.  The 

objectives of the study would be to patients’ opinions towards genomic sequencing; and to gain 

some insight to their opinions in using genomic sequencing to determine targeted drug therapy 

options.  Our proposed protocol for implementing our pilot survey study is fairly basic in 

comparison to many pilot survey studies.  However, we believed that it is necessary to take this 

step-wise approach in its development to have a meaningful and influential survey study.  Our 

sampling population is already considered to be heavily burdened and could highly benefit from 

such a study.  Our hope would that information from this pilot study would drive conduction of a 

larger-scale, potentially nationwide, grant-funded survey. 

 When conducting survey studies, there are many logistical issues that must be considered 

for the study to be successful.  If the proposed pilot survey study were to be approved by the 

IRB, we believe that we would be able to successfully reach our targeted sample size of ~32 

participants in our pilot survey study.  Once the one-on-one interviews and focus group portions 

of the study are completed, we have confidence in the patient providers will be willing to take 

part in providing their patients will information about our study as the University of Kansas has a 

mission statement prioritizes research productivity.  Additionally, we trust that our developed 

study material (i.e., “Save the Dated”, initial questions, and survey questionnaire prototype) will 

be easily understood by study participants.  All study material wording has been designed at an 

appropriate reading level (approximately at an eighth grade reading level).  Concurrently, the 

focus group and survey session would be scheduled to take place outside of the normal work 

week for most individuals, and will only require them to spend up to an hour or hour and a half 
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at the determined KU facility location.  Furthermore, the burden of the one-on-one interview to 

the participant is also reduced by scheduling it together with the patient’s next follow-up. 

Although, as with any research study, our proposed pilot survey study contains 

limitations.  Our study is limited in that we were unable to find any published information of any 

type regarding a patient survey implemented at KUMC.  We are also limited in that those 

participants that complete the study are from a convenience sample and likely are interested in 

voicing their opinions.  Hence, the results may be lacking opinions of those that do not 

participate can lead to bias in our results.  Additionally, our questionnaire prototype is not a 

validated.  Though, we are optimistic that the dialect between patients and study portion 

administrators will provide valuable feedback and comments to improve our survey to be 

conducted on a national level.  Despite these limitations, this pilot survey study has the potential 

to provide valuable information regarding patients’ opinions towards genomic sequencing while 

keeping the patient burden very low. 
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Discussion 
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 The RNA- Sequencing (RNA-Seq), a Next-Generation Sequencing (NGS) technology, 

has greatly changed the landscape of the field of genomics with its accuracy, breadth of data, and 

sensitivity verses previously used technologies such as microarrays.  Throughout this 

dissertation, many of the RNA-Seq analyses are compared to similar types of analyses that were 

completed in microarrays.  This is done as many researchers and scientists alike seek to translate 

analyses methods once used in microarrays to be used in RNA-Seq.  However, in doing so, there 

are many considerations that need to be given and challenges to be addressed.  Unlike microarray 

data which is continuous in nature and most often normally distributed, RNA-Seq data consists 

of discrete data, or count data.  The properties mentioned for microarray data make its analyses 

more straightforward as numerous method’s assumptions can be readily met.   

While the literature is saturated with studies that compare the biological differences 

between microarray and RNA-Seq technologies, there are only few that extend the differences 

between the two technologies in terms of the statistical analyses.  In this dissertation, we sought 

to expand the knowledge of some of the different statistical challenges that arise from RNA-Seq 

data; as well as, address some of the ethical concerns involved in genomic sequencing.  The 

principle findings from each chapter are as follows. In Chapter II’s differential expression study 

a lack of precision amongst selection of similar genes that are differentially expressed when 

comparing differential expression analysis methods from our empirical analysis.  Results from 

our simulation study, which first examined empirical Type I error rate and later empirical power, 

were as expected.  In general, models (i.e, LM, LMM, GLM, GLMM) that were fit according to 

the data (i.e., if the data were paired (𝜌 = 0.3 and 0.5) or unpaired (𝜌 = 0) between 

measurements) had control of the empirical Type I error rate at a level of 0.05 less regardless of 

the distribution (i.e., Bivariate Normal, Bivariate Poisson, or Bivariate Negative Binomial) the 
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RNA-Seq data were simulated from.  In those simulation scenarios where control of the Type I 

error rate was established, we observed that the empirically calculated power increase with 

increases in mean shift and sample size which is a typical relationship.  Those scenarios with 

conservative Type I error rate values significantly lower than 0.05 had extremely low empirical 

power.  Achievement of adequate power depended heavily on the sample size for scenarios 

where data were simulated from the Bivariate Poisson and Bivariate Negative Binomial 

distributions.  Additionally, in Chapter III’s data transformation and clustering method 

assessment, we found that it is highly challenging to transform data to “look” more normal.  

Despite all of the data transformations that were applied, no transformation equated to the exact 

skewness and kurtosis values found in normally distributed data.  Moreover, our results suggest a 

model-based clustering is the most robust approach to clustering analysis when some knowledge 

is previously known about the number of clusters in the data.  Conversely, if the number of 

clusters in unknown, K-Means clustering would perform best in determining most likely clusters.  

Lastly, in Chapter IV no specific findings were observed as the chapter focuses on the setup of a 

pilot survey study.  However, we assume that highly valuable findings would be obtained to 

allow for an extension of the survey to a larger scale.  

Each of the studies presented within this dissertation can be extended in multiple ways in 

the future.  Findings in Chapter II, provokes implementing either a sandwich estimator or 

utilization of the method of moments to better handle the paired structure and limitation of 

current models.  To do so it Kauerman and Carroll (2000) suggest implementation of a robust 

covariance matrix estimator.  In the study in Chapter III, one may want to consider applying the 

data transformations and clustering methods to an actual dataset to see how the performance of 

the methods compare to those results found in our simulation study.  This study also motivates a 
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development of a new algorithm to determine the number of unknown clusters within a dataset.  

This new algorithm would need to consider that range of gene expression values and be tuned to 

handle small effect changes between clusters.  Both of the studies that utilize RNA-Seq data can 

be extended to smaller sample sizes and compared with the current findings.  This is a critical 

expansion of these studies as often times researchers do not have the resources to have larger 

sample sizes in their experiments.  Another general need that is lacking from the realm of RNA-

Seq research in terms of statistical methodology is the application of non-parametric approaches 

to analyses.  A natural extension of the proposed protocol for the pilot survey study would be to 

actually conduct the study and begin the process of obtaining IRB approval, reach out to 

providers from the three mentioned departments within the University of Kansas network, and 

conduct the study portions. 

Throughout the process of completing this dissertation, many lessons have been learned.  

Aside from the findings of the studies in Chapters II and III, this dissertation has greatly 

improved my statistical programming skills, my approach to designing figures and tables, and 

my overall take on conducting meaningful research. Both of the studies in Chapter II and 

Chapter III, gave me the sense that sequencing technology is outpacing the types of statistical 

analyses to be conducted on its data.  We are able to acquire massive amounts of complex data, 

but when attempting to answer research questions there is often opposition between findings 

which are statistically relevant and/or clinically relevant.  Hence, researchers, statisticians, 

bioinformaticians, and other bio-related scientists are tasked to work together to address those 

unanswered research questions, develop new hypotheses, and overcome the challenges that are 

associated with the “omic” big data.  
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APPENDICES 

Appendix A: Local False Discovery Rate (FDR) calculation details 

The following calculation is used in the qvaule package in Bioconductor from Storey et. al. 

(2015) to obtain the local False Discovery Rate (lFDR).  

Consider m hypotheses (i.e., 𝐻1, 𝐻2, … , 𝐻𝑚) are conducted where each hypothesis results in a p-

value, 𝑝𝑔, for 𝑔 = 1,…𝑚 (i.e., 𝑝1, 𝑝2,…, 𝑝𝑚).  These null hypothesis is that some gth gene is not 

differentially expressed.  These p-values corresponding to the tested null hypotheses are 

considered to be statistically significant if 𝑝𝑖 ≤ 0.05.  Results from the testing can be placed into 

the 2 x 2 contingency table below,  

 

(Storey, 2010, Benjamini and Hochberg, 1995).  Here, V is the number of false positives, or 

rather the number of Type I errors; and R is the total count of all significant null hypothesis.   

Using the information from the 2 x 2 contingency table we can determine the FDR 

𝐹𝐷𝑅 = 𝑬 [
𝑉

𝑅
|𝑅 > 0] 𝐏𝐫(𝑅 > 0) 

(Benjamini and Hochberg, 1995).  Though, others have proposed additional extensions of the 

above FDR.  One extension is the lFDR which is used to quantify the probability of 𝐻𝑔 =

𝑡𝑟𝑢𝑒|𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑔 (Efron and Tibshirani, 2002, Efron et al., 2001).  It follows as such from Liao 

et. al. (2004)(Liao et al., 2004): 

Let 

𝑧𝑔 = {
1 𝑖𝑓 𝑡ℎ𝑒 𝑔𝑡ℎ 𝑔𝑒𝑛𝑒 𝑖𝑠 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙𝑙𝑦 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑 

0 𝑖𝑓 𝑡ℎ𝑒 𝑔𝑡ℎ 𝑔𝑒𝑛𝑒 𝑖𝑠 𝑛𝑜𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙𝑙𝑦 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑 
 

be modeled as a Bernoulli trial with probability 1 − 𝜋0 , where 𝜋0 =
𝑚𝑜

𝑚1
.  Also, let 𝑓0 and 𝑓1 be 

the density of 𝑝𝑔|𝑧𝑔 = 0 and 𝑝𝑔|𝑧𝑔 = 0, respectively.  Here, 𝑓0~𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0,1). That said, we 

have 𝑓(𝑦) = 𝜋0 + 1 − 𝜋0𝑓1(𝑦) which is the two component mixture model that all 𝑝𝑔 come 

from. Hence, the  

𝑙𝐹𝐷𝑅(𝑡) ≡ Pr(𝐻𝑔 = 𝑡𝑟𝑢𝑒|𝑝𝑔 = 𝑡) =
𝜋0

𝜋0 + 1 − 𝜋0𝑓1(𝑡)
.
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Appendix B: Comparison of overlapping Differential Expression (DE) genes after using 

estimations for False Discovery Rate (FDR) as re-evaluation criteria 

 

 Figure II-A1.  Comparison of Differentially Expressed (DE) genes found in unpaired and 

paired methods after re-evaluation.  The Venn diagrams above contain the number of 

Differentially Expressed (DE) genes that were determined by each method.  The overlapping 

portions of the Venn diagrams represent the number of DE genes selected to be the same 

between the compared DE methods.  A) contains comparisons of DE gens found using paired 

designs; and B) contains comparisons of DE genes found using unpaired designs minus results 

from unpaired BaySeq.  DE genes were determined using re-evaluation criteria (estimated FDR 

< 0.2). 
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 Figure II-A2.  Comparison of Differentially Expressed (DE) genes found using Bayesian 

and Frequentist theoretical backgrounds after re-evaluation.  The Venn diagrams above 

contain the number of Differentially Expressed (DE) genes that were determined by each 

method.  The overlapping portions of the Venn diagrams represent the number of DE genes 

selected to be the same between the compared DE methods.  A) contains comparisons of DE 

gens found using Bayesian methods; and B) contains comparisons of DE genes found using 

Frequentist methods with our results from CuffDiff..  DE genes were determined using re-

evaluation criteria (estimated FDR < 0.2)
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Appendix C: Additional correlation summaries from simulation study 

 

 Figure II-A3.  Correlation variation summary for simulated data from the Bivariate 

Poisson and Bivariate Negative Binomial distributions.  A) depicts the variability of 

correlations in simulated data for 𝜌 = 0, 0.3, and 0.5 from the Bivariate Poisson distribution.  B) 

depicts the variability of correlations in simulated data for 𝜌 = 0, 0.3, and 0.5 from the Bivariate 

Negative Binomial distribution. 
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Table II-1A.  Correlation summary for simulated data from the Bivariate Normal, 

Bivariate Poisson, and Bivariate Negative Binomial distributions under the alternative with 

shift of 0.5.  Table contains a summary of average correlations from the simulated data for N = 

100, 150, and 200 for correlations 𝜌 = 0, 0.3, and 0.5.  Data were simulated for unequal means 

with mean shift of 0.5 added. 
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Appendix D: Formulas for Evaluation Criteria for Clustering Methods 

For each of our 𝐷 datasets with 𝑁 = 56 samples (i.e., 𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑛}), two types of 

partitions are made 𝑈 and 𝑉 each of which divides 𝐷 into 𝑘 or r mutually disjoint subsets.  

Partition 𝑈:  

 𝐷 = ⋃ 𝑈𝑖
𝑘
𝑖=1  and 𝑈𝑖⋂𝑈𝑗 = ∅   ∀ 𝑖 ≠ 𝑗      𝑈 = {𝑈1, 𝑈2, … , 𝑈𝑘}    

Partition 𝑉: 

𝐷 = ⋃ 𝑉𝑖
𝑘
𝑖=1  and 𝑉𝑖⋂𝑉𝑗 = ∅   ∀ 𝑖 ≠ 𝑗      𝑉 = {𝑉1, 𝑉2, … , 𝑉𝑟} 

Evaluation for clustering agreement is based off identifying pairs (𝑑𝑖, 𝑑𝑗) of data that are the 

from the same or different partition(Rabbany and Zaiane, 2015).  Counts of these pairs are taken 

from the following table: 

 

The ijth element in the table is the intersection of the two partitions (i.e., 𝑛𝑖𝑗 = |𝑈𝑖⋂𝑉𝑗|), and the 

marginal sums are 𝑛𝑖. = ∑ 𝑛𝑖𝑗𝑗  and 𝑛.𝑗 = ∑ 𝑛𝑖𝑗𝑖 .  To determine whether a pair belong to the same 

or different partition, identification of true positives (TP), false positives (FP), true negatives 

(TN), and false negatives (FN) are computed using sums from the table.  Both the Adjusted Rand 

Index (ARI) and the Clustering Error Rate (CER) utilize this table’s information.   

Adjusted Rand Index (ARI) (Hubert and Arabie, 1985): 

Assumes that the above table is randomly constructed with fixed marginal sums.  Rather the size 

of the clusters in the partition are fixed.  With these two assumptions, we get the Adjusted Rand 

Index 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅𝑎𝑛𝑑 𝐼𝑛𝑑𝑒𝑥 (𝐴𝑅𝐼) =

∑ ∑ (
𝑛𝑖𝑗

2
)𝑟

𝑗=1
𝑘
𝑖=1 −

∑ (
𝑛𝑖.

2
)𝑘

𝑖=1 ∑ (
𝑛.𝑗

2
)𝑟

𝑖=1

(
𝑛
2
)

⁄

1
2 [∑ (

𝑛𝑖.

2
)𝑘

𝑖=1 + ∑ (
𝑛.𝑗

2
)𝑟
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)𝑘

𝑖=1 ∑ (
𝑛.𝑗

2
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𝑖=1

(
𝑛
2
)
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Clustering Error Rate (CER) (Witten, 2011): 

The Clustering Error Rate that is used in Witten’s manuscript (2001) is 1-Rand Index.  The 

formula for the Rand Index (Rand, 1971) is:  

𝑅𝑎𝑛𝑑 𝐼𝑛𝑑𝑒𝑥 (𝑅𝐼) = 1 +
1

𝑛2 − 𝑛
(2 ∑∑𝑛𝑖𝑗

2

𝑟

𝑗=1

𝑘

𝑖=1

− (∑𝑛𝑖.
2

𝑘

𝑖=1

+ ∑𝑛.𝑗
2

𝑟

𝑗=1

)) 

Hence,  

𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 (𝐶𝐸𝑅) = 1 − 1 +
1

𝑛2 − 𝑛
(2 ∑∑𝑛𝑖𝑗

2

𝑟

𝑗=1

𝑘

𝑖=1

− (∑𝑛𝑖.
2

𝑘

𝑖=1

+ ∑𝑛.𝑗
2

𝑟

𝑗=1

)) 

=
1

𝑛2 − 𝑛
(2∑∑𝑛𝑖𝑗

2

𝑟

𝑗=1

𝑘

𝑖=1

− (∑𝑛𝑖.
2

𝑘

𝑖=1

+ ∑𝑛.𝑗
2

𝑟

𝑗=1

)) 

 

Concordance Index (CI or C-Index) (Harrell et al., 1996): 

To calculate the Concordance Index (CI), we make comparisons between the cluster assignments 

of samples determined by the clustering methods to our simulated cluster assignments.  The steps 

to achieve this are: 

1) Organize simulated cluster assignments into pairs (𝑑𝑖, 𝑑𝑗) where 𝑖 ≠ 𝑗.  Using notation 

from our study (𝑘𝑖, 𝑘𝑗) 

2) If 𝑘𝑖 > 𝑘𝑗, determine if 𝑘̂𝑖 > 𝑘̂𝑗 or 𝑘̂𝑖 = 𝑘̂𝑗  which determines if the predicted cluster 

assignments are concordant or discordant.  If 𝑘̂𝑖 > 𝑘̂𝑗 add 1 to running sum as prediction 

is concordant to observed simulated cluster assignment.  If 𝑘̂𝑖 = 𝑘̂𝑗 add 0.5 to running 

sum.  Let the running sum be s. 

3) Tally number of times 𝑘𝑖 > 𝑘𝑗, say n. 

4) Calculate CI as 

𝐶𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒 𝐼𝑛𝑑𝑒𝑥 (𝐶𝐼) = 𝑛/𝑠 
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Appendix E:  Patient Recruiting Cards 
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Appendix F:  Survey Questionnaire 

 

 
 

University of Kansas Medical Center 

Department of Biostatistics 

5028 Robinson (5th Floor) 

3901 Rainbow Boulevard 

Kansas City, KS 66160 
 

Pilot Study Questionnaire       Questionnaire ID: ##### 

Pilot Study Title: Cancer Patient Opinions Towards Genetic Testing in Cancers 

Thank you for participating in this focus group and consenting to take part in this survey which 

measures cancer patient’s opinion towards genetic sequencing in cancers.  The survey below 

contains three separate sections.  Section 1 contains general questions that will provide 

information about your background.  Section 2 will briefly educate or refresh your knowledge of 

the concepts that you will asked questions about in Section 3.  Lastly, Section 3 is comprised of 

questions to help us obtain patient’s opinions regarding the use of genetic sequencing to aid in 

cancer treatment.  Below Section 3 is space to leave comments and feedback regarding this focus 

group and/or survey.  Be assured that all answers to this survey will be kept confidential.  Once 

you have completed all questions, please turn in survey to administer to receive your 

compensation for you time and participation. 

 

*Please be sure to select a single response for each question.   

Section 1: Background Questions 

1. What is your age? 

□  20 – 29 Years 

 

□  30 – 39 Years 

 

□  40 – 49 Years 

 

□  50 – 59 Years □  60 – 69 Years □  70+ Years 

□  Prefer Not to Answer   
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2. What is your gender? 

□ Female □ Male □  Other 

□  Prefer Not to Answer   
3. What is your race/ethnicity?  

□  White 

 

□  Black or 

        African American 

□  American Indian or 

         Alaska Native 

□  Hispanic or 

          Latino 

□  Asian 
□  Other 

___________________________ 

□  Unknown   

□  Prefer Not to Answer   

4. What is your marital status? 

□ Single 

 

□ Married 

 

□ Divorced 

 

□ Separated 

 

□  Prefer Not to Answer    

5. What is your highest level of education?  

□ Less Than 

       High School 

□ High School / 

        GED 

□ Some College 

 

□ 4 – Year  

        College Degree 

□ Graduate or 

       Professional Degree 
   

□  Prefer Not to Answer    
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6. What is your household income level? 

□ $0 - $15,999 □ $16,000 - $24,999 □ $25,000 - $49,999 

□ $50,000 - $99,999 □ $100,000+  

□  Prefer Not to Answer   

7. How many children do you have? 

□ No Children □ 1 Child □ 2 – 3 Children □ 4 – 5 Children 

□ 6+ Children    

□  Prefer Not to Answer    

8. What type of cancer do you currently have? 

 

______________________________________________________________________ 

9. Do you have a family history of cancer? 

□ Yes □ No □  Unknown 

□  Prefer Not to Answer   
 

9a. If you answered “Yes” to question 9 above, what type of cancer(s) are part of 

your family history of cancer? 

 

_____________________________________________________________________ 
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Section 2: Genetic Testing Education 

Genetic information can be viewed as the blue-print for every individual.  This blue-print 

contains specific information that makes individuals have specific characteristic traits (i.e., hair 

color, presence of dimples, hairline, etc.).  The major component of this blue-print is DNA which 

is made up of four base pairs (i.e., Adenine (A), Thymine (T), Cytosine (C), and Guanine (G)) 

which code for genes (Figure IV-S1).  DNA is found in form of chromosomes within the nucleus 

of nearly every cell in the human body.  The DNA within each of the 23 pairs of chromosomes 

guide the cells in the body to grow and develop.  Though when a gene becomes mutated in a 

specific area, it can cause cell to misbehave.  Depending on the mutation, the human body’s 

immune system may respond by killing off the cell.  However, when the immune system does 

not recognize the mutation, the cell divides and copies at rapid rate leading to cancer.  With the 

advancement of technology, researchers are able to look directly at an individual’s DNA and/or 

those mutations that are found in cancerous cells through genetic testing (Figure IV-S2).  Often 

times the information found from genetic testing of cancer can lead to more targeted treatment 

therapies. 

(Designed figure showing relationship between genes, cells, tissues, and the body)   

Figure IV-S1.  Overview of DNA within the human body 

 

Figure IV-S2.  Types of cell copying in the human body.  New cells are continually being 

made in the human body by coping information from older cells.  Occasionally, a mutation of the 

DNA occurs which causes various reactions to the cell.  Panel A displays the immune system’s 

response to a DNA mutation.  Panel B displays the uncontrollable grow (i.e., cancer) that occurs 

when the immune system does not recognize the mutations that occur. 
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Section 3: Patient Opinion Questions 

10.  Please rate your current level of understanding of genetic testing?  

□  None □  Very Poor □  Poor 

□  Fair □  Good □  Very Good 

□  Unknown   

□  Prefer Not to Answer   

11. Have you ever had genetic testing completed for your current cancer? 

□ Yes □ No □  Unknown 

□  Prefer Not to Answer   
12. Have you ever had any genetic testing completed in your past for any reason? 

□ Yes □ No □  Unknown 

□  Prefer Not to Answer   
13. Have any members of your immediate family (i.e., parents and/or grandparents) 

that have had cancer, had genetic testing completed? 

□ Yes □ No □  Unknown 

□  Prefer Not to Answer   
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14. Generally speaking, do you think that conducting genetic testing is ethical?  

□ Disagree □ Neither Disagree or Agree □  Agree 

□  Unknown   

□  Prefer Not to Answer   
15. Has your medical provider talked to you about the possibility of having genetic 

testing completed to determine targeted options for cancer treatment? 

□ Yes □ No □  Unknown 

□  Prefer Not to Answer   
16. Has your medical provider scheduled an appointment for you to have genetic testing 

completed on a sample of your cancer (i.e., your tumor)? 

□ Yes □ No □  Unknown 

□  Prefer Not to Answer   
17. If you answered “No” or “Unknown” to question 15 would you want to have genetic 

testing completed if it were an option to determine targeted cancer treatment? 

□ Yes □ No □  Unknown 

□  Prefer Not to Answer   

□  Answered “Yes” for Question 15   
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18. If the results from genetic testing revealed an incidental finding would you want to 

know about it? (An incidental finding is a potential medically relevant finding that 

was found unintentionally or that is unrelated to tested medical condition.) 

□ Yes □ No □  Unknown 

□  Prefer Not to Answer   
19. If genetic testing revealed that there was a clinical trial testing a new drug that 

would be a treatment option for your cancer, would you consider enrolling? 

□ Yes □ No □  Unknown 

□  Prefer Not to Answer   
20. Do you think patient providers should promote genetic testing to cancer patients?  

□ Disagree □ Neither Disagree or Agree □  Agree 

□  Unknown   

□  Prefer Not to Answer   
21. How do you feel about having additional genetic testing of your germline to 

determine if you have a mutation or many mutations in cancer-predisposing genes? 

□  I would decline additional genetic testing  

□  I would agree to additional genetic testing 

□  Unknown 

□  Prefer Not to Answer 
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22. Which of the following, if any, do you feel influenced your responses to any of the 

questions in Section 3?  (Select all that apply) 

□  Lack of Knowledge/Information Regarding Survey Topic  

□  Religious Beliefs 

□  Costs Associated with Genetic Testing 

□  Insurance Concerns 

□  Previous Experience 

□  Other ________________________ 

□  Prefer Not to Answer 
 

 

Please provide us with any feedback or comments pertaining to this survey or focus group 

session. 

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 

 

Thank you for your time and responses.  Please see survey administrator to receive 

your compensation for participation. 
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Appendix G: Shell Tables and Feedback Space to Complete after Quality Control is 

Completed on Survey Data 

Table IV-A1.  Demographic summary from Section 1 of survey questionnaire  

Table contains summary of responses from Section 1 of survey questionnaire.  Responses are 

given as a frequency and percentage. 

Questions Question Responses 
Response Frequency 

(%) 

1. What is your age? 

20-29 Years  

30-39 Years  

40-49 Years  

50-59 Years  

60-69 Years  

70+ Years  

Prefer Not to Answer  

2. What is your gender? 

Female  

Male  

Other  

Prefer Not to Answer  

3. What is your race/ethnicity?  

White  

Black or African 

American 
 

American Indian of 

Alaska Native 
 

Hispanic or Latino  

Asian  

Other  

Unknown  

Prefer Not to Answer  

4. What is your marital status? 

 

Single  

Married  

Divorced  

Separated  

Prefer Not to Answer  

5. What is your highest level of 

education? 

Less Than High School  

High School/ GED  

Some College  

4 – Year College Degree  

Graduate or Professional 

Degree 
 

Prefer Not to Answer  
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6. What is your household 

income level? 

$0-$15,999  

$16,000-$24,999  

$25,000-$49,999  

$50,000-$99,999  

$100,000+  

Prefer Not to Answer  

7. How many children do you 

have? 

No Children  

1 Child  

2 – 3 Children  

4 – 5 Children  

6+ Children  

Prefer Not to Answer  

8. What type of cancer do you 

have currently? 
**Responses will be 

listed with their frequency 
 

9. Do you have a family history 

of cancer? 

Yes  

No  

Unknown  

Prefer Not to Answer  

8a. If you answered “Yes” to 

question 8 above, what type of 

cancer(s) are part of your 

family history of cancer? 

**Top responses will be 

listed with their 

frequency.  Complete list 

would be presented in list 

format below. 

 

 

Question 8 unique responses with frequency provided in “( )”: 

 

Question 9a unique responses with frequency provided in “( )”: 
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Table IV-A2.  Summary of patient’s opinion responses from Section 3 of survey 

questionnaire  

Table contains summary of responses from Section 1 of survey questionnaire.  Responses are 

given as a frequency and percentage. 

Questions Question Responses 

Response 

Frequency 

(%) 

10. Please rate your current level of 

understanding of genetic testing? 

None  

Very Poor  

Poor  

Fair  

Good  

Very Good  

Unknown  

Prefer Not to Answer  

11. Have you ever had genetic testing 

completed for your current cancer? 

Yes  

No  

Unknown  

Prefer Not to Answer  

12. Have you ever had any genetic testing 

completed in your past for any reason? 

Yes  

No  

Unknown  

Prefer Not to Answer  

13. Have any members of your immediate 

family (i.e., parents and/or 

grandparents) that have had cancer, had 

genetic testing completed? 

Yes  

No  

Unknown  

Prefer Not to Answer  

14. Generally speaking, do you think that 

conducting genetic testing is ethical? 

Disagree  

Neither Disagree or Agree  

Agree  

Unknown  

Prefer Not to Answer  

15. Has your medical provider talked to you 

about the possibility of having genetic 

testing completed to determine targeted 

options for cancer treatment? 

Yes  

No  

Unknown  

Prefer Not to Answer  
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16. Has your medical provider scheduled an 

appointment for you to have genetic 

testing completed on a sample of your 

cancer (i.e., your tumor)? 

Yes  

No  

Unknown  

Prefer Not to Answer  

17. If you answered “No” or “Unknown” to 

question 15 would you want to have 

genetic testing completed if it were an 

option to determine targeted cancer 

treatment? 

Yes  

No  

Unknown  

Prefer Not to Answer  

Answered “Yes” for 

Question 15 
 

18. If the results from genetic testing 

revealed an incidental finding would 

you want to know about it? 

Yes  

No  

Unknown  

Prefer Not to Answer  

19. If genetic testing revealed that there was 

a clinical trial testing a new drug that 

would be a treatment option for your 

cancer, would you consider enrolling? 

Yes  

No  

Unknown  

Prefer Not to Answer  

20. Do you think patient providers should 

promote genetic testing to cancer 

patients? 

Disagree  

Neither Disagree or Agree  

Agree  

Unknown  

Prefer Not to Answer  

21. How do you feel about having 

additional genetic testing of your 

germline to determine if you have a 

mutation or many mutations in cancer-

predisposing genes? 

I would decline additional 

genetic testing 
 

I would agree to additional 

genetic testing 
 

Unknown  

Prefer Not to Answer  
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22. Which of the following, if any, do you 

feel influenced your responses to any of 

the questions in Section 3?  (Select all 

that apply) 

Lack of 

Knowledge/Information 

Regarding Survey Topic 

 

Religious Beliefs  

Costs Associated with 

Genetic Testing 
 

Insurance Concerns  

Previous Experience  

Other  

Prefer Not to Answer  

 

Question 22 written-in responses for “Other” response options: 

 

Table IV-A3.  Mean response of patient’s opinion for select questions 

Questions Question Responses 
Mean 

Response 

14. Generally speaking, do you think that 

conducting genetic testing is ethical? 

Disagree 

 

Neither Disagree or Agree 

Agree 

Unknown 

Prefer Not to Answer 

20. Do you think patient providers should 

promote genetic testing to cancer 

patients? 

Disagree 

 

Neither Disagree or Agree 

Agree 

Unknown 

Prefer Not to Answer 

21. How do you feel about having 

additional genetic testing of your 

germline to determine if you have a 

mutation or many mutations in cancer-

predisposing genes? 

I would decline additional 

genetic testing 

 
I would agree to additional 

genetic testing 

Unknown 

Prefer Not to Answer 

 

List IV-A1.  Comments and feedback provide by participants at the end of study 
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