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ABSTRACT 

In most organisms, different tissues and organs grow at different rates relative to each other, 

suggesting underlying growth mechanisms that act tissue specifically. The mechanisms of 

tissue specific growth are less well understood than those governing the growth of an entire 

organism. To gain a better understanding of these tissue specific growth mechanisms, our lab 

has characterized mutations that specifically alter the growth of the larval trachea in Drosophila 

melanogaster. Larval trachea growth is well suited for these studies since the trachea shows 

allometric growth during the larval stages, can be imaged and measured in living animals and 

gene expression can be specifically altered in the trachea using breathless-GAL4. Importantly, 

we and others have identified mutations in genes whose mutant phenotypes suggest that they 

normally regulate tissue-specific growth in the larval trachea. For example, animals with 

mutations in uninflatable (uif) and Matrix metalloproteinase 1 (Mmp1) have larval tracheae that 

are roughly half the relative size of those in wild type animals. Here we report the results of a 

screen of EMS-induced larval lethal mutations that recovered seven different alleles that cause 

either overgrowth or undergrowth of the larval trachea. Three of these mutations form one 

complementation group, and we have used complementation mapping and RNA interference to 

show that the affected gene is CG11340. This gene encodes a glycine gated chloride channel 

previously thought to function only in neurotransmitters. We have named this gene rio based 

upon its long and convoluted tracheal phenotype. Here we show its function as a negative 

growth regulator in the trachea and demonstrate its interaction with the previously characterized 

positive growth regulators in tracheal specific growth.  
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INTRODUCTION	  
	  

Organismal growth involves both the regulation of final body size and the proper 

proportioning of organs and tissues. This requires the precise integration of multiple regulatory 

mechanisms including patterning, cell proliferation, growth, cell movements, cell death and 

differentiation (Britton 2000). Post-embryonic development in most species follows allometric 

growth in which tissues grow at rates relative to each other as opposed to isometric growth 

where the proportions of the body in the adult are not significantly different from those in the 

juvenile. Differential growth of body parts including tissues and organs suggests that there must 

be genetic tissue-specific mechanisms underlying the control of growth in these tissues. 

Surprisingly, observations of genetic variation in allometric growth are scarce in the literature 

(P’elebon et al. 2014), and so we have focused our studies on isolating mutants that effect 

allometric growth in a simple model organism.  

 

Drosophila tracheal system 

We have chosen the larval trachea of the fruit fly, Drosophila melanogaster, as our 

model organism to study the growth of tubular structures in multicellular organisms. Both the 

genetic mechanisms that underlie development, the growth factors and transcription factors 

controlling branching and the physical structure of the Drosophila trachea are conserved in 

mammalian tubular organs, such as the kidney and lung (Metzger and Krasnow, 1999, Liu et al., 

2002). Therefore, discoveries made in the fruit fly are likely to be applicable in vertebrate 

physiology.  

The trachea acts as the respiratory organ for Drosophila. It is composed of a tubular 

epithelial network one cell in thickness. The trachea opens to the outside of the animal at the 
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spiracles on both the anterior and posterior ends. The two major dorsal trunks run through the 

body, branching repeatedly to give rise to finer branches that reach into the body tissues (Figure 

1). The main function of the trachea is to facilitate the transport of gases to and from the body 

tissues. This occurs mainly through passive diffusion since the oxygen in the trachea is several 

orders of magnitude greater than that in the body fluids. Gases are exchanged in the very fine 

tracheoles that lie at the ends of the branches near their target tissues (Manning and Krasnow, 

1993).   

The trachea must maintain strength and structural integrity while also being able to move 

and grow with the animal. In every instar (distinct stage of larval development), a cuticle forms 

on the apical extracellular matrix (aECM) of the trachea cells organized into evenly spaced 

ridges called taenidiea. The taenidiea appear as rings or spirals that are anchored by an 

underlying actin cytoskeleton (Matusek et al., 2006), and are able to expand their spacing 

relative to each other as the trachea grows during each instar (Figure 2). An increase in 

diameter of the trachea is only possible following the shedding of the cuticle during the larval 

molts (Beitel and Krasnow, 2000). Since the tracheal cuticle is continuous with the rest of the 

animal’s exoskeleton, it is degraded and expelled through the spiracles as the animal molts 

(Manning and Krasnow, 1993).  

The Drosophila tracheal system is an ideal model to study tissue specific growth. In 

many systems, growth and development occur simultaneously, making it difficult to distinguish 

the effects apart. This is not the case in the Drosophila trachea, where growth and development 

are isolated from each other, facilitating our investigation of growth-specific phenomena.  The 

development of trachea occurs during embryogenesis, such that upon hatching as a first instar 

larva, the tracheal system of the animal is completely developed and functional.  There are no 

further developmental events in the trachea during larval stages, rather the trachea grows. Cells 

of the trachea enter an endoreplication cycle where they grow without dividing, which is in 
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contrast to the imaginal tissues (that will make up the future adult tissues) that grow and divide 

by mitosis (Makino, 1938). The four days of larval life provide a unique opportunity to specifically 

study the growth of the organ, as the larva elongates 8-fold before pupariating to undergo 

metamorphosis.  

 

Effectors of tracheal specific growth 

Little is known about the underlying mechanisms that control tissue-specific growth in the larval 

trachea. Prior to this study, two genes, uninflatable (uif) and Matrix metalloproteinase I (Mmp1), 

were identified that have defects in larval tracheal-specific growth (Zhang and Ward, 2009, 

Glasheen et al. 2010).  uif was characterized for its role in tracheal development and growth in 

Drosophila. uif encodes a transmembrane protein with a large extracellular domain with 

eighteen EGF-like repeats and a carbohydrate-binding motif (Zhang and Ward, 2009). uif has 

also been shown to be involved in the canonical Notch signaling pathway, influencing the 

accessibility of the Notch extracellular domain available for interacting with its ligands on 

neighboring cells during Notch activation (Xie et al., 2012). Many uif mutants show defects in 

embryonic tracheal inflation, where growth arrests at approximately 50% the normal length of 

trachea. Although the trachea is smaller than average, it maintains normal patterning.  

The uif mutant’s most notable phenotype is the larval-specific growth defect of their 

trachea. Larval uif mutants have both shortened trachea and defects in their ability to properly 

molt their tracheal cuticle. The taenidia in these animals are also disorganized likely due to 

defects between the aECM and apical cellular membrane. The Uif protein is expressed on the 

apical plasma membrane of the epidermis, foregut, hindgut and salivary gland, but is strongest 

in the trachea. Studies using RNAi knockdown of uif both ubiquitously and tracheal specifically, 

show that the uif has tissue specific effects in the trachea. Knockdown of uif in the posterior 
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compartment of the epidermis did not show a tracheal effect while uif knockdown in the trachea 

recapitulated the mutant phenotype (Zhang et al., 2009).  

Mmp1 is required for normal tracheal growth as it is involved in taenidial expansion, tube 

elongation and the degradation of the cuticle into pieces before being shed during the molts 

(Page-McCaw et al., 2003). Drosophila mutants in Mmp1 have stretched and broken trachea 

caused by the inability of the taenidea to expand as the larva grows (Glasheen et al., 2010). 

Mmp1 is conserved in vertebrates as extracellular proteases that are unregulated in both cancer 

and inflammation (Sternlicht and Werb, 2001). The vertebrate MMP family is capable of cleaving 

multiple components of the extracellular matrix and signaling molecules (Egeblad and Werb, 

2002). 

To better understand the mechanisms by which the larval trachea grows independently 

of the rest of the body, we use forward genetics to isolate additional effectors of tissue specific 

growth. We describe a screen of EMS (ethyl methanesulfonate) mutants for tracheal specific 

growth effectors in the Drosophila larva, where both positive and negative regulators of growth 

were isolated. A total of seven lines were isolated, most notably three alleles of the CG11340 

gene that cause large, convoluted trachea. We have named this gene rio and describe its initial 

characterization.  
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MATERIALS	  AND	  METHODS	  
	  
Drosophila strains 

We maintained our stocks on a cornmeal, yeast, sugar and agar media in a room that fluctuated 

between 21°C and 22.5°C. We obtained UAS-CG11340 RNAi (y1 v1; P{TRiP.JF02028}attP2), 

y1w*; Mi{MIC}CG11340MI11939/TM3, Sb1Ser1, breathless (btl)-Gal4, daughterless (da)-Gal4, 

engrailed (en)-Gal4, w1118 and the third chromosome deficiency kit from the Bloomington 

Drosophila Stock Center. New tracheal overgrowth alleles are EMS-induced larval lethal 

mutations on the third chromosome reported in Wang et al., (2008). We balanced the tracheal 

mutant alleles with TM6, Dfd>YFP. 	  

 

Tracheal growth defect screening 

Wang et al., (2008) performed the EMS mutagenesis.  We performed a screen on the collection 

of 252 larval lethals identified from their EMS screen by observing non-tubby 2nd or 3rd instar 

larvae for altered tracheal lengths compared to their heterozygous (mutation/TM6, Dfd>YFP) 

siblings. We then rebalanced these mutations with TM6, Dfd>YFP in order to identify mutant 

larvae by the absence of YFP. We collected newly hatched mutant larva and grew them on 

separate apple juice plates at 25°C until either second or third instar as judged by their 

spiracles. To visualize the degree of tracheal defect under a dissection microscope, we mounted 

individual larvae in halocarbon oil on microscope slides. 

 

Whole genome sequencing 

We collected genomic DNA from non-YFP expressing first and second instar larva through 

homogenization in buffer composed of 20mM EDTA, 100mM NaCl, 1% Triton X-100, 500 mM 

guanidine-HCl, 10 mM Tris at pH 7.9. We added RNase A (20 mg/mL) and incubated the 
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lysates for 30 min at 37°C and spun them at 14,000 rpm.  We followed a standard DNA 

purification protocol and measured DNA quantity using the dsDNA Qubit kit (ThermoFisher). We 

generated standard DNA sequencing libraries and sequenced on an Illumina HiSeq 2500 

instrument (Genome Sequencing Facility, University of Kansas). Read depth of all seven 

genomes ranged from 20-33 and depth of the third chromosome ranged from 46-78. Analysis 

was performed in CloudMap by the KU sequencing facility. 

 

Lethal phase and phenotypic analysis 

We considered larvae that had not pupariated seven days post-hatching as larval lethal 

mutants. We quantified trachea length defects by collecting non-YFP embryos and growing 

them on separate apple juice plates at 25°C. We removed larvae at 24h periods over 7 days 

and mounted in halocarbon oil on microscope slides.  

 

Measurement of body and tracheal length 

We placed the larvae in between a microscope slide and coverslip in Halocarbon Oil 700 

(Sigma) and heat-killed the larvae by placing the slide on a 95°C heat block for 10 seconds. We 

used a Nikon eclipse i80 microscope to image the larvae, and body and trachea lengths were 

measured in ImageJ (Rasband, 1997–2009). Using the multi-line tool, we measured body length 

as the most anterior to most posterior point. For partial tracheal length, we measured the 

distance along the dorsal trunk from the posterior spiracles to the transverse connective that 

was established in body segment four (Figure 3). We determined the ratio of the partial tracheal 

length to full body length in each larva. We calculated the ratio of partial trachea length to body 

length every 24h until two days post pupariation of the control animals. We fit the data in both 

w1118 and rio mutants to a linear model in order to characterize the tracheal growth rate. 
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Immunostaining 

We dissected the larval trachea by tearing the larvae in half while suspended in PBS. We fixed 

trachea for staining by incubation in 4% paraformaldehyde in PBS for 20 min. To perform 

immunostaining we incubated fixed tissues in blocking solution (normal donkey serum in 

PBS/0.01% TritonX-100, Sigma) overnight at 4°C with the following antibodies: mouse anti-Uif 

(Zhang 2009 ) 1:400, mouse anti-Mmp1 (clones 14A3D2 and 3A6B4 from Developmental 

Studies Hybridoma Bank (DSHB) at the University of Iowa, Iowa City, IA, USA) 1:50, mouse 

anti-Cor (clones C566.9 and C615.16 from DSHB) 1:400. We obtained secondary antibodies 

from Jackson ImmunoResearch Laboratories and used them at 1:800 in blocking solution while 

incubated at room temperature for 4h before washing and mounting in mounting media. We 

collected images on a Nikon eclipse i80 microscope, adjusting for brightness and contrast and 

rotated in ImageJ. 

 

Sequence analysis 

We performed sequence alignments using HHPred and protein domains and secondary 

structures predictions were done using SMART and TMHMM.  
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RESULTS	  
 

Genetic screen for new tracheal growth mutants 

Past studies of the tracheal specific growth effectors uif and Mmp1 have given us some 

understanding of the underlying genetic pathways controlling tracheal specific growth, but there 

is still more to learn. One way to increase our understanding of these pathways is to identify and 

characterize additional genes that regulate larval tracheal growth. Our lab has attempted to 

identify more of these genes by using forward genetic screens.  

A collection of 252 larval lethal mutations was generated by treatment with 10mM EMS 

in the Bashirullah lab (Wang et al., 2008). These mutations were confined to the third 

chromosome and balanced over the dominant marker Tubby (Tb). We initially screened each 

stock for non-Tb 2nd and 3rd instar larvae with altered tracheal lengths compared to balanced 

siblings.  We rebalanced these stocks with potential defects in tracheal growth over TM6, 

Dfd>YFP for further detailed studies, and rescreened them for mutant phenotypes specific to the 

trachea.  We selected seven lines that showed either overgrowth or undergrowth phenotypes in 

the larvae (Table 1). All of these mutations appear to show normal embryonic tracheal 

developments (data not shown). 

To determine how many genes were represented among these mutants, we crossed the 

lines together and tested the transheterozygous offspring for genetic complementation. The 

seven mutants formed five complementation groups, with one group containing three different 

alleles (I(3)LL9349, l(3)LL16674, l(3)LL10756) (Table 1, Figure 4).  

Phenotypic and lethal analysis differs significantly between the five groups. All 

combinations, with the exception of I(3)LL15149, display 100% larval lethality. The degree of 

penetrance varies by each allele, with the multiallelic complementation group and I(3)LL15149 

having high penetrance (>75% of larvae affected), I(3)LL5106 and I(3)LL12265) showing mid 
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penetrance (25%-75% of larvae affected), and I(3)LL16636 having low penetrance (<25% of 

larvae affected). Terminal body size of the homozygous mutants is smaller than their 

heterozygous siblings in all the lines. Lines I(3)LL15149 and I(3)LL16636 have small terminal 

body sizes that are roughly the size of a healthy second instar larva, whereas lines I(3)LL5106, 

I(3)LL12265 and the multiallelic complementation group have medium terminal body sizes, 

roughly two thirds of the normal late third instar larva.  

Three of the mutants (I(3)LL15149, I(3)LL16636, I(3)LL5106), each comprising their own 

complementation group, are characterized as having short, stretched trachea. These lines 

survive much longer than their heterozygous sibling larva, typically as long as two weeks before 

dying. Line I(3)LL15149 differs from the other three short trachea mutants because the trachea 

appear brittle and are prone to breaking. Uniquely, these larva pupariate after an extended 

larval life of nearly two weeks but die after failing to involute their heads.  

Unlike the shortened trachea of the previously characterized uif and Mmp1, we 

recovered four mutant lines with large, convoluted trachea in both their dorsal trunks and 

secondary branches (I(3)LL9349, l(3)LL16674, l(3)LL10756, and I(3)LL12265). 

Complementation tests show that I(3)LL9349, l(3)LL16674 and l(3)LL10756 map to the same 

complementation group while I(3)LL12265 is found in its own complementation group. We 

observed that all four of these mutants have an extended larval life (Figure 5). Although the 

mutants initially show a greater degree of embryonic lethality, they continue to persist as larvae 

well past the normal time of pupariation of their control heterozygous sibling. Due to hypoxic 

behavior of mutant larvae wandering away from food, we checked the animals for secondary 

symptoms of hypoxia. Upon dissection, the overgrowth mutants all lack imaginal discs and have 

small brains (Figure 6). 

The overgrowth mutants all initially have similar body sizes to their heterozygous siblings 

throughout the first, second and early third instar. However, at the time of their lethality, their 
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body sizes are smaller than those of late third instar controls and their trachea have largely 

overgrown to fill their bodies (Figure 4).  

We measured the partial trachea to body length ratio in these mutants to better 

understand the growth trajectory of the trachea. The mutants follow the growth of their 

heterozygous sibling controls closely throughout the first three days of larval growth. Upon 

normal pupariation by the controls, the mutants drastically increase their partial trachea to body 

length ratio in the following day (Figure 7). Rather than a continuous faster rate of growth 

throughout the larval life, these mutants show a punctuated growth at the beginning of their 

extended larval life.  

	  

Cloning of rio 

We selected the multiallelic complementation group composed of I(3)LL9349, 

I(3)LL10756 and I(3)LL16674 for gene mapping because it was the only group with more than 

one allele and it produced a phenotype opposite to the previously characterized positive 

regulators of growth uif and Mmp1. Based upon having 3 EMS-induced alleles we believe it is 

likely that this gene is a negative regulator of larval tracheal growth. We named this gene rio due 

to the convolutions the trachea makes through the larval body reminding us of a river.  

We performed whole genome sequencing on all seven mutant alleles. There was no 

obvious gene candidate with high (stop gained, frameshift, start lost, splice site acceptor/donor) 

effect hits present in all rio alleles. Therefore, we sorted the sequencing data from the three 

alleles into high and moderate effects (non-synonymous coding, splice site region, codon 

deletion/insertion), and filtered the sequence files for homozygous variants in the DGRP 

collection through FlyVar (Wang et al., 2015). We then conducted complementation tests with 

deficiencies that mapped to any region that contained a gene with more than one allele with 

high or moderate effect mutations. Screening of 18 different deficiency stocks throughout the 
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third chromosome revealed three regions that failed to complement with at least one rio allele. 

Only one deficiency stock, Df(3R)BSC793, failed to complement all three rio alleles. 

Df(3R)BSC793 was rebalanced over TM6, Dfd>YFP so mutant larva could be selected and 

analyzed for trachea overgrowth phenotypes.  

Complementation of Df(3R)BSC793 with the rio alleles recapitulated the convoluted 

tracheal phenotype (Figure 8). This deficiency encompasses the far right arm of the third 

chromosome from 3R:31,200,119 to 3R:31,458,140, spanning 28 different genes on the far right 

arm of the 3rd chromosome. A second deficiency, DF(3R)BSC749 was able to narrow this region 

down to the right half of DF(3R)BSC793. We performed tracheal specific RNAi knockdown with 

btl for all available RNAi lines in this region, and the majority of RNAi lines showed no significant 

phenotypic change. One line (TRiP.HMS02694) showed trachea of normal size but frequent 

breaks. Only knockdown by CG11340 (btl-GAL4 x TRiP.JF02028) caused a similar phenotype 

to the rio mutants with large, convoluted trachea. Transheterozygotes of rio alleles with the 

Mi{MIC}CG11340MI11939  allele produced similar phenotypes, confirming the identity of the rio 

gene as CG11340 (Figure 8). The sequencing data for the rio alleles show mutations in an 

intron and upstream of the CG11340 gene in the mutants. The Mi{MIC} insertaion is also found 

in the CG11340 intron.  

 

Rio is encoded by CG11340 

The predicted rio gene, CG11340, encodes a 526 amino acid protein with a molecular 

mass of ~60 kDa. The protein contains an extracellular region from amino acids 1 to 298 

followed by three transmembrane passes, a small intracellular region from amino acids 385 to 

505 and an additional transmembrane pass (based on TMHMM, Krogh et al., 2001) (Figure 9). 

The CG11340 protein is predicted to be a ligand-gated chloride channel used in 

neurotransmission (Witte et al., 2002). Interestingly, genome-wide spatial and temporal 
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expression information (http://flybase.org) and ModEncode (CONSORTIUM et al. 2010) indicate 

that CG11340 is not only expressed in the brain but also in moderate levels in non-neuronal 

tissues such as the midgut and malphigian tubules, and its mRNA is present from late 

embryogenesis until pupariation, raising the possibility that Rio may be expressed in non-neural 

tissues and have an effect during the larval life. 

A BLASTP search revealed that the closest human ortholog to Rio is GLRA2, a subunit 

of the glycine receptor chloride channel. Sequence alignment in HHpred also showed functional 

prediction to the GLRA2 protein with 100% probability between the GLRA2 aa35-444. Most 

notably, the transmembrane domains are conserved between the two proteins. The site at 

GLRA2 aa295 that is important in the closed conformation in ion obstruction is conserved 

between the two proteins (UniProt 2009) (Figure 10).   

 

Rio acts tissue-autonomously in the trachea for growth 

We wanted to determine whether the rio gene acted in a tracheal tissue specific manner 

(similar to uif) or if it would have an effect on all body tissues. We performed a series of tissue-

specific RNAi experiments in various tissues with rio-RNAi to address this question. We used 

the engrailed driver to knockdown rio (en-Gal4>UAS-CG11340 RNAi) specifically in the 

posterior compartment of the wing imaginal discs (Figure 11) and apterous (ap-Gal4>UAS-

CG11340 RNAi) to knockdown in the dorsal compartment (data not shown). Our dissection of 

late third instar imaginal discs showed no significant difference in cell size between the affected 

and control compartments in the posterior compartment of the wing discs. The adults eclosed 

normally and displayed normal adult wings.  

We observed the tracheal phenotype in a knockdown of CG11340 in the trachea (btl-

Gal4>UAS-CG11340 RNAi) in the late larval life.  Ubiquitous knockdown of CG11340 (da-

Gal4>UAS-CG11340 RNAi) produced larvae with a smaller degree of tracheal overgrowth in the 
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dorsal trunks but pronounced overgrowth in the secondary branches (Figure 8). The bodies of 

these larvae are of normal size and the majority of the animals pupariate and become viable 

adults. In our experiments looking at rio’s effect in tissue specific growth, we believe that rio is 

specific to the growth of the trachea.  

 

 

Characterization of rio phenotypes 

We wanted to better understand why the body size of the larva is smaller than their 

heterozygous siblings. Following a normal first and second instar of body size compared to 

controls, the rio mutants begin to slow in body length growth during the third instar. Even though 

these larvae continue to live past the time of normal pupariation, their terminal body size is still 

smaller than a control late 3rd instar larva. Upon dissection during the late third instar, we 

observed that the rio mutants were lacking imaginal discs and have significantly smaller brains 

(Figure 6). The rio mutants also wander away from their food and crawl to the outer edges of the 

agar plates and have smaller accumulations of fat. Hypoxia is consistent with these observed 

phenotypes (Wingrove and O’Farrell, 1999). 

Since rio impacts larval trachea growth in a similar (but opposite) manner compared to 

uif and Mmp1, we were interested to know if they had an effect on each other within the cell. We 

stained the rio mutants’ trachea with both Uif and Mmp1 antibodies to characterize rio’s impact 

on the pathway that includes Uif and Mmp1. Interestingly, the rio mutants showed an overall Uif 

protein upregulation at the cell membranes in the tracheal tissue. We observed a mosaic pattern 

of multiple cells in each metamere that was highly upregulated with Uif throughout the cell. Our 

staining with Mmp1 showed the same mosaic pattern (Figure 12). 

During the study of uif, Mmp1, and rio, we noticed an interesting nuclear phenotype in 

the mutant trachea. Control trachea contain squamous cells with nuclei spread evenly 
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throughout the trachea. In the mutants, although the cell outlines appear normal after staining 

with Coracle and DAPI, the nuclei are all grouped on the edge of the trachea. This phenotype 

appears to be an artifact of the fixation process. When the trachea are stained with only DAPI in 

a PBS+Tween+NDS buffer, the nuclei are spread evenly throughout the trachea (Figure 13).  

Neither cellular or aECM organization appears to be disrupted in the rio mutants. Cells of 

the rio mutants maintain their normal polygonal shape while maintaining clear cellular borders to 

their neighbors. The taenidiea of the rio mutants also maintain their integrity. In both the uif and 

Mmp1 mutants, taenidiea have been shown to have a disrupted, wavy phenotype. The number 

and spacing of taenidiea in the rio mutants also does not appear to change (Figure 14). Cell 

number in each metamere and cellular size remains consistent between w1118 and rio mutants 

(data not shown).  
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DISCUSSION	  
 

Here we have described the initial identification and characterization of seven EMS-

derived mutants that show growth phenotypes in the larval trachea. The organization and size of 

the trachea in all of these mutants appear normal immediately following embryogenesis, but 

either follow a trajectory of overgrowth or undergrowth during their larval life. Previously, uif and 

Mmp1 have been characterized in the literature to be positive regulators of growth, causing 

significantly smaller trachea in the mutant larvae (Zhang et al., 2009; Glasheen et al., 2010). In 

this work we found four mutants that also likely act as positive regulators of growth with all of 

them mapping to unique loci on the third chromosome. Interestingly, we also found four 

mutations that result in a tracheal overgrowth phenotype, suggesting that they may encode 

negative regulators of tracheal growth. We chose to characterize one of these genes that had 

three alleles (I(3)LL9349, l(3)LL16674 and l(3)LL10756). We named this gene rio based upon its 

convoluted tracheal phenotype. As a negative regulator of growth, rio may help us to understand 

how positive regulators such as uif and Mmp1 provide tissue specific growth regulations in the 

larval trachea.  

Multiple pieces of evidence point to CG11340 as being the gene encoding Rio. We 

observed that the Df(3R)BSC793 deficiency failed to complement any of the rio alleles. With any 

EMS mutagenesis, it is likely to have multiple lethal mutations on a chromosome. Failure to 

complement an allele is not necessarily an indication that the region contains the mutation of 

interest, however, since all three mutants failed to complement in this region, we are quite 

certain that the rio gene is present here. Additionally, knockdown with CG11340 RNAi in the 

trachea recapitulated the tracheal overgrowth phenotype where knockdown with the other RNAi 

lines found in this region did not give a tracheal phenotype. Finally, transheterozygotes with the 
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insertion Mi{MIC}CG11340MI11939 allele which was inserted into the CG11340 exon also show 

tracheal overgrowth.  

We show a unique tissue specific growth function in the trachea for the rio gene in these 

studies. Tissue specific knockdown by RNAi of rio in the trachea causes the same overgrowth 

phenotype seen in the rio mutants whereas knockdown in other tissues causes no overgrowth 

phenotype. Interestingly, ubiquitous knockdown of rio produces larvae with normal sized bodies 

but the trachea in these larvae have a larger diameter in the dorsal trunks and convoluted 

secondary braches. These results lead us to conclude that the rio gene is essential as a tissue-

specific negative growth regulator in the trachea since it does not appear to have an effect on 

growth control in the other tested tissues.  

In the RNAi knockdown experiments, the tracheal overgrowth phenotype produce was 

less pronounced than in the EMS-produced rio mutants. The RNAi may not have produced a 

complete knockdown or combined with off-target effects. Alternatively, the loss-of-function rio 

alleles could perform regulatory mechanisms that are not affected in RNAi knockdown. A 

weaker phenotype in the trachea could result in a lessened effect to its gas-exchanging function. 

If the trachea in these animals are able to transport gases to the body tissues, the secondary 

effects of hypoxia including defects to organism size would be lessened (Wingrove and 

O’Farrell, 1999). This could explain the larger bodies of the ubiquitously expressed CG11340.   

 

Functions of rio in the larvae 

The rio gene has previously been shown to encode a ligand-gated chloride channel 

subunit in Drosophila (Witte et al., 2002). Besides functioning as a neurotransmitter, two other 

functions have been described in the literature. Remnant et al. (2014) showed that the Rio 

protein is highly expressed in non-neural tissues including the malphigian tubules and midgut. 

Based on GFP expression studies, Rio appears to have the highest expression in the copper 
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cell region of the midgut. Here it was found that the loss of rio caused an increased tolerance to 

copper in the mutants. It was predicted that loss of rio in the gut could reduce the acidity in the 

gut leading to a reduced copper uptake and a higher tolerance to dietary copper. A second 

place of non-neuronal tissue expression was found in the Drosophila renal tubule. High 

expression of rio mRNA was found along with a second ligand-gated chloride channel-like 

protein (CG7589) leading them to conclude it was functioning as a chloride channel in this tissue 

(Wang et al., 2004).  

The human ortholog of rio is the GLRA2 gene that encodes the alpha-2 subunit of the 

glycine receptor chloride channel (GlyR Cl-). The GlyR Cl- channel is abundantly expressed in 

the spinal cord where it functions to hyperpolarize the membrane by conducting chloride ions. 

Non-neuronal expression of these channels has also been found in human macrophages, 

endothelial cell and certain endocrine glands. Interestingly, GlyR Cl- expression was found on 

airway smooth muscle cells where they are predicted to facilitate relaxation of the airway 

smooth muscle (Yim et al. 2011). Since the larval trachea is analogous to the mammalian lung, 

it follows that Rio may be functioning in the described non-neurotransmitter role in the larval 

trachea. Relaxation of tracheal tissue by the Rio channel could potentially allow for the loss of 

rigidity needed as a signal to halt growth. Without this tissue feedback, growth could continue 

leading to the overgrowth phenotype in the mutants.  

 

Interaction of rio with known tracheal growth effectors 

The rio mutants displayed interesting staining patterns for antibodies against Uif and 

Mmp1 in the cells of the overgrown trachea. We observed that Uif staining was generally 

overexpressed throughout the rio tissues compared to w1118.  We also have shown the existence 

of a clear mosaic pattern in which arbitrary cells throughout the trachea are highly upregulated 

for Uif and Mmp1. These cells express notably higher concentrations of Uif and Mmp1 than 
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other surrounding cells next to them. Since Mmp1 and Uif are both required at the cellular 

membrane for related function during the degradation and remodeling of the aECM during 

molts, it is possible that the dual overexpression of these genes is linked. Furthermore, since the 

regulatory network governing tracheal growth has been perturbed by the loss-of-function rio 

gene product, it is possible that the mutant growth pathway exhibits extreme variation in gene 

expression. 

Unlike the aECM of the uif and Mmp1 mutants, the rio mutants showed no sign of 

taenideal disorganization. Since both positive regulators of growth are involved in stabilizing the 

aECM and cuticle degradation, it follows that organization of the taenidiea would be disrupted 

without them. It is clear that both Uif and Mmp1 are present in rio mutants, in overexpressed 

quantities shown by antibody staining, allowing for proper aECM organization. It may be that it is 

the extra tracheal tissue in the overgrowth mutants that is causing overexpression of Uif and 

Mmp1. As the trachea of the rio mutants grows past the intrinsically set tissue length of a normal 

larva, more aECM organization is likely needed. Proteins that function in the organization of 

aECM, like Uif and Mmp1, may be upregulated to manage the new increased amount of growth.  

How might rio interact with uif and Mmp1 to genetically control growth in the trachea? 

One hypothesis is that rio is involved in the trafficking and recycling of membrane proteins 

including Uif and Mmp1. The loss-of-function alleles of rio correlate with higher amounts of Uif 

and Mmp1 at the cellular membrane. Accumulations of these positive growth regulating proteins 

at the membrane may be the cause of the increase in tracheal size of the rio mutants. 

We plan to create an antibody specific to the Rio protein since it will be crucial to identify 

where and when Rio is located in the tracheal cells. Understanding its physical and genetic 

interactions with the positive growth effectors Uif and Mmp1 will elucidate more general 

phenomena in metazoan tissue specific growth regulation.  
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TABLES	  AND	  FIGURES	  

	  

	  
	  
	  
	  
	  
	  

 
Figure 1. The trachea branches throughout the body to act as the respiratory organ  
The trachea opens to the outside of the animal at both the anterior (red asterisks) and posterior 
(blue asterisks) spiracles. Two large dorsal trunks (red arrows) run through the animal. 
Secondary branches (blue arrow) divide from the dorsal trunk and repeatedly branch into finer 
branches that reach the body tissues.  
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Figure 2. Taenideal spacing expands during instars 
Taenideal ridges are close together at the beginning of an instar. As the larva grows, space is 
added between the ridges.   
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Figure 3. Partial trachea length to body length ratios are used to quantify the amount of 
tracheal overgrowth in rio mutants  
We determined the partial trachea length by measuring the distance from the posterior spiracles 
to the transverse connective that was established in body segment four (blue lines). The total 
body length was measured as the most anterior point to the most posterior point of the animal 
(red line).   
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Allele(s) Tracheal Phenotype Terminal 
size 

Penetrance 

l(3)LL15149 Short trachea, frequent 
breaks small High 

l(3)LL16636 Short trachea small Low 

l(3)LL5106 Short trachea medium Mid 

l(3)LL12265 Convoluted trachea medium Mid 

l(3)LL9349, 
l(3)LL10756, 
l(3)LL16674 

Highly convoluted trachea medium High 

 
Table 1. Collection of larval lethal mutants with tracheal-specific growth defects 
From a collection of 252 larval lethal mutants, 7 were found to have phenotypes specific to their 
tracheal growth. The 7 EMS stocks identified comprise 5 unique complementation groups. 
Three of these stocks (I(3)LL15149, I(3)LL16636, and I(3)LL5106) produce small, shortened 
trachea similar to the uif and Mmp1 phenotypes. Stock I(3)LL115149 is unique in that it 
produces breaks in the trachea. All of the small trachea mutants (I(3)LL15149, I(3)LL16636, and 
I(3)LL5106) show a terminal size smaller than the w1118 sizes.  The other four stocks 
(I(3)LL12265, I(3)LL9349, I(3)LL10756 and I(3)LL16674) , comprising two complementation 
groups, have large convoluted trachea with a high penetrance. The stocks have varying levels 
of penetrance.  
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Figure 4. Collection of EMS-induced mutants show tracheal specific growth phenotypes  
Brightfield photomicrographs of mutant lines collected from the low-dose EMS mutagenesis 
screen for larval trachea effectors (five shown here). Both positive and negative tracheal growth 
effectors were isolated. Mutants I(3)LL16636 (B), I(3)LL5106 (C) and I(3)LL15149 (D) (along 
with I(3)LL16674 and I(3)LL10756 not shown) showed smaller trachea compared to w1118 (A). 
Interestingly, I(3)LL15149 (D) showed frequent breaks within the growing trachea (red arrow). 
Mutants I(3)LL12265I (E) and I(3)LL9349 (F)  (along with I(3)LL10756 and I(3)LL10756 not 
shown) have larger, convoluted trachea compared to w1118 (A). Line I(3)LL9349 have trachea 
that often become so convoluted that they fold over on themselves (blue arrow). They also have 
convolutions in their secondary branches (green arrow). Scale bar = 200 μm. 
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Figure 5. Overgrowth mutants have extended larval lives 
rio mutants are larval lethal but have an extended larval life. w1118 (blue) animals hatch after one 
day of embryogenesis, followed by four days of larval growth before pupariating into prepupa at 
LL3. The rio16674 (green) and I(3)LL12265 (purple) mutants show an increase in embryonic 
lethality (~55%) while the rio9349 mutants have a nearly identical amount of embryonic lethality 
as the w1118. The rio mutants persist as larva past the normal time of pupariation at day 4 but are 
all dead by 5 days after pupariation (LL3+5) should have taken place. (w1118, n=100; rio934, 
n=156; rio16674, n=184, I(3)LL12265I, n=100) 
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Figure 6. rio mutants have small brains at the time of lethality 
The brains of the rio mutants near lethality (B,C) are significantly smaller upon dissection than 
the brains of w1118  at LL3 (A). Brains stained with DAPI (blue) and anti-Cor (green). White 
arrows indicate anterior lobes. Scale bars = 110 μm 
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Figure 7. Partial trachea to body length ratios are higher in rio mutants during the 
extended larval life 
Partial trachea length was calculated as the distance along the dorsal trunk from the posterior 
spiracle to the transverse connective that originated in body segment 4. The trachea to body 
length ratios stay consistent between w1118 (blue), rio9349 (red), and rio16674 (green) during the first 
four days of larval growth (L1-LL3). Upon pupariation of w1118, the ratio of the rio mutants 
increases dramatically. No significant difference in tracheal growth rate was found between the 
w1118 and rio mutant phenotypes based on linear regression analysis.  
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Figure 8. rio mutant larvae have overgrown tracheas during the extended third instar 
Brightfield microphotographs show both tracheal overgrowth mutants rio16674 (B) and rio9349 (C) 
with highly convoluted trachea compared to w1118 (A). Convolutions are found in both the dorsal 
trunks (red arrows) of the trachea and the secondary branches (blue arrows). The trachea 
become so convoluted in some regions that they fold over on themselves. This overgrowth 
phenotype was recapitulated when rio9349 was crossed to the Bloomington deficiency stock 
Df(3R)BSC793 (D). Tracheal specific knockdown of CG11340 using the btl driver gave a 
convoluted phenotype like the rio mutants (E). Ubiquitous knockdown of CG11340 shows slight 
enlargement in the dorsal trunks and convolutions in the secondary branches (F). The Mi{MIC} 
insertion allele shows similar convoluted trachea (G). Scale bars = 1000 μm.  
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Figure 9. Predicted transmembrane domains of the Rio protein 
Based on transmembrane helix prediction (TMHMM), the rio gene encodes a protein with an 
extracellular region from amino acids 1 to 298 followed by three transmembrane passes, a small 
intracellular region from amino acids 385 to 505 and an additional transmembrane pass. 
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Figure 10. Protein alignment between Rio and GLRA2 shows homology 
Amino acid sequences for Rio and GLRA2 have been aligned using the homology detection 
toolkit by HHPred. The first line is the predicted secondary structure of Rio. Upper case letters 
represent high probability while lower case are lower probability. The second line is the protein 
sequence of Rio. The third line is the alignment consensus with Rio. The forth, middle line is the 
quality of column-column match (very bad =; bad -; neutral .; good +; very good |). The fifth line 
is the alignment consensus of GLRA2. The sixth line is the protein sequence of GLRA2 and the 
sixth line is the predicted secondary structure of GLRA2. Interestingly, the active site used for 
obstruction of the ion pore at aa295 (yellow box) is conserved between the two proteins. 
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Figure 11. Knockdown of rio in the wing imaginal disc shows no effect on tissue growth 
Tissue specific RNAi knockdown of CG11340 in the posterior compartment (p) of the wing 
imaginal disc (B) shows no difference in cellular growth to wildtype posterior segment (A) 
stained with anti-Cor (green) and DAPI (blue). White line indicates the anterior/posterior 
boundary. Scale bars = 220 μm, n=5.  
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Figure 12. rio mutants show a cellular mosaic pattern of both Uif and Mmp1 upregulation 
Confocal micrographs of rio trachea show a clear cellular mosaic pattern with some cells highly 
expressing anti-Uif (D and F, green) next to cells of normal expression (red arrow) compared to 
anti-Uif staining in w1118 (A and C, green). Cells shown The mosaic cells that are highly 
expressing Uif (G and I, green) are also highly expressing Mmp1 (H and I, red, blue arrow). 
Scale bar = 50 μm. 
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Figure 13. Nuclear crowding phenotype in tracheal mutants is a result of fixation 
Nuclei stained with DAPI in the rio16674 mutant following standard fixation with 4% 
paraformaldehyde crowd along the sides of the trachea (C) compared to the w1118 trachea with 
the nuclei spread evenly throughout the trachea (A). The rio mutant produces the normal evenly 
distributed nuclei in the trachea when it is stained with DAPI without fixation (B). Scale bars = 
220 μm. 
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Figure 14. aECM organization is not disrupted in rio mutants 
Brightfield micrographs of organized taenidieal ridges can be seen running perpendicular along 
the axis of the trachea in both the w1118 (A) and rio9349 (B) trachea. Scale bars = 50 μm. 
 


