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The next-to-leading order (NLO) QCD radiative corrections to WþW� production at hadron colliders

are well understood. We combine NLO perturbative QCD calculations with soft-gluon resummation of

threshold logarithms to find a next-to-next-to-leading logarithmic (NNLL) prediction for the total cross

section and the invariant mass distribution at the LHC. We also obtain approximate next-to-next-to-

leading order (NNLO) results for the total WþW� cross section at the LHC which includes all

contributions from the scale dependent leading singular terms. Our result for the approximate NNLO

total cross section is the most precise theoretical prediction available. Uncertainties due to scale variation

are shown to be small when the threshold logarithms are included. NNLL threshold resummation

increases the WþW� invariant mass distribution by �3%–4% in the peak region for both
ffiffiffi
S

p ¼ 8 and

14 TeV. The NNLL threshold resummed and approximate NNLO cross sections increase the NLO cross

section by 0.5%–3% for
ffiffiffi
S

p ¼ 7, 8, 13, and 14 TeV.
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I. INTRODUCTION

Exploring the Higgs and electroweak sector of the stan-
dard model is one of the primary goals of the LHC. The
pair production of gauge bosons is important both as a test
of the SUð2Þ �Uð1Þ gauge structure and as a background
for Higgs boson searches. Precise predictions for both
total and differential cross sections are needed in order to
understand the shape of the background to the Higgs signal
and to search for anomalous three gauge boson couplings.
Understanding the theoretical prediction for pp ! WþW�
is particularly important for the measurement of the Higgs
decay channel, H ! WþW� ! 2‘2�, where there is no
resonant structure. TheWþW� background is estimated by

a sideband analysis, where the cross section is normalized

via a control region with a minimum dilepton invariant

mass. Using Monte Carlo, the line shapes of the WþW�

distributions are then extrapolated into the Higgs signal

region [1,2]. A change in the WþW� invariant mass dis-

tribution will alter the dilepton invariant mass distribution,

and consequently change the extrapolation of the back-

ground estimates in the Higgs signal region.
The production of WþW� pairs with a subsequent

leptonic decay has been studied at the Tevatron [3,4],
while both ATLAS [5] and CMS [6,7] have reported results
at the LHC. The LHC results for the total WþW� cross
section,

ATLAS;
ffiffiffi
S

p ¼ 7 TeV � ¼ 51:9� 2:0ðstatÞ � 3:9ðsystÞ � 2:0ðlumiÞ pb
CMS;

ffiffiffi
S

p ¼ 7 TeV � ¼ 52:4� 2:0ðstatÞ � 4:5ðsystÞ � 1:2ðlumiÞ pb
CMS;

ffiffiffi
S

p ¼ 8 TeV � ¼ 69:9� 2:8ðstatÞ � 5:6ðsystÞ � 3:1ðlumiÞ pb;
(1)

are slightly higher than the standard model predictions at
next-to-leading order (NLO) in QCD [8],1

�ð ffiffiffi
S

p ¼ 7 TeVÞTheory ¼ 47:04þ2:02
�1:51 pb

�ð ffiffiffi
S

p ¼ 8 TeVÞTheory ¼ 57:25þ2:347
�1:60 pb:

(2)

The slight differences between the measured LHC values
and the MCFM NLO predictions have led to speculation
that the measured WþW� cross section is a subtle sign of
new physics [9–11].

The NLO QCD corrections to pp ! WþW� were com-

puted in Refs. [12,13], and then extended to include lep-

tonic decays in Ref. [14]. The NLO predictions for the total

cross section have a 3%–4% uncertainty at the LHC due to

the choice of parton distribution functions (PDFs) and

renormalization/factorization scale variation [8]. The

contribution from gg ! WþW� is formally NNLO, but

numerically contributes �3% at
ffiffiffi
S

p ¼ 7 TeV and �4%

at
ffiffiffi
S

p ¼ 14 TeV [15–18]. The NLO results have been

1The theoretical predictions have been evaluated at NLO using
MCFM with MSTW2008nlo PDFs and a central scale choice of
�f ¼ MW . The uncertainties shown in Eq. (2) result from
varying the scale up and down by a factor of 2. The predictions
of Eq. (2) include the next-to-next-to-leading-order (NNLO)
contribution from the gg initial state [8].

PHYSICAL REVIEW D 88, 054028 (2013)

1550-7998=2013=88(5)=054028(14) 054028-1 � 2013 American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/213419196?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevD.88.054028


interfaced with a shower Monte Carlo using the formalism
of the POWHEG box [19–21]. The electroweak corrections
and the contribution from the �� initial state are also
known and contribute less than 1%–2% to the total cross
section at the LHC [22,23]. These corrections are enhanced
at large values of the WþW� invariant mass, but have
opposite signs and largely cancel.

In this paper, we extend these results by including a
resummation of threshold logarithms in the prediction of
WþW� production. Previously, the resummation of large
logarithms associated with gluon emission at low trans-
verse momentum, pT , in WþW� production was consid-
ered [24]. Unlike pT resummation which is normalized to
the NLO cross section, the emission of soft gluons near
threshold can potentially enhance the rate. We consider the
next-to-leading logarithmic (NLL) and next-to-next-to-
leading logarithmic (NNLL) resummation of threshold
corrections. To accomplish this, we utilize the formalism
of soft collinear effective theory (SCET) [25–28] which
allows the resummation to be performed directly in
momentum space [29,30]. This formalism has been
used for processes with colorless final states such as
Drell-Yan [31], Higgs production [32–34], associated
W/Z plus Higgs production [35], direct photon production
[36] and SUSY slepton pair production [37].

The SCET formalism has also been applied to top quark
pair production to resum the threshold corrections to the
invariant mass distribution and to the total cross section
[38–40]. The total cross section for top quark pair produc-
tion using threshold resummation has been obtained using
two different sets of threshold limits: one starting from the
invariant mass distribution of the top quark pair (pair
invariant mass kinematics) and the other beginning from
the transverse momentum or rapidity distribution of the top
quark [38,39,41]. The total cross section is then obtained
by integrating over the resummed distributions. Within the
theoretical uncertainties, the total cross sections for top
quark pair production obtained with the different starting
points are in reasonable agreement [39,40]. The total cross
section can also be obtained in the threshold limit, � ! 0,
where � is the top quark velocity, and the terms of
Oð�n

s ln
m�Þ resummed [42]. At the LHC and the

Tevatron, however, the largest contributions to the total
cross section for top quark pair production are not from
the � ! 0 region. In this work, we will use pair invariant
mass kinematics for the WþW� final state to obtain our
resummed results.

The calculation of differential cross sections involves
several scales. We consider the threshold limit z �
M2

WW

s ! 1 which dynamically becomes important due to

the fast decline of the parton luminosity function as �
increases [31], with MWW the invariant mass of the
WþW� pair and s the partonic center of mass energy.
Near the partonic threshold, up to subleading powers of
(1� z), the cross section factorizes into a soft function

which describes the soft gluon emissions and a hard func-
tion which includes the virtual corrections to the cross
section. We can combine the NLO soft and hard functions
with their renormalization group (RG) evolution equations
to give NNLL resummed results which resum large loga-

rithms of the form �n
s ðlnmð1�zÞ

1�z Þþ with m � 2n� 1.

Alternatively, the RG evolution of the hard function,
known to NNLO, can be matched with exact NLO results
for the hard function to obtain the approximate NNLO hard
function which includes the leading scale dependent con-
tributions. Combined with the known NNLO soft function
[31] for color singlet production, we are able to obtain the
approximate NNLO result as an alternative to the NLOþ
NNLL resummed result. The advantage of the NLOþ
NNLL resummed results is that they contain powers of
�s to all orders, while the advantage of the approximate
NNLO results is that we used the soft function to one order
higher (NNLO) and the results do not contain higher orders
of�s which are sometimes not desired. In any case, the two
results are extremely close to each other, and we recom-
mend our approximate NNLO result as the most precise
theoretical results available to be compared with future
experiments, because it turns out to have smaller scale
variations.
In Sec. II, we review the formalism and SCET resum-

mation in the threshold region. This follows closely the
approach of Ref. [38]. Section III contains results for the
NNLL differential and total cross sections, along with
approximate results for the NNLO cross section for
pp ! WþW�. Brief conclusions are presented in Sec. IV.

II. BASICS

In this section, we review the fixed order results for
pp ! WþW� (Secs. II A and II B), the SCET formalism
used to derive the RG improved NNLL results for the
differential and total cross sections, including the matching
to the fixed order NLO result (Sec. II C), and the derivation
of an approximate NNLO result (Sec. II D).

A. Born level result

The Born level process arises through the annihilation
process

qðp1Þ þ �qðp2Þ ! Wþðp3Þ þW�ðp4Þ: (3)

This annihilation proceeds via s-channel�=Z exchange and
a t-channel contribution, as shown in Figs. 1(a) and 1(b),
respectively. The partonic cross section is

�̂0
q �q ¼

1

2s

Z
d�2jA0

q �qðs; tÞj2; (4)

where the partonic level invariants are
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s ¼ ðp1 þ p2Þ2

t ¼ ðp1 � p3Þ2 ¼ M2
W � s

2
ð1� � cos �Þ

u ¼ ðp1 � p4Þ2;
(5)

with sþ tþ u ¼ 2M2
W and � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4M2

W

s

q
. At the Born

level we have M2
WW ¼ s. The two body phase space is

d�2 ¼ 1

8	s
dt ¼ �

16	
d cos �: (6)

Finally, the color-averaged and spin-summed and averaged
matrix element squared is

jA0
q �qj2 ¼

1

4NC

�
cttqF

0
qðs; tÞ þ cssq ðsÞK0

qðs; tÞ

� ctsq ðsÞJ0qðs; tÞ
�
; (7)

where cssq K
0
q is the s-channel contribution, cttqF

0
q is the

t-channel contribution, and ctsq J
0
q is from s- and t-channel

interference. The results have been found in Ref. [12] and
are given in Appendix A for convenience.

Due to the collinear factorization [43–47], the hadronic
level cross section is obtained by convolving the partonic
level cross section with PDFs. In general, the hadronic
cross section can be written as

d2�

dMWWd cos �
¼ X

ij

�W

16	MWWS

Z 1

�

dz

z
Lij

�
�

z
;�f

�

� Cijðz;MWW; cos �;�fÞ (8)

where the sum runs over all possible initial state partons,
�f is the factorization scale,

� ¼ M2
WW

S
; z ¼ M2

WW

s
; and �W ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4M2

W

M2
WW

s
:

(9)

The long-distance collinear physics is described by the
parton luminosity

Lijðy;�fÞ ¼
Z 1

y

dx

x
fiðx;�fÞfj

�
y

x
;�f

�
; (10)

where fi is the PDF of a parton with flavor i. The coeffi-
cient functions describe the hard partonic process and can
be written as a power series in �s,

Cij ¼ C0
ij þ

�s

4	
C1
ij þ � � � (11)

We have chosen the normalization of Eq. (8) such that the
leading order coefficient is

C0
ij ¼ 
ð1� zÞjA0

ijj2; (12)

and the Born level cross section is recovered.

B. NLO result

At NLO, the scattering coefficients of Eq. (8) receive
corrections from virtual loops and real gluon emission
in the q �q channel, along with tree level contributions
from qg ! qWþW�. In dimensional regularization with
N ¼ 4� 2�, the one-loop virtual diagrams contribute

�VIRT ¼ 1

2s

Z
d�2jA1

q �qðs; tÞj2; (13)

where

jA1
q �qj2 ¼ jA1

q �q;regj2 þ jA1
q �q;divj2 (14)

jA1
q �q;divj2 ¼� �s

4	
CF

�
4	�2

s

�
�
�ð1þ �Þ

�
4

�2
þ 6

�

�
jA0

q �qðs; tÞj2

jA1
q �q;regj2 ¼

�s

16	NC

CF

�
cttqF

1
qðs; tÞ þ cssq ðsÞK1

qðs; tÞ

� ctsq ðsÞJ1qðs; tÞ
�
: (15)

We note that since QCD does not renormalize electroweak
couplings, all the UV divergences cancel leaving only
IR divergences in A1

q �q;div. The one-loop corrections to the

t-channel exchange are given by cttqF
1
qðs; tÞ, to the

s-channel exchange by cssq K
1
qðs; tÞ, and the interference

between the s- and t-channels by ctsq J
1
qðs; tÞ. Expressions

for these terms can be found in Appendix A. As will be
discussed in the next section, the real hard gluon emission
contribution is not relevant for the resummation of the
threshold logarithms and we therefore do not give it here,
although it can be found in Ref. [12].

C. Threshold resummation and matching

We now discuss the resummation of the large logarithms
in the partonic threshold limit, z ! 1. In this limit, since
there is no phase space available for hard gluon emission,
the total phase space is well described by the Born 2 ! 2

FIG. 1. Feynman diagrams for the (a) s-channel and (b) t-channel contributions to q �q ! WþW�.
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process and Eq. (8) can be used. In addition to the collinear
factorization, in the threshold limit the coefficient func-
tions can be further factorized into hard, H, and soft, S,
functions:2

Cq �qðz;MWW; cos�;�fÞ
� HðMWW; cos �;�fÞSð

ffiffiffi
s

p ð1� zÞ; �fÞ þOð1� zÞ:
(16)

The soft function is given by the vacuum expectation
values of soft Wilson loops [29,31] and the hard function
is calculated by matching the full QCD result onto the
relevant SCET operator. It is this matching that integrates
out the hard QCD modes and leaves the soft and collinear
modes that comprise SCET.

The hard function is given by3

HðMWW; cos �;�Þ ¼ jCWWðMWW; cos �;�ÞOWW j2; (17)

where CWW is the Wilson coefficient of the relevant SCET
operator OWW . The Wilson coefficient is calculated by
matching the renormalized QCD and SCET amplitudes:

Mrenð�;MWW; cos �Þ
¼ Zð�;MWW;�ÞCWWðMWW; cos�;�ÞOWW; (18)

where Mren is the renormalized QCD amplitude and Z
is the SCET renormalization constant. In dimensional
regularization, SCET loops are scaleless and vanish. This
implies that the UVand IR singularities of SCET coincide
and cancel. Since SCET and QCD describe the same
low-scale physics and have the same IR pole structure, Z
can be determined by the behavior of IR singularities in

QCD [48–54]. In the MS scheme, we have

Zð�;MWW; cos �;�Þ

¼ 1� �sCF

2	
ð4	Þ�e���E

�
1

�2
þ 1

�

�
ln

�2

�M2
WW

þ 3

2

��
:

(19)

The poles in Z and the NLO QCD squared amplitudes in
Eq. (15) cancel. Hence, the one-loop contribution to the
hard function is just the finite terms of Eq. (15) [30,55].

Since the hard function is calculated in the perturbative
region of QCD it can be expanded in powers of �s:

HðMWW; cos �;�hÞ ¼ H0ðMWW; cos�Þ

þ �sð�hÞ
4	

�
H1

regðMWW; cos�;�hÞ

þH1
extraðMWW; cos�;�hÞ

�
; (20)

where�h, termed the hard scale, is the scale at which QCD
and SCET are matched. The normalization of the hard
function is such that

H0ðMWW; cos �Þ ¼ jA0
q �qj2; (21)

and

�s

4	
H1

regðMWW; cos �;�hÞ ¼ jA1
q �q;regj2

H1
extraðMWW; cos �;�hÞ ¼ �CFH

0ðMWW; cos �Þ

�
�
	2

3
þ 2log 2

�
M2

WW

�2
h

�

� 6 log

�
M2

WW

�2
h

��
: (22)

Now we have all the pieces to resum the threshold
logarithms. As mentioned before, the hard function is
calculated at the matching scale�h. Since the soft function
describes the soft physics, it is evaluated at a soft scale,�s,
associated with the scale of soft gluon emission. By
using the RG equations (RGEs), the hard and soft
functions can be evolved to the factorization scale. The
RG evolution of the soft function resums logs of the form
�n
s ln

mð�s=MWWÞ. By choosing the soft scale �s �
MWWð1� �Þ, the RGE running resums the large threshold
logarithms. In Table I we list the accuracy of the resum-
mation at a given order. The resulting coefficient function
is [31]

Cðz;MWW;cos�;�fÞ
¼UðMWW;�h;�s;�fÞHðMWW;cos�;�hÞ

�~s

�
ln

�
M2

WW

�2
s

�
þ@�;�s

�
e�2�E�

�ð2�Þ
z��

ð1�zÞ1�2�
(23)

where � ¼ 2a�ð�s;�fÞ and

UðMWW;�h;�s; �fÞ

¼
�
M2

WW

�2
h

��2a�ð�h;�sÞ
exp ½4Sð�h;�sÞ � 2a�V ð�h;�sÞ

þ 4a�ð�s;�fÞ�: (24)

Finally, ~s can be expressed as a power expansion in
logarithms,

TABLE I. Accuracy of the SCET resummation at a given order
and required accuracy of SCET inputs.

Order Accuracy: �n
s ln

m (�s=MWW) �cusp �h, � H, ~s

NLL 2n� 1 � m � 2n 2-loop 1-loop Tree

NNLL 2n� 3 � m � 2n 3-loop 2-loop 1-loop

2Since we are interested in a color singlet final state, the soft
function S has no cos � dependence.

3In Eqs. (17) and (18), the sum over Dirac structures is
implied. See Ref. [39] for an example of the relevant notation.
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~sðL;�Þ ¼ 1þ �s

4	

X2
n¼0

sð1;nÞLn þ
�
�s

4	

�
2 X4
n¼0

sð2;nÞLn:

(25)

Expressions for the sði;nÞ are given in Appendix B and are
identical to those found for Drell-Yan [31].

We will present results both at NLL and NNLL. The
corresponding order of the needed functions is given in
Table I. Explicit expressions for the functions a and S, and
the anomalous dimensions �, �V , and � can be found in
the appendixes of Ref. [31]. The choice of the soft scale,
�s, is discussed in Sec. III B.

The resummed results are only valid in the region z ! 1.
To extend these results to all z, the resummed cross section
needs to be matched with the full fixed order cross section.
This allows the inclusion of the nonsingular terms in
(1� z) which are present in the fixed order result but not
the resummed result. For NNLL resummation, this means
matching with the NLO cross section:

d�NLOþNNLL�d�NNLLð�h;�f;�sÞ
þðd�NLOð�fÞ�d�NLOð�fÞjleadingsingularityÞ

(26)

where d�NNLL is the threshold resummed cross section and
d�NLOjleading singularity contains only the Oð�sÞ NLO terms

which are singular as z ! 1,

d�NLOjleading singularity � d�NNLLj�h¼�f¼�s
: (27)

Subtracting d�NLOjleading singularity prevents double counting
of terms common to the resummed and fixed order results.
Also, in the limit z ! 1, the matched cross section corre-
sponds to the resummed results, as desired.

D. Approximate NNLO results

The full NNLO cross section can only be determined
from a complete calculation. However, the scale dependent
terms that are singular as z ! 1 can be determined to
NNLO accuracy via the known hard and soft functions
and their respective RGEs. As will be shown in the next
section, most of the NLO correction comes from the lead-
ing singular piece. Hence, we expect that including the
scale dependent, leading singular pieces of the NNLO
cross section is a good estimate of the full NNLO result.
The inclusion of these pieces is known as approximate
NNLO.

The coefficient function in Eq. (16) can be expanded in a
power series,

Cðz;M; cos �;�Þ ¼ C0ðz;M; cos�;�Þ
þ �s

4	
C1ðz;M; cos�;�Þ

þ
�
�s

4	

�
2
C2ðz;M; cos �;�Þ: (28)

The leading order,C0, and NLO,C1, contributions are fully
known analytically. The NNLO contribution, C2, can only
be approximately determined from the hard and soft func-
tions. The soft function is known fully to NNLO [31];
hence the only approximation comes from the unknown
scale independent NNLO piece of the hard function. The
approximate NNLO cross section is found by calculating
the scale dependent, leading singular pieces of C2 and
adding this contribution to the full NLO result.
We expand the hard function as a power series in �s:

HapproxðMWW;cos�;�fÞ
¼HðMWW;cos�;�fÞþ

�
�s

4	

�
2
H2

approxðMWW;cos�;�fÞ;
(29)

where the full NLO hard function, H, is given in Eq. (20).
The NNLO hard piece, H2

approx, contains only the scale

dependent pieces at NNLO. We further expand H2
approx in

a power series of logs:

H2
approxðMWW; cos �;�fÞ ¼

X3
n¼1

hð2;nÞLn
WW; (30)

where LWW ¼ ln ðM2
WW=�

2
fÞ. The coefficients hð2;nÞ can be

found in Appendix B.
The approximate NNLO hard function in Eq. (29) is

independent of scale to order �3
s . Hence, scale variation

only contains the Oð�3
sÞ uncertainties, not taking into

account the unknown NNLO scale independent and non-
singular in (1� z) pieces at Oð�2

sÞ. Variation of the facto-
rization scale may therefore underestimate the total
uncertainty in the approximate NNLO result. However,
this uncertainty can be further estimated by noting that there
is an ambiguity in the logs used to expandH2. For example,
introduce a scale Qh �MWW . Then H

2 can be expanded in
logs of the form LQ ¼ ln ðQ2

h=�
2
fÞ instead of LWW . The

difference between these two schemes will be order 1 con-
tributions to the scale independent piece. Hence, in addition
to the variation of the factorization scale, the uncertainty
associated with the unknown NNLO scale independent
piece is estimated by making the replacement LWW ! LQ

in Eq. (30) and varying the new scaleQh around the central
value MWW , which is the natural choice from the RGEs.
We note that when including the scale independent

pieces, the full NNLO hard function is independent of
the scale Qh. Similarly, since the soft function is known
fully to NNLO there is no ambiguity in the choice of scales
used in the log expansion.

III. RESULTS

A. Soft scale choice

In the process of performing resummation in the SCET
formalism, two additional scales are introduced: the hard
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scale �h, where the hard function is evaluated; and the soft
scale, �s, where the soft function is evaluated. Since the
hard function is calculated from matching QCD onto
SCETat the scale of the hard scattering process, the central
value of �h is naturally chosen to be the scale of the hard
scattering process, �h ¼ MWW .

The soft scale is chosen to be associated with the scale
of the soft gluon emissions, such that the RG evolution
resums large logs associated with soft gluon emission at
threshold. Following Refs. [29–31], we choose the soft
scale to be related to the hadronic energy scale, avoiding
the Landau poles that plague the traditional perturbative
QCD resummation [30,56]. Hence, in the hadronic thresh-
old limit � ! 1 we want �s �MWWð1� �Þ. However, at
hadron colliders most of the cross section is accumulated
far from � ¼ 1 and the choice of soft scale away from this
limit is less clear.

Another constraint on �s is that the soft function should
be a well-behaved perturbative series. Hence, away from
the threshold region, we choose �s such that the Oð�sÞ
piece of the soft function is minimized relative to the LO
piece. Figure 2(a) shows the ratio of the NNLL-resummed
invariant mass distribution evaluated with only the Oð�sÞ
piece of the soft function, ðd�NNLL

WW Þ�s
, to the NNLL-

resummed distribution evaluated with only the LO piece
of the soft function, ðd�NNLL

WW Þ0. In both distributions, all
other pieces of the resummed cross sections (aside from
the soft function) are evaluated to full NNLL order.

This ratio is shown for
ffiffiffi
S

p ¼ 8 TeV at various values of
MWW with �f ¼ �h ¼ MWW and MSTW2008nnlo PDFs.

The soft scale is chosen to correspond to the minimum of
these ratios, which is found to be well described by the
parametrization

�s ¼ MWW

ð1� �Þ
ðaþ b

ffiffiffi
�

p Þc : (31)

For
ffiffiffi
S

p ¼ 8 TeV, it is found that a ¼ 1:542, b ¼ 6:27, and

c ¼ 1:468. Performing a similar fit at
ffiffiffi
S

p ¼ 14 TeV it is
found that a ¼ 1:544, b ¼ 6:123, and c ¼ 1:499. With this
parametrization �s has the correct dependence on � in the
threshold region.
Figure 2(b) shows the minimum value of the ratio

�s=MWW at
ffiffiffi
S

p ¼ 8 TeV (solid) and
ffiffiffi
S

p ¼ 14 TeV
(dashed) as a function of �. As can be clearly seen, the
hadronic energy makes little difference to the choice of the
soft scale. For simplicity, independent of the hadronic
energy scale, all results presented here use the central value
of the soft scale corresponding to the 8 TeV solution:

�min
s ¼ MWW

ð1� �Þ
ð1:542þ 6:27

ffiffiffi
�

p Þ1:468 : (32)

B. Differential cross section

We begin by considering the validity of the matching of
the NNLL results to the fixed order NLO results. In order
for the matching of Eq. (26) to be valid, the subleading
terms in (1� z) must be small. In Fig. 3, we show the
contribution of the leading singularity to the fixed order

NLO differential cross section for
ffiffiffi
S

p ¼ 8 TeV and
ffiffiffi
S

p ¼
14 TeV. We fix the central scale to be �f ¼ 2MW . From

this figure, we see that the leading singularity captures
�90% of the NLO fixed order cross section. Hence, the
threshold singularities contribute most of the NLO cross
section and we may expect that by resumming the higher
order logarithms we capture most of the higher order cross
section.
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FIG. 2 (color online). (a) The ratio of the NNLL-resummed invariant mass distribution evaluated with only the Oð�sÞ piece of the
soft function, ðd�NNLL=dMWWÞ�s

, to the NNLL-resummed distribution evaluated with only the LO piece of the soft function,

ðd�NNLL=dMWWÞ0, at
ffiffiffi
S

p ¼ 8 TeV and various values of MWW . (b) The minimum value of �s=MWW at
ffiffiffi
S

p ¼ 8 TeV (solid) andffiffiffi
S

p ¼ 14 TeV (dashed) as a function of �.
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In Fig. 4(a), we show d�=dMWW versusMWW for
ffiffiffi
S

p ¼
14 TeV, withMSTW2008 PDFs. The curves are LO, NLO,
NLL (matched), and NNLL (matched), with �h ¼ MWW ,
�s ¼ �min

s and �f varied up and down by a factor of 2

from the central value of�0
f ¼ 2MW . It is apparent that the

NNLL resummation slightly increases the rate at the peak.
A change in theWþW� invariant mass distribution may

be consequential to the analysis of the H ! WþW� !
2‘2� decay channel. In the zero jet bin, the major back-
ground is the SM (non-Higgs) production ofWþW� [1,2].
To estimate this background a sideband analysis is per-
formed. A control region is defined with a minimum

dilepton invariant mass, where the WþW� background
strongly dominates the Higgs signal. The control region
is used to normalize the cross section and thenMonte Carlo
is used to extrapolate the line shapes into the signal region.
If higher order corrections alter the MWW distribution, the
dilepton invariant mass distribution will be changed and
the extrapolation to the signal region will need to take this
into account.
In Fig. 4(b) we explore the effect of higher order cor-

rections on the invariant mass distribution by plotting the
ratio of the NLOþ NNLL matched and NLO MWW

distributions. The scales are set to be �h ¼ MWW , �s ¼
�min

s , and �f ¼ 2MW . For the NLO cross section eval-

uated with NLO PDFs (solid), the resummation increases
the invariant mass distribution by �3%–4% in the peak

region for both
ffiffiffi
S

p ¼ 8 and 14 TeV and decreases it by

�2% and �1% in the high mass region for
ffiffiffi
S

p ¼ 8 and
14 TeV, respectively. However, most of this change in the
MWW distribution is from the different PDFs used for the
resummed and NLO results, as can be seen when the NLO
cross section is evaluated with NNLO PDFs (dashed). In
this case, the resummation only alters the invariant mass
distribution by & 1% for a wider range of MWW . This
indicates that the calculation of the WþW� cross section
is firmly under theoretical control.
The factorization scale dependence of the invariant mass

distributions is shown in Fig. 5 for (a) the NNLL resummed
and NLO leading, and (b) the NLO and NNLL matched
results. Here we present the factorization scale dependence
as a percent difference from the central value. Using the
definition of matching in Eq. (26), Fig. 5(a) indicates that
there is a cancellation between the �f dependencies the

NNLL resummed and NLO leading results for MWW &
400 GeV. Comparing Figs. 5(a) and 5(b), it is apparent that
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for MWW * 190 GeV the NLO �f dependence also can-

cels against the NNLL resummed dependence. Hence,
although the cancellation is not as efficient at lower
MWW , as the invariant mass increases the �f dependence

of the NNLL matched result is less than that of the NLO
result. This can be seen in Fig. 5(b), where we see that for
MWW * 220–230 GeV the �f dependence of the NNLL

matched result is lower than the NLO result. Hence,
although the scale dependence of the NNLLmatched result
is larger than that of the NLO result at the peak of the
invariant mass distribution, one can show that the resum-
mation and matching procedure decreases the factorization
scale dependence of the total cross section relative to the
NLO result.

In Fig. 6, we show the deviation from the central scales
for the NNLL resummed differential cross section,

d�NNLL=dMWW , versus MWW for
ffiffiffi
S

p ¼ 14 TeV, with
MSTW2008nnlo PDFs. Again, we present the scale
dependence as a percent difference from the central value.
The central scales are �0

h ¼ MWW , �
0
s ¼ �min

s and �0
f ¼

2MW and are separately varied up and down by a factor of
2. The hard and soft scale variations are of the order of
�1%–2% and are relatively independent of MWW . The
factorization scale dependence near the peak is �� 6%
and is always greater than the hard and soft scale depen-
dencies for the invariant mass range presented.

Finally, in Fig. 7 we show the variation of the NNLL
matched cross section with the central scale choices �0

h ¼
MWW , �

0
s ¼ �min

s and �0
f ¼ 2MW at

ffiffiffi
S

p ¼ 14 TeV. The

cross section varies by less than �2% as the scales are
varied from the central values. Again, we see that there
is a large cancellation of the factorization scale when
computing the matched cross section. In contrast to the

NNLL results in Fig. 6, the �f dependence of the matched

result is less than (similar to) the hard and soft scale
dependencies for �<�0 (�>�0). Also, note that unlike
the soft and factorization scales, the hard scale depen-
dence, with a minimum near the central value, actually
never decreases but always increases the total cross section
as it is varied from the central value. This explains why in
Fig. 6 the effect of the hard scale variation was always to
increase the differential cross section value above the
central value.

200 250 300 350 400 450 500
M

WW
 (GeV)

-5

0

5

10

%
 D

if
fe

re
nc

e 
fr

om
 C

en
tr

al
 V

al
ue NNLL

NLO leading

p p → W+
 W

-

µ
f
 = 2 M

W
, µ

s
 = µ

s
, µ

h
 = M

WW
0 min

Dash-dot-dot: µ
f
 = M

W
Dashed: µ

f
 = 4 M

W

√S = 14 TeV
MSTW2008nnlo PDFs

200 250 300 350 400 450 500
M

WW
 (GeV)

-5

0

5

10

%
 D

if
fe

re
nc

e 
fr

om
 C

en
tr

al
 V

al
ue

NLO+NNLL - NNLO PDFs
NLO-NLO PDFs

p p → W+
 W

-

µ
f
 = 2 M

W
, µ

s
 = µ

s
, µ

h
 = M

WW
0 min

Dash-dot-dot: µ
f
 = M

W
Dashed: µ

f
 = 4 M

W

√S = 14 TeV
MSTW2008

FIG. 5 (color online). Factorization scale dependence of (a) NNLL resummed and NLO leading singularity, and (b) NLO and
matched NNLL invariant mass distributions at

ffiffiffi
S

p ¼ 14 TeV using MSTW2008 PDFs. The dash-dot-dot curves have �f ¼ MW and

the dashed curves have �f ¼ 4MW .

200 250 300 350 400 450 500
M

WW
 (GeV)

-8

-6

-4

-2

0

2

4

6

8

%
 D

if
fe

re
nc

e 
fr

om
 C

en
tr

al
 V

al
ue µ0

/2

2 µ0

p p→ W
+
 W

-

µ
f
 = 2 M

W
, µ

s
 = µ

s
, µ

h
 = M

WW

√S = 14 TeV
MSTW2008nnlo PDFs

µ
f

µ
h

µ
s

min0 0 0

NNLL

FIG. 6 (color online). Scale dependence of the �NNLL differ-
ential cross sections at

ffiffiffi
S

p ¼ 14 TeV using MSTW2008nnlo
PDFs. The scales are varied by a factor of 2 up and
down from the central scales, �0

h ¼ MWW , �0
s ¼ �min

s and

�0
f ¼ 2MW .

S. DAWSON, IAN M. LEWIS, AND MAO ZENG PHYSICAL REVIEW D 88, 054028 (2013)

054028-8



C. Total cross section

In this section, we compile our final results for the total
WþW� cross sections at the LHC. In Tables II and III, we
show successively improved results for the total cross
sections using MSTW2008 PDFs. Both tables fix the cen-
tral value of�0

h ¼ MWW and�0
s ¼ �min

s . Table II takes the

central factorization scale to be fixed at �0
f ¼ 2MW , while

Table III uses a dynamical central scale, �0
f ¼ MWW . The

top line is the NLO result obtained fromMCFM [8] (which
includes the gg initial state) and is calculated using NLO
PDFs. The second line of the tables is the gg contribution,
�gg, calculated using MCFM, but with NNLO PDFs (as is
appropriate for combining with the NNLL and approxi-
mate NNLO results). The third and fourth rows contain the
NNLL matched and approximate NNLO cross sections

evaluated with NNLO PDFs but without the gg contribu-
tion, �NLOþNNLL and �NLO

approx, respectively. The fifth and

sixth rows are the same as the third and fourth, but with the
gg contribution now included. The uncertainties in the
matched cross section correspond to taking the central
values of the hard, soft, and factorization scales and
varying each separately up and down by a factor of 2.
The uncertainties in the approximate NNLO cross section
correspond to varying the factorization and Qh scales
by a factor of 2 around their central values. The resulting
uncertainties are added in quadrature.
As noted previously in the discussion of the previous

subsection, the factorization scale dependence of the
matched cross section is less than that of the NLO cross

section. This cancellation is more extreme at
ffiffiffi
S

p ¼ 7 and
8 TeV. Hence, even with hard and soft scale variation taken
into account the scale dependence of �0NLOþNNLL is less

than that of �NLO. At
ffiffiffi
S

p ¼ 13 and 14 TeV, once the
uncertainties associated with hard and soft scale variation
are taken into account, the scale uncertainty of�0NLOþNNLL

is similar to or greater than that of �NLO.
The scale dependence of the approximate NNLO cross

sections,�0NNLO
approx , at

ffiffiffi
S

p ¼ 7 and 8 TeVis reduced by at least

a factor of 3 relative to the NLO cross section, while atffiffiffi
S

p ¼ 13 and 14 TeV the uncertainties of the NLO and
�0NNLO

approx cross sections are more similar. This is due to a

cancellation of the factorization scale dependence of �gg

and�NNLO
approx at

ffiffiffi
S

p ¼ 7 and 8 TeV that is not present at
ffiffiffi
S

p ¼
13 and 14 TeV. This also explains why the scale variation of
approximate NNLO cross section without gg contribution
is similar to (less than) that with the gg contribution at 7
and 8 TeV (13 and 14 TeV.) Finally, with �0

f ¼ MWW atffiffiffi
S

p ¼ 8 TeV, the zero in the scale uncertainty of �0NNLO
approx

indicates that the factor of 2 of both the factorization
and Qh scales increase the cross section.
Although there is no significant difference between the

cross section prediction of �0NNLO
approx and �0NLOþNNLL, we

consider �0NNLO
approx to be our best prediction for the LHC
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TABLE II. Total cross sections for pp ! WþW� with �0
f ¼ 2MW , �

0
h ¼ MWW , �

0
s ¼ �min

s ,
and Q0

h ¼ MWW . The NLO �NLO includes the gg contribution and is evaluated with NLO PDFs

and the remaining entries are evaluated with MSTW2008nnlo PDFs. The primed cross section
�0NLOþNNLL is the sum of gg contribution �gg and the matched �NLOþNNLL, while �0NNLO

approx is the

sum of �gg and approximate NNLO, �NNLO
approx. The last row, �

0NNLO, is our best prediction for the

cross section.

� (pb)
ffiffiffi
S

p ¼ 7 TeV
ffiffiffi
S

p ¼ 8 TeV
ffiffiffi
S

p ¼ 13 TeV
ffiffiffi
S

p ¼ 14 TeV

�NLO 45:7þ1:5
�1:1 55:7þ1:7

�1:2 110:6þ2:5
�1:6 122:2þ2:5

�1:8

�gg 1:0þ0:3
�0:2 1:3þ0:4

�0:3 3:5þ0:9
�0:7 4:1þ0:9

�0:7

�NLOþNNLL 44:9þ0:6
�0:6 54:8þ0:7

�0:8 108:2þ1:3
�1:5 119:5þ1:5

�1:6

�0NLOþNNLL 45:9þ0:5
�0:6 56:1þ0:7

�0:8 111:7þ1:8
�1:6 123:6þ2:0

�1:8

�NNLO
approx 45:0þ0:4

�0:1 54:9þ0:5
�0:05 108:3þ1:0

�0:4 119:6þ1:2
�0:5

�0NNLO
approx 46:0þ0:4

�0:047 56:2þ0:6
�0:1 111:8þ1:7

�1:1 123:7þ1:8
�1:2
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WþW� production cross sections, since �0NNLO
approx for the

most part has less scale variation than �0NLOþNNLL. By
comparing theNLO and approximateNNLO,�0NNLO

approx , cross

sections, it is apparent that the effect of the higher order
corrections is to increase the cross section less than �1 pb

at
ffiffiffi
S

p ¼ 8 TeV and less than �3 pb at
ffiffiffi
S

p ¼ 14 TeV,
while reducing the theoretical uncertainty from scale var-
iations. The matched NNLL cross section increases the
NLO cross section by similar amounts, with a slightly
increased scale uncertainty. There is very little difference
between using a fixed factorization scale and a dynamic
factorization scale. It appears that the prediction for the
WþW� cross section is under good theoretical control.

IV. CONCLUSION

Now that theHiggs boson is discovered, a full exploration
of the electroweak sector has begun. An important signal for
this exploration is the pair production of gauge bosons, in
particular WþW� production. This signal is a major back-
ground to H ! WþW� and is sensitive to the electroweak
gauge boson triple coupling, which directly probes the
mechanism of electroweak symmetry breaking and the
SUð2Þ �Uð1Þ gauge structure, respectively. In order to be
sensitive to new physics in the WþW� signal and measure
theH ! WþW� decay channel well, it is important to have
accurate and precise theoretical predictions for WþW�
production cross section and differential distributions.

In this paper we resummed large logarithms associated
with soft gluon emission at partonic threshold, z ¼
M2

WW=s ! 1, at NNLL order for WþW� pair production.
This resummation was performed using the formalism of
SCET [25–28] which allows for the resummation directly
in momentum space [29,30]. The NNLL resummed results
were then matched onto the known NLO results [12,13].
We also calculated the approximate NNLO WþW� cross
section. We thus obtain the most accurate cross sections
and invariant mass distributions forWþW� production that
have been calculated to date.

We found that the effect of the threshold resummation
on the invariant mass distribution was to increase the
differential cross section �3%–4% in the peak region for

both
ffiffiffi
S

p ¼ 8 and 14 TeV. The matched NLOþ NNLL and
approximate NNLO cross section both increased the NLO
cross section by �0:5%–1:5% for a factorization scale
central value �0

f ¼ 2MW and �2%–3% for a central scale

of �0
f ¼ MWW , within the theoretical uncertainties. The

theoretical uncertainties of the approximate NNLO cross
section were generally decreased relative to those of the
NLO cross section. These results indicate that the sideband
analysis used for WþW� background estimation to H !
WþW� signal [1,2] is not significantly altered by higher
order corrections. Also, the strong coupling constant per-
turbative expansion of theWþW� production cross section
is firmly under theoretical control.
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APPENDIX A: FIXED ORDER RESULTS

1. Lowest order results

The coefficients of Eq. (7) are [12]
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TABLE III. Total cross sections for pp ! WþW� with �0
f ¼ MWW , �0

h ¼ MWW , �0
s ¼

�min
s , and Q0

h ¼ MWW . The NLO �NLO includes the gg contribution and is evaluated with

NLO PDFs and the remaining entries are evaluated with MSTW2008nnlo PDFs. The primed
cross section �0NLOþNNLL is the sum of gg contribution �gg and the matched �NLOþNNLL, while
�0NNLO

approx is the sum of �gg and approximate NNLO, �NNLO
approx. The last row, �0NNLO, is our best

prediction for the cross section.

� (pb)
ffiffiffi
S

p ¼ 7 TeV
ffiffiffi
S

p ¼ 8 TeV
ffiffiffi
S

p ¼ 13 TeV
ffiffiffi
S

p ¼ 14 TeV

�NLO 44:8þ1:2
�0:9 54:7þ1:4

�1:0 108:8þ1:2
�1:3 120:3þ2:0

�1:3

�gg 0:9þ0:2
�0:2 1:2þ0:3

�0:1 3:3þ0:8
�0:6 3:7þ0:7

�0:6

�NLOþNNLL 44:7þ0:5
�0:6 54:6þ0:6

�0:8 108:1þ1:4
�1:5 119:4þ1:6

�1:7

�0NLOþNNLL 45:6þ0:6
�0:6 55:8þ0:7

�0:8 111:4þ2:0
�1:8 123:1þ2:1

�2:0

�NNLO
approx 44:8þ0:4

�0:1 54:7þ0:4
�0:04 108:2þ1:0

�0:4 119:6þ1:2
�0:6

�0NNLO
approx 45:7þ0:4

�0:04 55:9þ0:5
�0 111:5þ1:6

�1:0 123:3þ1:7
�1:2
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with T3;q ¼ � 1
2 and sW ¼ sin �W . The functions occurring in the lowest order amplitudes are
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2. NLO results

The functions occurring in the one-loop virtual amplitude are [12]
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with F1
dðs; tÞ ¼ F1

uðs; uÞ, J1dðs; tÞ ¼ �J2uðs; uÞ, and K1
dðs; tÞ ¼ K1

uðs; uÞ. The integrals are given by
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APPENDIX B: APPROXIMATE NNLO RESULTS

The hard scattering kernel is expanded in a power series:

Cðz;M; cos �;�Þ ¼ C0ðz;M; cos�;�Þ
þ �s

4	
C1ðz;M; cos�;�Þ

þ
�
�s

4	

�
2
C2ðz;M; cos�;�Þ: (B1)

Similarly, the hard function is expanded in a power series:

HðMWW;cos�;�fÞ¼H0ðMWW;cos�Þ
þ�s

4	
H1ðMWW;cos�;�fÞ

þ
�
�s

4	

�
2
H2ðMWW;cos�;�fÞ; (B2)

where H1 ¼ H1
reg þH1

extra, where H1
reg and H1

extra are

defined in Eq. (22).
The approximate NNLO cross section is found by cal-

culating the scale dependent pieces of the leading singular
contribution to C2 and adding this contribution to the total
NLO cross section. Using the results for the hard and soft
functions to NNLO, an approximate formula for the NNLO
piece, C2, can be determined which includes the leading
singular pieces. The result is written as an expansion of C2

in ‘‘plus’’ functions:

C2ðz;M;cos�;�fÞ¼
X3
n¼0

DðnÞ
�
lnnð1�zÞ
1�z

�
þ
þRð0Þ
ð1�zÞ;

(B3)

where

Dð3Þ ¼ 64H0sð2;4Þ (B4)

Dð2Þ ¼ 24H0½sð2;3Þ þ 4Lss
ð2;4Þ� (B5)
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and
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The logarithms are defined as

LM ¼ log

�
M2

�2
f

�
Ls ¼ log

�
s

�2
f

�
: (B10)

The soft contributions are found from the RG evolution
and explicit calculation of the soft function [31],

sð1;0Þ ¼ CF	
2

3
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1; (B11)

where CF ¼ 4=3, CA ¼ 3, TF ¼ 1=2, nf ¼ 5, and �3 is a

Riemann zeta function. Expressions for �0, �1, �
s
0, �

s
1 and

�0 can be found in Ref. [31] (where the soft anomalous
dimension is written as �W instead of �s).
Similarly, the hard coefficients can be expanded as a

power series in logs,

H0ðMWW; cos�Þ ¼ hð0;0ÞðMWW; cos �Þ

H1ðMWW; cos�;�fÞ ¼
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(B12)

and

L � ln

 
Q2

h

�2
f

!
: (B13)

We have introduced an additional arbitrary scaleQh. Using
the RGEs of the hard function, we can solve for the hard
coefficients:
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�
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where the arguments of the hard coefficients have been
suppressed. The anomalous dimension of the hard Wilson

coefficient CV , �
V , can be found in Ref. [31]. The coef-

ficients hð0;0Þ and hð1;0Þ can be calculated from the known
LO and NLO hard functions given in Eqs. (21) and (22).
Additionally, since an additional arbitrary scale Qh was

introduced, the Qh dependence of hð1;0Þ and hð2;0Þ can be
solved for:

hð1;0Þ ¼ X2
n¼0

hð1;nÞQh¼MWW
ln n M

2
WW

Q2
h

hð2;0Þ ¼ X4
n¼0

hð2;nÞQh¼MWW
ln n M

2
WW

Q2
h

;

(B15)

where the subscript Qh ¼ MWW indicates the value of Qh

at which the coefficients on the rhs are evaluated at.
Using these coefficients, the NNLO result in Eq. (B2) is

independent of the scale Qh. However, without a full

calculation, it is not possible to know hð2;0Þ. Since the other
NNLO coefficients, hð2;nÞ for n ¼ 1, 2, 3, are independent

of hð2;0Þ, then hð2;0Þ can be set to zero and an approximate
NNLO result is obtained. The purpose of introducingQh is
now clear, as discussed in Sec. II D.
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