
A Semantics for Attestation Protocols
using Session Types in Coq

Adam Petz

Submitted to the graduate degree program in Electrical
Engineering and Computer Science and the Graduate Faculty
of the University of Kansas School of Engineering in partial

fulfillment of the requirements for the degree of Master of Science.

Thesis Committee:

Dr. Perry Alexander: Chairperson

Dr. Andy Gill

Dr. Prasad Kulkarni

Date Defended

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/213419032?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The Thesis Committee for Adam Petz certifies

that this is the approved version of the following thesis:

A Semantics for Attestation Protocols using Session Types in Coq

Committee:

Chairperson

Date Approved

i



Acknowledgements

I have wonderful friends and family, and I am forever grateful for their undying

support of my pursuits, academic and otherwise. I thank my advisor, Dr. Perry

Alexander, for his continued generousity of time, knowledge, experience, and en-

ergy. During these past two years, I have grown as a student, researcher, and

human being under his patient guidance. To all of the EECS faculty and staff at

KU, including at ITTC, thank you for freely sharing your knowledge and passion.

I’d especially like to thank the rest of my thesis committee, Dr. Andy Gill and

Dr. Prasad Kulkarni, for their support both in the classroom and in the lab. Last

but not least, thanks to my fellow students, especially my labmates. I value your

friendship, passion, empathy, and all of the ping pong breaks.

ii



Abstract

As our world becomes more connected, the average person must place more

trust in cloud systems for everyday transactions. We rely on banks and credit

card services to protect our money, hospitals to conceal and selectively disclose

sensitive health information, and government agencies to protect our identity and

uphold national security interests. However, establishing trust in remote systems

is not a trivial task, especially in the diverse, distributed ecosystem of todays

networked computers. remote attestation is a mechanism for establishing trust in

a remotely running system where an appraiser requests information from a tar-

get that can be used to evaluate its operational state. The target responds with

evidence providing configuration information, run-time measurements, and au-

thenticity meta-evidence used by the appraiser to determine if it trusts the target

system. For remote attestation to be applied broadly, we must have attestation

protocols that perform operations on a collection of applications, each of which

must be measured differently. Verifying that these protocols behave as expected

and accomplish their diverse attestation goals is a unique challenge. An important

first step is to understand the structural properties and execution patterns they

share. In this thesis I present a semantic framework for attestation protocol execu-

tion within the Coq verification environment including a protocol representation

based on Session Types, a dependently typed model of perfect cryptography, and

an operational execution semantics. The expressive power of dependent types

constrains the structure of protocols and supports precise claims about their be-

havior. If we view attestation protocols as programming language expressions, we

can borrow from standard language semantics techniques to model their execu-

tion. The proof framework ensures desirable properties of protocol execution that

hold for all protocols. Within this framework, it is feasible to state and prove

specialized properties such as authenticity and secrecy for individual protocols.

iii



Contents

Abstract iii

Table of Contents iv

1 Introduction 1

2 Background 5

2.1 Remote Attestation . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Session Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Protocol Representation 10

3.1 Message Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Session Types (protoType) . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Protocol Expressions (protoExp) . . . . . . . . . . . . . . . . . . 17

4 Protocol Semantics 21

4.1 Single-step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Multi-step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Values and Normal Forms . . . . . . . . . . . . . . . . . . . . . . 25

5 Semantics Proofs 27

5.1 Progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Preservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.4 Normal Form iff Value . . . . . . . . . . . . . . . . . . . . . . . . 36

iv



6 Example Protocols and Analysis 38

6.1 A Simple Example . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2 Needham-Schroeder Definition . . . . . . . . . . . . . . . . . . . . 41

6.3 An Authentication Property of Needham-Schroeder . . . . . . . . 46

7 Conclusion and Future Work 49

References 53

v



Chapter 1

Introduction

As our world becomes more connected, the average person must place more

trust in remote (cloud) systems for everyday transactions. We rely on banks and

credit card services to protect our money, hospitals to conceal and selectively dis-

close sensitive health information, and government agencies to protect our identity

and uphold national security interests. However, establishing trust in remote sys-

tems is not a trivial task, especially in the diverse, distributed ecosystem of todays

networked computers.

In their foundational paper, Haldar et al. [2004] describe remote attestation

as a mechanism for establishing trust in a remotely running system. In remote

attestation, an appraiser requests information from a target that can be used to

evaluate its operational state. The target responds with evidence providing con-

figuration information, run-time measurements and authenticity meta-evidence

used by the appraiser to determine if it trusts the target system. For remote at-

testation to be applied broadly, we must have attestation protocols [Coker et al.,

2011] that perform operations on a collection of applications, each of which must

be measured differently. Veryfing that these protocols behave as expected and

1



accomplish their diverse attestation goals is a unique challange. An important

first step is to understand the structural properties and execution patterns they

share.

In this thesis we present a semantic framework for attestation protocol exe-

cution within the Coq verification environment [Coq development team, 2016].

Our framework includes a protocol representation, a dependently typed model of

perfect cryptography, and an operational execution semantics. We leverage the

expressive power of dependent types to constrain the structure of protcols and also

to make precise claims about their execution behavior. Armed with this defini-

tional framework, we build a proof framework that ensures desirable properties of

protocol execution, such as progress and termination, that hold for all protocols.

The entire framework, including all Coq definitions, functions, and proofs from

this thesis are available in an online Github repository [Petz, 2016].

Session Types [Honda et al., 1998, Pucella and Tov, 2008] are a type system

that describes communication protocols. In this thesis, we leverage the use of

Session Types to ensure valid construction of protocols and to guide proofs about

their execution semantics. Not only do Session Types reflect the overall structure

of the protocol (its flow of communication and branching events), they are also

parameterized by descriptive message types that provide a detailed description of

the structure of messages being transmitted. These messages are orthogonal to

the Session Type framework, and are implemented as a dependently typed model

of perfect cryptography. They capture the often complex cryptographic structure

of the evidence packages built and shared by attestation protocols.

Although the Session Types only describe message types at explicit commu-

nication events, they implicitly prevent certain “bad” local protocol operations

2



statically. For example, they prevent decryption of a Basic message (that is not

encrypted) and using a Basic message where a Key is expected. Session Types also

support protocol branching where both participants in the protocol are prepared

to branch and remain compatible. One member offers two protocol branches,

while the other chooses a branch and notifies the other member. This branching

capability may be important for selecting alternate attestation activities based

on system configuration, error handling, or other exceptional requirements of the

target system.

Coq supports a unique set of features that make it a convenient platform for

our framework. First, it has robust inductive datatypes with corresponding in-

ductive proof principles. This allows us to build protocols and reason about them

inductively. Inductive datatypes in Coq also provide a natural way to encode

mathematical relations, which in turn are a natural way to encode evaluation

rules for a language. We exploit this feature when defining the operational se-

mantics of protocol execution. Next, Coq has a rich functional programming

environment where we can simulate local operations on protocol data. Finally,

and perhaps most importantly, Coq has expressive verification capabilities with

dependent types and proofs as first class structures. We can pass the protocols

themselves as arguments to a proof, pass proofs about a protocol to other proofs,

etc. Coq’s interactive nature allows us to discover proof patterns over protocol

properties, while its automation capabilities can capture these patterns and at-

tempt to discharge them automatically. We are also encouraged by Coq’s code

extraction capabilities [Leroy, 2012, Ono et al., 2011, Carette et al., 2006]. How-

ever, we leave integration of these verified protocols into an emerging Haskell

remote attestation framework [ArmoredSoftware, 2016] for future work.

3



If we view attestation protocols as programming language expressions, we can

borrow from standard language semantics techniques to model their execution.

We can think of a protocol as a program where the data values are cryptographic

evidence packages, and communication events and branching notifications act as

functions and control structures. We can think of a protocol as being evaluated

to produce a result. In fact, we can prove that a well-typed protocol will always

produce an evidence package of a particular form. We model evaluation using the

popular small-step operational semantics approach.

One unique characteristic of a “protocol-as-a-language” is that since a proto-

col involves two communicating participants, it is made up of two distinct halves.

In effect, the two participants collaborate to evaluate the protocol in tandem.

Although evaluation requires both halves of the protocol, each half may be built

independently and combined freely with many different counterparts. This compo-

sitional approach promotes the re-use of protocol snippets and creates the exciting

opportunity for compositional verification. These snippets are readily paramater-

izable, and can be used in an off the shelf, protocol-as-a-library fashion. Thus, in

addition to the general properties of protocol execution that hold for all protocols,

we can prove specialized properties of individual protocols or families of protocols.

Coq is an ideal exploratory space to develop these custom proof strategies.

4



Chapter 2

Background

2.1 Remote Attestation

Remote Attestation [Haldar et al., 2004] is the process by which a target system

attests to a particular claim about its operational state. An attestation agent on

the target must collect and report evidence to a remote appraiser in support of

the claim. The appraiser examines this evidence against its own standards before

deciding whether or not it trusts the target system. An inherent conflict exists

between the target’s desire to protect itself and the appraiser’s desire to learn

about the target. Even when the participants agree on the information they will

share, it is difficult to verify that the goals of attestation are met while protecting

sensitive information.

Coker et al. [2011] refine the remote attestation process centering on the selec-

tion and execution of an attestation protocol on a remote target. The attestation

protocol sequences execution of attestation service providers (ASPs) that: (i) mea-

sure running applications; (ii) gather stored evidence; (iii) interact with a trusted

platform module (TPM) or virtualized TPM; and (iv) perform nested attestations.

5



Attestation protocols use cryptography to protect sensitive information and also

as a means of meta-evidence to authenticate the attestation process. A trusted

platform module (TPM) provides strong identification and other cryptographic

services during attestation, and can act as a root of trust [Martin et al., 2008].

Virtualized platforms are increasingly appealing platforms for remote attestation

because they provide domain separation and are widely available on stock hard-

ware.

A canonical example of an attestation protocol is the Needham-Schroeder pro-

tocol [Needham and Schroeder, 1978]. Figure 2.1 provides an informal description

of the protocol as a message sequence diagram. The representation is informal be-

cause it cannot be checked by a computer. Message sequence diagrams also suffer

from their inability to specify intermediate local operations, such as decryption,

during protocol execution. The goal of Needham-Schroeder is to exchange secret

nonces with a trusted peer. A and B are participants in the protocol, and an arrow

from A to B specifies a message sent from A to B. Later in this thesis, we de-

scribe the protocol in more detail, represent it formally, and prove an important

property of authentication.

A→ B : {NA}B+

B → A : {NA, NB}A+

A→ B : {NB}B+

Figure 2.1. message sequence diagram for Needham-Schroeder

6



2.2 Cryptography

Cryptography is a powerful tool that enables secure communication in the

prescence of malicious participants in a protocol. At the core of cryptography

are cryptographic keys used to perform encryption and decryption over messages.

Encryption and decryption are inverse operations: encryption hides the content

of a message while decryption uncovers the content of a previously encrypted

message. Since keys are implemented as large randomly generated numbers, it is

reasonable to assume they cannot be guessed. A nonce is also a large, effectively

unique number used to indicate freshness and prevent replay attacks. A hash is

a one-way function that produces a unique representative value of its message

input. A signature is the encrypted hash of a message that binds it to the owner

of the signing key.

Asymmetric cryptography is a popular cryptographic scheme that enables both

secrecy and authentication. It involves a pair of keys: a private key and a public

key. The private key is often bound and protected under a single platform, and

it performs decryption and provides strong authentication via cryptographic sig-

natures. The public key is often publicly available, and performs encryption and

signature checking. We say that the public key member of the pair is the inverse

of the private key member, and vice versa. If a message is encrypted with a key

k, the only key that can decrypt it is the inverse of k. Symmetric cryptography

involves a single shared key that performs both encryption and decryption.

7



2.3 Session Types

Session Types are a type discipline that describe the structure of communica-

tion protocols. They were first introduced by Honda et al. [1998] as an extension

of the pi-calculus. The main communication primitives that inhabit Session Types

are send, receive, choice, and offer. send transmits a message and receive

accepts a message. The Session Type for a protocol that first performs a send is

a :!: p where a is the message type and p is the Session Type for the remaining

communication primitives after the send. Similarly, the Session Type for receive

is a :?: p. The choice primitive allows an entity to choose to proceed in ac-

cordance with one of two protocols. Its Session Type is p1 :+: p2 where p1

and p2 are the Session Types of the two protocol options. Similarly, the Session

Type for offer is p1 & p2, and represents that an entity is prepared to proceed

in accordance with either p1 or p2.

Assigning a Session Type to each communication primitive ensures that a

sequence of such primitives conforms to its specification. If two participants in

a protocol have compatable Session Types, they share a notion of the protocol

structure; they know what types of messages to expect from one another, and

when to expect them. In the Session Types literature, two participants that are

compatable in this way are called dual. The Session Type of one participant is dual

with the Session Type of another only if each send aligns with each receive, each

choice aligns with each offer, and when a send aligns with a receive they agree

on the message type. If we view protocols as programming language expressions,

two participants that are dual represent a well-typed protocol.

We can think of Session Types as indexing communication primitives: as we

build a protocol, we are also building its Session Type. In our Coq representation,

8



dependent types capture this definitional style naturally: the Session Type of a

protocol depends on its messages and sub-protocols. Because Session Types are

resolved statically, we can verify that two protocol participants are well-typed

prior to execution. A more recent implementation of Session Types in Haskell

[Pucella and Tov, 2008] confirms the feasibility of inferring Session Types statically

in a high-level language. This thesis explores Session Types in the context of

attestation protocol verification where they guide the structure of proofs about

protocol execution. They also monitor the structure of messages exchanged and

guarantee that protocols produce evidence packages of the correct type.

9



Chapter 3

Protocol Representation

Before we discuss protocol execution, we must have some suitable representa-

tion of the protocols themselves. The representation must provide a way to build

independent halves of a protocol, on behalf of a single executing entity, while

also recognizing that entities share data during execution. A protocol expression

should consist of dual communication primitives that account for the complex

cryptographic structure of the messages exchanged. To accomplish this in our

representation, we index protocol expressions with Session Types, where the Send

and Receive Session Types are themselves indexed by cryptographic message

types. We can easily encode each of these components as Coq inductive types,

giving us all the benefits of the Coq verification environment. In this chapter,

we will use the terms protocol and protocol expression to describe both a single

participant involved in a protocol, and also to describe a pair of communicating

participants. It will be clear from the context which we mean. When necessary,

we will use the terms protocol half or entity to make it explicit that we mean a

single participant.

10



3.1 Message Types

A motivating factor in the task of formally understanding remote attesta-

tion protocols is the complexity inherent in the cryptographic messages that they

assemble and deliver. These evidence packages are often a dense collection of

primitive data values and cryptographic keys bundled in arbitrary layers of en-

cryption. The encryption may serve to hide private contents of the messages, or

to strongly identify the source of the message. However, there are subtle ways to

extract sensitive information from these messages, even when the protocols that

transmit them are used as intended [Lowe, 1995, Paulson, 1998]

Our dependently typed model of perfect cryptography encoded as a Coq in-

ductive type is based on a model by Lawrence Paulson in the Isabelle language

[Paulson, 1998]. The term perfect in perfect cryptography means that we assume

it is impossible to guess secrets. For instance, the only way a participant can

attain a secret key val of another participant is if it arrives as a message itself,

or can be gleaned from an appropriate sequence of messages and decrypt opera-

tions. Our model aims to organize and monitor the structure and content of the

messages exchanged by attestation protocols, all while maintaining the flexibility

and utility of these complex bundles.

Let’s start with the definition of keyType (Figure 3.1) that represents both

symmetric keys and asymmetric key pairs. Each key holds its own key val that

we choose to be a natrual number. The definition of inverse (Figure 3.2) is not

surprising: A symmetric key is its own inverse, and a public key is the inverse of

the private key with the same key val and vice versa. We can prove that this key

representation exhibits properties from real cryptosystems. For instance, all keys

must have an inverse, and the inverse must be unique (Figure 3.3). The proof

11



of this statement follows from how we represent keyTypes using natural number

key vals.

Definition key val : Type := nat.

Inductive keyType: Type :=
| symmetric : key val → keyType
| private : key val → keyType
| public : key val → keyType.

Figure 3.1. keyType definition

Fixpoint inverse (k :keyType) : keyType :=
match k with

| symmetric k ⇒ symmetric k
| public k ⇒ private k
| private k ⇒ public k
end.

Figure 3.2. inverse definition

Theorem inverse bijective : ∀ k k’,
inverse k = inverse k’ → k = k’
∧ ∀ k, ∃ k’’, inverse k = k’’.

Figure 3.3. A property of keys

The message type (Figure 3.4) represents information exchanged during pro-

tocol execution. Notice that message is indexed by a parameter of type type.

type is its own inductive datatype, and defines our type language for messages.

It should not be confused with the built-in Coq keyword Type (with an uppercase

T) that is a universe holding other Coq datatypes. Each constructor of message

is defined on its own line, where each line ends with a Coq expression of the form

message <type>. This assigns the type to the message being built.

12



Inductive type : Type :=
| Basic : type
| Key : type
| Encrypt : type → type
| Hash : type
| Pair : type → type → type.

Inductive message : type → Type :=
| basic : nat → message Basic
| key : keyType → message Key
| encrypt (t :type) : message t → keyType → message (Encrypt t)
| hash : ∀ t, message t → message (Hash)
| pair : ∀ t1 t2, message t1 → message t2 → message (Pair t1 t2 )
| bad : ∀ t1, message t1.

Figure 3.4. message type definition

This style of datatype definition is akin to GADTs in Haskell. In essence, we

are defining the typing rules simultaneously with the syntax. In a more standard

treatment[Pierce, 2002], terms of a language are defined independently of their

types. Typing rules connect them by building a type derivation: a proof that

a term has a certain type. If such a proof does not exist, the term is ill-typed.

In our representation, building a term is the same thing as building its type

derivation. Thus, if we can build a message term, it is well-typed by construction.

For example, the only way to build a message of type Encrypt t is by providing

a well-typed message of type t and a valid keyType. It is important to note that

there is only one way to build each message type: through its sole constructor.

The constructors for primitive messages are basic and key. They are primitive

in the sense that they do not hold other messages. key is simply a label for a

keyType as described above. basic holds a natural number payload representing

a primitive measurement in an attestation protocol. For simplicity, we assume all

basic measurements are natural number values, but we could easily extend our

13



model to account for other basic measurement types. Notice that the types of the

primitive messages are message Basic and message Key, respectively.

The first compound message constructor is pair. pair is a standard product

type that holds two messages of possibly different types. This is reflected in the

final Coq expression of its definition, Pair t1 t2, where t1 and t2 are arbitrary

message types. pair provides our first example of the expressive power of depen-

dent types, since the type of the pair depends on its sub-messages. Notice that

pairs can be arbitrarily nested, giving us the flexibility to return multiple mea-

surements from a protocol, and also to represent more sophisticated measurement

structures such as lists and trees, if desired.

The next compound message constructor is encrypt, representing a message

encrypted with a key. It takes a message of an arbitrary type t, along with a

keyType, and builds a message of type Encrypt t. This provides another example

of dependent types in action: the overall type of the message, message Encrypt

t, depends on the message we provide to the encrypt constructor. This provides a

convenient way to keep track of the cryptographic structure of the messages as they

are built; we cannot build an encrypted message without tagging its type with the

type of its payload. The final compound message constructor is hash, representing

the cryptographic hash of its payload message. We don’t reference hash again in

this thesis, but it highlights that the message type is highly extendable.

Finally, we include the message constructor bad to encapsulate all forms of

errors while operating on message types. One example of such an error is when

decryption fails on an encrypted message. This happens when we attempt to

decrypt using a key that is not the inverse of the key used to encrypt the message.

Notice that the bad constructor can inhabit any message type. As we will see

14



later in the examples section, this allows us to maintain compatible Session Types

in the presence of errors. One disadvantage of this error representation is that it

does not provide a descriptive error diagnostic. For instance, a bad message can

be decrypted multiple times and ultimately return a bad message. But it may be

difficult to pinpoint exactly where the message “went wrong”. We acknowledge

that we may need a more sophisticated error handling mechinism–possibly an

inductive error type that maintains error type information. We leave this for

future work.

3.2 Session Types (protoType)

Now that we have a suitable representation for messages, let’s begin to describe

the representation for the attestation protocols that exchange these messages. In

the next section we will present the protocol expressions themselves, but first we

need to define their type language. Our type language is based on Session Types,

and we borrow names and notation directly from the Session Types literature.

Similar to the type language for message types, we encode the type language for

protocols as a Coq inductive type named protoType (Figure 3.5) with a construc-

tor for each element of the type language.

Inductive protoType : Type :=
| Send : type → protoType → protoType
| Receive : type → protoType → protoType
| Choice : protoType → protoType → protoType
| Offer : protoType → protoType → protoType
| Eps : type → protoType.

Figure 3.5. protoType definition

15



The Send and Receive type constructors have the same signature. They both

require a message type and another protoType. The type represents the type

of message being sent or received, and the protoType represents the structure of

the remaining protocol actions after the send or receive. This recursive represen-

tation gives an implicit way to sequence individual protocol types. For instance,

a valid protoType for a protocol expression that sends a Basic message, then

receives a Basic message and terminates (returning a Basic message) is as fol-

lows: Send Basic (Receive Basic (Eps Basic)). The Eps constructor takes a

type argument that simply signifies the type of message returned at the end of

the protocol. We can represent these types more concisely with infix notations for

Send and Receive as follows: Basic :!: Basic :?: Eps Basic.

The Choice and Offer constructors also have matching type signatures taking

two protoType arguments. Together, they allow us to represent protocol branch-

ing. As we will see in the next section, the ChoiceC protocol expression includes

a boolean selector that chooses either the left or the right protocol branch in or-

der to proceed with execution. Notice that this boolean is not mentioned in the

protoType for Choice, although it could be. We also have concise infix notations

for Choice and Offer. For instance, a protocol expression that receives a Basic

message, then chooses between two protocols has the following type: Basic :?:

(P1T :+: P2T), where P1T and P2T are the types of the two protocols. Simi-

larly, a protocol that sends a Basic message, then is prepared to continue with

two different protocols has the following type: Basic :!: (P1T’ :&: P2T’).

16



3.3 Protocol Expressions (protoExp)

Now that we have the type language for protocols defined, let’s define the

protocol expressions that inhabit these Session Types. Once again, we use a Coq

inductive type with a constructor for each communication primitive. Notice that

protoExp (Figure 3.6) is indexed by a protoType argument that is its Session

Type. Each constructor definition ends with a statement of the form protoExp

<protoType> that assigns a Session Type to the expression.

Inductive protoExp : protoType → Type :=
| SendC {t :type} {p’ :protoType} : (message t) → (protoExp p’ )
→ protoExp (Send t p’ )

| ReceiveC {t :type} {p’ :protoType} : ((message t)→(protoExp p’ ))
→ protoExp (Receive t p’ )

| ChoiceC (b:bool) {r s :protoType} : (protoExp r) → (protoExp s)
→ (protoExp (Choice r s))

| OfferC {r s : protoType} : (protoExp r) → (protoExp s)
→ protoExp (Offer r s)

| ReturnC {t :type} : (message t) → protoExp (Eps t).

Figure 3.6. protoExp definition

Also notice that each constructor introduces arbitrary types using Coq’s curly

brace syntax for implicit types. Coq allows these types to be made implicit since

it can always infer them from the values provided. This is an appealing property

of our dependently-typed representation: as we build a protocol expression we are

also building elements of its Session Type, and Coq can infer them.

The SendC constructor holds a message of arbitary type t, and a protoExp of

an arbitrary protoType p’. ReceiveC may be the most interesting constructor,

as it holds a function from an arbitrary message type to an arbitrary protocol

expression. A function is a natural representation for the receive primitive: a

17



function, like a listening protocol participant, waits for an input message, then

proceeds with the remaining protocol with this new message in its scope. We can

see the duality of SendC and ReceiveC since SendC provides the message that

ReceiveC consumes.

The ChoiceC constructor holds a boolean selector, and also holds two arbitrary

protocol expressions. The types of these two protocol expressions appear in the

overall Choice Session Type. The OfferC constructor holds two arbitrary pro-

tocol expressions. The types of these two protocol expressions also appear in its

Offer Session Type. As we will see later, during execution the OfferC expression

depends on the boolean selector from ChoiceC to determine which of its branches

to take. The ReturnC constructor simply holds an arbitrary return message, and

signifies the last action of a protocol.

We can now build protocol expressions on behalf of a single executing entity.

However, these expressions only account for one half of a protocol on their own.

We need to define what it means for two halves of a protocol to be compatible.

By compatible we mean that when the two halves combine, their corresponding

communication primitives align in such a way that, together, they are capable of

executing a protocol to completion. We say that two protocols are dual if they

are compatible in this way. Dualness is a static property of protocol expressions,

and as such we can define it as a recursive binary proposition over Session Types

called DualT (Figure 3.7).

Notice that a Send is only compatible with a Receive when they agree on

the message type and also when their remaining protocol types are themselves

dual. This ensures that the receiving end knows the structure of the message

sent, and that this “knowing of structure” holds for both participants for the rest

18



Fixpoint DualT (t t’ :protoType) : Prop :=
match t with

| Send p1T p1’ ⇒
match t’ with

| Receive p2T p2’ ⇒ (p1T = p2T ) ∧ (DualT p1’ p2’ )
| ⇒ False
end

| Receive p1T p1’ ⇒
match t’ with

| Send p2T p2’ ⇒ (p1T = p2T ) ∧ (DualT p1’ p2’ )
| ⇒ False
end

| Choice p1’ p1’’ ⇒
match t’ with

| Offer p2’ p2’’ ⇒ (DualT p1’ p2’ ) ∧ (DualT p1’’ p2’’ )
| ⇒ False
end

| Offer p1’ p1’’ ⇒
match t’ with

| Choice p2’ p2’’ ⇒ (DualT p1’ p2’ ) ∧ (DualT p1’’ p2’’ )
| ⇒ False
end

| Eps ⇒
match t’ with

| Eps ⇒ True
| ⇒ False
end

end.

Figure 3.7. DualT definition

of the protocol. Choice is only compatible with Offer when their left and right

branches are duals of one another. This ensures that the protocols remain dual

regardless of the branch selected. Finally, as a base case, Eps is only dual with

another Eps. This ensures that when one side of the protocol finishes, so does the

other. It is important to note that, by definition, any other pair of protoTypes are

not duals. We define the proposition Dual (Figure 3.8) over protocol expressions

19



simply in terms of DualT.

Definition Dual {t t’ :protoType} (p1 :protoExp t) (p2 :protoExp t’ ) : Prop
:= DualT t t’.

Figure 3.8. Dual definition

20



Chapter 4

Protocol Semantics

A protocol expression is a series of one-sided communication events that rep-

resent the actions of a single participant in a protocol. However, it doesn’t make

sense to evaluate a protocol expression on its own. In order to define the semantics

of a protocol in its entirety, we must consider a pair of protocol expressions that

collaborate to produce a result. For instance, a ReceiveC command must obtain

its input message from an accompanying SendC command in order to proceed

with execution. We present our evaluation semantics in the standard small-step

operational style, and encode them naturally within a Coq Inductive datatype.

4.1 Single-step

We first define what it means for a protocol expression to take a single step

in its execution. We achieve this by using a Coq Inductive datatype called step

(Figure 4.1) that has a constructor for each evaluation rule. The type signature

for step takes an argument of type State, three arbitrary protoExp arguments

(preceded necessarily by their protoType index arguments), and another State

21



argument. The first State argument represents the state before this step of exe-

cution. The last State argument represents the state after this step of execution.

We will discuss the specifics of the State structure in more detail later, but a de-

sirable property of our evaluation semantics is that we can leave State abstract.

There is nothing in our semantic definition that depends on our implementation

of State. The only way we modify State is through the updateState function,

which we can also leave abstract. This allows us to continue to enhance the

implementations of State and updateState without modifying the underlying

evaluation semantics.

The first two protoExp arguments to step–indexed with protoTypes t and r,

respectively–represent the two halves of the protocol we are evaluating. The third

protoExp argument–indexed with protoType t’–represents the first protoExp

argument after taking one step of evaluation. So in reality, we are only advancing

the first protoExp argument a single step. The second protoExp simply aids in

evaluation.

Let’s look at the evaluation rules themselves. Each rule is a constructor with

a name that starts with ST and introduces variables that it needs in its defini-

tion. For example, the rule ST Send Rec introduces a message m, a protoExp

p1, a function f, and a State st. Notice that the rule also introduces the nec-

essary index variables pt1, pt2, and mt in order to populate its other variables.

Finally, the last line of each rule–starting with step–describes how two protocol

expressions are reduced to one. For the ST Send Rec rule, a SendC paired with a

ReceiveC reduces to the remaining protocol inside the SendC constructor, p1. For

the ST Rec Send rule, the ReceiveC constructor is the leftmost expression, and

it evaluates to the result of applying the function f to the message m supplied by

22



Inductive step : ∀ (stIn:State) (t r t’ :protoType),
(protoExp t) → (protoExp r) → (protoExp t’ ) → State → Prop :=

| ST Send Rec : ∀ pt1 pt2 mt
(m:message mt) (p1 :protoExp pt1 )
(f :(message mt) → protoExp pt2 ) (st :State),

step st (SendC m p1 ) (ReceiveC f ) p1 st
| ST Rec Send : ∀ pt1 pt2 mt

(m:message mt) (p1 :protoExp pt1 )
(f :(message mt) → protoExp pt2 ) (st :State),

step st (ReceiveC f ) (SendC m p1 ) (f m) (updateState m st)
| ST Choice true : ∀ pt1 pt1’ pt2 pt2’

(r :protoExp pt1 ) (r0 :protoExp pt1’ )
(s :protoExp pt2 ) (s0 :protoExp pt2’ ) (st :State),

step st (ChoiceC true r s) (OfferC r0 s0 ) r st
| ST Choice false : ∀ pt1 pt1’ pt2 pt2’

(r :protoExp pt1 ) (r0 :protoExp pt1’ )
(s :protoExp pt2 ) (s0 :protoExp pt2’ ) (st :State),

step st (ChoiceC false r s) (OfferC r0 s0 ) s st
| ST Offer true : ∀ pt1 pt1’ pt2 pt2’

(r :protoExp pt1 ) (r0 :protoExp pt1’ )
(s :protoExp pt2 ) (s0 :protoExp pt2’ ) (st :State),

step st (OfferC r0 s0 ) (ChoiceC true r s) r0 st
| ST Offer false : ∀ pt1 pt1’ pt2 pt2’

(r :protoExp pt1 ) (r0 :protoExp pt1’ )
(s :protoExp pt2 ) (s0 :protoExp pt2’ ) (st :State),

step st (OfferC r0 s0 ) (ChoiceC false r s) s0 st.

Figure 4.1. single-step evaluation relation

its SendC counterpart. This results in a protoExp indexed with Session Type pt2,

as specified in the type of f. We can think of these evaluation rules as “peeling

off” a SendC or ReceiveC.

The ST Choice true rule says that a ChoiceC expression where the boolean

selector is true evaluates to its leftmost protocol expression, here r. The ST Choice false

rule is similar, except the boolean selector is false and it evaluates to the right-

most expression, s. The boolean selector here is of the standard boolean type in

23



Coq, and is not an explicit part of our protocol language definition. Because of

this, the selector may actually be a complex boolean expression. But we know

that all Coq functions terminate [Coquand and Huet, 1988], so it will evaluate to

true or false eventually. The evaluation rules for OfferC are similar to those

for ChoiceC.

4.2 Multi-step

Next, we define the multi-step evaluation relation for protocol expressions as

the reflexive, transitive closure of single-step evaluation. We encode the relation

as a Coq Inductive datatype named multi (Figure 4.2).

Inductive multi : ∀ (stIn:State) (t r t’ :protoType),
(protoExp t) → (protoExp r) → (protoExp t’ ) → State → Prop :=

| multi refl : ∀ (t r :protoType) (x :protoExp t) (y :protoExp r) (st :State),
multi st x y x st

| multi step : ∀ (t t’ r r2 s :protoType),
∀ (x :protoExp t) (x’ :protoExp t’ )

(y :protoExp r) (y’ :protoExp r2 )
(z1 :protoExp s) st st’ st’’ st2 st2’,

step st x x’ y st’ →
step st2 x’ x y’ st2’ →
multi st’ y y’ z1 st’’ →
multi st x x’ z1 st’’.

Figure 4.2. multi-step evaluation relation multi

The type signature for multi is identical to that of step because they are both

relations from a pair of protocol expressions to another protocol expression. The

difference is that step represents a single step of evaluation; multi represents zero

or more steps. For single-step evaluation, we said that the rightmost protocol was

there to aid in evaluation of the leftmost. However, for multi-step evaluation it is

24



important that both sides of the protocol advance in lock-step fashion with one

another. After the first step of multi-step evaluation, if the protocol is not already

finished, both sides will again rely on eachother to continue with evaluation.

The multi refl constructor defines reflexivity, acting as a base case in a

proof of multi-step evaluation. It says that a protocol expression “evaluates” to

itself in zero steps without modifying its State. The multi step constructor is

more interesting. It defines transitivity to chain single steps of evaluation. The

definition of multi step seems cluttered due to the variable introductions, but

the last four lines are the most important. The last line shows our ultimate goal:

a proof that the protocol expression x–paired with protocol expression x′ with an

initial State of st–evaluates to a protocol expression z1 with a final state of st′′.

In order to prove this, we need three intermediate proofs: a proof that x–paired

with x′ with State st–evaluates to y in State st′, a proof that x′–paired with

x–evaluates to y′, and a proof that y–paired with y′ with State st′–evaluates to

z1 in State st′′. What is happening here is that first we evaluate both halves of

the protocol–x and x′–one step, where each half aids the other. This gives us two

new protocol halves y and y′. Then if we can evaluate y and y′ in zero or more

steps to our goal expression z1, we’re done.

4.3 Values and Normal Forms

When we view protocol expressions as programming language expressions, it is

natural to define a value set, or a set of special expressions that we view as being

the final result of evaluating a protocol. Our ReturnC expression is the obvious

choice since it signifies the end of protocol execution. We can represent this easily

in Coq as a proposition over protocol expressions called isValue (Figure 4.3).

25



Definition isValue {t :protoType} (p:protoExp t) : Prop :=
match p with

| ReturnC ⇒ True
| ⇒ False
end.

Figure 4.3. defining value set

Another important set of expressions in a language are normal forms. Normal

forms are expressions that cannot be evaluated further. We defined the value set

directly and somewhat arbitrarily. Normal forms, however, are a built-in property

of the language, and they arise from a standard definition. normalForm (Figure

4.4) is a proposition over a pair of protocol expressions. It says that for protocol

expressions p1 and p2, and for all starting and ending States, there is no protocol

expression x such that p1 evaluates to x with the help of p2.

Definition normal form {p1t p2t :protoType}
(p1 :protoExp p1t)(p2 :protoExp p2t) : Prop :=

∀ st st’, ¬ ∃ t’ (x :protoExp t’ ), step st p1 p2 x st’.

Figure 4.4. normal form definition

Some languages have an appealing property that their value set and normal

form set are identical. When this is not the case, it is possible for some terms

to be stuck : a normal form but not a value. Stuck terms are usually undesirable

because our operational semantics does not know how to handle them. In a sense,

the program has reached a “meaningless state” Pierce [2002]. In our protocol

language values and normal forms are one and the same. We prove this and other

desirable properties of our protocol language in the next chapter.

26



Chapter 5

Semantics Proofs

The multi-step evaluation relation for our protocol representation consists of

rules by which a pair of protocol expressions may proceed in evaluation. Although

these rules seem reasonable, they don’t come with any formal guarantees about

the nature of evaluation. In particular, it isn’t immediately obvious that a pair

of protocol expressions remains well-typed throughout execution. Remember,

the types of protocol expressions are Session Types, and a pair of well-typed

protocol expressions must have Dual Session Types. If we again view protocols

as programming language expressions, we can prove several standard properties

from the language semantics literature that are also pertinent for protocols. Type

Safety is a critical goal, but protocol termination is also important: protocols

should always run to completion and produce an evidence package of the correct

type. Just as types are the backbone of such proofs about programming languages

[Pierce, 2002], Session Types are the backbone of proofs about protocols.

A convenient way to build a proof in Coq is by using interactive proof com-

mands known as tactics. Input arguments to the proof become the hypotheses

that we manipulate with tactics in order to build a proof object of the result

27



type. We limit our discussion of proof tactics to what is necessary to convey the

structure of our proofs, but there are resources that provide a more thorough

coverage of their full power and utility [Pierce et al., 2015, Chlipala, 2013, Coq

development team, 2016]. The Coq interactive environment consists of a source

code buffer and a goal buffer. The source code buffer contains Coq definitions,

theorems, and proof scripts. The user proceeds interactively through the source

code in a linear fashion. The goal buffer shows the state of the current proof in

focus: a list of hypotheses above a solid line and a goal below. In the sections

that follow we discuss the statement of each Theorem in detail, then outline the

structure and interesting elements of each proof.

5.1 Progress

Towards the goal of Type Safety, we will first prove the property of progress : A

well-typed term is either a value or it can take a step according to the evaluation

rules.

Theorem progress {t t’ :protoType} :
∀ (p1 :protoExp t) (p2 :protoExp t’ ) st,

(Dual p1 p2 ) →
isValue p1 ∨ (∃ t’’ (p3 :protoExp t’’ ) st’, step st p1 p2 p3 st’ ).

Figure 5.1. statement of progress theorem

The type signature for the progress Theorem (Figure 5.1) takes two protocol

expressions p1 and p2 of arbitrary Session Types, an arbitrary initial State st,

a proof argument of type (Dual p1 p2), and returns a proof of the progress

property. In particular, it returns a proof of the disjunction that either p1 is

a value, or there exists a protocol expression p3 and final State st’ such that

28



p1 in State st can take a step to p3 in State st’ with the help of p2. It is

no coincidence that the syntax for Theorem types is identical to the syntax for

function types in Coq: building a proof to inhabit a Theorem type is the same as

building a function to inhabit a function type. This is one of many manifestations

of the Curry-Howard Correspondence [Wadler, 2015] in Coq. The Curry-Howard

Correspondence draws convincing parallels between proofs and programs, as well

as between theorems and types.

Here we present a completed proof script of the progress Theorem as a se-

ries of proof tactics enclosed by the Coq keywords Proof and Qed (Figure 5.2).

Comments in proof scripts are enclosed by the symbols (* and *).

Proof.
intros p1 p2 st dualProof. destruct p1 ; destruct p2 ; inversion dualProof.
(* Case: p1 = SendC, p2 = ReceiveC *)

right. subst.
∃ p1’. eexists. constructor.

(* Case: p1 = ReceiveC, p2 = SendC *)

right. subst.
∃ (f m). eexists. constructor.

(* Case: p1 = ChoiceC, p2 = OfferC *)

right. destruct b.
∃ p1 1. eexists. constructor.
∃ p1 2. eexists. constructor.

(* Case: p1 = OfferC, p2 = ChoiceC *)

right. destruct b.
∃ p1 1. eexists. constructor.
∃ p1 2. eexists. constructor.

(* Case: p1 = ReturnC, p2 = ReturnC *)

left. simpl. trivial.
Qed.

Figure 5.2. proof of progress theorem

The first line of tactics (after the Proof keyword) outlines the structure of this

proof. The intros tactic brings the universally quantified variables and the (Dual

29



p1 p2) proof into the context so that they are available as hypotheses. For clarity

we provide variable names p1, p2, and dualProof to the intros tactic, although

Coq would generate suitable names for us automatically. Next, the destruct tac-

tic performs proof-by-cases. When we apply destruct to the protocol expression

p1, it generates a new sub-goal for each constructor of protoExp, replacing p1

with a representative value of the constructor in each case. Since protoExp has

five constructors, destruct p1 generates five new sub-goals. destruct works on

any Inductive datatype. The ; operator is a binary infix operator that performs

the first tactic, then performs the second tactic on each sub-goal generated by

the first. Thus, the compound command destruct p1; destruct p2 generates

25 subgoals representing all the possible forms that a pair of protocol expressions

may take. ; is one of many Tacticals in Coq: a tactic that takes other tactics as

arguments.

Obviously, some of these pairs are not well-typed. For example, a pair of SendC

expressions are not Dual. In fact, there are only five well-typed pairs:

(SendC, ReceiveC), (RecieveC, SendC), (OfferC, ChoiceC), (ChoiceC, OfferC),

and (ReturnC, ReturnC). What we would like is a way to eliminate all sub-goals

where the pair of protocol expressions are ill-typed. The inversion tactic does

exactly this. When p1 and p2 are not Dual, inversion recognizes the contradic-

tion in the dualProof assumption and discharges the sub-goal automatically. In

the cases where p1 and p2 are Dual, rather than discharging the sub-goal imme-

diately, inversion adds new assumptions that help prove progress in each case.

These new assumptions arise from what it means to be Dual. For instance, if p1

is (SendC m p1’) and p2 is (ReceiveC f) where m has type (message t) and f

has function type (message t0 → protoExp p’0), inversion dualProof gen-

30



erates an assumption that t = t0. Remember, the destruct tactic populated p1

and p2 with representative values, including the message types t and t0 which

may or may not be equal. t = t0 is an important additional assumption in prov-

ing progress because in order to take a step of evaluation under the step relation,

SendC and ReceiveC must agree on their message type.

In the first well-typed sub-goal, p1 is SendC and p2 is ReceiveC. Since our

goal is a disjunction, we must prove only one of its members. In this case, the

right tactic tells Coq that we intend to prove the rightmost member–i.e. that

the protocol can take a step. Next, the subst tactic uses the t = t0 assumption–

generated earlier by inversion–to perform substitution and unify the message

types. Finally, we must provide a witness protoExp, along with its protoType

index and starting and ending States, such that our pair of protocol expressions

take a step to it. In this case, our leftmost protoExp is a SendC that holds another

protoExp, which Coq named p1’. This p1’ is the witness we need–it represents

the remainder of the protocol after the send. We provide this witness with the ∃

tactic, then let the eexists tactic infer the witness for the ending State. Finally,

the constructor tactic looks for a constructor of step that matches our goal.

Since the ST Send Rec constructor is such a proof, the sub-goal is discharged.

The next sub-goal where p1 is ReceiveC and p2 is SendC is proved in an identical

way, except that the protoExp witness is (f m) where f is the function held by

ReceiveC. ReceiveC can take a step by applying f to the message m provided by

SendC. (f m) is the remainder of the protocol after the receive.

The cases for ChoiceC and OfferC are similar, except we must destruct the

boolean selector b from ChoiceC. In the sub-goal where b is true, we provide the

leftmost protoExp branch–named p1 1 by Coq–as the next-step witness. When

31



b is false, we choose the rightmost protoExp branch, p1 2. The final well-typed

sub-goal occurs when both protocol expressions are ReturnC. In this case, we must

prove p1 is a value. The left tactic chooses the isValue portion of the disjunction

in the goal. Proving ReturnC is a value follows trivially from simplification using

the simpl tactic.

5.2 Preservation

Next we verify the other half of Type Safety, namely preservation: If a well-

typed term takes a step, the resulting term is well-typed.

Theorem preservation {t t’ p3t p4t : protoType} :
∀ (p1 :protoExp t) (p2 :protoExp t’ ),
(Dual p1 p2 ) →
∀ (p3 :protoExp p3t) (p4 :protoExp p4t) st st’ st2 st2’,

(step st p1 p2 p3 st’ ∧
step st2 p2 p1 p4 st2’ )
→ (Dual p3 p4 ).

Figure 5.3. statement of preservation theorem

The type signature of preservation (Figure 5.3) takes a proof that protocol

expressions p1 and p2 are well-typed, a proof that p1 and p2 can take a step of

evaluation to protocol expressions p3 and p4, and returns a proof that p3 and p4

are well-typed. The ∀ quantifiers are critical: they express that we must consider

every possible way a well-typed protocol can take a step. The overall structure of

the preservation proof (Figure 5.4) is the same as for the proof of progress.

In fact, the first line of proof tactics is identical.

The second line of proof tactics performs most of the legwork. The Coq try

Tactical takes a series of tactics as an argument, and tries them on each sub-goal.

32



Proof.
intros p1 p2 dualProof. destruct p1 ; destruct p2 ; inversion dualProof ;
try (intros; destruct H1 ; dep destruct H1 ; dep destruct H2 ; assumption).
intros. destruct H. inversion H.

Qed.

Figure 5.4. proof of preservation theorem

try is useful for proof automation in conjunction with the ; Tactical because try

does not fail or cause a proof to halt. It simply proves as much of each sub-goal

as possible. In this case, the try phrase discharges four out of the five well-

typed sub-goals. Using the dep destruct [Chlipala, 2013] tactic on the step

proof assumptions resolves p3 and p4 in our goal to the results of stepping p1

and p2, respectively. For example, if we know that p1 is (SendC m p1’) and

p2 is (ReceiveC f), then performing dep destruct on the step st p1 p2

p3 st’ assumption resolves p3 to p1’–the remaining protocol after the send. We

won’t go into the details of the dep destruct tactic here, but it relies on a version

of destruct specialized for dependent types. Once we know the precise forms of

p3 and p4, we find that a proof of (Dual p3 p4) already exists in our assumptions

due to the recursive component of the earlier inversion on dualProof. For the

final well-typed sub-goal where both protocol expressions are ReturnC, we can

discharge it with inversion since Coq recognizes the contradiction in assuming

that ReturnC can take a step: there is no such rule in the step relation.

5.3 Normalization

An attestation protocol that runs forever is of little use. It should eventually

terminate and return a representative evidence package so that an external en-

33



tity may check this evidence. Although Type Safety guarantees that a well-typed

protocol remains well-typed throughout its evaluation, it does not guarantee ter-

mination. Thus, we must prove a separate property called normalization: All

well-typed pairs of protocol expressions must evaluate to some normal form. Re-

member, a normal form is a pair of protocol expressions that cannot take a step

of evaluation. The type signature of normalization (Figure 5.5) takes protocol

expressions p1 and p2 along with a proof that they are well-typed, and returns

a proof that they evaluate in zero or more steps to some normal form pair p3

and p4. Evaluation here is the multi-step evaluation relation multi. The ∀ and

∃ quantifiers ensure that all well-typed protocols have some normal form under

the multi relation.

Theorem normalization {p1t p2t :protoType} :
∀ (p1 :protoExp p1t) (p2 :protoExp p2t),

(Dual p1 p2 ) →
∃ p3t p4t (p3 :protoExp p3t) (p4 :protoExp p4t) st st’ st2 st2’,

(multi st p1 p2 p3 st’ ) ∧ (multi st2 p2 p1 p4 st2’ )
∧ normal form p3 p4.

Figure 5.5. statement of normalization theorem

The proof of normalization (Figure 5.6) is similar in structure to the Type

Safety proofs, except that we must use induction over the first protocol expres-

sion instead of destruct due to the recursive nature of multi-step evaluation.

In addition to performing proof by cases over the constructors of an Inductive

type, the induction tactic also generates an inductive hypothesis for every case

where the constructor has a recursive sub-term. Recall that every constructor of

protoExp except for ReturnC holds a recursive protoExp sub-term that repre-

sents the rest of its protocol actions. Thus, induction p1 generates an induction

34



Proof.
intros p1 p2 dualProof.
induction p1 ; destruct p2 ;
try (inversion dualProof ).
...
(* step Case *)

constructor.
(* inductive Case *)

apply IHp1.
...

Qed.

Figure 5.6. fragment of proof of normalization theorem

hypothesis ensuring that normalization holds for all protoExp sub-terms of p1.

For example, when p1 is (SendC m p1’) and p2 is (ReceiveC f), the inductive

hypothesis IHp1 has the type shown in Figure 5.7.

IHp1 : Dual p1’ (f m) →
∃

(p3t p4t : protoType)
(p3 : protoExp p3t) (p4 : protoExp p4t)
(st st’ st2 st2’ : State),

(multi st p1’ (f m) p3 st’ ) ∧ (multi st2 (f m) p1’ p4 st2’ )
∧ normal form p3 p4

Figure 5.7. induction hypothesis for normalization

Recall that a proof of multi requires two pieces of evidence: 1) a proof of the

first step of evaluation and 2) a proof of multi-step evaluation for the rest of the

protocol. For each multi proof in the well-typed sub-goals of normalization, we

can prove 1) with an appropriate constructor from the step relation. For 2), the

induction hypothesis is exactly the proof we need. The induction hypothesis also

discharges the normal form p3 p4 proof since the result of the rest of a protocol

is the same as the result of the entire protocol.

35



5.4 Normal Form iff Value

Finally, we prove that each normal form is a value and vice-versa. This is a

desirable property of our protocol language because it means that no terms can

be stuck ; a normal form but not a value. It also means that values cannot be

evaluated further. First we state and prove that a value is a normal form.

Lemma value is nf {t t’ :protoType} (p1 :protoExp t) (p2 :protoExp t’ ) :
(isValue p1 ) ∧ (isValue p2 ) → normal form p1 p2.

Proof.
intros.
destruct p1 ; destruct p2 ;
(cbv; intros; solve by inversion 3).

Qed.

Figure 5.8. proof that a value is a normal form

The type signature of value is nf (Figure 5.8) is fairly straightforward: if p1

and p2 are both values, then as a pair they are a normal form. The proof (Figure

5.8) is fairly compact with the help of Coq’s automation. The cbv tactic performs

call-by-value evaluation to expand the definition of normal form, then solve

by inversion [Pierce et al., 2015] attempts to discharge the goal by performing

inversion and substitution. Since inversion may generate new hypotheses, the

number argument provided to solve by inversion tells Coq how many layers

of nested inversion calls to attempt. In this case, the most we need for any

sub-goal is 3.

The proof of the nf is value Lemma does not use any exotic features or proof

structures, so we omit it here. The two Lemmas together prove the equivalence of

normal forms and values in the nf same as value Corollary (Figure 5.9). The

apply tactic allows us to use previously proven results in a proof script. The Coq

36



labels of Lemma and Corollary are simply meant as documentation of intent; they

behave just like a Theorem.

Corollary nf same as value {t t’ :protoType} :
∀ (p1 :protoExp t) (p2 :protoExp t’ ),

(Dual p1 p2 ) →
normal form p1 p2 ↔ (isValue p1 ) ∧ (isValue p2 ).

Proof.
intros. split.
intros. apply nf is value in H0. assumption. assumption.
intros. apply value is nf in H0. assumption.

Qed.

Figure 5.9. proof of value and normal form equivalence

37



Chapter 6

Example Protocols and Analysis

The protocol representation and execution semantics provide a general frame-

work that imposes structure and formalizes how protocols evaluate to a result.

Within this framework, a proof that a protocol is well-typed guarantees a collec-

tion of essential general properties about its execution. However, to prove spe-

cialized properties of specific protocols–or families of protocols–we must exploit

properties of the messages exchanged. In our current implementation of messages,

the most interesting properties involve encryption and decryption. In what follows

we define example protocols in our representation, encode specialized properties as

Coq Theorems, then present their proofs as an interactive proof script. Although

the execution semantics remain constant, the proof strategies and analysis tech-

niques for specialized properties vary significantly from protocol to protocol. This

makes the interactive environment of Coq an appealing exploratory space.

For convenience and readability while building concrete protocols, we define

the send and receive Coq notations in Figure 6.1 as shorthand for the SendC

and ReceiveC constructors of protoExp. The ; symbol in each notation separates

the individual protocol action from the rest of the protocol; it acts as a sequence

38



operator. Also note that in the receive notation, x is a variable bound in the

scope of the rest of the protocol p. fun is Coq’s syntax for annonymous functions.

Notation “ ‘send’ n ; p ” := (SendC n p)
(right associativity, at level 60).

Notation “ x ← ‘receive’ ; p ” := (ReceiveC (fun x ⇒ p))
(right associativity, at level 60).

Figure 6.1. protoExp Coq notations

6.1 A Simple Example

As a first example, consider the following protocol: Entity A sends a Basic

message, Entity B receives the message, increments it, then sends it back to A.

Finally, A receives the incremented message and returns it. Both halves of the

protocol in our Coq representation are in Figure 6.2. incPayload is a simple

function that takes a Basic message and returns another Basic message with

an incremented natural number payload. Also notice that proto1A accepts an

arbitrary Basic message m that it sends. The ability to parameterize protocols

adds great flexibility to our representation, promoting a protocol-as-a-library style.

Definition proto1A (m:(message Basic)) :=
send m;
x ← receive;
ReturnC (t :=Basic) x.

Definition proto1B :=
x ← receive;
send (incPayload x );
ReturnC x.

Figure 6.2. increment protocol definition

39



Since incPayload only accepts Basic messages, it enables Coq to infer the

Session Type of proto1B by restricting the message type of x to Basic. We

solve this same problem in proto1A by annotating ReturnC with (t:=Basic) to

prescribe the message type of x. We print the inferred Session Types of proto1A

and proto1B in Figure 6.3 using Check, the native Coq typechecking command.

As expected, proto1A and proto1B are Dual, as stated in Figure 6.4. The ∀

quantifier before x ensures that proto1A and proto1B are Dual regardless of the

message parameter passed to proto1A. The omitted proof of dual1AB follows

from simplification.

proto1A
: message Basic →

Basic :!: (Basic :?: Eps Basic)

proto1B
: Basic :?: (Basic :!: Eps Basic)

Figure 6.3. result of Check proto1A, Check proto1B

Theorem dual1AB : ∀ (x :message Basic), Dual (proto1A x ) proto1B.

Figure 6.4. statement that proto1A and proto1B are Dual

Because the Session Types of the two halves are Dual, this protocol automat-

ically exhibits the desirable general properties proved in the last chapter. How-

ever, we can also prove properties specific to this protocol. In particular: Entity

A should return the incremented result of the message it sends. Because Entity

A receives x and immediately returns it, this property could also be read as: En-

tity A expects Entity B to increment the message. This property is encoded as

a Coq Theorem called incPropertyAB in Figure 6.5. The ∀ quantifier ensures

40



incPropertyAB holds for all input messages x to proto1A and all starting and

ending States. x’ is constrained as the result of evaluating the protocol, and is

wrapped in a ReturnC since multi expects a protoExp as the result of evaluation.

The proof of this property follows from using dep destruct to piece apart the

multi assumption. The repetition in this proof is ripe for automation, which we

leave for future work.

Theorem incPropertyAB : ∀ x x’ st st’,
multi st (proto1A x ) proto1B (ReturnC x’ ) st’ →
x’ = incPayload x.

Proof.
intros x x’ st st’ multiProof.
dep destruct multiProof as (stepL, stepR, rest).
dep destruct stepL. dep destruct stepR.
dep destruct rest as (stepL’, stepR’, rest’ ).
dep destruct stepL’. dep destruct stepR’.
dep destruct rest’.
reflexivity.
inversion stepL’.

Qed.

Figure 6.5. statement and proof of incPropertyAB

6.2 Needham-Schroeder Definition

For a more involved example that incorporates cryptography, let’s move to

the Needham-Schroeder protocol [Needham and Schroeder, 1978]. The goal of

Needham-Schroeder is that by the end of the protocol, Entity A will know Entity

B’s secret nonce and Entity B will know A’s. It is also important that these nonces

are protected by encryption such that no other entity can learn them. The protocol

starts when Entity A sends its nonce to Entity B encrypted with B’s public key.

41



B receives this message, attempts to decrypt it with its private key, then sends a

pair message encrypted with A’s public key back to A. The first element of this

pair is the result of decrypting the message from A. If decryption is successful,

this is A’s nonce and otherwise it is the bad message. The second element of the

pair is B’s own nonce. Upon receiving this message, A tries to decrypt it with

its private key. Then A extracts the second element from the pair–B’s nonce if

decryption was successful, the bad message otherwise–and re-encrypts it with B’s

public key before sending it back to B. B decrypts this message and returns it in

a pair along with A’s nonce that it learned earlier. A also returns a pair including

the nonce it learned from B and its own nonce that it received encrypted from B.

In summary, both entities return a pair that consists of 1) the nonce they learned

from the other entity and 2) the other entity’s notition of their own nonce.

The Coq representation of Needham-Schroeder (Figure 6.6) is clearer than the

english description above. Notice that both halves of the protocol are parame-

terized by keys they use throughout execution. Each takes a private key named

myPri for decryption and a public key named theirPub for encryption. The

decryptM operation (Figure 6.7) takes an encrypted message and the key to use

for decryption as arguments. Upon successful decryption it returns the message

held by the encrypted message, otherwise it returns the bad message. Either way

the protocol can continue in its execution, and Session Types remain compatable:

the bad message can inhabit any message type. The expressive type of the in-

put message m to decryptM ensures statically that decryption acts exclusively on

encrypted messages.

decryptM actually invokes another function, decrypt (Figure 6.7), that has an

interesting type signature. decrypt returns a Coq sumor type, a value of which

42



Definition Needham A (myPri theirPub:keyType) :=
send (encrypt aNonce theirPub);
x ← receive;
let y := decryptM x myPri in

let y’ := (pairFst (t1 :=Basic) (t2 :=Basic) y) in
let y’’ := (pairSnd (t1 :=Basic) (t2 :=Basic) y) in
send (encrypt y’’ theirPub);
ReturnC (pair y’ y’’ ).

Definition Needham B (myPri theirPub:keyType) :=
x ← receive;
let y : (message Basic) := decryptM x myPri in

send (encrypt (pair y bNonce) theirPub);
z ← receive;
let z’ := decryptM z myPri in

ReturnC (pair y z’ ).

Figure 6.6. definition of Needham-Schroeder

Definition decrypt{t :type} (m:message (Encrypt t)) (k :keyType) :
(message t × is decryptable m k) + {(is not decryptable m k)} :=

...

Definition decryptM {t :type} (m:message (Encrypt t)) (k :keyType) :
message t :=
match decrypt m k with

| inleft (m’, ) ⇒ m’
| inright ⇒ bad t
end.

Figure 6.7. definition of decryptM

can inhabit a normal value or a proof value. By convention, the type on the left

of the + symbol describes success and the proof on the right describes an error. In

this case, upon success decrypt returns a Coq pair with the decrypted message

and a proof that m is decryptable with the key k. Upon failure, it returns a proof

that m is not decryptable with k. This is another example of the expressive power

43



of dependent types: input values m and k are used later to populate the type

signature.

Notice that decryptM relies on the result of decrypt m k. Upon success,

it extracts the decrypted message out of the pair and returns it. Upon failure,

it ignores the is not decryptable proof and returns the bad message. The

is decryptable and is not decryptable proofs (Figure 6.8) are not pertinent

during protocol execution, but they give us useful information about the keys

involved in encryption and decryption: namely whether they are inverses or not.

Although decryptM hides these proofs during protocol execution, they still ap-

pear as important assumptions in the interactive proof environment when proving

properties about protocols that perform decryption.

Definition is decryptable{t :type}(m:message t)(k :keyType):Prop :=
match m with

| encrypt m’ k’ ⇒ k = inverse k’
| ⇒ False
end.

Definition is not decryptable{t :type}(m:message t)(k :keyType):Prop :=
match m with

| encrypt m’ k’ ⇒ k 6= inverse k’
| ⇒ True
end.

Figure 6.8. definition of is decryptable and
is not decryptable

pairFst and pairSnd (Figure 6.9) are standard projection functions over

message pairs, except that they propogate the badness of their input message.

aNonce and bNonce (Figure 6.10) are nonces encoded as Basic messages that

hold a secret value. In Needham A (Figure 6.6) we provide a type annotation

for the y variable so that Coq may infer the complete Session Type. Finally,

44



dualNeedham (Figure 6.11) states that Needham A and Needham B are Dual re-

gardless of the keys used for encryption/decryption, and the omitted proof follows

from simplification.

Definition pairFst{t1 t2 : type} (m:message (Pair t1 t2 )) : message t1 :=
match m in message t’ return message (getP1Type t’ ) with
| pair m1 ⇒ m1
| bad ⇒ bad
| ⇒ bad
end.

Definition pairSnd{t1 t2 : type} (m:message (Pair t1 t2 )) : message t2 :=
match m in message t’ return message (getP2Type t’ ) with
| pair m2 ⇒ m2
| bad ⇒ bad
| ⇒ bad
end.

Figure 6.9. definition of pair projection functions

Definition aNonceSecret := 11.
Definition bNonceSecret := 22.
Definition aNonce := (basic aNonceSecret).
Definition bNonce := (basic bNonceSecret).

Figure 6.10. nonce definitions

Theorem dualNeedham : ∀ ka ka’ kb kb’,
Dual (Needham A ka kb’ ) (Needham B kb ka’ ).

Figure 6.11. statement that Needham A and Needham B are
Dual

45



6.3 An Authentication Property of Needham-Schroeder

Now that we have described and defined the components of Needham-Schroeder,

let’s prove an important property of authentication. In particular: Entity A can

only learn B’s nonce if A can strongly identify itself with its private key. We

encode this property in Coq as the needham A auth Theorem (Figure 6.13). We

assume that both entities know the other’s public key prior to execution, and we

fix B’s private key as bPri (Figure 6.12). A’s private key k remains abstract in

needham A auth when it is passed as the myPri parameter to Needham A.

Definition bPri := (private 2).

Definition aPub := (public 1).
Definition bPub := (public 2).

Figure 6.12. assumed keys for Entities A and B

Theorem needham A auth : ∀ (k :keyType) (x :message Basic) st st’,
multi

st

(Needham A k bPub)
(Needham B bPri aPub)
(ReturnC (pair x bNonce))
st’
→ (k = inverse aPub).

Figure 6.13. statement of needham A auth Theorem

The type signature for needham A auth takes a proof of multi-step evaluation

where Needham A learns bNonce, and returns a proof that k must be the inverse

of aPub. Since B knows aPub, and the inverse of aPub is unique (Figure 3.3),

another way to view this property is that B will not disclose its nonce to A when

46



k is anything other than the unique private key counterpart of aPub. x is the first

element of the pair in the result of evaluating Needham A under multi. Thus, it

represents A’s nonce as relayed back from B. In this Theorem, we don’t place any

further restrictions on the value of x.

Proof.
intros k x st st’ multiProof.
dep destruct multiProof as (stepL, stepR, rest).
dep destruct stepL. dep destruct stepR.
...
unfold decryptM in x0.
destruct (decrypt

(encrypt (pair aNonce (basic bNonceSecret)) aPub)
k) as [p | ].

(* Case: decrypt succeeds *)

destruct p as (m , is dec proof ). dep destruct is dec proof. reflexivity.
(* Case: decrypt fails *)

inversion x0.
...

Qed.

Figure 6.14. proof of needham A auth Theorem

The proof of needham A auth (Figure 6.14) starts by introducing variables

with intros, then performs dep destruct on the multi assumption and the

assumptions it generates. The interesting part of the proof is when we perform

destruct on Entity A’s decrypt operation. The result of decrypt is a sumor type,

and sumor is nothing more than an Inductive type with two constructors. Thus,

destruct over decrypt generates two new subgoals: one for when decryption is

successful and one for when it fails. The Coq as clause names the assumptions

generated in each sub-goal.

We assign the name p to the Coq pair held by the left portion of the sumor

and ignore the right portion by using an underscore. In the case where decryption

47



succeeds, we extract the is decryptable proof from p by using destruct and

assign it the name is dec proof. destruct p does not generate any new sub-

goals because Coq pairs are an Inductive datatype with only one constructor. We

name the decrypted message m for clarity, although we could have ignored it with

an underscore. Next, performing dep destruct on the is decryptable proof

resolves the value of k in our goal to be inverse aPub as desired, and we discharge

the sub-goal with reflexivity. In the case where decryption fails, we derive a

contradictory assumption as follows: bad Basic = basic bNonceSecret, and

discharge it with inversion: basic and bad are two distinct constructors of an

Inductive datatype and cannot be equivalent. The bad Basic half of the equality

arose from the definition of failed decryption, while the basic bNonceSecret half

arose from our assumption that Needham A successfully learns bNonce.

48



Chapter 7

Conclusion and Future Work

The contributions of this thesis are in the context of two-participant attestation

protocols. Our protocol representation captures the structure of communication

events and also the structure of the messages they exchange. Session Types are

the critical organizational element in this representation. Not only do they ensure

compatability amongst protocol participants, but they guide proofs of general

properties of protocol execution. Coq is a natural environment for this represen-

tation because of its support for dependnet types. Dependent types ensure that

building a protocol expression also builds its Session Type. Likewise, building a

cryptographic evidence package with the message type ensures that the type of

the message reflects how it was constructed.

In addition to the protocol representation, this thesis provides a semantic

framework for attestation protocol execution. Our small-step operational seman-

tics gives precise evaluation rules for protocols built in the representation. Guided

by Session Types, we proved desirable properties of protocol execution such as

Type Safety and termination. We also showed the feasibility of proving special-

ized properties of individual protocols. These proofs rely on properties of the

49



messages they exchange, and proof strategies are often different from protocol to

protocol. However, the Coq interactive proof environment is ideal for this style

of exploratory proof. There are many avenues to explore for verification of spe-

cialized properties of attestation protocols. But the semantic framework in this

thesis and the expressive capabilities of Coq provide a solid foundation for future

work.

Real-world remote attestation protocols often involve multiple participants.

For example, an attestation agent may need to interact with an external Certificate

Authority to certify the keys it uses, a TPM for authentication and cryptographic

services, or it may even invoke other appraisers to perform nested attestations.

Our semantic framework for protocol execution is a solid foundation for under-

standing the behavior of two-participant sessions. However, to support multi-

party attestation protocols there must be a way to chain these two-participant

sessions. In future work, we envision a representation that sequences the execu-

tion of protocol sessions, where the resulting evidence package and final State

from one session are made available to the next. The State structure could hold

all messages that a participant learns directly or discovers through decryption

during a session.

In the hypothetical notation presented in Figure 7.1, doProto performs multi-

step evaluation of an entire two-participant protocol, then binds its resulting ev-

idence package and ending State to variables. In this example, protoA1 and

protoA2 are protocol expressions that act on behalf of single entity A. First,

protoA1 has a session with protoB to produce evidence package x and final State

st1. Continuing, protoA2 consumes st1 and x, then has a seperate session with

protoC resulting in evidence package y and final State st2. The parameterizabil-

50



Definition multi party protocol{t t’ :protoType}
(protoB : protoExp t)
(protoC : protoExp t’ )
(d1 : ∀ st, Dual (protoA1 st) protoB)
(d2 : ∀ m st, Dual (protoA2 st m) protoC )
(initState: State) : Prop :=

(x, st1 ) ← doProto (protoA1 initState) protoB ;
(y, st2 ) ← doProto (protoA2 st1 x ) protoC ;
protoReturn (y, st2 ).

Figure 7.1. hypothetical protocol session composition

ity of protocol expressions encourages flexible protocol compositions that accept

diverse protocols properly constrained by Dual for compatibility.

Verification of these protocol compositions presents some unique challanges.

One contributor is that a protocol can learn messages in one protocol session,

then use them in the next. For instance, if we would like to prove that a protocol

cannot decrypt a message, we must prove that it cannot learn the decryption key

in any way from its preceding sessions. Thus, we must have some sort of com-

positional verification strategy that incorporates State. One popular approach

called Hoare triples [Hoare, 1969] decorates a stateful command with a precondi-

tion over the initial state and a postcodition over the terminal state. In Figure

7.2, we present a hypothetical Hoare triple style encoding in Coq for our protocol

execution semantics. P and Q are Assertions–propositions over State–and they

represent the precondition and postcondition, respectively. Pierce et al. [2015]

confirm the feasibility of Hoare triple style verification in Coq over programming

language expressions.

51



Definition Assertion := State → Prop.

Definition hoare triple{p1t p2t p3t :protoType}{t :type}
(P :Assertion)
(p1 :protoExp p1t) (p2 :protoExp p2t) (p3 :protoExp p3t)
(Q :Assertion) : Prop :=

∀ st st’,
P st →
multi st p1 p2 p3 st’ →
Q st’.

Figure 7.2. hypothetical Hoare triple framework for protocol ex-
ecution

52



References

ArmoredSoftware. Armored software github repository, 2016. URL https://

github.com/armoredsoftware.

J. Carette, W. Farmer, L. Cruz-Filipe, and P. Letouzey. Proceedings of the 12th

symposium on the integration of symbolic computation and mechanized reason-

ing (calculemus 2005) a large-scale experiment in executing extracted programs.

Electronic Notes in Theoretical Computer Science, 151(1):75 – 91, 2006. ISSN

1571-0661. doi: http://dx.doi.org/10.1016/j.entcs.2005.11.024. URL http:

//www.sciencedirect.com/science/article/pii/S1571066106001101.

A. Chlipala. Certified programming with dependent types: a pragmatic introduc-

tion to the coq proof assistant. MIT Press, 2013.

G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen, B. O’Hanlon, J. Rams-

dell, A. Segall, J. Sheehy, and B. Sniffen. Principles of remote attestation.

International Journal of Information Security, 10(2):63–81, June 2011.

Coq development team. Coq Reference Manual. INRIA, 2016. URL https:

//coq.inria.fr/distrib/current/refman/. Version 8.5pl1.

T. Coquand and G. Huet. The calculus of constructions. Information and Com-

putation, 76:95–120, 1988.

53

https://github.com/armoredsoftware
https://github.com/armoredsoftware
http://www.sciencedirect.com/science/article/pii/S1571066106001101
http://www.sciencedirect.com/science/article/pii/S1571066106001101
https://coq.inria.fr/distrib/current/refman/
https://coq.inria.fr/distrib/current/refman/


V. Haldar, D. Chandra, and M. Franz. Semantic remote attestation – a virtual

machine directed approach to trusted computing. In Proceedings of the Third

Virtual Machine Research and Technology Symposium, San Jose, CA, May 2004.

C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Communica-

tions of the ACM, 12:576–580,583, 1969.

K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type disci-

pline for structured communication-based programming. In Proceedings of the

7th European Symposium on Programming: Programming Languages and Sys-

tems, ESOP ’98, pages 122–138, London, UK, UK, 1998. Springer-Verlag. ISBN

3-540-64302-8. URL http://dl.acm.org/citation.cfm?id=645392.651876.

X. Leroy. The compcert c verified compiler. Documentation and user’s manual.

INRIA Paris-Rocquencourt, 2012.

G. Lowe. An attack on the needham-schroeder public-key authentication protocol.

Inf. Process. Lett., 56(3):131–133, Nov. 1995. ISSN 0020-0190. doi: 10.1016/

0020-0190(95)00144-2. URL http://dx.doi.org/10.1016/0020-0190(95)

00144-2.

A. Martin et al. The ten page introduction to trusted computing. Technical

Report CS-RR-08-11, Oxford University Computing Labratory, Oxford, UK,

2008.

R. M. Needham and M. D. Schroeder. Using encryption for authentication in

large networks of computers. Commun. ACM, 21(12):993–999, Dec. 1978. ISSN

0001-0782. doi: 10.1145/359657.359659. URL http://doi.acm.org/10.1145/

359657.359659.

54

http://dl.acm.org/citation.cfm?id=645392.651876
http://dx.doi.org/10.1016/0020-0190(95)00144-2
http://dx.doi.org/10.1016/0020-0190(95)00144-2
http://doi.acm.org/10.1145/359657.359659
http://doi.acm.org/10.1145/359657.359659


K. Ono, Y. Hirai, Y. Tanabe, N. Noda, and M. Hagiya. Using coq in speci-

fication and program extraction of hadoop mapreduce applications. In Pro-

ceedings of the 9th International Conference on Software Engineering and For-

mal Methods, SEFM’11, pages 350–365, Berlin, Heidelberg, 2011. Springer-

Verlag. ISBN 978-3-642-24689-0. URL http://dl.acm.org/citation.cfm?

id=2075679.2075705.

L. C. Paulson. The inductive approach to verifying cryptographic protocols. Jour-

nal of computer security, 6(1):85–128, 1998.

A. Petz. Github repository for protocol semantics and proofs in coq, August

2016. URL https://github.com/armoredsoftware/session/releases/tag/

thesis_08_08_16.

B. C. Pierce. Types and Programming Languages. The MIT Press, Cambridge,

MA, 2002.

B. C. Pierce, C. Casinghino, M. Gaboardi, M. Greenberg, C. Hriţcu, V. Sjoberg,

and B. Yorgey. Software Foundations. Electronic textbook, 2015.

R. Pucella and J. A. Tov. Haskell session types with (almost) no class. SIGPLAN

Not., 44(2):25–36, Sept. 2008. ISSN 0362-1340. doi: 10.1145/1543134.1411290.

URL http://doi.acm.org/10.1145/1543134.1411290.

P. Wadler. Propositions as types. Commun. ACM, 58(12):75–84, Nov. 2015.

ISSN 0001-0782. doi: 10.1145/2699407. URL http://doi.acm.org/10.1145/

2699407.

55

http://dl.acm.org/citation.cfm?id=2075679.2075705
http://dl.acm.org/citation.cfm?id=2075679.2075705
https://github.com/armoredsoftware/session/releases/tag/thesis_08_08_16
https://github.com/armoredsoftware/session/releases/tag/thesis_08_08_16
http://doi.acm.org/10.1145/1543134.1411290
http://doi.acm.org/10.1145/2699407
http://doi.acm.org/10.1145/2699407

	Abstract
	Table of Contents
	Introduction
	Background
	Remote Attestation
	Cryptography
	Session Types

	Protocol Representation
	Message Types
	Session Types (protoType)
	Protocol Expressions (protoExp)

	Protocol Semantics
	Single-step
	Multi-step
	Values and Normal Forms

	Semantics Proofs
	Progress
	Preservation
	Normalization
	Normal Form iff Value

	Example Protocols and Analysis
	A Simple Example
	Needham-Schroeder Definition
	An Authentication Property of Needham-Schroeder

	Conclusion and Future Work
	References

