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Methods for fast and reliable computation of electronic excitation energies are in short supply,
and little is known about their systematic performance. This work reports a comparison of several
low-scaling approximations to the equation of motion coupled cluster singles and doubles (EOM–
CCSD) and linear-response coupled cluster singles and doubles (LR–CCSD) equations with other
single reference methods for computing the vertical electronic transition energies of 11 small or-
ganic molecules. The methods, including second order equation-of-motion many-body perturbation
theory (EOM–MBPT2) and its partitioned variant, are compared to several valence and Rydberg
singlet states. We find that the EOM–MBPT2 method was rarely more than a tenth of an eV from
EOM–CCSD calculated energies, yet demonstrates a performance gain of nearly 30%. The parti-
tioned equation-of-motion approach, P–EOM–MBPT2, which is an order of magnitude faster than
EOM–CCSD, outperforms the CIS(D) and CC2 in the description of Rydberg states. CC2, on the
other hand, excels at describing valence states where P–EOM–MBPT2 does not. The difference
between the CC2 and P–EOM–MBPT2 can ultimately be traced back to how each method approx-
imates EOM–CCSD and LR–CCSD. The results suggest that CC2 and P–EOM–MBPT2 are com-
plementary: CC2 is best suited for the description of valence states while P–EOM–MBPT2 proves
to be a superior O(N5) method for the description of Rydberg states. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4898709]

INTRODUCTION

Accurate and efficient methods for calculating excited
state energies are few and far between. On the one hand,
linear-response time-dependent Hartree-Fock (LR–TDHF,
also known as RPA) and time-dependent density functional
theory (LR–TDDFT)1–3 are fast methods for calculating
excited state energies, fast enough that they may be ap-
plied to large systems (>1000 basis functions) routinely, yet
are plagued by many problems that affect their accuracy.
LR–TDDFT, for example, often underestimates excitation en-
ergies of charge-transfer states,2 fails to describe excitations
containing multi-electron character, and generally fails to de-
scribe the effects of dispersion. Attempts have been made to
correct these features of LR–TDDFT,4–6 often with some suc-
cess, but it is clear that a reliable black-box method for cal-
culating excitation energies must look beyond the HF/DFT
regime.

Methods based off the highly successful coupled clus-
ter formalism (for two excellent reviews of coupled cluster
theory, see the review by Crawford and Schaefer7 and the
book by Shavitt and Bartlett8), on the other hand, can pro-
vide extremely accurate excitation energies for even the most
difficult systems. The first application of coupled cluster the-
ory to electronic excited states was based off of the response
formalism, and is known as linear response coupled cluster

a)Email: xsli@uw.edu

(LR–CC).9–13 This was followed by the equation of motion
coupled cluster formalism (EOM–CC),14 as well as symme-
try adapted cluster configuration interaction (SAC-CI).15 De-
spite their formal differences, LR–CC and EOM–CC when
truncated at the same level of cluster operator will give the
same value for excitation energies, although they differ with
respect to transition properties.13 In particular, the EOM–CC
formalism16, 17 has led to extremely accurate and robust de-
scriptions of excited states, yet may be prohibitively costly.
The equation of motion coupled cluster singles and doubles
(EOM–CCSD)14, 18 gives accurate qualitative and quantitative
energies for most molecular systems, yet scales as O(N6),
making its application to large molecules difficult.

Methods that bridge the gap between the robust and
highly accurate LR–CC and EOM–CC methods and the ef-
ficient but often-inaccurate LR–TDHF/LR–TDDFT are im-
portant for the quantitative study of electronic excitations in
large systems. Methods that have been proposed to balance
cost and accuracy are the iterative-hybrid CC2,19 the CIS(D)
family of perturbative corrections to the configuration interac-
tion singles method,20 and perturbative approximations to the
EOM–CCSD,21, 22 known as second order equation-of-motion
many-body perturbation theory (EOM–MBPT2). Most of
these approximate methods can be formulated as O(N5)
methods, yet little is known about their systematic perfor-
mance. Theoretically, CC2 and EOM–MBPT2 make very dif-
ferent assumptions regarding the relative importance of the
coupled cluster operators. CC2, originally developed within

0021-9606/2014/141(16)/164116/9/$30.00 © 2014 AIP Publishing LLC141, 164116-1
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the response theory formalism, was designed to retain max-
imal flexibility with respect to orbital rotations, which are
known to be important when computing molecular properties.
However, CC2 does so at the cost of neglecting much dynamic
electron correlation, by removing many of the doubles cluster
operators. EOM–MBPT2, in contrast, has no flexibility with
respect to orbital rotation, but seeks to maximize inclusion of
dynamic correlation through the use of the MP2 cluster op-
erator. The contrast between these approximations has strong
implications when selecting a method for studying electronic
excited states.

Here, we investigate the implications of these approxi-
mations on a series of experimentally well-studied organic
molecules. In particular, we find a striking difference between
the methods in their ability to describe Rydberg and valence
states. The results of our investigation provide critical infor-
mation to aid in the choice of a cost-effective method for
studying electronic excited states.

THEORY

In the present work, we adopt the notation that indices
i, j, k, l refer to occupied orbitals, a, b, c, d refer to virtual
orbitals, and p, q, r, s refer to any orbital. We also adopt
Einstein summation, where the summation over common in-
dices is implied.

In coupled cluster theory, the Schrödinger equation is
parametrized by the exponential form of excitation operators
T̂ , such that

Ĥ eT̂ |�0〉 = EeT̂ |�0〉. (1)

The operator T̂ is an excitation operator that has the effect of
generating excited determinants from the reference state |�0〉.
It takes the form

T̂ = T̂1 + T̂2 + · · · = tai a
†
aai + tab

ij a
†
aa

†
bajai + · · · . (2)

It is convenient to use the normal-ordered (relative to the
Fermi vacuum) Hamiltonian ĤN , which is the Hamiltonian
operator minus its reference expectation value

ĤN = fpq{a†
paq} + 1

4
〈pq||rs〉{a†

pa
†
qasar} (3)

or simply

ĤN = F̂N + V̂N . (4)

For the EOM–CCSD working equations, one must solve for
the eigenvalues and eigenvectors of the following Hamilto-
nian matrix: [ 〈

�a
i

∣∣H̄N

∣∣�c
k

〉 〈
�a

i

∣∣H̄N

∣∣�cd
kl

〉
〈
�ab

ij

∣∣H̄N

∣∣�c
k

〉 〈
�ab

ij

∣∣H̄N

∣∣�cd
kl

〉
]

, (5)

where H̄N = e(−T̂1−T̂2)ĤNe(T̂1+T̂2), and |�c
k〉, |�cd

kl 〉 are singly
and doubly excited determinants, respectively. The eigenval-
ues of the Hamiltonian correspond to excitation energies out
of the coupled cluster ground state. Because of the similar-
ity transformation, the matrix problem is non-Hermitian. The
excited kets are generated by the linear operator R̂, and the

excited bras are generated by the linear operator L̂

R̂ = R̂1 + R̂2 + · · · = ra
i a

†
aai + rab

ij a
†
aa

†
bajai + · · · , (6)

L̂ = L̂1 + L̂2 + · · · = liaa
†
i aa + l

ij

aba
†
i a

†
j abaa + · · · . (7)

Thus, the EOM–CCSD Hamiltonian looks,14 with respect to a
suitable reference state |�0〉 and truncated to R̂1 and R̂2 (and
likewise for L̂)

[ 〈�0|L̂1H̄NR̂1|�0〉 〈�0|L̂1H̄NR̂2|�0〉
〈�0|L̂2H̄NR̂1|�0〉 〈�0|L̂2H̄NR̂2|�0〉

]
. (8)

In general, R̂† �= L̂ and vice versa, and a full solution to the
EOM–CCSD equations requires solutions to both the R̂ and L̂

amplitudes. However, if only excitation energies are desired,
one may solve for only R̂ or L̂ amplitudes. In the case of this
work, we only concern ourselves with excitation energies, and
solve for the R̂ amplitudes only, which is to say we solve the
connected right-hand side

(H̄NR̂)c|�0〉 = ωR̂|�0〉, (9)

where ω are the excitation energies. Therefore, the matrix
equations we wish to solve are[

H̄SS H̄SD

H̄DS H̄DD

][
R1

R2

]
= ω

[
R1

R2

]
, (10)

where H̄SS = 〈ψa
i |H̄N |ψc

k 〉, that is to say, the singles-singles
block of the Hamiltonian matrix, and so on. The working
equations may then be solved using non-Hermitian variants
of the Davidson algorithm.23–26

When excitation energies are the subject of interest, the
EOM–CC equation is equivalent to the Jacobian in the LR–
CC formalism12 for excitation energy calculations. The math-
ematical difference between LR and EOM formalisms arises
when they are used to compute excitation properties, such as
transition dipole and oscillator strengths. Jørgensen and co-
workers have shown that the transition moment in LR–CC is
size-intensive whereas EOM formalism is not,13 although the
difference in intensity between LR and EOM is very small for
most computationally tractable systems.27 In this work, we
focus only on analyzing the performance of low-scaling alter-
natives to EOM–CCSD and LR–CCSD on excitation energies
where these two formalisms are equivalent.

EOM–MBPT2

One of the first approximations that can be made to the
EOM–CCSD Hamiltonian is to utilize the perturbation expan-
sion technique, and keep only the terms through second order
(see the Appendix for derivations). As a result, T̂1 vanishes
and only the first order T̂

(1)
2 remains in the EOM equations,

T̂1 → tai = 0; T̂
(1)

2 → t
ab(1)
ij = 〈ij ||ab〉

εi + εj − εa − εb

. (11)
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This second order perturbation approximation gives rise to the
EOM–MBPT2 equation,[

H̄
(2)
SS H̄

(2)
SD

H̄
(2)
DS H̄

(2)
DD

] [
R1

R2

]
= ω

[
R1

R2

]
, (12)

where H̄
(2)
SS is the singles singles block of the Hamiltonian

through second order, and so on. A full derivation and the
working equations are given in the Appendix. This approach
was first derived by Stanton and Gauss,21 and termed EOM–
CCSD(2). Further work, and the development of the parti-
tioned approach (detailed later) was derived by Gwaltney,
Nooijen, and Bartlett22, 28 and termed EOM–MBPT2. Both
methods are equivalent. Because the EOM–MBPT2 Hamilto-
nian neglects contributions from the single excitation cluster
operators, as well as uses the MP2 double excitation ampli-
tudes, it can be understood as an excited state calculation of
roughly MP2 quality. The neglect of the T̂1 operators neglects
orbital relaxation in response to the addition of electron cor-
relation through the T̂2 operator. The EOM–MBPT2 Hamilto-
nian still contains terms that scale computationally as O(N6),
and there is no obvious benefit from the asymptotic scaling
compared to a full EOM–CCSD calculation, however, the ne-
glect of the numerous T̂1 terms greatly reduces the prefactor
of the calculation. Furthermore, the T̂

(1)
2 amplitudes are com-

pletely determined prior to the excited state calculation. In
other words, no iterative ground state calculation must be per-
formed prior to solving the EOM equations, unlike the case
for EOM–CCSD, where the CCSD ground state wavefunc-
tion must be iteratively determined.

P–EOM–MBPT2

The problem with the second order perturbative approach
outlined above is primarily computational. Despite the ad-
vantage of not needing to perform a ground state coupled
cluster calculation and reduction in terms computed, the
leading order of scaling between EOM–CCSD and EOM–
MBPT2 is identical with the latter having a smaller prefac-
tor. Bartlett and co-workers22, 28 offered a solution around the
scaling problem by using the so-called Löwdin partitioning
approach.29 The idea is to determine a perturbative series in
R̂ (or equivalently L̂), in addition to the Rayleigh-Schrödinger
perturbative approach to T̂ above. The central idea is to par-
tition the effective EOM–MBPT2 Hamiltonian into a princi-
pal space spanned by the single excitations (R̂1) and an or-
thogonal complement spanned by the double excitations (R̂2).
A perturbative series is generated for the orthogonal com-
plement. Truncation of this series, along with utilization of
canonical orbitals, replaces the H̄DD block with the diagonal

H̄DD ≈ H̄
(0)
DD = εa + εb − εi − εj , (13)

where εa is the orbital energy for the ath orbital and so on.
This is the zeroth order effective Hamiltonian for the doubles-
doubles block. The block matrix structure of the P–EOM–
MBPT2 equations now has the form[

H̄
(2)
SS H̄

(2)
SD

H̄
(2)
DS H̄

(0)
DD

] [
R1

R2

]
= ω

[
R1

R2

]
. (14)

It turns out that all the iterative O(N6) terms are contained
in the doubles-doubles block for EOM–MBPT2, thus by re-
placing H̄DD by its partitioned counterpart, P–EOM–MBPT2
becomes an iterative O(N5) method. (The P–EOM–MBPT2
method does require the formation of some O(N6) interme-
diates, but these must be formed once and is dwarfed by the
later O(N5) iterations.)

CIS(D)

The CIS(D) method can be seen as an approximation
to P–EOM–MBPT2.30 As pointed out by Head-Gordon,31

the CIS(D) excited state energy correction can be justified
through a perturbation expansion of the excited state CCSD
equations, or what we refer to as the EOM–MBPT2 equations.
This can be seen from considering the effective Hamiltonian[

H̄
(2)
SS H̄

(1)
SD

H̄
(1)
DS H̄

(0)
DD

][
R1

R2

]
= ω

[
R1

R2

]
. (15)

Note that the off-diagonal blocks are approximated through
first order. However, instead of solving the resulting ma-
trix eigenvalue/eigenvector problem, the CIS(D) equations are
formulated noniteratively by equating the R1 amplitudes with
the CIS amplitudes and then eliminating R2. To see this, note
that the effective Hamiltonian can be rewritten as two coupled
equations

H̄
(2)
SS R1 + H̄

(1)
DSR2 = ωR1, (16)

H̄
(1)
DSR1 + H̄

(0)
DDR2 = ωR2. (17)

Rearranging the second equation to solve for R2 (H̄ (0)
DD is diag-

onal, therefore invertible), and substituting this result into the
first equation gives the CIS(D) electronic transition energy

ωCIS(D) = 〈ψCIS |H̄ (2)
N |ψCIS〉

+〈ψCIS |H̄ (1)
N

∣∣ψab
ij

〉〈
ψab

ij

∣∣H̄ (1)
N |ψCIS〉

ωCIS − (εa + εb − εi − εj )
. (18)

Thus, CIS(D) can be thought of as a non-iterative O(N5)
approximation to P–EOM–MBPT2. CIS(D) retains the CIS
exited state wavefunction, and can only correct for energy.
Any transition properties, such as oscillator strength, will be
identical to the CIS description.

CC2

The CC2 method for excited states, known as linear re-
sponse CC2 (LR–CC2),19 is not based off of the perturbative
approaches in the other methods. CC2 was originally derived
from standard response theory as a way of computing accu-
rate molecular properties. To do so, it was noted that under
an external perturbation the effective orbital rotation opera-
tors, T̂1, appear to zeroth order in the fluctuation potential and
first order in the external perturbation.32 Since T̂2 appears to
second order in the energy and first order in the wavefunc-
tion, the singles, it was reasoned, must be more important for
molecular properties. Thus, no approximation to T̂1 is made
in CC2.
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Practically, CC2 is derived from the CC2 ground state
reference, which is a second order approximation to CCSD
in that the T̂2 operator is restricted to only connect to F̂

when acted on by doubly excited bras. In other words, the
CCSD equation to determine the T̂2 amplitudes changes
from 〈ψab

ij |e−T̂1−T̂2ĤNeT̂1+T̂2 |ψ0〉 = 0 to 〈ψab
ij |e−T̂1ĤNeT̂1

+ e−T̂2FeT̂2 |ψ0〉 = 0. Extending this idea to the linear re-
sponse formalism leads to the effective Jacobian block matrix
for evaluating the excitation energies⎡
⎣

〈
ψa

i

∣∣e−T̂1−T̂2ĤNeT̂1+T̂2

∣∣ψc
k

〉 〈
ψa

i

∣∣e−T̂1−T̂2ĤNeT̂1+T̂2

∣∣ψcd
kl

〉
〈
ψab

ij

∣∣e−T̂1ĤNeT̂1

∣∣ψc
k

〉 〈
ψab

ij

∣∣e−T̂2 F̂NeT̂2

∣∣ψcd
kl

〉
⎤
⎦

×
[

R1

R2

]
= ω

[
R1

R2

]
. (19)

The solution scheme for the CC2 equations is similar to
EOM–CCSD: a ground state calculation is performed first to
obtain optimized values for T̂1 and T̂2 amplitudes, followed
by the iterative solution of the above effective Hamiltonian to
solve for R (if only energies are desired). This is unlike the
perturbative approaches, in which the T̂ amplitudes are di-
rectly determined (and thus no ground state calculation is re-
quired). As an approximation to LR–CCSD, CC2 eliminates
all of the highest order scaling terms, thus making CC2 an
O(N5) method.

RESULTS AND DISCUSSION

Both P–EOM–MBPT2 and CC2 are O(N5) scaling wave
function based methods, although this computational scaling
is obtained in a very different manner. Their parameter-free
nature holds the potential for computing many-electron ex-
cited states with a well-balanced predictability. We test the
quality of these low-scaling excited state methods across a
wide-range of excitations (e.g., from valence to Rydberg exci-
tations). After comparing each methods’ performance against
experimental data, we rationalize our observations in light
of the formal characteristics of each method. We hope this
work will provide confidence and guidance to the utility of
low-scaling approximations to LR–CCSD and EOM–CCSD
methods.

As low-scaling wave function based methods, P–EOM–
MBPT2 and CC2 can be considered complementary excited
state methods to each other. Both methods have the same ex-
pression for the doubles-doubles block, but the rest of the
blocks differ in their approximations. In particular, CC2 elim-
inates many of the connected T̂2 terms so that a majority of
the terms depend on T̂1. In contrast, the P–EOM–MBPT2
methods eliminate all terms that have a contraction with T̂1,
because T̂1 is zero, so that the majority of the terms are T̂2
dependent. In other words, one way to view the difference be-
tween CC2 and P–EOM–MBPT2 is that the former favors T̂1
(or is “T̂1 heavy”) and the latter favors T̂2 (“T̂2 heavy”). The
T̂1 operator has long been understood as accounting for or-
bital response to electron correlation and the T̂2 operators are
understood as accounting for the dynamic (pairwise) electron
correlation. Which contribution matters most to electronic ex-

FIG. 1. Molecules used to test the accuracy of excited state methods. All
molecules were optimized at the MP2/6-311+G** level of theory.

citation energies is an open question, and a comparison of
CC2 with P–EOM–MBPT2 provides an excellent case study
of the importance of each excitation operator. It should be
noted that CC2 still retains some T̂2 contributions, as T̂1 de-
pends on T̂2 (if T̂2 were zero, then T̂1 would necessarily be
zero due to Brillouin theorem). However, CC2 eliminates all
of the T̂2 terms in the doubly excited bra space, and the effect
of dynamic correlation in this space can only be incorporated
indirectly through T̂1.

The EOM–MBPT2 and P–EOM–MBPT2 methods,
along with CC2, have been implemented and tested in the
development version of the Gaussian electronic structure the-
ory suite.33 The accuracy of these methods is tested against
EOM–CCSD, LR–TDDFT/B3LYP, CIS(D), RPA, and CIS
methods. The methods were tested using the Pople split-
valence basis set 6-311(3+,3+)G**, where all atoms were
augmented with three diffuse functions. This type of ba-
sis has been shown satisfactory for calculating excitation
energies.34–36 The molecules chosen for testing, given in
Fig. 1, have been extensively studied in the gas phase, and re-
liable experimental data are available in the literature. Sixty-
nine excited states in all were calculated and compared to ex-
periment, and of the 69 states, 30 were considered valence
states, and 39 were considered Rydberg states. In addition
to experimental comparisons, direct comparisons between the
low scaling methods and EOM–CCSD were performed. Be-
cause each method can be seen as an approximation to EOM–
CCSD, the CCSD excitation energies are a critical reference.

Due to the unreliability of experimental excited state en-
ergies for triplets,35 only comparisons to singlet excitations
were studied. All excitation energies obtained are compared
to experimental values, using the metric of mean absolute er-
ror to experiment (Mean AE), maximum absolute error to ex-
periment (Maximum AE), and root mean square (RMS) er-
ror to experiment. Geometries, which were optimized at the
ground state MP2/6-311+G** level of theory, were taken
from the test set by Caricato et al.34 The values for LR–
TDDFT/B3LYP, experimental values, and CIS/CIS(D)/RPA
values are taken from those reported previously.35
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TABLE I. Mean absolute error (Mean AE), error root mean square (RMS), maximum absolute error (Max AE),
and mean signed error (MSE) compared to EOM–CCSD for the first state and all the states of all the molecules
(eV), 69 states total.

All molecules, compared to EOM–CCSD

First state All states

Mean AE RMS Max AE MSE Mean AE RMS Max AE MSE

EOM–MBPT2 0.14 0.16 0.33 0.04 0.13 0.20 1.19 − 0.01
P–EOM–MBPT2 0.39 0.43 0.66 0.39 0.25 0.35 0.78 0.21
CC2 0.16 0.17 0.25 − 0.12 0.40 0.52 1.69 − 0.39
CIS(D) 0.08 0.09 0.14 0.00 0.34 0.45 1.16 − 0.24
B3LYP 0.44 0.51 0.85 − 0.44 0.78 0.87 1.59 − 0.76
RPA 0.52 0.57 1.04 0.39 0.92 1.11 2.61 0.69
CIS 0.62 0.70 1.19 0.55 0.96 1.16 2.65 0.80

While the assignment of excited states for the selected
molecules has been detailed elsewhere,35 and indeed the
present work can be seen as an extension of Caricato et al.,
we briefly explain our methodology here. Valence states may
be identified by examining the dominant orbital contributions
to the excitation. Rydberg states, which are more difficult to
assign, were separated by irreducible representation, energy
ordered, and then matched with experimental data. The results
and assignments for each excitation are given in the supple-
mentary material.37 This methodology has also been applied
successfully to the same molecules in the work by Wiberg
et al.36 Vibronic effects are not necessarily negligible, espe-
cially for the azabenzenes (in particular the symmetry forbid-
den n → π∗). These transitions are broad and have low in-
tensity, thus the experimental uncertainty is larger for these
transitions. In spite of this, vibronic corrections are beyond
the scope of this paper and were not included. This will be the
focus of a later work.

Comparing first directly to EOM–CCSD in Table I, we
find that the EOM–MBPT2 approximation performs closely
to EOM–CCSD with a mean absolute error of only 0.13 eV.
However, because it has the same polynomial scaling cost,
there is little practical advantage to its use. On the other hand,
the O(N5) P–EOM–MBPT2 gives EOM–CCSD quality re-
sults within 0.25 eV, followed by CIS(D) and CC2. In general,
P–EOM–MBPT2 overestimates excitation energies relative to

EOM–CCSD, whereas CC2 and CIS(D) underestimate exci-
tation energies.

Of all the molecules tested in Fig. 1, EOM–CCSD pro-
vides excitation energies closest to those of experiment for
all states considered in Table II. It has a root-mean-square
error of 0.36 eV. EOM–MBPT2 generally has similar per-
formance to EOM–CCSD, which suggests the relative impor-
tance of including the double excitation subspace when cal-
culating excited state energies. Methods that do not include
a double excitation subspace, namely, CIS and RPA, have a
much poorer description of experimental excitations, with a
RMS around 1.25 eV. The partitioned approach, P–EOM–
MBPT2 contains much double excitation character, though
much less than EOM–CCSD or EOM–MBPT2, on account
of the severe restrictions on the doubles-doubles block. LR–
TDDFT/B3LYP performs modestly, with a RMS of 0.84 eV,
which is far better than simple wave function based meth-
ods like RPA and CIS. CIS(D) has performance similar to
P–EOM–MBPT2 in general. CC2 performs quite well for all
states, with an accuracy lying between the EOM–MBPT2 and
P–EOM–MBPT2 methods.

It is perhaps more revealing, however, to note the dif-
ferences in the estimation of valence states versus Rydberg
states. It should be noted that all states considered are well
under the CCSD ionization potential and therefore may be
classified as valence or Rydberg. In the direct comparisons to

TABLE II. Mean absolute error (Mean AE), error root mean square (RMS), maximum absolute error (Max AE),
and mean signed error (MSE) compared to experiment for the first state and all the states of all the molecules
(eV), 69 states total.

All molecules, compared to experiment

First state All states

Mean AE RMS Max AE MSE Mean AE RMS Max AE MSE

EOM–CCSD 0.35 0.44 0.82 0.35 0.27 0.36 1.02 0.20
EOM–MBPT2 0.43 0.54 0.96 0.39 0.30 0.43 1.12 0.20
P–EOM–MBPT2 0.74 0.83 1.32 0.74 0.47 0.65 1.40 0.41
CC2 0.23 0.29 0.60 0.23 0.44 0.53 1.26 − 0.19
CIS(D) 0.35 0.45 0.78 0.35 0.49 0.61 1.83 − 0.04
B3LYP 0.22 0.29 0.55 − 0.09 0.67 0.84 1.82 − 0.56
RPA 0.75 0.93 1.86 0.74 1.01 1.26 3.63 0.90
CIS 0.90 1.08 2.01 0.90 1.07 1.34 3.67 1.01
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TABLE III. Mean absolute error (Mean AE), error root mean square
(RMS), maximum absolute error (Max AE), and mean signed error (MSE)
compared to EOM–CCSD for all the valence states of all the molecules (eV),
30 states total.

All molecules, compared to EOM–CCSD, valence states only

Mean AE RMS Max AE MSE

EOM–MBPT2 0.20 0.29 1.19 0.04
P–EOM–MBPT2 0.48 0.51 0.78 0.41
CC2 0.30 0.47 1.69 − 0.27
CIS(D) 0.18 0.29 1.16 0.02
B3LYP 0.47 0.51 0.85 − 0.41
RPA 0.89 1.02 2.61 0.61
CIS 0.96 1.10 2.65 0.82

EOM–CCSD valence energies in Table III, we find that CC2
gives EOM–CCSD quality results to 0.3 eV, versus P–EOM–
MBPT2, which has errors of nearly 0.5 eV. Of all the O(N5)
methods, CIS(D) reproduces CCSD-quality results the best.
For Rydberg states, the performance of the methods compared
to EOM–CCSD is more stark (see Table IV). Both the EOM–
MBPT2 and P–EOM–MBPT2 reproduce EOM–CCSD qual-
ity results to 0.07 eV, compared to CC2 and CIS(D), which
reproduce the CCSD excitation energies to almost 0.5 eV. We
suggest that this result stems from the necessity of including
T̂2 amplitudes in the doubly excited manifolds of the effective
Hamiltonian, which only the (P–)EOM–MBPT2 methods in-
clude compared to CIS(D) and CC2. This hypothesis will be
discussed later.

Similar conclusions regarding the performance of the
methods tested are reached when comparing to experimen-
tal data. For the valence states considered (Table V), the
wave function based methods perform poorly compared to the
Rydberg states (Table VI). Perhaps more surprisingly is how
well B3LYP performs, with a RMS of 0.26 eV, compared to
EOM–CCSD which has a RMS twice that at 0.52 eV. How-
ever, this may simply be the result of fortuitous cancellation of
errors in B3LYP, especially in light of the varied performance
of similar hybrid functionals on the same test set.35 We also
note that B3LYP was parameterized to perform well for or-
ganic molecules like many of the small molecules tested here.
EOM–MBPT2 and P–EOM–MBPT2 perform much worse

TABLE IV. Mean absolute error (Mean AE), error root mean square (RMS),
maximum absolute error (Max AE), and mean signed error (MSE) compared
to EOM–CCSD for all the Rydberg states of all the molecules (eV), 39 states
total.

All molecules, compared to EOM-CCSD, Rydberg states only

Mean AE RMS Max AE MSE

EOM–MBPT2 0.07 0.08 0.25 − 0.04
P–EOM–MBPT2 0.07 0.11 0.42 0.05
CC2 0.48 0.55 0.82 − 0.48
CIS(D) 0.46 0.54 0.95 − 0.44
B3LYP 1.02 1.07 1.59 − 1.02
RPA 0.94 1.17 1.85 0.75
CIS 0.96 1.21 1.86 0.79

TABLE V. Mean absolute error (Mean AE), error root mean square (RMS),
maximum absolute error (Max AE), and mean signed error (MSE) compared
to experiment for all the valence states of all the molecules (eV), 30 states
total.

All molecules, compared to experiment, valence states only

Mean AE RMS Max AE MSE

EOM–CCSD 0.47 0.52 1.02 0.47
EOM–MBPT2 0.56 0.63 1.12 0.51
P–EOM–MBPT2 0.89 0.96 1.40 0.88
CC2 0.36 0.42 1.00 0.20
CIS(D) 0.50 0.59 1.83 0.49
B3LYP 0.20 0.26 0.59 0.06
RPA 1.19 1.44 3.63 1.08
CIS 1.29 1.55 3.67 1.29

than EOM–CCSD or CC2 – consistently overestimating the
valence state energies – and we suggest that much of the fail-
ure for valence states can be traced back to the total neglect
of T̂1 amplitudes.

The single excitation cluster operator has long been un-
derstood as an orbital rotation operator, which mixes virtual
and occupied orbitals to account for orbital relaxation. Va-
lence states are highly sensitive to the effects of orbital rota-
tion and relaxation. The Thouless theorem38 says that the ef-
fect of the eT̂1 operator is to transform any single determinant
into any other single determinant. It is well known that min-
imization of the energy of a single Slater determinant with
respect to the rotation parameters (or tai amplitudes), deter-
mines the stability conditions of the Hartree-Fock equations
known as Brillouin’s condition.38 The Thouless theorem ex-
plains why CCSD and higher methods are so insensitive to
reference choice; optimal reference is generated through the
T̂1 operator. Because the perturbative approximations con-
sidered neglect the effects of orbital rotation, we should ex-
pect them to perform much worse for valence states. CC2,
which does account for orbital rotation and relaxation, per-
forms quite well for the valence states, which is consistent
with this hypothesis. In fact, for the valence states considered
CC2 outperformed EOM–CCSD. We wish to note two bench-
marking studies of coupled cluster excited state methods, the
first by Schreiber et al.,39 and the recent extension by Kánnár

TABLE VI. Mean absolute error (Mean AE), error root mean square
(RMS), maximum absolute error (Max AE), and mean signed error (MSE)
compared to experiment for all the Rydberg states of all the molecules (eV),
39 states total.

All molecules, compared to experiment, Rydberg states only

Mean AE RMS Max AE MSE

EOM–CCSD 0.11 0.14 0.45 0.00
EOM–MBPT2 0.10 0.14 0.34 − 0.05
P–EOM–MBPT2 0.15 0.20 0.55 0.05
CC2 0.50 0.61 1.26 − 0.49
CIS(D) 0.49 0.62 1.32 − 0.44
B3LYP 1.03 1.09 1.82 − 1.03
RPA 0.88 1.11 1.89 0.75
CIS 0.91 1.15 1.94 0.79
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FIG. 2. Plot of log10(Time) versus log10(Number basis functions). EOM–
CCSD and EOM–MBPT2 have an experimental scaling of O(N5.4), while
P–EOM–MBPT2 has an experimental scaling of O(N4.7), nearly an order of
magnitude less, as expected.

and Szalay.40 These studies — which only consider valence
states — find that in comparison to CC3 and CASPT2 ref-
erences, CCSD overestimates valence state energies, whereas
the mean deviation for CC2 is near zero. Our results are in
agreement with these findings.

Despite the success of CC2 in describing va-
lence states, it is not nearly as robust in describing
Rydberg states. Rydberg states are much more diffuse
and less sensitive to orbital rotations. The heavy inclusion of
the eT̂2 operator in the perturbative EOM methods accounts
for the correlation necessary to describe excitations into the
excited states, and indeed this is not the first time this has
been pointed out.22 CC2 appears to underestimate Rydberg
transition with a negative mean signed error. The perturbative
EOM methods tested, along with EOM–CCSD, have RMS
errors lower than 0.2 eV — three times less than the nearest-
performing method, CIS(D) and CC2. Out of the 39 Rydberg
states considered, the P–EOM–MBPT2 was more accurate
than CC2 by a factor of three (Table VI). Perhaps even more
interesting was that the difference in RMS error between
EOM–CCSD and P–EOM–MBPT2 was only 0.06 eV.

While EOM–CCSD is generally the most accurate
method considered here, its scaling as O(N6) rules it out for
use with larger molecular systems. The experimental scaling
for the methods tested was demonstrated in Fig. 2, and the re-

TABLE VII. Scaling of EOM–MBPT2 and P–EOM–MBPT2 compared to
EOM–CCSD. EOM–MBPT2 has the same scaling as EOM–CCSD, O(N6),
but with a 23% smaller prefactor. P–EOM–MBPT2 scales an order of mag-
nitude less than the other methods, and its prefactor cannot be compared to
EOM–CCSD because the prefactors compare different scaling terms.

Scaling rel.
Scaling to EOM–CCSD

Exp. Pred. Exp. Pred. Relative prefactor

EOM–CCSD 5.44 6.00 1.00 1.00 1.00
EOM–MBPT2 5.44 6.00 1.00 1.00 0.77
P–EOM–MBPT2 4.72 5.00 0.87 0.83 N/A

sults tabulated in Table VII. Because the calculations are iter-
ative, the timing is relative to one average iteration. All EOM
methods converge within one iteration of each other. As is
seen, only the P–EOM–MBPT2 method is able to achieve the
theoretical reduction of O(N6) to O(N5), making it a compu-
tationally cheaper method which scales along other methods
such as CIS(D) and CC2. While EOM–MBPT2 retains the
same formal scaling as EOM–CCSD, it does benefit from the
reduction of terms which corresponds to a reduced prefactor.
Compared to EOM–CCSD, EOM–MBPT2 was found to be
23% cheaper.

CONCLUSION

We have implemented two perturbative approximations
to EOM–CCSD, along with CC2, and tested them against
a test set of 11 molecules for a total of 69 excited states,
all of which have been studied extensively in the gas phase.
The methods were also directly compared to EOM–CCSD.
The accuracy and timing of the methods was determined,
and it was found that the P–EOM–MBPT2 method outper-
forms both EOM–CCSD and EOM–MBPT2 in terms of com-
putational cost, lowering the formal scaling from O(N6) to
O(N5). For the O(N5) methods considered, CC2 performs
best in describing valence states compared to both EOM–
CCSD and experiments, which is attributable to the flexibility
it retains with respect to orbital relaxation. However, it does
not perform nearly as well as P–EOM–MBPT2 in the descrip-
tion of Rydberg states, which better accounts for dynamic cor-
relation. Thus on account of their respective approximation,
CC2 is the best O(N5) method for describing valence states,
whereas P–EOM–MBPT2 is the best O(N5) method for de-
scribing Rydberg states. Together, P–EOM–MBPT2 and CC2
form a complementary pair of low-scaling algorithms that of-
fers predictive power of wave function based excited state
methods.
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APPENDIX: DERIVATION OF (P–)EOM–MBPT2
EQUATIONS

We begin our perturbative treatment of the coupled clus-
ter Schrödinger equations by partitioning the normal ordered
Hamiltonian into the one-particle component F̂N and the two-
particle component V̂N as a perturbation, with λ as a scalar
ordering parameter

ĤN = F̂N + λV̂N . (A1)

Similarly, we expand the T̂ operator perturbatively

T̂ = λT̂ (1) + λ2T̂ (2) + λ3T̂ (3) + · · · . (A2)
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Because of the exponential parameterization, the coupled
cluster Schrödinger equation can be written as the infinite
series

ĤNeT̂ |�0〉

= ĤN |�0〉 + ĤN T̂ |�0〉 + 1

2
ĤN T̂ 2|�0〉 + · · · (A3)

= (F̂N + λV̂N )|�0〉

+ (F̂N +λV̂N )(λT̂ (1)+λ2T̂ (2)+λ3T̂ (3)+· · · )|�0〉 (A4)

+ 1

2
(F̂N + λV̂N )(λT̂ (1) + λ2T̂ (2)

+ λ3T̂ (3) + · · · )2|�0〉 + · · · . (A5)

Collecting terms of like order λ yields, with H̄N = ĤNeT̂

H̄
(1)
N = V̂N + F̂N T̂ (1), (A6)

H̄
(2)
N = V̂N T̂ (1) + F̂N T̂ (2) + 1

2
F̂N T̂ (1)T̂ (1) · · · . (A7)

At this point, we note that the perturbative scheme is formally
exact. However, truncating T̂ to include only single and dou-
ble excitations (T̂1 and T̂2, respectively), we have through sec-
ond order

H̄
(1)
N = V̂N + F̂N T̂

(1)
1 + F̂N T̂

(1)
2 , (A8)

H̄
(2)
N = V̂N T̂

(1)
1 + V̂N T̂

(1)
2 + F̂N T̂

(2)
1 + F̂N T̂

(2)
2 + 1

2
F̂N T̂

(1)
1 T̂

(1)
1

+ 1

2
F̂N T̂

(1)
2 T̂

(1)
2 + F̂N T̂

(1)
1 T̂

(1)
2 . (A9)

Assuming canonical Hartree-Fock orbitals, we find that
through second order our Hamiltonian matrix elements are,
for the singles-singles block

〈�a
i |H̄ R̂1|�0〉 = facr

c
i − fkir

a
k + 〈ak||ic〉rc

k

− 1

2
〈mn||ce〉tae(1)

mn rc
i − 1

2
〈km||ef 〉t ef (1)

im ra
k

+〈km||ce〉t ea(1)
mi rc

k , (A10)

for the singles-doubles block

〈
�a

i

∣∣H̄ R̂2

∣∣�0

〉 = 1

2
〈al||cd〉rcd

il − 1

2
〈kl||id〉rad

kl , (A11)

for the doubles-singles block〈
�ab

ij

∣∣H̄ R̂1|�0〉
= P (ij )〈ab||cj 〉rc

i − P (ab)〈kb||ij 〉ra
k

+P (ij )P (ab)〈am||ce〉t eb(1)
mj rc

i

−P (ij )P (ab)〈km||ie〉t eb(1)
mj ra

k

− 1

2
P (ab)〈kb||ef 〉t ef (1)

ij ra
k + 1

2
P (ij )〈mn||cj 〉tab(1)

mn rc
i

+P (ab)〈ka||ce〉t eb(1)
ij rc

k − P (ij )〈km||ci〉tab
mj (1)r

c
k ,

(A12)

and finally the doubles-doubles block〈
�ab

ij

∣∣H̄ R̂2|�0〉
= P (ab)fbcr

ac
ij − P (ij )fkj r

ab
ik

+ 1

2
〈ab||cd〉rcd

ij + 1

2
〈kl||ij 〉rab

kl +P (ij )P (ab)〈kb||cj 〉rac
ik

+ 1

4
〈mn||cd〉tab(1)

mn rcd
ij + 1

4
〈kl||ef 〉t ef (1)

ij rab
kl

+P (ij )P (ab)〈km||ce〉t ea(1)
mi rbc

jk − 1

2
P (ij )〈km||cd〉tab(1)

mj rdc
ik

− 1

2
P (ij )〈mk||ef 〉tf e(1)

im rab
kj − 1

2
P (ab)〈kl||ce〉t eb(1)

ij rac
lk

− 1

2
P (ab)〈mn||ec〉tae(1)

mn rcb
ij , (A13)

where P(pq) is an antisymmetric permutation operator,

P (pq) = 1 − P(pq), (A14)

where P(pq) permutes the indices of p and q. These equations
define the EOM–MBPT2 method.22 Terms involving t

a(1)
i are

always zero when using a canonical Hartree-Fock reference.
This, as well as the expression for t

ab(1)
ij , can be determined

in the same manner as the so-called T̂1 and T̂2 equations in
CCSD, projecting the singly and doubly excited determinant
on the CCSD ground state equations. For t

a(1)
i ,〈

�a
i

∣∣H̄ (1)|�0〉 = 0

= fabt
b(1)
i − fij t

a(1)
i . (A15)

By the diagonal nature of the canonical Fock matrix elements,
t
a(1)
i = 0. In a similar manner,〈
�ab

ij

∣∣H̄ (1)|�0〉 = 0

= 〈ij ||ab〉 − (fii + fjj − faa − fbb)tab(1)
ij ,

t
ab(1)
ij = 〈ij ||ab〉

εi + εj − εa − εb

. (A16)

This is the expression for t
ab(1)
ij used in the solution of the

EOM–MBPT2 equations. They are completely determined,
and therefore no CCSD iterative scheme must be used to com-
pute them prior to the EOM solutions. The working equa-
tions may then be solved using non-Hermitian variants of the
Davidson algorithm.23–26
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