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Abstract  
 

Theresa M. Locascio and Jon A. Tunge 

Department of Chemistry, July 2016 

University of Kansas 

 

Presented herein is the development and application of palladium-catalyzed methods for 

allylation, propargylation and 1,3-dienylation of acetonitrile pronucleophiles. The developed 

methods focus on optimizing both atom- and step-economy during product formation thus 

resulting in a minimal production of waste. Further, ligand-controlled regiodivergent strategies 

are also presented which provide efficient access to various functionalities through a change in 

reaction mechanism controlled by the denticity of the coordinating ligand. 

In regards to the developed methods for the propargylation and 1,3-dienylation of 

acetonitrile pronucleophiles, the presented work provides access to these functionalities using 

propargylic electrophiles that were rarely observed using previously known methods. In chapter 

1, a brief review of commonly employed propargylation methods is presented which often occur 

under harsh reaction conditions or result in a large amount of byproduct formation. Further, few 

exceedingly difficult palladium-catalyzed propargylation strategies are also reported that 

overcome the large bias for the allenyl isomer or products arising from dinucleophilic addition.   

Alternatively, in chapter 2, we present our ligand-controlled regiodivergent strategy for 

the propargylation and 1,3-dienylation of acetonitrile pronucleophiles. Specifically, we report the 

first palladium-catalyzed coupling of a butadiene synthon to generate 1,3-dienylated products. 

Further, each method provides significant advantages over commonly employed strategies to 

access such functionalities such as optimizing step-economy and avoiding the necessity for 

prefunctionalized starting materials.  



 iv 

In chapter 3 of this dissertation, we present our ongoing efforts to expand the substrate 

scope of the developed regiodivergent method to nitriles possessing a pKa >17. To achieve this 

goal, decarboxylative cross-coupling is employed to access the reactive intermediate in situ via 

irreversible decarboxylation thus generating CO2 as the only byproduct. Once again, selective 

propargylation or 1,3-dienylation is ligand-controlled and can occur though changing the ligand 

from monodentate to bidentate, respectively.    

Lastly, in chapter 4 we present a method for the in situ activation of allylic alcohols using 

CO2 for the allylation of nitroalkanes, nitriles, and aldehydes. The developed method provides 

several advantages over commonly employed allylation strategies: (a) avoids the pre-activation of 

allylic electrophiles for successful cross-coupling, (b) avoids the use of additives for allylic 

alcohol activation, and (c) generates base in situ for pronucleophile activation thus providing an 

atom-economic alternative for allylic cross-coupling.        
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Chapter 1. Synthetic Methods for Propargylation and Propargylic Carbonate 

Reactivity. 

 

1.1 Introduction to Propargylation Methods 

The alkyne functional motif lies at the center of many synthetic efforts due to its ability to 

serve as a precursor to a diverse variety of functional group transformations.1,2 This characteristic 

leads to the broad application of alkynes as synthetic intermediates in both the development of 

synthetic methods and syntheses of biologically active compounds.3,4 Further, alkynes themselves 

are prevalent in many natural products, pharmaceuticals, and fine chemicals, which contributes to 

their overall chemical significance.5,6 

Electrophilic propargylation is one highly utilized method for alkyne incorporation into 

molecular scaffolds. In the most straightforward transformation, direct electrophilic 

propargylation can be achieved via SN2 substitution of a propargylic halide.7 ,8  Although this 

method can be attractive in terms of simplicity, it often suffers from some inherent drawbacks 

such as low regioselectivity, poor reagent availability, toxicity of propargylic halides, and the lack 

of potential for an asymmetric variant.7,8,9  As an alternative, less reactive but more readily 

available propargyl alcohols, acetates, and carbonates can be employed in the presence of 

transition metals to promote selective propargylation while minimizing reagent toxicity. Further, 

transition metal controlled propargylation would also allow the use of chiral, non-racemic ligands 

as a potential source of asymmetric induction.  

 

R
X

R = H, alkyl, aryl

Nu
R

X

g

a

R
Nu

Nu

•R

g -attacka - attack

Scheme 1.1: Regioselective Nucleophilic A ttack of Propargylic E lectrophiles
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Unlike addition into allylic electrophiles, which yield alkene products, 10  transition metal-

catalyzed additions to propargylic electrophiles are much more complex since they can result in 

alkyne, allene, or cyclized products and therefore have been underdeveloped in comparison.11 As 

alluded to previously, one characteristic that significantly contributes to the complexity of these 

reactions is the issue of regioselectivity. Similar to a transition metal-catalyzed allylation reaction, 

nucleophilic attack of a propargylic electrophile has the potential to occur at the α-carbon to the 

leaving group, to yield propargyl products, or at the γ-carbon, to yield allenyl products (Scheme 

1.1). However, unlike allylation reactions that proceed through a similar metal-bound 

intermediate, propargylic electrophiles have the potential to generate numerous types of metal-

bound intermediates, which substantially increases the difficulty in controlling product 

selectivity.     

1.2 Lewis and Brønsted Acid Catalyzed Propargylation Reactions 

Classically, the Nicholas reaction has been highly utilized as a reliable method to control 

regioselective addition to the α-carbon of propargyl alcohols (Scheme 1.2).12 , 13  Compatible 

nucleophiles include: alcohols, amines, thiols, ketones, silyl enol ethers, and electron-rich 

aromatic rings.13 However, the reaction lacks both step and atom-economy with the requirement 

of preformed, organometallic reagents using Co2(CO)6, Lewis or Brønsted acid additives, and the 

need for a subsequent oxidative demetallation to obtain the desired propargylated product. 

Necessarily, these reactions also result in the production of a significant amount of metal waste.  

 
H

OH

Me
Me

HHO
Me

Me
Lewis AcidCo2(CO)6

Co Co

H
Me

Me

Co Co

Nu H
NuMe

Me
Co Co

[O]

H

Nu

Me
Me

Scheme 1.2: C lassic Nicholas Reaction Sequence .
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Alternatively, in attempt to provide a “greener” and more cost effective propargylation 

method, recent attention has focused on the development of Lewis or Brønsted acid catalysis to 

activate propargyl alcohols directly for SN1 propargylic substitution and avoid the necessity for 

preformed organometallic compounds. For example, in 2007 Sanz and coworkers reported the use 

of p-toluenesulfonic acid monohydrate (PTS) in the Brønsted acid-catalyzed propargylation of 

1,3-dicarbonyl compounds with internal propargylic alcohols resulting in water as the only 

byproduct (Scheme 1.3). 14  Under the optimized reaction conditions, acyclic β-diketone 

nucleophiles underwent successful propargylation at room temperature and resulted in moderate 

isolated yields of the propargylated product. However, a decrease in yield was observed when the 

nucleophile was altered to cyclic β-diketones and even more so when β-ketoesters were 

employed. Further, the reaction was only tolerant of mono-substitution at the propargylic position 

of the starting propargyl alcohols. For tertiary alkynols, selective formation of the allenylated 

products was observed. Lastly, refluxing reaction conditions were required for the propargylation 

of 1,3-dicarbonyl compounds using singly activated, terminally unsubstituted propargyl alcohols.  

 

Shortly after Sanz’s report in 2007, Zhou and coworkers reported the use of Yb(OTf)3 in 

the Lewis acid-catalyzed propargylation of 1,3-dicarbonyl compounds at room temperature 

(Scheme 1.4).15  In addition to successful propargylation of acyclic β-diketones with internal 

propargylic alcohols, Zhou’s method also tolerated cyclic β-diketones, β-ketoesters and the use of 

O O

Ph

O

Ph

O O

OEt

O O O O O

OH

R1

R2

PTS (5 mol %)

MeCN, 20 oC

O

R3

O

R1
R2R3

OO

Ph
Ph

Ph
Ph

Ph
Ph Ph Ph

Ph Ph

92% 93% 54% 66% 60% 43%
reflux

Scheme 1.3: B ronsted A cid C ataly zed Propargylation of 1,3-Dicarbonyl C ompounds

O O

Ph
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terminal propargylic alcohols under the optimized reaction conditions without a significant 

decrease in product yield. However, the reaction remained intolerant of disubstituted alkynols, 

which again resulted in selective formation of the allenyl isomers. Further, in the report by Sanz, 

propargylic alcohol starting materials were still limited to those with aryl substitution at the 

propargylic position presumably to stabilize the forming cation and facilitate ionization for SN1 

substitution.   

 

Recently, in 2015, Díez-González and coworkers reported the use of inorganic acid HBF4 

in the propargylation of oxygen-, nitrogen-, and carbon- nucleophiles with propargylic alcohols at 

room temperature (Scheme 1.5).16 Contrary to Lewis or organic Brønsted acid catalysts, inorganic 

Brønsted acids can be easily removed from the reaction media and are typically more stable to air 

and reagent-grade solvents. Despite being successful for the propargylation of oxygen-, nitrogen-, 

and carbon- nucleophiles using both terminal and internal propargylic alcohols, the developed 

method was restricted to electron-rich 1-aryl propargyl alcohols. However, when the reaction 

temperature and catalyst loading were both increased, the reaction scope could be expanded to a 

few substrates with alkyl or electron-poor aryl substituents and products were obtained in 

moderate yield. Surprisingly, a similar increase in reaction temperature and catalyst loading also 

lead to the successful propargylation from tertiary alkynols, which under the previously discussed 

methods lead to selective formation of the allene isomer. Lastly, in addition to β-diketones, the 

OH
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O
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CH3NO2, rt
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O
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O O
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O
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O O O

Ph
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Ph
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Scheme 1.4: Lewis A cid-C ataly zed Propargylation of 1,3-Dicarbonyl C ompounds
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scope of carbon nucleophiles was extended to both electron rich aryl and heteroaryl moieties to 

yield the products of Friedel-Crafts –type substitution.        

 

As illustrated above, both Lewis and Brønsted acid-catalysis can be a highly efficient 

method for the propargylation of various nucleophiles. However, the current methods are largely 

dependent on both the electronic and steric environment surrounding the starting materials. 

Further, the extended application of Lewis or Brønsted acid catalysis in larger, more structurally 

complex systems can lead to complications with chemoselectivity with other sensitive 

functionalities.17 As an alternative, transition metal-catalyzed propargylation methods have been 

employed as an attempt to tune the reactivity of the starting propargylic electrophile in order to 
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develop more generalized reaction methods. For conceptual simplicity, the following transition 

metal-catalyzed propargylation methods have been divided into sections according to the metal 

catalyst.18,19  

 

1.3 Ruthenium-Catalyzed Propargylation Reactions 

Beginning in 2000, Nishibayashi, Hidai, Uemura and coworkers began developing 

methods for the propargylation of various nucleophiles with propargylic alcohols using thiolate-

bridged ruthenium (III,III) dimers. 20  Over the course of their studies, methods have been 

developed for the propargylation of carbon-,21,22,23 oxygen-, phosphonate-, thiols-, and nitrogen- 

nucleophiles.20, 24 , 25 , 26  Following initial coordination, rearrangement and dehydration, 

regioselective nucleophilic addition is reportedly controlled through formation of cationic 

ruthenium allenylidene intermediates, which undergo selective nucleophilic attack at the γ-carbon 

(Scheme 1.6).  
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Scheme 1.6: Mechanism of Diruthenium-C atalyzed Propargylation
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Prior investigation of ruthenium allenylidene complexes conducted by Valerga, 27 

Esteruelas and López28 have demonstrated that cationic ruthenium allenylidene complexes are 

highly electrophilic in contrast to their neutral counterparts. Further, the allenylidene ligand itself 

has unique characteristics including electrophilic character at Cα and Cγ and nucleophilic 

character at Cβ of monometallic species (Scheme 1.7). By tuning the basicity of the metal center 

through the choice of coordinating ligands, regioselective nucleophilic addition could favor either 

the Cα (weakly basic metal centers) or Cγ (strongly basic metal centers) position. However, when 

the cationic monometallic complexes were applied to selective propargylation in the presence of 

propargylic alcohols, the complexes were found to be inactive.27,28,29 This observation motivated 

Nishibayashi, Hidai, Uemura and coworkers to evaluate other types of ruthenium catalysts 

(beyond monometallic species) for the activation of propargylic alcohols. Specifically, thiolate-

bridged diruthenium catalysts were screened based on prior observations of their success in 

catalyzing the head-to-head dimerization of terminal alkynes30 and ability to promote selective 

propargylation of various nucleophiles without any allene formation. However, due to the 

requirement of a ruthenium-allenylidene intermediate, the substrate scope and overall synthetic 

application was significantly restricted by the need for terminal propargylic alcohol starting 

materials.  
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 In attempt to overcome the restricted synthetic application to terminal propargylic 

electrophiles using diruthenium catalysts, some attention has been devoted toward the 

development of a mononuclear variant. Unfortunately, the developed methods continue to suffer 

from severe drawbacks. For example, in 2002 Mitsudo and coworkers were able to demonstrate 

that thio- nucleophiles underwent successful propargylation when propargylic carbonates were 

employed in the presence of 10 mol % CpRuCl(cod) (Scheme 1.8).31 However, the reaction was 

only successful in the presence of N-methylpiperidine as a solvent (necessary to retain catalyst 

activity) and at elevated reaction temperatures of 100 oC. Further, terminal propargylic 

electrophiles were unsuccessful and the reaction was intolerant of substitution at the propargylic 

position.         
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1.4 Copper-Catalyzed Propargylation Reactions 

 Similarly, a number of groups including Hennion and Hanzel,32 Murahashi,33 Caporusso34 

and van Maarseveen35  have developed methods for the copper(I)-catalyzed propargylation of 

various nucleophiles in which the regioselectivity determining step is proposed to occur through 

nucleophilic attack of a copper allenylidene intermediate (Scheme 1.9).36 However, contrary to 

the diruthenium-catalyzed rearrangement and subsequent condensation of propargylic alcohols to 

generate a ruthenium-acetylidene intermediate, the use of copper(I) catalysts requires a 

stoichiometric or super stoichiometric amount of base to deprotonate the alkyne proton and 

generate a copper-acetylide or copper acetylidene intermediate. This mechanistic requirement of a 

metallic-acetylidene intermediate once again limits the synthetic utility of the copper(I)-catalyzed 

method to terminal propargylic electrophiles.     

 

 Despite the synthetic limitation of copper(I)-catalyzed propargylations using terminal 

propargylic electrophiles, Hu and coworkers were recently able to expand the scope of carbon 

nucleophiles to β-ketoesters which had only been mildly successful under previously developed 

transition metal-catalyzed methods (Scheme 1.10). Further, the use of propargylic carbonates as 
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their source of the propargylic electrophile allowed for in situ generation of ketone enolate 

equivalents rather than requiring preformation prior to subjection to the propargylation reaction 

conditions.  

As an alternative to copper(I)-catalyzed propargylations, Zhan37,38 and coworkers have 

also explored the use of copper(II) in the SN1 substitution of propargyl acetates (Scheme 1.11). 

However, similar to the substrate restrictions found in section 1.1.2, the developed reaction was 

sensitive to substitution on the starting propargylic electrophile. As typically found in the 

transition metal-catalyzed reactions covered thus far, an aryl substituent was required at the 1-

position of the starting propargyl alcohol, but 1,1-diaryl substituted alcohols were found to 

preferentially form the allene isomer as opposed to the propargyl product. 
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1.5 Rhenium-Catalyzed Propargylation Reactions  

 In order to avoid the formation of metal allenidene intermediates and bypass the 

limitation of terminal propargylic electrophiles, Toste39,40 ,41  and Takai42  reported the use of a 

rhenium metal-oxo complex to promote the propargylation of carbon-, oxygen- and nitrogen 

nucleophiles (Scheme 1.12).18 The mechanism by which propargylation occurs, utilizes a known 

[3,3]-rearrangement of the metal-oxo species to form an allenolate intermediate. Next, SN2' 

nucleophilic attack occurs to yield the propargylated product.   
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 The use of a rhenium metal-oxo complex as a catalyst was found to produce moderate to 

good yields of the propargylated nucleophiles from secondary propargylic alcohols, although 

there was again a requirement for an aryl moiety at the propargylic position. Further, tertiary 

propargylic alcohols were unsuccessful, presumably due to steric hindrance between to the two 

allenyl substituents and the incoming nucleophile in the transition state. Importantly, 

propargylation reactions with the rhenium-oxo catalyst were successful for alkyl, aryl and silyl 

terminally substituted propargylic alcohols without any effect on product yield.       

 

1.6 Palladium-Catalyzed Reactions with Propargylic Electrophiles  

 Despite significant contributions involving transition metal-catalyzed propargylation 

reactions by other metals, palladium-catalyzed reactions with propargylic electrophiles possess 

unique reactivity owed to its ability to yield several different types of products. Bias toward 

formation of a specific product is known to arise through the tuning of various palladium-

coordinated intermediates and the hard/soft character of the active nucleophile. Both will be 

discussed in the following. 

In 1999, Tsutsumi, Ogoshi, Kurosawa and coworkers conducted thorough studies on the 

synthesis and characterization of various palladium complexes resulting from the reaction of 

propargylic halides with Pd(PPh3)4.43  It was observed that when Pd(PPh3)4 was added in a 

stoichiometric amount to either a propargyl halide or an allenyl halide, two isomeric products 

formed following initial oxidative addition of the halide—carbon bond: the η1-allenylpalladium 

complex and the η1-propargylpalladium complex. Preference for either of the η1-palladium-

coordinated intermediates was dependent on competitive steric hindrance at the internal and 

terminal positions of the starting material (Scheme 1.13) however; both starting materials 

generated the same palladium-bound intermediates. It is important to realize that the nature of the 
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counterion on the palladium complex significantly contributes to its preferred configuration. For 

example, when both the η1-allenyl and η1-propargylpalladium complex were simultaneously 

treated with silver tetrafluoroborate, ligand exchange between the coordinating chloride ligand 

and the non-coordinating BF4
- counterion lead to exclusive formation of a cationic η3-

propargylpalladium complex (Scheme 1.14).  

 

 

Further, when the cationic η3-propargylpalladium complex was subjected to a series of NMR 

solvent studies, it was found that the polarity of the solvent also had a significant effect on the 

preferred coordination mode of the palladium-bound complex (Scheme 1.15).43 When polar 

solvents were employed, such as CDCl3 or DMF-d7, the cationic η3-propargylpalladium complex 

was largely favored over the neutral η1-allenylpalladium complex. In contrast, when non-polar 

C6D6 was used, exclusive formation of the neutral η1-allenylpalladium complex was observed. 

Therefore, the η1-allenylpalladium complex is preferred in the presence of coordinating 

counterions, such as chloride ions as well as in non-polar, aprotic solvents. Alternatively, in 

addition to the presented studies, subsequent reports have revealed that the η3-propargylpalladium 
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complex is preferred in the presence of bidentate phosphine ligands, hard or non-coordinating 

counterions, and in polar solvents.43,44,45,46 

 

In addition to the evaluation of reaction conditions that favor either a neutral η1-

palladium or cationic η3-palladium complex, a large amount of work has been conducted by 

Chen, 47  Kurosawa, 48 , 49  Ogoshi,48,49 Wojcicki, 50  and Tsuji11 that has provided invaluable 

information regarding the reactivity of these palladium-bound intermediates with various 

nucleophiles. For the purpose of this review, only carbon nucleophiles will be discussed. In 

general, palladium-catalyzed nucleophilic substitution of propargylic electrophiles can be 

categorized into four different types (Scheme 1.16).11,51 Typically, when considering nucleophilic 

additions of type I or type II, an η1-allenylpalladium complex is generated (largely biased through 

the lack of steric hindrance at the terminal position of the propargylic electrophile along with the 

soft-character of the palladium-catalyst). The intermediate complex can then undergo either 

insertion with a compatible alkene (type I) or transmetallation with an organometallic carbon 

nucleophile (type II), both of which result in allene products. Alternatively, soft-carbon 

nucleophiles (type III) are known to regioselectively attack the center carbon of a cationic η3-

propargylpalladium complex. After subsequent protonation to yield a π-allyl palladium 

intermediate, these species can undergo a second attack either intermolecularly, to yield an alkene 
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product, or intramolecularly to yield a cyclization product and regenerate the active palladium(0) 

complex. Lastly, although very rare, type IV nucleophilic additions arise from the formation of an 

η1-propargylpalladium complex. In general, the η1-propargylpalladium complex can be biased 

when a bulky substituent is located at the terminal position of the allene thus promoting the 

palladium catalyst to proceed via oxidative addition of the carbon—halide bond rather than SN2' 

displacement of the leaving group to generate the η1-allenylpalladium complex. Similar to the 

type I and type II additions, once the η1-propargylpalladium complex is formed, either insertion 

of an alkene or nucleophilic attack of an organometallic carbon nucleophile could occur to yield 

the respective alkene or propargyl product.      
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1.7 Reactivity of η3-Propargylpalladium Complexes 

 As mentioned in the previous section, addition to an η3-propargylpalladium complex has 

been shown to occur exclusively at the center carbon.52 In 1995, Ogoshi and Kurosawa reported 

that a phenyl substituted η3-propargyl ligand on palladium was not linearly coordinated to 

palladium with an angle of 154o.53  Further, the η3-propargylpalladium ligand was located in 

approximately the same plane as the monodentate phosphine ligands to form a planar 

tetracoordinate palladium complex.53,54 Additional studies contributed by Delbecq and Sinou,54 

along with previous reports,52 revealed that in the η3-propargylpalladium, palladium is bound to 

the terminal carbons of the propargyl moiety through orbital overlap analysis. However the bond 

distances are not equal. A slightly longer bond distance exists between palladium and the 

substituted carbon (in this case 2.35 Å) compared to the unsubstituted terminal carbon (2.19 Å). 

Although no overlap population exists between C2 and palladium (indicating no bond), the 

distance from the palladium center was found to be short (2.19 Å). Importantly, DFT calculations 

have suggested that the central carbon is positively charge whereas the terminal carbons of the 

propargyl ligand are negatively charged.54 Further examination of orbital overlap populations 

were found to be highest at the center carbon of the propargyl ligand when NH3 or MeO- were 

employed as nucleophiles. Therefore, selective nucleophilic attack the center carbon of η3-

propargylpalladium complexes is proposed to occur under both orbital and charge-control at the 

central carbon.  

Of additional importance are the characteristics of the phosphine ligand. Specifically, the 

P-Pd-P angle55 which has a direct affect on the bent angle of the η3-propargyl ligand. In 2014, 

Anderson and Paton reported that the charge distribution on each of the carbon atoms of the η3-

propargyl moiety are not affected with an increase or decrease in the bite angle of the phosphine 

ligand.56  However, the energy of the molecular orbitals changes significantly. Through DFT 
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calculations it was found that bidentate ligands with larger bite angles cause an elongation, or 

bond lessoning, between palladium and the terminal carbons of η3-propargyl ligand. As a result, a 

flattening of the η3-propargyl moiety occurs which lowers the LUMO of the terminal carbons to 

resemble an allenyl cation. The lowered LUMO orbitals promote favored attack at the 

unsubstituted terminal carbon as opposed to the center carbon of the η3-propargyl moiety as is 

commonly observed. Therefore, bidentate ligands possessing small bite angles are optimal for 

regioselective nucleophilic attack at the center carbon of η3-propargylpalladium complexes. 

 

1.8 Palladium-Catalyzed Propargylation Reactions from Propargylic Electrophiles 

 As discussed in sections 1.1 – 1.5 of this chapter, current methods for selective 

propargylation of carbon nucleophiles often suffer from poor atom-economy, reagent toxicity, or, 

most importantly, selectivity among a diverse class of propargylic electrophiles or nucleophiles. 

Further, despite the advantages of palladium-catalyzed reactions with propargylic electrophiles, 

section 1.6 demonstrated that soft carbon nucleophiles most commonly lead to products of 

dinucleophilic addition or cyclization as opposed to propargyl products. Therefore, development 

of a palladium-catalyzed method that selectively yields propargylated soft carbon nucleophiles 

would significantly advance the realm of palladium-catalyzed reactions with propargylic 

electrophiles. However, reactions of this type remain scarce to date.  

  In 2015, Iazzetti and coworkers reported the successful propargylation of Meldrum’s 

acid derivatives in the presence of 5 mol% Pd(OAc)2, 20 mol% P(2-furyl)3, in refluxing THF 

(Scheme 1.17).57 It was found that both alkyl and aryl substitution was tolerated at the terminal 

and internal position of the propargyl carbonate starting materials without a significant effect 

yield. However, nucleophiles were strictly limited to highly stabilized, monosubstituted 

Meldrum’s acid derivatives. When 2-methylcyclohexandione was employed instead, exclusive 
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formation of the dinucleophilic addition product was observed, clearly displaying the limitation 

of this method (Scheme 1.18).    

  

 

 Due to the difficulty associated with direct nucleophilic addition of palladium-bound 

intermediates to yield propargyl products, Morken and coworkers designed a palladium-catalyzed 

cross-coupling reaction with allyl boronates where a 3,3'-reductive elimination yields a 
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propargylated product (Scheme 1.19).58 Upon optimization of reaction conditions, it was found 

that allylation of various propargyl acetates proceeded stereospecifically with respect to the 

starting propargyl acetate. Further, mono- and disubstitution was tolerated at the propargylic 

position of the starting acetate materials, without a significant effect on product yields or 

contamination by the allene isomer. However, the reaction was intolerant of substitution at the 

terminal position of the propargyl acetate starting materials and also required three equivalents of 

CsF as an additive. Lastly, due to the mechanistic constraints of the developed reaction, only allyl 

moieties were sufficient coupling partners to obtain the propargylated products.      

 

 As one last alternative, in 2011, Álvarez de Cienfuegos and Cuerva reported a dual-

catalytic system consisting of palladium and titanium for the nucleophilic propargylation of 

aldehyde and ketone moieties (Scheme 1.20).59 As found in typical palladium-catalyzed reactions 

with propargylic electrophiles, the first suggested step in the mechanistic sequence was the 

oxidative addition of propargyl carbonate to palladium(0) will undergo oxidative addition into the 

propargyl carbonate to yield an η1-allenylpalladium complex (in equilibrium with the η1-

propargyl and η3-propargylpalladium complexes). Subsequent fragmentation of the palladium(II) 

complex is then promoted by a single-electron transfer (SET) from the super-stoichiometric 

addition of Cp2TiCl to yield an allenyltitanocene intermediate. Next, coordination of the 

electrophilic carbonyl compound occurs which undergoes regioselective nucleophilic attack to 

yield the resulting propargyl alcohol after an acid work-up. Although this method utilized a 

palladium(0) catalyst to promote initial activation of the propargylic carbonate, significant 
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drawbacks include the requirement of super-stoichiometric amounts of titanium and the limitation 

to carbonyl electrophiles to yield propargylation products.        
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1.9 Conclusion: 

 Throughout chapter 1, numerous methods have been presented that catalyze the 

propargylation of carbon-centered nucleophiles including the Nicholas reaction, Lewis acids, 

Brønsted acids, and transition metal catalysis. However, known propargylation methods still 

suffer from a limited substrate scope of substituted propargylic electrophiles and lack generality 

for a diverse class of carbon-centered nucleophiles.  Additionally, in regard to palladium-

catalyzed reactions, only a handful of methods exist that are able to override the large bias for the 

allenyl isomer or products arising from dinucleophilic addition to palladium-bound intermediates 

in favor of propargylation. Therefore, a more generalized atom-economical propargylation 

method would significantly advance the field of propargylation chemistry. Specifically, the 

method should expand the scope of carbon nucleophiles and provide access to propargylation 

reactions using substituted propargylic electrophiles.   
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Chapter 2. Palladium-Catalyzed Regiodivergent Substitution of Propargylic 

Carbonates. 

 

2.1 Introduction: 

Chapter 1 of this dissertation was a review of electrophilic propargylic substitution to yield 

propargylated carbon-centered nucleophiles. Specifically, attention was focused on methods such 

as the Nicholas reaction or those mediated by, Lewis acids, Brønsted acids, and catalysts using 

various transition metals. However it was stated that, in general, the developed methods suffer 

from detrimental drawbacks that prevent their widespread application including: (a) limited 

substrate scope, (b) limit to highly stabilized carbon-centered nucleophiles, or (c) production of a 

large amount of waste.      

Chapter 1 also covered the unique reactivity of palladium-catalyzed substitutions of 

propargylic electrophiles and it was demonstrated that palladium has the potential to generate 

structurally diverse metal-bound intermediates (Scheme 2.1). As a result, various products can be 

selectively accessed by altering the reaction conditions to favor one of the metal-bound 

intermediates, along with judicious choice of the activated nucleophile. However, palladium-

catalyzed propargylation of carbon-centered nucleophiles is rare.  
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To briefly reiterate the typical reaction patterns of palladium-catalyzed substitutions of 

propargylic electrophiles, use of non-stabilized carbon nucleophiles (pKa > 20) yield allene 
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products (Scheme 2.2). In contrast use of stabilized nucleophiles, such as malonates, commonly 

leads to bis-addition products, while selectivity for propargylic substitution is much more 

rare.1,2,3,4 Additionally, only under select circumstances, primarily controlled through cyclization, 

have diene products arisen from the substitution of propargyl electrophiles.  

 

 Based on the material presented above, palladium-catalyzed substitution of propargylic 

electrophiles offer the potential to develop a regiodivergent strategy to access functionally diverse 

products from a single class of starting materials. Chapter 2 of this dissertation will detail our 

contribution toward the development of a palladium-catalyzed, ligand-controlled, regiodivergent 

strategy to access both the rarely observed propargyl and dienyl isomers resulting from 

palladium-catalyzed propargylic substitution (Scheme 2.3). Further, in order to optimize the atom 

efficiency of the reaction, propargylic carbonates were employed as the electrophilic propargyl 

species to access both the activated electrophile and nucleophile in situ.    

 

LnPd

•
R

R

R

common

common

rare

rare

•
R

R

R

R

Nu

Nu

Nu

Nu
Nu

synthon product

R

R
OR
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2.2 Ligand-Controlled Regiodivergent Strategies: 

A major endeavor in the development of transition metal-catalyzed reactions typically 

entails the mass screening of various ligands for optimized reaction selectivity. Although 

effective, this protocol usually results in the optimized formation of one product class or bond-

type. Occasionally, however, regiodivergent strategies arise in which orthogonal selectivity is 

observed for two or more products simply by changing the characteristics of the metal-

coordinated ligand. Such examples optimize method development through production of various 

products with minimal reaction modification. However, development of ligand-controlled 

regiodivergent strategies is difficult since they must circumvent both steric and electronic 

properties of the substrate that typically govern product regioselectivity. In the following, a brief 

summary of recent regiodivergent strategies will be presented.              

 In 2016, Jiang and coworkers reported the gold-catalyzed, ligand-controlled 

regiodivergent hydroarylation of alkynes to access both ortho- and para-substituted cyclized 

products (Scheme 2.4).5 Selectivity was controlled through electronic variations at the gold-center 

through employment of either electron-deficient tris(2,4-di-tert-butylphenyl)phosphine or 

electron-rich XPhos as the ligand source. When electron-deficient tris(2,4-di-tert-

butylphenyl)phosphine was employed, selective formation of the ortho-substituted product was 

observed. Due to the electron-deficient metal center, along with the weakly coordinating -OTs 

counterion, it was proposed that the gold catalyst would “pull” the coordinated alkyne toward the 

methoxyl amide directing-group resulting in the ortho-cyclized product. 6 , 7 , 8  Alternatively, 

employment of bulky, electron-rich XPhos would disfavor amide coordination through 

unfavorable steric interactions and “push” the coordinated alkyne away from the directing group 

resulting in the para-cyclized product.    



 32 

  

Alternatively, in regards to palladium-catalyzed regiodivergent methods, Cárdenas and 

coworkers reported the selective synthesis of allylboronates and alkenylboronates controlled by 

the coordinating strength of the employed ligand (Scheme 25).9 It was proposed that cyclization 

to generate the alkenylboronate could be favored with weaker, more labile trialkylphosphine 

ligands (path a) that enable a free coordination site on the metal center upon dissociation. The 

empty coordination site could allow coordination of the alkyne followed by transmetalation and 

reductive elimination to yield the alkenylboroante product. Alternatively, more strongly 

coordinating, non-labile NHC ligands prevent cyclization by perturbing alkyne coordination and 

thereby promote direct transmetalation resulting the allylboronate product.          
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Scheme 2.4: Au(I)-Catalyzed, Ligand Controlled Regiodivergent Cyclization.
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 In 2014, and subsequent reports in 2015, Hall and coworkers reported a regiodivergent 

Suzuki-Miyaura cross-coupling to produce 2- and 4-substituted dihydropyrans and 

dehydropiperidines (Scheme 2.6).10,11 As reported by Cárdenas, regioselective product formation 

was again attributed to the strength and steric environment about the coordinating ligand. For 

phosphine-based ligands, it was previously reported that the SE' pathway is favored to generated 

intermediate 2.2 B.12,13 Further, use of more weakly coordinating tria lkylphosphine ligands was 

reported to promote the σ-π-σ interconversion from intermediate 2.2 B to the more stabilized 
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heteroatom conjugated σ-bond palladium(II) species 2.2 D prior to reductive elimination to form 

the α-arylated product.10 In contrast, more electron-rich and sterically bulky SPhos promotes 

rapid reductive elimination of the arylated palladium intermediate 2.2 B to yield the γ-arylated 

product.    

 

 Lastly, most recently in 2016, Buchwald further expanded the known methods of 

regiodivergent Suzuki-Miyaura cross-coupling reactions to yield both substituted linear and 

branched prenyl functionalities (Scheme 2.7). 14  Initially, it was proposed, and eventually 

supported, that optimal product selectivity could be achieved by minimizing the σ-π-σ 

interconversion of palladium-bound intermediates through the employment of strongly 

coordinating ligands. Further, bias for a 6-membered transition-state could be favored with 

smaller ligands to yield the branched product while more sterically bulky ligands would disfavor 

the 6-membered transition-state to yield the linear isomer.  
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 The above examples display methods in which both steric and electronic characteristics 

of the ligand are utilized to promote selective product formation. Such strategies can be 

invaluable to further predict substrate reactivity and potentially reveal alternative reaction 

pathways for new product formations.         

 

2.3 Synthetic Significance and General Synthetic Methods that Yield 1,3-Butadiene Motifs: 

Conjugated butadiene motifs are highly valuable synthetic targets for organic chemists. Much 

of their significance stems from their use as functional handles in total syntheses,15,16 syntheses of 

biologically active compounds17 and complex molecule syntheses.18 ,19  Specifically, conjugated 

butadienes are known to undergo versatile and highly utilized synthetic transformations such as 
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inter- and intramolecular Diels-Alder reactions, 20,21 ,22,23  cycloadditions,24,25 ,26  hydrogenations,27 

Sharpless epoxidation,28,29 etc. Further, 1,3-dienes themselves are prevalent sub-structural motifs 

in natural products,30,31,32 biologically active pharmaceuticals,33 and materials.34  

In general, current synthetic methods to synthesize 1,3-dienes rely heavily on transition 

metal-catalyzed cross-coupling reactions,35 transformations from allene derivatives,36 olefination 

reactions, 37  or cyclization reactions. 38  However, very few methods utilize the direct cross-

coupling of butadiene synthons for diene incorporation. Furthermore, methods that report direct 

butadiene cross-coupling often require pre-formed organometallic or organoborane reagents and 

produce a large amount of waste. A brief summary of butadiene coupling methods will be 

presented in the following.  

In 1981, Nunomoto, Kawakami, and Yamashita reported the dienylation of aryl and alkyl 

iodides with palladium tetrakis and copper iodide respectively (Scheme 2.8).35g However, the 

presented method suffered from a very limited substrate scope of both alkyl and aryl iodides. 

Further, the method also suffered from low to moderate isolated yields and some substrate 

dependent polymerization was also reported. Lastly, the presented methods were limited to aryl 

or alkyl-iodides and were incompatible with bromo- and chloro- derivatives.      

 

 Two-years later in 1983, Shea and Pham reported an expansion of the substrate scope of 

1,3-dienylation to selective 1,4-addition of α,β-unsaturated ketones along with cross-coupling of 

alkyl bromides and alkyl tosylates (Scheme 2.9).35h Unlike previous observations, the authors 

ClMg
R I

R = aryl

Pd(PPh3)4 (4 mol %)

1:2 C6H6/THF R

50% - 75%

ClMg
R I

R = alkyl

CuI (20 mol %)

R

5% - 68%

THF

Scheme 2.8: Pd(0) and Cu(I)-Catalyzed Dienylation.
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report that selective dienylation occurred without contamination by the allene isomer. However, 

in general, product yields remained low to moderate and extended reaction times of 24-48 hours 

were required for successful 1,3-dienylation of alkyl bromides or tosylates.    

 

 Alternatively, in 1999, Hatakeyama and coworkers reported the use of 

tributylstannylbuta-1,3-diene in the dienylation of aldehyde derivatives (Scheme 2.10).35i 

Although the reaction appeared to be selective, high yielding and could be conducted at room 

temperature, a stoichiometric amount of SnCl4 was required to generate the homoallenyl 

intermediate required for subsequent 1,3-dienylation. Further, along with the narrow scope of 

alkyl and aryl aldehydes, tin reagents are toxic which promotes the development of more amiable 

reaction conditions.  

 

As an alternative, subsequent studies conducted by Venturello revealed that 1,3-

dienylboronate esters could be used in the Suzuki cross-coupling of aryl or alkenyl iodides, 

bromides, chlorides and triflates (Scheme 2.11).35d In general, the developed method produced the 

1,3-dienylated aryl species in moderate yields except for reactions of aryl chlorides which 

produced low yields of products.  

Cl
O
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CuBr  Me2S (2.5 mol %)
Me2S (5 mL)

THF (0.3M)
-20 oC

O

38% - 84%

Scheme 2.9: Copper-Catalyzed 1,4-Addition of 1,3-Butadiene.
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CH2Cl2 (0.13 M), -78 oC
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and RCHO (0.5 equiv.)

-78 oC
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OH

65%-98% yield

Scheme 2.10: Buta-1,3-Dienylation of Aldehydes.
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Similarly, Sherburn and Paddon-Row reported the utility of both the Kumada-Tamao-Corriu 

reaction and the Negishi reaction in the coupling of 1,3-dienes to efficiently synthesize 

dendralene hydrocarbons (Scheme 2.12).35f Specifically, these coupling methods provided a 

synthetic route to produce branched hydrocarbons in moderate yields and high selectivity as 

opposed to previously utilized methods. However, despite the obvious importance of these 

coupling reactions, one drawback lies in the production of a stoichiometric amount of metal waste 

along with the necessity for preformed organometallic species.  
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Scheme 2.11: Suzuki Cross-Coupling of 1,3-dienylboronate Esters:



 39 

 

 In attempt to circumvent the requirement of preformed organometallic compounds and 

expand the functional group tolerance of 1,3-dienylation methods, Connell and coworkers 

reported the asymmetric 1,3-dienylation of aldehyde derivatives from propargylic halides 

(Scheme 2.13).36a However, the method suffers from numerous inefficiencies compared to the 

previous presented methods. Although it does not require preformed organometallic compounds, 

successful dienylation occurs over a two-step process in which stoichiometric and super-

stoichiometric amounts of numerous additives are employed. Further, attempts to develop a one-

pot procedure resulted in low yields of the desired product.  

MgCl

Br Cl

[Ni(dppp)Cl2] [Ni(dppp)Cl2]

[Ni(dppp)Cl2] [Ni(dppp)Cl2]

[Ni(dppp)Cl2] [Ni(dppp)Cl2]

Cl
Cl

ClCl

ClCl
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Br

57% 49%-75%

47% 65%
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Cl

BrZn I

44%

86%65%-87%

[Pd(PPh3)4]

Mg, THF
then ZnBr2

60%

Mg, THF
then I2

Scheme 2.12: 1,3-Butadiene Coupling to Yield Branched Hydrocarbons.



 40 

 

 Alternatively, in 2013 Yu and coworkers reported the use of cyclopropylmethyl N-

tosylhydrazones as butadiene surrogates in the palladium(0)-catalyzed 1,3-dienylation of aryl and 

heteroaryl motifs (Scheme 2.14).35c Their protocol bypasses the need for pre-formed 

organometallic species and occurs in one-step with moderate to high overall yields of the desired 

product. However, the method is limited to unsubstituted cyclopropyl rings and requires super-

stoichiometric amounts of base. Further, in general, isolated products are formed with poor E/Z 

selectivity. 

Ph H

O

Br
TMS

CrCl2 (10 mol %), Mn0 (2 equiv.)

TMSCl (1.1 equiv.), THF, 
r.t., 16 h

(1.1 equiv.)

Ph

OH
Ph

OH

•
TMS

TBAF (2 equiv.)

THF

35%

Scheme 2.13: One-Pot Asymmetric 1,3-Dienylation of Aldehydes.
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2.4 Development of Regiodivergent Synthesis of 1,3-Dienes  

Current synthetic methods that achieve the direct cross-coupling of butadiene synthons 

rely heavily on pre-formed organometallic or organoborane reagents. Consequently, these 

methods lack step-economy and produce a significant amount of waste. Therefore, it would be 

useful to develop alternative methods to cross-couple 1,3-dienyl motifs via reaction of readily 

available starting materials under mild reaction conditions, while minimizing overall byproduct 

formation. To address this need, we hypothesized that propargyl carbonates could serve as diene 

electrophiles if, after mono-substitution to generate a palladium π-allyl intermediate, 39 ,40 ,41 

elimination occurred instead of the more common attack by a second nucleophile (Scheme 

2.15).42 This method would provide facile access to 1,3-dienes in an atom and step economic 
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Scheme 2.14: Cross-coupling of Cyclopropylmethyl N-Tosylhydrazones as a Source 
of 1,3-Butadiene
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fashion via the formal coupling of an electrophilic 1,3-diene synthon. To the best of our 

knowledge, the use of a propargyl carbonate as a source of butadiene electrophile for cross-

coupling has not been reported.43 

 

 Given our experience with allylic alkylations of acetonitriles,44 our optimization studies 

began by examining the effects of palladium catalyst, ligand, and solvent on the cross-coupling of 

methyl propargyl carbonate with commercially available diphenyl acetonitrile (Table 2.1). 

Initially, reaction conditions that previously provided high yields for allylation of tertiary 

acetonitriles with allylic alcohols were employed (entry 1).44b Under these conditions, GC/MS 

analysis revealed the formation of three isomeric products. Upon isolation and characterization of 

each product, it was confirmed that the major products were the 1,3-dienyl and propargyl 

isomers, with only minor formation of the allene. In order to optimize reaction conversion, we 

next conducted a solvent screen, which revealed that polar, aprotic solvents provided optimal 

conversion (entry 1, 3) compared to non-polar solvents (entries 2, 17, 18). In an attempt to 

determine the ligand effect on product ratios, several bidentate ligands were examined (entries 4-

9). Excitingly, (diphenylphosphino)ethane (dppe) displayed optimal selectivity for the 1,3-diene 

product (entry 5). This result was in sharp contrast to previous accounts that report cyclization,43 

bis-addition,42 or allenylation 45  as the major products arising from palladium-catalyzed 

substitution of propargylic carbonates using bidentate ligands.45m,46 
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Scheme 2.15: Proposed Synthetic Route to 1,3-Dienes.
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 With the optimized reaction conditions established for 1,3-dienylation of 

diphenylacetonitrile, we next evaluated the scope of D�D-diaryl acetonitrile derivatives in the 

substitution of methyl propargyl carbonate to synthesize 1,3-dienes (Scheme 2.16).47 A variety of 

unsymmetric diarylacetonitrile reactants with electron-donating or withdrawing substituents 

provided product in good to excellent yields (3b, 3c, 3h, 3m). Further, meta-chloro and para-

bromo substituted arenes, which can be prone to other coupling reactions, were well tolerated (3g, 

entrya ligand solvent 1ab alleneb dieneb propargylb

Ph Ph

CN
O O

O
Pd0 

 ligand

90 oC, 14 h 
solvent

•

CNPh

Ph
CNPh

Ph

CNPh

Ph

4 dppm CH3CN 28 4 42 27
5 dppe CH3CN 3 0 94 3
6 dppp CH3CN 5 0 87 8
7 dppb CH3CN 2 0.2 85 13
8 dppf CH3CN 1 0.5 74 24

10 rac-BINAP CH3CN 4 0.5 70 24
11c JohnPhos CD3CN 45 20 2 33
12c tBu-MePhos CD3CN 22 29 2 47
13c Cy-JohnPhos CD3CN 56 4 15 25
14c MePhos CD3CN 11 3 19 67
15c MePhos DMSO-d6 51 5 9 35
16c MePhos d-DMF 43 3 7 47
17c MePhos toluene-d8 87 6 0.3 6
18c MePhos 1,4-dioxane 87 5 1 8

1

catalyst

Pd(PPh3)4 -- DMSO 26 3 40 31
2 Pd(PPh3)4 -- THF 62 1 15 22
3 Pd(PPh3)4 -- DMF 3 0 55 39

Pd2(dba)3
Pd2(dba)3
Pd2(dba)3
Pd2(dba)3
Pd2(dba)3

Pd2(dba)3
Pd2(dba)3
Pd2(dba)3
Pd2(dba)3
Pd2(dba)3
Pd2(dba)3
Pd2(dba)3
Pd2(dba)3
Pd2(dba)3

19 Pd2(dba)3 MePhos DMF 10 3 6 81
20 Pd2(dba)3 dppe DMF 3 0 95 2
21 Pd2(dba)3 MePhos DMF 10 3 6 81
22d Pd2(dba)3 dppe DMF 9 0 91 0
23e Pd2(dba)3 dppe CH3CN 3 0 95 2
24f Pd2(dba)3 dppe CH3CN 1 0 98 1
25g Pd2(dba)3 MePhos DMF 1 3 6 90
26f,g Pd2(dba)3 -- DMF -- -- -- --

9 Pd2(dba)3 XantPhos CH3CN 1 11 7 31

1a 2a

Table 2.1: Optimization of Reaction Conditions:

a) diphenylacetonitrile (0.3 mmol), carbonate (0.3 mmol), catalyst (2.5 mol %), ligand (5 
mol%), 0.15 M, 90 °C, 14 h. b) % conv. determined by GC/MS. c) diphenylacetonitrile 
(0.1 mmol), carbonate (0.1 mmol), reaction monitored by 1H NMR spectroscopy. d) 
isolated yield 24%. e) 0.3 M f) 80 °C g) 0.6 mmol carbonate
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3e). Notably, a variety of substitution patterns were tolerated and even increased steric bulk at the 

ortho-position did not hinder product formation (3c, 3f, 3h). Unfortunately, basic heteroaryl 

moieties, while requiring reduced reaction time, lead to poor isolated yields (3i, 3j). In contrast, 

the non-basic heteroaromatic 1,5-(dimethyl)pyrrole reactant provided product in good yield, as 

did arene substituents that contained extended conjugation (3d, 3f, 3k). Lastly, styrene and 

benzoxazole derivatives were unsuccessful and only degradation of the starting material was 

observed (3n, 3o).  
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(2 mL), 80 oC, 1 h. Isolated yields are reported.

Scheme 2.16: Acetonitrile Scope of 1,3-Diene
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  With the functional group tolerance evaluated for the acetonitrile reaction component, 

other propargylic carbonates were examined to see if they could be used to form substituted diene 

products (Scheme 2.17). It was found that nucleophilic substitution of a terminally substituted 

ethyl or heptyl propargylic carbonate resulted in decreased isolated yields (4b, 4c) compared to 

the model substrate 3a. However, terminally substituted benzyl propargylic carbonate produced 

the substituted 1,3-diene product in moderate yield (4d). In attempt to access more intricate triene 

functionalities, an allyl substituent was utilized at the terminus of the propargylic carbonate, and 

the resulting triene was isolated in good yield (4e). Unfortunately, both terminal carbocyclic 

substituents along with internal alkyl substituents on the propargylic carbonate significantly 

hindered product formation (4f-4g).  
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 Fueled by the selective formation of the terminal 1,3-diene analogues, we next examined 

the potential pathways that could give rise to dienylation. It has been reported that palladium 

catalysts, in the presence of bidentate ligands, favor oxidative addition to form an η3-propargyl 

Ph Ph

CN
O O

O Pd2(dba)3 (5 mol%) 
dppe (10 mol%)

80 oC, 1 h 
DMF (0.15 M)

CNPh

Ph
R2 R2

R1 R1

O O

O Ph

Ph

CN

O O

O

C6H13

Ph

Ph

CN

C6H13

O O

O

Ph

Ph

Ph

CN

Ph

4c

O O

O Ph

Ph

CN

O O

O Ph

Ph

CN

4e

O O

O

4d

4g

Ph

Ph

CN

4f

entry carbonate product diene:propargylcyieldb

4b 42%

41%

>20:1

9:1

70% >20:1

74% 9:1

14% 
conversiond

nd

51% 1:1.2

a) nitrile (0.3 mmol), carbonate (0.6 mmol), palladium (5 mol %), dppe (10 mol%), DMF 
(2 mL), 80 oC, 1 h, isolated yields are reported. b) isolated yield. c) determined by 1H 
NMR spectroscopy. d) determined by GC/MS

Scheme 2.17: Scope of Substituted 1,3-Dienes.
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palladium intermediate.41,48 Further, outer-sphere nucleophilic attack of η3-propargyl palladium 

species often occurs exclusively at the center carbon. 49  Therefore, we envisioned that 1,3-

dienylation could arise via two potential mechanistic pathways (Figure 2.1). In both cases, initial 

oxidative addition of the propargylic carbonate and subsequent loss of CO2 would yield an η3-

propargyl palladium intermediate along with methoxide. Next, deprotonation of the 

pronucleophile would promote nucleophilic attack at the center carbon of the palladium 

intermediate to generate the corresponding palladacyclobutene (B).50 If the mechanism proceeds 

via path a, protonation could occur from either methanol or nitrile, leading to π-allyl palladium 

intermediate C. Base-induced elimination would regenerate the palladium(0) catalyst and yield 

the 1,3-diene product. 51 , 52  Alternatively, β-hydride elimination from the palladacycle B could 

produce intermediate E followed by reductive elimination of the 1,3-diene product. 
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 To determine which pathway is more likely, two isotopic labeling experiments were 

performed (Scheme 2.18). The terminally deuterated propargylic carbonate produced product 

with an 8.1:1.0 H/D ratio at the internal carbon of the diene as determined by 1H NMR 

spectroscopy (Scheme 2.18a). A similar reaction that coupled deuterated diphenyl acetonitrile 

with protio methyl propargyl carbonate resulted in an H/D ratio of 1.2/1.0 (Scheme 2.18b). The 

differing ratios result from a primary KIE for protonation combined with the competitive 

protonation from nitrile and liberated methanol. These results are inconsistent with a mechanism 

involving β-hydride elimination/reductive elimination. Thus, we favor path a which involves 

protonation of the palladacyclobutene to form S-allyl palladium intermediate C.  

 

In attempt to trap a putative S-allyl intermediate, the palladium-catalyzed acetonitrile 

cross-coupling was performed with a propargylic carbonate that was unable to undergo 

elimination (Scheme 2.19). The observation of bis-substituted 1,3-diene product in 93% yield 

supports the kinetic feasibility of the formation of a π-allyl palladium intermediate required for 

path a.  
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2.5 Development of Regiodivergent Synthesis of Propargylated Diaryl Acetonitrile Derivatives  

As discussed previously, palladium-catalyzed substitution of methyl propargyl carbonate 

with D�D-diaryl acetonitrile pronucleophiles selectively forms 1,3-dienyl products in the presence 

of bidentate ligand dppe. During our reaction optimization studies, a change from bidentate 

(dppe) to monodentate (MePhos) ligand was accompanied by a switch in selectivity from the 1,3-

dienyl isomer to the propargyl isomer under otherwise identical reaction conditions (Table 2.1). 

The development of palladium-catalyzed substitution of propargylic carbonates to selectively 

yield propargylated nucleophiles would not only expand on the limited strategies known for 

catalytic propargylation from internal propargylic electrophiles, 53  but also allow for a 

regiodivergent synthesis of 1,3-dienyl and propargyl acetonitrile derivatives solely by altering the 

denticity of the coordinating ligand. 

Classically, the Nicholas reaction has been utilized as a method for propargylation 

utilizing propargylic alcohol reactants. Despite this, its utility has been limited by the requirement 

for stoichiometric organometallic reagents. 54  Recent focus on propargylation has been 

concentrated on the development of alternative methods using catalytic transition metals.  For 

example, propargylic alkylation using internal propargylic carbonates was only recently reported 

by Iazzetti in 2015. 55 However, the reaction is limited to highly stabilized Meldrum’s acid-like 

nucleophiles. Most other cases report palladium-catalyzed nucleophilic substitution of 
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propargylic carbonates that result in cycloaddition42b,56 or formation of allene45 derivatives. The 

method outlined herein aims to expand the scope of palladium-catalyzed propargylation to 

weakly acidic D�D-diaryl acetonitrile motifs that give rise to functionalized quaternary 

diarylmethane products.  

Beginning with the same optimized reaction conditions developed for the 1,3-dienylation 

method, we merely changed the coordinating ligand from bidentate dppe to monodentate MePhos 

and evaluated the scope of diarylacetonitriles that undergo propargylation (Scheme 2.20). 

Analogous to results of 1,3-diene syntheses, the propargylation of acetonitriles containing 1-

naphthyl, 2-naphthyl and para-substituted biphenyl derivatives provided very good yields without 

being influenced by steric hindrance (5a, 5d, 5f, 5l). When para-methoxy, ortho-fluoro and meta-

chloro-substituted phenyl rings were screened, all corresponding products were obtained in 

moderate-good isolated yields (5b, 5c, 5g). Altering the ortho-substituent to a nitro moiety 

resulted in an excellent isolated yield of 94% (5h). In contrast to their poor reactivity for 

dienylation, heterocyclic pyridine and pyrimidine derivatives were tolerated under the general 

reaction conditions and resulted in good isolated yields (5i, 5j). However, when the heterocycle 

was changed to a benzoxazole functionality, a dramatic decrease in yield was observed (5o, 

Scheme 8). A styrene derivative proceeded smoothly to the propargylated product albeit slightly 

lower yield compared to the polycyclic and bicyclic analogues (5n). Lastly, a para-morpholine 

substituted acetonitrile failed to undergo reaction (5m). 
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 With the propargylation of various diaryl acetonitrile substrates examined, we next 

sought to apply our propargylation method to substituted propargylic carbonates (Scheme 2.21). 

Nucleophilic substitution of terminally substituted ethyl or heptyl propargylic carbonates was 

well tolerated (6b, 6c). However, a decrease in isolated yield was observed with using a benzyl 

propargylic carbonate (6d). Gratifyingly, excellent isolated yields were obtained from propargylic 

carbonates that are terminally substituted by carbocycles (6e-6g). Further, allyl and internally 

substituted methyl and ethyl propargylic carbonates resulted in moderate-high isolated yields of 
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the propargylated products (6h, 6i, 6j, 6k). Unfortunately, vinyl and phenyl propargylic 

carbonates were not well-tolerated under the standard reaction conditions (6l, 6m). 
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Scheme 2.21: Propargylation with Substituted Carbonates.
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Having studied the synthetic scope of the dienylation and propargylation reactions, we 

aimed to convert our observation of denticity-dependent regioselectivity into a more formal 

mechanistic hypothesis. Beginning with Pd(0) and monodentate MePhos, we propose that 

oxidative addition of the propargylic carbonate would initially favor a cationic η3-propargyl 

palladium intermediate E similar to intermediate A in the dienylation pathway (Figure 2.22). 

Contrary to bidentate ligand dppe, which forces outer-sphere nucleophilic attack of the activated 

nitrile, we propose that the mono-coordination of the MePhos ligand provides an open 

coordination site for binding of the activated nitrile.44a,57 Binding of an anionic ligand has been 

observed to typically favor the η1-allenyl species (in this case G).41,48,52 Subsequent inner-sphere 

nucleophilic attack at the terminal allenyl carbon could then occur to provide the propargylated 

product.44a,57  
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2.6 Conclusion 

 In conclusion, we report the regiodivergent synthesis of substituted 1,3-dienyl and 

propargyl quarternary diaryl methanes. We propose that regioselective nucleophilic substitution to 

palladium-bound intermediates occurs through two distinct reaction mechanisms that are 

controlled by the denticity of the ligand. Bidentate ligands block coordination of the nitrile 

nucleophile, favoring outer-sphere attack of the nucleophile, leading to dienylation. In contrast, a 

monodentate ligand allows coordination of the nucleophile to palladium, resulting in 

propargylation via inner sphere nucleophilic attack. 
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General Information: 
 
Purified compounds, unless otherwise stated, were obtained by column chromatography using 60 

Å porosity, 230 x 400 mesh standard grade silica gel from Sorbent Technologies. TLC analysis 

was preformed on silica gel HL TLC plates w/UV254 from Sorbent Technologies. Gas 

chromatography/mass spectrometry data was obtained using a Shimadzu GCMS-QP2010 SE. 

NMR spectra were obtained on a Bruker Advance 500 DRX equipped with a QNP cryoprobe. 1H 

and 13C spectra were normalized using residual undeuterated solvent signals as a reference (CDCl3 

= 7.28 ppm for 1H and 77.36 ppm for 13C).1 19F NMR spectra were referenced to α,α,α-

trifluorotoluene (purchased from Sigma Aldrich) at -62.7 ppm.   

 
N,N-Dimethylformamide (DMF) and nitromethane were purchased from Sigma Aldrich and stored 

in a glove box. Dichloromethane (DCM), tetrahydrofuran (THF), and toluene were either purified 

by an Innovative Technology Pure SolvTM solvent purification system or purchased from Sigma 

Aldrich and stored in a glove box. Tris(dibenzylideneacetone)dipalladium(0) (Pd2(dba)3) was 

purchased from Strem as were ethylenebis(diphenylphosphine) (dppe) and 2-

dicyclohexylphosphino-2’-methylbiphenyl (MePhos). All were stored in a glove box. 

Diphenylacetonitrile was purchased from Sigma Aldrich and used without further purification. 

 

 

 

 

 

 

 

 



 71 

Synthesis of Starting Materials  

Acetonitrile 2.1b,2,3 2.1c, 2.1d,4 2.1e,2 2.1f, 2.1g and 2.1l: 

 

General Procedure for direct cyanation of benzylic alcohols in the  synthesis of diaryl nitriles 

2.1b-2.1g and 2.1i2: In a glove box under an argon atmosphere, an oven or flame dried 20 mL 

Biotage microwave vial (#355458) equipped with a magnetic stir bar was charged with benzylic 

alcohol (2 mmol), Zn(OTf)2 (0.11 g, 0.3 mmol, 15 mol %), and CH3NO2 (20 mL, 10 M) then 

sealed and removed. TMSCN (0.24 g, 2.4 mmol, 1.2 eq) was then added using a syringe before 

heating the vessel at 100 oC overnight. The mixture was diluted with distilled water (100 mL) and 

extracted into ethyl acetate (50 mL x 2) and washed with brine (20 mL). The organic layer was 

dried over sodium sulfate and concentrated before purification by column chromatography in a 

gradient of 5% - 10% ethyl acetate in hexanes.       
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Characterization of 2.1c: 

 

Yield: .36 g, 1.7 mmol, 85%  

Appearance : off-white solid   

1H NMR Spectra (500 MHz, CDCl3): δ 7.77 (td, J = 7.6, 1.8 Hz, 1H), 7.68 (m, 6H), 7.51 (td, J = 

7.5, 1.2 Hz, 1H), 7.42 (ddd, J = 9.7, 8.2, 1.2 Hz, 1H), 5.77 (s, 1H).  

13C NMR Spectra (126 MHz, CDCl3): δ 160.00 (d, J = 248.5 Hz), 135.01, 130.72 (d, J = 8.2 Hz), 

129.60 (d, J = 2.7 Hz), 129.55, 128.70, 127.83 (d, J = 1.3 Hz), 125.28 (d, J = 3.6 Hz), 123.78 (d, J 

= 13.9 Hz), 119.19, 116.37 (d, J = 21.2 Hz), 36.42 (d, J = 4.0 Hz). 

19F NMR Spectra (376 MHz, CDCl3): δ -117.2 (s, 1F).     

HRMS: [M-H]- calcd for C14H10FN: 210.0719. Found: 210.0740. 

IR: 3087, 3064, 3031, 2246, 1589, 1492, 1456, 1236, 1093, 1031, 804, 756, 725, 696cm-1 

 

Characterization of 2.1f: 

 

ref. 5 

Yield: 0.48 g, 1.97 mmol, 98% 

Appearance: white solid 

1H NMR Spectra (500 MHz, CDCl3): δ 7.92 (m, 3H), 7.66 (m, 1H), 7.53 (m, 3H), 7.36 (m, 5H), 

5.86 (s, 1H).   
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13C NMR (126 MHz, CDCl3): δ 135.58, 134.47, 131.11, 130.64, 129.89, 129.53, 129.49, 128.61, 

128.12, 127.51, 127.38, 126.56, 125.77, 123.38, 120.08, 77.61, 40.25. 

HRMS: [M]+calcd for C18H13N: 243.1048. Found: 243.1052. 

IR: 3085, 3062, 2962, 2927, 2904, 2632, 2416, 2358, 2331, 2241, 1681, 1650, 1625, 1598, 1512, 

1494, 1454, 1396, 1159, 1029, 862, 796, 775, 750, 725, 696, 642, 561 cm-1 

Characterization of 2.1g: 

 

ref. 6 

Yield: 26 mg, 1.12 mmol, 28% 

Appearance: dark yellow oil 

1H NMR Spectra (500 MHz, CDCl3): δ 7.37 (m, 9H), 5.13 (s, 1H). 

13C NMR Spectra (126 MHz, CDCl3): δ 137.82, 135.18, 130.54, 129.46, 128.66, 128.65, 127.98, 

127.79, 125.98, 119.15, 42.30. 

HRMS: [M+H]+ calcd for C14H10ClN: 228.0580. Found: 228.0598.  

 

Characterization of 2.1l: 

 

Yield: 0.38 g, 1.4 mmol, 48% 

Appearance: white solid 

1H NMR Spectra (500 MHz, CDCl3): δ 7.60 (m, 4H), 7.43 (m, 10H), 5.21 (s, 1H).  
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13C NMR (126 MHz, CDCl3): δ 141.61, 140.49, 136.16, 135.16, 129.60, 129.20, 128.66, 128.48, 

128.24, 128.09, 128.00, 127.44, 119.99, 42.66. 

HRMS: [M+H]+ calcd for C20H15N: 270.1283. Found: 270.1307.  

Preparation 2.1h:7 

 

To a 50 mL round bottom flask equipped with a magnetic stir bar, 1-fluoro-2-nitrobenzene (0.7 g; 

5 mmol), benzyl cyanide (0.6 g; 5 mmol), tetrabutylammonium bromide (1.6 g; 5 mmol), and 

toluene (21 mL) were added and allowed to stir for 10 min. Next, 50% w/w NaOH (2 mL, 2.5 M) 

was added to the solution and the mixture was stirred overnight at 50 oC. The mixture was diluted 

with toluene (15 mL) and washed with distilled water (50 mL x 3) and brine (20 mL) then dried 

using Na2SO4. The purified product was obtained after column chromatography in 10 % - 20% 

ethyl acetate:hexane. Yield 0.42 g (35%). 1H NMR (500 MHz, CDCl3): δ 8.09 (dd, J = 8.2, 1.4 Hz, 

1H), 7.74 (m, 2H), 7.58 (m, 1H), 7.37 (m, 5H), 6.20 (s, 1H). 13C NMR (126 MHz, CDCl3): δ 

148.02, 134.51, 134.43, 131.31, 130.91, 130.05, 129.69, 129.08, 128.24, 126.15, 118.98, 38.66. 
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Synthesis of 2.1i,8,9 2.1j,9 and 2.1o:10 

 

General procedure for aryl chloride coupling with benzyl cyanide in the synthesis of 2.1i, 

2.1j, 2.1o:6 In a 10 mL oven or flame dried Schlenk flask purged with argon, potassium hydroxide 

(KOH) (1.2 g, 20 mmol) and dimethyl sulfoxide (DMSO) (2.5 mL) were added and stirred for 30 

minutes. In a separate flask, benzyl cyanide (7.5 mmol, 0.89 g) was diluted with DMSO (1 mL) 

and the solution was added dropwise via syringe to the KOH mixture then stirred for 30 minutes. 

Aryl chloride was then added in portions and the mixture was stirred at room temperature 

overnight. Upon reaction completion, the vessel contents were poured into ice water (20 mL) and 

extracted into ethyl acetate (20 mL x 2) and washed with brine. The organic layer was dried over 

sodium sulfate and concentrated before purification by column chromatography with a gradient of 

5%, 10%, 15% ethyl acetate:hexanes.  
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Synthesis of 2,5-dimethyl-α-phenyl-1H-Pyrrole-1-acetonitrile:11  

 

In a 50 mL round bottom flask, 2-amino-2-phenylacetonitrile (2.6 mmol, 0.34 g), hexane-2,5-

dione (3.1 mmol, 0.35 g), and THF (13 mL) were added and stirred at room temperature for 5 

minutes. Iodine (0.26 mmol, 0.076 g) was added to the solution and stirred overnight. The mixture 

was then diluted with ethyl acetate (30 mL) and washed with saturated Na2S2O3 (20 mL) then 

NaHCO3 (20 mL) and brine. The organic layer was then dried over sodium sulfate and 

concentrated. The crude product was purified by column chromatography in a gradient of 5% - 

10% ethyl acetate:hexanes. Yield 77% (0.42 g). 1H NMR (500 MHz, CDCl3): δ 7.41 (m, 3H), 7.17 

(m, 2H), 6.35 (s, 1H), 5.90 (s, 2H), 2.19 (s, 6H). 13C NMR (126 MHz, CDCl3): δ 133.82, 129.62, 

129.37, 128.80, 125.80, 166.61, 108.05, 48.72, 13.30. HRMS: [M+H]+ calcd for C14H14N2: 

211.1235. Found: 211.1233.  
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General procedure for the synthesis of Acetonitrile 2.1m and 2.1n:3 

 

In an oven or flame dried 25 mL Schlenk flask a solution of indium(III) bromide (0.17 mmol, 0.06 

g) and TMSCN (3.4 mmol, 0.33 g) in DCM (4 mL) was stirred for 30 minutes. In a separate flask, 

the alcohol (1.7 mmol) was diluted with DCM (4 mL) and the solution was added dropwise to the 

InBr3 mixture and stirred overnight. The reaction was quenched with distilled water (20 mL) and 

diluted with DCM (20 mL). The organic layer washed with distilled water (2 x 20 mL) then brine 

(20 mL). The crude product was dried over sodium sulfate and concentrated before purification by 

column chromatography in 5%, 10%, 15% ethyl acetate:hexane.  

Characterization of 2-(4-morpholinophenyl)-2-phenylacetonitrile 2.1m: 

 

Yield: 53% (25 mg).     

Appearance : orange solid 

1H NMR (500 MHz, CDCl3): δ 7.37 (m, 5H), 7.25 (m, 2H), 6.90 (m, 2H), 5.10 (s, 1H), 3.87 (m, 

4H), 3.17 (m, 4H). 

13C NMR (126 MHz, CDCl3): δ 151.34, 136.65, 129.45, 128.94, 128.43, 127.98, 127. 13, 120.30, 

116.13, 67.14, 49.21, 42.14, 

HRMS: [M+H] calcd for C18H18N2O: 279.1497. Found: 279.1498. 

IR: 2966, 2856, 2835, 2358, 1643, 1596, 1446, 1284, 1118, 923, 833, 740, 703, 644 cm-1 
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Synthesis and Characterization of Propargyl Carbonates: 

 

 

A 200 mL flame dried Schlenk flask was placed under an argon atmosphere and charged with 

propargyl alcohol (20 mmol) and DCM (100 mL) then stirred for 5 minutes at room temperature. 

Next, pyridine (3.3 mL, 40 mmol) was added to the solution and the mixture was stirred for 15 

minutes. The solution was then cooled to 0 oC using an ice water bath followed by the dropwise 

addition of methyl chloroformate (3.3 mL, 40 mmol) over ten minutes. The resulting mixture was 

allowed to stir for 1 hour at 0 oC then warmed to room temperature and stirred for an additional 

hour. The reaction was quenched with a saturated solution of ammonium chloride (50 mL) and 

extracted into DCM (100 mL) and washed with water (50 mL x 3) then brine (100 mL x 1). The 

crude product was dried over sodium sulfate and concentrated before purification by column 

chromatography in 2-10% ethyl acetate in hexane. 2.2a,12,14 2b,12 2i,13 2j,14 2m.15  
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    ref. 16 

Yield: 0.25 g, 1.2 mmol, 60% 

Appearance: clear liquid 

1H NMR (500 MHz, CDCl3): δ 4.74 (t, J = 2.2 Hz, 2H), 3.82 (s, 3H), 2.23 (tt, J = 7.3, 2.2 Hz, 

2H), 1.53 (m, 2H), 1.32 (m, 8H), 0.90 (t, J = 6.9 Hz, 3H).  

13C NMR (126 MHz, CDCl3): δ 155.66, 88.96, 73.64, 56.65, 55.36, 32.05, 29.13, 29.12, 28.67, 

22.97, 19.09, 14.44. 

GC/MS: m/z [M+H]+ calcd for C12H20O3: 213.1; found: 213.1.  

IR: 2956, 2929, 2858, 2235, 1755, 1444, 1377, 1261, 1151, 950, 790 cm-1 

 

 

Yield: 18 mg, 1 mmol, 33%  

Appearance: clear liquid 

1H NMR (500 MHz, CDCl3): δ 7.35 (m, 4H), 7.27 (m, 1H), 4.82 (t, J = 2.2 Hz, 2H), 3.83 (s, 3H), 

3.67 (t, J = 2.2 Hz, 2H).  

13C NMR (126 MHz, CDCl3): δ 155.51, 136.14, 128.74, 128.08, 126.93, 85.98, 75.83, 56.31, 

55.24, 25.25. 

GC/MS: m/z [M]+ calcd for C12H12O3: 204.1; found 204.1. 

IR: 3062, 3029, 3008, 2956, 2235, 2202, 1747, 1731, 1703, 1600, 1583, 1494, 1444, 1421, 1377, 

1267, 1203, 1143, 948, 902, 790, 732, 696 cm-1 
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Yield: 0.77g, 5 mmol, 45% 

Appearance: clear liquid 

1H NMR (500 MHz, CDCl3): δ 4.71 (d, J = 2.1 Hz, 2H), 3.82 (s, 3H), 1.28 (m, 1H), 0.76 (m, 4H), 

13C NMR (126 MHz, CDCl3): δ 155.63, 91.92, 69.00, 56.64, 55.34, 8.62, -0.22. 

GC/MS: m/z [M]+ calcd for C8H10O3: 154.1; found: 154.1.  

 

 

Yield: 55 mg, 3 mmol, 60% 

Appearance: clear liquid 

1H NMR (500 MHz, CDCl3): δ 4.75 (d, J = 2.1 Hz, 2H), 3.82 (s, 3H), 2.64 (qt, J = 7.6, 2.1 Hz, 

1H), 1.93 (m, 2H), 1.73 (m, 2H), 1.60 (m, 4H). 

13C NMR (126 MHz, CDCl3): δ 155.64, 93.01, 73.13, 56.74, 55.34, 33.85, 30.40, 25.31. 

GC/MS: m/z [M]+ calcd C10H14O3: 182.1; found: 182.1.  

 

 

Yield: 1.76 g, 9.0 mmol, 83% 
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Appearance: clear liquid  

1H NMR (500 MHz, CDCl3): δ 4.76 (d, J = 2.1 Hz, 2H), 3.82 (s, 3H), 2.41 (m, 1H), 1.80 (m, 2H), 

1.70 (m, 2H), 1.47 (br m, 3H), 1.30 (m, 3H). 

13C NMR (126 MHz, CDCl3): 155.63, 92.81, 73.54, 56.70, 55.33, 32.63, 29.38, 26.12, 25.14. 

GC/MS: m/z [M]+ calcd for C11H16O3: 196.1; found: 196.1. 

IR: 2931, 2854, 2235, 1755, 1446, 1375, 1265, 1157, 1020, 948, 900, 790 cm-1 

 

Yield: 2 g, 13 mmol, 70% 

Appearance: clear liquid 

1H NMR (500 MHz, CDCl3): δ 5.81 (m, 1H), 5.33 (dq, J = 17.1, 1.8 Hz, 1H), 5.14 (dq, J = 10.0, 

1.6 Hz, 1H), 4.78 (t, J = 2.2 Hz, 2H), 3.83 (s, 3H), 3.03 (dp, J = 6.0, 2.0 Hz, 2H). 

13C NMR (126 MHz, CDCl3): δ 155.63, 132.02, 116.86, 85.19, 76.09, 56.43, 55.40, 23.38. 

GC/MS: m/z [M]+ calcd for C8H10O3: 154.1: found: 154.1. 

IR: 3016, 2983, 2958, 2358, 2341, 1747, 1714, 1444, 1421, 1377, 1263, 1149, 1107, 1020, 993, 

950, 919, 900, 790, 648 cm-1 

 

 

Yield: 1.7 g, 10.1 mmol, 56% 

Appearance: clear liquid  
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1H NMR (500 MHz, CDCl3): δ 5.00 (br m, 1H), 4.86 (br m, 1H), 4.78 (t, 2H), 3.83 (s, 3H), 2.96 

(m, 2H), 1.80 (m, 3H). 

13C NMR (126 MHz, CDCl3): δ 155.64, 140.14, 112.36, 85.65, 76.03, 56.47, 55.40, 27.82, 22.40. 

GC/MS: m/z [M]+ calcd for C9H12O3: 168.1; found: 168.1. 

IR: 2958, 2887, 2858, 2235, 1755, 1652, 1444, 1375, 1261, 1228, 1149, 948, 900, 790 cm-1 

 

 

Yield: 1.3 g, 9 mmol, 62% 

Appearance: clear liquid 

1H NMR (500 MHz, CDCl3): δ 5.83 (ddt, J = 17.6, 11.0, 1.9 Hz, 1H), 5.71 (dd, J = 17.5, 2.2 Hz, 

1H), 5.56 (dd, J = 11.0, 2.2 Hz, 1H), 4.87 (d, J = 2.0 Hz, 2H), 3.84 (s, 3H). 

13C NMR (126 MHz, CDCl3): δ 155.58, 128.86, 116.52, 86.14, 83.15, 56.40, 55.49. 

GC/MS: m/z [M]+ calcd for C7H8O3: 140.0; found: 140.1. 

IR: 3014, 2958, 2235, 1749, 1712, 1602, 1444, 1413, 1375, 1263, 1199, 1168, 1107, 1018, 950, 

900, 792 cm-1 
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Ligand Screen: 

O O

O 2.5 mol % Pd2(dba)3
5 mol% Ligand

90 oC, 14 h
2 mL CH3CN

NC

Ph Ph
NC

Ph Ph

HNC

Ph Ph

entry Ligand starting 
material

dienylation propargylation

1 XantPhos 2% 14% 62%
2 dppe 3% 94% 3%
3 dppm 28% 42% 27%
4 dppb 2% 85% 13%
5 dppp 5% 87% 8%

allenylation

22%
0%
4%

6
7

dppf 1%

0%
0%
1% 74% 24%

(R)-SEGPHOS 5% 0% 76% 23%
8 tri-otolylphosphine 48% 3% 41% 9%
9 rac-BINAP 4% 1% 70% 24%
10 (R)-C3-tunephos 1% 0% 86% 13%
11 XPhos 11% 1% 36% 53%
12 dppbz 3% 0% 93% 3%
13b SPhos 13% 2% 24% 60%
14b (R)-DM-BINAP 3% 1% 80% 17%
15b tri-1-nap phosphine 52% 3% 37% 9%
16b Ligand 1 44% 1% 48% 7%
17b JohnPhos 45% 20% 2% 33%
18b Cy-JohnPhos 56% 4% 15% 25%
19b tBu-MePhos 22% 29% 2% 47%
20b tBu-XPhos 43% 18% 7% 37%
21b MePhos 11% 3% 19% 67%

0.3 mmol 1 eq

22 MePhos 10% 6% 81%3%

P(i-Pr)2
P(i-Pr)2MeO

MeO

Ligand 1
1,1'-[(1S)-6-6'-
dimethoxy[1,1'-

biphenyl]-
2,2'diyl]bis[1,1'bis(meth

ylethyl)-phosphine

a Determined by GC/MS analysis.
b NMR Scale - 0.078 mmol, 80 oC, 0.5 mL CD3CN  
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Solvent Screen:  
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Experimental Procedure for the dienylation and propargylation of tertiary nitriles:  

In an oven or flamed dried Biotage microwave reaction vial (part no. 354624) equipped with a 

magnetic stir bar, catalyst (Pd2(dba)3, 0.0137 g,  5 mol %), ligand (dppe, 0.012 g, 10 mol % or  

MePhos, 0.011 g, 10 mol %), and diaryl acetonitrile (0.3 mmol if solid) were added under an argon 

atmosphere in a glovebox. The solid mixture was dissolved in 2 mL anhydrous DMF followed by 

addition of diaryl acetonitrile (0.3 mmol if liquid) and propargyl carbonate (0.6 mmol). The vessel 

was sealed, removed from the glovebox, and placed in a preheated oil bath at 80 oC for 1 hr. After 

reaction completion, the vessel was unsealed and solid lithium hydroxide (0.6 mmol) was added to 

the solution followed by 1 mL distilled water. The resulting mixture was stirred for an additional 

hour. The crude product was diluted with DCM (50 mL) and the organic layer was washed with 

distilled water (50 mL x 3) then brine (50 mL) before being dried over sodium sulfate.  The 

organic phase was concentrated via rotary evaporation and purified via column chromatography in 

0-5% ethyl acetate in hexane.  
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Characterization of Dienylated and Propargylated Tertiary Nitriles: 

 

 

Yield: 66 mg, 0.27 mmol, 89%  

Appearance : yellow oil 

1H NMR (500 MHz, CDCl3): δ 7.48 (m, 10H), 6.46 (dd, J = 17.6, 11.2 Hz, 1H), 5.79 (s, 1H), 5.55 

(d, J = 17.5 Hz, 1H), 5.33 (d, J = 11.2 Hz, 1H), 4.82 (s, 1H).  

13C NMR (126 MHz, CDCl3): δ 145.87, 138.35, 135.07, 128.99, 128.91, 128.51, 122.39, 120.51, 

118.55, 56.94.  

GC/MS: m/z [M]+ calcd for C18H15N: 245.1; found: 245.2. 

 

 

 

Yield: 64 mg, 0.23 mmol, 77% 

Appearance : yellow oil 

1H NMR (500 MHz, CDCl3): δ 7.38 (m, 5H), 7.26 (m, 2H), 6.91 (m, 2H), 6.35 (m, 1H), 5.67 (s, 

1H), 5.45 (d, J = 17.5 Hz, 1H), 5.23 (d, J = 11.2 Hz, 1H), 4.72 (s, 1H), 3.83 (s, 3H).  

13C NMR (126 MHz, CDCl3): δ 159.59, 146.11, 138.67, 135.10, 130.30, 130.11, 128.95, 128.81, 

128.43, 122.55, 120.21, 118.45, 114.27, 56.28, 55.61. 
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GC/MS: m/z [M]+ calcd for C19H17NO: 275.1; found: 275.2. 

 

 

 

Yield: 76 mg, 0.29 mmol, 96% 

Appearance : yellow oil 

1H NMR (500 MHz, CDCl3): δ 7.42 (m, 6H), 7.14 (m, 2H), 6.95 (td, J = 7.9, 1.7 Hz, 1H), 6.36 

(dd, J = 17.5, 11.2 Hz, 1H), 5.70 (s, 1H), 5.52 (d, J = 17.5 Hz, 1H), 5.25 (d, J = 11.1 Hz, 1H), 4.83 

(s, 1H).  

13C NMR (126 MHz, CDCl3): δ 160.75 (d, J = 252.4 Hz), 144.05, 136.89, 134.77, 131.06 (d, J = 

8.5 Hz), 130.57 (d, J = 2.2 Hz), 129.15, 128.79, 128.60, 126.36 (d, J = 11.3 Hz), 124.43 (d, J = 3.7 

Hz), 120.81, 119.25, 118.49, 117.00 (d, J = 21.7 Hz), 52.94.  

GC/MS: m/z [M]+ calcd for C18H14FN: 263.1; found: 263.1. 

 

 

 

Yield: 74 mg, 0.25 mmol, 83% 

Appearance : yellow oil  
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1H NMR (500 MHz, CDCl3): δ 7.87 (m, 2H), 7.80 (m, 2H), 7.52 (m, 3H), 7.40 (m, 5H), 6.39 (dd, 

J = 17.5, 11.2 Hz, 1H), 5.73 (s, 1H), 5.48 (d, J = 17.5 Hz, 1H), 5.24 (d, J = 11.2 Hz, 1H), 4.77 (s, 

1H).  

13C NMR (126 MHz, CDCl3): δ 145.77, 138.35, 135.72, 135.13, 133.29, 133.09, 129.08, 129.05, 

128.86, 128.70, 128.62, 128.16, 127.91, 127.20, 126.97, 126.52, 122.41, 120.74, 118.70, 57.12. 

GC/MS: m/z [M]+ calcd for C22H17N: 295.1; found: 295.2. 

 

 

 

Yield: 84 mg, 0.26 mmol, 86% 

Appearance : yellow oil  

1H NMR (500 MHz, CDCl3): δ 7.53 (m, 2H), 7.38 (m, 5H), 7.24 (m, 2H), 6.33 (dd, J = 17.5, 11.2 

Hz, 1H), 5.69 (s, 1H), 5.44 (d, J = 17.5 Hz, 1H), 5.24 (d, J = 11.2 Hz, 1H), 4.71 (s, 1H). 

13C NMR (126 MHz, CDCl3): δ 145.44, 137.82, 137.56, 134.79, 132.17, 130.64, 129.15, 128.78, 

128.75, 122.84, 121.91, 120.80, 118.89, 56.50. 

GC/MS: m/z [M]+ calcd for C18H14BrN: 323.0. Found: 323.1. 
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Yield: 72 mg, 0.24 mmol, 81%  

Appearance : yellow oil  

1H NMR (500 MHz, CDCl3): δ 8.15 (m, 1H), 7.91 (m, 2H), 7.47 (m, 8H), 7.13 (m, 1H), 6.43 (dd, 

J = 17.4, 11.1 Hz, 1H), 5.80 (s, 1H), 5.63 (d, J = 17.5 Hz, 1H), 5.28 (d, J = 11.1 Hz, 1H), 4.87 (s, 

1H).  

13C NMR (126 MHz, CDCl3): δ 145.33, 138.25, 135.22, 134.88, 133.84, 130.89, 130.43, 129.33, 

129.20, 128.99, 128.79, 128.65, 126.57, 126.48, 126.16, 124.90, 122.21, 119.70, 118.30, 55.91. 

GC/MS: m/z [M]+ calcd for C22H17N: 295.1; found: 295.2. 

IR: 3087, 3060, 3029, 2925, 2248, 2239, 1591, 1487, 1448, 1398, 1076, 1010, 914, 815, 757, 734, 

698, 649, 538 cm-1 

 

 

 

Yield: 75 mg, 0.23 mmol, 77% 

Appearance : yellow oil  

1H NMR (500 MHz, CDCl3): δ 7.38 (m, 8H), 7.28 (m, 1H), 6.33 (dd, J = 17.5, 11.2 Hz, 1H), 5.70 

(s, 1H), 5.44 (d, J = 17.6 Hz, 1H), 5.25 (d, J = 11.2 Hz, 1H), 4.72 (s, 1H).  



 90 

13C NMR (126 MHz, CDCl3): δ 145.35, 140.43, 137.66, 135.09, 134.77, 130.24, 129.18, 129.03, 

128.87, 128.81, 127.21, 121.84, 120.91, 118.92, 56.63. 

GC/MS: m/z [M]+ calcd for C18H14ClN: 279.1; found: 279.2.  

 

 

 

Yield: 71 mg, 0.25 mmol, 82% 

Appearance : orange oil 

1H NMR (500 MHz, CDCl3): δ 7.82 (m, 1H), 7.47 (m, 2H), 7.29 (m, 5H), 7.17 (m, 1H), 6.18 (dd, 

J = 17.4, 11.1 Hz, 1H), 5.60 (s, 1H), 5.35 (d, J = 17.4 Hz, 1H), 5.11 (d, J = 11.1 Hz, 1H), 4.75 (s, 

1H).   

13C NMR (126 MHz, CDCl3): δ 150.00, 144.88, 136.96, 134.53, 132.85, 132.36, 131.32, 130.30, 

129.21, 128.90, 128.37, 126.38, 119.70, 119.47, 118.97, 55.33. 

GC/MS: m/z [M]+ calcd for C18H14N2O2: 290.1. Found: [M+] – NO2: 245.1. 

 

 

 

Yield: 17 mg, 0.070 mmol, 23% 

Appearance : orange-red oil  
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1H NMR (500 MHz, CDCl3): δ 8.72 (ddd, J = 4.8, 1.9, 0.9 Hz, 1H), 7.72 (td, J = 7.8, 1.9 Hz, 1H), 

7.39 (m, 6H), 7.28 (m, 1H), 6.36 (dd, J = 17.6, 11.2 Hz, 1H), 5.69 (s, 1H), 5.39 (d, J = 17.6 Hz, 

1H), 5.20 (d, J = 11.2 Hz, 1H), 4.73 (s, 1H).  

13C NMR (126 MHz, CDCl3): δ 157.66, 150.07, 145.30, 137.51, 137.39, 135.06, 129.09, 128.85, 

128.67, 123.52, 123.27, 121.53, 120.67, 118.45, 59.39. 

GC/MS: m/z [M]+ calcd for C17H14N2: 246.1; found: 246.2. 

IR: 3085, 3058, 3006, 1585, 1571, 1492, 1463, 1448, 1431, 1153, 1031, 995, 918, 777, 750, 698, 

667 cm-1 

 

 

 

Yield: 9.6 mg, 0.04 mmol, 13% 

Appearance : orange-red oil  

1H NMR (500 MHz, CDCl3) major isomer: δ 8.85 (d, J = 4.9 Hz, 2H), 7.52 (m, 2H), 7.39 (m, 

4H), 6.38 (dd, J = 17.6, 11.3 Hz, 1H), 5.70 (s, 1H), 5.31 (d, J = 17.6 Hz, 1H), 5.17 (d, J = 11.3 Hz, 

1H), 4.85 (s, 1H).  

13C NMR (126 MHz, CDCl3) major isomer: δ 167.30, 158.13, 144.90, 136.43, 135.05, 129.04, 

128.80, 128.76, 120.78, 120.53, 120.29, 118.03, 60.83. 

GC/MS: m/z [M]+ calcd for C16H13N3: 247.1; found: 247.1. 
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Yield: 59 mg, 0.23 mmol, 75% 

Appearance : orange oil  

1H NMR (500 MHz, CDCl3): δ 7.44 (m, 3H), 7.32 (m, 2H), 6.51 (dd, J = 17.6, 11.3 Hz, 1H), 5.88 

(s, 2H), 5.72 (s, 1H), 5.63 (d, J = 17.5 Hz, 1H), 5.39 (d, J = 11.2 Hz, 1H), 4.68 (s, 1H), 2.11 (s, 

6H).  

13C NMR (126 MHz, CDCl3): δ 144.35, 136.94, 134.35, 131.55, 129.78, 129.22, 128.77, 120.69, 

119.77, 118.76, 109.86, 66.92, 16.76. 

GC/MS: m/z [M]+ calcd for C18H18N2: 262.1; found: 262.2. 

IR: 3099, 3062, 3029, 2960, 2927, 2898, 1712, 1593, 1523, 1492, 1450, 1375, 1271, 1186, 1064, 

985, 923, 898, 756, 698 cm-1 

 

 

 

Yield: 91 mg, 0.28 mmol, 94% 

Appearance : yellow oil  

1H NMR (500 MHz, CDCl3): δ 7.64 (m, 5H), 7.45 (m, 10H), 6.40 (dd, J = 17.5, 11.2 Hz, 1H), 

5.73 (s, 1H), 5.50 (d, J = 17.5 Hz, 1H), 5.27 (d, J = 11.1 Hz, 1H), 4.80 (s, 1H).  
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13C NMR (126 MHz, CDCl3): δ 145.80, 141.32, 140.31, 138.30, 137.34, 135.04, 129.35, 129.17, 

129.05, 128.89, 128.57, 127.99, 127.62, 127.37, 122.35, 120.55, 118.65, 56.70. 

GC/MS: m/z [M]+ calcd for C24H19N: 321.2; found: 321.2. 

 

 

 

Yield: 99 mg, 0.3 mmol, 99% 

Appearance : orange-red oil  

1H NMR (500 MHz, CDCl3): δ 7.37 (m, 5H), 7.22 (m, 2H), 6.90 (m, 2H), 6.35 (dd, J = 17.5, 11.2 

Hz, 1H), 5.66 (s, 1H), 5.45 (d, J = 17.5 Hz, 1H), 5.21 (d, J = 11.2 Hz, 1H), 4.73 (s, 1H), 3.87 (m, 

4H), 3.20 (m, 4H).  

13C NMR (126 MHz, CDCl3): δ 150.94, 146.10, 138.73, 135.11, 129.73, 128.99, 128.87, 128.78, 

128.33, 122.54, 120.05, 118.32, 115.29, 67.05, 56.21, 48.89. 

GC/MS: m/z [M]+ calcd for C22H22N2O: 330.2; found: 330.2. 

IR: 2962, 2910, 2893, 2854, 2827, 2235, 1608, 1514, 1490, 1448, 1380, 1263, 1238, 1184, 1122, 

1051, 927, 819, 759, 730, 700, 648, 547 cm-1 
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Yield: 33 mg, 0.13 mmol, 42% 

Appearance : light yellow oil  

1H NMR (500 MHz, CDCl3): δ 7.37 (m, 10H), 6.03 (m, 1H), 5.94 (dq, J = 15.8, 6.5 Hz, 1H), 5.54 

(s, 1H), 4.53 (s, 1H), 1.73 (dd, J = 6.4, 1.5 Hz, 3H). 

13C NMR (126 MHz, CDCl3): δ 145.70, 138.64, 130.31, 129.41, 128.97, 128.93, 128.41, 122.66, 

118.37, 57.33, 18.91. 

GC/MS: m/z [M]+ calcd for C19H17N: 259.1; found: 259.2. 

 

 

 

Yield: 41 mg, 0.12 mmol, 41% 

Appearance : yellow oil  

1H NMR (500 MHz, CDCl3) major isomer: δ 7.37 (m, 10H), 6.00 (m, 1H), 5.90 (dt, J = 15.8, 6.8 

Hz, 1H), 5.55 (s, 1H), 4.56 (s, 1H), 2.04 (m, 2H), 1.25 (m, 8H), 0.88 (t, J = 7.2 Hz, 3H).  

13C NMR (126 MHz, CDCl3) δ 145.80, 138.69, 135.96, 129.00, 128.90, 128.38, 128.14, 122.64, 

118.47, 57.28, 33.31, 31.96, 29.23, 28.96, 22.91, 14.43. 

GC/MS: m/z [M]+ calcd for C24H27N: 329.2; found: 329.2. 
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Yield: 49 mg, 0.21 mmol, 70%  

Appearance : yellow oil  

1H NMR (500 MHz, CDCl3): δ 7.22 (m, 15H), 6.69 (d, J = 16.2 Hz, 1H), 6.60 (d, J = 16.2 Hz, 

1H), 5.68 (s, 1H), 4.63 (s, 1H).   

13C NMR (126 MHz, CDCl3): δ 145.55, 138.49, 136.82, 132.85, 129.06, 128.99, 128.88, 128.57, 

128.40, 127.05, 126.75, 122.53, 119.83, 57.40. 

GC/MS: m/z [M]+ calcd for C24H19N: 321.2; found: 321.2. 

IR: 3082, 3060, 3028, 2927, 2250, 2237, 1639, 1633, 1598, 1492, 1448, 1334, 1074, 1031, 962, 

912, 750, 734, 698, 648 cm-1 

 

 

 

Yield: 60 mg, 0.22 mmol, 74% 

Appearance : yellow oil 

1H NMR (500 MHz, CDCl3): δ 7.35 (m, 10H), 6.48 (dd, J = 15.6, 10.5 Hz, 1H), 6.32 (dt, J = 

17.0, 10.3 Hz, 1H), 6.19 (d, J = 15.6 Hz, 1H), 5.70 (s, 1H), 5.24 (d, J = 16.9 Hz, 1H), 5.15 (d, J = 

9.9 Hz, 1H), 4.68 (s, 1H). 
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13C NMR (126 MHz, CDCl3): δ 145.34, 138.44, 136.94, 133.60, 130.76, 129.03, 128.98, 128.56, 

122.46, 119.54, 119.46, 57.35. 

GCMS: m/z [M]+ calcd for C20H17N: 271.1. Found: 271.2. 

 

 

 

Yield: 45 mg, 0.15 mmol, 51%  

Appearance : yellow oil  

1H NMR (500 MHz, CDCl3): product 5f only: δ 7.38 (m, 10H), 5.82 (m, 1H), 5.43 (s, 1H), 4.85 

(s, 1H), 2.43 (m, 2H), 2.33 (m, 2H), 1.74 (m, 2H), 1.62 (m, 2H).   

13C NMR (126 MHz, CDCl3): product 5f only: δ 151.24, 145.39, 138.68, 129.05, 128.85, 128.38, 

122.79, 118.61, 118.25, 59.29, 35.49, 32.11, 27.01, 25.77.  

GC/MS: m/z [M]+ calcd for C22H21N: 299.2; found: 299.2. 
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Yield: 63 mg, 0.14 mmol, 93% 

Appearance : off-white solid 

1H NMR (500 MHz, CDCl3): δ 7.31 (m, 20H), 6.20 (d, J = 15.8 Hz, 1H), 5.78 (dt, J = 15.9, 7.2 

Hz, 1H), 5.56 (s, 1H), 4.64 (s, 1H), 3.14 (dd, J  = 7.3, 1.4 Hz, 2H).  

13C NMR (126 MHz, CDCl3): δ 144.73, 139.76, 138.19, 133.45, 129.12, 129.00, 128.83, 128.42, 

128.17, 127.91, 127.20, 122.27, 122.00, 121.11, 56.83, 52.03, 43.69. 

GCMS: m/z [M]+ calcd for C33H26N2: 450.2; found: 450.3. 

 

 

 

Yield: 64 mg, 0.26 mmol, 86% 

Appearance : yellow oil 

1H NMR (500 MHz, CDCl3): δ 7.39 (m, 10H), 3.21 (q, J = 2.5 Hz, 2H), 1.76 (t, J = 2.51 Hz, 3H).  

13C NMR (126 MHz, CDCl3): δ 139.62, 129.05, 128.40, 127.40, 122.30, 81.08, 73.56, 51.94, 

31.54, 3.86. 

GC/MS: m/z [M]+ calcd for C18H15N: 245.1; found: 245.2. 
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Yield: 55 mg, 0.20 mmol, 67% 

Appearance : yellow oil 

1H NMR (500 MHz, CDCl3): δ 7.38 (m, 7H), 6.91 (m, 2H), 3.82 (s, 3H), 3.17 (q, J = 2.5 Hz, 2H), 

1.76 (t, J = 2.5 Hz, 3H).  

13C NMR (126 MHz, CDCl3): δ 159.49, 139.98, 131.62, 129.01, 128.66, 128.33, 127.33, 122.50, 

114.32, 81.00, 73.68, 55.60, 51.27, 31.72, 3.89. 

GC/MS: m/z [M]+ calcd for C19H17NO: 275.1; found: 275.2.  

IR: 3002, 2956, 2920, 2839, 2237, 1608, 1583, 1512, 1494, 1461, 1448, 1299, 1255, 1184, 1033, 

912, 827, 732, 698, 594, 543 cm-1 

 

 

 

Yield: 53 mg, 0.20 mmol, 67% 

Appearance : yellow oil 

1H NMR (500 MHz, CDCl3): δ 7.63 (td, J = 7.9, 1.7 Hz, 1H), 7.37 (m, 6H), 7.25 (td, J = 7.6, 1.3 

Hz, 1H), 7.07 (ddd, J = 11.5, 8.2, 1.3 Hz, 1H), 3.28 (m, 2H), 1.75 (t, J = 2.5 Hz, 3H).  
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13C NMR (126 MHz, CDCl3): δ 160.64 (d, J = 251.1 Hz), 138.79, 130.91 (d, J = 8.7 Hz), 129.02, 

128.91 (d, J = 2.8 Hz), 128.49, 126.76, 126.42 (d, J = 10.8 Hz), 124.51 (d, J = 3.6 Hz), 120.94, 

117.13 (d, J = 21.7 Hz), 81.35, 73.31, 48.92, 30.50 (d, J = 2.2 Hz), 3.86.  

19F (376 MHz, CDCl3): δ -108.8 (s, 1F). 

GC/MS: m/z [M]+ calcd for C18H14FN: 263.1; found: 263.2. 

IR: 3062, 2920, 2854, 2241, 1612, 1598, 1581, 1490, 1450, 1226, 1112, 1035, 810, 757, 732, 698, 

514 cm-1 

 

 

 

Yield: 74 mg, 0.25 mmol, 84% 

Appearance : yellow oil  

1H NMR (500 MHz, CDCl3): δ 8.02 (d, J = 2.1 Hz, 1H), 7.87 (m, 3H), 7.55 (m, 2H), 7.42 (m, 

6H), 3.31 (q, J = 2.5 Hz, 2H), 1.75 (t, J = 2.5 Hz, 3H).  

13C NMR (126 MHz, CDCl3): δ 139.60, 136.80, 133.26, 133.03, 129.16, 129.12, 128.68, 128.54, 

127.93, 127.57, 127.12, 127.03, 126.37, 125.26, 122.30, 81.32, 73.55, 52.12, 31.48, 3.96. 

GC/MS: m/z [M]+ calcd for C22H17N: 295.1; found: 295.2.  

IR: 3058, 2920, 2852, 2239, 1598, 1494, 1448, 1434, 1274, 1124, 910, 815, 748, 734, 698, 478 

cm-1 
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Yield: 68 mg, 0.23 mmol, 78% 

Appearance : yellow oil 

1H NMR (500 MHz, CDCl3): δ 7.89 (m, 4H), 7.59 (t, J = 7.8 Hz, 1H), 7.35 (m, 7H), 3.43 (dq, J = 

16.4, 2.5 Hz, 1H), 3.28 (dq, J = 16.4, 2.5 Hz, 1H), 1.80 (t, J = 2.5 Hz, 3H).  

13C NMR (126 MHz, CDCl3): 140.70, 135.03, 132.71, 130.69, 130.51, 129.37, 129.11, 128.27, 

126.65, 126.61, 126.04, 125.90, 125.80, 124.94, 121.96, 81.60, 73.67, 50.37, 33.63, 3.94. 

GCMS: m/z [M]+ calcd for C22H17N: 295.1. Found: 295.2. 

IR: 3085, 3055, 3029, 2918, 2237, 1600, 1510, 1490, 1448, 1434, 1398, 1161, 1031, 910, 796, 

777, 761, 732, 700, 640, 565, 513 cm-1 

 

 

 

Yield: 64 mg, 0.23 mmol, 75% 

Appearance : yellow oil 

1H NMR (500 MHz, CDCl3): δ 7.37 (m, 9H), 3.18 (p, J = 2.5 Hz, 2H), 1.76 (t, J = 2.5 Hz, 3H).  

13C NMR (126 MHz, CDCl3): δ 141.62, 138.94, 135.08, 130.32, 129.30, 128.78, 128.76, 127.79, 

127.38, 125.79, 121.80, 81.63, 73.14, 51.72, 31.53, 3.90. 

GC/MS: m/z [M]+ calcd for C18H14ClN: 279.1; found: 279.2. 
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IR: 3062, 3029, 2920, 2852, 2239, 1593, 1573, 1492, 1475, 1448, 1421, 1190, 1168, 1089, 999, 

879, 783, 740, 717, 696, 669, 416 cm-1 

 

 

 

Yield: 81 mg, 0.28 mmol, 94% 

Appearance : orange oil  

1H NMR (500 MHz, CDCl3): δ 8.00 (dd, J = 8.0, 1.3 Hz, 1H), 7.74 (m, 2H), 7.58 (td, J = 7.7, 1.3 

Hz, 1H), 7.32 (m, 5H), 3.40 (m, 2H), 1.76 (t, J = 2.5 Hz, 3H).  

13C NMR (126 MHz, CDCl3): δ 150.17, 137.55, 132.52, 131.49, 130.89, 130.19, 128.98, 128.78, 

126.96, 126.15, 120.40, 82.40, 73.05, 50.31, 32.30, 3.85. 

GC/MS: m/z [M]+ calcd for C18H14N2O2: 290.1; found: 290.1. 

IR: 3062, 2920, 2852, 2241, 1749, 1600, 1577, 1535, 1492, 1448, 1440, 1359, 1031, 912, 854, 

781, 732, 698, 649, 416 cm-1 

 

 

 

Yield: 54 mg, 0.22 mmol, 74% 

Appearance : orange-red oil 

1H NMR (500 MHz, CDCl3): δ 8.55 (m, 1H), 7.39 (m, 8H), 3.33 (m, 2H), 1.61 (m, 3H).  
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13C NMR (126 MHz, CDCl3): δ 157.52, 149.58, 138.71, 137.47, 129.06, 128.45, 126.96, 123.28, 

122.80, 121.80, 80.30, 73.95, 54.42, 30.55, 3.87. 

GC/MS: m/z [M]+ calcd for C17H14N2: 246.1; found: 246.1.  

IR: 3058, 2920, 2854, 2241, 1587, 1573, 1494, 1467, 1448, 1431, 1298, 1153, 1054, 1033, 993, 

777, 757, 746, 698, 619, 538, 416 cm-1 

 

 

 

Yield: 67 mg, 0.27 mmol, 89% 

Appearance : red oil 

1H NMR (500 MHz, CDCl3): δ 8.79 (d, J = 4.9 Hz, 2H), 7.56 (m, 2H), 7.32 (m, 4H), 3.61 (dq, J = 

16.5, 2.5 Hz, 1H), 3.32 (dq, 16.4, 2.5 Hz, 1H), 1.70 (t, J = 2.5 Hz, 3H).  

13C NMR (126 MHz, CDCl3): δ 166.79, 158.01, 137.59, 129.15, 128.67, 126.66, 120.88, 120.40, 

80.25, 73.69, 56.75, 30.42, 3.88. 

GC/MS: m/z [M]+ calcd for C16H13N3: 247.1; found: 247.2. 

IR: 3087, 3060, 3039, 3960, 2920, 2854, 2244, 1566, 1494, 1450, 1434, 1409, 1058, 1033, 912, 

811, 757, 730, 698, 634 cm-1 
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Yield: 87 mg, 0.27 mmol, 89% 

Appearance : yellow oil 

1H NMR (500 MHz, CDCl3): δ 7.62 (m, 4H), 7.44 (m, 10H), 3.26 (q, J = 2.5 Hz, 2H), 1.78 (t, J = 

2.5 Hz, 3H).  

13C NMR (126 MHz, CDCl3): δ 141.28, 140.38, 139.61, 138.60, 129.17, 129.14, 128.50, 127.97, 

127.90, 127.73, 127.44, 127.39, 122.31, 81.22, 73.58, 51.76, 31.57, 3.92. 

GC/MS: m/z [M]+ calcd for C24H19N: 321.2; found: 321.2. 

IR: 3058, 3029, 2918, 2239, 1598, 1487, 1448, 1434, 1407, 1006, 910, 833, 763, 730, 696, 675, 

649, 563, 520 cm-1 

 

 

 

Yield: 54 mg, 0.20 mmol, 68%  

Appearance : dark yellow oil 

1H NMR (500 MHz, CDCl3): δ 7.55 (m, 2H), 7.44 (m, 4H), 7.37 (m, 3H), 7.32 (m, 1H), 6.91 (d, J 

= 16 Hz, 1H), 6.39 (d, J = 16 Hz, 1H), 3.02 (q, J = 2.5 Hz, 2H), 1.80 (t, J = 2.5 Hz, 3H).   

13C NMR (126 MHz, CDCl3): δ 138.38, 135.95, 132.76, 129.27, 129.02, 128.72, 128.65, 127.78, 

127.14, 126.78, 120.99, 81.10, 73.08, 49.38, 31.91, 3.91. 

GC/MS: m/z [M]+ calcd for C20H17N: 271.1; found: 271.1. 

IR: 3060, 3028, 2918, 2852, 2239, 1714, 1577, 1494, 1448, 1434, 1157, 1072, 1029, 966, 748, 

694, 416 cm-1 
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Yield: 18 mg, 0.063 mmol, 21% 

Appearance : orange oil 

1H NMR (500 MHz, CDCl3) major isomer: δ 7.83 (m, 1H), 7.55 (m, 3H), 7.42 (m, 5H), 3.62 (dq, 

J = 16.6, 2.5 Hz, 1 H), 3.34 (dq, J = 16.6, 2.5 Hz, 1H), 1.76 (t, 3H). 

13C NMR (126 MHz, CDCl3) major isomer: δ 161.44, 151.52, 140.81, 135.09, 129.52, 129.50, 

126.54, 126.37, 125.32, 121.06, 118.03, 111.50, 81.51, 72.30, 49.55, 31.17, 3.95. 

GC/MS: m/z [M]+ calcd for C19H14N2O: 286.1; found: 286.2. 

IR: 2956, 2921, 2852, 2243, 1610, 1560, 1492, 1452, 1238, 1166, 1002, 761, 748, 696 cm-1 

 

 

 

Yield: 78 mg, 0.3 mmol, 99% 

Appearance : clear yellow oil  

1H NMR (500 MHz, CDCl3): δ 7.40 (m, 10H), 3.22 (t, J = 2.4 Hz, 2H), 2.12 (qt, J = 7.4, 2.3 Hz, 

2H), 1.06 (t, J = 7.5 Hz, 3H).  

13C NMR (126 MHz, CDCl3): δ 139.61, 128.99, 128.38, 127.46, 122.26, 87.19, 73.91, 51.95, 

31.54, 14.04, 12.65. 
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GC/MS: m/z [M]+ calcd for C19H17N: 259.1; found: 259.2. 

IR: 3060, 2975, 2935, 2920, 2237, 1598, 1585, 1494, 1448, 1319, 1033, 1002, 754, 698, 651, 624, 

538 cm-1   

 

 

 

Yield: 96 mg, 0.29 mmol, 97% 

Appearance : yellow oil 

1H NMR (500 MHz, CDCl3): δ 7.39 (m, 10H), 3.24 (t, J = 2.4 Hz, 2H), 2.11 (tt, J = 7.0, 2.4 Hz, 

2H), 1.31 (m, 10H), 0.92 (t, J = 7.2 Hz, 3H).  

13C NMR (126 MHz, CDCl3): δ 139.64, 129.01, 128.37, 127.48, 122.30, 85.93, 74.51, 52.02, 

32.03, 31.63, 29.09, 28.87, 28.84, 22.96, 18.92, 14.43. 

GC/MS: m/z [M]+ calcd for C24H27N: 329.2; found: 329.2. 

IR: 3060, 2954, 2927, 2856, 2237, 1598, 1494, 1465, 1448, 1434, 1330, 1033, 1002, 754, 698, 

651, 624, 538 cm-1 
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Yield: 27 mg, 0.084 mmol, 28%  

Appearance : yellow oil  

1H NMR (500 MHz, CDCl3): δ 7.33 (m, 15H), 3.56 (t, J = 2.4 Hz, 2H), 3.33 (t, J = 2.4 Hz, 2H).  

13C NMR (126 MHz, CDCl3): δ 139.48, 136.80, 129.15, 128.67, 128.49, 128.12, 127.50, 126.73, 

122.31, 83.09, 76.98, 51.97, 31.75, 25.33. 

GC/MS: m/z [M]+ calcd for C24H19N: 321.2; found: 321.2. 

 

 

 

Yield: 81 mg, 0.3 mmol, 99% 

Appearance : yellow oil  

1H NMR (500 MHz, CDCl3): δ 7.39 (m, 10H), 3.20 (d, J = 2.0 Hz, 2H), 1.15 (m, 1H), 0.68 (m, 

2H), 0.55 (m, 2H).  

13C NMR (126 MHz, CDCl3): δ 139.56, 128.97, 128.38, 127.44, 122.19, 88.98, 69.63, 51.96, 

31.58, 8.33, -0.23. 

GC/MS: m/z [M]+ calcd for C20H17N: 271.1; found: 271.2. 

IR: 3089, 3060, 3026, 2918, 2237, 1598, 1494, 1448, 1359, 1053, 1031, 877, 754, 698, 624 cm-1 
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Yield: 90 mg, 0.3 mmol, 99% 

Appearance : yellow oil  

1H NMR (500 MHz, CDCl3): δ 7.39 (m, 10H), 3.23 (d, J = 2.2 Hz, 2H), 2.56 (m, 1H), 1.79 (m, 

2H), 1.63 (m, 2H), 1.51 (m, 4H).  

13C NMR (126 MHz, CDCl3): δ 139.64, 128.95, 128.35, 127.51, 122.26, 90.42, 74.19, 52.04, 

33.89, 31.65, 30.38, 24.97. 

GC/MS: m/z [M]+ calcd for C22H21N: 299.2; found: 299.2. 

 

 

 

Yield: 93 mg, 0.3 mmol, 99%  

Appearance : yellow oil 

1H NMR (500 MHz, CDCl3): δ 7.39 (m, 10H), 3.24 (d, J = 2.2 Hz, 2H), 2.34 (br m, 1H), 1.65 (br 

m, 2H), 1.57 (br m, 2H), 1.31 (m, 6H).  

13C NMR (126 MHz, CDCl3): δ 139.62, 128.97, 128.36, 127.53, 122.29, 90.05, 74.71, 52.09, 

32.63, 31.65, 29.04, 26.15, 24.68.  
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GC/MS: m/z [M]+ calcd for C23H23N: 313.2; found: 313.3. 

IR: 3060, 3029, 2929, 2852, 2237, 1731, 1598, 1494, 1448, 1317, 1033, 754, 698, 624, 538 cm-1  

 

 

 

Yield: 54 mg, 0.20 mmol, 67% 

Appearance : yellow oil 

1H NMR (500 MHz, CDCl3): δ 7.41 (m, 10H), 5.73 (m, 1H), 5.16 (dq, J = 16.9, 1.8 Hz, 1H), 5.04 

(dq, J = 10.0, 1.7 Hz, 1H), 3.29 (t, J = 2.3 Hz, 2H), 2.91 (dp, J = 4.3, 2.1 Hz, 2H).   

13C NMR (126 MHz, CDCl3): δ 139.51, 132.43, 129.10, 128.47, 127.46, 122.26, 116.36, 82.08, 

77.13, 51.93, 31.64, 23.23. 

GC/MS: m/z [M]+ calcd for C10H17N: 271.1; found: 271.2. 

 

 

 

 

Yield: 52 mg, 0.19 mmol, 63% 

Appearance : clear yellow oil  
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1H NMR (500 MHz, CDCl3): δ 7.49 (m, 2H), 7.27 (m, 8H), 3.24 (m, 1H), 1.65 (d, J = 2.3 Hz, 

3H), 1.46 (m, 2H), 1.00 (t, J = 7.3 Hz, 3H).    

13C NMR (126 MHz, CDCl3): δ 139.68, 139.37, 129.13, 128.71, 128.12, 128.03, 127.92, 127.25, 

121.56, 82.22, 77.54, 57.70, 42.42, 25.37, 12.71, 3.92. 

GC/MS: m/z [M]+ calcd for C20H19N: 273.2; found: 273.2. 

IR: 3064, 2964, 2921, 2877, 2239, 1596, 1494, 1450, 1326, 1031, 767, 754, 734, 698, 536 cm-1 

 

 

 

Yield: 77 mg, 0.28 mmol, 92% 

Appearance : clear light yellow oil  

1H NMR (500 MHz, CDCl3): δ 7.51 (m, 2H), 7.38 (m, 2H), 7.26 (m, 6H), 3.52 (qt, J = 6.8, 2.2 

Hz, 1H), 2.01 (m, 2H), 1.23 (d, J = 6.9 Hz, 3H), 0.93 (t, J = 7.5 Hz, 3H). 

13C NMR (126 MHz, CDCl3): δ 139.45, 139.11, 129.09, 128.62, 128.16, 128.05, 127.99, 127.31, 

121.26, 87.21, 79.39, 58.13, 34.75, 18.61, 14.05, 12.66.  

GC/MS: m/z [M]+ calcd for C20H19N: 273.2; found: 273.2.  

IR: 3060, 3033, 2977, 2937, 2918, 2877, 2237, 1598, 1494, 1450, 1377, 1319, 1033, 1002, 914, 

765, 750, 698, 657, 540 cm-1 
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Yield: 74 mg, 0.26 mmol, 87% 

Appearance : clear yellow oil 

1H NMR (500 MHz, CDCl3): δ 7.40 (br m, 10H), 4.84 (m, 1H), 4.76 (m, 1H), 3.28 (t, J = 2.4 Hz, 

2H), 2.84 (m, 2H), 1.67 (m, 3H). 

13C NMR (126 MHz, CDCl3): δ 140.68, 139.55, 129.13, 128.48, 127.48, 122.31, 111.92, 82.66, 

76.86, 51.98, 31.70, 27.80, 22.32. 

GC/MS: m/z [M]+ calcd for C21H19N: 285.2; found: 285.2.  

 

 

 

Yield: 14 mg, 0.054 mmol, 18% 

Appearance : clear yellow oil  

1H NMR (500 MHz, CDCl3): δ 7.40 (br m, 10H), 5.71 (ddt, J = 17.5, 11.0, 2.0 Hz, 1H), 5.55 (dd, 

J = 17.6, 2.2 Hz, 1H), 5.43 (dd, J = 11.1, 2.2 Hz, 1H), 3.38 (d, J = 2.0 Hz, 2H). 

13C NMR (126 MHz, CDCl3): δ 139.41, 129.15, 128.58, 127.68, 127.47, 122.08, 117.05, 84.65, 

84.12, 51.73, 32.08. 

GC/MS: m/z [M]+ calcd for C19H15N: 257.1; found: 257.2. 
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Yield: 16 mg, 0.054 mmol, 18% 

Appearance : clear yellow oil 

1H NMR (500 MHz, CDCl3): δ 7.40 (m, 15H), 3.49 (s, 2H).  

13C NMR (126 MHz, CDCl3): δ 139.44, 131.96, 129.14, 128.59, 128.53, 128.48, 127.53, 123.08, 

122.13, 85.53, 84.17, 51.80, 32.17. 

GC/MS: m/z [M]+ calcd for C23H17N: 307.1; found: 307.2 

IR: 3060, 3031, 2954, 2923, 2852, 2239, 1596, 1583, 1490, 1448, 1313, 1031, 912, 756, 694, 655, 

626, 541, 532 cm-1 

 

 

 

 

 

 

 

 

1H and 13C NMR Spectra:  
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Chapter 3. Palladium-Catalyzed Decarboxylative Propargylation and 1,3-Dienylation 

 

3.1 Introduction to Metal-Catalyzed Decarboxylation  

 Chapter 2 of this dissertation presented methods developed for the intermolecular 

dienylation and propargylation of α,α-diaryl acetonitrile pronucleophiles (Scheme 3.1).1 

However, the substrate scope was limited to weakly stabilized α,α-diaryl acetonitriles with a pKa 

similar to that of methanol (pKa = < 17). In order to expand the substrate scope to less stable 

nucleophiles (pKa > 17) we envisioned the development of an intramolecular variant that would 

generate the activated nucleophile in situ via decarboxylation (Scheme 3.2).2,3,4,5,6,7 

 

 

In standard transition metal-catalyzed cross-coupling methods both activation of the 

nucleophile and electrophile are required prior to bond formation (Scheme 3.3).8 Activation is 

typically achieved using an external base or preformed organometallic species. The employed 

reagents are often expensive, toxic or highly basic. Further, a necessary result of these standard 

cross-coupling methods is the production of a stoichiometric amount of waste. Alternatively, 
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decarboxylative cross-coupling reactions possess significant advantages (Scheme 3.3).8 For 

example, the required starting materials can be easily and efficiently synthesized from readily 

available reagents and irreversible decarboxylation can drive the formation of reactive 

intermediates while generating CO2 as the only byproduct. Despite these significant advantages, 

only a handful of methods have been developed for decarboxylative propargylation, which will be 

presented in the following sections of this dissertation. 

 

 

3.2 Decarboxylative Propargylation Methods 

 In 1994, Bienaymé reported that decarboxylative propargylation of substituted 

propargylic carbonates could be achieved using Pd(PPh3)4 (Scheme 3.4).9 However, the method 

was not optimized for selective product formation and contamination by the allenyl isomer was 

frequently observed. Further, product ratios were largely affected by the substitution patterns on 

the starting carbonate. Specifically, terminal acetylene derivatives were found to favor the 

propargyl isomer while the addition of substituents, such as TMS or Ph, favored the allenyl 

isomer. The observed selectivity was suggested to arise from a change in the favored palladium-

Scheme 3.3: Advantages of Decarboxylative Cross-Coupling
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bound intermediate from an η1-propargylpalladium species to an η1-allenylpalladium species 

which avoids unfavorable steric interactions with R3 (Scheme 3.4). Lastly, in addition to the 

reported lack in selectivity, only poor to moderate yields of the product mixtures were obtained.  

 

 In 2011, Stoltz and coworkers reported a single example of the enantioselective 

decarboxylative propargylation of a cyclohexanone derivative (Scheme 3.5).10 However, only a 

brief ligand screen was reported which resulted in poor enantiomeric excess and produced only 

moderate yields. Further, the reported product was not isolated and observed yields were 

determined by GC analysis with an internal standard.    
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 Later, in 2014, Altman and coworkers reported the copper-catalyzed decarboxylative 

trifluoromethylation of propargylic electrophiles to access substituted propargyl and allenyl 

products (Scheme 3.6).11 However, like the method reported by Bienaymé, selective formation of 

the propargyl isomer was not obtained and reactions suffered from competitive formation of the 

allenyl isomer. Additionally, the propargyl products could not be successfully purified and were 

isolated in poor ratios with the allenyl isomer.     

 

 Through use of a cationic copper complex and chiral ligand, Xu12 and Hu13 were able to 

demonstrate the successful decarboxylative propargylation of ketone enolate equivalents, tertiary, 
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and secondary amines (Scheme 3.7). Overall, good yields and enantioselectivities were observed. 

However, the methods were restricted to 1-aryl propargylic carbonates and, as discussed 

previously in Chapter 1, limited to terminal acetylene derivatives that enable formation of the 

copper-acetylide and copper-allenylidene intermediates in situ.  

 

 Lastly, Wu recently demonstrated the gold(I)-catalyzed decarboxylative propargylation 

of oxygen-centered nucleophiles (Scheme 3.8).14 Substrates were once again limited to 1-aryl 

propargylic carbonates although 1,1-disubstituted propargylic carbonates were also tolerated and 

resulted in moderate isolated yields. Further, 3-substituted propargylic carbonates with either 

alkyl or aryl substituents resulted in low yields of the propargylated product, unless the aryl 

moiety was ortho-substituted. The ortho-substituent is proposed to perturb coordination of the 

gold catalyst to the π-bond and promote σ-activation resulting in the propargylated product 

(Scheme 3.8).    
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 In the following, ongoing efforts to develop a generalized and selective method for the 

palladium-catalyzed decarboxylative propargylation and dienylation of acetonitrile derivatives 

will be presented. Development of such methods is necessary to provide facile, efficient, and 

selective access to propargyl and dienyl functionalities for application as synthetic intermediates 

in complex molecule synthesis.  

 

3.3 Decarboxylative Propargylation and Dienylation of Acetonitrile Pronucleophiles 

 Decarboxylative cross-coupling minimizes the use of additives and provides efficient 

access to reactive intermediates via irreversible decarboxylation. As a result, these methods 

provide an environmentally friendly and atom-economic alternative to commonly employed 

coupling methods. Initially, we hypothesized that we could adopt decarboxylation as a way to 

expand on our previously developed methods for propargylation and dienylation of acetonitrile 

pronucleophiles in which substrates were limited to those with a pKa of < 17. We proposed that 

the source of this limitation was in pronucleophile activation by liberated methoxide, which 

would necessitate that the pronucleophile have a pKa similar to that of methanol (Figure 3.1). 

Alternatively, if we employed a decarboxylation pathway starting from a propargylic ester, the 
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nucleophile would be generated in situ, after decarboxylation thus potentially providing access to 

a larger range of nucleophiles for coupling to the butadiene synthon (Scheme 3.9).   

 

 

 To begin, we subjected but-2-yl 2-cyano-2-phenylpropanoate to the reaction conditions 

developed for intermolecular dienylation of acetonitrile derivatives at elevated reaction 

temperatures (Table 3.1, entry 3).1 Disappointingly, we observed only minimal reaction 

conversion in favor of the protonated product. Screening studies revealed that monomeric 

Pd(dba)2 was a more efficient pre-catalyst as opposed to Pd2(dba)3 and conversion to product 
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could be increased after extended reaction times (Table 3.1 entry 4). However, only poor yields of 

the isolated product were obtained after purification via column chromatography.  

 

Next, we evaluated the potential decarboxylative dienylation reaction pathway in order to 

optimize isolated yields of the dienylated product (Figure 3.2). Initially, we envisioned that 

palladium(0) would undergo oxidative addition to generate an η3-propargylpalladium 

intermediate and activated nucleophile. As previously proposed, the activated nucleophile would 

then regioselectively attack the center carbon of the palladium complex to generate a pallada-

cyclobutene.15 However, unlike in the intermolecular variant, which could undergo protonation by 

Ph

CN
O

O Pd
ligand

solvent 
temp

rxn time

HPh

CN

Ph

CN
Ph

CN

•
Ph

CN

cat. mol % ligand mol % additive solvent mL temp time sm % A% B% C% and D%

Pd(dba)2 10 MePhos 10 --- DMF 0.5

0.15 mmol

40 1h 37 18 22 23
Pd(dba)2 2.5 MePhos 2.5 --- DMF 0.5 80 1h 58 20 6 16
Pd2(dba)3 5 dppe 10 --- DMF 0.5 100 1h 83 15 3 0

10 dppe 10 --- DMF 0.5 100 6h 0 5 83 12
Pd(dba)2 2.5 dppe 2.5 --- DMF 0.5 100 6h 88 11 1 0
Pd(dba)2 10 dppe 10 --- DMF 1 150mw 10m 0 17 69 14
Pd(dba)2 10 dppe 10 --- DMF 1 150mw 4m 0 15 71 14
Pd(dba)2 10 dppe 10 --- DMF 1 150mw 1m 0 13 73 14
Pd(dba)2 10 dppe 10 --- DMF 1 100mw 5m 72 11 16 2
Pd(dba)2 10 dppe 10 --- DMF 1 120mw 1m 0 5 86 10
Pd(dba)2 10 dppe 10 DMF 1 120mw 1m 23 7 62 8
Pd(dba)2 10 dppe 10

NaHCO3

mol%

1
--- -- DMF 0.25 120mw 1m 68 10 13 9

Pd(dba)2 10 dppe 10 morpholine 1 DMF 1 100 4h only protonated material
Pd(dba)2 10 dppe 10 Bu2NH 1 DMF 1 100 4h 0 77 23 0
Pd(dba)2 10 dppe 10 Bn2NH 1 DMF 1 100 4h 0 74 23 2
Pd(dba)2 10 dppe 10 pyrrolidine 1 DMF 1 100 4h 0 61 39 0
Pd(dba)2 10 dppe 10 azocane 1 DMF 1 100 4h 0 65 14 21
Pd(dba)2 10 dppe 10 i-Pr2NH 1 DMF 1 100 4h 0 8 92 0
Pd(dba)2 10 dppe 10 TBD 1 DMF 1 100 4h 0 94 6 0
Pd(dba)2 10 dppe 10 K2HPO4 1 DMF 1 100 4h 0 5 95 0
Pd(dba)2 10 dppe 10 NaHCO3 1 DMF 1 100 4h 0 11 89 0
Pd(dba)2 10 dppe 10 mesitol 1 DMF 1 100 4h 0 40 60
Pd(dba)2 10 dppe 10 2-nitroethanol 1 DMF 1 100 4h 62 38 0 0
Pd(dba)2 10 dppe 10 2,2,2-trifluoroethanol1 DMF 1 100 4h very Very messy
Pd(dba)2 10 dppe 10 1 DMF 1 100 4h 0 23 5 71
Pd(dba)2 10 dppe 10 propofol 1 DMF 1 100 4h 0 35 5 60
Pd(dba)2 10 dppe 10 benzoic acid 1 DMF 1 100 4h 48 47 0 5
Pd(dba)2 10 dppe 10 MeOH 1 DMF 1 100 4h 0 22 54 14
Pd(dba)2 10 dppe 10 H2O 1 DMF 1 100 4h 0 61 39 0
Pd(dba)2 10 dppe 10 tert-butanol 1 DMF 1 100 4h 0 8 92 0
Pd(dba)2 10 dppe 10 tert-butanol 1 DMF 1 100 3h 0 50 50 0
Pd(dba)2 10 dppe 10 K2HPO4 1 DMF 1 100 3h 59 19 22 0

Table 3.1:Optimization of Decarboxylative Dienylation

A B C D

entry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
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20
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22
23
24
25
26
27
28
29
30
31
32

DBPC

Pd(dba)2

0

Ratios were determined by GC/MS analysis.
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a molecule of methanol or substrate, neither is possible in the decarboxylation pathway since both 

compounds are absent from the reaction media. Therefore, we proposed that a proton source 

could be needed. Further, the proton source would also have to act as a competent base to 

deprotonate intermediate C (Scheme 3.2) for optimal product formation.    

 

We next screened a variety of proton sources (Table 3.1) and found that K2HPO4 

provided the optimal conversion to the diene product after 4 h. However, significantly decreased 

yields of the isolated product were still obtained compared to the suggested product formation by 

GC/MS analysis using mesitylene as an internal standard. It was next proposed that although 

acetonitrile derivatives are readily activated via decarboxylation in allylation-type chemistry,8 

activation utilizing propargylic esters might be more problematic. Further, if deprotonation of 

intermediate C (Scheme 3.10) occurred by the activated nitrile instead of the conjugate base of 

the additive, it could halt productive product formation. Therefore, we diverted our attention to 
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but-2-yn-1-yl-2-cyano-2-(4-nitrophenyl)propanoate which could stabilize the in situ generated 

anionic charge more efficiently and potentially lower the pKa of the protonated product enough 

for reintroduction back into the catalytic cycle for dienylation. Gratifyingly, decarboxylative 

dienylation occurred using 10 mol % of Pd(dba)2, 9.5 mol % dppe, in DMF at 80 °C after 1 h and 

moderate yields of the isolated product were obtained (Scheme 3.10, 2.1b). We then screened 

other electron-deficient aryl substituents and found that a para-carbomethoxy derivative could be 

obtained in similar yield (2.1c). However, when meta-substituted electron-deficient aryl moieties 

were screened, a decrease in yield was observed (2.1d, 2.1e, 2.1f). Similarly, the reaction was 

tolerant of a para-chloro pyridine derivative (2.1g), and increased steric bulk of the α-substituted 

alkyl group (2.1h). Unfortunately, a further decrease in isolated yield of the diene product was 

observed when an ethyl group was incorporated at the 3-position of the propargylic substituent 

(2.1i) and with electron-donating substituents on the aryl moiety (2.1j).              
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 In addition to the successfully isolated products obtained from decarboxylative 

dienylation, we have also encountered limitations to the developed method (Scheme 3.11). When 

an allyl functionality was incorporated into the starting material, mostly unreacted starting 

material was observed (Scheme 3.11, 2.2a, 2.2b). Such a result is expected if the formation of a 

palladium π-allyl intermediate out-competes the formation of η3-propargylpalladium complex, 

thus preventing diene formation. Likewise, a similar result was observed when a para-bromo 
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substituted aryl moiety was subjected to the optimized reaction conditions (2.2c). In this case, we 

proposed that oxidative addition of the aryl–bromine bond occurs in lieu of oxidative addition of 

the propargylic ester, which would also halt desired product formation. Alternatively, when the 

aryl ring contained an ortho-chloro substituent, minor conversion to the diene product was 

observed (18% by GC/MS) (2.2d). However, a higher relative percentage of the protonated 

product was present at 24% with 58% remaining as starting material. Lastly, increased steric bulk 

at the 3-position of the propargyl functionality also perturbed diene formation; only a 26% 

conversion of starting material 2.2e was observed by GC/MS. 

 

 As previously presented, decarboxylative dienylation is currently restricted to electron-

deficient aryl rings in order to obtain moderate yields. However, it should be mentioned that the 

developed method provides access to a broader range of nucleophiles than were previously 

successful in the palladium-catalyzed intermolecular dienylation using nitriles and propargyl 

carbonates (Scheme 3.12).     
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 Due to the fact that the substrate scope of the decarboxylative dienylation reaction is 

somewhat limited, we aimed to expand the application of our method through a sequential 

dienylation/cyclization pathway to provide facile and efficient access to polycyclic cores.16,17 A 

brief reaction optimization study evaluated the effects of temperature, additives, solvent, and 

reaction duration for the sequential reaction. Eventually, it was found that, after diene formation 

addition of 20 mol % ZnBr2 and 2 equivalents of N-phenylmaleimide lead to the cyclized product 

in 47% isolated yield after 3 hours (Scheme 3.13).18,19,20 Further, evaluation of the cyclized 

product by 1H and 13C NMR spectroscopies suggests that only one stereoisomer is formed of the 

Diels-Alder product, however, current efforts to obtain crystallographic information is ongoing in 

the laboratory. Additionally, efforts are also being put forth to further optimize the yield of the 

sequential reaction along with expanding the substrate scope of both diene and dienophile.  
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 We next explored the capacity for the decarboxylative dienylation method to be diverted 

toward decarboxylative propargylation of acetonitrile derivatives from propargylic esters 

(Scheme 3.14). Beginning with methyl 4-(2-cyanohex-4-yn-2-yl)benzoate, which was an optimal 

substrate for the dienylation pathway, we once again changed the denticity of the coordinating 

ligand from bidentate (dppe) to monodentate (MePhos) and were able to obtain a 60% isolated 

yield of the propargylated product (Scheme 3.14, 2.5a). Altering the para-carbomethoxy 

substituent to a para-nitro moiety also produced the propargylated product in moderate yield 

(2.5b). Interestingly, when steric bulk was increased at the 3-position of the propargylic 

substituent, an increase in yield was observed (2.5d, 2.5e). However, when the arene contained a 

strongly electron-withdrawing substituent in the meta-position as opposed to the para-position, a 

significant decrease in yield was observed (2.5c). Lastly, the reaction was tolerant of alkyl 

variation to either allyl (2.5f) or benzyl (2.5g) substituents, which resulted in moderate yields of 

the isolated product.          
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 Unfortunately, in addition to the substrates listed above that lead to successful isolation of 

the decarboxylative propargylic species, many substrates have been unsuccessful under the 

developed reaction conditions (Scheme 3.15). When a simple aryl substituent was employed, 

moderate reaction conversion to the propargylated product was observed by GC/MS but efforts to 

isolate the pure product have been unsuccessful (2.6a). Instead, the product has been obtained 

with significant contamination by the unreacted starting material. Further, when the aryl moiety 

contained a para-bromo (2.6b) or ortho-chloro (2.6d) substituent, only minor reaction conversion 

was observed. Again, this is potentially due to competitive oxidative addition of the aryl—

halogen bond or unfavorable steric interactions by the ortho-substituted derivative. In general, 

when meta-substituted aryl functionalities were employed, predominate formation of the 

protonation product was observed over the propargyl isomer along with both the allenyl and 

Ar

CNAlkyl

O

O
R2 Pd(dmdba)2 (10 mol %)

MePhos (10 mol %)

80 oC, 1 h
0.15 M DMF

-CO2

Ar

CNAlkyl R2

CN

MeO2C

C6H13

CN

O2N

Ph
CN

MeO2C

CN

MeO2C

CN

MeO2C

CN

MeO2C

CN

NO2
2.5a
60%

2.5b
60%

2.5d
72%

2.5e
81%

2.5f
45%

2.5g
66%

a propargyl ester (0.3 mmol), Pd(dmdba)2 (10 mol %), dppe (9.5 mol %), DMF (2 mL), 80 oC, 1 h, isolated yields are 
reported.

2.5c
35%

Scheme 3.14: Scope of Decarboxylative Propargyation.a



! 237!

dienyl isomers (2.6c, 2.6e, 2.6f). Alternatively, when heteroaryl moieties were employed, equal 

formation of protonation and propargylation products along with unreacted starting material was 

observed by GC/MS (2.6g). Lastly, despite the moderate yield of the propargylated product 

obtained from a simple allyl substituent, incorporation of a cinnamyl substituent stopped 

reactivity (2.6h).  

 

 Given the apparent limitation of decarboxylative propargylation to para-substituted 

electron-withdrawing aryl substituents, we next aimed to develop a potential rational for this 

observation. Initially, we envision that oxidation addition of the propargylic ester to palladium(0) 

would occur to generate a palladium-bound intermediate (Figure 3.3). As initially proposed in 

chapter 2 for the intermolecular variant (Figure 3.4), propargylation is proposed to arise from 

inner-sphere nucleophilic attack of the η1-allenylpalladium species over other palladium-bound 

intermediates.21,22,23,24 Rational for this intermediate is twofold: 1) our observations of an increase 

in yield of the propargyl product with an increase in steric bulk at the 3-position of the propargyl 
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substituent and 2) the known coordination of weakly stabilized nitrile intermediates to 

palladium.25,26             
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 Alternatively, the rational for increased protonation and competitive product formation of 

meta-substituted derivatives is as follows. In contrast to the stabilizing effects of para-substituted 

electron-withdrawing aryl moieties, it is proposed that meta-substituted derivatives would be less 

efficient at anionic stabilization resulting in competitive formation of non-nitrile coordinated and 

nitrile coordinated palladium intermediates (Scheme 3.16). Lack of intermediate preference could 

then account for a mix of allenyl (1.4G), dienyl (1.4E), and propargyl (1.4F) isomers, however, 

the proton source that gives rise to protonated nitrile is currently unknown.     

 

3.4 Conclusion:  

 In chapter 3 of this dissertation a regiodivergent method for decarboxylative dienylation 

and propargylation of acetonitrile pronucleophiles was presented. By generating the nucleophile 
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in situ, we have been able to expand the substrate scope to compounds that were previously 

unsuccessful for the intermolecular variant present in chapter 2. Additionally, although we are 

aware of limitations in both the dienylation and propargylation method, further studies are 

currently underway to expand the reaction scopes and provide support for the respective 

mechanistic pathways. Future direction will focus on the evaluation of diverse electron-

withdrawing functional groups beyond nitriles and electron-deficient arenes and substitution 

effects at both the 1-position and 3-position of the propargylic moiety. Lastly, it would be 

beneficial to extend the application of the developed dienylation and propargylation methods to 

both inter- and intramolecular one-pot cyclization protocols to efficiently access polycyclic cores. 

In particular, further studies should focus on cyclization reactions that generate a single 

stereoisomer as eluted to previously in chapter 3. 
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Chapter 3 appendix 

Experimental methods, spectral analysis and spectra for Ch. 3 compounds. 
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General Information: 

 
Purified compounds, unless otherwise stated, were obtained by column chromatography using 60 

Å porosity, 230 x 400 mesh standard grade silica gel from Sorbent Technologies. TLC analysis 

was preformed on silica gel HL TLC plates w/UV254 from Sorbent Technologies. Gas 

chromatography/mass spectrometry data was obtained using a Shimadzu GCMS-QP2010 SE. 

NMR spectra were obtained on a Bruker Advance 500 DRX equipped with a QNP cryoprobe. 1H 

and 13C spectra were normalized using residual undeuterated solvent signals as a reference 

(CDCl3 = 7.28 ppm for 1H and 77.36 ppm for 13C).1 19F NMR spectra were referenced to α,α,α-

trifluorotoluene (purchased from Sigma Aldrich) at -62.7 ppm.   

 
N,N-Dimethylformamide (DMF) and nitromethane were purchased from Sigma Aldrich and 

stored in a glove box. Dichloromethane (DCM) and toluene were either purified by an Innovative 

Technology Pure SolvTM solvent purification system or purchased from Sigma Aldrich and stored 

in a glove box. Tetrahydrofuran (THF) was purified in a solvent still with sodium and 

benzophenone and obtained after relux. Bis(dibenzylideneacetone)palladium(0) (Pd(dba)2) was 

purchased from Strem as were ethylenebis(diphenylphosphine) (dppe) and 2-

dicyclohexylphosphino-2’-methylbiphenyl (MePhos). Bis(3,5,3’,5’-dimethoxydibenzyli-

deneactone)palladium(0) was obtained from Alfa Aesar. All were stored in a glove box. 

Acetonitrile derivatives were purchased from Sigma Aldrich, Alfa Aesar, VWR, and Acros 

Organics and used without further purification. N,N'-Carbonyldiimidazole (CDI) was purchased 

from Matrix Scientific and 2-Butyn-1-ol was purchased from Acros Organics. Both were used 

without further purification.     
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Synthesis of Starting Materials: 

Synthesis of but-2-yn-1-yl 1H-imidazole-1-carboxylate.1 

 

General procedure:  

 In a 500 mL flame-dried Schlenk flask under an atmosphere of argon, CDI was dissolved 

in dry THF and cooled to 0 °C. Next, 2-butyn-1-ol was added dropwise and the mixture was 

allowed to warm to room temperature and stirred overnight. Upon reaction completion, saturated 

ammonium chloride (75 mL) was added to quench the reaction and the mixture was diluted with 

distilled water (100 mL) and extracted with ethyl acetate (100 mL x 2) and washed with brine (50 

mL). The organic layer was dried over sodium sulfate and concentrated before purification by 

column chromatography in a gradient of 2% - 5% -10% - 20% ethyl acetate in hexanes.       
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Tetrahedron Lett. 1985,  26, 5575-5578.
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Synthesis of cyanopropanoate derivatives:,23 
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Characterization of cyanopropanoate derivatives: 

 

 

MLM-1-063 

1H NMR (500 MHz, CDCl3): δ 7.58 – 7.52 (m, 2H), 7.46 – 7.37 (m, 3H), 4.73 (q, J = 2.2 Hz, 

2H), 1.99 (s, 3H), 1.83 (t, J = 2.4 Hz, 3H). 

13C NMR (126 MHz, CDCl3): δ 167.78, 135.71, 129.52, 129.26, 126.15, 119.54, 84.87, 72.09, 

55.69, 48.57, 25.26, 4.00 

HRMS TAPSI: [M+H] calcd for C14H14NO2: 228.1025. Found: 228.1014.  

IR: 3063, 2995, 2945, 2922, 2245, 1747, 1599, 1585, 1492, 1448, 1381, 1224, 1155, 1099, 1078, 

1030, 947, 559, 476, 455, 420.  

 

 

MLM-1-056 

1H NMR (500 MHz, CDCl3): δ 7.34 (t, J = 8.1 Hz, 1H), 7.11 (ddd, J = 7.8, 1.9, 0.8 Hz, 1H), 7.06 

(t, J = 2.2 Hz, 1H), 6.92 (ddd, J = 8.3, 2.5, 0.9 Hz, 1H), 4.73 (q, J = 2.4 Hz, 2H), 3.84 (s, 3H), 

1.97 (s, 3H), 1.83 (t, J = 2.4 Hz, 3H). 

13C NMR (126 MHz, CDCl3): δ 167.66, 160.38, 137.14, 130.55, 119.49, 118.30, 114.57, 112.16, 

84.88, 72.12, 55.72, 48.53, 25.26, 3.99. 

HRMS TAPSI: [M+H] calcd for C15H16NO3: 258.1130. Found: 258.1135.  



 249 

IR: 3001, 2943, 2922, 2839, 2245, 1755, 1747, 1602, 1585, 1492, 1454, 1435, 1381, 1369, 1319, 

1294, 1261, 1224, 1155, 1105, 1091, 1066, 1043, 949, 561, 474, 430, 418.  

 

TL5-246 

1H NMR (500 MHz, CDCl3): δ 8.11 – 8.07 (m, 2H), 7.65 – 7.61 (m, 2H), 4.74 (qd, J = 2.4, 0.9 

Hz, 2H), 3.94 (s, 3H), 2.00 (s, 3H), 1.82 (t, J = 2.4 Hz, 3H). 

13C NMR (126 MHz, CDCl3): δ 167.21, 166.53, 140.31, 131.14, 130.75, 126.36, 119.01, 85.12, 

71.89, 55.94, 52.73, 48.63, 25.24, 3.99. 

HRMS TAPSI: [M+H] calcd for C16H16NO4: 286.1079. Found: 286.1067. 

IR: 2999, 2953, 2924, 2848, 2245, 1755, 1749, 1726, 1610, 1510, 1454, 1435, 1411, 1381, 1371, 

1317, 1282, 1224, 1192, 1157, 1112, 1097, 1018, 947, 862, 750, 584, 545, 526, 501, 457, 424. 

 

 

TL5-245 

1H NMR (500 MHz, CDCl3): δ 8.28 (d, J = 8.5 Hz, 2H), 7.75 (d, J = 8.9 Hz, 2H), 4.95 – 4.58 

(m, 2H), 2.02 (s, 3H), 1.87 – 1.65 (m, 3H). 

13C NMR (126 MHz, CDCl3): δ 166.62, 148.42, 142.23, 127.52, 124.61, 118.41, 85.30, 71.66, 

56.17, 48.47, 25.20, 3.91. 

HRMS TAPSI: [M+H] calcd for C14H13N2O4: 273.0875. Found: 273.0869.  
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IR: 3115, 3084, 2999, 2949, 2924, 2858, 2245, 1766, 1755, 1747, 1732, 1714, 1608, 1599, 1519, 

1494, 1446, 1435, 1411, 1384, 1367, 1348, 1323, 1296, 1222, 1157, 1118, 1095, 1064, 1014, 947, 

864, 549, 520, 501, 437, 401. 

 

 

TL7-116 

1H NMR (500 MHz, CDCl3): δ 8.40 (t, J = 2.0 Hz, 1H), 8.28 (ddd, J = 8.2, 2.1, 1.0 Hz, 1H), 

7.95 (ddd, J = 7.9, 2.0, 1.0 Hz, 1H), 7.66 (t, J = 8.0 Hz, 1H), 4.77 (qq, J = 15.0, 7.3, 2.4 Hz, 2H), 

2.05 (s, 3H), 1.83 (t, J = 2.4 Hz, 3H). 

13C NMR (126 MHz, CDCl3): δ 166.80, 148.98, 137.82, 132.58, 130.69, 124.42, 121.52, 118.52, 

85.48, 71.67, 56.23, 48.28, 25.22, 3.97. 

HRMS TAPSI: [M+H] calcd for C14H13N2O4: 273.0875. Found: 273.0871.  

IR: 3090. 2997, 2951, 2924, 2852, 2245, 1747, 1693, 1614, 1531, 1504, 1479, 1435, 1381, 1352, 

1311, 1292, 1222, 1155, 1109, 1085, 949, 904, 547, 472, 435.  

 

 

TL6-270 

1H NMR (500 MHz, CDCl3): δ 7.81 – 7.75 (m, 2H), 7.70 – 7.65 (m, 1H), 7.63 – 7.53 (m, 1H), 

4.76 (qq, J = 15.1, 10.1, 2.3 Hz, 2H), 2.01 (s, 3H), 1.82 (td, J = 2.4, 1.0 Hz, 3H). 
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13C NMR (126 MHz, CDCl3): δ 167.12, 136.83, 130.18, 129.82, 126.29 (q, J = 3.7 Hz), 123.08 

(q, J = 3.8 Hz), 118.86, 85.20, 71.77, 55.98, 48.41, 25.31, 3.88. 

HRMS TAPSI: [M+H] calcd for C15H13F3NO2: 296.0898. Found: 296.0889.  

IR: 3070. 2997, 2949, 2926, 2858, 2245, 1747, 1616, 1597, 1492, 1440, 1383, 1369, 1329, 1288, 

1224, 1170, 1130, 1080, 1016, 1003, 949, 927, 900, 869, 536, 491, 430.  

 

TL6-174 

1H NMR (500 MHz, CDCl3): δ 7.59 – 7.51 (m, 2H), 7.46 – 7.40 (m, 2H), 4.73 (q, J = 2.3 Hz, 

2H), 1.97 (s, 3H), 1.83 (t, J = 2.4 Hz, 3H). 

13C NMR (126 MHz, CDCl3): δ 167.35, 134.74, 132.66, 128.77, 127.95, 123.63, 119.08, 85.09, 

71.93, 55.89, 48.18, 25.12, 4.01. 

HRMS TAPSI: [M+H] calcd for C14H13NO2Br: 306.0130. Found: 306.0128.  

IR: 2993, 2945, 2922, 2852, 2243, 1747, 1589, 1489, 1454, 1400, 1381, 1369, 1224, 1157, 1095, 

1080, 1010, 945, 794, 750, 553, 501, 472, 437, 401.  

 

 

TL6-273 

1H NMR (500 MHz, CDCl3): δ 8.17 – 8.03 (m, 2H), 7.70 – 7.59 (m, 2H), 4.75 (qt, J = 15.1, 5.4, 

2.2 Hz, 2H), 3.94 (s, 3H), 2.19 (qt, J = 7.5, 2.2 Hz, 2H), 2.00 (s, 3H), 1.10 (t, J = 7.5 Hz, 3H). 

13C NMR (126 MHz, CDCl3): δ 167.18, 166.52, 140.35, 131.13, 130.74, 126.36, 119.02, 90.77, 

72.05, 55.94, 52.74, 48.62, 25.24, 13.74, 12.73. 
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HRMS TAPSI: [M+H] calcd for C17H18NO4: 300.1236. Found: 300.1215.  

IR: 2980, 2953, 2879, 2845, 2243, 1753, 1724, 1610, 1437, 1410, 1369, 1317, 1282, 1222, 1192, 

1151, 1112, 1097, 1018, 964, 943, 750, 547, 501, 472, 437. 

 

TL6-272 

1H NMR (500 MHz, CDCl3): δ 8.11 – 8.07 (m, 2H), 7.65 – 7.60 (m, 2H), 4.76 (qt, J = 15.1, 7.9, 

2.2 Hz, 2H), 3.94 (s, 3H), 2.17 (tt, J = 7.1, 2.2 Hz, 2H), 2.00 (s, 3H), 1.50 – 1.40 (m, 2H), 1.37 – 

1.19 (m, 8H), 0.89 (t, J = 7.0 Hz, 3H). 

13C NMR (126 MHz, CDCl3): δ 166.83, 166.17, 140.03, 130.79, 130.41, 126.03, 118.69, 89.29, 

72.33, 55.65, 52.38, 48.30, 31.70, 28.74, 28.24, 24.91, 22.63, 18.68, 14.10. 

HRMS TAPSI: [M-H] calcd for C22H28NO4: 370.2018. Found: 370.1997.  

IR: 2953, 2929, 2856, 2241, 1749, 1728, 1610, 1435, 1411, 1379, 1369, 1317, 1282, 1222, 1192, 

1149, 1112, 1097, 1018, 947, 860.  

 

 

TL6-280 

1H NMR (500 MHz, CDCl3): δ 7.45 – 7.38 (m, 1H), 7.35 (ddd, J = 7.9, 1.9, 1.0 Hz, 1H), 7.25 

(dt, J = 9.8, 2.1 Hz, 1H), 7.10 (tdd, J = 8.2, 2.5, 1.0 Hz, 1H), 4.74 (qd, J = 2.4, 1.7 Hz, 2H), 1.98 

(s, 3H), 1.83 (t, J = 2.4 Hz, 3H). 
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13C NMR (126 MHz, CDCl3): δ 167.28, 163.25 (d, J = 248.1 Hz), 137.98 (d, J = 7.5 Hz), 131.15 

(d, J = 8.5 Hz), 121.99 (d, J = 3.2 Hz), 119.06, 116.43 (d, J = 21.2 Hz), 113.74 (d, J = 24.0 Hz), 

85.12, 71.92, 55.90, 48.29 (d, J = 1.9 Hz), 25.21, 3.96.  

HRMS TAPSI: [M+H] calcd for C14H13FNO2: 246.0930. Found: 246.0922.  

IR: 3078, 2997, 2947, 2924, 2856, 2359, 2339, 2245, 1764, 1755, 1747, 1614, 1593, 1489, 1442, 

1381, 1371, 1224, 1180, 1155, 1139, 1101, 949, 887, 783, 667, 518, 484, 470, 422, 418.  

 

 

TL6-224 

1H NMR (500 MHz, CDCl3): δ 8.60 (dd, J = 2.8, 0.7 Hz, 1H), 7.85 (dd, J = 8.4, 2.8 Hz, 1H), 

7.42 (dd, J = 8.5, 0.7 Hz, 1H), 4.80 – 4.72 (m, 2H), 2.02 (s, 3H), 1.84 (t, J = 2.4 Hz, 3H). 

13C NMR (126 MHz, CDCl3): δ 166.75, 152.72, 147.74, 137.01, 130.70, 124.93, 118.12, 85.51, 

71.67, 56.29, 46.34, 25.04, 4.01. 

HRMS TAPSI: [M+H] calcd for C13H12ClN2O2: 263.0587. Found: 263.0580.  

IR: 3093, 3063, 2997, 2949, 2922, 2877, 2856, 2324, 2245, 1747, 1732, 1714, 1697, 1680, 1668, 

1583, 1564, 1454, 1446, 1433, 1417, 1373, 1217, 1298, 1222, 1155, 1112, 1068, 1016, 947, 412.  

 

 

TL7-083 
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1H NMR (500 MHz, CDCl3): δ 8.13 – 8.08 (m, 2H), 7.71 – 7.66 (m, 2H), 7.35 – 7.22 (m, 5H), 

6.60 (d, J = 15.8 Hz, 1H), 6.11 (dt, J = 15.7, 7.4 Hz, 1H), 4.75 (p, J = 2.3 Hz, 2H), 3.94 (s, 3H), 

3.32 (ddd, J = 14.0, 7.7, 1.2 Hz, 1H), 3.03 (ddd, J = 13.9, 7.1, 1.3 Hz, 1H), 1.76 (t, J = 2.3 Hz, 

3H). 

13C NMR (126 MHz, CDCl3): δ 166.53, 166.48, 138.64, 136.95, 136.63, 131.24, 130.73, 128.88, 

128.33, 126.87, 126.81, 121.26, 117.65, 85.14, 71.91, 55.91, 54.77, 52.74, 42.20, 3.91. 

HRMS TAPSI: [M+H] calcd for C24H22NO4: 388.1549. Found: 388.1543.  

IR: 3082, 3061, 3028, 3003, 2953, 2922, 2850, 2243, 1747, 1728 1716, 1610, 1575, 1496, 1435, 

1410, 1371, 1317, 1282, 1246, 1211, 1161, 1112, 1072, 1020, 968, 933, 547, 536, 489, 472, 424. 
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Dienylation Reaction Optimization: 
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Experimental procedure for the dienylation and propargylation of cyanopropanoate derivatives: 

 

In an oven or flamed dried Biotage microwave reaction vial (part no. 354624) equipped 

with a magnetic stir bar, catalyst (10 mol % Pd(dba)2), ligand (10 mol % dppe or 10 mol % 

MePhos) were added under an argon atmosphere in a glovebox. The solid mixture was dissolved 

in 2 mL anhydrous DMF followed by addition of cyanopropanoate (0.3 mmol). The vessel was 

sealed, removed from the glovebox, and placed in a preheated oil bath at 80 oC for 1 hr. After 

reaction completion, the vessel was unsealed and the crude product was placed directly on silica 

gel for purification via column chromatography in 1%-10% EtOAc:Hexane.   

 

Characterization of dienylated and propargylated tertiary nitriles: 

 

TL7-091 

1H NMR (500 MHz, CDCl3): δ 7.46 – 7.30 (m, 5H), 6.09 (dd, J = 17.5, 11.2 Hz, 1H), 5.56 (s, 

1H), 5.46 (s, 1H), 5.33 (d, J = 17.0 Hz, 1H), 5.11 (d, J = 11.1 Hz, 1H), 1.86 (s, 3H). 

13C NMR (126 MHz, CDCl3): δ 145.59, 139.59, 134.32, 129.31, 128.31, 126.34, 122.64, 118.41, 

115.58, 77.11, 45.81, 27.60. 

O

O
Ar

Alkyl CN

MePhos

dppe
Pd(dba)2 (10 mol %)

ligand (10 mol %)

DMF (0.15 M), 80 oC
1 h

Ar

Alkyl CN

Ar

Alkyl CN
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TL6-019 

1H NMR (500 MHz, CDCl3): δ 8.27 – 8.22 (m, 2H), 7.66 – 7.59 (m, 2H), 6.09 (dd, J = 17.5, 

11.2 Hz, 1H), 5.64 (s, 1H), 5.52 (s, 1H), 5.26 (d, J = 17.5 Hz, 1H), 5.14 (d, J = 11.2 Hz, 1H), 1.89 

(s, 3H). 

13C NMR (126 MHz, CDCl3): δ 147.86, 146.86, 144.26, 133.82, 127.44, 124.58, 121.43, 119.16, 

117.17, 45.62, 27.67. 

HRMS: [M+H]+ calcd for C13H13N2O2: 229.0977. Found: 229.0977.  

IR: 3109, 3082, 2991, 2943, 2858, 2237, 1633, 1604, 1595, 1531, 1519, 1494, 1462, 1454, 1427, 

1410, 1392, 1346, 1317, 1296, 1209, 1188, 1153, 1112, 1085, 1066, 1014, 989, 923, 862, 559, 

420. 

 

 

TL6-018 

1H NMR (500 MHz, CDCl3): δ 8.10 – 8.00 (m, 2H), 7.56 – 7.46 (m, 2H), 6.07 (dd, J = 17.7, 

11.0 Hz, 1H), 5.58 (s, 1H), 5.47 (s, 1H), 5.27 (d, J = 17.5 Hz, 1H), 5.10 (d, J = 11.2 Hz, 1H), 3.92 

(s, 3H), 1.86 (s, 3H). 

13C NMR (126 MHz, CDCl3): δ 166.66, 144.86, 144.58, 134.05, 130.21, 126.38, 121.98, 118.71, 

116.38, 52.55, 45.71, 27.54. 

HRMS: [M+H]+ calcd for C15H15NO2: 242.1181. Found: 242.1162.  
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IR: 3095, 2991, 2953, 2926, 2848, 2237, 1728, 1714, 1633, 1608, 1597, 1575, 1454, 1435, 1410, 

1392, 1373, 1313, 1282, 1190, 1151, 1114, 1087, 1018, 989, 966, 920, 476, 432, 420. 

 

 

TL6-247 

1H NMR (500 MHz, CDCl3): δ 8.24 (t, J = 2.0 Hz, 1H), 8.21 (ddd, J = 8.1, 2.2, 1.0 Hz, 1H), 

7.85 (ddd, J = 7.8, 2.0, 1.0 Hz, 1H), 7.61 (t, J = 8.0 Hz, 1H), 6.09 (dd, J = 17.5, 11.2 1H), 5.65 (s, 

1H), 5.54 (s, 1H), 5.30 (d, J = 17.5 Hz, 1H), 5.15 (d, J = 11.2 Hz, 1H), 1.92 (s, 3H). 

13C NMR (126 MHz, CDCl3): δ 149.01, 144.32, 142.04, 133.70, 132.66, 130.50, 123.55, 121.52, 

121.40, 119.24, 117.12, 45.53, 27.53. 

HRMS TAPSI: [M+H] calcd for C13H13N2O2: 229.0977. Found: 229.0972.  

IR: 3091, 3076, 2989, 2928, 2874, 2237, 1631, 1612, 1593, 1583, 1531, 1479, 1456, 1433, 1352, 

1309, 1290, 1211, 1107, 989, 920, 671, 632, 611, 592, 567, 545, 489, 420. 

 

 

TL6-052 

1H NMR (500 MHz, CDCl3): δ 7.69 – 7.63 (m, 2H), 7.62 – 7.57 (m, 1H), 7.53 (tt, J = 7.7, 0.8 

Hz, 1H), 6.08 (dd, J = 17.5, 11.1 Hz, 1H), 5.62 (s, 1H), 5.50 (s, 1H), 5.30 (d, J = 17.4 Hz, 1H), 

5.14 (d, J = 11.1 Hz, 1H), 1.89 (s, 3H). 
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13C NMR (126 MHz, CDCl3): δ 144.80, 140.85, 133.92, 131.82 (q, J = 32.6 Hz), 129.96, 129.93 

(d, J = 1.4 Hz), 125.37 (q, J = 3.8 Hz), 124.08 (q, J = 273.0 Hz), 123.12 (q, J = 3.8 Hz), 121.91, 

118.95, 116.54, 45.66, 27.62.    

HRMS: [M+H]+ calcd for C15H13F3NO2: 296.0898. Found: 296.0868.  

IR: 3102, 2990, 2936, 2851, 2500, 2241, 1599, 1493, 1441, 1329, 1287, 1202, 1169, 1128, 1072, 

914, 804, 706, 662.  

 

 

TL7-087 

1H NMR (500 MHz, CDCl3): δ 7.37 (td, J = 8.0, 5.9 Hz, 1H), 7.28 – 7.24 (m, 1H), 7.11 (dt, J = 

10.0, 2.2 Hz, 1H), 7.03 (tdd, J = 8.2, 2.5, 0.9 Hz, 1H), 6.09 (dd, J = 17.5, 11.2 Hz, 1H), 5.58 (s, 

1H), 5.47 (s, 1H), 5.33 (d, J = 17.5 Hz, 1H), 5.13 (d, J = 11.2 Hz, 1H), 1.86 (s, 3H). 

13C NMR (126 MHz, CDCl3): δ 163.02 (d, J = 247.5 Hz), 144.74, 141.89 (d, J = 7.2 Hz), 

133.73, 130.60 (d, J = 8.3 Hz), 121.79, 121.77, 118.38, 115.76, 115.11 (d, 20.9 Hz), 113.37 (d, 

23.5 Hz), 45.25, 27.20.    

HRMS TAPSI: [M+H] calcd for C13H13FN: 202.1032. Found: 202.1024.  

IR: 3091, 3063, 2989, 2926, 2852, 2237, 1614, 1591, 1487, 1440, 1392, 1379, 1273, 1251, 1172, 

1159, 1145, 1093, 1074, 987, 923, 879, 750, 644, 501, 472, 457, 449, 428, 401.  
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TL7-086 

1H NMR (500 MHz, CDCl3): δ 8.45 (dd, J = 2.8, 0.7 Hz, 1H), 7.70 (dd, J = 8.4, 2.7 Hz, 1H), 

7.36 (dd, J = 8.5, 0.8 Hz, 1H), 6.09 (dd, J = 17.3, 11.0 Hz, 1H), 5.62 (s, 1H), 5.49 (s, 1H), 5.32 (d, 

J = 17.5 Hz, 1H), 5.18 (d, J = 11.2 Hz, 1H), 1.89 (s, 3H). 

13C NMR (126 MHz, CDCl3) δ 151.69, 147.91, 144.14, 137.13, 134.57, 133.56, 124.82, 121.20, 

119.40, 116.87, 43.57, 27.37. 

HRMS TAPSI: [M+H] calcd for C12H12ClN: 219.0684. Found: 219.0677.  

IR: 3095, 3055, 2989, 2926, 2850, 2237, 1633, 1583, 1562, 1462, 1456, 1371, 1141, 1111, 1016, 

987, 918, 553, 476, 455, 420, 403.  

 

 

 

TL7-077 

1H NMR (500 MHz, CDCl3): δ 8.00 – 7.96 (m, 2H), 7.34 – 7.29 (m, 2H), 7.25 – 7.14 (m, 3H), 

6.92 – 6.87 (m, 2H), 6.09 (dd, J = 17.5, 11.2 Hz, 1H), 5.66 (s, 1H), 5.55 (s, 1H), 5.33 (d, J = 17.4 

Hz, 1H), 5.12 (d, J = 11.2 Hz, 1H), 3.93 (s, 3H), 3.55 (d, J = 12.9 Hz, 1H), 3.28 (d, J = 12.9 Hz, 

1H). 

13C NMR (126 MHz, CDCl3): δ 166.77, 144.45, 142.42, 134.52, 134.18, 130.84, 130.24, 130.21, 

128.30, 127.78, 127.43, 120.45, 118.81, 116.57, 52.58, 52.29, 44.23. 
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HRMS TAPSI: [M+H] calcd for C21H20NO2: 318.1494. Found: 318.1479.  

IR: 3063, 3032, 2951, 2359, 2341, 2239, 1732, 1714, 1681, 1633, 1608, 1573, 1496, 1454, 1435, 

1410, 1313, 1284, 1240, 1188, 1159, 1112, 1085, 1020, 989, 964, 920, 667, 557, 439.  

 

 

TL6-289 

1H NMR (500 MHz, CDCl3): δ 8.08 – 8.02 (m, 2H), 7.54 – 7.48 (m, 2H), 5.85 – 5.71 (m, 2H), 

5.46 (s, 1H), 5.33 (s, 1H), 3.93 (s, 3H), 1.85 (s, 3H), 1.64 (d, J = 5.5 Hz, 3H). 

13C NMR: 

HRMS TAPSI: [M+H] calcd for C16H18NO2: 256.1338. Found: 256.1328.  

IR: 3059, 3989, 253, 2887, 2850, 2237, 1766, 1726, 1608, 1573, 1508, 1435, 1410, 1371, 1315, 

1280, 1190, 1114, 1060, 1018, 964, 750, 551, 437, 424.  

 

 

TL6-236 

Impure with 23% methyl 4-acetylbenzoate 

1H NMR (500 MHz, CDCl3): δ 8.09 – 8.04 (m, 2H), 7.61 – 7.53 (m, 2H), 3.93 (s, 3H), 2.75 (qq, 

J = 16.6, 7.6, 2.5 Hz, 2H), 1.83 (s, 3H), 1.78 (t, J = 2.5 Hz, 3H). 

13C NMR (126 MHz, CDCl3): δ 166.74, 144.43, 130.41, 128.53, 126.14, 122.80, 80.97, 73.00, 

52.61, 42.51, 33.18, 26.07, 3.82. 
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HRMS TAPSI: [M+H] calcd for C15H16NO2: 242.1181. Found: 242.1172.  

IR: 2989, 2953, 2922, 2850, 2239, 1728, 1716, 1693, 1612, 1573, 1435, 1410, 1315, 1282, 1192, 

1114, 1018, 964, 750, 536, 437, 430, 412, 401. 

 

 

TL6-253 

95% pure 

1H NMR (500 MHz, CDCl3): δ 8.29 – 8.24 (m, 2H), 7.71 – 7.65 (m, 2H), 2.80 (q, J = 2.5 Hz, 

2H), 1.85 (s, 3H), 1.77 (t, J = 2.5 Hz, 3H). 

13C NMR (126 MHz, CDCl3): δ 147.95, 146.49, 127.30, 124.33, 122.25, 81.53, 72.49, 42.47, 

33.13, 26.11, 3.79. 

HRMS TAPSI: [M+H] calcd for C13H13N2O2: 229.0977. Found: 229.0967.  

IR: 3082, 2987, 2939, 2922, 2856, 2239, 1693, 1604, 1599, 1519, 1496, 1454, 1435, 1410, 1379, 

1346, 1319, 1298, 1273, 1190, 1112, 1093, 1062, 1014, 858.  

 

 

MLM-1-088 

1H NMR (500 MHz, CDCl3): δ 8.36 (t, J = 2.0 Hz, 1H), 8.24 (ddd, J = 8.2, 2.2, 1.0 Hz, 1H), 7.90 

(ddd, J = 7.9, 2.0, 1.0 Hz, 1H), 7.62 (t, J = 8.04 Hz, 1H), 2.81 (q, J = 2.5 Hz, 2H), 1.88 (s, 3H), 

1.78 (t, J = 2.5 Hz, 3H). 
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13C NMR (126 MHz, CDCl3): δ 148.78, 141.66, 132.60, 130.26, 123.65, 122.34, 121.20, 81.75, 

72.52, 42.13, 33.32, 25.96, 3.81. 

GC/MS: calc: 228.3. Found 228.1.  

IR: 3363, 3242, 3208, 3165, 3090, 2987, 2918, 2848, 2252, 2239, 1531, 1454, 1435, 1352, 1271, 

1111, 912. 

 

 

TL6-286 

1H NMR (500 MHz, CDCl3): δ 8.09 – 8.03 (m, 2H), 7.59 – 7.53 (m, 2H), 3.92 (s, 3H), 2.78 (qt, 

J = 16.6, 3.0, 2.4 Hz, 2H), 2.11 (tt, J = 7.1, 2.4 Hz, 2H), 1.82 (s, 3H), 1.42 (p, J = 6.9 Hz, 2H), 

1.34 – 1.17 (m, 8H), 0.88 (t, J = 7.1 Hz, 3H). 

13C NMR (126 MHz, CDCl3): δ 166.69, 144.43, 130.34, 130.27, 126.17, 122.76, 85.74, 73.84, 

52.56, 42.53, 33.19, 32.03, 29.08, 28.99, 28.92, 26.04, 22.93, 18.88, 14.39. 

HRMS TAPSI: [M-H] calcd for C21H28NO2: 326.2120. Found: 326.2104.  

IR: 2953, 2929, 2856, 2239, 1732, 1714, 1681, 1612, 1575, 1512, 1454, 1435, 1410, 1379, 1315, 

1284, 1246, 1192, 1112, 1064, 1018, 966, 856, 472, 406, 399.  

 

 

TL6-290 

1H NMR (500 MHz, CDCl3): δ 8.12 – 7.99 (m, 2H), 7.62 – 7.52 (m, 2H), 3.93 (s, 3H), 2.76 (qt, 

J = 16.5, 4.6, 2.4 Hz, 2H), 2.14 (qt, J = 7.5, 2.4 Hz, 2H), 1.83 (s, 3H), 1.08 (t, J = 7.5 Hz, 3H). 
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13C NMR (126 MHz, CDCl3): δ 166.73, 144.41, 130.35, 130.30, 126.18, 122.76, 87.03, 73.27, 

52.58, 42.51, 33.19, 25.94, 14.19, 12.63. 

HRMS TAPSI: [M+H] calcd for C16H18NO2: 256.1338. Found: 256.1326.  

IR: 3061, 2980, 2953, 2939, 2918, 2879, 2847, 2239, 1934, 1805, 1732, 1714, 1612, 1575, 1552, 

1512, 1454, 1435, 1410, 1379, 1317, 1284, 1192, 1114, 1062, 1018, 966, 943, 858, 547, 491, 449, 

437.  

 

 

TL7-076 

1H NMR (500 MHz, CDCl3): δ 8.11 – 8.04 (m, 2H), 7.60 – 7.51 (m, 2H), 5.65 (dddd, J = 17.1, 

10.2, 7.5, 6.9 Hz, 1H), 5.25 – 5.10 (m, 2H), 3.93 (s, 3H), 2.96 – 2.69 (m, 4H), 1.76 (t, J = 2.5 Hz, 

3H). 

13C NMR (126 MHz, CDCl3): δ 166.75, 142.65, 131.28, 130.34, 130.32, 126.76, 121.45, 121.22, 

81.20, 72.76, 52.60, 47.68, 43.17, 31.06, 3.83. 

HRMS TAPSI: [M+H] calcd for C17H18NO2: 268.1338. Found: 268.1330.  

IR: 3080, 2953, 2922, 2852, 2239, 1728, 1714, 1643, 1612, 1435, 1410, 1317, 1284, 1247, 1193, 

1112, 1020, 993, 964, 929, 750, 545, 472, 406.  
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TL7-079 

78% pure isolated with 22% protonated pdt 

1H NMR (500 MHz, CDCl3): δ 8.07 – 8.02 (m, 2H), 7.49 – 7.44 (m, 2H), 7.26 – 7.20 (m, 3H), 

7.06 – 7.01 (m, 2H), 3.95 (s, 3H), 3.42 (d, J = 13.5 Hz, 1H), 3.27 – 3.22 (m, 1H), 2.90 (qq, J = 

16.6, 6.6, 2.6 Hz, 2H), 1.81 (t, J = 2.5 Hz, 3H). 

13C NMR (126 MHz, CDCl3): δ 166.78, 142.60, 134.41, 130.62, 130.56, 130.15, 128.56, 127.89, 

127.02,121.49, 81.43, 73.02, 52.59, 49.08, 45.33, 30.15, 3.89. 

HRMS TAPSI: [M+H] calcd for C21H20NO2: 318.1494. Found: 318.1489.  

IR: 3063, 3032, 3005, 2953, 2922, 2854, 2241, 1722, 1716, 1610, 1573, 1496, 1454, 1454, 1435, 

1410, 1317, 1282, 1192, 1112, 1087, 1020, 966, 856, 547, 516, 474, 461, 435, 412. 
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Chapter 4. Activation of Alcohols with Carbon Dioxide: Intermolecular Allylation 
of Weakly Acidic Pronucleophiles1 

 
 

4.1 Introduction to Allylation:  
 

As mentioned in chapters 1-3 of this dissertation, incorporation of allylic moieties consisting 

of a three-carbon subunit (C–C=C) have been the subject of extensive research over the past four 

decades.2-9 One potential reason for such extensive research lies in the ability of alkenes to serve 

as diverse functional handles for other chemoselective transformations.10 Further, unlike 

asymmetric reactions involving a prochiral olefin or carbonyl moieties where asymmetric 

induction relies on facial differentiation, asymmetric allylic alkylations can arise from numerous 

methods of asymmetric induction.7 Specifically, incorporation of chiral elements can occur about 

the nucleophile, electrophile, or both. Lastly, allylic alkylations can also form numerous types of 

bonds making them attractive considerations in total synthesis.7 

In general, allylic substituents can be incorporated into synthetic intermediates as 

nucleophiles (allylic anion)11-14 or as most commonly is observed, electrophiles (allyl cation).2-9,15  

The most highly utilized method for catalytic electrophilic allylic alkylation, known as the Tsuji-

Trost reaction, involves the use of palladium, activated allylic electrophile (allyl acetate or allyl 

carbonate), and a stabilized nucleophile. In contrast to simple substitution reactions with allylic 

halides, the Tsuji-Trost reaction uses more readily available alcohols and the use of palladium can 

control the regio- and stereochemical outcome of product formation.  

 

4.2 Development and Application of the Tsuji-Trost Reaction. 

First reported in 1965 by Tsuji and coworkers, the ability for palladium to promote allylic 

alkylation of carbon-centered nucleophiles was accomplished in the presence of sodium ethoxide 

(Scheme 4.1).16 Although a mixture of allylated and diallylated products was observed using 
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stoichiometric palladium(allyl)chloride dimer, Tsuji and coworkers revealed the importance of 

palladium π-allyl intermediates for successful allylic alkylation.    

 

 Over the next couple of years, it was revealed that not only could palladium π-allyl 

intermediates be generated from allylic electrophiles equipped with a good leaving group in the 

presence of a palladium(0) catalyst, but also that the amount of palladium could be reduced and 

used catalytically (Scheme 4.2).17 In general, the mechanism of the Tsuji-Trost allylation reaction 

begins with coordination of an allylic electrophile to palladium(0) (Scheme 4.3).7 Then, 

ionization occurs via oxidative addition to palladium to form a cationic palladium π-allyl 

intermediate. Lastly, nucleophilic substitution by an activated nucleophile will yield the allylated 

species along with regeneration of the active palladium(0) catalyst.7 
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Scheme 4.1: Tsuji's First Report of the Allylation of Carbon-centered Nucleophiles with Palladium p-Allyl Species.
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Scheme 4.2: Catalytic Allylic Alkylation of Carbon-centered Nucleophiles
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 As it pertains to material that will be presented later in the chapter, in 1980 Tsuji18 and 

Saegusa19 expanded the scope of allylic alkylation methods to include the in situ generation of 

enolate nucleophiles from the palladium(0)-catalyzed decarboxylation of β-ketocarboxylates. 

Although Nesmeyanov and coworkers had previously demonstrated that metal β-ketocarboxylates 

readily undergo decarboxylation to generate metal enolates,20 application in the Tsuji-Trost 

reaction, as presented by Tsuji and Saegusa, allowed for both activation of the electrophile and 

nucleophile in situ. Specifically, in situ activation of various nucleophiles could bypass the 

previously existing pKa limits of the reaction and significantly expand the functional group 

compatibility.9 Importantly, a single example demonstrated by Saegusa and coworkers revealed 

that an acetonitrile derivative was also a compatible starting material for the decarboxylative 

allylation reaction despite minor contamination with the diallylated species (Scheme 4.4).19  

Subsequent studies conducted by Tunge and coworker in 2009 further revealed that the 

decarboxylative allylation of nitriles was regiospecific when conducted in the presence of much 

more acidic α-protons (Scheme 4.5).21 Their studies demonstrated the application of 

decarboxylative allylation methods as opposed to base-mediated nucleophilic activation.21   
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 In addition to the decarboxylative activation of nitriles for allylic substitution, it is also 

necessary to briefly discuss advances in the decarboxylative allylation of nitroalkanes. Along 

with providing additional examples of the decarboxylative allylation of nitriles (in which 

allylation was observed in competition with protonation), in 1987 Tsuji and coworkers reported 

that nitroalkanes were viable substrates for decarboxylative allylic coupling to form a new C—C 

bond (Scheme 4.6).22 However, the reaction was significantly effected by competing O-allylation 

even at reduced reactions temperatures (Scheme 4.6).      

 
 

 To expand the scope of decarboxylative allylation to nitroalkanes, in 2010 Tunge and 

coworker optimized reaction conditions that resulted in predominately C-allylation (Scheme 

4.7).23 Further, it was determined that O-allylation is fast and reversible as opposed to C-

O
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Scheme 4.4: Decarboxylative Allylation of Acetonitrile Derivatives.
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allylation, which was irreversible. Therefore, in cases where aldehyde products (presumably 

formed as a result of elimination of O-allylation products) were formed competitively with C-

allylation products, reactions could be conducted under more concentrated conditions to facilitate 

higher yields of C-allylation products. 

 

 

4.3 Regioselectivity of the Tsuji-Trost Allylic Alkylation.  

 In addition to the development of various methods for nucleophilic activation, substantial 

research has been conducted on the mode of nucleophilic attack once generated (Scheme 4.8).24-26 

Starting from a chiral allylic acetate or carbonate, palladium(0) will undergo oxidative addition of 

the allylic electrophile to generate a palladium π-allyl intermediate with inversion of 

stereochemistry. For soft, stabilized nucleophiles like malonates (pKa = <18), nucleophilic attack 

will occur with inversion at the π-allyl ligand to displace palladium resulting in a formal retention 

of stereochemistry. Alternatively, hard nucleophiles (pKa = >25), will first undergo 

transmetalation at the palladium center followed by reductive elimination to yield retention of 

stereochemistry and an overall inversion product.    
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4.4 Activation of Allylic Alcohols for the Allylation of Carbon-Centered Nucleophiles.  

 The Tsuji-Trost reaction is an extremely valuable method for allylic incorporation into 

molecular scaffolds as demonstrated by its prevalent use over the last four decades. However, 

application of this method requires preactivation of alcohols, which possess a poor leaving group 

to form a better leaving group (typically converting the allylic alcohol to an allylic acetate or 

carbonate). Therefore, a logical improvement of the Tsuji-Trost reaction would be to develop 

methods that utilize allylic alcohols directly for the allylation of carbon-centered nucleophiles. 

Development of such a method would significantly increase the atom economy and efficiency of 

allylation reactions.  

 

 In 1964, Tsuji and coworkers demonstrated that allylic alcohols could be esterified using 

1 atm of carbon monoxide in ethanol in the presence of palladium chloride (Scheme 4.9).27,28 

However, compared to allylic acetate derivatives, allylic alcohols required extended reaction 

times, higher temperatures, and resulted in lower overall yields. Fifteen years later, in 1979, 

Commereuc and coworkers reported that a single substrate, diethyl acetamidomalonate, could be 

allylated in the presence of allyl alcohol, Pd(OAc)2, PPh3 and PhONa (Scheme 4.10).29 Further, 

under similar reaction conditions Sas30 and Bergbreiter31 reported the allylation of nitroalkanes 

(Scheme 4.11),30 nitriles (Scheme 4.12),31 and β-ketoesters (Scheme 4.13),31 however, the 

reported methods suffered from extended reaction times, high temperatures, or lacked product 

selectivity when compared to Tsuji-Trost reaction alternatives.  
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Scheme 4.9: Carbonylation with Palladium Chloride.
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 In 2011, Tunge and coworker reported that allylic alcohols could be activated in situ by 

ketone pronucleophiles for successful C-allylation (Scheme 4.14).32 The mechanism proceeds via 

deacylative allylation where a retro-Claisen rearrangement occurs to generate allyl acetate in situ 

along with an activated nucleophile. Allyl acetate would then undergo activation by palladium(0) 

to ultimately generate the allylated product. In contrast to palladium-catalyzed reactions that 

attempted to couple allylic alcohols directly, Tunge and coworker demonstrated that their method 

was highly advantageous resulting in good yields for both stabilized and weakly stabilized carbon 
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nucleophiles. The retro-Claisen allylation was also applicable to a diverse range of substituted 

allylic alcohols.   

 

 In addition to deacylative allylation as developed by Tunge and coworkers, numerous 

other methods have been developed toward the activation of allylic alcohols for allylic alkylation 

of carbon nucleophiles. A brief review of allylation methods utilizing catalysts such as Lewis and 

Brønsted acids, hydrogen-bond donors, and catalysts based on ligand design will be presented in 

the following sections.  

 

4.5 Lewis Acid-Catalyzed Allylic Alcohol Activation.   

 A common method for the activation of allylic alcohols is through the employment of 

Lewis acids that coordinate to the alcohol functionality and weaken the C—O bond in situ, rather 

than proceeding through a prior functional group manipulation. In 1993, Kočovsky and 

coworkers reported the first use of BPh3 to activate allyl alcohol in the palladium(0) catalyzed 

allylation of lithium diethylmalonate (Scheme 4.15).33 The reaction was tolerant of several 

substituted allylic alcohols , but the scope of the nucleophile was not examined. Further, refluxing 

conditions, along with an excess of the starting nucleophile, were required to prevent dialkylation.  
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Scheme 4.14. Deacylative Allylation: Allylic Alkylation via Retro-Claisen Activation.
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 Subsequent reports beginning in 2000 by Tamaru and coworkers began to further 

investigate alkylboranes as a source of in situ allylic alcohol activation (Scheme 4.16).4,34,35 After 

reaction optimization, Tamaru and coworkers reported that Et3B activated various allylic alcohol 

for successful allylic alkylation of active methylene compounds in moderate yields. However, the 

reaction required superstoichiometric Et3B, NaH and extended reaction times when more 

sterically encumbered allylic alcohols were used.  

 

 

4.6 Brønsted Acid-Catalyzed Activation of Allylic Alcohols. 

 In addition to trialkylborane Lewis acids, As2O3,36 Ti(OiPr)3,37 SnCl2,38 and B2O3,39 have 

also been employed most often in stoichiometric quantities. As an alternative, Brønsted acid-

catalysis has been developed to minimize the production of waste by reducing the amount of 

catalysts employed. In 2003, Kobayashi and coworker reported that palladium tetrakis with 10 
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Scheme 4.15. BPh3-Catalyzed Activation of Allylic Alcohols.
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mol% of 1-adamantanecarboxylic acid efficiently catalyzed the allylation of various nucleophiles 

equipped with two electron-withdrawing groups (EWG’s) (Scheme 4.17).40 Despite the fact that 

the reaction could be conducted in water absent of any organic solvents or stoichiometric 

additives, refluxing reaction conditions are a significant limitation along with the narrow 

substrate scope for substituted allylic alcohols.     

 
 

 In 2011, List and coworkers employed the use of Pd(PPh3)4 with chiral Brønsted acid and 

benzhydryl amine to facilitate both allylic alcohol activation and chiral induction in the 

asymmetric allylation of aldehyde derivatives (Scheme 4.18).41 Although the developed method 

produced adequate yields and high ee’s, the substrate scope was limited to carbonyl 

functionalities that could generate an imine in situ. Further, the use of transition metal, Brønsted 

acid, and amine catalysts deviates from the overall objective to develop an atom-economical 

alternative to the Tsuji-Trost allylation method.       
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Scheme 4.17: Carboxylic Acid-Assisted Allylation with Allylic Alcohols in Water.
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 In attempt to minimize the number of requisite additives and expand the substrate scope 

of asymmetric allylic alkylations, in 2013 Gong and coworkers reported the use of palladium(0) 

with chiral phosphoric acid and a chiral phosphoramidite ligand in the asymmetric allylation of 

pyrazol-5-ones (Scheme 4.19).42 The method was found to be functional group tolerant and 

resulted in high yields and ee’s. However, chiral induction is largely based on the presence of 

hydrogen bonding in the transition-state, which limits the scope of the nucleophile.    

 

 

4.7 Hydrogen-Bond Donor (HBD) Activation of Allylic Alcohols.  
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 In effort to further minimize the amount of additives required for the in situ activation of 

allylic alcohols, Reek and coworkers reported that simple diethylurea could be utilized as a HBD 

catalyst in only 3 mol % for allylic alkylation of carbon nucleophiles (Scheme 4.20).43 However, 

the developed method was only successful for simple allyl alcohol. When substituted derivatives 

were employed, significantly decreased yields were observed or the allylation reaction was shut 

down completely. Lastly, the scope of the nucleophile appeared to be limited to indole-type 

derivatives.  

 

4.8 Allylic Alcohol Activation via Ligand Design. 

 One last method of allylic alcohol activation was demonstrated by Ozawa and workers in 

2002 through the use of sp2-hydridized phosphorous ligands (Scheme 4.21).44 Unlike the methods 

presented previously, allylic alcohol activation occurred absent of any additional additives 

beyond catalytic palladium and ligand. The active catalytic species is proposed to be a palladium-

hydride intermediate which will facilitate a proton transfer to generate a palladium(0) 

intermediate and activated allylic species for nucleophilic attack.44 However, both the scope of 

the nucleophile and allylic alcohol were extremely limited. Further, a large excess of the starting 

nucleophile was required to access the reported yields.        
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4.9 Activation of Allylic Alcohols with CO2. 

 As demonstrated in sections 1.4 – 1.8 of chapter 4, a variety of methods have been 

developed for the in situ activation of allylic alcohols using various additives or specifically 

designed ligands. However, the developed methods are limited to non- or weakly basic 

nucleophiles. More strongly basic nucleophiles would be incompatible under Brønsted or Lewis 

Acid catalysis. Additionally, these methods often suffer from diminished yields or failed reactions 

when substituted allylic alcohols are employed. The use of additives also deviates from the goal 

of achieving an atom-economical alternative to the Tsuji-Trost allylic alkylation reaction since 

the additives require removal upon reaction completion. In lieu of these drawbacks, we were 
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inspired to develop an environmentally benign method to activate both allylic alcohols and a large 

class of nucleophiles in situ for allylic alkylation of carbon-centered nucleophiles.  

 In 1995, Yamamoto and coworkers reported that CO2 could be used at high pressure to 

catalyze the allylation of acidic β-dicarbonyl compounds in the presence of allylic alcohols 

(Scheme 4.22).45 At the time, it was initially proposed that CO2 reversibly inserts into allylic 

alcohols to form allyl carbonic acids in situ which then undergo activation by palladium. Then in 

2001,46 and in subsequent reports,47-48 Eckert and coworkers demonstrated that alkylcarbonic 

acids form in situ from the addition of CO2 to alcohols (Scheme 4.23). Based on these initial 

reports, we sought to expand the application of CO2 activation of allylic alcohols to a broader 

substrate class beyond highly stabilized malonate-type derivatives as reported Yamamoto 

(Scheme 4.22).45  
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By employing CO2 as an in situ activator of allylic alcohols, we envisioned expanding the 

known method to weakly acidic pronucleophiles, such as nitroalkanes, nitriles, and aldehydes 

(Scheme 4.24). Beginning with nucleophilic attack of allyl alcohol on CO2, allylic carbonate 

would be generated in situ and sufficiently activated for oxidative addition by palladium(0) to 

yield a palladium π-allyl intermediate along with bicarbonate. Subsequent decarboxylation of 

bicarbonate could then form a strong hydroxide base (pKa = 30 in DMSO) necessary for 

pronucleophile activation and generate water as the only stoichiometric by-product. Lastly, 

nucleophilic attack on the palladium π-allyl intermediate would occur to yield the allylated 

product and regenerate the active palladium(0) catalyst.    

 

 Initial studies were conducted by Simon Lang using relatively acidic nitroalkane 

derivatives (pKa = 17 in DMSO). It was found that high yields of the allylated product were 
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obtained when a sealed vial containing nitroalkane, allyl alcohol, and Pd(PPh3)4 in DMSO under 

1 atm of CO2 was heated at 80 oC overnight (Scheme 2.25). Further, when argon replaced CO2, 

1H NMR spectroscopy of the crude reaction mixture indicated that no appreciable amount of 

allylated product formed (Scheme 2.25).    

 

 Next, Simon examined the scope of nitroalkanes using the developed allylation reaction 

in which he found that both cyclic and acyclic nitroalkanes were well tolerated (Scheme 2.26). 

Further, upon examination of the functional group tolerance of the reaction, it was found that 

olefins (1a, 1c, 1h), α,β-unsaturated esters (1l), ethers (1e, 1f), and indole (1d) were well 

tolerated. Additionally, β-methallyl alcohol also lead to a high isolated yield of the allylated 

nitroalkane (1j). However, prenyl and crotyl alcohols were unsuccessful under the optimized 

reaction conditions. Lastly, successful allylation of nitroalkane derivatives could also occur under 

microwave conditions in just 20 min at 160 oC.    
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Scheme 2.25. Optimized Reaction Conditions.
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 Next, Simon evaluated the ability of various aldehyde derivatives to undergo CO2-

catalyzed allylic alkylation from allylic alcohols despite the fact that aldehydes can be prone 

dimerization (Scheme 2.27). Gratifyingly, under the standard reaction conditions developed for 

Scheme 2.26. CO2-Catalyzed Allylation of Nitroalkanes.
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nitroalkanes, both cyclic (2a-2g, 2j-3l) and acylic (2h-2i) aldehyde derivatives were successfully 

allylated in good to high overall yields. In regards to α-aryl aldehydes, both electron-withdrawing 

(2c, 2e) and electron-donating functionalities (2b, 2d) were tolerated on the aryl ring along with 

2-napthyl and biaryl motifs (2f, 2g). Further, aldehydes containing a protected amino aldehyde 

(2j) and benzyl substituents (2k, 2l) also resulted in good to high yields of the allylated products.      

 

 In order to probe to identity of the in situ generated base and examine how weakly acidic 

the nucleophile coupling partner could be, we next extended the nucleophile scope beyond 

nitroalkanes (pKa = 17 in DMSO) to tertiary nitriles (pKa = 22-25 in DMSO) (Scheme 2.28). In 

1h
84% (5%)c

14 h 
71% (5%)c

24 h
90%

14 h
94% (6%)c

2 h
86%

2 h
87%

2 h
85%

1 h
80%

2 h
89% 94%

2 h
91%

H

O
R1

R2
H

O
R1

R2

Ph(PPh3)4 (5 mol %)
CO2 (1 atm)

DMSO (0.15 M)
80 oC

OH

H

O
Me H

O
Me

Me 2 h
93 %

H

O
Me

H

O
Me

O

H

O
Me

O

F

F
F

H

O
Me

F

H

O
Me

H

O
Me

H

O
Me

H

O

N

H

O

Ph
HN

O

O

O

O

O

H

2 h

2a 2b 2c 2d

Scheme 2.27. Scope of the Allylation of Aldehydesa,b

2e 2f 2g 2h

2i 2j 2k 2l

a) Aldehyde (0.30 mmol) and alcohol (0.45 mmol) in 2.0 mL DMSO under 1 atm
of CO2. b) Isolated yields. c) Ar replaced CO2 (% conversion via GC/MS).



 341 

slight contrast to the method developed for the allylation of aldehydes and nitroalkanes, 

optimized reaction conditions for the allylation of nitriles resulted in lowered catalyst loading, 

more concentrated solutions, and slightly elevated reaction temperatures. However, as found with 

both nitroalkanes and aldehydes, the CO2-catalyzed allylation of nitriles resulted in good to high 

yields of the allylated products. This result suggests that pronucleophile activation occurs from a 

hydroxide/carbonate mixture generated in situ instead of bicarbonate which is not a sufficient 

base for nitrile activation.  

Upon examining the substrate scope of the nitrile coupling partner, it was found that the 

reaction was tolerant of halogens (3b-3c), aryl ether (3d), ketone (3f), and indole substituents 

(3h). However, allylation of a sterically congested ortho-disubstituted nitrile was unsuccessful 

under the optimized reaction conditions. Further, yields of the allylated products were 

significantly higher than when the same reactions conducted under argon. Presumably, since 

nitriles are known to undergo hydrolysis to form carboxylic acids, the observed minor reaction 

conversion to the allylated product in the absence of CO2 could be acid catalyzed as reported by 

Kobayashi.  
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 Lastly, we examined the scope of the reaction utilizing substituted allylic alcohols with 

tertiary nitriles and aldehydes (Scheme 2.29). In general, comparable yields were observed as 

those resulting from allylation reactions with simple allyl alcohol (4a-4o). Both 2-methyl and 2-

phenyl-2-propen-1-ol were well tolerated by both nitriles and aldehydes resulting in good to high 

isolated yields of the allylated product (4a, 4b, 4j). Further, as typically observed in palladium-

catalyzed allylation reactions, the linear regioisomer was predominately favored over the 

branched isomer. For nitrile derivatives a trend was observed where the ratio of the 

linear:branched isomers increased with an increase in steric bulk on the substituted allylic alcohol 

Scheme 2.28. Scope of the Allylation of nitriles.a,b
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(4c-4f). Selectivity is proposed to arise from an outer-sphere C-allylation mechanism.48,49 When 

comparing cinnamyl alcohol and α-vinylbenzyl alcohol, which result in the same palladium π-

allyl intermediate in situ, comparable selectivity was observed, resulting in a >95:5 

linear:branched ratio (4f, 4g). However, the overall isolated yield of the allylated products was 

slightly lower using the cinnamyl reactant (4f, 4g). Unfortunately, employment of prenyl alcohol 

failed to produce any of the desired product, presumably due to the increased steric hindrance at 

the terminal position of the allylic alcohol (4i). Lastly, for aldehyde derivatives, ether and 

substituted aryl moieties were well tolerated on the allylic alcohol resulting in good yields and 

high regioselectivity for the linear isomer (4k-4o).     
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Scheme 2.29. Scope of allyl alcoholsa,b
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4.10 Conclusion 

 The development of a CO2-catalyzed method for the in situ activation of allylic alcohols  

enabled the allylation of weakly acidic nitroalkanes, nitriles, and aldehydes under mild conditions 

with water as the only stoichiometric byproduct. Further, the presented method provides an atom-

economic alternative to the Tsuji-Trost allylic alkylation absent of stoichiometric or catalytic 

additives that require removal upon reaction completion.  
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General Information: 

 All reactions were run in oven or flame dried 2.0 – 5.0 mL microwave vials from 

Biotage.  DMSO was purchased from Sigma Aldrich and stored in a glove box.  Allyl alcohol 

was purchased from Sigma Aldrich and stored over 3 Å mol sieves. 2-Phenylprop-2-en-1-ol was 

prepared according to a literature procedure.1 Palladium tetrakis(triphenylphosphine) was 

purchased from Strem, stored in a glovebox, and used as received. CO2 was dispensed through a 

Matheson 3040 series regulator attached to a cylinder purchased from Lindweld.  

 TLC analysis was performed with silica gel HL TLC plates w/UV254 from Sorbent 

Technologies.  60 Å porosity, 230 x 400 mesh standard grade silica gel from Sorbent 

Technologies was used for column chromatography.  GC/MS data was obtained using a 

Shimadzu GCMS-QP2010 SE. Microwave experiments were run in a Biotage Initiator.  1H, 13C, 

and 19F NMR spectra were obtained on a Bruker Advance 500 DRX equipped w ith a QNP 

cryoprobe or a Bruker Advance 400.  19F NMR spectra were referenced to trifluoromethyltoluene 

while 1H and 13C NMR spectra were referenced to residual protio solvent signals.  

 
Nitroalkanes were prepared according to literature procedures:  
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Procedure A (synthesis of 2-(4-chlorophenyl)propanenitrile, 2-(4-fluorophenyl)-
propanenitrile ):11 
 

To a glass sleeve, the respective phenylacetonitrile (16.5 mmol) was added with dimethyl 

carbonate (25 mL, 16 equiv.), and K2CO3 (4.5 g, 2 equiv.). The sleeve was placed in a stainless 

steel Parr reactor, sealed, heated to 160 oC and stirred for 3 hr. The reaction was then quenched 

by turning off the heating source and allowing the apparatus to cool to room temperature. After 

removal of the glass sleeve, the contents were subjected to a water workup (200 mL), extracted 

with EtOAc (100 mL), and purified by flash chromatography over silica in 2% EtOAc:Hexanes.  

 

Procedure B (synthesis of 2-(4-methoxyphenyl)-3-phenylpropanenitrile):12 

 

In a 100 mL flame-dried Schlenk flask under Ar dry THF (13 mL) was added. The solvent was 

then place in a dry ice/acetone bath and cooled to -78 oC. n-BuLi (8.0 mL, solution 1.6 M/Hex 

from Aldrich) was added dropwise and the solution was stirred for 10 min. The solution was then 

warmed to room temperature, stirred for 5 minutes then cooled to -78 oC. Next, commercially 

available 4-methoxyphenylacetonitrile (1.85 g, 12.6 mmol) was added dropwise over 10 minutes. 

The solution was stirred for 1 hr before benzyl bromide (2.15 g ,1 equiv) was added dropwise. 

The resulting solution was stirred for 30 min., warmed to room temperature, and stirred 

overnight. The reaction was quenched with aq. NH4Cl (20 mL), subjected to a water workup (2 x 

50 mL), and extracted with EtOAc (50 mL) and dried over MgSO4. The solution was then filtered 

and concentrated via rotary evaporation to yield a light yellow oil that solidified upon standing. 

The solid was then purified via recrystallization by heating the solid in 50 mL EtOH until 

dissolved then placed in the freezer. The product was collected via vacuum filtration as an off-

white solid.       
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Procedure C (synthesis of substrate 3-(1-methyl-1H-indol-3-yl)-2-phenylpropanenitrile):13   

 

A 100 mL round bottom flask was charged with benzyl cyanide (.94 g, 8.0 mmol), 1-

methylindole-3-carboxaldehyde (1.27 g, 8 mmol), sodium methoxide (0.04 g, 0.8 mmol) and 

EtOH (12 mL) and stirred at room temperature overnight. The reaction mixture was then 

concentrated in vacuo followed by an aqueous workup in water (2 x 50 mL), extracted with 

EtOAc (100 mL), and dried over MgSO4. After concentration via rotary evaporation, the crude 

product was heated until dissolved in 20 mL EtOH to yield 4-(1-methyl-1H-indol-3-yl)-2-

phenylbut-3-enenitrile as an orange solid (1.25 g, 4.8 mmol). The solid was then dissolved in 

THF (5 mL) and cooled to 0 oC followed by the addition of NaBH4 (0.2 g, 4.8 mmol). The 

solution was allowed to warm to room temperature and stirred overnight followed by quenching 

with NH4Cl (10 mL), aqueous workup (3 x 20 mL), extraction with EtOAc (20 mL), and 

purification via column chromatography in 2% EtOAc:Hexane.  
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Aldehyde starting materials: 
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Representative procedure for the CO2 catalyzed activation of allyl alcohol towards 

allylation of nitroalkanes: 

 A 2.0 – 5.0 mL microwave vial (Biotage #351521) dried in an oven is charged with a stir 

bar and taken into a glove box.  Pd(PPh3)4 (10 mol %, 0.035 g) is added along with DMSO ( 2.0 

mL) and the vial is capped using a vial cap (Biotage #352298) and a manual cap crimper (Biotage 

#353671).  The vial is removed from the glovebox and substrate (0.30 mmol) and allyl alcohol 

(0.45 mmol, 0.026 g) are added sequentially via syringe.  CO2 is then bubbled through the solvent 

using a 20G needle connected to a balloon and a separate 25.5G needle to vent.  After 6 mins the 

vent needle was removed followed by the CO2 needle and the top of the vial is wrapped in 

parafilm “M”.  The vial was then placed in an oil bath at room temperature and heated/stirred at 

80 oC for 14 hours. 

 After 14 hours the vial is removed from the bath, and allowed to cool to room 

temperature.  The contents were taken up in EtOAc (10 mL) and transferred to a separatory 

funnel and were washed with 30 mL DI water 3x.  The organic layer was dried over MgSO4, 

filtered, and the solvent evaporated in vacuo followed by purification via silica gel column 

chromatography using 1:20 EtOAc:Pentanes as an eluent. 
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dr = 95:5 ; Stereochemistry assigned by inference. See Ref. 11. 
 

1H NMR Spectra (500 MHz, CDCl3): 

(major diastereomer) G 7.47 (d, J = 7.43 Hz, 2H), 7.37 (t, J = 7.40 Hz, 2H), 7.30 (m, 1H), 6.54 

(dd, J = 5.66, 3.22 Hz, 1H), 6.26 (dd, J = 5.67, 2.82 Hz, 1H), 5.57 (m, 1H), 5.04 (dt, J = 10.2, 

0.95 Hz 1H), 4.90 (dq, J = 16.9 Hz, 1.50 Hz, 1H), 3.52 (d, J = 2.63 Hz, 1H), 3.41 (s, 1H), 3.12 (s, 

1H), 2.29 (ddt, J = 15.0, 6.97, 1.20 Hz, 1H), 2.05 (d, J = 9.60 Hz, 1H), 1.95 (dd, J = 15.0, 7.60 

Hz, 1H), 1.85 (dq, J = 9.56, 2.07 Hz, 1H). 

13C NMR (126 MHz, CDCl3):  

(major diastereomer) G 139.79, 138.18, 135.82, 130.21, 127.45, 126.06, 118.66, 100.40, 52.03, 

47.13, 45.67, 44.58, 42.14. 

GC/MS Data: 255.1 (M+, 1 %), 66.1, base peak. 
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1H NMR Spectra (500 MHz, CDCl3): 

G 7.99 (d, J = 8.66 Hz, 1H), 7.87 (d, J = 8.08 Hz, 1H), 7.80 (d, J = 8.40 Hz, 1H), 7.44 (m, 2H), 

7.51 (t, J = 7.65 Hz, 1H), 7.26 (d, J = 6.22 Hz, 1H), 5.71 (m, 1H), 5.21 (m, 2H), 3.78 (d, J = 14.7 

Hz, 1H), 3.71 (d, J = 14.6 Hz, 1H), 3.02 (dd, J = 14.2, 6.86 Hz, 1H), 2.57 (dd, J = 14.2, 7.76 Hz, 

1H), 1.43 (s, 3H). 

13C NMR (126 MHz, CDCl3):  

G 133.91, 132.66, 131.15, 130.92, 129.01, 128.47, 128.38, 126.27, 125.67, 125.38, 123.63, 

120.93, 92.43, 44.36, 41.09, 21.31. 

GC/MS data: 255.1 (M+, 8 %), 141.1, base peak. 

 

dr > 95:5; Stereochemistry assigned by inference. See Ref. 11. 

1H NMR Spectra (500 MHz, CDCl3): 

G 7.23 (m, 3H), 7.11 (m, 2H), 5.63 (m, 1H), 5.14 (m, 2H), 3.47 (d, J = 6.82 Hz, 1H), 2.85 (dd, J = 

14.1, 6.81 Hz, 1H), 2.64 (m, 3H), 2.34 (m, 2H), 1.75 (d, J = 10.9 Hz, 6H). 

13C NMR (126 MHz, CDCl3):  

G 140.27, 130.99, 128.47, 128.27, 127.53, 124.40, 123.72, 120.64, 92.98, 46.8, 41.80, 36.6, 33.35, 

19.36, 18.30. 

GC/MS data: 225.2 (M – NO2, 8%), 183.1, base peak. 
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1H NMR Spectra (500 MHz, CDCl3): 

G 7.53 (dt, J = 7.97, 0.92 Hz, 1H), 7.30 (dt, J = 8.31, 0.91 Hz, 1H), 7.23 (ddd, J = 8.18, 6.99, 1.11 

Hz, 1H), 7.13 (ddd, J = 7.99, 6.94, 1.08 Hz, 1H), 6.84 (s, 1H), 5.74 (m, 1H), 5.19 (m, 2H), 3.75 

(s, 3H), 3.49 (d, J = 14.8 Hz, 1H), 3.24 (d, J = 14.8 Hz, 1H), 2.92 (dd, J = 14.2, 7.05 Hz, 1H), 

2.57 (dd, J = 14.1, 7.62 Hz, 1H), 1.51 (s, 3H). 

13C NMR (126 MHz, CDCl3):  

G 136.62, 131.19, 128.48, 128.45, 121.69, 120.50, 119.32, 118.74, 109.37, 107.48, 92.63, 44.04, 

35.61, 32.78, 21.50. 

GC/MS data: 258.1 (M+, 14%) 144.1, base peak. 

 

 

 

dr = 88:12;  Relative stereomchemistry assigned via x-ray structure of corresponding amine salt. 

1H NMR Spectra (500 MHz, CDCl3): 

(major diastereomer) G 7.30 (m, 8H), 7.18 (m, 2H), 5.62 (m, 1H), 5.04 (m, 2H), 4.86 (s, 1H), 4.44 

(d, J = 11.5 Hz, 1H), 4.20 (d, J = 11.5, 1H), 3.01 (dd, J = 14.5, 6.63 Hz, 1H), 2.53 (dd, J = 14.6, 

7.89 Hz, 1H), 1.33 (s, 3H). 
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13C NMR (126 MHz, CDCl3):  

(major diastereomer) G 136.19, 134.15, 130.31, 127.82, 127.43, 127.40, 127.33, 126.88, 119.34, 

93.20, 83.66, 70.43, 39.01, 16.74. 

GC/MS data: 221.1 (M – toluene, 1%), 91.1, base peak. 

 

dr = 88:12; Relative stereochemistry assigned based on the x-ray structure of the 1e salt. 

1H NMR Spectra (500 MHz, CDCl3): 

(major diastereomer) G 7.35 (m, 3H), 7.27 (m, 2H), 5.71 (m, 1H), 5.13 (m, 2H), 4.73 (s, 1H), 3.26 

(s, 3H), 3.09 (dd, J = 14.1, 6.75 Hz, 1H), 2.56 (dd, J = 14.5, 7.90 Hz, 1H), 1.38 (s, 3H). 

13C NMR (126 MHz, CDCl3):  

(major diastereomer) G 135.17, 131.41, 128.75, 128.37, 128.22, 120.32, 94.18, 87.23, 57.84, 

39.83, 17.85. 

GC/MS data: 121.1 base peak. 

 

1H NMR Spectra (500 MHz, CDCl3): 

G 7.27 (m, 1H), 7.07 (m, 3H), 5.70 (m, 1H), 5.20 (m, 2H), 3.33 (d, J = 14.3 Hz, 1H), 3.25 (d, J = 

14.2 Hz, 1H), 2.89 (dd, J = 14.1, 6.93 Hz, 1H), 2.53 (dd, J = 14.2, 7.68 Hz, 1H), 1.48 (s, 3H). 

13C NMR (126 MHz, CDCl3):  



 361 

G 161.27 (d, JCF = 246 Hz), 131.82 (d, JCF = 3.91 Hz), 130.74, 129.47 (d, JCF = 8.32 Hz), 124.41 

(d, JCF = 3.60 Hz), 121.89 (d, JCF = 15.7 Hz), 120.87, 115.44 (d, JCF = 22.7 Hz), 91.65, 43.95, 

38.19, 20.78. 

19FNMR (376 MHz, CDCl3): 

G  -116.75. 

GC/MS data: 223.05 (M+ 0.1 %), 109.1, base peak. 

 

 

dr = 85:15; Stereochemistry assigned by inference. See Ref. 11. 

1H NMR Spectra (500 MHz, CDCl3): 

(major diastereomer) G 5.98 (m, 1H), 5.62 (m, 1H), 5.13 (m, 4H), 2.80 (dd, J = 15.1 Hz, 7.08 Hz, 

1H), 2.69 (dd, J = 14.1, 7.60 Hz, 1H), 2.55 (m, 1H), 2.23 (ddd, J = 13.8, 8.62, 3.78 Hz, 1H), 1.60 

(m, 8H). 

13C NMR (126 MHz, CDCl3):  

(major diastereomer) G 136.18, 130.72, 120.40, 118.15, 93.55, 48.66, 41.56, 29.62, 28.48, 22.09. 

GC/MS data: 149.2 (M – NO2, 5%), 81.1 (base peak). 

 

 

1H NMR Spectra (500 MHz, CDCl3): 
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G 5.63 (ddt, J = 17.3, 10.1, 7.30 Hz, 1H), 5.17 (m, 2H), 2.77 (dt, J = 7.30, 1.24 Hz, 2H), 2.01 (m, 

2H), 1.84 (dd, J = 6.8, 1.46 Hz, 2H), 0.87 (t, J = 7.45 Hz, 3H), 0.61 (m, 1H), 0.46 (m, 2H), 0.10 

(m, 2H). 

13C NMR (126 MHz, CDCl3):  

G 130.28, 118.98, 93.78, 39.02, 37.73, 28.68, 7.03, 4.61, 2.85, 2.78. 

GC/MS data:  154.1 (M – ethyl, 0.4 %), 55.1, base peak. 

 

 

 dr = 90:10; Stereochemistry assigned by inference. See Ref. 11. 

1H NMR Spectra (500 MHz, CDCl3): 

G 7.23 (m, 3H), 7.10 (m, 2H), 4.90 (t, J = 1.70 Hz, 1H), 4.65 (d, J = 1.05 Hz, 1H), 3.44  (d, J = 

7.17 Hz, 1H), 2.93 (d, J = 14.0 Hz, 1H), 2.69 (m, 3H), 2.36 (m, 2H), 1.75 (d, J = 13.6 Hz, 6H), 

1.63 (s, 3H).  

13C NMR (126 MHz, CDCl3):  

G 140.34, 139.64, 128.44, 128.32, 127.52, 124.27, 123.91, 116.68, 92.85, 47.33, 44.73, 37.19, 

32.61, 23.19, 19.35, 18.25. 

GC/MS data: 239.2 (M – NO2), 197.1 183.1, base peak. 
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1H NMR Spectra (500 MHz, CDCl3): 

G 7.30 (m, 3H), 7.02 (dd, J = 7.52, 1.90 Hz, 2H), 5.63 (dddd, J = 17.1, 10.2, 7.61, 6.96 Hz, 1H), 

5.12 (m, 2H), 3.29 (d, J = 13.9 Hz, 1H), 2.98 (d, J = 13.9 Hz, 1H), 2.79 (dd, J = 14.2, 6.97 Hz, 

1H), 2.43 (dt, J = 14.2, 7.68, 1.07 Hz, 1H), 1.39 (s, 3H). 

13C NMR (126 MHz, CDCl3):  

G 134.60, 130.88, 130.10, 128.54, 127.52, 120.80, 91.51, 45.62, 43.82, 21.29. 

GC/MS data: 159.1 (M- NO2, 4%), 91.1, base peak 

 
1H NMR Spectra (500 MHz, CDCl3): 

G 7.90 (s, 1H), 7.39 (m, 3H), 7.28 (m, 2H), 5.47 (m, 1H), 5.06 (m, 2H), 3.79 (s, 3H), 3.37 (d, J = 

16.5 Hz, 1H), 3.26 (d, J = 14.6 Hz, 1H), 2.73 (dd, J = 14.1, 6.78 Hz, 1H), 2.26 (dd, J = 14.2, 8.00 

Hz, 1H), 1.34 (s, 3H). 

13C NMR (126 MHz, CDCl3):  

G 168.22, 143.67, 135.05, 130.78, 128.75, 128.67, 128.54, 127.88, 120.73, 90.46, 52.21, 43.85, 

35.50, 21.17. 

GC/MS data: 289.1 (M+, 1%), 115.1, base peak. 

Representative procedure for the CO2 catalyzed activation of allyl alcohol towards 

allylation of aldehydes: 
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 A 2.0 – 5.0 mL microwave vial (Biotage #351521) dried in an oven is charged with a stir 

bar and taken into a glove box.  Pd(PPh3)4 (5 mol %, 0.014 g) is added along with DMSO ( 2.0 

mL) and the vial is capped using a vial cap (Biotage #352298) and a manual cap crimper (Biotage 

#353671).  The vial is removed from the glovebox and substrate (0.30 mmol) and allyl alcohol 

(0.45 mmol, 0.026 g) are added sequentially via syringe.  CO2 is then bubbled through the solvent 

using a 20G needle connected to a balloon and a separate 25.5G needle to vent.  After 6 mins the 

vent needle was removed followed by the CO2 needle and the top of the vial is wrapped in 

parafilm “M”.  The vial was then placed in an oil bath at room temperature and heated/stirred at 

80 oC until the reaction was complete as shown by GC/MS. The reaction mixture was dry loaded 

onto silica gel and purified by flash chromatography. 

 

 

 

2a 

ref. 16 

1H NMR Spectra (500 MHz, CDCl3): 

G 9.52 (s, 1H), 7.39 (m, 2H), 7.30 (m, 1H), 7.26 (m, 2H), 5.55 (m, 1H), 5.04 (m, 2H), 2.70 (ddt, J 

= 14.2, 6.93, 1.32 Hz, 1H), 2.63 (ddt, J = 14.1, 7.72, 1.19 Hz, 1H), 1.45 (s, 3H).  

13C NMR (126 MHz, CDCl3):  

G 201.97, 139.43, 133.17, 128.86, 127.34, 127.17, 118.61, 53.63, 40.60, 18.83. 
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2b 

ref. 17 

 

1H NMR Spectra (500 MHz, CDCl3): 

G 9.49 (s, 1H), 7.20 (m, 2H), 7.14 (m, 2H), 5.56 (m, 1H), 5.04 (m, 2H), 2.68 (ddt, J = 14.1, 6.91, 

1.13 Hz, 1H), 2.61 (ddt, J = 14.1, 7.67, 1.13 Hz, 1H), 2.35 (s, 3H), 1.43 (s, 3H). 

13C NMR (126 MHz, CDCl3):  

G 202.02, 137.07, 136.31, 133.31, 129.57, 127.07, 118.49, 53.26, 40.52, 20.97, 18.83. 

 

 

 

2c 

ref. 18 

1H NMR Spectra (500 MHz, CDCl3): 

G 9.68 (d, J = 4.97 Hz, 1H), 7.30 (m, 2H), 7.18 (td, J = 7.58, 7.53, 1.35 Hz, 1H), 7.08 (ddd, J = 

11.8, 8.18, 1.33 Hz, 1H), 5.53 (m, 1H), 5.02 (m ,2H), 2.75 (dd, J = 14.0, 6.99 Hz, 1H), 2.63 (dd, J 

= 14.1, 7.77 Hz, 1H), 1.42 (s, 3H). 

13C NMR (126 MHz, CDCl3):  
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G 201.87 (d, J = 2.32 Hz), 161.85, 159.89, 132.74, 129.42 (d, J = 8.57 Hz), 128.62 (d, J = 4.95 

Hz), 127.87 (d, J = 13.1 Hz), 124.44 (d, J = 3.21 Hz), 118.84, 116.12 (d, J = 22.8 Hz), 51.85 (d, J 

= 3.15 Hz), 39.24 (d, J = 2.50 Hz), 19.16. 

 

2d 

ref. 18 

1H NMR Spectra (500 MHz, CDCl3): 

G 9.46 (s, 1H), 7.17 (m, 2H), 6.92 (m, 2H), 5.55 (m, 1H), 5.04 (m, 2H), 3.80 (s, 3H), 2.66 (ddt, J 

= 14.1, 6.78, 1.37 Hz, 1H), 2.59 (dd, J = 14.2, 7.79, 1.21 Hz, 1H), 1.42 (s, 3H). 

13C NMR (126 MHz, CDCl3):  

G 201.90, 158.75, 133.31, 131.14, 128.33, 118.49, 114.22, 55.27, 52.91, 40.54, 18.86. 

 

 

2e 

1H NMR Spectra (300 MHz, CDCl3): 

G 9.51 (s, 1H), 7.28 (m, 2H), 7.23 (m, 2H), 5.52 (m, 1H), 5.06 (m, 2H), 2.67 (dd, J = 10.6, 6.93 

Hz, 1H), 2.62 (dd, J = 10.8, 7.62 Hz, 1H), 1.45 (s, 3H).  

13C NMR (126 MHz, CDCl3):  
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G 201.41, 148.39 (d, J = 2.09 Hz), 138.14, 132.59, 128.68, 121.18, 120.5 (q, J = 257 Hz), 119.08, 

53.30, 40.68, 18.98. 

19FNMR (376 MHz, CDCl3): 

G  -58.86 

HRMS: [M+]: calc: 258.0868, found: 258.0872. 

 

 

2f 

1H NMR Spectra (300 MHz, CDCl3): 

G 9.60 (s, 1H), 7.85 (m, 3H), 7.72 (d, J = 1.95 Hz, 1H), 7.51 (m, 2H), 7.37 (dd, J = 8.60, 1.96 Hz, 

1H), 5.57 (m, 1H), 5.06 (m, 2H), 2.83 (ddt, J = 14.2, 6.82, 1.29 Hz, 1H), 2.72 (ddt, J = 14.1, 7.74, 

1.10 Hz, 1H), 1.56 (s, 3H). 

13C NMR (126 MHz, CDCl3):  

G 201.98, 136.80, 133.3, 133.13, 132.41, 128.60, 128.03, 127.55, 126.40, 126.30, 126.29, 125.00, 

118.70, 53.81, 40.52, 18.94. 
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2g 

ref. 18 

1H NMR Spectra (500 MHz, CDCl3): 

G 9.56 (s, 1H), 7.61 (m, 4H), 7.45 (m, 2H), 7.35 (ddt, J = 16.9, 8.76, 1.71 Hz, 3H), 5.60 (m, 1H), 

5.08 (m, 2H), 2.74 (ddt, J = 14.1, 6.87, 1.29 Hz, 1H), 2.67 (ddt, J = 14.1, 7.78, 1.16 Hz, 1H), 1.49 

(s, 3H). 

13C NMR (126 MHz, CDCl3):  

G 201.87, 140.38, 140.21, 138.41, 133.12, 128.83, 127.63, 127.53, 127.48, 127.06, 118.74, 53.45, 

40.59, 18.90. 

 

 

2h 

1H NMR Spectra (500 MHz, CDCl3): 

G 9.63 (s, 1H), 7.54 (dt, J = 7.80, 0.99 Hz, 1H), 7.26 (m, 2H), 7.12 (ddd, J = 7.93, 6.77, 1.24 Hz, 

1H), 5.61 (m, 1H), 5.12 (dq, J = 17.0. 1.61 Hz, 1H), 5.03 (ddt, J = 10.1, 2.07, 1.10 Hz, 1H), 3.63 

(s, 3H), 2.90 (ddt, J = 14.7, 6.95, 1.41 Hz, 1H), 2.81 (t, J = 5.9 Hz, 2H), 2.69 (ddt, J = 14.8, 7.53, 

1.19 Hz, 1H), 1.97 (m, 4H). 

13C NMR (126 MHz, CDCl3):  

G 201.58, 137.85, 133.66, 131.42, 126.60, 122.07, 119.12, 118.44, 113.91, 108.94, 51.29, 38.09, 

31.25, 30.64, 21.24, 19.41. 

HRMS: [M+H] calc: 254.1545, found: 254.1535. 
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2i 

1H NMR Spectra (300 MHz, CDCl3): 

G 9.55 (s, 1H), 7.18 (m, 4H), 5.60 (m ,1H), 5.05 (m, 2H), 2.78 (t, J = 5.65 Hz, 2H), 2.63 (dd, J = 

7.22, 1.28 Hz, 2H), 2.09 (m, 1H), 1.83 (m, 3H). 

13C NMR (126 MHz, CDCl3):  

G 200.09, 138.65, 134.00, 133.69, 129.88, 128.29, 127.02, 126.37, 118.47, 53.04, 41.13, 29.88, 

27.84, 19.23. 

HRMS: [M+Na] calc: 223.1099, found: 223.1103. 

 

 

2j 

1H NMR Spectra (500 MHz, CDCl3): 

G 9.40 (s, 1H), 7.18 (m, 3H), 6.99 (d, J = 7.08 Hz, 2H), 5.53 (m, 1H), 5.04 (m, 2H), 4.99 (s, 1H), 

3.28 (d, J = 14.0 Hz, 1H), 3.0 (d, J = 14.0 Hz, 1H), 2.79 (dd, J = 14.5, 7.48 Hz, 1H), 2.45 (dd, J = 

14.4, 7.32 Hz, 1H), 1.38 (s, 9H). 

13C NMR (126 MHz, CDCl3):  

G 200.25, 154.54, 135.39, 131.19, 130.20, 128.34, 126.95, 119.89, 79.80, 66.01, 38.55, 37.75, 

28.34. 
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HRMS: [M+Na] calc: 312.1576, found: 312.1542. 

 

 

 

2k 

ref. 18 

1H NMR Spectra (500 MHz, CDCl3): 

G 9.60 (s, 1H), 7.28 (d, J = 8.28 Hz, 2H), 7.02 (d, J = 8.23 Hz, 2H), 5.74 (m, 1H), 5.11 (m, 2H), 

2.85 (d, J = 13.8 Hz, 1H), 2.72 (d, J = 13.7 Hz, 1H), 2.36 (ddt, J = 14.2, 7.14, 1.28 Hz, 1H), 2.18 

(dd, J = 14.2, 7.70, 1.25 Hz, 1H), 1.30 (s, 9H), 1.03 (s, 3H). 

13C NMR (126 MHz, CDCl3):  

G 206.20, 149.40, 133.48, 133.13, 129.91, 125.12, 118.80, 50.18, 41.36, 39.91, 34.40, 31.36, 

18.56. 

 

 

2l 

1H NMR Spectra (500 MHz, CDCl3): 

G 9.57 (s, 1H), 6.71 (d, J = 7.90, 1H), 6.58 (d, J = 1.76 Hz, 1H), 6.54 (dd, J = 7.95, 1.76 Hz, 1H), 

5.92 (s, 3H), 5.72 (m, 1H), 5.11 (m, 2H), 2.81 (d, J = 13.9 Hz, 1H), 2.66 (d, J = 13.9 Hz, 1H), 

2.34 (ddt, J = 14.4, 7.32, 1.35 Hz, 1H) 2.17 (dd, J = 14.1, 7.73, 1.22 Hz, 1H), 1.02 (s, 3H). 
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13C NMR (126 MHz, CDCl3):  

G 206.00, 147.42, 146.26, 132.96, 130.25, 123.27, 118.92, 110.56, 108.03, 100.92, 50.18, 41.49, 

39.92, 29.72, 18.57. 

HRMS: [M+H] calc: 233.1178, found: 233.1189. 

 

 

 

 

 

 

 

 

 

 

 

 

Representative procedure for the CO2 catalyzed activation of allylic alcohol towards 

allylation of nitriles: 

A 2.0 – 5.0 mL microwave vial (Biotage #351521) was flame dried and charged with the nitrile 

substrate (if solid, 0.3 mmol) and a stir bar. In the glove box, Pd(PPh3)4 (2.5 mol %, 0.009 g) was 

added along with DMSO (2 mL) and the vial was capped using a vial cap (Biotage #352298) and 

a manual cap crimper (Biotage #353671).  The vial was then removed from the glove box and 

substrate (if liquid, 0.3 mmol) and allyl alcohol (0.6 mmol, 0.035 g) were added sequentially via 

syringe.  CO2 was then bubbled through the solvent using a 20G needle connected to a balloon 
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and a separate 25.5G needle to vent.  After 5 minutes, the vent needle is removed followed by the 

CO2 needle and the top of the vial was wrapped in parafilm.  The vial was then placed in an oil 

bath at room temperature and heated/stirred at 90 oC for 14 hours. 

 After 14 hours the vial was removed from the bath, and allowed to cool to room 

temperature. An aliquot was then diluted in DCM and subjected to GC/MS analysis to determine 

conversion. The remaining solution was subjected to purification via silica gel column 

chromatography using 1:50 EtOAc:Pentanes as an eluent. 

 

 

 

 

 

 

 

 

3a 

ref. 19 

1H NMR Spectra (500 MHz, CDCl3): 

δ 7.44 (m, 2H), 7.38 (m, 2H), 7.30 (m, 1H), 5.70 (m, 1H), 5.15 (m, 2H), 2.67 (ddt, J = 13.9, 6.7, 

1.3 Hz, 1H), 2.60 (ddt, J = 13.9, 7.8, 1.0 Hz, 1H), 1.7 (s, 3H). 

13C NMR Spectra (126 MHz, CDCl3):  

δ 140.02, 132.10, 129.09, 128.05, 125.79, 123.31, 120.37, 46.48, 42.37, 26.76. 
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3b 

1H NMR Spectra (500 MHz, CDCl3): 

δ 7.38 (m, 4H), 5.69 (dddd, J = 17.0, 10.2, 7.6, 6.9 Hz, 1H), 5.17 (m, 2H), 2.62 (m, 2H), 1.71 (s, 

3H). 

13C NMR Spectra (126 MHz, CDCl3):  

δ 138.64, 134.09, 131.75, 129.31, 127.38, 122.99, 120.84, 46.50, 42.09, 26.82. 

GC/MS data: 205.1 (M+), 164.1 (base peak). 

  

 

 

3c 

1H NMR Spectra (500 MHz, CDCl3): 

δ 7.42 (m, 2H), 7.09 (m, 2H), 5.70 (dddd, J = 17.0, 10.2, 7.6, 6.9 Hz, 1H), 5.18 (m, 2H), 2.63 (m, 

2H), 1.71 (s, 3H). 

13C NMR Spectra (126 MHz, CDCl3):  

δ 163.44, 161.48, 135.94, 135.92, 131.92, 127.77, 127.70, 123.29, 120.77, 116.18, 116.01, 46.75, 

41.96, 26.98. 
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GC/MS data: 189.1 (M+), 148.1 (base peak). 

 

3d 

1H NMR Spectra (500 MHz, CDCl3): 

δ 7.13 (m, 5H), 6.89 (m, 2H), 6.78 (m, 2H), 5.61 (dddd, J = 16.9, 10.2, 7.6, 6.5 Hz, 1H), 5.07 (m, 

2H), 3.72 (s, 3H), 3.12 (d, J = 13.5 Hz, 1H), 3.02 (d, J = 13.5 Hz, 1H), 2.68 (m, 2H). 

13C NMR Spectra (126 MHz, CDCl3):  

δ 159.30, 135.23, 132.24, 130.69, 129.59, 128.34, 128.02, 127.53, 122.07, 120.38, 114.24, 55.58, 

48.91, 47.34, 43.95. 

GC/MS data: 277.2 (M+), 186.10 (base peak).  

 

3e 

ref. 20 

1H NMR Spectra (500 MHz, CDCl3): 

δ 7.40 (m, 4H), 7.32 (m, 1H), 5.66 (m, 1H), 5.13 (m, 2H), 2.69 (ddt, J = 7.0, 2.0, 1.1 Hz, 2H), 

2.08 (m, 1H), 1.96 (m, 1H), 0.93 (t, J = 7.4 Hz, 3H). 

13C NMR Spectra (126 MHz, CDCl3):  

δ 138.14, 132.25, 129.15, 128.06, 126.52, 122.31, 120.19, 49.14, 45.34, 33.44, 9.92. 
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3f 

1H NMR Spectra (500 MHz, CDCl3): 

δ 7.87 (t, J = 1.9 Hz, 1H), 7.80 (m, 2H), 7.72 (m, 2H), 7.60 (m, 1H), 7.51 (m, 3H), 5.73 (ddt, J = 

17.3, 10.3, 7.2 Hz, 1H), 5.18 (m, 2H), 2.68 (m, 2H), 1.75 (s, 3H). 

13C NMR Spectra (126 MHz, CDCl3):  

δ 196.29, 140.61, 138.46, 137.37, 133.03, 131.72, 130.28, 130.13, 129.91, 129.08, 128.66, 

127.00, 122.91, 120.86, 46.35, 42.34, 26.68. 

GC/MS data: 275.1 (M+), 234.10 (base peak). 

 

3h 

1H NMR Spectra (500 MHz, CDCl3):  

δ 7.45 (m, 2H), 7.36 (m, 2H), 7.29 (m, 3H), 7.19 (ddd, J = 8.2, 6.9, 1.1 Hz, 1H), 7.03 (ddd, J = 

8.1, 6.9, 1.1 Hz, 1H), 6.85 (s, 1H), 5.68 (dddd, J = 17.1, 10.3, 7.6, 6.6 Hz, 1H), 5.12 (m, 2H), 3.73 

(s, 3H), 3.44 (d, J = 14.7 Hz, 1H), 3.34 (d, J = 14.6 Hz, 1H), 2.82 (m, 2H). 

13C NMR Spectra (126 MHz, CDCl3):  
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δ 138.66, 136.72, 132.47, 129.10, 129.05, 128.84, 128.12, 126.89, 122.82, 121.80, 120.23, 

119.39, 119.00, 109.48, 108.26, 50.20, 43.47, 37.39, 33.12. 

GC/MS data: 300.2 (M+), 144.15 (base peak).  

 

3i 

ref. 21 

1H NMR Spectra (500 MHz, CDCl3):  

δ 7.45 (m, 4H), 7.39 (ddd, J = 7.8, 6.8, 1.3 Hz, 4H), 7.34 (m, 2H), 5.77 (ddt, J = 17.2, 10.2, 7.0 

Hz, 1H), 5.23 (m, 2H), 3.19 (dt, J = 7.1, 1.2 Hz, 2H). 

13C NMR Spectra (126 MHz, CDCl3):  

δ 139.94, 132.00, 129.08, 128.17, 127.25, 122.19, 120.64, 51.94, 44.13. 

 

 

 4a  

 ref. 22 

1H NMR Spectra (500 MHz, CDCl3):  

δ 7.48 (m, 2H), 7.39 (m, 2H), 7.33 (m, 1H), 4.92 (p, J = 1.6 Hz, 1H), 4.77 (dq, J = 1.8, 1.0 Hz, 

1H), 2.64 (t, J = 1.0 Hz, 2H), 1.76 (s, 3H), 1.62 (m, 3H). 

13C NMR Spectra (126 MHz, CDCl3):  

δ 140.37, 140.27, 129.07, 128.05, 125.89, 123.88, 116.94, 50.08, 42.03, 27.83, 23.84. 
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GC/MS data: 185.1 (M+), 130.1 (base peak). 

 

 

4b 

1H NMR Spectra (500 MHz, CDCl3):  

δ 7.41 (m, 2H), 7.28 (m, 3H), 5.39 (d, J = 1.1 Hz, 1H), 5.18 (q, J = 1.0 Hz, 1H), 3.12 (d, J = 1.0 

Hz, 2H), 1.67 (s, 3H). 

13C NMR Spectra (126 MHz, CDCl3):  

δ 143.85, 141.74, 140.21, 128.98, 128.58, 128.04, 127.87, 126.81, 126.01, 123.33, 119.21, 47.46, 

43.13, 27.28. 

GC/MS data: 247.1 (M+), 139.1 (base peak). 

 

 

● linear Z diasteromer                        ■ = linear E diastereomer           ▲ = branched residues 

             residues                                                 residues                               (both diastereomers)                      

                                                                              

4c (l : b, 2 : 1) (cis : trans, 1 : 2.5) 

ref. 23 

1H NMR Spectra (500 MHz, CDCl3):  

δ 7.40 (m, 5H (Ph-Hlinear), 5H (Ph-Hbranched)), 5.89 (ddd, J = 16.6, 10.5, 8.8 Hz, 1H branched), 5.68 

(m, 1H cis-linear), 5.59 (m, 1H (trans-linear), 1H (branched)), 5.36 (m, 1H (cis-linear), 1H 
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(trans-linear)), 5.20 (m, 2H, branched), 5.01 (m, 2H, branched), 2.59 (m, (2H cis-linear), (2H 

trans-linear), (1H branched)), 1.66 (d, J  = 7.1 Hz, 3H, trans-linear), 1.57 (d, J = 7.1 Hz, 3H, cis-

linear), 1.17 (d, J = 6.8 Hz, 3H, branched), 0.94 (d, J = 6.8 Hz, 2H, branched). 

13C NMR Spectra (126 MHz, CDCl3):  

δ 140.49, 140.36, 140.05, 139.26, 138.79, 138.16, 131.40, 129.23, 129.13, 128.85, 128.09, 

128.04, 126.74, 126.22, 125.98, 125.95, 124.71, 123.93, 123.70, 123.07, 122.34, 117.99, 117.63, 

48.69, 47.66, 47.04, 46.74, 45.60, 42.83, 42.59, 39.63, 26.77, 26.56, 24.57, 18.33, 17.21, 15.99, 

13.38. 

Isomers assigned by TOCSY NMR spectroscopy experiments 
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4d (l : b, 10.5 : 1) 

1H NMR Spectra (500 MHz, CDCl3): 

(Major linear diastereomer) δ 7.37 (m, 8H), 7.30 (m, 2H), 5.63 (dtt, J = 15.4, 6.5, 1.2 Hz, 1H), 

5.31 (dtt, J = 15.5, 7.1, 1.6 Hz, 1H), 3.07 (dq, J = 7.2, 1.1 Hz, 2H), 1.98 (m, 2H), 0.90 (t, J = 7.5 

Hz, 3H). 

13C NMR Spectra (126 MHz, CDCl3): 

(Major linear diasteromer) δ 140.33, 138.83, 129.08, 128.14, 127.47, 122.47, 122.32, 52.48, 

43.18, 25.96, 13.89. 

GC/MS data: 261.2 (M+), 193.1 (base peak).  

 

 

4e (l : b, 11.2 : 1) (cis : trans, 1 : 14.3) 

ref. 23 

1H NMR Spectra (500 MHz, CDCl3):  

(Major linear diastereomer) δ 7.38 (m, 8H), 7.30 (m, 2H), 5.58 (dtt, J = 15.0, 6.8, 1.3 Hz, 1H), 

5.32 (dtt, J = 15.4, 7.1, 1.4 Hz, 1H), 3.08 (dq, J = 7.1, 1.0 Hz, 2H), 1.94 (m, 2H), 1.31 (h, J = 7.3 

Hz, 2H), 0.81 (t, J = 7.4 Hz, 3H). 

13C NMR Spectra (126 MHz, CDCl3):  
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(Major linear diastereomer) δ 140.32, 137.14, 129.08, 128.13, 127.46, 123.47, 122.48, 52.46, 

43.29, 34.91, 22.63, 13.83. 

 

4f 

 

1H NMR Spectra (500 MHz, CDCl3):  

δ 7.37 (m, 15H), 6.54 (dt, J = 15.7, 1.4 Hz, 1H), 6.10 (dt, J = 15.7, 7.2 Hz, 1H), 3.31 (dd, J = 7.4, 

1.3 Hz, 2H). 

13C NMR Spectra (126 MHz, CDCl3):  

δ 140.07, 137.05, 135.53, 129.20, 128.79, 128.31, 127.94, 127.41, 126.70, 123.39, 122.34, 52.36, 

43.56. 

 

 

 

 4g  

 ref. 25 

 

1H NMR Spectra (500 MHz, CDCl3):  

δ 7.37 (m, 15H), 6.54 (dt, J = 15.7, 1.4 Hz, 1H), 6.10 (dt, J = 15.7, 7.2 Hz, 1H), 3.31 (dd, J = 7.4, 

1.3 Hz, 2H). 

13C NMR Spectra (126 MHz, CDCl3):  
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δ 140.10, 137.08, 135.55, 129.23, 128.81, 128.33, 127.97, 127.44, 126.73, 123.42, 122.36, 52.39, 

43.60. 

 

 

 

 

                                           

                                          ■ = Major linear              ▲ = Branched residues 

                                                                 diastereomer residues     

4h (l : b, 1.4 : 1) (cis : trans, 1 : 4.6) 

 

1H NMR Spectra (500 MHz, CDCl3):  

δ 7.38 (m, 10H (Ph-Hlinear), 10H (Ph-Hbranched)), 5.84 (ddd, J = 17.1, 10.5, 7.6 Hz, 1H, branched), 

5.64 (m, 1H, linear), 5.34 (m, 1H, linear), 5.32 (m, 1H, linear diastereomer), 5.10 (m, 2H, 

branched), 3.45 (m, 1H, branched), 3.07 (dt, J = 7.3, 1.2 Hz, 2H, linear diatereomer) 2.98 (dt, J = 

7.0, 1.2 Hz, 2H, linear), 1.64 (dq, J = 6.7, 1.2 Hz, 3H, linear), 1.50 (ddt, J = 6.9, 1.87, 0.94 Hz, 

3H, linear diastereomer), 1.20 (d, J = 6.7 Hz, 3H, branched). 

13C NMR Spectra (126 MHz, CDCl3):  

δ 140.30, 139.63, 139.50, 138.53, 131.70, 129.24, 129.12, 129.10, 129.01, 128.20, 128.15, 

128.04, 127.94, 127.49, 127.42, 127.13, 124.49, 123.95, 122.50, 121.12, 117.85, 58.19, 52.48, 

51.88, 44.51, 43.25, 37.52, 18.37, 17.33, 13.48. 
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4j 

ref. 26 

1H NMR Spectra (300 MHz, CDCl3): 

G 9.54 (s, 1H), 7.38 (m, 2H), 7.29 (m, 3H), 4.81 (p, J = 1.57, 1.53 Hz, 1H), 4.62 (dq, J = 1.78, 

0.89 Hz, 1H), 2.69 (q, J = 13.9 Hz, 2H), 1.47 (s, 3H), 1.40 (s, 3H). 

13C NMR (126 MHz, CDCl3):  

G 201.96, 141.49, 139.77, 128.79, 127.33, 127.31, 115.43, 53.51, 44.20, 24.16, 18.56. 

 

 

4k 

93:7 linear:branched 

linear product data reported 

1H NMR Spectra (500 MHz, CDCl3): 

G 9.45 (s, 1H), 7.30 (m, 2H), 7.19 (m, 3H), 5.42 (m, 1H), 5.09 (m, 1H), 2.53 (dd, J = 7.32, 1.16 

Hz, 2H), 1.87 (m, 2H), 1.34 (s, 3H), 0.83 (t, J = 7.46 Hz, 3H). 

13C NMR (126 MHz, CDCl3):  

G 202.44, 139.87, 136.54, 128.75, 127.18, 127.15, 123.11, 53.89, 39.26, 25.62, 19.02, 13.81 

 

 



 389 

 

 

4l 

86:14 linear to branched 

linear data reported 

1H NMR Spectra (500 MHz, CDCl3): 

G 9.55 (s, 1H), 8.11 (d, J = 8.76 Hz, 2H), 7.42 (dd, J = 8.24, 6.94 Hz, 2H), 7.35 (dd, J = 8.12, 6.89 

Hz, 3H), 7.28 (m, 2H), 6.44 (d, J = 15.8 Hz, 1H), 6.13 (ddd, J = 15.8, 7.93, 7.00 Hz, 1H), 2.88 

(ddd, J = 14.3, 7.01, 1.47 Hz, 1H), 2.81 (ddd, J = 14.3, 7.98, 1.28 Hz, 1H), 1.52 (s, 3H). 

13C NMR (126 MHz, CDCl3):  

G 201.43, 146.68, 143.52, 138.86, 131.67, 130.60, 129.08, 127.69, 127.10, 126.57, 123.95, 54.08, 

40.14, 18.86. 
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84:16 trans:cis  

4m 

1H NMR Spectra (500 MHz, CDCl3): 

G 9.52 (s, 1H), 7.39 (m, 2H), 7.31 (m, 6H), 7.25 (m, 2H), 5.63 (dtt, J = 15.1, 6.17, 1.37 Hz, 1H), 

5.47 (dtt, J = 14.6, 7.43, 1.24 Hz, 1H), 4.40, (s, 2H), 3.91 (ddd, J = 6.27, 2.31, 1.23 Hz, 2H), 2.71 

(ddd, J = 14.3, 6.96, 1.34 Hz, 1H), 2.64 (ddd, J = 14.2, 7.70, 1.17 Hz, 1H), 1.46 (s, 3H). 

13C NMR (126 MHz, CDCl3):  

G 201.88, 139.32, 138.24, 130.63, 128.91, 128.63, 128.36, 127.77, 127.58, 127.40, 127.17, 71.75, 

70.38, 53.76, 39.11, 18.93. 

HRMS: [M+Na] calc: 317.1512, found: 317.1515. 
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4n 

96:4 linear:branched 

linear product data reported 

ref. 27 

1H NMR Spectra (300 MHz, CDCl3): 

G 9.58 (s, 1H), 7.41 (m, 2H), 7.28 (m, 6H), 7.20 (m, 2H), 6.41 (dt, J = 15.7, 1.33 Hz, 1H), 5.94 

(dt, J = 15.2, 7.44 Hz, 1H), 2.81 (m, 2H), 1.50 (s, 3H). 

13C NMR (126 MHz, CDCl3):  

G 202.00, 139.41, 137.18, 133.58, 128.94, 128.48, 127.44, 127.26, 127.19, 126.11, 124.91, 54.13, 

39.95, 18.95. 

 

4o 

1H NMR Spectra (500 MHz, CDCl3): 

G 9.56 (s, 1H), 7.50 (d, J = 8.12 Hz, 2H), 7.42 (dd, J = 8.21, 6.96 Hz, 2H), 7.33 (m, 3H), 7.28 (dd, 

J = 8.37, 1.30 Hz, 2H), 6.41 (d, J = 16.0 Hz, 1H), 6.04 (ddd, J = 15.4, 7.93, 7.07 Hz, 1H), 2.86 

(ddd, J = 14.2, 7.06, 1.45 Hz, 1H), 2.79 (ddd, J = 14.2, 7.92, 1.27 Hz, 1H), 1.51 (s, 3H). 

13C NMR (126 MHz, CDCl3):  
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G 201.67, 140.58, 139.09, 132.30, 129.07 (q, J = 33.3 Hz), 129.02, 127.98, 127.58, 127.14, 

126.23, 125.43 (q, J = 3.88 Hz), 124.18 (q, J = 271.82 Hz), 54.08, 39.99, 18.87. 

 

Procedure for the reduction of compound 1e (Wurz, R. P.; Charette, A.B.; J. Org. Chem. 2004, 

69. 1262-1269) and formation of the corresponding amine salt. 

 In a 50 mL round bottom flask equipped with a stir bar, compound 1e  (0.185g, 0.59 

mmol) was dissolved in 12 mL isopropanol.  To this solution 1.5 M HCl (6.0 mL) and zinc dust 

(0.740 g, 11.3 mmol) were added and the solution was stirred at 50 oC for 2 hours.  Saturated aq 

K2CO3 (8.0 mL) was added after the solution cooled to rt.  The reaction mixture was filtered 

though a pad of celite and extracted 3x with 25 mL CHCl3 washes.  The combined organic layers 

were washed with 20 mL brine and dried over MgSO4. 

 The dried solution was filtered and concentrated in vacuo to afford the corresponding 

amine as a colorless oil (0.072 g, 43%).  2.0 M HCl in diethyl ether (5.0 mL) was added to the 

amine and the solvent removed in vaccuo to provide a white solid which was re-crystallized from 

EtOAc to provide suitable crystals of the HCl salt. 
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Major diastereomer shown. 

1H NMR Spectra (500 MHz, CDCl3): 

Major diastereomer G 8.55 (s, 3H), 7.36 (m, 10H), 5.98 (ddt, J = 16.4, 11.4, 7.49 Hz, 1H), 5.19 

(m, 2H), 4.90 (s, 1H), 4.62 (d, J = 11.4 Hz, 1H), 4.33 (d, J = 11.4 Hz, 1H), 2.69 (dd, J = 14.6, 

7.02 Hz, 1H), 2.17 (dd, J = 14.6, 7.73 Hz, 1H), 1.31 (s, 3H).  

13C NMR (126 MHz, CDCl3):  

Major diasteromer G 137.67, 135.26, 130.92, 128.68, 128.56, 128.36, 128.33, 128.06, 127.58, 

127.46, 84.94, 71.25, 60.29, 37.61, 21.03. 

HRMS:  

[C19H24NO]: calc: 282.1858, found: 282.1855 
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Detailed description of x-ray crystal structure determination for [C19H24NO][Cl] :  

The alignment reflections for determining the preliminary unit cell for the crystal of 

[C19H24NO][Cl] (1) indexed quite well as a C-centered monoclinic lattice.  The crystal was 

therefore believed to utilize a monoclinic space group and intensity data were collected 

accordingly.  The monoclinic Rsym was 0.105 and the most probable space group appeared to be 

centrosymmetric C2/m.  When the structure would not solve in C2/m, the intensity data were 
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further analyzed and this indicated the possible presence of a c-glide.  The structure solved 

straightforwardly in the centrosymmetric space group C2/c with an asymmetric unit containing 

two [C19H24NO][Cl] cation/anion pairs.  When this structure failed to refine below R1 = 0.153, 

the possibility of it being a triclinic structure that was pseudomerohedrally twinned to look 

monoclinic was considered.  This turned out to be the case and the final centrosymmetric triclinic 

asymmetric unit has four nearly identical, but crystallographically-independent [C19H24NO][Cl] 

cation/anion pairs, related by non-crystallographic pseudosymmetry. The crystals utilize the 

centro-symmetric triclinic space group CC1 [a nonstandard setting of PC1 – Ci
1 (No. 2)] with lattice 

constants at 100K of:  a =26.96214(19)Å, b = 12.68483(10)Å, c = 21.88641(18)Å, D = 

90.4219(6)q, β = 104.5435(4)q, J = 89.7970(4)q, V = 7245.3(1)Å3 and Z = 16 [C19H24NO][Cl] 

moieties.  The crystals are pseudomerohedrally (68%/32%) twinned with the two domains related 

by a 180q rotation about the b axis.  

The final centrosymmetric triclinic asymmetric unit contains four cation/anion pairs.  All 

nonhydrogen atoms were included in the structural model with variable anisotropic thermal 

parameters.  All twelve hydrogens for the protonated amine groups were located from difference 

Fourier syntheses and incorporated into the structural model as individual isotropic atoms whose 

parameters were allowed to vary in least-squares refinement cycles.  Mild restraints were applied 

to the anisotropic thermal parameters of two carbon atoms [C(78) and C(79)] and three of the 

ammonium hydrogens were fixed at values 1.2 times the equivalent isotropic thermal parameter 

of their nitrogen atom.  The remainder of the hydrogen atoms were placed at idealized sp2- or sp3-

hybridized positions with C-H bond lengths of 0.95 - 1.00 Å and isotropic thermal parameters 

fixed at values 1.20 (nonmethyl) or 1.50 (methyl) times the equivalent isotropic thermal 

parameter of the carbon atom to which they are bonded.  Methyl groups were placed at idealized 

“staggered” positions. The terminal ethylene group for the first cation is 57%/43% disordered 
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between two conformations and both of these were restrained to have metrical parameters similar 

to that group in the fourth cation.   

The final least-squares refinement cycles for 1 in space group CC1 utilized anisotropic thermal 

parameters for all nonhydrogen atoms, isotropic thermal parameters for all hydrogen atoms, 867 

variables, 51 restraints and 11861 reflections having 2T(CuKD)< 140.10q.  Final agreement 

factors at convergence for 1 are: R1(unweighted, based on F) = 0.078 for 10457 independent 

absorption-corrected “observed” reflections having 2T(CuKD) < 140.10q and I>2V(I);  

R1(unweighted, based on F) = 0.086 and wR2(weighted, based on F2) = 0.213 for all 11861 

independent absorption-corrected reflections having 2T(CuKD)< 140.10q. The largest shift/s.u. 

was 0.000 in the final refinement cycle.  The final difference map had maxima and minima of 

0.59 and -0.56 e-/Å3, respectively. 

 

 

 

 


