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Abstract 

It is constantly observed that populations of species, like the DSPR, harbor considerable genetic 

variation for phenotypic traits. However, our understanding of the location, effect, and frequency 

of alleles that create variable genetic effects for each phenotypic trait is poorly understood and 

remains elusive. To tease apart the location, effect, and frequency of alleles with variable effects 

on phenotypic traits, this dissertation employs the DSPR, comprised of the elite model system 

Drosophila melanogaster, to investigate lifespan and xenobiotic resistance. Experiments on 

lifespan uncovered multiple quantitative trait loci (QTL) that harbor genes that shape lifespan 

and small sets of expression candidates. Moreover, as many expression studies have discovered, 

our expression candidates are enriched with antimicrobial defense genes that increase in 

expression with age, while electron transport chain genes decrease in expression with age. 

Exploring xenobiotic resistance we identify that Cyp28d1 and Cyp28d2 are likely to have 

variable effects on nicotine resistance, and Ugt86Dd is functionally important for nicotine 

resistance. Lastly, we discovered a complex 22bp deletion in Ugt86Dd that our data suggest is 

likely a causative variant within Ugt86Dd contributing variable effects on nicotine resistance in 

the DSPR. Our studies demonstrate the genetic architecture of lifespan is more complex than 

what is reported and lose of function variants may have an important role in creating variable 

effects on xenobiotic resistance. 
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Introduction 

In nature, evolutionary processes such as genetic drift, gene flow, founder effects, 

bottlenecks, mutations, non-random mating, and random mating create natural genetic variation 

within populations, between populations, and species. Currently, this natural genetic variation 

affecting an array of traits is poorly understood at the molecular level due to low heritability’s, 

lack of ability to phenotype traits, and the complexity of the genetic architecture. With these 

pitfalls there are a plethora of traits that can be mapped to the molecular level. However, the 

traditional mapping methodologies, association mapping and linkage mapping, have had limited 

success in mapping variation to the molecular level leaving many polymorphisms conferring an 

affect elusive [1–8].  

Linkage mapping was first noted over 90 years ago [9], this approach has strong 

statistical power to detect genetic variation, but suffers from limited resolution [10] and is 

limited in the amount of segregating variation that exist between the initial founders. In 

comparison, association mapping allows for great mapping resolution, but requires large 

numbers of individuals to uncover genetic variation with effects of <5% to the overall phenotype 

[11], suffers from multiple test correction problems, and reproducibility [12]. To maintain the 

strengths and limit the weakness of each of these two approaches, advanced intercross lines can 

be developed [13]. In this ideology, many founders are encouraged mate randomly over several 

generations to propagate the plethora of genetic diversity and the number of recombinational 

events to reduce linkage disequilibrium throughout the genome. Recently, this ideology was 

employed to construct several multi-parental mapping panels that include the Arabidopsis 

thaliana MAGIC (Multiparent Advanced Generation Inter-Cross) lines [14], the maize NAM 

(Nested Association Mapping population) panel [15], the mouse collaborative cross [16], the 
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Diversity Outbred mouse population [17], and the DSPR (Drosophila Synthetic Population 

Resource) [18,19]. The DSPR is a resource composed of ~1600 RILs (recombinant inbred lines) 

that are fine mosaics of the original 15 founders sampled worldwide. The composition of the 

DSPR allows QTL (quantitative trait loci) to not only be mapped to narrow genomic intervals in 

comparison to traditional approaches, but also enables small effect QTL to be mapped [18] and 

the ability to estimate the effect frequency of mapped QTL. Moreover, these approaches, 

including the DSPR, relies on high-throughput sequencing of the founders and mapping panel. 

Thus, only a time commitment in phenotyping is required for any trait of interest. We did exactly 

this by phenotyping 805 RILs over a course of five blocks for longevity. 

Variation in longevity is a classic life history trait that has a direct impact on an 

organism’s life table in nature. Of interest is the amount of variation is attributed to genetic 

and/or environmental factors. Several studies have used various mapping designs and attempted 

to elucidate an understanding to how much of this variation is attributed to genetic and/or 

environmental factors [2,5,6,20–28]; however, we are the first study to investigate variation in 

lifespan with a mapping panel that was created from multiple parents and employing 805 RILs. 

With the DSPR ability to map QTL of small effect to narrow genetic intervals, we attempted to 

characterize the complex genetic architecture of longevity in mated females of the DSPR. We 

mapped 5 QTL that contained a modest number of genes, which collectively explained 22.2% of 

the genetic variation for lifespan in the DSPR. Furthermore, the mapped genomic intervals 

recapitulated previously implicated genomic regions identified in various lifespan QTL screens. 

Follow-up RNAseq studies in heads and bodies confirmed several known and novel candidate 

lifespan genes under our mapped QTL, and a GO (Gene Ontology) analysis discovered an 

enrichment genes that function in category’s such as defense response, egg coat formation, 

myofibril assembly, and electron transport chain. Several studies have used array-based 
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expression profiling to identify genes that change with age in various D. melanogaster 

populations, and we sought to determine the extent of overlap in the genes identified among 

studies [27,29–32]. Overall, 83% of the genes we identify as differentially expressed in bodies 

were identified in at least one other study, and 59% of the genes we identify in heads replicated. 

A total of 55 RNAseq candidates are present within QTL. Our results suggest an exceedingly 

complex genetic architecture for lifespan in Drosophila. 

While several studies have successfully identified genomic intervals important for 

various drug resistance traits via QTL mapping in various organisms [33–39], resolving these 

genomic intervals to the respective causative gene(s) is challenging. This dissertation is the first 

to employ an array of functional assays to resolve nicotine resistance QTL, specifically QTL1 

and QTL4, previously mapped by Marriage et al. 2014 to the likely causative genes. We utilized 

QCTs (quantitative complementation tests) and RNAi to demonstrate Cyp28d1, Cyp28d2, and 

Ugt86Dd have functional roles in nicotine resistance. During the course of this study a complex 

22bp InDel was discovered in the second exon of Ugt86Dd that causes a frameshift mutation that 

results in a premature stop. Moreover, over-expression and CRISPR assays provide direct 

evidence that Ugt86Dd is functionally important and provide indirect evidence that this InDel is 

likely causative. We provide a framework that allows one to resolve the genomic interval to the 

causative gene(s) and will increase confidence for investigators to elucidate the functional 

variants under mapped QTL. 
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ABSTRACT 

 

Background 

Considerable natural variation for lifespan exists within human and animal populations. 

Genetically dissecting this variation can elucidate the pathways and genes involved in aging, and 

help uncover the genetic mechanisms underlying risk for age-related diseases. Studying aging in 

model systems is attractive due to their relatively short lifespan, and the ability to carry out 

programmed crosses under environmentally-controlled conditions. Here we investigated the 

genetic architecture of lifespan using the Drosophila Synthetic Population Resource (DSPR), a 

multiparental advanced intercross mapping population. 

 

Results 

We measured lifespan in females from 805 DSPR lines, mapping five QTL (Quantitative Trait 

Loci) that each contribute 4-5% to among-line lifespan variation in the DSPR. Each of these 

QTL co-localizes with the position of at least one QTL mapped in 13 previous studies of lifespan 

variation in flies. However, given that these studies implicate >90% of the genome in the control 

of lifespan, this level of overlap is unsurprising. DSPR QTL intervals harbor 11-155 protein-

coding genes, and we used RNAseq on samples of young and old flies to help resolve pathways 

affecting lifespan, and identify potentially causative loci present within mapped QTL intervals. 

Broad age-related patterns of expression revealed by these data recapitulate results from previous 

work. For example, we see an increase in antimicrobial defense gene expression with age, and a 

decrease in expression of genes involved in the electron transport chain. Several genes within 
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QTL intervals are highlighted by our RNAseq data, such as Relish, a critical immune response 

gene, that shows increased expression with age, and UQCR-14, a gene involved in mitochondrial 

electron transport, that has reduced expression in older flies. 

 

Conclusions 

The five QTL we isolate collectively explain a considerable fraction of the genetic variation for 

female lifespan in the DSPR, and implicate modest numbers of genes. In several cases the 

candidate loci we highlight reside in biological pathways already implicated in the control of 

lifespan variation. Thus, our results provide further evidence that functional genetics tests 

targeting these genes will be fruitful, lead to the identification of natural sequence variants 

contributing to lifespan variation, and help uncover the mechanisms of aging. 
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BACKGROUND 

 

Life expectancy in developed countries has markedly increased in the last 100 years, and 

individuals born in the USA in 2011 can expect to live to nearly 80 years old [1]. Since old age is 

a major risk factor for an array of diseases [2], the prevalence of age-related disorders is 

concomitantly increasing as populations age. Given the significant segregating genetic variation 

for lifespan within populations [3], with twin studies indicating modest heritabilities of 

approximately 20-30% [4, 5], a key challenge for biomedical science is to understand the genetic 

basis of variation in lifespan, and articulate any mechanistic relationships between aging and the 

risk for age-related disease. 

 To localize genes and/or variants associated with age in humans researchers have 

frequently used a GWAS (Genomewide Association Study) approach, comparing a cohort of 

centenarians to a cohort of middle-aged controls. Studies of this type have repeatedly associated 

age with variation at the APOE locus [6-8], a gene also known to strongly influence risk for 

Alzheimer's [9]. However, such studies are often small due to the difficulty obtaining large 

cohorts of aged individuals, and thus lack power [10]. They also encounter the same problems as 

all GWAS, in that rare causative variants, and genes that segregate for a heterogeneous set of 

disease-causing alleles, are essentially invisible to the standard analytical methods employed [11-

13]. In addition, direct genetic analysis of aging in humans must be carried out in the face of 

considerable environmental heterogeneity among samples. 

 One alternative fruitful strategy to discover the genetic and environmental determinants 

of variation in aging has been to use model systems, where total lifespan is much shorter than in 
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humans, powerful genetic mapping experiments can be carried out using specifically bred 

individuals, in vivo genetic manipulation is possible, the environment throughout lifespan can be 

regulated to a large degree, and environmental interventions can be evaluated easily. Work in a 

number of non-human systems - from yeast, to flies, to mice - has demonstrated that dietary 

restriction routinely extends lifespan [14], and trials of dietary restriction in humans have yielded 

beneficial health responses [15, 16]. In addition, mutations in members of the insulin signaling 

pathway show robust effects on lifespan in several systems, such as C. elegans [17, 18], 

Drosophila [19], and mice [20]. Such observations suggest shared physiological mechanisms 

may underlie the response to aging, and imply some level of conservation in the genetic 

mechanisms contributing to lifespan variation. 

 In model systems, two broad strategies can be implemented to identify genes and 

pathways impacting lifespan and age-related phenotypes: Mutational analyses, and mapping loci 

contributing to variation in lifespan in natural, or semi-natural laboratory populations. Given the 

relative ease with which large-effect mutations can be generated and interrogated in flies, 

multiple studies have screened large sets of induced mutations for their effects on lifespan (e.g., 

[21, 22]), and detailed mechanistic studies targeting specific genes and pathways have added 

considerably to our understanding of the aging process. However, such loci may be distinct from 

those that harbor naturally-segregating sites underlying variation in lifespan (compare tables 1, 2, 

and 3 in [23]). To identify genes contributing to natural variation in lifespan, Drosophila 

researchers have used techniques such as QTL (Quantitative Trait Locus) mapping [24] to screen 

the genome in an unbiased fashion, and - coupled with downstream functional tests - have 

successfully implicated a small number of genes in the control of lifespan variation (e.g., Dopa 

decarboxylase, [25]). 
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 A concern with many previous QTL mapping studies is that they employ mapping 

populations initiated with just two strains, and use individuals subjected to very few rounds of 

meiotic recombination, limiting the scope of the genetic variation interrogated, and limiting the 

mapping resolution achievable (e.g., [26]). Here, we employ the DSPR (Drosophila Synthetic 

Population Resource [27, 28]) - a multiparental, advanced intercross panel of RILs (Recombinant 

Inbred Lines) - to dissect genetic variation in lifespan in mated female Drosophila, resolving five 

modest-effect QTL to relatively short genomic regions (0.1-1.2Mb). We also use RNAseq to 

identify genes showing differential expression between young and old animals in a subset of 

DSPR lines. The set of genes exhibiting age-related changes in gene expression in our study 

show significant overlap with previous such studies in flies, and implicate small numbers of 

highly plausible aging candidate genes within mapped QTL. Some of the loci we highlight were 

already considered candidates to contribute to aging based on studies of induced mutations, for 

instance Relish, a gene known to be involved in immune response. 

 

MATERIALS AND METHODS 

 

Mapping population 

The DSPR is a large panel of RILs derived from a multi-parental, advanced generation intercross 

[28]. Each of the two populations - pA and pB - was initiated from a set of eight, highly-inbred 

founders, and was maintained as a pair of independent subpopulations - pA1, pA2, pB1, and pB2 

- for 50 generations. Subsequently ~800 RILs per population were established via 25 generations 

of full sib mating, and genotyped via Restriction site Associated DNA sequencing (RADseq). 
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Since all founder lines were also sequenced to 50X coverage, we were able to use a hidden 

Markov Model (HMM) to elucidate the mosaic founder structure of each RIL. Full details of the 

construction of the DSPR are presented in King et al. [28]. 

 

Lifespan assay 

Briefly, our assay was conducted as follows: Each RIL was copied from our stock collection in a 

single vial, and in the next generation expanded to two replicate experimental vials. In all cases 

adults were cleared as needed to maintain roughly equal egg density across vials. Nine days after 

egg laying any emerged adults were cleared from experimental vials. After 48 hours, 0-2 day old 

flies were transferred to fresh media, and held for 24 hours to ensure mating. Subsequently, 30 

mated 1-3 day old female flies per RIL were collected under CO2 anesthesia into a single assay 

vial. Flies were transferred to fresh media every two days for the first two weeks of life, and 

every three days thereafter, and flies were scored daily until half the females were dead. We 

tracked vials and genotypes using systems of anonymous barcodes, a barcode reader, and custom 

R code (r-project.org) designed to record the number of dead flies each day, trace all anonymous 

barcodes back to the original RIL genotype, and find the median lifespan for females from each 

RIL assayed. 

 We collected median lifespan data for mated females from 805 pB DSPR RILs, testing 

each RIL in one of four experimental blocks. All fly rearing and maintenance was carried out at 

25ºC, 50% relative humidity, a 12 hour light/12 hour dark cycle, and used cornmeal-molasses-

yeast media in standard, narrow Drosophila vials. 
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QTL mapping 

The analytical framework used to identify QTL in the DSPR is described in detail in King et al. 

[28], and the power and properties of the mapping approach is presented in King et al. [27]. 

Briefly, the HMM assigns to each region in each RIL a probability the genotype is one of 36 

possible homo- or heterozygous states. Since the vast majority of the positions in the RILs are 

homozygous, we generate eight additive homozygous probabilities per position, and regress RIL 

median lifespan on these probabilities. Since we see variation over experimental blocks ( Figure 

2.S1) we additionally include "block" as a covariate. We note that because lines from the pB1 

and pB2 subpopulations were segregated into different blocks for the lifespan assay, some of the 

block-to-block variation is likely due to differences between subpopulations in addition to 

technical, experimental variation. 

 QTL were identified as peaks reaching a 5% genomewide, permutation-derived threshold 

[29], and we used 2-LOD support intervals to put confidence intervals on the true positions of 

QTL [27]. All mapping was carried out using the DSPRqtl R package 

(github.com/egking/DSPRqtl; FlyRILs.org). 

 

RNAseq 

 

In the course of assaying lifespan we collected samples of young (1-3 days old) and old (median 

lifespan for genotype) females from a large number of RILs. Each experimental sample consisted 

of a group of 10 females of the same genotype collected under CO2 anesthesia and snap-frozen 

using liquid nitrogen. For each sample to be used for RNAseq we removed heads from bodies 
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(thorax + abdomen) by vortexing tubes containing frozen female flies, separating heads and 

bodies with a paintbrush over a dry ice-cooled aluminum block. RNA was isolated from each 

tissue sample using TRIzol reagent (15596-018, ThermoFisher Scientific) following the 

manufacturers protocol, except that for head samples we scaled down all volumes to 1/4 the 

recommended amounts. 

 To examine expression in bodies we selected 10 RILs with a relatively short lifespan, and 

10 with longer lifespan (Supplementary Data 2.1). Equal amounts of total RNA from each of the 

appropriate 10 samples were combined to generate four pools; short-lived/young, short-lived/old, 

long-lived/young, and long-lived/old. Each pool was then cleaned through an RNeasy Mini 

column (74104, Qiagen), used to generate a standard TruSeq RNAseq library (version 2, 

Illumina), and sequenced on an Illumina HiSeq 2500 instrument (KU Genome Sequencing Core) 

to generate single-end 100bp reads (see SRA accession SRP072382). Quality trimming via sickle 

(version 1.200, github.com/najoshi/sickle) resulted in 34.2-39.5 million reads per sample. We 

used TopHat (version 2.0.12, tophat.cbcb.umd.edu; [30, 31]) to assemble reads to the D. 

melanogaster reference genome (NCBI build 5.3, tophat.cbcb.umd.edu/igenomes.shtml), 

resulting in 84.0-87.1% reads aligning, and Cuffdiff (version 2.1.1, cufflinks.cbcb.umd.edu; [32-

34]) to identify differentially expressed genes in four pairwise contrasts (short-lived/young 

versus short-lived/old, long-lived/young versus long-lived/old, short-lived/young versus long-

lived/young, and short-lived/old versus long-lived/old). We consider a gene to be differentially 

expressed if it survives a genomewide, per contrast Benjamini-Hochberg 5% False Discovery 

Rate (FDR) correction for multiple testing. 

 To investigate expression in heads we selected six genotypes (Additional file 3), made 

RNAseq libraries for the six pairs of young and old head samples, and sequenced to generate 
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paired-end 50bp reads (see SRA accession SRP072396). Following quality trimming we had 

14.1-26.0 million read pairs per sample, and genome alignment resulted in 78.8-90.9% reads 

mapping. Statistical testing was carried out to find genes differentially expressed (FDR = 5%) 

between the heads of young and old flies, treating the separate RIL genotypes as replicates. 

 

RESULTS 

 

Variation in lifespan in the DSPR 

We observed substantial lifespan variation among the 805 DSPR RILs tested (Figure 2.1), with 

median mated female lifespan averaging 55.0 days, ranging from 16.4-80.6 days across RILs. 

Since each RIL was assayed in just one block, some fraction of this variation is due to technical 

variation across blocks (Figure 2.S1). Nonetheless, the scale of lifespan variation we see is 

remarkably similar to that observed in a screen of virgin females from 197 Drosophila Genetic 

Reference Panel, DGRP lines (mean = 55.3 days, range = 22.1-80.3 days; [35]). 

 Given the number of RILs tested, to streamline phenotype data collection we elected to 

score RILs for median lifespan, allowing us to discard assay vials at that point, and avoid waiting 

for all flies in a vial to die. Although our data collection pipeline did not allow the calculation of 

mean lifespan for each RIL, results from the DGRP show that the correlation between mean and 

median lifespan for a set of inbred lines is very strong (r = 0.97, p < 10–15; [35]). One caveat with 

our use of a phenotype based on the median lifespan from a single replicate vial per genotype is 

that we are unable to estimate heritability for lifespan in the DSPR. 
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QTL for variation in lifespan 

We mapped five QTL for lifespan in the DSPR (Figure 2.2, Table 2.1, Additional file 4: Table 

S2). Each QTL explains a modest fraction of the among-line variation for lifespan (4.0-5.2%, 

Table 2.1), and assuming the QTL are independent and act additively, collectively explain 22.2% 

of the genetic variation for lifespan in the DSPR. With 800 RILs the power to identify common 

biallelic or multiallelic QTL contributing 5% to the total variation in the RIL panel is 80-90% 

[27]. This implies that any undetected genetic factors contributing to lifespan variation in the 

DSPR either have small effects on variation, or are rare in the panel. 

 A feature of multi-parental mapping panels such as the DSPR is that we can estimate the 

effects of each founder allele at mapped QTL, and can determine those founders that are likely to 

harbor alleles contributing to long lifespan. Figure 2.3 shows the founder allele effects for all 

five mapped QTL. It is not obvious from this plot that loci contributing to lifespan variation 

generally segregate for two alleles (e.g., a "high" and a "low" allele), and instead may segregate 

for multiple alleles, each with different effects on phenotype. Of course, since our QTL are 

mapped to intervals containing multiple genes (Table 2.1) we cannot discount the possibility that 

mapped QTL are due to the action of multiple genes. Regardless, it is possible to identify pairs of 

founders that appear to harbor alleles with contrasting effects on lifespan. For example, RILs 

carrying genetic material from founders B5 and B6 at Q2 have relatively low, and relatively high 

lifespan, respectively (Figure 2.3). Genetic differences between these founders in the Q2 interval 

are likely to be enriched for variants causally contributing to lifespan. 
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 The five QTL are mapped to regions encompassing 660kb (Q1), 660kb (Q2), 510kb (Q3), 

1.2Mb (Q4), and 80kb (Q5) of the D. melanogaster genome (Table 2.1). The Q4 interval is 

relatively large since this QTL resides near the chromosome 3 centromere where recombination 

is suppressed. Aside from Q4, QTL intervals include 11-93 protein-coding genes (Table 2.1). To 

determine whether any of the genes encompassed by mapped QTL have previously been 

implicated in aging and/or lifespan regulation, we searched FlyBase [36] to identify genes tagged 

with controlled vocabularies that included the words "aging", "lifespan", "lived", and "longevity" 

(Supplementary Data 2.2)  We identified a total of 568 candidate genes, 14 of which reside 

within QTL intervals (Table 2. 2). 

 

Comparison with previous mapping studies 

Candidate aging genes extracted from FlyBase are often associated with longevity based on 

mutant phenotypes (e.g., Cbs, [37]), and may or may not harbor naturally-segregating variation 

affecting lifespan. Thus, we sought to compare our data to previous studies mapping lifespan loci 

among naturally-derived chromosomes. A number of previous studies have used various 

mapping designs to identify QTL contributing to variation in lifespan and aging in D. 

melanogaster [26, 38-49], and all five of the QTL we map in the DSPR overlap with at least one 

QTL mapped in a prior study  (Figure 2.S2). While this observation gives some additional 

confidence in our phenotype and mapping, we note that the 13 studies we highlight mapped well 

over 100 QTL, and mapped intervals that collectively implicate 93.4% of the D. melanogaster 

genome (Figure 2.S2). This phenomenon of aging QTL implicating large fractions of the 

Drosophila genome has been noted previously [39]. Using a resampling procedure we tested 

how often five non-overlapping, randomly-positioned QTL of the same physical size as the set 
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mapped in this study overlapped previously identified QTL; Over 1000 runs, 85% of the time 

each of the five simulated QTL overlap at least one QTL mapped in a prior study, implying the 

overlap we see in our real data is expected. While the complexity of the genetic architecture of 

the phenotype may go some way to explaining the observation that aging QTL blanket the 

genome, lack of resolution in QTL mapping studies using animals that have passed through a 

small number of generations of meiotic recombination is likely also a major factor. 

 A more high-resolution study was conducted by Burke et al. [50]. Using animals derived 

the highly-recombinant "synthetic" 8-way populations from which the DSPR was derived, they 

compared allele frequencies in extremely old cohorts of females to those from randomly-

selected, control females. Across all replicate populations eight regions survived a 5% false 

positive rate, and none of these overlap with the QTL we map here. Considering those additional 

eight regions from Burke et al. [50] surviving a more liberal 50% false positive rate threshold, 

one overlaps with our Q4 at the chromosome 3 centromere. 

 Ivanov et al. [35] recently used the DGRP to carry out a genomewide association study 

for lifespan using virgin females. Although no variant in the SNP-based GWAS, and no gene in 

the gene-based GWAS, survived a correction for multiple testing, likely due to the low power of 

the DGRP design [51], a number of variants and genes showed nominally-significant association 

tests. Such tests may be enriched for true causative variants/genes. Of the 50 SNP association 

tests with the lowest P-values, just one is within a region implicated by a QTL mapped in this 

study, a variant present within the bves gene [35] that is within our Q3. Although there is no 

specific information regarding the effect of bves on lifespan in FlyBase [36], an insertion 

mutation in the gene has been shown to increase the susceptibility of Drosophila to the fungal 
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pathogen, Metarhizium anisopliae [52]. None of the top-ranked gene-based DGRP burden-type 

tests carried out by Ivanov et al. [35] fall within our QTL intervals. 

 

Regulatory candidate genes for lifespan 

It is likely that some fraction of the sites that contribute to among-individual variation in a 

complex phenotype are regulatory in origin [53, 54]. Thus, we used RNAseq to identify genes 

differentially expressed between young and old female flies in heads and bodies, and between 

long-lived and short-lived genotypes for bodies only. Such candidate genes may plausibly harbor 

functional regulatory variants impacting lifespan. 

 For the body RNAseq we extracted RNA from samples of young and old flies from ten 

long-lived and ten short-lived RILs, mixed RNA to generate four pools each containing material 

from ten samples, generated and sequenced four libraries, and tested for differential gene 

expression in four pairwise contrasts: short-lived/young versus short-lived/old, long-lived/young 

versus long-lived/old, short-lived/young versus long-lived/young, and short-lived/old versus 

long-lived/old. After analysis we identified 155 genes differentially expressed between young 

and old flies in short-lived genotypes (22 down with age, 133 up with age), and 160 differentially 

expressed between young and old flies in long-lived genotypes (83 down with age, 77 up with 

age). Sixty-six genes overlap between these two sets, and all 66 show the same direction of age-

related expression change in short- and long-lived animals, implying consistency in the pattern of 

age-related gene expression change across genotypes. We additionally identified 9 (16) genes 

showing significantly different expression in young (old) females when comparing short- and 
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long-lived genotypes. Overall, 252 genes survive a genomewide FDR threshold of 5% in at least 

one contrast. 

 For the head-specific RNAseq we extracted RNA from samples of young and old flies 

from six RILs, generated and sequenced separate libraries for each of the 12 samples, and 

identified 1,940 genes differentially expressed between young and old flies in heads (995 down 

with age, 945 up with age; Additional file 10: Table S6). Given that separate RILs were treated 

as replicates in the head RNAseq analysis, and assuming some consistency in the age-related 

patterns of expression across RILs, our power to detect small changes in expression in this head 

analysis is likely higher than for the body analysis that lacks replication at this level. 

Nonetheless, there was significant overlap - 130 genes - between the set of 249 genes showing 

differential expression between young and old flies in bodies, and the set of 1,940 showing 

expression differences between young and old flies in heads (Fisher’s Exact Test, p < 10–15, 

assuming 14,000 genes in the D. melanogaster genome). Nearly all - 127/130 - of the genes in 

this overlapping set show expression changes in the same direction in bodies and heads. Thus, 

despite experimental and analytical differences, we find similarity in the age-related patterns of 

expression across tissues. 

 Employing the Gene Ontology, GO (geneontology.org; [55, 56]) we classified genes 

showing differential expression by function and their involvement in particular biological 

processes (see Supplementary Data 2.3 for a summary). In both the head and body datasets 

considered separately we found a significant enrichment of genes involved in defense and 

response to bacteria, recapitulating previous results [57]. We additionally found an enrichment of 

genes involved in egg coat formation in the body data only, finding 5/14 such genes, all of which 

decrease in expression with age, clearly associated with reduced reproductive output in older 
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females (see also [57]). Finally, in bodies we saw an enrichment of myofibril assembly genes 

(10/40 genes found, all of which decrease in expression with age), and in heads an enrichment of 

genes involved in the electron transport chain (42/86 found, and 39/42 go down with age), both 

observations potentially reflecting a general loss of vigor with age. Studies in both mice and 

humans have also shown that many components of the electron transport chain show reduced 

expression with age [58]. 

 Several other groups have previously used array-based expression profiling to identify 

genes that change with age in various D. melanogaster populations. We sought to compare the 

results of our study with this other work, and determine the extent of overlap in the genes 

identified among experiments. We extracted information on genes showing age-related changes 

in expression from Pletcher et al. [57], Landis et al. [59], Lai et al. [60], Zhan et al. [61], and 

Carlson et al. [62], converted all gene names to the most current FlyBase gene IDs (see 

Supplementary Data 2.4), and examined for the number of overlapping genes. Overall, 83% of 

the genes we identify as differentially expressed in bodies were identified in at least one other 

study, and 59% of the genes we identify in heads replicated (Figure 2.S3). We assessed the 

statistical significance of overlap in the sets of genes identified using the R software package 

SuperExactTest [63] that can calculate the probability of intersection among any number of gene 

sets. Considering our head (252 genes) and body (1,940 genes) datasets separately, and assuming 

14,000 total genes in the Drosophila genome, the number of genes that intersect between our 

study and three or more other sets of age-related genes is highly significant (all p-values < 3.7 × 

10–15). Thus, while there are an array of biological and technical differences among studies, a 

core set of genes appear to be consistently identified as showing age-related changes in gene 

expression. 
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 Of interest is whether any of the genes we identify in our RNAseq screen are present 

within genomic intervals implicated by mapped QTL. A total of 55 RNAseq candidates are 

present within these intervals; Two were identified only in our body experiment, 52 only in our 

head experiment, and one was observed in both studies. In all cases these genes were identified 

as differentially expressed with age, and none were found to be differentially expressed between 

short- and long-lived genotypes. Thirty-one of the 55 genes have been shown to have age-related 

changes in expression in previous studies, and 4/55 represent aging candidate genes identified in 

FlyBase (Table 2. 2); dome, Ubqn, and Zw (all under Q2) and Rel (under Q4), all of which show 

increased expression in the heads of older females. These genes present excellent candidates to 

harbor regulatory variation affecting lifespan. 

 

DISCUSSION 

 

We carried out an unbiased screen to identify loci segregating for allelic variation influencing 

lifespan of mated female D. melanogaster. By virtue of employing a multiparental advanced 

intercross population we were able to map putative aging genes to relatively small regions of the 

genome averaging 640kb (Table 2.1), aiding future resolution of the actual causative loci. We 

uncovered three X-linked and two autosomal QTL that collectively explain 22.3% of the among-

genotype variation in lifespan in the DSPR (Table 2.1). We were unable to estimate the 

heritability for lifespan directly in the DSPR, since our measure of lifespan for each of the 805 

RILs assayed is derived from the median time of death of a single cohort of 30 flies. 

Nonetheless, previous estimates of broad-sense heritability of lifespan in Drosophila are 0.32-
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0.41 (Khazaeli et al., 2005; Ivanov et al., 2015), suggesting that the QTL we identify likely 

explain very small fractions of the total phenotypic variation for lifespan. 

 

Resolving candidates contributing to natural variation in aging 

A benefit of mapping with high resolution in an advanced intercross population is that modest 

numbers of genes are implicated, allowing plausible candidates to be highlighted for future 

experimental tests. Below we summarize those plausibly functional loci residing within each of 

our mapped QTL. 

 Q1 (14A6-15A3) overlaps with lifespan QTL identified in studies by Reiwitch & 

Nuzhdin [46] and Defays et al. [39], and several of the 84 genes implicated by Q1 have been 

previously implicated in aging in flies (Table 2.2). A caz deletion mutation exhibited reduced 

longevity in comparison to wildtype [64], as did a hang P-element insertion mutation [65]. In 

addition, copy number at the meiotic 41 gene has been shown to affect lifespan [66]. The gene 

methuselah-like 1 (mthl1) is annotated in FlyBase as being involved in the determination of adult 

lifespan [36], although this appears to be entirely due to the sequence similarity of this gene to 

methuselah, a classic aging candidate gene [67]. We also identified 14 genes that change in 

expression between young and old flies in the head. Notably UQCR-14, which appears to be 

involved in mitochondrial electron transport [68], shows decreased expression with age in our 

study, reduced expression with age in whole females in both regular food and caloric restriction 

conditions in Pletcher et al. [57], lower expression with age in whole males [59], and changes 

expression with age in brain-tissue derived from males [61]. 
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 Q2 (18C8-19C1) was found in the same position as QTL mapped in three previous 

studies [39, 46, 47], although the QTL we map is considerably smaller in size, implicating 93 

protein-coding genes. Several strong aging candidate genes are present in this interval (Table 

2.2). A point mutation in car shows significantly reduced lifespan in males [69], RNAi 

knockdown of the mitochondrial electron transport chain complex IV component gene CG18809 

leads to a 16-19% increase in lifespan in female flies [70], a dominant negative version of dome 

increases mortality in a G9a mutant background [71], silencing Ubqn in the nervous system 

shortens lifespan in males and leads to neurodegeneration [72], and overexpression of Zw 

(glucose-6-phosphate dehydrogenase) increases lifespan [73]. dome, Ubqn, and Zw are also 

among the genes we identified as differentially expressed in heads between young and old 

animals, and these three genes all show enhanced expression with age. 

 Q3 (19E4-20A1) resides close to Q2 (Figure 2.2), however the 2-LOD drop confidence 

intervals of the peaks do not overlap (Table 2.1), and the founder allele effect plots show 

different patterns (Figure 2.3), so we can be reasonably confident the QTL represent separate 

loci. The positions of our Q1, Q2, and Q3 all overlap one of the broad QTL mapped by Defays et 

al. [39], highlighting the resolution of our study. Two a priori aging candidate genes are present 

within the Q3 interval (Table 2.2); Cbs overexpression leads to increased lifespan [37], and 

Mgstl null mutants exhibit reduced lifespan compared to wildtype controls [74]. 

 Q4 (84F1-85D11) is the broadest peak we map, implicating 155 genes, likely because the 

QTL resides close to the chromosome 3 centromere, a site of reduced crossover rate. Our QTL 

overlaps loci previously mapped in five studies [39, 40, 43, 47, 49], although the region we 

implicate is substantially smaller than in most of these studies. Several genes in the Q4 interval 

have been previously implicated in Drosophila longevity (Table 2.2). Coq2 is involved in the 
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synthesis of Coenzyme Q (ubiquinone; [75]), an essential electron carrier in the mitochondrial 

electron transport chain. Heterozygous genotypes with just one functional copy of Coq2 show 

lifespan extension in both males and females [75]. Genotypes with nonfunctional Ibf2 are short-

lived [76], there is some evidence for a slight reduction in lifespan in genotypes carrying a 

mutant for pum [77], and loss of function mutations in Rel - a gene critical in the induction of the 

immune response in flies - dramatically reduce survival time compared to controls [78]. Rel is 

also an excellent expression candidate for a role in lifespan regulation, since we found it to be 

increased in expression with age in heads, and three previous studies showed also showed 

increased Rel expression in older flies [57, 59, 60]. Q4 also harbors polychaetoid, the only gene 

identified in a P-element screen for lifespan extension mutations that overlapped our five QTL 

intervals [21]. A number of genes within Q4 show expression variation between young and old 

animals in our study. This set includes CG8032, which is also the only member of a set of 39 

lifespan-reducing loci identified in a gain-of-function screen that is implicated by QTL mapped 

in the present study [22], and Nmdmc, overexpression of which has been shown to extend 

lifespan in flies [79]. Given the number of genes within Q4, and the ample evidence of multiple 

candidates present in the region, it is not unlikely that more than one gene in the region is 

responsible for the QTL we map. 

 Finally, we mapped Q5 (98E2-98E5) to a small interval on chromosome 3R containing 

just 11 genes (Table 2.1, Figure 2.2). This region has previously been implicated in the control of 

lifespan [44-46], although no strong a priori candidates are present. One of the loci within the 

Q5 interval, wdn, shows an age-related increase in expression in heads in our study, although this 

result was not recapitulated in any of the five other expression datasets we examined. 
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Replication among studies mapping naturally-segregating aging variants 

Each of the five QTL we isolated in the DSPR co-localizes with the positions of QTL mapped 

for lifespan in at least one of the 13 other studies we examined (Figure 2.S2). It is clear from 

examining overlap among all studies that there is some commonality in the genomic regions 

implicated in the control of natural variation in aging. However, it is equally clear based on the 

lack of the overlap among studies with the highest level of resolution (this study along with [42, 

45, 49]) that there are significant differences in the sets of loci implicated in different works 

(Figure 2.S2). Studies routinely employ different starting sets of genotypes, so at least some of 

the differences observed must be due to different mapping panels segregating for different 

subsets of functional allelic variation. However, differences in power among studies are also 

likely to play an important role in the differing results. It is most likely that aging is a highly 

polygenic trait, and that individual variants each underlie only a tiny fraction of lifespan 

variation, as evidenced by the small effects of the two genes replicated in multiple human 

GWAS for aging, APOE and FOXO3A [80]. If variant effects are routinely this low, even studies 

with reasonable sample sizes are likely to be underpowered; For instance, this study used 805 

RILs, and has ~30% power to identify QTL contributing 2.5% to among-line variation in 

phenotype [27]. Thus, if the genetic architecture of lifespan is constructed from the effects of 

many, very small-effect variants, any given genomewide study may only find a small subset of 

the loci segregating for age-related variation. 

 A further important difference among studies in Drosophila is that the assays used to 

measure lifespan are frequently different, both at gross levels (e.g., studies may focus on 

different sexes), and at more subtle levels, such as any number of technical differences in the 

laboratory environments used to rear flies and maintain aging populations (e.g., temperature, 
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media composition, larval density). Loci contributing to aging have been shown to be sex-

specific in many cases [26, 44], whether the flies are mated or virgin can alter the QTL identified 

[46], and many QTL have been shown to be highly environment-dependent [43, 47]. If the 

effects of functional alleles at aging genes are typically, or even often sensitive to the 

environment in this way, i.e., exhibit genotype by environment interaction [81-83], we should 

expect to routinely identify different sets of variants in different studies, with variants only being 

identified under those conditions under which they have detectable effects on phenotype. A key 

benefit of a consistent, chemically-defined diet for flies [84] would be to help minimize lab-to-

lab variation in studies of life history traits, help enhance replicability of genetic effects across 

studies, and promote understanding of the mechanisms by which allelic variation leads to 

variation in aging under a single set of conditions. 

 

Prospects 

Regardless of the precise set of aging loci identified in mapping populations of Drosophila, there 

is clearly some consistency across studies in the pathways implicated in the aging process. This 

is most easily seen in the various expression profiling experiments that have been carried out, 

where core groups of genes robustly and consistently show age-related changes in expression, 

notably antimicrobial defense response genes that are routinely upregulated during aging, and 

genes involved in the electron transport chain that are routinely downregulated with age. Thus, 

there is hope that the genes implicated by QTL mapping studies, regardless of their differences 

across studies, could provide valuable inroads into a mechanistic understanding of the pathways 

involved in aging. In this regard, our identification of UQCR-14, a gene within Q1 that is 

involved in electron transport and shows a decrease in expression with age, CG18809, a gene 
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within Q2 that encodes a component of the electron transport chain, and Relish, a gene under Q4 

that is involved in mobilizing the antimicrobial response, and shows increased expression in aged 

animals, represent excellent candidates for future functional analysis, and to identify causative 

sequence-level variation underlying aging. The prospects for direct functional validation of age-

related variation in model systems via allele swapping - moving "high" alleles into "low" 

backgrounds and vice versa - using CRISPR-Cas9 editing are strong, and will obviate the need to 

"validate" natural allelic effects with synthetic constructs (e.g., RNAi). The ability to examine 

whole organism phenotypes, in addition to cellular and physiological phenomena, in specifically 

edited animal models is a considerable strength of model organisms that will allow the 

exploration of aging pathways that may also be implicated in humans. 
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Figure 2.1 
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Figure 2.1 Distribution of female lifespan among DSPR RILs. We assayed lifespan for 805 RILs 

from the DSPR, measuring the phenotype as the time required for half the flies to die. 
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Figure 2.2 
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Figure 2.2 Genome scan for lifespan QTL. The black solid line indicates the LOD score 

following a scan for QTL contributing to variation in lifespan in the DSPR. The x-axis indicates 

genetic distance, and genetic positions 54 and 47 are the sites of the centromeres on 

chromosomes 2 and 3, respectively. The dashed line is a permutation-based genomewide 5% 

threshold (LOD = 7.08), and five QTL show peaks with LOD scores higher than this threshold. 

The positions of these QTL are indicated with asterisks, and their codes (Q1-Q5) are provided 

above the plot. 
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Figure 2.3 
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Figure 2.3 Founder allele strain effects at mapped lifespan QTL. Phenotype means (± 1 standard 
error) are presented for each founder at each QTL peak. Data is presented only for those 
founders present in at least 10 RILs at a probability > 0.95. 
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Table 2.1 Lifespan QTL mapped in the pB DSPR panel. 

QTL Peak 

LOD 

a 

Chr. 

b 

Physical 

Interval (Mb) b 

Cytological 

Interval b 

Number 

of Genes c 

Variation 

explained d 

Q1 7.1 X 16.0-16.7 14A6-15A3 84 4.0 

Q2 7.1 X 19.5-20.2 18C8-19C1 93 4.0 

Q3 7.4 X 20.9-21.4 19E4-20A1 51 4.2 

Q4 9.4 3R 8.1-9.3 84F1-85D11 155 5.2 

Q5 8.7 3R 28.7-28.8 98E2-98E5 11 4.9 

 

a LOD score at the QTL peak. 

b The chromosome arm on which the QTL resides, the physical position of the QTL interval 

(defined as a 2-LOD drop from the peak) in the D. melanogaster reference genome release 6, and 

the equivalent cytological interval. 

c Number of protein-coding genes present within the QTL interval. 

d The fraction of the among-line variation explained by the QTL. 
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Table 2.2 FlyBase aging candidate genes within mapped QTL. 

QTL a Gene Name Symbol 

Q1 b cabeza 

hangover 

methuselah-like 1 

caz 

hang 

mthl1 

Q2 carnation 

CG18809 

domeless 

Ubiquilin 

Zwischenferment 

car 

– 

dome c 

Ubqn c 

Zw c 

Q3 Cystathionine beta-synthase 

Microsomal glutathione S-transferase-like 

Cbs 

Mgstl 

Q4 Coenzyme Q biosynthesis protein 2 

Insulator binding factor 2 

pumilio 

Relish 

Coq2 

Ibf2 

pum 

Rel c 

 

a No genes from our FlyBase controlled vocabulary searches were present within the Q5 interval. 
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b The gene CG32576, which resides within Q1, was also tagged in our FlyBase search as "short 

lived" but this appears to be an annotation error [64]. 

c These genes were also shown to increase in expression with age in female heads in our RNAseq 

study.  

  



	

	

48	

Figure 2.S1 
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Supplementary Figure 2.1 Block-to-block variation in lifespan. We assayed 805 DSPR RILs 

for median female lifespan across four experimental blocks. There is significant variation across 

blocks in the average lifespan of the set of RILs assayed. The mean (± 1-SD) lifespan for each is 

56.5 ± 9.93 (Block 1, 208 RILs), 50.5 ± 9.35 (Block 2, 150 RILs), 58.5 ± 10.42 (Block 3, 233 

RILs), and 53.7 ± 11.98 (Block 4, 214 RILs). The figure was generated via the R "boxplot" 

command with standard settings. 
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Figure 2.S2 
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Supplementary Figure 2.2 Lifespan QTL mapped in previous studies. We extracted the 

positions of QTL mapped for various lifespan/aging traits from 13 publications. All studies 

reported the positions of QTL intervals as cytological band locations, and the figure shows a 

horizontal black bar for each region implicated in each study. Alternating gray and white panels 

refer to the D. melanogaster chromosome arms (X, 2L, 2R, 3L, 3R, and 4). The positions of the 

five QTL we map in the DSPR are shown as vertical red bars. Studies listed along the y-axis are: 

(1) Nuzhdin et al., 1997 (PMID: 9275193), (2) Leips and Mackay, 2000 (PMID: 10924473), (3) 

Vieira et al., 2000 (PMID: 10628982), (4) Curtsinger and Khazaeli, 2002 (PMID: 11718803), (5) 

Leips and Mackay, 2002 (PMID: 12227919), (6) Reiwitch and Nuzhdin, 2002 (PMID: 

12688661), (7) Geiger-Thornsberry and Mackay, 2004 (PMID: 15013662), (8) Forbes et al., 

2004 (PMID: 15454544), (9) Wang et al., 2004 (PMID: 15153181), (10) Nuzhdin et al., 2005 

(PMID: 15834144), (11) Wilson et al., 2006 (PMID: 16702433), (12) Lai et al., 2007 (PMID: 

17873888), and (13) Defays et al., 2011 (PMID: 21798333). The positions of the QTL we map 

overlap with those mapped in studies 6 and 13 (Q1), 3, 6, and 13 (Q2), 13 (Q3), 2, 3, 8, 11, and 

13 (Q4), and 5, 6, and 10 (Q5). 
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Figure 2.S3 
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Supplementary Figure 2.3 Overlap among expression candidates. We identified 252 genes 

showing differential expression in body tissue between young and old animals and/or between 

short- and long-lived genotypes. We additionally identified 1,940 genes showing differential 

expression between young and old animals in heads. Comparing these lists to similar lists of age-

related genes from five other publications (see Supplementary Data S4) we found that the 

majority of our expression candidates had been previously identified in one or more studies. The 

figure shows the number of genes we identified that were unique to our study (e.g., 43 body 

genes), or that were found in other studies (e.g., 11 body genes were identified in all five other 

studies we examined). 
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Supplementary Data 2.1. RILs selected for RNAseq analysis. The following 20 short-lived and 

long-lived RILs were selected for pooled RNAseq analysis of gene expression in bodies (thorax 

+ abdomen) of females. 

 

Short-lived body pool: 

 

RIL Median Lifespan (Hrs) Median Lifespan (Days) 

21086 826.2 34.4 

21105 564.1 23.5 

21135 780.3 32.5 

21148 926 38.6 

21188 754.8 31.4 

21190 801.2 33.4 

21220 928.2 38.7 

21241 897.6 37.4 

21247 850.8 35.4 

21257 1067.6 44.5 

 

Long-lived body pool: 

 

RIL Median Lifespan (Hrs) Median Lifespan (Days) 

21001 1783.4 74.3 

21004 1663.6 69.3 

21076 1807.3 75.3 

21079 1831.3 76.3 
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21091 1639.6 68.3 

21132 1663.6 69.3 

21142 1689.1 70.4 

21143 1713 71.4 

21168 1713 71.4 

21214 1639.6 68.3 

 

The following six RILs were used for strain-by-strain analysis of gene expression in female 

heads. 

 

RIL Median Lifespan (Hrs) Median Lifespan (Days) 

21004 1663.6 69.3 

21157 972.1 40.5 

21168 1713.0 71.4 

21210 1713.0 71.4 

21214 1639.6 68.3 

21250 1043.8 43.5 
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Supplementary Data 2.2. FlyBase controlled vocabulary searches. We searched the FlyBase 

controlled vocabulary (CV) terms (http://flybase.org/static_pages/termlink/termlink.html, 

accessed 6 January 2016) for the words “aging”, “lifespan”, “lived”, and “longevity”, and 

identified 9 terms, each associated with multiple genes. The number of independent genes across 

all terms is 568. The “CODE” associated with each term can be used along with Supplementary 

Table S4 to determine which candidate gene is associated with each term. 

 

CODE: 1 CODE: 6 

CV ID: GO:0007568 CV ID: GO:0010259 

CV term: aging CV term: multicellular organismal aging 

# genes: 175 # genes: 171 

 

CODE: 2 CODE: 7 

CV ID: FBcv:0000384 CV ID: FBcv:0000792 

CV term: aging defective CV term: premature aging 

# genes: 30 # genes: 4 

 

CODE: 3 CODE: 8 

CV ID: GO:0007569 CV ID: FBcv:0000386 

CV term: cell aging CV term: long lived 

# genes: 2 # genes: 264 

 

CODE: 4 CODE: 9 

CV ID: FBcv:0000791 CV ID: FBcv:0000385 

CV term: delayed aging CV term: short lived 
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# genes: 2 # genes: 503 

 

CODE: 5 

CV ID: GO:0008340 

CV term: determination of adult lifespan 

# genes: 168 
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Supplementary Data 2.3. Gene Ontology (GO) analysis summary. Gene ontology analysis was 

conducted via the geneontology.org site on January 27, 2016 (Analysis Type: PANTHER 

Overrepresentation Test - release 20150430; Annotation Version and Release Date: GO 

Ontology database - Released 2015-08-06). The database contained 13,690 D. melanogaster 

genes, and 245/252 (1,898/1,940) of the genes showing differential expression in bodies (heads) 

were present. Selected “biological process” GO category results are shown below. The “Genes” 

column is the total number of genes of that category in the database, “DE genes” is the number 

of those genes identified as differentially-expressed in our dataset, “FE” is the fold enrichment 

(the number of genes identified relative to the number expected by chance), and “P-value” is the 

result of a Bonferroni-corrected significance test for enrichment. 

 

Bodies 

GO Category Genes DE Genes FE P-value 

 

antibacterial humoral response (GO:0019731) 29 10 >5 5.49E-07 

 All 10 increase expression with age 
 

defense response to Gram-positive  

 bacterium (GO:0050830) 41 11 >5 9.27E-07 

 All 11 increase expression with age 
 

defense response (GO:0006952) 330 28 4.74 4.25E-08 

 All 28 increase expression with age 
 

egg coat formation (GO:0035803) 14 5 >5 1.71E-02 

 All 5 decrease expression with age 
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skeletal myofibril assembly (GO:0014866) 7 5 >5 5.93E-04 

 All 5 decrease expression with age 
 

Myofibril assembly (GO:0030239) 40 10 >5 1.15E-05 

 All 10 decrease expression with age 

 

Heads 

GO Category Genes DE Genes FE P-value 

 

antibacterial humoral response (GO:0019731) 29 17 4.23 3.09E-03 

 16/17 increase expression with age 
 

defense response to Gram-positive  

 bacterium (GO:0050830) 41 24 4.22 2.24E-05 

 All 24 increase expression with age 
 

defense response (GO:0006952) 330 84 1.84 4.63E-04 

 70/84 increase expression with age 
 

electron transport chain (GO:0022900) 86 42 3.52 2.21E-08 

 39/42 decrease expression with age 
 

ATP metabolic process (GO:0046034) 133 57 3.09 8.93E-10 

 52/57 decrease expression with age 
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Supplementary Data 2.4. Extracting genes showing age-related changes in expression from 

previous studies. 

 

Pletcher et al. (2002) - PMID: 12007414 

1,312 genes with age-related changes in expression. 

We received information on the probe sets that showed age-related changes in gene 

expression from the corresponding author of this paper. The results were from an updated 

analysis, and a slightly larger set of significant genes were identified than was reported in the 

original paper. Using the annotation file provided to accompany the expression array used in the 

study we converted probe sets to FlyBase gene IDs (“FBgn”), ignoring any probe sets lacking 

FBgn. FBgn were then updated to current FBgn using FlyBase 

(http://flybase.org/static_pages/downloads/IDConv.html, accessed 30 December 2015). 

Subsequently, we retained only those unique genes with a one-to-one relationship between 

current and former FBgn (differences among annotation releases cause a small minority of 

putative open reading frames to be merged or split as annotations improve). 

 

Landis et al. (2004) - PMID: 15136717 

854 genes with age-related changes in expression. 

We extracted FBgn for probe sets showing increased or decreased expression with age 

from Table 1 (tabs “old up”, “O2 OLd UP”, “old down”, and “old o2 down”), and used a similar 

protocol as described above to filter FBgn. 

 

Lai et al. (2007) - PMID: 17196240 
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2,118 genes with age-related changes in expression. 

We extracted FBgn for probe sets showing increased or decreased expression with age 

from Supplementary Table 3. Probe sets reported to be associated with more than one gene 

symbol and/or FBgn were ignored. Subsequently we used the same protocol as described above 

to update and filter FBgn. 

 

Zhan et al. (2007) - PMID: 17623811 

3,181 genes with age-related changes in expression. 

 We extracted FBgn for genes with age-related expression changes from Supplementary 

Tables 1-7, ignoring any gene lacking an FBgn number. After updating FBgn numbers via 

FlyBase, we merged data from all tissues. Thus, the set of genes we employ show a significant 

age-related change in at least one, and perhaps as many as seven tissues. 

 

Carlson et al. (2015) - PMID: 26090231 

1,527 genes with age-related changes in expression. 

We extracted FBgn for genes showing changing expression with age from Supplementary 

Table 1, and used the same protocol as described above to filter FBgn. 
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Chapter III  

Functional Validation of Causative Loci Contributing to Nicotine Resistance in 1st Instar 

Larvae 
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Abstract 
 

All species possess detoxification pathways with considerable natural variation enabling plastic 

responses to environmental toxins. Given the widespread use of pesticides, and the frequent 

development of resistance to these compounds by crop pests, it is critical to understand the 

genetic basis of xenobiotic resistance in insects. Here, we follow-up on a previous multi-parent 

quantitative Trait Loci QTL (QTL) mapping study carried out in the Drosophila Synthetic 

Population Resource (DSPR) by performing quantitative complementation tests, RNAi, over-

expression experiments, and CRISPR to functionally validate the effects of Cyp281, Cyp28d2, 

and Ugt86Dd on nicotine resistance and attempt to identify causative sequence variants. To 

determine whether these loci harbor segregating variation influencing resistance, we crossed 

susceptible and resistant strains to a range of deficiencies and insertional mutants. These 

quantitative complementation tests (QCTs) revealed functional allelic variation at Cyp28d1 and 

Cyp28d2, and suggested that multiple UDP-glucuronosyltransferase (Ugt) genes likely harbor 

allelic variation with effects on nicotine resistance. Ubiquitous RNAi knockdown of Cyp28d1 

and Ugt86Dd, as well as targeted knockdown in the anterior midgut, reduced nicotine resistance, 

providing evidence these genes are involved in resistance. Sequencing the Ugt86Dd open 

reading frame revealed a 22bp coding deletion segregating in our multi-parental mapping panel, 

with the four most susceptible founder haplotypes all harboring the deletion allele. We 

constructed overexpression genotypes using both Ugt86Dd alleles, and found that nicotine 

resistance is significantly greater following anterior midgut overexpression of the insertion allele 

compared to the deletion allele, implying the variant has a functional role. Successful generation 

of custom Ugt86Dd mutants using the CRISPR-Cas9 system revealed Ugt86Dd has a large effect 

on nicotine resistance within the DSPR. Out of the three candidate genes functionally tested, 
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Ugt86Dd appears to be a causative gene and the complex 22bp deletion is likely a causative 

variant with variable effects on nicotine resistance in the DSPR.
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Introduction 

Toxins are a common and diverse biomolecule that are employed to protect plants and animals. 

For instance, >10% of terrestrial plant species produce some form of toxins for protection [1,2], 

while several animals produce toxins as a defense mechanism [3]. Thus, with the common 

occurrence of toxins in nature, complex mechanisms to avoid and catabolize these toxic 

substances have been developed by animals, such as insects and humans. These sophisticated 

detoxification systems allow for variable responses to endogenous and exogenous environmental 

toxins. Fortunately, with the recent increased employment of insecticides/pesticides against crop 

pest, and the considerable evolutionary pressure to frequently develop resistance to these 

insecticides/pesticides [4] allows for a unique opportunity to better understand how 

detoxification works on a genetic level. Thus, it is critical to understand the genetic basis [5] of 

xenobiotic resistance in insects to help design valuable crop pest management strategies.  

Broadly, we know the biochemical pathway that catabolizes and excretes xenobiotics 

from the cell [6]. This biochemical pathway can be broken down into three phases. Phase I 

includes detoxification enzymes known as cytochrome P450 genes (P450s) that carry out 

oxidation reactions on a broad range of xenobiotics and catabolize these xenobiotics into various 

levels of toxic by-products. To date, Drosophila melanogaster has roughly 100 P450 genes [7], 

of which are mainly expressed in the fatbody midgut/hindgut, and malpighian tubules [7,8]. 

Next, large functional groups are added to the by-products by phase II enzymes such as 

glutathione-S-transferases (GSTs) and UGTs to improve the molecules hydrophilic properties for 

excretion [9]. Lastly, phase III includes transporters, such as ATP-binding cassette (ABC) 

transporters, that remove bulky hydrophilic by-products from the cell. Even with this knowledge 

and identification of many detoxification genes [7,10], our understanding of the precise pathway 
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of detoxification for each compound and the variable genetic affects in xenobiotic metabolism 

are largely unknown.  

To tease apart the genetic contributions that are associated with xenobiotic resistance, 

traditional mapping approaches have been typically employed, such as Genome-wide association 

studies (GWAS) and QTL mapping, with limited success in elucidating causative genes. 

Typically, GWAS compare cases and controls for a trait, and have had some success in 

elucidating common genetic variants associated with drug resistant [11–14]. However, a majority 

of GWAS are small in size and are severely underpowered to detect true genetic variants, 

including rare disease causing alleles [15–17]. Traditional QTL mapping takes parents that 

segregate differentially for the trait under test, and phenotypes progeny that are subjected to very 

few rounds of meiotic recombination. This enables QTL mapping to achieve strong statistical 

power to detect segregating regions, but limits mapping resolution to several Centimorgans that 

can harbor thousands of genes [18–21]. To overcome the weaknesses of both approaches, a 

series of multi-parental mapping panels were developed in a variety of model organisms to 

facilitate the ability to find causative genes. These multi-parental mapping panels include the 

Arabidopsis thaliana MAGIC lines [22], the maize Nested Association Mapping population 

(NAM) panel [23], the mouse collaborative cross [24], the Diversity Outbred mouse population 

[25], and the DSPR [26]. These multi-parental mapping panels will allow scientists to dissect the 

variable genetic effects of xenobiotic resistance, such as nicotine resistance. 

Initially, phenotypic variation in nicotine lethality was demonstrated in in genetically 

different Drosophila strains [27]. Moreover, studies performing various screens on wild-derived 

lines have uncovered genetic variation that mediates phenotypic variation for nicotine resistance 

[28–30]. Recently, the DSPR [26,31] was employed to dissect genetic variation that affects 

nicotine resistance [32]. Phenotyping a majority of the DSPR (1274 RILs), four mapped QTL 
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were uncovered that explained 70% of the broad sense heritability. Interestingly, QTL1 

explained roughly 9% of the broad sense heritability and harbored two phase I enzymes 

Cyp28d1, and Cyp28d2. Moreover, QTL4 roughly explained 50% of the broad sense heritability 

and harbored ten phase II UGT genes. A genome-wide RNA-seq experiment demonstrated both 

P450 genes under QTL1, Cyp28d1 and Cyp28d2, and one of ten UGT genes under QTL4, 

Ugt86Dd, were differentially-expressed between susceptible and resistant DSPR founders. These 

candidate genes are ripe for validation. 

Here, we employed an array of functional assays that include QCTs, RNAi, over-

expression, and CRISPR to functionally validate candidate genes uncovered in a nicotine 

resistance screen by Marriage et al., (2014). QCTs revealed functional allelic variation at 

Cyp28d1 and Cyp28d2, and suggested that multiple nicotine resistance factors are present within 

the QTL4 region, consistent with the idea that several of the Ugt genes are involved. We found 

ubiquitous RNAi knockdown of Cyp28d1 and Ugt86Dd, as well as targeted knockdown in the 

anterior midgut, reduced nicotine resistance, providing evidence these genes are involved in 

nicotine resistance. While homing in on Ugt86Dd, a complex 22 basepair InDel was discovered. 

Over-expression experiments of the insertion allele and deletion allele found that nicotine 

resistance is significantly greater following anterior midgut overexpression of the insertion allele 

compared to the deletion allele, implying the variant has a functional role. Lastly, Ugt86Dd 

CRISPR mutants on average were more susceptible than nonCRISPR mutants. 
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Materials and Methods 

Drosophila Stocks and Maintenance:  

All flies utilized for experiments were raised and maintained on standard cornmeal–yeast–

molasses medium at 25 °C on a 12:12 hour light/dark cycle with constant humidity of 50% 

unless otherwise stated. Briefly, 4-5 males and 10 virgin females and were harvested under CO2 

anesthesia in regular narrow, polystyrene fly vials and allowed to recover for at least a day 

before initiating crosses. Stocks employed for QCTs were selected from DrosDel, Exelixis, BSC, 

and gene disruption project collections [33–36] housed at the Bloomington Drosophila Stock 

Center, Bloomington, Indiana (Table 3.1). These collections are a creation of Deficiency (Df) 

stocks with characterized molecular breakpoints and mutations in positional candidate genes that 

have been generated in the w1118 isogenic background strain (Table 3.1). Stocks utilized for RNA 

interference (RNAi) studies were selected from the KK, GD [37] and Transgenic RNAi Project 

(TRiP) RNAi libraries housed at the Vienna Drosophila Resource Center (VDRC) or 

Bloomington Drosophila Stock Center, Indiana (Table 3.1). Quickly, the VDRC collections were 

created by randomly inserting an hpRNA into the genome via p-elements or by targeting the 

hpRNA to specific landing sites via ΦC31, while the TRiP collection targets shRNA to specific 

landing sites via ΦC31. Furthermore, GAL4 drivers utilized to turn on the UAS-RNAi stocks 

were purchased from the Bloomington Drosophila Stock Center, Bloomington, Indiana or were 

donated by flygut [38] (Table 3.1). Lastly, stocks utilized for CRISPR experiments where 

generated from taking BestGene’s Vas-Cas9 crossing in the 3rd chromosome of A4 from the 

DSPR (Table 3.1).  

 

Larval Nicotine Resistance Assay in Polystyrene Fly Vials: 
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This larval nicotine resistance assay utilized in this study was adapted from Marriage et al., 

(2014) larval nicotine resistance assay. All parts of the assay are similar expect larvae 

collections. Following egg laying, 30 1st instar larvae were collected across a series of parent 

vails per each cross, unless otherwise stated. Each set of 30 1st instar larvae were place on either 

standard fly media or standard fly media supplemented with 0.18 ul/ml nicotine (N3876, Sigma) 

made within the last 18 hours in regular narrow polystyrene fly vials (for preparation of food see 

Marriage et al., 2014). Eleven-to-thirteen days later the number of adults that had emerged in 

each vial were counted via CO2 anesthesia. By this time all pupae on the sides of the vial had 

hatched.  

 

Dominance Assay: 

To estimate the effect size of each chromosome has on nicotine resistance, A3 and A4 third 

chromosomes where swapped between their respective backgrounds using a series of balancers. 

The final genotypes were listed in the order of X/Y;2;3 and consisted of A4/A3;A4;A3 or 

A3/A4;A3;A4. For a detailed crossing scheme to create these genotypes see Supplementary Data 

4. To determine the dominance state of the 3rd chromosome, these newly created stocks were 

backcrossed to either A3, A4, or self-crossed and compared to self-crossed A3 and A4 for 

nicotine resistance using the larval nicotine resistance assay in polystyrene fly vials. A total of 2 

biological replicates per cross were recorded on control food, while 6 biological replicates per 

cross were documented on nicotine-laced food. 

 

Quantitative Complementation Test:  

To narrow down the genomic loci and functionally test genes implicated in our mapping and 

RNAseq experiments, we employed QCTs. In order to perform QCT on 1st instar larva, we 
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replaced the original balancer with CyoGFP or TM6GFP. We crossed males that either contained 

the insert or defiency to A4 (resistant line) or A3 (susceptible line) females. Flies were allowed 

to mate for 48 hours in regular narrow, polystyrene fly vials. From here, a larval nicotine 

resistance assay in polystyrene fly vials was performed utilizing 9-34 1st instar larvae per 

replicate on either control or nicotine-laced food. A total of 2-8 biological replicates per cross 

were recorded on control food, while 8-18 biological replicates per cross were documented on 

nicotine-laced food. The average viability per cross was recorded, and analyzed/interpreted using 

the reduced model:  y = µ + L + G + (L x G) + R(L x G) [39,40,40]. 

 

RNAi Assay:  

To functionally examine the effects of nicotine resistance on Ugt86Dd, Cyp28d1, and Cyp28d2 

uncovered in marriage et al., (2014) RNAseq data, we employed the binary GAL4-UAS RNAi 

system. We utilized VDRC p-element (GD), ΦC31 (KK), and the ΦC31 TRIP integrated UAS 

transgenes along with their respective controls (Supplemental Table 1). We examined phenotypic 

effects associated with ubiquitous or tissue specific RNAi knockdown of selected genes. We 

took males that ubiquitously or tissue specifically express GAL4 through their respective 

promoters and crossed to females of each control and each UAS-RNAi strains. Appropriate F1 1st 

instar larvae were selected and utilized to perform the larval nicotine resistance assay in 

polystyrene fly vials. A total of 3-5 biological replicates per cross were recorded on control food, 

while 8-10 biological replicates per cross were documented on nicotine-laced food. 

 

Ugt86Dd DSPR InDel PCR Detection Assay: 

Primer set 5’-CGCTTTTGCTCAGCATTTTA-3’ and 5’- ATATGTGGCAGGTGAACGAA-3’ 

was employed to amplify the InDel variant (219 or 197 base pair product) at the Ugt86Dd locus 
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in the DSPR under cycling parameters: 95°C 2 mins, 35 cycles of 95°C 20s, 57°C 25s, 72°C 30s, 

and a final 2 min extension at 72°C. To properly call the lnDel variant, a 2% agarose gel was 

utilized and ran in 1x TAE at 50v for 90 minutes, changed to new 1xTAE buffer and ran for 60 

minutes at 100v. To verify InDel variation calls in the DSPR, DNA PCR products were cleaned 

up using and following manufacture protocols for a QIAquick Gel extraction Kit (Cat #: 28704; 

Lot: 436176125) or a QIAquick PCR Purification Kit (Cat #: 28104; Lot: 148024523), and sent 

to ACGT for sequencing and aligned utilizing DNAstar packages.  

 

Ugt86Dd Over-Expression Assay: 

To complement our RNAi validation assays, a gain-of-function analysis was performed on 

Ugt86Dd. PCR was performed using template DNA from A3 and A4 of the DSPR. To insert 

AttB sites flanking Ugt86Dd from the selected DSPR founders, primer set 5’-

GGGGACAAGTTTGTACAAAAAAGCAGGCTTACAACATGAGATTATTAACTGTGATC

GCGA-3' and 5'-

GGGGACCACTTTGTACAAGAAAGCTGGGTCCTAATGTTTCTTAAGCTTATCAG-3' 

were utilized. Following the manufacture protocol, the PCR Cloning System with Gateway® 

Technology from Invitrogen (Cat #: 12535-029) was used to create an entry vector (pDONR221) 

via the BP reaction. All selected entry clones were Sanger sequenced on both ends using primer 

set M13F(-20) (5′-GTAAAACGACGGCCAGT-3′ ) and M13R (5′-

GGAAACAGCTATGACCATG-3′) to verify length and direction of gene. The destination 

vector pUASg.attB was generously donated by FlyORF [41] and used in combination with the 

LR reaction (Cat #: 11791-020) to generate pUASg.Ugt86Dd_A3.attB and/or 

pUASg.Ugt86Dd_A4.attB expression clones. All selected expression clones were Sanger 

sequenced using primer hsp-GW-F (5’-GCAACTACTGAAATCTGCCAAG-3’) to verify 
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direction of insert. To create over-expression Drosophila stocks containing the various 

expression constructs, BestGene injected the stock M{3xP3-RFP.attP}ZH-

86F(with{vas.int.DM}ZH-2A) with the created expression plasmids at concentrations of 0.510 – 

0.515 ug/ul. Once we received over-expression stocks, the X and 2nd chromosomes segregated 

for different chromosomes, while the 3rd chromosome containing the injected construct was 

homozygous for the third chromosome. These stocks were utilized in conjunction with tissue 

specific drivers to perform larval nicotine resistance assay in polystyrene fly vials. A total of 2-3 

biological replicates per cross were recorded on control food, while 6 biological replicates per 

cross were documented on nicotine-laced food. 

 

Ugt86Dd DGRP InDel Population Association Assay: 

In the course of sequencing the DSPR founders, we observed a SNP (G/C) segregated perfectly 

with the Ugt86Dd InDel. We wanted to determine if the Drosophila Genetic Reference Panel 

(DGRP) harbored this InDel variant. Thus, using the DGPR2 (http://dgrp2.gnets.ncsu.edu/) the 

observed (G/C) SNP was used as a proxy to identify DGRP strains that differentially segregate 

for the InDel variant in Ugt86Dd [42,43]. Once lines were selected, the Ugt86Dd DSPR InDel 

PCR detection assay was used to confirm seven homozygous DGRP strains (28199, 25177, 

28185, 28213, 25206, 25176, 37525) contained the Ugt86Dd deletion and 7 random homozygous 

DGRP strains (28239, 25200, 28160, 28226, 28197, 25174, 28295) contained the Ugt86Dd 

insertion. To create populations fixed for the InDel variant, all possible inter-line crosses were 

performed on DGRP strains homozygous for the deletion variant and DGRP strains homozygous 

for the insertion variant using 10 virgin females and 10 males from each strain. Ten F1 virgin 

females and males from each corresponding cross were selected and utilized to initiate their 

respective populations. Each population was maintained in 1 Gallon glass bottles at room 
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temperature in consist light. Each population was tipped to new food every 10-14 days. To 

evaluate nicotine resistance on these populations, a larval nicotine resistance assay in polystyrene 

fly vials was performed on 600 F7 larvae from each population. 

 

CRISPR/Cas9 Experiment: 

To optimize our CRISPR guideRNA (gRNA), 

http://tools.flycrispr.molbio.wisc.edu/targetFinder/ [44] and http://crispr.mit.edu/ [45] was 

employed. The target sequence TCACTACGAAGTCATTGTGGAGG was a top hit within both 

software’s and is close to the InDel variant of interest. Following the U6-gRNA (chiRNA) 

cloning protocol from flyCRISPR [46], cloning Ugt86Dd_sense and antisense primers (5’Phos-

CTTCGTCACTACGAAGTCATTGTGG-3’ and 5’Phos-

AAACCCACAATGACTTCGTAGTGAC-3’) was utilized to perform the cloning method laid 

out in the U6-gRNA (chiRNA) cloning protocol. To verify transformation of the U6-gRNA, 

sequenced plasmid purified via a QIAprep spin Miniprep Kit (Cat #: 27104; Lot: 151010133) 

following manufacture protocol was sent to ACGT. Plasmid (0.25ug/ul) containing our gRNA 

was sent to BestGene for injection into y[1] M{vas-Cas9}ZH2A w[1118]; ; A4. To verify 

CRISPR mutants, primer set 5’-ACGCTTTTGCTCAGCATTTT-3’ and 5’-

GGCTGGGGATACCATTTCTT-3’ was utilized to amplify a region containing our CRISPR 

target site under cycling parameters: 95°C 2 mins, 35 cycles of 95°C 20s, 57°C 25s, 72°C 30s, 

and a final 2 min extension at 72°C. For each reaction 10ul PCR product, 7ul molecular grade 

water, and 2ul NEB buffer 2 (Cat #: B7002S; Lot: 0181508) were incubated in a heat block set at 

95°C for 5 mins, and allowed to cool to room temperature for ~2 hours. Then 1ul of T7 

endonuclease (Cat #: M0302L; Lot: 0041512) per reaction was added and incubated at 37°C for 

15 mins. After 15 mins, 2ul per reaction of 0.25mM EDTA was added to stop the T7 
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endonuclease activity, and immediately loaded all the reaction into a 1.5% agarose gel to 

perform gel electrophoresis in 1% TAE to confirm positive CRISPR mutants.  

We discovered the injection strain y[1] M{vas-Cas9}ZH2A w[1118] strain was not 

homozygous at the Ugt86Dd loci, thus a custom injection strain was created (y[1] M{vas-

Cas9}ZH2A w[1118]; ; A4). Using this custom strain, plasmid pBbsI (0.25ug/ul) containing our 

gRNA (TCACTACGAAGTCATTGTGGAGG) was sent to BestGene for injection. Of the 300 

injected eggs ~ 100 larvae survived the injection. From these larvae, a total of 53 G0 males and 

36 G0 females were harvested. Of the 99 crosses set up, 57 (32 female G0 and 25 male G0) 

crosses produced viable offspring. Fifty percent of the G0 animals tested (18/36) via T7 

endonuclease led to at least 1 putatively CRISPR edited F1 animal. Per G0, the fraction of F1 

animals that are positive was ~22%, but if we consider just the 18 putatively positive CRISPR 

mutants containing a least 1 edited F1, the percentage of F1 animals that are positive was ~44%. 

Sequencing was employed to verify our T7 endoclease assay results, and a total of 16 unique 

CRISPR induced mutations were created with a 2bp deletion the most common (Supplementary 

Figure S8). Furthermore, all CRISPR induced mutants demonstrated a premature stop codon no 

more than 120bp after the CRISPR event, except for two in frame mutants (3bp & 6bp) and the 

complex 6bp insert (Supplementary Data 3.3). In total we developed 16 CRISPR stocks with 

unique CRISPR events and 7 CRISPR stocks that went through the CRISPR process but yield no 

mutation. These CRISPR stocks are homozygous for the X and 3rd chromosome, but segregate 

for the 2nd chromosome. These stocks were utilized for larval nicotine resistance assays in 

polystyrene fly vials to compare CRISPR mutants to CRISPR non-mutants. A total of 5 and 6 

biological replicates per cross were recorded on control or nicotine-laced food.  

 

Statistical Analysis: 
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All statistics used in this study were performed using the R statistical programming language 

(www.R-project.org) via base script packages or custom written scripts. 

 

Ugt86Dd InDel Meta-Population Screen: 

To verify the Ugt86Dd InDel in natural populations, we retrieved raw sequences of 14 pooled 

population samples from NCBI SRA (BioProject accession PRJNA256231, [47]), and see 

Supplement Table S11 for accession numbers of individual libraries). For each population, we 

counted a relative frequency of a particular insertion sequence and two particular deletions 

sequences. For the insertion sequence, we used the 20bp sequence centered on the insertion 

'ATTGTGGAGGACATTCATCG'. While the first deletion sequence includes the 20bp sequence 

centered on the deletion 'ACTACGAAGTGAATTCGTTC'. The second deletion sequence 

harbors a SNP at position 632 and is found in half of the deletion sequence 

‘ACTACGAAGTGATTTCGTTC’.  
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Results 

Most of the phenotypic signal for nicotine resistance is on the 3rd chromosome 

Our previous data suggest QTL4 on chromosome 3 explains ~45-50% of the broad sense 

heritability [32]. Thus, the 3rd chromosome in theory should have an immense effect on nicotine 

resistant within the DSPR. To test the genotypic effect the 2nd and 3rd chromosome have on 

nicotine resistance, stocks were constructed that consisted of A4/A3;A4;A3 or A3/A4;A3;A4 

(see materials and methods for creation). These newly created stocks were backcrossed to A3, 

A4, or self-crossed and compared to self-crossed A3 and A4 for nicotine resistance. It was 

observed most of the genotypic signal for nicotine resistance appears to be harbored on the 3rd 

chromosome and having one functional copy of the A4 third chromosome within A3 recovers to 

A4 like resistance, indicating the genotypic contribution appears to be non-additive but dominant 

(Supplementary Figure 3.S1, Supplementary Figure 3.S2). However, this dominant phenotype 

could be caused by multiplicative interactions between unlinked rare variants that are additive on 

the 3rd chromosome or simply multiplicative interactions in strong LD under QTL4 that are 

additive and will be of great importance to establish such mutations increase risk in a linear or 

synergistic manner [48]. Lastly, a Welch’s Two Sample t-test was performed between self-

crossed A3 and A4-DELxA4-DEL (t= -2.035, p= 0.069) or A4-DELxA3 (t= -2.068, p= 0.066), 

both produced a marginally nonsignificant result indicating a trend. This trend suggest the effects 

between A3 and A4 on the 2nd chromosome may be additive and have a small effect on nicotine 

resistance between A3 and A4. Taken together this data suggest there is a series of variants that 

may or may not be in LD on the third chromosome that contribute greatly to nicotine resistance, 

while the second chromosome has a small effect on the phenotype within the DSPR. 
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Deficiency and mutation complementation testing 

The theory on QCTs is straightforward, take deficiencies or mutant alleles of a candidate genes 

and test their associations with naturally derived alleles [49,50]. If the candidate region/gene 

contains natural allelic variation for the phenotype, natural alleles may fail to complement. Thus, 

using this ideology we employed QCTs on available deficiency and mutations in selected regions 

and positional candidate genes (Cyp28d1, Cyp28d2, Ugt86Dd, Ugt86Dh, Ugt86Dj) under our 

previously mapped QTL1 and QTL4 [32]. To assess failure to complement, nicotine resistant 

assays were performed on the four selected genotypes: mutant or deficiency/A3, mutant or 

deficiency/A4, background/A3, and background/A4.  

An ANOVA was used to assess complementation for deficiencies and positional mutants 

employed under QTL1. All demonstrated a significant interaction indicating failure to 

complement (Figure 3.1a). Df(2L) Exel6011 (F1,28= 62.3, p< 0.005), Df(2L) BSC693 (F1,28= 

121.8, p< 0.005), Mi{ET1} Cyp28d2MB02776 (F1,52= 77.1, p< 0.005), Cyp28d1MB03293 (F1,52= 11.5, 

p< 0.01). These data suggest that Cyp28d1 and Cyp28d2 are likely candidate Quantitative Trait 

Gene (QTGs) harboring variation affecting nicotine resistance between A3 and A4. 

Using the same model above, deficiencies employed under QTL4 all demonstrated a 

significant interaction and failed to complement; however, positional mutants demonstrated 

complementation (Figure 3.1b). Df(3R) ED5506 (F1,31= 78.4, p< 0.005), Df(3R) Excel7806 

(F1,36= 40.8, p< 0.005), Df(3R) Excel8152 (F1,35= 22.2, p< 0.005), Mi{ET1} Ugt86DjMB04890 

(F1,34= 4.0, p= 0.052), Ugt86DhMB11311 (F1,35= 0.9, p= 0.34). These data suggest that deficiencies 

Df(3R) ED5506 and Df(3R) Excel7806 uncovering the region harboring the previously 

implicated candidate gene Ugt86Dd, contains at least one QTG that harbors allelic variation for 

nicotine resistance between A3 and A4. The deficiency Df(3R) Excel8152 uncovering the 

genomic region containing the other nine UGT genes, likely harbors one segregating allelic 
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variant for nicotine resistance between A3 and A4 . Furthermore, our data suggest out of the 10 

UGTs mapped under QTL4, Ugt86Dj and Ugt86Dh are most likely not QTGs that harbor 

variation affecting nicotine resistance between A3 and A4. However, Ugt86Dj was marginally 

nonsignificant and with a higher sample size might reveal Ugt86Dj as a minor segregating 

variant between A3 and A4. Lastly, we can not rule out the possible the inserts do not abolish the 

function of the gene within the insertional mutants. However, this is likely not the case for 

Ugt86Dj or Ugt86Dh, both inserts are harbored in the first exon of each gene.  

 

Ubiquitous depletion of Ugt86Dd, Cyp28d1, and Cyp28d2 demonstrates a role in nicotine 

resistance 

Four candidate genes (Cyp28d1, Cyp28d2, Ugt86Dd, and Ugt86Dj) under QTL1 and QTL4 [32] 

were selected for GAL4-UAS RNAi depletion (knock-down) experiments. Initially, we took 

males that have ubiquitous expression of GAL4 over a balancer chromosome and crossed to 

virgin females that are isogenic for the targeted UAS RNAi constructs, and performed nicotine 

resistance assays on F1 larvae. When assessing viability, two genotypes emerged Balancer/UAS 

RNAi and GAL4/UAS RNAi. We took the fraction of GAL4/ UAS RNAi that emerged from 

each depletion strain and compared to the control strain. Using this ideology, all GAL4-UAS 

strains except the GAL4-UAS targeting Ugt86Dj showed a significant reduction in nicotine 

resistance compared to the control  (Supplementary Figure 3.S3). We could not rule out the 

chance that the difference was due to specific genotypes in the various strains emerging at 

different rates. To deal with this potential problem, we replaced all balancer chromosomes with a 

balancer chromosome marked with dominant GFP or YFP and selected F1 1st instar larvae of the 

correct genotype. If we assess the possibility genetic manipulations performed on our RNAi 

genotypes reduce survival, we examined normal survival of the RNAi genotypes on regular food. 
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A Welch's t-test for each genotypes demonstrates no abnormalities appear to cause no significant 

reduction in survival (Figure 3.2a). When performing RNAi nicotine resistance assays, we see all 

GAL4-UAS RNAi strains demonstrate a significant reduction in nicotine resistance in 

comparison to the controls (Figure 3.2b). Thus, concluding the reduction in nicotine resistance 

that is observed, small, is likely a true biological signal. Furthermore, we hypothesize that if our 

selected targets are important for nicotine resistance, we should be able to employ various RNAi 

backgrounds and see similar phenotypes. Interestingly, we were able to replicate this significant 

reduction in nicotine phenotype across various backgrounds (GD, KK, TRiP) further suggesting 

that Cyp28d1, Cyp28d2, and Ugt86Dd likely play a role a functional role in nicotine resistance 

(Figure 1).  

 

RNAi lines targeting the Anterior Midgut demonstrate role in nicotine resistance 

The digestive tissue has been characterized in Drosophila and shown to have variable effects on 

xenobiotic metabolism and may impact nicotine resistance [30,51–57]. The digestive tissue 

consists of the midgut, hindgut, and malpighian tubules. Of interest is the midgut that can be 

divided into three compartments that are composed of several subsections [56,58] of which 

metabolism of various xenobiotics may occur through the length of the midgut via a complex 

interaction of subsections [56]. The midgut is a likely spot to encounter nicotine-laced food after 

ingestion and our candidate genes are highly expressed in the anterior larvae midgut [56]. Using 

males that were homozygous for the tissue specific GAL4 and virgin females that were 

homozygous for the UAS RNAi constructs, every F1 1st instar larvae selected targeted RNAi to 

deplete Ugt86Dd, Cyp28d1 and Cyp28d2 within specific subsets of tissues: fatbody, midgut, 

hindgut, and malpighian tubules in the VDRC GD background. It was observed that depletion of 

the selected genes in the fatbody has no effect on resistance (Supplementary Figure 3.S4). 
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However, tissue specific depletion of Cyp28d1 and Ugt86Dd within the anterior and posterior 

midgut revealed a significant reduction in nicotine resistance in the anterior midgut but not the 

posterior midgut (Figure 3.3a). To confirm our GD library results, tissue specific depletion of 

was performed in the VDRC KK and TRiP backgrounds. Tissue specific depletion within the 

anterior and posterior midgut in KK and TRiP backgrounds confirmed Cyp28d1 and Ugt86Dd 

likely have a role in the anterior midgut (Figure 3.3b, Figure 3.3c). If we assess the possibility a 

reduction in nicotine resistance is due to minor abnormalities in our RNAi genotypes on regular 

food, there appears to be no abnormalities that cause a significant reduction in nicotine 

resistance. However depletion assays in the malpighian tubules with multiple drivers 

demonstrated an increase in resistance across several drivers (Supplementary Figure 3.S4). This 

is opposite in what our previous data has shown and may indicate a complex feedback 

mechanism. Taken together, our data suggest Ugt86Dd and Cyp28d1 likely influence nicotine 

resistance within the anterior midgut independent of genetic background, and Ugt86Dd and 

Cyp28d1 appear not to function in the posterior midgut.  

 

DSPR Ugt86Dd InDel Variant Correlative for nicotine resistance 

When attempting to construct an over-expression system involving Ugt86Dd, it was discovered 

that Ugt86Dd has a 22bp deletion allele harbored inside the second exon of the coding region in 

A3 that causes a frameshift mutation that results in a nonfunctional protein. To check the 

frequency of the InDel variant in the DSPR, PCR was employed. PCR analysis suggested DSPR 

founders A3, AB8, B6, and B7 all contained an isogenic copy of the deletion allele, while all 

other DSPR founders contained an isogenic copy of the insert allele (Supplementary Figure  

3.S6). To confirm our PCR analysis, we Sanger sequenced the PCR products for each of the 

DSPR founders. Sanger sequencing confirmed the predicted results of the PCR analysis. 
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Furthermore, looking at the haplotype means for QTL4 from marriage et al., (2014), we can 

observe that all nicotine susceptible founders harbored the isogenic deletion allele 

(Supplementary Figure 3.S7). We conclude that the Ugt86Dd InDel variation is common in the 

DSPR and correlates with nicotine resistance.  

 

Over-expression of InDel variant increases nicotine resistance 

To nicely complement our knock-down experiments and corroborate the InDel variant is 

plausibly important, gain-of-function analyses were performed using the constructed over-

expression genotypes for both Ugt86Dd InDel alleles. The major difference between the sets of 

lines, were one contained a 22bp deletion the likely is a functional null, while the other lines 

harbored the wildtype allele with normal expression. These lines were crossed to males 

expressing ubiquitous GAL4. Performing nicotine resistance assays on F1 1st instar larvae, it was 

observed that all over-expression lines containing the insert construct died by 3rd instar larvae 

(observation), while the line containing the deletion allele survived fine to adulthood. This 

suggest two things, 1) ubiquitous over-expressed Ugt86Dd inset allele is poisonous to the 

organism, and 2) the deletion allele in Ugt86Dd is most likely a functional null allele. To deal 

with this problem, tissue specific over-expression was performed under the assumption that the 

insert allele in Ugt86Dd should provide a higher resistance when compared to the deletion allele. 

Thus, tissue specific over-expression of Ugt86Dd using multiple drivers within the anterior 

midgut demonstrated a statistically significant increase in nicotine resistance in all inset allele-

containing lines (Figure 3.4a, Figure 3.4b,). Moreover, tissue specific over-expression of 

Ugt86Dd within the posterior midgut increased nicotine resistance in all inset allele-containing 

lines (Figure 3.4c). However, this data should be taken with caution. Ugt86Dd is low-to-

moderately expressed in the posterior midgut [56] and likely does not have a natural role in this 
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tissue, but the data suggest Ugt86Dd is functionally important. Lastly, over-expression 

experiments conducted within the malpighian tubules increased nicotine resistance as similarly 

seen in our depletion experiments (Supplementary Figure 3.S10), suggesting a complex feedback 

mechanism may exist for xenobiotic resistance. Taken together, our data suggest Ugt86Dd likely 

influences nicotine resistance within the anterior midgut, posterior midgut, and malpighian 

tubules. Furthermore, the InDel variant appears to be functionally important for nicotine 

resistance.  

 

DGRP Ugt86Dd InDel variant correlative for nicotine resistance  

To test the idea that the InDel in Ugt86Dd is important for nicotine resistance, we employed 

strains from the DGRP [42,43]. We took the 7 strains containing the deletion variant and another 

7 random strains that contained the insert variant (Supplementary Data 3.1) were challenged to 

nicotine and assessed the association the InDel variant has on nicotine resistance with an 

ANOVA (F1,54= 1.1, p= 0.31) in the DGRP (Supplementary Figure 3.S13). This data suggested 

no association was present; however, a trend toward susceptibility was seen if the strain is 

homozygous for the deletion allele. A nonsignificant result could be due to the small sample size 

employed. To potentially deal with this problem, populations were created and fixed for the 

known InDel variant and allowed to outbred for 7 generations (Supplementary Data 3.1) in milk 

bottles. Six hundred F7 1st instar larvae were measured from each population for nicotine 

resistance and found on average the nicotine resistance mean of the deletion population was 

0.8933 percent, while the nicotine resistance mean of the insert population was 0.9350 percent 

(Supplementary Table S10). Using a one-way ANOVA to assess the data, we found a significant 

result (F1,38= 7.1, p= 0.011)  (Supplementary Figure 3.S14). We can not rule out the chance 

another site in the genome is also fixed in the populations, since only 7 strains were used each 
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create their respective population. Thus, we conclude that having the deletion allele is correlated 

with increase nicotine susceptibility, and the InDel variant segregates at a low frequency in the 

DGRP in comparison to the DSPR.  

 

CRIPSR confirms Ugt86Dd and variant’s role in nicotine resistance 

We aimed to delete a portion of the Drosophila Ugt86Dd InDel site by CRISPR–Cas9 mediated 

DNA cleavage to phenocopy the A3 nicotine resistance phenotype. This would give compelling 

evidence that Ugt86Dd is functionally active and the InDel variant is likely a variant contributing 

to nicotine resistance in the DSPR. First instar Larvae from nonCRISPR mutants and CRISPR 

mutants (Supplementary Data 3.2 )were challenged to nicotine and control food. Comparing the 

control versus nicotine-laced food for the individual CRISPR and nonCRISPR genotypes and 

Bonferroni correcting the data, 11/16 CRISPR strains provide a significant decrease in nicotine 

resistance (Figure 3.5a). However, looking at the data, an obvious decrease in resistance is 

observed for each CRISPR genotype, nicely demonstrating the over correction problems of 

Bonferroni. If the data is portioned into the various stop codons and tested for resistance, all stop 

sites demonstrate a significant decrease in nicotine resistance (Figure 3.5b). Moreover, if the raw 

data is portioned into CRISPR versus nonCRISPR mutants, a one way ANOVA depicts a 

significant decrease in nicotine resistance for all CRISPR mutants (F1,92= 181.41, p= 2.2^-16). 

When comparing nonCRISPR and CRISPR mutants on normal food, no difference in larvae to 

adult hatching was observed (F1,69= 1.4488, p= 0.2312)  (Figure 3.5c), suggesting any induced 

CRISPR mutations have little effect on normal viability. More importantly, our data implies that 

Ugt86Dd likely explains a good portion of QTL4’s broad sense heritability. We conclude that 

Ugt86Dd is a causative gene with variable effects for nicotine resistance in the DSPR, our data 
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presents strong indirect evidence that the complex 22bp InDel is likely a causative variant for 

nicotine resistance in the DSPR.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	

	

85	

Discussion 

Insecticides and pesticides are commonly used to ward of crop pest, such as insects. Thus, with 

selective pressure evident in nature to develop resistance to employed compounds [4], 

metabolism of specific compounds likely involves a large number of genes with variable effects. 

Insects possess a diversity of genes with sophisticated roles for metabolizing the plethora of 

xenobiotic compounds found in nature [59,60]. In this study, we employed an array of functional 

assays on D. melanogaster to identify what candidate loci under QTL1 and QTL4 identified in 

Marriage et al., (2014) are likely naturally-occurring causative loci responsible for variable 

effects on nicotine resistance in the DSPR. This approach enables a systemic way to go from 

QTL to causative gene(s), and is the first approach to employ an array of functional assays to 

elucidate natural-occurring variants for nicotine resistance in D. melanogaster. This new 

information will shed insights into the variable effects genes have on xenobiotic resistance. 

Here, we employed A3 and A4 that differentially segregate for nicotine resistance in the 

DSPR at QTL1/QTL4 [32], and found segregating variation for nicotine resistance in phase I 

enzymes, Cyp28d1 and Cyp28d2. Unfortunately, little is known how these genes function in 

Drosophila, but DRSC Integrative Ortholog Prediction Tool (DIOPT) [61] on flybase 

demonstrated the most likely human homolog is TBXAS1. TBXAS1 has been shown to have an 

effect on nicotine and smoking in humans [62,63]. To confirm this conserved function, 

ubiquitous RNAi on Cyp28d1 and Cyp28d2 were performed. Our data suggest Cyp28d1 and 

Cyp28d2 are likely functionally important for nicotine resistance.  Only one study-to-date has 

examined natural genes/variants effects on nicotine resistance. Li et al., (2012) demonstrated the 

Accord transposable element in Cyp6g1 is responsible for enhanced nicotine resistance. 

Moreover, other xenobiotic resistance studies have uncovered transposable elements, Accord 
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LTR, Bari-1, Doc non-LTR, HMS-Beagle, and P, near P450s suggesting regulatory variation is 

critical in providing variable effects in resistance [64–70]. Neither A3 nor A4 harbor the Accord 

transposable element in Cyp6g1 or any annotated transposable elements in or near Cyp28d1 and 

Cyp28d2. However, it is possible these genes do harbor unannotated transposable elements that 

increase resistance. Another plausible variant are structural variants like copy number variant 

(CNVs), and have been shown to be associated with drug resistance [70,71]. For instance, 

Najarro et al., (2015) has recently shown that CNV, a structural variant, at the Cyp12d1 within 

the DSPR is likely a causative gene/variant for caffeine resistance. With no clear variants 

explaining Cyp28d1 and Cyp28d2 role in nicotine resistance, the availability of PacBio® 

sequence data in the near future will shed light on what variants are in or near Cyp28d1 and 

Cyp28d2. Moreover, future functional assays like CRISPR will required to confirm Cyp28d1 and 

Cyp28d2 role in nicotine resistance.  

Intriguingly, Cyp28d1 and Cyp28d2 are part of the diverse P450 superfamily that is 

expressed in the midgut [56]. Likely tissues natural selection acts to create variable xenobiotic 

detoxification effects are the midgut, the fat body, and the malpighian tubules [53,56,72–78]. 

Intriguingly, Cyp28d1, Cyp28d2 and Ugt86Dd are expressed in the midgut [56]. Here, our 

functional RNAi assays provide compelling evidence the larvae midgut, larvae malpighian 

tubules, and possibly the posterior midgut likely function in xenobiotic detoxification, 

specifically nicotine detoxification. Upon depletion of Cyp28d1 and Ugt86Dd within the anterior 

midgut with independent RNAi libraries and Gal4 drives, a significant decrease in resistance was 

observed. Furthermore, over-expression of the functional copy of Ugt86Dd within the anterior 

midgut demonstrated a significant increase in resistance. Our data for the posterior midgut is 

conflictive, with depletion of Cyp28d1 and Ugt86Dd demonstrating no difference in phenotype, 

but over-expression demonstrates a significant increase in resistance. However, Ugt86Dd and 
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Cyp28d1 are lowly to moderately expressed in the posterior midgut [56] and depleting them 

might not have an effect on the phenotype, but over-expressing these genes might increase the 

ability catabolize nicotine and potentially demonstrate a phenotype. Thus, Ugt86Dd within the 

anterior midgut and posterior midgut likely has a functional role and is actively under natural 

selection to create variable xenobiotic detoxification effects. 

Surprisingly, when Cyp28d1, Cyp28d2, and Ugt86Dd are individually depleted within the 

malpighian tubules, a significant increase in resistance was observed compared to control in 

multiple independent Gal4 drives. Moreover, over-expression of Ugt86Dd demonstrates a 

significant increase in resistance. This suggest a feedback loop maybe present in the malpighian 

tubules to handle the nicotine toxins. It is established that the malpighian tubules have a complex 

and diverse role in xenobiotic metabolism [79,80], and would not be far fetched for negative or 

positive feedback loops to exist in metabolism of xenobiotics. For instance, our lab has observed 

increased caffeine resistance when depleting a candidate gene in the Malpighian tubules (data 

not shown). Another study demonstrated depletion of Keap1 in the malpighian tubules increases 

malathion resistance through a negative feedback mechanism [81]. Lastly, cancers such as breast 

carcinoma cells contain positive feedback loops to regulate multidrug resistance [82]. An array 

of functional experiments will be needed to confirm these data and further dissect the genes that 

regulate this feedback mechanism to elucidate if this is a global mechanism or specific. 

 

Moving from QTL-to-Gene is hard 

Traditional and multi-parent QTL mapping approached are useful in uncovering genomic regions 

harboring natural variation for phenotypes, but are notoriously incapable of elucidating true 

causative genes [32,71,83]. While GWAS in theory are capable of determining the causative site, 

many GWAS are severely underpowered to detect significant associations and struggle to 
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identify low frequency causative variants [15,17,84]. In this study, we successfully went from 

QTL-to-causative gene and likely to the causative variant within the gene employing QCTs, 

RNAi, over-expression, and CRISPR techniques. The group E [85] phase II enzyme, Ugt86Dd 

was shown to be functionally important for resistance to nicotine via RNAi and over-expression 

assays. Interestingly, Ugt86Dd is a candidate gene potentially involved in metabolism of a 

variety of compounds [32,86,87]. Thus, this gene may have a broad role in protecting Drosophila 

from xenobiotics. Upon checking the conservation of Ugt86Dd, a DIOPT analyze revealed 

Ugt1A3 is the most likely human homolog, and is expressed in the brain, liver, and small 

intestine [88–90]. Within brain microsomes, Ugt1A3 is induced by nicotine and likely 

glucuronidates nicotine, while glucuronidates nicotine in liver microsomes [89–91]. This 

conservation provides strong evidence that Ugt86Dd has a role with nicotine metabolism. During 

the course of this study a structural variant, a complex 22bp InDel, was discovered to reside in 

the second exon of Ugt86Dd and cause a premature stop codon. Over-expression studies 

demonstrated the 22bp InDel is a strong candidate variant. CRISPR studies demonstrated lab-

derived variants, close to the natural variant, within Ugt86Dd were important for variation in 

nicotine resistance further supporting the notion that the complex 22bp InDel likely is a variant 

that provides variable effects to nicotine resistance in the DSPR. 

An advantage of the DSPR and other multi-parental mapping populations is the ability to 

capture minor alleles within founders and increase the frequency of these minor alleles within the 

mapping population. One piece of data that demonstrates this nicely is the frequency of Ugt86Dd 

in the DSPR versus other mapping resources and natural populations. In the DSPR, Ugt86Dd 

deletion is maintained frequency of 0.401 in pA and 0.545 in pB (see founder haplotype data, 

Marriage et al., (2014) while the DGRP harbors the Ugt86Dd deletion at a frequency of 0.035. 

To elucidate how common the Ugt86Dd InDel was in natural populations sampled across time, 
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latitude, and North America, we employed natural populations previously collected from 

orchards within Florida, Georgia, Maine, North Carolina, Pennsylvania, and South Carolina [47]. 

Raw sequence reads were retrieved from the NCBI SRA (BioProject accession 

PRJNA256231,[47]) for each population and analyzed for the presence of either the deletion or 

insertion allele of the InDel within Ugt86Dd. The results indicated that 9/14 populations 

harbored the deletion event with the lowest frequency at 1% and the highest frequency at 11%, 

the average population deletion frequency was ~0.02 (Supplementary Data  3.4). Thus, the 

Ugt86Dd deletion event is a rare recessive loss-of-function mutation captured in the DSPR.  

Loss-of-function variants are predicted to be rare, deletious, and have causative roles in 

severe Mendelian diseases [92,93]. Recently, a whole-genome sequencing study demonstrated 

the human genome harbors ~ 100 loss-of-function variants with at least 30 in a homozygous 

state, and are likely a rich source of variation that contribute serve-to-mild effects on complex 

traits [94,95]. The 22bp deletion segregating in the DSPR within Ugt86Dd is a rare recessive 

loss-of-function mutation that likely provides variable effects on nicotine resistance. Unlike the 

predicted effects of loss-of-function variants, this loss-of-function variant within Ugt86Dd is not 

deletious to the organism neither under normal conditions nor completely under nicotine stress 

and contributes a modest effect to variable nicotine resistance. Thus, providing evidence in D. 

melanogaster that loss-of-function variants could be a rich source of genetic variation with 

modest effects on xenobiotic resistance similar to what is seen with transposable elements and 

CNV. In theory loss-of-function variants should be easy to discover, but loss-of-function variants 

are typically hard to elucidate due to alternative splicing-to-imperfect gene annotations. While 

alternative splicing is common in D. melanogaster to create a diverse set mRNAs from one gene 

leading to increased protein diversity [96], disrupted splicing patterns can create loss-of-function 

variants that provide variable effects on transcripts. However, these common loss-of-function 
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variants only affect a tiny fraction of the transcripts [94], and are masked by the majority of 

wildtype transcripts that are produced from a single gene [97]. Another problem are next-

generation sequence data that generate short-reads. Short-read sequences that are unmappable for 

various reasons are filtered out, including reads that include loss-of-function variants [98]. 

Lastly, in the down-stream analysis, loss-of-function variants will be missed completely if the 

variant exist within pseudogenes that are excluded in genome-wide analysis [94]. With the soon 

to be available PacBio® sequence data for the DSPR, the short-read problem will eliminated 

leaving the possibility to uncover many loss-of-function variants involved in various complex 

phenotypes. 

In summary, we utilized QCTs, RNAi, over-expression, and CRISPR to functional 

examine Cyp28d1, Cyp28d2, and Ugt86Dd to collectively determine which genes are 

functionally important and harbor natural variation for nicotine resistance between A3 and A4 in 

the DSPR. We determined that phase one enzymes, Cyp28d1 and Cyp28d2 likely harbor natural 

variation and are functionally important for resistance. Currently, no variants are known within 

or near these genes but with PacBio® sequence data available soon, variants will likely be 

uncovered. Over-expression and CRISPR experiments will need to be performed on these genes 

to determine if these gene are truly causative and to measure the effect each gene has on nicotine 

resistance within the DSPR. Our data firmly provides light on Ugt86Dd’s, a phase II enzyme, 

role in nicotine resistance. Our RNAi and over-expression data provides evidence that Ugt86Dd 

is functionally important in the midgut and malpighian tubules. In the course of this study, 

Ugt86Dd was found to harbor a natural 22bp InDel that segregates between A3 and A4 of the 

DSPR; moreover, segregates perfectly for nicotine resistance within the all DSPR founders. 

Over-expression experiments suggest this 22bp InDel is potentially the causative variant within 

Ugt86Dd. CRISPR experiments provide evidence that Ugt86Dd has a large effect in the DSRP 
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and the InDel is likely causative. Homologous recombination CRISPR experiments will be 

needed to determine the causative effects of the 22bp InDel and measure the genotypic 

contribution the InDel has on nicotine resistance within the DSPR. 
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Fig. 3.1. Fine mapping nicotine resistance QTL1 and QTL4 of the DSPR. Solid bars and 

triangles represent uncovered segregating allelic variation for nicotine resistance between A3 and 

A4. Open bars and triangles represent nonsignificant regions. Significance was assessed with 

asterisks represented by an ANOVA comparing resistance and susceptible genotypes for failure 

to complement (*p < 0.05, **p < 0.01, ***p < 0.005). (A) Fine mapping of the 25C;25D nicotine 

resistance QTL1. Strains utilized were 5905, 6326, A3, A4, 23530, 23587, 7497, 26545. Long 

ticks mark sections and short ticks mark subsections of the 2L chromosome. Cytogenetic 

breakpoints studied induced in Df(2L)Excel6011 (25C8-25D5) and Df(2L)BSC693 (25C10-

25D5). Additionally, insertional mutants Mi{ET1}Cyp28d1[MB03293] and 

Mi{ET1}Cyp28d2[MB02776] were studied. (B) Fine mapping of the 86C;86D nicotine resistance 

QTL4. Strains utilized were 5905, 6326, A3, A4, 9083, 24834, 27861, 7958, 7957, Long ticks 

mark sections and short ticks mark subsections of the 3R chromosome. Ugt86Dd is highlighted 

via red text, and the red bar depicts the 9 other UGT genes location under QTL4. of the 

Cytogenetic breakpoints studied induced in Df(3R)ED5506 (86C7-86D5) Df(3R)Exel7306 

(86C7-86D5), and Df(3R)Exel8152 (86D5-86D7). Additionally, insertional mutants 

Mi{ET1}Ugt86Dj[MB04890] and Mi{ET1}Ugt86Dh[MB11311] were studied. 
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Figure 3.2 
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Fig. 3.2. Effects of ubiquitous single gene RNAi depletion experiments. Ubiquitous driven 

GAL4-UAS RNAi of various candidate genes (Cyp28d1, Cyp28d2, and Ugt86Dd) tested on A) 

regular food or B) nicotine-laced food and compared to their respective control strains. Colored 

bars represent the specific RNAi library tested: gray = VDRC GD, red = VDRC KK, and yellow 

= TRiP.  Strains utilized were 3954, 60000, 6016, 7868, 7870, 60100, 100353, 102626, 110259, 

36304, 53892. Each bar depicts the mean nicotine resistance (± 1-SD) from a number of 

genetically identical F1 1st instar larvae (sample size is at the bottom each bar). Significance is 

assessed with asterisks represented by a Welch's t-test comparing each RNAi genotype to its 

respective control (*p < 0.05, **p < 0.01, ***p < 0.001).  
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Figure 3.3 
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Fig. 3.3. Effects of tissue specific single gene RNAi depletion experiments. Tissue specific 

driven GAL4-UAS RNAi of various candidate genes (Cyp28d1, Cyp28d2, and Ugt86Dd) tested 

in our nicotine resistance assay against their respective control strains. Strains employed were 

1967, 43656, l099, 60000, 6016, 7868, 7870, 60100, 100353, 102626, 110259, 36304, 53892. 

Colored bars represent the various tissue specific midgut Gal4 drivers: gray = posterior midgut 

(1967), red = anterior midgut (43656), and yellow = anterior midgut (l099). Each bar in the plot 

depicts the mean nicotine resistance (± 1-SD) from a number of genetically identical F1 1st instar 

larvae (sample size is at the bottom each bar). Significance is assessed with asterisks represented 

by a Welch's t-test comparing each RNAi genotype to its respective control (*p < 0.05, **p < 

0.01, ***p < 0.001). (A) Depicts tissue specific RNAi performed using the VDRC-GD library. 

(B) Shows tissue specific RNAi performed using the VDRC-KK library. (C) Depicts tissue 

specific RNAi using the TRiP library.  
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Figure 3.4 
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Fig. 3.4. Effects of tissue specific single gene over-expression experiments. Tissue specific over-

expression using the GAL4-UAS system to over-express the deletion or insert allele of Ugt86Dd 

to determine if the insert allele confers better nicotine resistance compared to the deletion allele. 

Strains employed were A3-1M, A4-1M, A4-2M, A4-3M, A4-4M, A4-5M , 1967, 43656, l099. 

Each bar in the plot depicts the mean nicotine resistance and ± 1-SD from a number of F1 1st 

instar larvae (sample size is at the bottom each bar). Significance is assessed with asterisks 

represented by a Welch's t-test comparing each A4 genotype to the A3 genotype (*p < 0.05, **p 

< 0.01, ***p < 0.001). 
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Figure 3.5 
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Fig. 3.5. Effects on Ugt86Dd CRISPR knockout. Each bar depicts the mean nicotine resistance 

(± 1-SD) for A) unique CRISPR or NonCRISPR genotypes and food, B) a number of CRISPR or 

NonCRISPR lines pooled together based on CRISPR status and stop codon, and C) by a number 

of CRISPR or NonCRISPR lines pooled together based on CRISPR status and food. A) Depicts 

unique CRISPR or NonCRISPR genotypes compared to food source. B) Depicts pooled CRISPR 

or NonCRISPR genotypes based on stop codon to food. C) Depicts comparison of pooled 

CRISPR or NonCRISPR genotypes to food source. An ANOVA or Welch’s t-test was performed 

and significance was assessed with a Bonferroni correction and labeled with asterisks (*p < 0.05, 

**p < 0.01, ***p < 0.005). A total of 5-6 replicates were tested on either control or nicotine-

laced food for each CRISPR or NonCRISPR line and each replicate contained 30 1st instar 

larvae. Yellow represents control food, while red represents nicotine-laced food. 
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Table 3.1 

Strain Number Genotype Source Experiment
A3	(3844) - DSPR QCT/Dom/RNAi/OE/CRISPR/Dominance
A4	(3852) - DSPR QCT/Dom/RNAi/OE/CRISPR/Dominance
A3-Ugt86Dd_INS A3/A4;A3,A4 Macdonald Dominance
A4-Ugt86Dd_DEL/Ser(GFP) A4/A3;A4;A3/TM3,	P{GAL4-Hsp70.PB}TR2,	P{UAS-GFP.Y}TR2,	y+	Ser1 Macdonald Dominance
8136 w[1118];	Sp-1/Cyo;	Ly7/Tm6B Bloomington Dominance
5704 w1;	Sb1/TM3,	P{GAL4-Hsp70.PB}TR2,	P{UAS-GFP.Y}TR2,	y+	Ser1 Bloomington QCT/Dominance/RNAi
5702 w[1];	sna[Sco]/CyO,	P{w[+mC]=GAL4-Hsp70.PB}TR1,	P{w[+mC]=UAS-GFP.Y}TR1 Bloomington QCT/Dominance/RNAi
5905 w[1118] Bloomington QCT
6326 w[1118] Bloomington QCT
9083 w[1118];	Df(3R)ED5506,	P{w[+mW.Scer\FRT.hs3]=3'.RS5+3.3'}ED5506/TM6C,	cu[1]	Sb[1] Bloomington QCT
9083 w[1118];	Df(3R)ED5506,	P{w[+mW.Scer\FRT.hs3]=3'.RS5+3.3'}ED5506/TM3,	P{GAL4-Hsp70.PB}TR2,	P{UAS-GFP.Y}TR2,	y+	Ser1 DSPR QCT
23530 w[1118];	Mi{ET1}Cyp28d1[MB03293] Bloomington QCT
23587 w[1118];	Mi{ET1}Cyp28d2[MB02776] Bloomington QCT
24834 w[1118];	Mi{ET1}Ugt86Dj[MB04890] Bloomington QCT
27861 w[1118];	Mi{ET1}Ugt86Dh[MB11311] Bloomington QCT
7497 w[1118];	Df(2L)Exel6011,	P{w[+mC]=XP-U}Exel6011/CyO Bloomington QCT
7497 w[1118];	Df(2L)Exel6011,	P{w[+mC]=XP-U}Exel6011/CyO,	P{w[+mC]=GAL4-Hsp70.PB}TR1,	P{w[+mC]=UAS-GFP.Y}TR1 DSPR QCT
7957 w[1118];	Df(3R)Exel7306/TM6B,	Tb[1] Bloomington QCT
7957 w[1118];	Df(3R)Exel7306/TM3,	P{GAL4-Hsp70.PB}TR2,	P{UAS-GFP.Y}TR2,	y+	Ser1 DSPR QCT
7958 w[1118];	Df(3R)Exel8152/TM6B,	Tb[1] Bloomington QCT
7958 w[1118];	Df(3R)Exel8152/TM3,	P{GAL4-Hsp70.PB}TR2,	P{UAS-GFP.Y}TR2,	y+	Ser1 DSPR QCT
26545 w[1118];	Df(2L)BSC693,	P+PBac{w[+mC]=XP3.WH3}BSC693/SM6a Bloomington QCT
26545 w[1118];	Df(2L)BSC693,	P+PBac{w[+mC]=XP3.WH3}BSC693/CyO,	P{w[+mC]=GAL4-Hsp70.PB}TR1,	P{w[+mC]=UAS-GFP.Y}TR1 DSPR QCT
60000 w[1118] Bloomington RNAi
7870 w[1118];;Cyp28d1-RNAi Bloomington RNAi
7868 w[1118];;Cyp28d2-RNAi Bloomington RNAi
6016 w[1118];;Ugt86Dd-RNAi Bloomington RNAi
60100 y,w[1118];P{attP,y[+],w[3`] Bloomington RNAi
100353 y,w[1118];P{attP,Ugt86Dd-RNAi} Bloomington RNAi
102626 y,w[1118];P{attP,Cyp28d2-RNAi} Bloomington RNAi
110259 y,w[1118];P{attP,;Cyp28d1-RNAi}/Cyo(YFP) Bloomington RNAi
110259 y,w[1118];P{attP,;Cyp28d1-RNAi}/Cyo DSPR RNAi
36304 y[1]	v[1];	P{y[+t7.7]=CaryP}attP40 Bloomington RNAi
53892 y[1]	v[1];	P{y[+t7.7]	v[+t1.8]=TRiP.HMJ21210}attP40 Bloomington RNAi
3954 y[1]	w[*];	P{w[+mC]=Act5C-GAL4}17bFO1/TM3,	P{w[+mC]=GAL4-Hsp70.PB}TR2,	P{w[+mC]=UAS-GFP.Y}TR2,	y[+]	Ser[1] Bloomington RNAi
3954 y[1]	w[*];	P{w[+mC]=Act5C-GAL4}17bFO1/TM3,	P{GAL4-Hsp70.PB}TR2,	P{UAS-GFP.Y}TR2,	y+	Ser1 DSPR RNAi
43656 w[*];	P{w[+mC]=Scr-GAL4.4}1-3 Bloomington Tissue	Specfic	RNAi,	Tissue	Specific	OE
1967 y[1]	w[*];	P{w[+mW.hs]=GawB}34B Bloomington Tissue	Specfic	RNAi,	Tissue	Specific	OE
l099 - Flygut Tissue	Specfic	RNAi,	Tissue	Specific	OE
C724 - Dow Tissue	Specfic	RNAi,	Tissue	Specific	OE
C42 - Dow Tissue	Specfic	RNAi,	Tissue	Specific	OE
C710 - Dow Tissue	Specfic	RNAi,	Tissue	Specific	OE
uro - Dow Tissue	Specfic	RNAi,	Tissue	Specific	OE
6984 P{w[+mW.hs]=GawB}c754,	w[1118] Bloomington Tissue	Specfic	RNAi
30828 w[*];	P{w[+mW.hs]=GawB}Aph-4[c232] Bloomington Tissue	Specfic	RNAi
30844 w[*];	P{w[+mW.hs]=GawB}c601[c601] Bloomington Tissue	Specfic	RNAi
24749 yw;;M{3xP3-RFP.attP}ZH-86Fb	(with	M{vas-int.Dm}ZH-2A) BestGene Tissue	Specific	OE
A3-1M yw;;M{3xP3-RFP.attL{UAS:Ugt86Dd,w+}attR}ZH-86Fb Macdonald Tissue	Specific	OE
A4-1M yw;;M{3xP3-RFP.attL{UAS:Ugt86Dd,w+}attR}ZH-86Fb Macdonald Tissue	Specific	OE
A4-2M yw;;M{3xP3-RFP.attL{UAS:Ugt86Dd,w+}attR}ZH-86Fb Macdonald Tissue	Specific	OE
A4-3M yw;;M{3xP3-RFP.attL{UAS:Ugt86Dd,w+}attR}ZH-86Fb Macdonald Tissue	Specific	OE
A4-4M yw;;M{3xP3-RFP.attL{UAS:Ugt86Dd,w+}attR}ZH-86Fb Macdonald Tissue	Specific	OE
A4-5M yw;;M{3xP3-RFP.attL{UAS:Ugt86Dd,w+}attR}ZH-86Fb Macdonald Tissue	Specific	OE
53892 y[1] M{vas-Cas9}ZH2A w[1118] BestGene CRISPR
53892 y[1] M{vas-Cas9}ZH2A w[1118]; ; A4 Macdonald CRISPR
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Supplementary Table 3.1. Strains utilized. The “Strain Number” column indicates the lines as 

called via BestGene, Bloomington Stock Center, DSPR, flygut, and VDRC. The “Genotype” 

column provides all known genotypes, while the Experiment column indicates the experiments 

these lines were utilized in.  
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Figure 3.S1 
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Supplementary Figure 3.1. Third chromosome knock-in between A3 and A4. Between A3 and 

A4 we swapped into each background the 3rd chromosome of the reciprocal strain. A schematic 

of the crossing scheme details each cross through the creation of the correct stocks that harbor 

the swapped 3rd chromosome. 
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Figure 3.S2 
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Supplementary Figure S2. Substituted third chromosome compared to A3 and A4. The third 

chromosome of A3 and A4 of the DSPR were swapped between each other to measure the effect 

the third chromosome has on nicotine resistance for each strain. A3-INS represents A3 with A4’s 

version of Ugt86Dd, while A4-DEL represents A4 with A3’s version of Ugt86Dd and is depicted 

below the genotype bars. Strains employed were A3, A4, A3-Ugt86Dd_INS, A4-

Ugt86Dd_Del/Ser(GFP). Each bar depicts the mean nicotine resistance and a ± 1-SD from a 

number of genetically identical F1 1st instar larvae. Thirty 1st instar larvae where in each test and 

6 test per genotype where conducted.  
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Figure 3.S3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C
on

tro
l−

G
D

U
gt

86
D

d

C
yp

28
d2

C
yp

28
d1

U
gt

86
D

j

N
ic

ot
in

e 
R

es
is

ta
nc

e

0.0

0.2

0.4

0.6

0.8

1.0

***
*

***



	

	

118	

Supplementary Figure S3. Fraction of eclosed UAS-RNAi adults compared to control. We 

assessed the effects ubiquitous single gene RNAi knock-down has on nicotine resistance using 

the VDRC RNAi library (GD). A Ubiquitous driven GAL4 turned on UAS-RNAi for Cyp28d1, 

Cyp28d2, Ugt86Dd, and Ugt86Dj. Each bar depicts the mean nicotine resistance (± 1-SD) from 

the fraction of emerged adults that were genetically identical (GAL4-UAS RNAi) F1 1st instar 

larvae. Significance is assessed with asterisks represented by a Welch's t-test comparing each 

RNAi genotype to its respective control (*p < 0.05, **p < 0.01, ***p < 0.001). Each Line was 

tested 15-16 times and each tested contained 30 1st instar larvae. 
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Figure 3.S4 
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Supplementary S4. Fraction of eclosed RNAi adults compared to control. Tissue specific driven 

driven GAL4-UAS RNAi of various candidate genes (Cyp28d1, Cyp28d2, and Ugt86Dd) tested 

(6016, 7868, 7870, 100353, 102626, 110259, 53892)in our nicotine resistance assay against their 

respective control strains (60000, 6010, 36304). Colored bars represent the various tissue 

specific Gal4 drivers: gray = malpighian (30828), red = hindgut/malpighian (30844), yellow = 

fatbody (6984), green = malpighian tubule (C42), blue = malpighian tubule (C710), white = 

malpighian tubule (C724), and cyan = malpighian tubule (uro). Each bar depicts the mean 

nicotine resistance (± 1-SD) from a number of genetically identical F1 1st instar larvae (sample 

size is at the bottom each bar). Significance is assessed with asterisks represented by a Welch's t-

test comparing each RNAi genotype to its respective control (*p < 0.05, **p < 0.01, ***p < 

0.001).  
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Figure 3.S5 
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Supplementary Figure S5. Malpighian tubule Ugt86Dd over-expression experiments. Tissue 

specific over-expression using the GAL4-UAS system to over-express the deletion or insert 

allele of Ugt86Dd to determine if the insert allele confers better nicotine resistance compared to 

the deletion allele. Strains employed were A3-1M, A4-1M, A4-2M, A4-3M, A4-4M, A4-5M , 

c42, c710, c724, uro. Each bar in the plot depicts the mean nicotine resistance and ± 1-SD from a 

number of F1 1st instar larvae (sample size is at the bottom each bar). Significance is assessed 

with asterisks represented by a Welch's t-test comparing each A4 genotype to the A3 genotype 

(*p < 0.05, **p < 0.01, ***p < 0.001). 
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Figure 3.S6 
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Supplementary Figure S6. Complex 22bp InDel is common in the DSPR. A 2% agarose gel 

demonstrating the 22bp segregating InDel variant within DSPR founders in this diagnostic PCR. 

A band of 301bp depicts the Insert loci of Ugt86Dd, while a band of 279bp depicts the deletion 

loci of Ugt86Dd. 
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Figure 3.S7 
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Supplementary Figure S7. Complex 22bp InDel indicates poor resistance. Founder haplotypes 

under QTL4 segregate for nicotine resistance based on 22bp InDel. Each bar are founder 

haplotype means and 1-SDs for QTL4 for each subpopulation of the DSPR. The number of 

founder genotypes assigned with a probability > 0.95 from RILs are present at the bottom of 

each bar, and founder means associated with at least 5 observations are only included. Red bars 

depict founders with the 22bp deletion, while gray bars are founders with the Insert allele. 
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Figure 3.S8 
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Supplementary Figure S8. DGRP lines associated with nicotine resistance based on InDel 

variant. Each bar depicts the mean nicotine resistance (± 1-SD) from a number of DGRP lines 

pooled together based on InDel variant. Significance was assessed with asterisks represented by 

a Welch's t-test comparing each pooled dataset (*p < 0.05, **p < 0.01, ***p < 0.001). A total of 

4 replicates were tested for each DGRP line selected and each replicate contained 30 1st instar 

larvae. Green represents DGRP lines pooled for the insert allele, and red represents DGRP lines 

pooled for the deletion allele.  
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Figure 3. S9 
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Supplementary Figure S9. Complex 22bp deletion likely functional. Each bar depicts the mean 

nicotine resistance (± 1-SD) from a number of 1st instar larvae that are not genetically unique but 

are sampled from the same population. Significance was assessed with asterisks represented by a 

Welch's t-test comparing each population (*p < 0.05, **p < 0.01, ***p < 0.001). A total of 20 

replicates were tested for population and each replicate contained 30 1st instar larvae. Green 

represents DGRP lines pooled for the insert allele, and red represents DGRP lines pooled for the 

deletion allele.  
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Figure 3.S10 
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Supplementary Figure S10. Unique CRISPR mutants created. Wildtype Ugt86Dd sequence is 

shown up top. Yellow indicates the gRNA used and PAM sequence is underlined. All unique 

mutated alleles are shown below wildtype. Red dashes indicate various CRISPR induced 

mutations, while red letters indicate various CRISPR induced subsutitions and inserts. The 

number of times each unique CRISPR mediated mutation was discover is listed to the right of 

each unique mutated allele.  
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Supplementary Data 3.1. DGRP lines used to created fixed populations. The following 14 

DGRP lines were differentially selected to start populations based on the Ugt86Dd InDel variant 

loci.  

 

Deletion Population: 

28199 

25177 

28185 

28213 

25206 

25176 

37525 

 

Insert Population: 

28239 

25200 

28160 

28226 

28197 

25174 

28295 
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Supplementary Data 3.2. CRISPR and NonCRISPR lines used for CRISPR experiments. The 

following 23 CRISPR or NonCRISPR lines were differentially selected to examine the effect a 

Ugt86Dd CRIPSR knockout has on nicotine resistance.  

 

nonCRISPR lines:   
3m5f 
1m3m 
1f1f 
13f2m 
7f4f 
13f5f 
2f4f 
 

 

CRISPR lines: 
6m4f 
19f4f 
19f2f 
1m2f 
8f3m 
13m3f 
6m3m 
13m2m 
13m4m 
13m3f 
3f4f 
8f2f 
6f1m 
1m2m 
13m5f 
7f4f 
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Supplementary Data 3.3. Ugt86Dd CRISPR coding changes. For each unique CRISPR 

mutation, the amino acids sequence was analyzed and compared to the reference to determine 

what coding changes CRISPR introduced. Mutant amino acids are indicated in red and stop 

codons are represented via an x. 

Ugt86Dd Coding/Polypeptide Sequence (Reference) 
 
Red G is the 1bp missing in the sequenced strain Ugt86Dd allele (Leads to Glycine amino acid, 
although FlyBase has Alanine in protein sequence for download.) 
 
Blue, yellow-highlighted section is the 22bp InDel. 
 
 
ATGAGATTATTAACTGTGATCGCGATCGTGTTTTGCGCTTTGAGCGCCAAGCCGCTC
GAGTCGGAAAGTGCGAAGATT 
  M  R  L  L  T  V  I  A  I  V  F  C  A  L  S  A  K  P  L  E  S  E  S  A  K  I 
TTGGCTACGCTGCCGTTTCCGGGTCGATCTCAGTACATATTTGTGGAGAGTTACTTGA
AAGGCTTGGCAGCTAAGGGT 
  L  A  T  L  P  F  P  G  R  S  Q  Y  I  F  V  E  S  Y  L  K  G  L  A  A  K  G 
CATCAGGTGACCGTTATTAATGCCTTCAAGAACAAGGAGACACCAAATATGCGCTTT
ATTGAGGCCCTCAAAGCGCAC 
  H  Q  V  T  V  I  N  A  F  K  N  K  E  T  P  N  M  R  F  I  E  A  L  K  A  H 
GAATTCGCAGACGAGATGATGAGTTTGCTGAATGTGCCACTATTGTGGCAGCAGCTC
AATGCCATGGATTACATATTA 
  E  F  A  D  E  M  M  S  L  L  N  V  P  L  L  W  Q  Q  L  N  A  M  D  Y  I  L 
AACAAATTCATCGATGTAACTATGGAGGACGAGGGTGTCCAGAGGCTACTTAATTC
GGGAGAAACTTTCGATCTGGTG 
  N  K  F  I  D  V  T  M  E  D  E  G  V  Q  R  L  L  N  S  G  E  T  F  D  L  V 
CTGGCGGAGATGCTCCATATGGAACCGATGTACGCTTTTGCTCAGCATTTTAATGCC
ACTTTAGTGGGATTCTCCAGC 
  L  A  E  M  L  H  M  E  P  M  Y  A  F  A  Q  H  F  N  A  T  L  V  G  F  S  S 
TTTGGAACCGATAGAACTATTGATGAGGCTGCTGGAAATATATCACCCATATCATAT
AACCCGCTTGTGACCTCTCCT 
  F  G  T  D  R  T  I  D  E  A  A  G  N  I  S  P  I  S  Y  N  P  L  V  T  S  P 
CGAACCGATCGGATGACCTTTCTGGAGCGCTTGGAAAATCACTACGAAGTCATTGTG
GAGGACATTCATCGCCATTTC 
  R  T  D  R  M  T  F  L  E  R  L  E  N  H  Y  E  V  I  V  E  D  I  H  R  H  F 
GTTCACCTGCCACATATGAGAAATGTTTACAAAAAGTATTTCCCGAATGCAAAGAAA
ACCCTGGAGGAAGTCATGGAT 
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  V  H  L  P  H  M  R  N  V  Y  K  K  Y  F  P  N  A  K  K  T  L  E  E  V  M  D 
AGTTTTTCGTTGATTCTGCTGGGCCAGCATTTTTCTTTGAGCTATCCGCGACCCTATT
TGCCCAACATGATTGAGGTT 
  S  F  S  L  I  L  L  G  Q  H  F  S  L  S  Y  P  R  P  Y  L  P  N  M  I  E  V 
GGTGGAATGCACATCTCGCACAAGCCGAAACCACTGCCAGAAGACATTAAACAATT
TATTGAGGGTTCGCCACATGGT 
  G  G  M  H  I  S  H  K  P  K  P  L  P  E  D  I  K  Q  F  I  E  G  S  P  H  G 
GTTATATACTTCTCCATGGGCTCCAATGTGAAGAGCAAGGATCTGCCACAGGAAACT
CGTGATACGCTGCTGAAGACC 
  V  I  Y  F  S  M  G  S  N  V  K  S  K  D  L  P  Q  E  T  R  D  T  L  L  K  T 
TTTGCCAAATTGAAGCAGAGAGTGCTGTGGAAATTCGAAGATGACGATATGCCTGG
AAAGCCAGCTAATGTGCTGATC 
  F  A  K  L  K  Q  R  V  L  W  K  F  E  D  D  D  M  P  G  K  P  A  N  V  L  I 
AAGAAATGGTATCCCCAGCCGGATATTCTGGCCCATCCGAATGTGAAGTTGTTCATC
AGCCACGGTGGTCTGCTGAGC 
  K  K  W  Y  P  Q  P  D  I  L  A  H  P  N  V  K  L  F  I  S  H  G  G  L  L  S 
AGCACCGAAAGCGTTTACTTTGGCAAACCCATACTGGGATTGCCGTGCTTCTATGAT
CAGCACATGAATGTGCAGCGC 
  S  T  E  S  V  Y  F  G  K  P  I  L  G  L  P  C  F  Y  D  Q  H  M  N  V  Q  R 
GCCCAGCGAGTGGGATTCGGCTTGGGCTTGGATCTGAATAATCTAAAGCAGGAGGA
TTTGGAAAAGGCCATTCAAACG 
  A  Q  R  V  G  F  G  L  G  L  D  L  N  N  L  K  Q  E  D  L  E  K  A  I  Q  T 
CTGCTCACTGATCCCAGTTATGCCAAAGCATCCTTGGCCATTTCCGAGCGGTATCGT
GATCAACCGCAATCAGCCGTC 
  L  L  T  D  P  S  Y  A  K  A  S  L  A  I  S  E  R  Y  R  D  Q  P  Q  S  A  V 
GATCGAGCTGTCTGGTGGACGGAGTACGTAATCAGGCACAATGGTGCTCCTCACCTG
CGAGCAACTTCCCGGGATCTC 
  D  R  A  V  W  W  T  E  Y  V  I  R  H  N  G  A  P  H  L  R  A  T  S  R  D  L 
AACTTCATTCAACTGAACAGCTTGGACACTTTAGCTGTGATACTGGCAGTACCTCTA
CTACTCGCTCTGTTAATCGTA 
  N  F  I  Q  L  N  S  L  D  T  L  A  V  I  L  A  V  P  L  L  L  A  L  L  I  V 
ACGTTATCTTGCAAATTATTGGGAGGAAAGAAACAGAAATGCTTACATGCTGATAA
GCTTAAGAAACATTAG 
  T  L  S  C  K  L  L  G  G  K  K  Q  K  C  L  H  A  D  K  L  K  K  H  X 
 
CRISPR mutant sequences 
 
For each CRISPR lesion, list the mutation, the effect on the polypeptide, and show any mutant 
AA residues in red. Use "X" to represent stop codon. 
 
3F.4F - 1bp (T) deleted, leads to STOP 
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CGAACCGATCGGATGACCTTTCTGGAGCGCTTGGAAAATCACTACGAAGTCATTGGG
AGGACATTCATCGCCATTTCG 
  R  T  D  R  M  T  F  L  E  R  L  E  N  H  Y  E  V  I  G  R  T  F  I  A  I  S 
TTCACCTGCCACATATGA 
  F  T  C  H  I  X 
 
8F.3M - 1bp (G) deleted, leads to STOP 
CGAACCGATCGGATGACCTTTCTGGAGCGCTTGGAAAATCACTACGAAGTCATTTGG
AGGACATTCATCGCCATTTCG 
  R  T  D  R  M  T  F  L  E  R  L  E  N  H  Y  E  V  I  T  R  T  F  I  A  I  S 
TTCACCTGCCACATATGA 
  F  T  C  H  I  X 
 
1M.2F - 2bp (TG) deleted, leads to STOP 
CGAACCGATCGGATGACCTTTCTGGAGCGCTTGGAAAATCACTACGAAGTCATTGGA
GGACATTCATCGCCATTTCGT 
  R  T  D  R  M  T  F  L  E  R  L  E  N  H  Y  E  V  I  G  G  H  S  S  P  F  R 
TCACCTGCCACATATGAGAAATGTTTACAAAAAGTATTTCCCGAATGCAAAGAAAA
CCCTGGAGGAAGTCATGGATAG 
  S  P  A  T  T  E  K  C  L  Q  K  V  F  P  E  C  K  E  N  P  G  G  S  H  G  X 
 
6M.3M - 3bp (TTG) deleted, removes 1 AA, changes 1 AA 
CGAACCGATCGGATGACCTTTCTGGAGCGCTTGGAAAATCACTACGAAGTCATGGA
GGACATTCATCGCCATTTC 
  R  T  D  R  M  T  F  L  E  R  L  E  N  H  Y  E  V  M  E  D  I  H  R  H  F 
 
7F.4F - 4bp (ATTG) deleted, leads to STOP 
CGAACCGATCGGATGACCTTTCTGGAGCGCTTGGAAAATCACTACGAAGTCTGGAG
GACATTCATCGCCATTTCGTTC 
  R  T  D  R  M  T  F  L  E  R  L  E  N  H  Y  E  V  T  R  T  F  I  A  I  S  F 
ACCTGCCACATATGA 
  T  C  H  I  X 
 
13M.5F - 4bp (TCAT) deleted, leads to STOP 
CGAACCGATCGGATGACCTTTCTGGAGCGCTTGGAAAATCACTACGAAGTGTGGAG
GACATTCATCGCCATTTCGTTC 
  R  T  D  R  M  T  F  L  E  R  L  E  N  H  Y  E  V  W  R  T  F  I  A  I  S  F 
ACCTGCCACATATGA 
  T  C  H  I  X 
 
19F.4F - 5bp (GTGGA) deleted, leads to STOP 
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CGAACCGATCGGATGACCTTTCTGGAGCGCTTGGAAAATCACTACGAAGTCATTGGA
CATTCATCGCCATTTCGTTCA 
  R  T  D  R  M  T  F  L  E  R  L  E  N  H  Y  E  V  I  G  H  S  S  P  F  R  S 
CCTGCCACATATGAGAAATGTTTACAAAAAGTATTTCCCGAATGCAAAGAAAACCCT
GGAGGAAGTCATGGATAG 
  P  A  T  T  E  K  C  L  Q  K  V  F  P  E  C  K  E  N  P  G  G  S  H  G  X 
 
13M.4M - 6bp (GTGGAG) deleted, removes 2 AA 
CGAACCGATCGGATGACCTTTCTGGAGCGCTTGGAAAATCACTACGAAGTCATTGAC
ATTCATCGCCATTTC 
  R  T  D  R  M  T  F  L  E  R  L  E  N  H  Y  E  V  I  D  I  H  R  H  F 
 
8F.2F - 8bp (GTGGAGGA) deleted, leads to STOP 
CGAACCGATCGGATGACCTTTCTGGAGCGCTTGGAAAATCACTACGAAGTCATTCAT
TCATCGCCATTTCGTTCACCT 
  R  T  D  R  M  T  F  L  E  R  L  E  N  H  Y  E  V  I  H  S  S  P  F  R  S  P 
GCCACATATGAGAAATGTTTACAAAAAGTATTTCCCGAATGCAAAGAAAACCCTGG
AGGAAGTCATGGATAG 
  A  T  T  E  K  C  L  Q  K  V  F  P  E  C  K  E  N  P  G  G  S  H  G  X 
 
13M.2M - 11bp (AGTCATTGTGG) deleted, leads to STOP 
CGAACCGATCGGATGACCTTTCTGGAGCGCTTGGAAAATCACTACGAAGGACATTC
ATCGCCATTTCGTTCACCTGCC 
  R  T  D  R  M  T  F  L  E  R  L  E  N  H  Y  E  G  L  S  S  P  F  R  S  P  A 
ACATATGAGAAATGTTTACAAAAAGTATTTCCCGAATGCAAAGAAAACCCTGGAGG
AAGTCATGGATAG 
  T  T  E  K  C  L  Q  K  V  F  P  E  C  K  E  N  P  G  G  S  H  G  X 
 
 
6M.4F - 15bp (ACGAAGTCATTGTGG) deleted, leads to STOP 
CGAACCGATCGGATGACCTTTCTGGAGCGCTTGGAAAATCACTAG 
  R  T  D  R  M  T  F  L  E  R  L  E  N  H  X 
 
1F.2F - Overall 1bp insert (G->CA), leads to STOP 
CGAACCGATCGGATGACCTTTCTGGAGCGCTTGGAAAATCACTACGAAGTCATTCAT
GGAGGACATTCATCGCCATTT 
  R  T  D  R  M  T  F  L  E  R  L  E  N  H  Y  E  V  I  H  G  G  H  S  S  P  F 
CGTTCACCTGCCACATATGAGAAATGTTTACAAAAAGTATTTCCCGAATGCAAAGAA
AACCCTGGAGGAAGTCATGGA 
  R  S  P  A  T  T  E  K  C  L  Q  K  V  F  P  E  C  K  E  N  P  G  G  S  H  G 
TAG 
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  X 
 
13F.3F - Overall 5bp insert (G->CATTCA), leads to STOP 
CGAACCGATCGGATGACCTTTCTGGAGCGCTTGGAAAATCACTACGAAGTCATTCAT
TCATGGAGGACATTCATCGCC 
  R  T  D  R  M  T  F  L  E  R  L  E  N  H  Y  E  V  I  H  S  W  R  T  F  I  A 
ATTTCGTTCACCTGCCACATATGA 
  I  S  F  T  C  H  I  X 
 
6F.1M - Overall 6bp insert (TG->GGAGGACA), adds 2 AA, changes 2 AA 
CGAACCGATCGGATGACCTTTCTGGAGCGCTTGGAAAATCACTACGAAGTCATGGA
GGACATGGAGGACATTCATCGC 
  R  T  D  R  M  T  F  L  E  R  L  E  N  H  Y  E  V  M  E  D  M  E  D  I  H  R 
 
1M.2M - Overall 8bp insert (TGGA->ACTTCATCGAAT), leads to STOP 
CGAACCGATCGGATGACCTTTCTGGAGCGCTTGGAAAATCACTACGAAGTCATTGAC
TTCATCGAATGGACATTCATC 
  R  T  D  R  M  T  F  L  E  R  L  E  N  H  Y  E  V  I  D  F  I  E  W  T  F  I   
GCCATTTCGTTCACCTGCCACATATGA 
  A  I  S  F  T  C  H  I  X 
 
13M.3F - Overall 4bp deleted (GTGGAGGA->CATT), leads to STOP 
CGAACCGATCGGATGACCTTTCTGGAGCGCTTGGAAAATCACTACGAAGTCATTCAT
TCATTCATCGCCATTTCGTTC 
  R  T  D  R  M  T  F  L  E  R  L  E  N  H  Y  E  V  I  H  S  F  I  A  I  S  F 
ACCTGCCACATATGA 
  T  C  H  I  X 
 
DSPR mutant sequence 
 
A3.UGT86Dd - 22bp (CATTGTGGAGGACATTCATCGC) deleted, leads to STOP 
CGAACCGATCGGATGACCTTTCTGGAGCGCTTGGAAAATCACTACGAAGTCATTTCG
TTCACCTGCCACATATGA 
 
  R  T  D  R  M  T  F  L  E  R  L  E  N  H  Y  E  V  N  S  F  T  C  H  I  X  
 

 

Supplement Data 3.4. Frequency of Ugt86Dd InDel variant in natural populations. 
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Population Insert Allele Deletion Allele Frequency 

Florida (rep 1) 55 2 0.04 

Florida (rep 2) 32 0 0.00 

Georgia 99 1 0.01 

South Carolina 98 2 0.02 

North Carolina 20 1 0.05 

Maine (rep 1) 60 0 0.00 

Maine (rep 2) 15 0 0.00 

Pennsylvania 172 0 0.00 

Pennsylvania 61 0 0.00 

Pennsylvania 24 3 0.11 

Pennsylvania 78 1 0.01 

Pennsylvania 63 1 0.02 

Pennsylvania 72 5 0.06 

Pennsylvania 51 3 0.06 
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Section 4.1 Concluding Remarks 

Many biological scientist study traits that are thought to monogenetic disorders with large 

effects such as cystic fibrous; however, it is increasing clear that these traits are not so simple in 

nature but are actually complex in nature [1,2]. Due to the complexity of life, it is not surprising 

a large number of traits are polygenic in nature. Moreover, underpinning the genetic factors 

contributing to complex traits has been challenging due to the genetic architecture of the 

genome, environmental factors, and various interactions acting on the trait. Many traits have 

been studied extensively and researchers can only draw broad correlations about the trait. 

However, little attention has been paid in discovering the variable genetic factors affecting an 

array of complex traits in natural populations. Thus, we sought to better understand the genetic 

factors that contribute to longevity and xenobiotic resistance using D. melanogaster as a study 

model. This dissertation provided insights on variation on mated female lifespan and nicotine 

drug resistance within D. melanogaster. Both traits are multifactorial in nature and was/is likely 

affected via direct and indirect natural selection. The ability to live longer is likely to increase the 

number of progeny one can propagate, while withstanding the toxic effects of various 

xenobiotics likely opens up niches D. melanogaster can live and thrive, and also the ability to 

survive and propagate more progeny in the nature. 

Variation in lifespan has been observed time and time again within species and between 

species [3–6]. Thus, it is of great interest to tease apart the genetic factors that create this 

variation. Previously, researchers have employed Quantitative Trait Loci (QTL) mapping to 

localize genomic regions harboring this genetic variation for lifespan within D. melanogaster [7–

19]. With success, several studies have mapped lifespan QTL, but to broad regions of the 

genome containing thousands of genes leaving the causative gene(s) elusive. To more thoroughly 
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investigate the genetic variation controlling lifespan, QTL were mapped for lifespan in the 

DSPR. The architectural design of the DSPR allows simultaneous estimates of QTL effect size, 

QTL frequency, offers a plethora of segregating variation, and statistical power to detect QTL 

with small effects [20,21]. 

Chapter II revealed that 98.2% of the genome has been mapped for lifespan when 

inspecting our mapped QTL and comparing to the fields mapping data. This could indicate that 

perhaps most genes influence lifespan to some degree. Moreover, this also implies the genetic 

architecture of lifespan is more complex in D. melanogaster than previously thought and any 

genetic factors contributing to variation in lifespan within populations are probably small and 

subtle. Thus, any QTL mapped with subtle effect genes probably are composed of several tightly 

linked genes (gene clusters) that drive the phenotype in the same direction, enabling us to detect 

them via QTL mapping. Moreover, our QTL are a minimal set uncovered in the DSPR and there 

are numerous explanations for this. One reason to miss QTL is due to a cluster of genes around a 

marker that affect lifespan in opposite directions leaving the appearance the marker found no 

QTL. In order to address this problem, a higher sample size of RILs than the 805 RILs employed 

in this study will be needed to find even smaller effect QTL and/or increase the amount of 

segregating variation. By creating a population with 8 inbred founders, as the DSPR did, we 

greatly limit the identification of QTL in only a small subset of the genetic backgrounds nature 

offers, in comparison to the infinite number of genetic backgrounds obtainable in nature. Lastly, 

some of these opposing effects could be linked to sex, and doing sex specific mapping in the 

DSPR could uncover these genes with subtle sex specific effects.  

Data collected via RNAseq and GO analysis revealed similar results reported previously 

[17,22–30]. Specifically, defense response genes are consistently up-regulated in older age and 

may have a role in partially determining variation in lifespan in natural populations. The 
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mechanism that manifest variable effects in lifespan through defense response genes is very 

poorly understood. Two ideas have been postulated about why defense response genes are up-

regulated in older age: 1) direct effect of continuous pathogen exposure has no effect on lifespan 

or 2) loss of transcriptional regulation of these genes leads to costly effects that cause premature 

death [30–32].  

Supporting the second idea mentioned above, our genome-wide RNAseq data uncovered 

several microbial recognition receptors, such as the peptidoglycan recognition proteins (PGRPs) 

and antimicrobials, (i.e., attacins and diptericins). These receptors are differentially expressed 

between young and old, short and long lived mated females, demonstrating the immune 

deficiency (Imd) pathway could have variable effects for lifespan within the DSPR. Interestingly, 

an inflammation state created by long-term activation via the Imd pathway is physiologically 

costly and reduces lifespan [33–35]. Our data supports a model where loss of transcriptional 

regulation of the Imd pathway induces a physiologically costly inflammation state that leads to 

variation in lifespan. Furthermore, the key NF-κB-like transcription factor, Relish, that activates 

the array of antimicrobial peptides of the Imd pathway is differentially expressed and is under 

our mapped QTL. Inappropriate activation of Relish can have adverse biological effects and 

reduce lifespan [34,36]. Thus, this is an excellent candidate gene to examine for variants that 

have variable effects on lifespan.  

The Janus kinase and signal transducer and activator of transcription (JAK/STAT) 

pathway has recently been implicated in variation in lifespan via systemic expression of the 

JAK/STAT pathway leading to shorter lifespan, enhanced fat storage, increased insulin 

resistance, and hyperglycemia [37]. Our genome-wide RNAseq data uncovered the main 

transmembrane signal-transducing receptor, Domeless, required for all JAK/STAT interactions 

[38] was differentially expressed, with significantly higher expression in short-lived old females 
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in comparison to all other contrast. Moreover, we also observed a much higher expression of 

differentially expressed Turandot genes (TotA, TotB, TotC, and TotM) in short-lived old females, 

indicating a possible environmental and/or bacterial stress. Another plausible explanation is the 

loss of transcriptional regulation of the JAK/STAT pathway is occurring in the short-lived old 

females inducing physiologically costly stress responses, similar to what is seen in the Imd 

pathway. Just as inappropriate expression of Relish can have adverse biological effects and 

reduce lifespan. Also, inappropriate expression of Domeless could have these similar effects. 

In nature, agriculture businesses generally apply insecticides/pesticides to fend off pest 

such as insects. For a while these pest are susceptible to the insecticides/pesticides, but over time 

these insects continually become resistance to those insecticides/pesticides. A great example is 

the Aedes mosquitoes that are located in various areas of the Americas and are the carrier of the 

Zika virus [39]. These mosquitoes are highly resistant to Permethrins chemicals that are 

employed in the Americas to kill crop pest [39]. Thus, because of this resistance, scientist are 

having great difficulty in battling the Zika virus. It is clear that resistance development is not 

only an agriculture problem but a public health problem. This provides a strong assertion that 

more resources need to be dedicated in dissecting xenobiotic resistance. Currently, the scientific 

community has a broad understanding how xenobiotics are broken down [40], but it is unknown 

what genes are involved in specific xenobiotic detoxification, For example, how variation in 

these genes provides variable effects to the detoxification process. Thus, it is critical to 

understand the genetic basis [41] of xenobiotic resistance in insects to give general insights to the 

genetic factors that influence the variable metabolism of drugs. For example, phenotypic 

variation for nicotine resistance has been demonstrated in a variety of genetically different 

Drosophila strains [42–45]. We followed up on Marriage et al. (2014) QTL mapping data by 

functionally validating Cyp28d1 and Cyp28d2, and Ugt86Dd via QCTs, RNAi, over-expression, 
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and CRISPR. Finding from these approaches uncovered genes that are utilized in the metabolism 

of nicotine and will help understand the variable effects of nicotine metabolism. Moreover, these 

results will help the scientific community understand the variable genetic effects of xenobiotic 

resistance. 

Currently GWAS and QTL mapping are widely employed in an attempt to localize genes 

and/or variants associated with xenobiotic resistance. However, each of these approaches often 

have trouble localizing genes and/or variants associated with the resistance. GWAS offer great 

resolution, but often utilizes small samples size and lacks power [46], and only uncovers 

common variants leaving rare variants essentially invisible [47]. QTL mapping offers strong 

power but has poor resolution [48]. To maintain the strengths of each of the approaches to better 

attempt the ability to localize genes and/or variants a series of multi-parental mapping panels 

have been developed [20,49–51]. However, even with the improved resolution, localization of 

true causative gene(s) and/or variant(s) associated with the phenotype remains challenging. This 

improved approach will instead highlight a small number of candidate genes, at least in 

Drosophila, that are LD with the true gene(s) and/or variant(s) [45,52,53]. Chapter III provides 

an inherently elegant way to get from QTL to gene by employing array of functional assays that 

include QCTs, RNAi, over-expression, and CRISPR to functionally validate candidate genes 

uncovered in a nicotine resistance screen by Marriage et al., (2014). 

Chapter III revealed Cyp28d1 and Cyp28d2 appear to be functionally important for 

nicotine resistance, while Ugt86Dd is a causative nicotine resistance gene. Moreover, we have 

mounting evidence demonstrating a complex 22bp deletion within Ugt86Dd is contributing 

variable nicotine resistance effects in the DSPR. A DIOPT homology analyze uncovered that 

Ugt1A3 is the likely human/mice homology of Ugt86Dd. Recently, Ugt1A3 was shown to be 

upregulated in presence of nicotine and perform glucuronidation reactions on nicotine in the 
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brain and small intestine [54,55] providing a conserved functional role from Drosophila-to-

human. However, it is not well understood what genes are involved in nicotine metabolism 

across taxa. Moreover, even within D. melanogaster very disparate results have been uncovered 

with the only common finding between all studies is that phenotypic variation for nicotine 

resistance exist in natural populations. These disparate finding demonstrate the notion that 

nicotine resistance is highly polygenic. Interestingly, our data suggest that Ugt86Dd has subtle to 

modest effects on the phenotype based on background. This supports the idea other variants are 

involved in resistance and can mask the effects of Ugt86Dd has on nicotine resistance. A quick 

KEGG search predicts Ugt86Dd is likely involved in nicotine metabolism via one of the many 

predicted pathways, further supporting the role of other gene variants. Currently, the only other 

gene that has been shown to have functional role in nicotine resistance is the phase I enzyme 

Cyp6g1 [56]. Thus, we have a phase I and phase II enzymes implicated in nicotine resistance and 

likely two more phase I enzymes Cyp28d1 and Cyp28d2. Further examination needs to 

determine the causative effect of Cyp28d1 and Cyp28d2. 

Loss of function variants are typically associated with large effect disease-causing 

phenotypes, such as cystic fibrosis. This disease is the most common deadly genetic disease 

within the Caucasian population and is caused from a homozygous copy of the loss of function 

cystic fibrosis transmembrane conductance regulator gene [57]. It is established that loss of 

function of this regulator gene has severe-to-neutral effects on the phenotype [57–59]. Recently, 

large-scale resequencing have revealed the human genome harbors ~100 loss of function variants 

per genome of which ~30 are in a homozygous state [60]. These variants are typically found to 

be at low frequencies in genome via purifying selection and likely are mildly deleterious [60]. 

Thus, loss of function variants are an excellent source of genetic factors that create variable 

effects for complex traits. For instance, pharmacogenetic studies have demonstrated several 
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times that loss of function variants create variable effects on drug metabolism [61,62]. With the 

amount of conservation between the D. melanogaster genome and human genome, it would not 

be a surprise to find the same observations are true. Interestingly, while trying to figure out what 

genes are causative nicotine resistance genes, we discovered a complex 22bp deletion within 

Ugt86Dd that creates a frameshift mutation in the second exon that leads to a premature stop 

codon and strongly appears to have variable effects on nicotine resistance. Moreover, the 

complex 22bp is found in natural populations with the deletion event occurring at a frequency 

~0.02. This rare allele also appears to be mildly deleterious, supporting the notion that loss of 

function variants create variable effects for complex traits, specifically xenobiotic resistance, and 

should be investigated for other compound resistance to determine what roles loss of function 

variants have on those phenotypes.  

In conclusion, results presented in chapter II of this dissertation describe an unbiased 

screen for lifespan using mated females that revealed metabolic and defense response genes that 

might contribute to lifespan variation. These data are consistent with what previous studies have 

found and provides more confidence that these types of genes truly contribute to lifespan 

variation. Results presented in chapter III provides evidence that Cyp28d1 and Cyp28d2 likely 

harbor segregating variation that affects nicotine resistance, and the complex 22bp deletion in 

Ugt86Dd is likely one of the many causative variants in the DSPR for nicotine resistance. 

Moreover, we also provide an elegant way to move from QTL to gene via the array of functional 

assays presented. These data add a significant contribution on of what genes and variants likely 

contribute to nicotine resistance in natural populations. Overall, both of these studies highlight 

the complexity of complex traits and the gapping lack of knowledge of the genes that harbor 

variation for various traits. Thus, strongly suggesting more time and resources need to be poured 

into teasing apart the genetic basis of complex traits. 
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Section 4.2 Future Directions 

The findings presented in this dissertation provide insights into the complexity of lifespan within 

D. melanogaster and provides insights into what detoxification genes are needed to deal with 

nicotine. Also, this dissertation presents a way to get from QTL to gene and some cases the 

causative variant. However, there are a plethora of unanswered questions. Moving forward, we 

propose to investigate a few question associated with each of the studies to further our 

knowledge on the complexity of lifespan and the variable effects of xenobiotic resistance.  

 

Question 1: Are there genotype by subpopulation and genotype by sex QTL within the 

DSPR? 

 In chapter II we demonstrated there is significant segregating variation for mated females 

in subpopulation B of the DSPR. Upon employing our in house QTL mapping software, five 

significant QTL were detect implicating 11-155 genes per QTL. Underneath several QTL were 

previously identified lifespan candidates rendering confidence in our mapping data. However, 

we do not know what the segregating variation for mated females in subpopulation A of the 

DSPR looks like. Previous studies employing both subpopulations of the DSPR have shown that 

each subpopulation harbors unique and common QTL for phenotypes within and between 

subpopulations [22,45,53]. We predict that upon phenotyping subpopulation A of the DSPR, 

using the same pipeline created for subpopulation B, unique QTL will be uncovered as well as 

QTL in common with subpopulation B of the DSRP. However, it should be mentioned that each 

time QTL mapping is employed, a minimal set of QTL are uncovered leaving a plethora of 

unique QTL and common QTL unknown.  

 Our study only focused on discovering significant segregating lifespan variation for 
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mated females in the DSPR and did not examine the variable effects of lifespan that are sex or 

environmental specific. However, several studies have investigated lifespan in D. melanogaster 

employing the QTL approach to isolate genomic intervals harboring segregating variation for 

different sexes or environments [8,9,11]. These studies uncovered QTL that were both sex and 

environmental specific, and could be one of several mechanisms that maintains segregating 

variation for lifespan in natural populations. Previous support that sex specific effects maintain 

lifespan variation was demonstrated within and between populations of D. subobscura [63]. 

Thus, it will be of interest to see if sex specific effects in the DSPR maintain segregating 

variation for lifespan. Thus, we hypothesize QTL mapping in males employing the pipeline 

utilized in chapter II in both subpopulations of the DSPR will uncover genotype by sex effects.  

 

Question 2: How does the immune system function in creating variable effects on lifespan 

in D. melanogaster? 

 In chapter II we found that defense response genes are enriched in our RNAseq data sets. 

Moreover, several other studies have shown that the Drosophila immune response influences 

lifespan and correlated with variation in lifespan [22–28]. While the Drosophila immune 

response is well characterized, it is poorly understood how the immune system creates variable 

effects on lifespan. Thus, we hypothesize that standing genetic variation that influences lifespan 

is partly due to variation in the immune response. What has been shown over multiple studies are 

immune genes in the innate immune system increase as a function of age. Thus, NF-κB, Toll, 

and IMD signaling pathways are likely important in promoting variation lifespan in the DSPR, 

but how?  

There are several ideas that could make logical sense but need to be investigated. First, 

the effects we see with immune gene enrichment has no effect on lifespan. This idea is unlikely 
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when, observing age related growth of E. coli, old Drosophila compared to young Drosophila 

have trouble suppressing the growth of introduced E. coli, suggesting the innate immune system 

functions less effectively increasing the likelihood of death [64]. However, this does not answer 

the question, if immune genes harbor variable effects on lifespan. Second, an alternative idea 

would be upon the introduction of increased pathogen loads, short-lived and long-lived old RILs 

increase gene expression to deal with the foreign invaders, but the short-lived old RILs have 

dysregulation, or lose or transcriptional regulation of the immune system from mutations in 

genes that are responsible for the response. Thus, the short-lived old RIls can not handle 

increased pathogen loads that results in death. To examine this idea we only need to look at RILs 

that are classified as short and long-lived RILs and do a variant search in immune genes to 

uncover variants that do not change gene expression but gene function. This is exactly what we 

can do with the soon availability of PacBio® sequence data. Third, variation in immune gene 

expression is a direct response to epigenetic alterations, such as histone modifications and 

chromosome remodeling that come with aging [65]. To examine this idea a simple DNAse 

sensitivity assay can be performed looking at differential cleavage of open DNA and correlate 

with areas of the genome that harbor defense response genes.  

 

Question 3: What other Ugt genes have an effect on nicotine resistance under QTL4? 

Broadly, we understand how detoxification works as a general process [40], but we have 

a poor understanding on what genes are utilized to break down specific compounds and an even 

less understanding what genes harbor variable effects on the detoxification process. Specifically, 

we do not know what genes or variants have variable effects on nicotine metabolism. There has 

been some studies that have highlighted that variation in nicotine resistance exist in natural 

populations [43–45,66] and the transposable element, Accord, within Cyp6g1 is correlated with 
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increased nicotine resistance via increasing Cyp6g1 expression [56]. However, our study [45] 

and other studies find little continuity in the results. Thus, there is likely a plethora of 

undiscovered genes and variants that contribute to nicotine resistance. 

 In chapter III, a bulk of the studies implicated the phase II gene, Ugt86Dd as a causative 

gene that harbors a segregating complex 22bp InDel variant that likely contributes to variation in 

nicotine resistance. However, a more nuance part of this study demonstrated our QCT data for 

QTL4 likely harbors multiple genes that contribute to variation in nicotine resistance. Hence, 

why we examined two other phase II genes, Ugt86Dh and Ugt86Dj, which had insertional 

mutational lines available but yielded non-significant results. It should be noted that Ugt86Dj 

was marginally non-significant, and with a higher sample size might reveal a small effect on 

nicotine resistance. Although, performing QCTs with insertional mutants for every gene under 

QTL4 seems simple as first, but upon inspection not every gene has insertional mutants 

available. Furthermore, many insertional mutants available harbor p-elements that are close to or 

at what appears to be the start/end of the gene. Leaving the possibility these inserts actually do 

not disrupt the gene’s function. Thus, to examine which genes are causative for nicotine 

resistance, the CRISPR/cas9 system will likely be a better approach to employ to create DSBs 

that disrupt gene function. Then we can examine the difference in resistance between 

nonCRISPR and CRISPR lines at each loci. If a difference is observed, then that gene likely 

contributes to variation in nicotine resistance. This new data would shed light onto more genes 

and variants that can have variable effects on nicotine resistance and would allow us to start to 

assemble gene networks to understand the genetic pathways important for nicotine resistance. 

 

Question 4: What role does Cyp28d1 and Cyp28d2 play in creating variation in nicotine 

resistance? 
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 In chapter III the data demonstrates strong evidence that the phase I gene, Cyp28d1, is 

functionally important for nicotine resistance ubiquitously and within the anterior midgut, and 

that segregating variation exist at this locus between A3 and A4 of the DSPR. However, the data 

collected for the phase I gene, Cyp28d2, is not as strong as for Cyp28d1. The data establishes a 

functional role for nicotine resistance ubiquitously, and that segregating variation affecting 

nicotine resistance exists at this locus between A3 and A4 of the DSPR. Nevertheless, we still do 

not have a great understanding what tissues these genes have a role in, and we do not have any 

candidate variants in or around the genes that would point to why segregating variation exist at 

these loci in the DSPR. To address what tissues these genes have a functional role in, more tissue 

specific RNAi along with tissue specific over-expression assays need to be performed. Likely, 

tissues of the digestive tract and nervous system will be a prime target. There have been several 

studies showing nicotine has a cascade of effects in the nervous system [67–69] and our data 

suggest the digestive tract is involved in nicotine metabolism. To address what variants in the 

genes are causative, Sanger sequence both A3’s and A4’s version Cyp28d1 and Cyp28d2 to 

confirm no InDels where missed as the case for Ugt86Dd. If any InDels were missed, proceed to 

verify the causal effects of the InDel. However, if no InDels are uncovered, then employ the 

CRISPR/cas9 system with ssODN that contains the gene and variable lengths of the intergenic 

region outside the gene can be employed. In this approach we would swap the A3 version of the 

gene and the variable intergenic regions into A4 and compare to A4 for diminished nicotine 

resistance. Furthermore, swapping the A4 version of the gene and the variable intergenic regions 

into A3 would need to be performed to rescue resistance. Any differences in resistance observed 

would find the causative variant(s) or small set of variants that harbors the true causative 

variant(s). 
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