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ABSTRACT: 

Nano-sized vesicles, termed exosomes, have been implicated in the transfer of 

oncogenic proteins and genetic material from one cell to another.  We speculated this 

may be one mechanism by which an intrinsically platinum-resistant population of 

epithelial ovarian cancer (EOC) cells imparts its influence on surrounding tumor cells.  

To explore this possibility we have utilized the platinum-sensitive A2780 cell line and 

independent platinum-resistant derivatives, e.g., CP70 and C30, as well as a non-

related platinum-resistant cell line, OVCAR10.  We find A2780 cells treated with 

exosomes derived from highly resistant cells demonstrate up to a ~2-fold increase 

(p<0.05) in resistance to carboplatin as compared to treatment with isolated autologous 

exosomes.  Importantly, this exosome-associated phenotype is stable and associated 

with increased epithelial to mesenchymal transition (EMT) characteristics.  In addition, 

we identified previously unreported somatic mutations in the Mothers Against 

Decapentaplegic Homolog 4 (SMAD4), only in cells (OVCAR10, C30, and CP70) that 

demonstrated robust acquired resistance after platinum therapy.  Cells displaying 

mutations in SMAD4 exhibited significant changes in EMT-related markers following 

treatment with carboplatin.  Interestingly, exosomes derived from A2780 cells 

engineered to exogenously express specific SMAD4 mutations resulted in ~1.7-fold 

(p<0.05) increase in resistance as compared to exosomes isolated from exogenous 

wildtype SMAD4 (SMAD4WT) expressing A2780 cells, suggesting these mutations are 

contributing to the development of a resistant phenotype.  Additionally, cells expressing 

mutations in SMAD4 exhibit a loss of phosphorylation of SMAD2 but retain activated 

SMAD3, which is important for EMT.  Importantly, inhibition of SMAD3 via the small 
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molecule inhibitor, SIS3, reversed the EMT phenotype and acted synergistically with 

carboplatin to enhance cell death.  Lastly, we identified a clinically relevant inhibitor of 

SMAD3, Eribulin Mesylate (Halaven®), which also acted synergistically with carboplatin 

in vitro.  Altogether, our findings provide the first evidence that ovarian tumor cells use 

exosomes as a vehicle to achieve tumor cell-cell crosstalk and this exchange 

advantageously impacts the recipient cells response to platinum.  We continue to 

describe a novel mechanism of action by which an EMT phenotype is perpetuated via 

exchange of tumor-derived exosomes, ultimately leading to the development of a 

subpopulation of chemotherapy refractory cells.  Importantly, we present a novel 

therapeutic strategy that targets resistant cells and ‘tricks’ them into responding once 

again to the most effective therapeutics to date, cisplatin and carboplatin. 
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CHAPTER 1- OVARIAN CANCER  
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EPIDEMIOLOGY 

 

Ovarian cancer is the 5th leading cause of death in women and the primary cause of 

mortality in gynecological malignancies due to a dearth of treatment options coupled 

with late Stage detection and diagnosis.  The American Cancer Society (ACS) predicts 

that ~22,280 women will be diagnosed with ovarian cancer and ~14,240 women will die 

from the disease alone in 2016.  Unfortunately, the incidence rate of mortality for 

ovarian cancer has not significantly changed in the past 30 years.  This trend is largely 

due to the fact that ovarian cancer manifests with non-specific clinical symptoms and is 

often diagnosed at Stage III or IV when the 5 year survival rate is less than 25% 

(Luvero, Milani et al. 2014).  Symptoms of ovarian cancer include frequent urination, 

bloating, early satiety, and fatigue, all of which are common to a variety of ailments 

including gastrointestinal disorders and changes in the female reproductive cycle.  

Given that a majority of ovarian cancer cases are diagnosed in women over the age of 

45, (with the most common age being 65), ovarian cancer is frequently misdiagnosed as 

early menopause and, often, women will not be screened for ovarian cancer until 

months after initial complaints (Babst, Katzmann et al. 2002; Babst, Katzmann et al. 

2002). 

 

RISK FACTORS 

 

The chance of an average healthy women developing ovarian cancer is relatively low (1 

in 70) as compared to other cancers (i.e., 1 in 8 in breast cancer) (Siegel, Ma et al. 
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2014).  However, the presence of one or more risk factors can increase this rate.  A 

lifetime risk of developing cancer, (ovarian cancer included), increases with tobacco 

use, poor diet, obesity, and advanced age (McLemore, Miaskowski et al. 2009).  For 

ovarian cancer specifically, age is the most significant risk factor, with the highest 

incidence occurring in women between the ages of 60 and 64.  In fact, women over the 

age of 65 have up to a 5 times greater chance of developing ovarian cancer as 

compared to women under the age of 65 (Howlader N 2015).  Given this statistic, it 

naturally follows that women who experience a greater number of ovulations in their 

lifetime have an increased chance of developing ovarian cancer over women with 

reduced ovulations, (i.e., by means such as oral contraceptive use, multiple births, 

breastfeeding, and surgical procedures which include removal one or both ovaries such 

as oophorectomy) (Fathalla 1971; Sundar, Neal et al. 2015).  The follicular rupture 

generated at each ovulation is repaired by surface epithelial cells through several 

rounds of replication.  Godwin and colleagues were the first to demonstrate, in vitro, that 

this incessant replication of epithelial cells resulted in genetic and phenotypic changes 

typically seen during tumorigenesis, including a loss of contact independent growth, 

increased ability to form tumors in mice, and increased chromosomal abnormalities 

(Godwin, Testa et al. 1992).  Outside of the ovary, additional research has shown that 

persistent chronic inflammation, as seen in cases of endometriosis, and inflammation, 

caused by talc and asbestos, correlates with an elevated risk of developing ovarian 

cancer (Sundar, Neal et al. 2015).  Notably, studies that evaluated the effects of non-

steroidal anti-inflammatory drugs (NSAIDs) and ovarian cancer incidence reported an 
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inverse correlation between NSAID use and ovarian cancer diagnosis (2014; Baandrup 

2015) suggesting a potential preventative strategy.  

 

The most direct risk factors for ovarian cancer (outside of age) are based on family 

history and genetics (CSSOCR 2016).  Women with one or more close blood relatives 

(mother, sister, aunt), whom have been diagnosed with ovarian cancer, have ~3 times 

greater risk of developing the disease (ASCO 2015).  In addition to ovarian cancer, the 

diagnosis of breast or colorectal cancers in close family members or oneself also 

increases ovarian cancer risk (ASCO 2015; ACS 2016).  Most of these inherited cases 

of ovarian cancer (termed hereditary ovarian cancer), are linked to hereditary breast-

ovarian cancer syndrome or Lynch syndrome (Lynch, Casey et al. 2009).  Hereditary 

breast ovarian cancer syndrome is characterized by mutations in the tumor suppressor 

genes known as Breast Cancer Susceptibility (BRCA) 1 or BRCA2 (Rebbeck, Mitra et 

al. 2015; ACS 2016) BRCA1/2 mutations were first associated with an increased risk of 

breast cancer (Casey, Plummer et al. 1993), but more recently have been linked to 

tumor occurrences in ovarian, fallopian tube cancer, peritoneal cancer, prostate cancer, 

and pancreatic cancer (Brose, Rebbeck et al. 2002; Levy-Lahad and Friedman 2007; 

Ferrone, Levine et al. 2009; Mavaddat, Peock et al. 2013).  While mutations in both 

BRCA1 and BRCA2 have been shown to affect ovarian cancer risk, there is some 

disagreement regarding the individual effects of mutations in either BRCA1 or BRCA2 

on risk profiles.  The ACS reports that the lifetime ovarian cancer risk for women with a 

mutation in BRCA1 is between 35%-70% and 10%-30% for women with mutations in 

BRCA2 (ACS 2016).  Alternately, the Consortium of Investigators of Modifiers of 
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BRCA1/2 (CIMBA) reported that out of 19,581 BRCA1 mutation carriers and 11,900 

BRCA2 mutation carriers (spanning 55 centers in 33 countries), 5% (1,041) of BRCA1 

mutant carriers and 6% (682) of BRCA2 mutant carriers were diagnosed with ovarian 

cancer suggesting that mutations in either of these genes may correspond near equally 

with risk status (Mavaddat, Barrowdale et al. 2012; Rebbeck, Mitra et al. 2015).  One 

possibility for the variability observed in the ACS report is that it was a summary of 

many studies with a variety of inclusion/exclusion factors.  In fact, the society notes that 

their reported rates vary and increase with age.  Additionally, other studies have 

demonstrated that BRCA1/2 mutations can vary with tumor type (Mavaddat, Barrowdale 

et al. 2012).  For these reasons, the CIMBA studies may be more accurate in relating 

BRCA1/2 mutations with overall risk of being diagnosed with ovarian cancer.  It is 

important to note; however, that while presence of mutations in the BRCA genes 

increases risk, the actual percentage of women diagnosed with ovarian cancer who 

carry mutations in BRCA1/2 is low (5-15%) and therefore, is not an inclusive marker for 

the disease (Swisher, Sakai et al. 2008; Fong, Yap et al. 2010)  

 

Mutations in genes associated with autosomal dominant hereditary Lynch syndrome 

(formally known as hereditary nonpolyposis colorectal cancer), make up the remaining 

hereditary ovarian cancers (Lynch, Casey et al. 2009).  Lynch syndrome is 

characterized by mutations in DNA mismatch repair genes such as MutL Homolog 1 

(MLH1) and MutS Homolog 2 (MSH2) (Lynch and Lynch 1979).  In the vast majority of 

these cases, a single mutated allele is inherited and the second allele is lost via somatic 

mutation, methylation, or both (Toss, Tomasello et al. 2015)  Women with mutations in 
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this panel of genes have up to a 12 times increased risk of developing ovarian cancer 

depending upon ancestry (CSSOCR 2016).  Importantly, the average age of diagnosis 

of ovarian cancer in women with a family history of Lynch syndrome, especially the 

MSH2 mutation type, is at least 10 years earlier than the average population, with mean 

ages of diagnosis between 45 and 51 years of age (compared to 60-64 years for non-

Lynch associated ovarian cancers), as reviewed in Lynch and Godwin et al (Lynch, 

Casey et al. 2009).  Despite this discrepancy in the age of diagnosis, overall survival is 

not significantly different between Lynch and non-Lynch groups.  Analysis of a small 

study involving 27 patients on the Dutch Lynch syndrome registry and 52 sporadic 

ovarian cancer cases reported cumulative 5- year survival rates of 64.2 and 58.1 

respectively (Crijnen, Janssen-Heijnen et al. 2005). 

 

The ability to detect and assess risk based upon these above factors, especially the 

discussed genetic factors, has empowered women considered to be at high risk to more 

confidently make life changing decisions which have the potential to significantly lower 

their chances of developing ovarian cancer.  For example, women with a high risk of 

developing the disease may choose to undergo selective surgeries such as 

oophorectomy, hysterectomy, tubal ligation and bilateral Salpingo-oophorectomy (BSO) 

procedures which can reduce their chance of developing ovarian cancer by as much as 

90% (in pre-menopausal women) and 50% (in post-menopausal women) (Domchek, 

Friebel et al. 2010).  These more extreme preventative strategies are considered for 

women at high risk primarily because of a lack of ability to detect the disease at an early 

stage, when the overall survival is above 90%.  
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SCREENING AND DETECTION 

 

Currently, there is no routine screening procedure available to directly detect ovarian 

cancer in the general population akin to mammograms for the detection of breast 

cancer and the pap smear for the detection of cervical cancer.  Women who have one 

or more of the above risk factors and/or experience symptoms for more than two weeks 

should undergo further testing.  Common diagnostic tests for ovarian cancer include 

pelvic exam, transvaginal ultrasound (TVUS), and evaluating serum levels of cancer 

antigen 125 (CA125) (Jacobs, Menon et al. 2016; Terry, Schock et al. 2016).  A pelvic 

exam is a simple, in-clinic procedure, which involves a physician physically feeling for a 

mass.  TVUS uses ultrasound waves to detect abnormal tissue masses and fluid filled 

cysts on the ovaries, uterus, fallopian tubes, and other areas of the pelvic and 

abdominal cavities.  This technique can detect smaller abnormalities, which can be 

missed in the pelvic exam.  CA125 is a membrane bound protein which is expressed on 

the surface of cells that undergo differentiation into a Müllerian-type epithelium and can 

be released as a soluble form into bodily fluids (Bischof, Tseng et al. 1986).  Women 

with elevated (> 35 units/mL) of CA125 are considered to be at a higher risk of having 

ovarian cancer (Eagle and Ledermann 1997).  However, CA125 is also elevated in 

other malignant and benign conditions such as breast cancer (Berruti, Tampellini et al. 

1994) and endometriosis (Pittaway and Fayez 1986) which makes diagnosis based on 

CA125 levels impossible.  In addition, in a recent longitudinal study evaluating potential 

biomarkers for ovarian cancer, the European Prospective Investigation into Cancer and 

Nutrition (EPIC) cohort, researchers found little significance for using CA125, or one of 
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4 other promising markers for the detection of early Stage (Stages I and II) ovarian 

cancer (Terry, Schock et al. 2016).  Likewise, the UK collaborative Trial of Ovarian 

Cancer Screening (UKCTOCS) recently conducted one of the largest ever randomized 

control trials investigating the effects of early disease detection, via annual CA125 

screening coupled with risk algorithm software to detect trends, transvaginal ultrasound, 

or no screening, on ovarian cancer mortality in post-menopausal women (ages 50-

74yrs).  Sadly, in the primary analysis of this study involving 202,638 women, there was 

little to no significant impact on detection of ovarian cancer between screening methods.  

While the authors suggest that, upon further scrutiny of the data,  there may be more 

significant differences in detection of ovarian cancer; there was still little impact on 

overall survival of women diagnosed with ovarian cancer (Jacobs, Menon et al. 2016).   

 

Despite the combination of risk factors and screening modalities, a formal diagnosis of 

ovarian cancer is not made until a biopsy is performed on tissue taken from the initial 

cytoreductive or debulking surgeries, at which point the tumor can be classified by Type 

and Stage.  Both Type and Stage are important factors for predicting overall survival 

and determining the best course of treatment. 

 

 OVARIAN CANCER HISTOLOGY AND SUBTYPES 

 

The term ovarian cancer is an umbrella statement, which actually covers a multitude of 

diseases sharing common occurrences in and/or on the ovary.  One such reason for 

this disease heterogeneity is the lack of a specific cell of origin.  Ovarian cancer is 
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traditionally believed to arise from three different populations of cells; germ cells, 

gonadal-stromal cells, or the surface epithelium of the ovary.  Current evidence 

suggests that many ovarian cancers may not be of ovarian origin at all and may, in fact, 

arise from the neoplastic spread of cells out of areas such as the endometrium and/or 

fallopian tubes (Kurman and Shih Ie 2010).  Regardless of source, approximately 90% 

of ovarian cancers are of epithelial origin and are collectively termed epithelial ovarian 

cancer (EOC) and these are the focus of our research.  EOC tumors are classified into 

Types based upon clinical behavior and genetic abnormalities (Kurman and Shih Ie 

2010).  Type I tumors are characterized by a step wise evolution and are diagnosed at a 

range from benign to malignant whereas Type II tumors are fast growing and 

aggressive and are almost always diagnosed at a high Stage (Kurman and Shih Ie 

2010).  Ovarian tumors are further classified into 4 main subtypes, mucinous, clear cell, 

endometrioid, and serous (McCluggage 2011).  These subtypes are similar to their 

counterparts in normal tissues in that they display a shared morphology as well as 

similar patterns of gene expression.  For example, TP53 alterations are common to 

serous tumors and tissue within normal fallopian tube.  Likewise, studies from Marquez 

et al demonstrated that, using a 63,000 probes set to correlated genetic signatures 

between 50 ovarian cancers of different histological subtypes, and corresponding 

normal tissue controls demonstrated significant shared alterations between mucinous 

cancers with those in normal colonic mucosa, and both endometrioid and clear cell 

subtypes with normal endometrium (Marquez, Baggerly et al. 2005)  That being said, Of 

the subtypes of ovarian cancer, mucinous makes up the smallest percent (~3%) 

followed by clear cell and endometrioid, both of which occur with an approximate 
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frequency of 7-10% (McCluggage 2011).  The vast majority of EOCs are serous (~70%) 

which are further divided into either high grade serous (HGS) or low grade serous (LGS) 

with HGS being the most common (~70%), and the most deadly. 

 

Almost half of all endometrioid and clear cell carcinomas are diagnosed as a Stage I 

(Anglesio, Carey et al. 2011), which is a positive statistic given that these types of 

tumors are difficult to treat.  The 5-year survival rate for women diagnosed with either 

endometrioid or clear cell carcinoma at higher stages is poor (Seidman, Horkayne-

Szakaly et al. 2004; Storey, Rush et al. 2008).  Mucinous carcinoma is not only the least 

common type of tumor, it is now debated that many of these tumors are actually 

metastasis from other sites such as the gastrointestinal and biliary tracts (Lee and 

Young 2003).  Like endometrioid and clear cell, the prognosis of women diagnosed with 

mucinous is largely dependent upon the Stage of the tumor.  Tumors diagnosed at an 

early Stage have excellent prognosis but this quickly drops with diagnosis at more 

advanced Stages.  LGS are relatively uncommon; however, these types of tumors tend 

to be slower growing and therefore more chemo-resistant (Gourley, Farley et al. 2014).  

LGS tumors typically harbor a mutation in either, V-Ki-ras2 Kirsten rat sarcoma viral 

oncogene homolog (KRAS), v-Raf murine sarcoma viral oncogene homolog B (BRAF), 

or ERBB2 (Vang, Shih Ie et al. 2009).  Each of these genes encodes for upstream 

regulators of mitogen-activated protein kinase (MAPK) and mutations in these genes 

leads to constitutive activation of the pathway resulting in uncontrolled proliferation 

(Vang, Shih Ie et al. 2009).  Like mucinous, clear cell, and endometrioid, LGS tumors 

are generally less responsive to traditional platinum and taxane-based chemotherapy; 
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however, they are rarely diagnosed at an early stage, and therefore,  women diagnosed 

with LGS carcinoma have a poor prognosis.  Similar to LGS, HGS ovarian cancer is 

most commonly diagnosed at a late Stage when a complete resection of the tumor is 

difficult.  In fact, less than 5% of HGS cancers are diagnosed at a Stage 1 (when the 

tumor is confined to the ovaries).  Recently, two novel hypotheses for the pathogenesis 

of HGS ovarian cancer have been proposed.  In the first mechanism, ovarian cancer 

precursors develop in the fimbria from occult serous tubal intraepithelial carcinoma 

(STIC), prior to metastasis to the ovary.  The second theory describes genetic 

alterations occurring within the normal ovarian surface epithelium or inclusion cysts 

which either proceed via a high grade pathway with no perceivable intermediate 

histology or a low grade pathway encompassing several, benign and non-invasive steps 

(Figure 1.01 – courtesy of Dr. Andrew K. Godwin).  HGS tumors lack mutations in 

KRAS, BRAF, and ERBB2, but almost always contain mutations in the tumor 

suppressor gene TP53 (Vang, Shih Ie et al. 2009).  In addition to mutations in TP53, 

data from the TCGA and other published studies have shown that HGS is characterized 

by numerous and inconsistent somatic mutations, DNA copy number alterations, and 

up-regulation and down-regulation of a multitude of genes.  To provide an example of 

this, I utilized data available through The Cancer Genome Atlas (TCGA) to demonstrate 

genetic aberrations within 34 common cell cycle control genes from 316 HGS ovarian 

cases with complete mutation, copy number alteration, and mRNA data (2011) (Figure 

1.02).  While some alterations were fairly consistent across patient samples (such as 

up-regulation or amplification of MYC in ~30% of cases, down-regulation of RBL2 in 

~25% of cases, and up-regulation or amplification of CCNE1 in ~20% of cases) the 
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remaining 31 queried genes had between 3-29% alteration rates of which there was 

little discernable pattern.  As a comparison, TP53 is shown to be altered in >95% of 

cases.  Examples such as this demonstrate just how difficult high-grade EOC is to treat 

with single molecularly-targeted therapies (Singer, Kurman et al. 2002; Salani, Kurman 

et al. 2008).  To add to this hurdle, while HGS tumors are initially responsive to 

platinum-chemotherapy, recurrent tumors become resistant quickly and treatment 

options are limited for women with platinum-resistant disease. 
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Figure 1.01  The Origins of Ovarian Cancer.  Schematic representation of the prevailing 

theories behind ovarian cancer development.  Hereditary EOC is largely associated with genetic 

abnormalities found within the fimbria which lead to development of tubal intraepithelial 

carcinoma capable of metastasizing to the ovary.  The sporadic route involves a multi-step 

process and can involve the loss of common tumor suppressor genes leading to genetic 

instability.  This path is characterized by stages of benign and no-invasive pathologies.  Figure 

kindly reprinted with permission from Dr. Andrew K. Godwin (Lynch, Casey et al. 2009) 
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Figure 1.02  Genetic Dysregulation in High Grade Serous Ovarian Cancer.  Data from the 

TCAG showing mutation, copy number alteration, and mRNA dysregulation of 34 cell cycle control 

genes and TP53 alteration status (as a comparison) within 316 cases of high grade serous ovarian 

cancer demonstrates the overall heterogeneity of the disease.  
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STAGING 

The International Federation of Gynecology and Obstetrics (FIGO) staging system 

(Table 1.1) (Prat 2015) was recently updated as of January 1st 2014 to more fully 

encompass the importance of correctly identifying the extent of cancer spread.  It is 

used by clinicians, in conjunction with histology and identification of origin (when 

possible) to select the most appropriate treatment. 

Table 1.01  FIGO Staging for Ovarian Cancer 

Stage I: Tumor Confined to Ovaries 

IA Tumor limited to 1 ovary, capsule intact, no tumor on surface, negative washings 

IB Tumor involves both ovaries + IA 

IC Tumor limited to 1 or both ovaries 

 
IC1 Surgical Spill 

 
IC2 Capsule rupture before surgery or tumor on ovarian surface 

 
IC3 Malignant cells in the ascites or peritoneal washings 

Stage II: Tumor involves 1 or both ovaries with pelvic extension (below the 
pelvic brim) or primary peritoneal cancer 

IIA Extension and /or implant on uterus and/or fallopian tubes 

IIB Extension to other pelvic intraperitoneal tissues 

Stage III:  Tumor involves 1 or both ovaries with cytologically or histologically 
confirmed spread to the peritoneum outside the pelvis and/or metastasis to the 
retroperitoneal lymph nodes 

IIIA (Positive retroperitoneal lymph nodes and/or microscopic metastasis beyond the pelvis 

  IIIA1 Positive retroperitoneal lymph nodes only 

  IIIA2 
Microscopic, extrapelvic (Above the brim) peritoneal involvement +/= positive 
retroperitoneal lymph nodes.  Includes extension to capsule of liver/spleen 

IIIB 
Macroscopic, extrapelvic, peritoneal metastasis </= 2 cm +/- positive retroperitoneal lymph 
nodes. Includes extension to capsule of liver/spleen 

IIIC 
Macroscopic, extrapelvic, peritoneal metastasis > 2 cm +/- positive retroperitoneal lymph nodes. 
Includes extension to capsule of liver/spleen 

Stage IV:  Distant metastasis excluding peritoneal metastasis 

IVA Pleural effusion with positive cytology 

IVB 
Hepatic and/or splenic parenchymal metastasis, metastasis to extra-abdominal organs (including 
inguinal lymph nodes and lymph nodes outside of the abdominal cavity) 
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TREATMENT  

 

The primary treatment for high grade serous EOC is surgical de-bulking followed by 

platinum-based chemotherapy.  The primary goals of surgical intervention are; i) to 

establish a diagnosis, ii) stage the tumor, and iii) remove as much of the tumor burden 

as possible (Coleman, Monk et al. 2013).  Optimal surgical cytoreduction defined as the 

removal of all visible tumors and is based upon studies demonstrating the OS benefit of 

removal of all tumors <1.0 cm in diameter (Bristow, Tomacruz et al. 2002; du Bois, 

Reuss et al. 2009).  Standard of care is surgery followed by chemotherapy; however, 

the concept of neoadjuvant chemotherapy has been discussed.  In an analysis of the 

European Organization for Research and Treatment of Cancer (EORTC) 55971 trial in 

which 670 Stage III or IV ovarian cancer patients were randomly assigned to 

neoadjuvant chemotherapy or surgery without neoadjuvant treatment there was little 

significant difference in overall survival.  However, analysis of the trial results observed 

trends which suggest that women with stage III disease and tumors <45 mm may 

benefit more from primary surgery whereas women with stage IV disease and tumor 

>45 mm may benefit from neoadjuvant chemotherapy (van Meurs, Tajik et al. 2013).  

The lack of clinical trials to further provide statistically significant support for 

neoadjuvant chemotherapy is lacking, and therefore, primary surgery remains the 

standard of care.  Chemotherapy follows next, typically with a platinum-based agent.   

 

In the 1970’s the clinical introduction and use of platinum–based chemotherapeutics, 

specifically cisplatin [cis-diamminedichloroplatinum(II)], significantly improved overall 
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survival (OS) by ~6 months in 29% of patients with ovarian cancer, leading the way to 

its adoption as the backbone of most chemotherapeutic regimens (Rossof, Talley et al. 

1979; Thigpen, Shingleton et al. 1979).  In the mid-1980s, a cisplatin analog, 

Carboplatin [cis-diammine(1,1-cyclobutanedicarboxylato)platinum(II)], with improved 

toxicity profile and equivalent therapeutic efficacy replaced cisplatin as the standard of 

care (Evans, Raju et al. 1983; Joss, Kaplan et al. 1984; Alberts, Green et al. 1992).  The 

last major advance occurred in early 1990’s with the introduction of the mitotic inhibitor 

paclitaxel, which further improved OS by 3-15 months (depending on the study) when 

used in combination with platinum (McGuire, Hoskins et al. 1996; Piccart, Bertelsen et 

al. 2000; Kyrgiou, Salanti et al. 2006) (Figure 1.03).   

 

The development of more molecularly targeted therapeutics has become increasing 

popular in the quest to provide new arsenal for the treatment of ovarian cancer.  

Recently, genetic and functional evidence has suggested that tumors with mutations in 

BRCA1 or BRCA2 may be sensitive to poly (adenosine diphosphate [ADP]) ribose 

polymerase inhibitor (PARPi) treatment (Swisher, Sakai et al. 2008; Wang and Figg 

2008).  PARPi therapies (i.e. olaparib and rucaparib) (Audeh, Carmichael et al. 2010; 

Drew, Mulligan et al. 2011) are emerging as an effective class of targeted therapies 

which are demonstrating promising potential in treating ovarian tumors harboring 

mutations in BRCA1, BRCA2, and potentially other components of homologous 

recombination (HR)- DNA repair (Turner, Tutt et al. 2004; 2011).  Olaparib, (trade name, 

Lynparza (AstraZeneca) was FDA approved for treatment of advanced ovarian cancer 

in 2014 concurrent with the approval of the BRCAnalysis CDx (Myriad Genetics) for the 
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qualitative detection of BRCA1 and BRCA2 mutations (Gunderson and Moore 2015; 

Kim, Ison et al. 2015).  That being said, it has been documented that PARP secondary 

mutations may develop over the course of treatment resulting in expression of functional 

BRCA1, which allows for renewed DNA repair and development of resistance to both 

PARPi and platinum agents (Swisher, Sakai et al. 2008).   

 

The anit-Vascular Endothelial Growth Factor (VEGF) therapeutic, bevacizumab 

(Avastin®, Roche), is an example of a target-specific drug, which can be added to a 

front-line chemotherapy regimen.  In a large Phase III trial, 1,528 women were 

randomized into either carboplatin alone or bevacizumab with carboplatin arms.  For 

women in the bevacizumab arm, progression free survival (PFS) increased by only ~1.5 

months.  However, in patients at high risk of recurrence, the addition of bevacizumab 

increased PFS and extended OS by ~8.2 months (Perren, Swart et al. 2011).  Results 

from a recent Phase III trial, entitled “Avastin Use in Platinum-Resistant Epithelial 

Ovarian Cancer (AURELIA)”, indicated that the addition of Avastin in combination with 

chemotherapy significantly increased PFS over chemotherapy alone (8.1 vs. 3.9 

months, P<0.001).  However there was no significant increase in OS and it must be 

noted that, while significant, the overall increase in PFS of ~4 months is small (Husain, 

Wang et al. 2016). 

 

While continued drug development attempts have been prolific, the fact remains that the 

most effect therapeutic for treatment of EOC is platinum-based chemotherapy.  

Unfortunately the development of resistance to this class of therapeutics is inevitable in 
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the vast majority of recurrent cases leaving a void in second-line treatment options.  The 

current status quo for patients with platinum-resistant disease is a balance between 

prescribing additional chemotherapy or inclusion in experimental clinical trials, all while 

attempting to maintain an acceptable level of quality of life (Ledermann and Kristeleit 

2010).  Frequently, monotherapy of liposomal doxorubicin, topotecan, etoposide, 

gemcitabine or increased intervals of paclitaxel are prescribed (Gordon, Fleagle et al. 

2001; Markman, Blessing et al. 2006; Fung-Kee-Fung, Oliver et al. 2007).  However, 

these are far from a cure and the hurdle of overcoming platinum-resistance remains one 

of the lasting key milestones in advancing the overall survival of women with ovarian 

cancer. 
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Figure 1.03.  Chemotherapeutic Advancements in Ovarian Cancer.  This graph depicts the 

5-year survival rate of women with stage III or IV disease and corresponding therapeutic 

advancements.  The 5-year survival rate has not significantly increased since the addition of taxols, 

(specifically paclitaxel) to platinum-based chemotherapy in 1992. 
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PLATINUM-BASED CHEMOTHERAPY  

 

Cisplatin is currently used to treat a variety of solid tumors and has been called the 

‘penicillin of cancer drugs’ (Kelland 2007).  It and other platinum-based 

chemotherapeutics remain the gold standard for treatment of EOC.  Cisplatin, also 

known as Peyrone’s Chloride, was first synthesized by Michael Peyrone in 1845 

(Kelland 2007) and is a simple inorganic structure of Cl2H6N2Pt (Figure 1.04).  The use 

of cisplatin as a chemotherapeutic agent was brought to light in the early 1960’s by the 

biophysicist, Barnett Rosenberg (Muggia, Bonetti et al. 2015).  Rosenberg observed 

that electrodes composed of platinum halted cell cycle progression in Escherichia coli 

and triggered the cells to form long (300-fold greater) filamentous morphologies 

(Rosenberg, Vancamp et al. 1965).  The in vivo use of cisplatin in animal models quickly 

followed (Rosenberg, VanCamp et al. 1969) and cisplatin was first used to treat cancer 

patients in 1971 (Rossof, Talley et al. 1979).  While cisplatin was highly effective in 

treating a variety of cancers, severe side effects, notably nephrotoxicity, lead to the 

development of next-generation platinum-based compounds. 

 

Carboplatin was the first derivative of cisplatin to be approved for clinical use in the 

treatment of a wide variety of cancers.  Carboplatin forms the same DNA adducts as its 

parent compound however the rate of adduct formation is ~10-fold slower and therefore 

20-40-fold higher concentrations of carboplatin are required to achieve the same 

therapeutic effect when compared to the parent compound (Knox, Friedlos et al. 1986).  

This change in the rate of aquation was accomplished through the replacement of 
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cisplatin’s chloride ions with 1,1 cyclobutanedicarboxylate, which is a slower leaving 

group and less reactive with water (Figure 1.04).  Oxaliplatin, a third generation 

compound, was approved for use in the treatment of cancers, such as colorectal 

cancer, in the early 2000’s (Kelland 2007).  While similar to carboplatin, oxaliplatin has a 

hydrophobic dach ligand which points into the major groove of DNA (Figure 1.04).  It is 

hypothesized that this inhibits the binding of DNA repair proteins thus preventing DNA 

repair and more efficiently activates apoptotic pathways (Hector, Bolanowska-Higdon et 

al. 2001). 

 

Platinum compounds enter the cell through passive diffusion across the plasma 

membrane, active transporters such as copper transporter proteins, or organic cation 

transporters (Figure 1.04) (Wheate, Walker et al. 2010).  Once inside the cell the 

reduced Cl concentration (4-20 mM intracellular vs 100 mM extracellular) causes the 

leaving groups to aquate thus exposing the reactive Pt.  Functionally, Pt acts by 

covalently binding DNA through N7 on purines and subsequently forming DNA adducts.  

This twists or kinks the DNA 30°-60° towards the major groove, disrupts the cell cycle, 

activates DNA repair pathways, and triggers apoptosis.  Platinum compounds are 

especially effective in cells with deficiencies in DNA repair.  For example, cells with 

mutations in components of the homologous end joining (HR) DNA repair pathways 

(i.e., BRCA mutants) are forced to utilize the more error-prone non-homologous end 

joining (NHEJ) to repair platinum-induced DNA damage.  This causes a rapid 

accumulation of genetic errors and subsequently increased cell death. 
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Platinum-based compounds can be exported from the cell through membrane 

transporters, packaged and secreted in extracellular vesicles, or degraded by the 

tripeptide L-glutathione.  Changes in drug uptake/efflux, responses to adduct formation, 

and/or elevated glutathione levels have been shown to influence how tumor cells 

respond to platinum-based chemotherapy. 
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Figure 1.04  Platinum-Based Chemotherapeutics and Traditional Mechanisms of Drug 

Resistance.  Molecular structures of the three most common platinum-based chemotherapeutics 

are shown (cisplatin, carboplatin, and oxaliplatin).  Drugs enter the cell by passive diffusion and/or 

active drug transport.  Once inside the compounds aquate and travel to the nucleus where they bind 

DNA and cause DNA damage.  Traditional mechanisms of resistance to platinum chemotherapy 

includes reduced drug influx, decreased drug efflux, elevated drug degradation by intracellular 

glutathione and enhanced DNA damage repair systems.  
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METHODS OF PLATINUM-RESISTANCE 

 

While over 90% of EOC patients will respond to initial treatment with platinum or 

platinum and taxane combinations, over 50% of these women will relapse with resistant 

or refractory disease.  The loss of sensitivity to platinum-chemotherapy has been 

extensively studied in EOC, in fact, a PubMed search using the terms ‘ovarian cancer’ 

and ‘platinum-resistance’ reveals over 1,600 results dating back to the mid 1970’s.  

Through this somewhat overwhelming amount of research there have emerged several 

classical, well documented mechanisms of platinum-resistance including, but not limited 

to; increased drug efflux/reduced influx, increased glutathione synthesis, increased DNA 

damage repair, and increased ability to undergo epithelial to mesenchymal transition 

(EMT) (Hamilton, Lai et al. 1989; Perez, Hamilton et al. 1990; Stewart 2007; Latifi, 

Abubaker et al. 2011; Galluzzi, Senovilla et al. 2012; Marchini, Fruscio et al. 2013; Yew, 

Crow et al. 2013). 

 

For obvious reasons, extracellular platinum is ineffective and in some instances, the 

development of platinum-resistance is associated with changes in how the drug enters 

and leaves the cell.  Ishida and colleagues were the first to identify the role of copper 

transporter-1 (CTR-1) in the uptake of cisplatin (Ishida, Lee et al. 2002).  Importantly, 

they observed that yeast cells with deficiencies in the CTR-1 gene and mCTR-1-/- mice 

were more resistant to cisplatin than their WT counterparts (Ishida, Lee et al. 2002).  In 

the same year Katano and colleagues further elucidated the relationships between Cu 

and cisplatin import/export in ovarian cancer cells (Katano, Kondo et al. 2002).  The 
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group provided strong evidence that cisplatin utilized the same transporters as Cu for 

both intake and efflux and cells with resistance to cisplatin also exhibited similar 

increases in resistance to Cu as compared to the sensitive, parental cell lines (Katano, 

Kondo et al. 2002). 

 

Once inside the cell, platinum-compounds can be bound by thiol-containing species, 

such as glutathione, which are rich in sulfur-containing amino acids (Mistry, Kelland et 

al. 1991).  Platinum binds readily to sulfur and the resulting compounds bind with 

glutathione S-transferase for cellular export via ATP-dependent pumps (i.e., MRP1 and 

MRP2) (Mistry, Kelland et al. 1991; Ishikawa 1992).  Increases in intracellular 

glutathione (Godwin, Meister et al. 1992) as well as increases in the numbers or activity 

of export pumps (Ohishi, Oda et al. 2002) have been correlated with platinum-

resistance. 

 

Platinum-chemotherapeutics, which are able to bind to DNA from adducts, lead to DNA 

damage.  These lesions are repaired by major DNA-repair pathways including; 

nucleotide-excision repair (NER), mismatch repair (MMR), DNA strand cross-link repair, 

homologous recombination, and non-homologous end joining (Helleday, Petermann et 

al. 2008).  In ovarian cancer, Ferry and colleagues have demonstrated that EOC cell 

lines derived from clonal evolution after exposure to cisplatin have elevated excision 

repair cross-complementation group 1 (ERCC1) which is essential to NER response to 

platinum-induced DNA damage (Ferry, Hamilton et al. 2000).  To complicate things, a 

loss of pathway components can also lead to resistance.  For example, it has also been 
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shown that cells with deficiencies in MMR have elevated resistance profiles (Fink, Nebel 

et al. 1996). 

 

Lastly, several reports have also suggested that treatment with platinum may induce 

physiological changes in recipient cells which are representative of EMT and cells with 

an increased ability to undergo EMT are more resistant to therapy (Latifi, Abubaker et 

al. 2011).  While the exact mechanism behind this phenomenon is still unclear, there is 

a push to develop anti-EMT therapeutics in an effort to reduce and/or treat the 

development of platinum resistant disease (Chen, Wang et al. 2014; Smolle, Taucher et 

al. 2014), which will be discussed in detail later. 

 

Despite decades of research elucidating various mechanisms of resistance, few 

therapeutic strategies have shown to have a significant clinical benefit.  There is an 

urgent need to develop a better standard of care for women in late stage high grade 

EOC.  A current avenue of study focuses on genetic changes that define the recurrent 

and resistant tumor burden.  Importantly, recent attention on extracellular vesicles has 

suggested that transfer of genetic and proteomic content via these vesicles may play an 

important role in the development of platinum resistance in EOC.  
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OVERVIEW 

 

The recent discovery of exosome-mediated cellular communication has greatly 

transformed our understanding of the way contact independent cell-to-cell 

communication occurs in physiological and pathological processes.  These nano-sized 

vesicles of endocytic origin are secreted by most cell types and represent a “natural” 

packaged delivery system that efficiently transports a wide range of informative 

molecules such as nucleic acids, proteins and retrotransposons, often representative of 

the cell of origin.  Although exosomes were originally described in 1980s, recent 

discoveries have sparked renewed interest in their role as mediators of intercellular 

communications, as well as their potential value as biomarkers.  Exosomes are able to 

travel systemically throughout the body to potentially target a variety of recipient cells.  

Upon surface contact and/or uptake, exosomes exert molecular and physiological 

changes via the delivery of their content and/or activation of signaling pathways.  

Recent studies have highlighted the importance of exosomal communication in “normal” 

biology and pathological states such as cancer.  Examples of these activities include 

angiogenesis, wound healing, inflammation, cell migration and mediating phenotype 

alterations.  In many types of neoplasia current evidence demonstrates that tumor cells 

display an enhanced exosomal output in contrast to their normal counterparts which is 

not only important for communication between tumor cells but also between tumor cells 

and their surrounding microenvironment.  This dynamic interplay contributes to the 

development and progression of diseases such as cancer, and enhances processes 

such as tumor metastasis, anti-tumor immuno-responses, and drug resistance. 
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HISTORY 

 

The term ‘exosomes’ was first coined by Trams and colleagues in the late 1970s as 

extracellular vesicles with 5’-nucleotidase activity that were reflective of the activity of 

the parent cells (Trams, Lauter et al. 1981).  While this study mainly described 

membrane fragments, not exosomes as we know them today, the authors proposed that 

these secreted vesicles may serve a physiologic functional role.  It wasn’t until six years 

later that Rose Johnstone and colleagues observed vesicles released from the plasma 

membrane of sheep reticulocytes during their maturation into erythrocytes which they 

termed as exosomes (Johnstone, Adam et al. 1987).  Most importantly, Johnstone et 

al., reported that exosome biogenesis was most likely linked to the formation of 

multivesicular bodies (MVB) as previously described by two independent groups (Pan et 

al., and Harding et al.,) while studying transferrin receptor sorting (Harding, Heuser et 

al. 1983; Pan, Teng et al. 1985).  Additionally, Johnstone demonstrated that exosomes 

isolated from the in vitro culture of sheep reticulocytes contained several proteins 

(acetylcholinesterase, glucose transporters, nucleoside transporters, and the transferrin 

receptor), which maintained biological activity while in exosomes and were capable of 

mimicking a portion of the parental cell’s functions (Johnstone, Adam et al. 1987).  In 

1989 Johnstone further expanded the understanding of exosome biogenesis by 

providing evidence that the sorting of specific proteins into exosomes is an active and 

orderly process which may be conserved across species (Johnstone, Bianchini et al. 

1989).  Since these initial discoveries four-decades ago we have finally begun to 

understand the biological significance of this specific class of secreted vesicles.  What 
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were once believed to be “nothing more than the cell’s disposal system” have emerged 

as intricate and organized intracellular communicators which are essential in many 

aspects of physiology such as development, immune surveillance, and, importantly, the 

development of disease states such as cancer. 

 

EXOSOME BIOGENESIS 

 

Extracellular vesicle production and release occurs in all cells types under normal 

physiologic as well as in diseased states (Robbins and Morelli 2014).  This conserved 

evolutionary process, inherent to both prokaryotic and eukaryotic cells (Johnstone 2006; 

Keller, Sanderson et al. 2006; Thery, Ostrowski et al. 2009), leads to the formation of 

membrane-derived vesicles, which based upon vesicular size, intracellular contents and 

biogenesis, are categorized into various classes of cell-derived extracellular vesicles 

(EVs).  Following their respective biogenesis, three main classes of cell-derived EVs are 

now recognized: (1) microvesicles/microparticles, (2) apoptotic bodies, and (3) 

exosomes.  Distinct from microvesicles and apoptotic bodies, exosomes are defined by 

their biogenesis, size (display a diameter within 30-150 nm), and their specific protein 

content.  While not all exosomes contain universal markers (such as β-actin, GAPDH, or 

tubulin in eukaryotic cell lysates), our current understanding of exosome biogenesis and 

biology has identified several key proteins which are typically (but not always) found on 

and within exosomes including tetraspanins such as CD9, CD63, and CD81 (Thery, 

Ostrowski et al. 2009), members of the Endosomal Sorting Complexes Required for 
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Transport (ESCRT) such as ALIX, and TSG101, and heat shock proteins such as 

Hsp70 and Hsp90 (Thery, Zitvogel et al. 2002; Thery, Amigorena et al. 2006).  

Exosome formation begins in the early endosome by a mechanism of inward budding of 

the limiting membrane which results in the formation of intraluminal vesicles (ILV) 

(Figure 2.01) (Harding, Heuser et al. 1983).  The ESCRT complex proteins (ESCRT-0, 

I, II, & III, TSG101, and accessory proteins ALIX and VPS4) are important to this 

process and carry out activities such as ubiquitin-mediated cargo trafficking, vesicle 

formation, and scission (Katzmann, Babst et al. 2001; Babst, Katzmann et al. 2002; 

Babst, Katzmann et al. 2002; Bilodeau, Winistorfer et al. 2003; Katzmann, Stefan et al. 

2003; Raiborg, Rusten et al. 2003; Baietti, Zhang et al. 2012).  Exosome biogenesis, 

independent of the ESCRT machinery has also been described. Trajkovic and 

colleagues were the first to identify the importance of sphingolipid ceramide content in 

generating the inward curvature of ILV formation (Trajkovic, Hsu et al. 2008).  Since 

then, evidence has emerged highlighting the potential roles of additional lipids and lipid-

associated machinery; including cholesterol and phospholipase D2, in exosome 

biogenesis (Wubbolts, Leckie et al. 2003; Laulagnier, Grand et al. 2004; Strauss, 

Goebel et al. 2010).  Of note, recent studies suggest that the membrane lipid 

composition is often altered in tumor cells, and select tumor-associated lipids may be 

enriched within exosomes and serve biological functions which act to enhance 

tumorigenesis (Nicolson 2015). 

 

Mature ILV’s are termed multivesicular bodies (MVB).  MVBs either fuse with lysosome 

or, through mechanisms which are still unclear, travel to and fuse with the plasma 



33 
 

membrane of the producing cell.  Several reports highlight the significance of Rab 

proteins (i.e., Rab35, Rab27a, and Rab27b) in this process (Hsu, Morohashi et al. 2010; 

Ostrowski, Carmo et al. 2010) and, in addition to their roles in exosome biogenesis, 

ongoing evidence suggests that these proteins may be important in tumor development 

and metastasis (Figure 2.01) (Li, Hu et al. 2014; Ostenfeld, Jeppesen et al. 2014; 

Wang, Gilkes et al. 2014; Yang, Liu et al. 2015).  For example, Bobrie and colleagues 

have demonstrated the importance of Rab27a in the ability of breast cancer cells to 

secrete exosomes capable of recruiting pro-tumor neutrophils into the tumor 

microenvironment (Bobrie, Krumeich et al. 2012).  Likewise, Hendrix and colleagues 

have provided evidence that Rab27b is essential for lymph node metastasis in a breast 

cancer mouse model (Hendrix, Braems et al. 2010; Hendrix, Maynard et al. 2010).  In 

addition to Rab GTPases, the p53 protein, which is highly dysregulated in a variety of 

malignancies (Levine, Reich et al. 1983; Cordani, Pacchiana et al. 2016), has been 

implicated in the regulation of exosome release (Figure 2.01).  It was reported that DNA 

damage activation of p53 induced transcription of TSAP6 (which has been associated 

with exosome biogenesis) (Yu, Harris et al. 2006).  In addition, p53 activation has also 

been correlated with other exosome biogenesis pathway components such as Caveolin-

1 (Feng 2010).  In fact, several studies have illustrated that enhanced exosome 

biogenesis and release may be triggered by stressors such as chemotherapeutics, 

which activate p53 by causing DNA damage; it is thought that exosome biogenesis and 

release may be a survival mechanism in these cells (Merendino, Bucchieri et al. 2010; 

Khan, Jutzy et al. 2011; King, Michael et al. 2012; Yang, Wu et al. 2013) (Figure 2.01). 
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Figure 2.01.  Exosome Biogenesis in Cancer.  Exosomal biogenesis machinery, which has been 

reported to be necessary or dysregulated in malignancies, includes clathrins (responsible for inward 

budding and exosomal uptake), members of the RAB GTPase family (involved in MVB trafficking and 

fusion with the cell membrane), P53 (tumor suppressor gene – upregulates TSAP), TSAP (whose 

function in exosome biogenesis is unknown).  Exosomes released from cancer cells carry oncogenic 

cargo including mRNAs, miRNAs, and biologically active proteins including oncogenic receptors; KIT, 

EGFR, CXCR3, and HER2, as well as intracellular proteins, K-RAS, PTEN, AKT and Dicer.  

Exosomes have a dense lipid membrane enabling them to travel thorough blood and lymph systems 

to interact with cells at very distal locations. 



35 
 

EXOSOMES IN CANCER 

 

The first report of the ability of tumor cells to release microvesicles was initially 

described by Taylor et al., in early 1980’s in his studies of ovarian cancer (Taylor and 

Doellgast 1979; Taylor, Homesley et al. 1980).  Since this seminal work, exosomes 

have been identified as a previously unappreciated contributor in the development of 

many types of cancer including breast, gastrointestinal stromal tumors (GIST), non-

small cell lung, glioblastoma multiforme (GBM), and leukemia (Baynes, Shih et al. 1991; 

Perez-Torres, Valle et al. 2008; Skog, Wurdinger et al. 2008; Nazarenko, Rana et al. 

2010; Atay, Banskota et al. 2014).  Neoplastic cells become cancerous upon acquisition 

of specific characteristics, or ‘hallmarks,’ which enable them to develop, survive, and 

metastasize (Hanahan and Weinberg 2011).  The “Hallmarks of Cancer” were defined 

by Hanahan and Weinberg to include replicative immortality, resisting cell death, 

evading extracellular cues, increased angiogenesis, invasion and metastasis, and 

immune escape.  The ability of tumors to accomplish such hallmarks requires 

intracellular communication between tumor cells and the complex network of cells and 

molecules that make up the surrounding tumor stroma including cancer-associated 

fibroblasts (CAFs), endothelial cells, tumor associated macrophages (TAMs), as well as 

the extracellular matrix.  To date, exosomes derived from both cells of the tumor and 

stroma have been shown to play key roles in a variety of cancers and work is ongoing to 

demonstrate just how essential these vesicles are in the process of tumorigenesis. 
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ONCOGENIC TRANSFORMATION AND TUMOR FORMATION 

 

Tumor cells distinguish themselves from their normal cellular counterparts by their 

abilities to replicate indefinitely, evade extracellular cues to stop proliferation, and 

survive genomic alterations, which would otherwise trigger apoptosis.  Gain-of-function 

mutations in proto-oncogenes or loss of tumor suppressor activities contribute to the 

pathogenesis of most types of cancers and current research has emerged suggesting 

that exosomes may be involved in the propagation of these malignant changes (Skog, 

Wurdinger et al. 2008; Atay, Banskota et al. 2014).  Since a portion of the parental cell’s 

membrane proteins and cytosolic components are retained within exosomes, tumors 

are capable of using this endogenous vesicle trafficking system to horizontally transfer 

oncogenic mRNAs, micro-RNAs (miRNAs), and proteins as well as other tumor-

promoting materials to neighboring cells within the microenvironment.  Exosomes are 

believed to interact with recipient cells by either fusing with the recipient cell’s plasma 

membrane, thereby transferring both membrane and cytosolic components and 

activating signaling pathways, through ligand-receptor binding interactions, or though 

uptake via endocytosis (Figure 2.02).  In many instances, exosome contact triggers 

phenotypic transformation of recipient cells which, in cancer, can enhance overall 

tumorigenicity (Figure 2.02) (Webber, Steadman et al. 2010; Yang, Chen et al. 2011).  
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Figure 2.02  Exosome-Mediated Effects on Recipient Cells.  Exosomes interact with recipient 

cells in one of three identified ways.  The may be internalized via pinocytosis or endocytosis, make 

contact and fuse with the plasma membrane of the recipient cell, or interact with receptors on the cell 

surface.  The first two of these interactions results in the transfer of exosomal material including 

oncogenic proteins, mRNAs and miRNAS.  The last interaction may result in activation of signaling 

cascades such as PI3K-AKT, TGFβ, and WNT, which leads to changes in gene expression and 

phenotype.  Importantly, tumor cells use these mechanisms to exchange information and increase 

tumorigenesis. 
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In 2007, Valadi and colleagues were the first to report that cell-cell communication via 

exosomes mediated the exchange of mRNA and miRNAs.  More importantly, they 

demonstrated that certain mRNAs within exosomes were translated into protein within 

the recipient cells, thus highlighting the functional significance of exosome-mediated 

RNA transfer in cell-cell communication (Valadi, Ekstrom et al. 2007).  The first direct 

evidence of this form of communication within a neoplastic setting was identified in 

GBM. In this study, Skog and colleagues demonstrated how GBM cell-derived 

exosomes contained mRNAs, which could be transferred to and translated within 

recipient cells (Skog, Wurdinger et al. 2008).  In addition, the uptake of these exosomes 

induced proliferation in a human glioma cell line as well as tubule formation in non-

malignant endothelial cells (Skog, Wurdinger et al. 2008).  Subsequent studies 

demonstrated that exosomes derived from colorectal cancer cells contained mRNAs 

involved in cell cycle regulation which, upon transfer to untransformed endothelial cells, 

promoted uncontrolled proliferation (Hong, Cho et al. 2009).  Tumor-derived exosomes 

have also been shown to be involved in the recruitment of transformed mesenchymal 

stem cells into the tumor microenvironment (Webber, Steadman et al. 2010; Cho, Park 

et al. 2011).  Likewise, tumor cells exposed to exosomes derived from cells within the 

microenvironment, such as CAFs or TAMs, demonstrated enhanced proliferation and 

invasion capacities (Yang, Chen et al. 2011; Luga and Wrana 2013).  Subsequent to 

these studies, numerous miRNAs, mRNAs, and proteins have since been identified and 

shown to induce tumorigenesis in a wide variety of malignancies (Table 2.01 and 

Figure 2.02) and ongoing work suggests that the transfer of oncogenic material, 

especially short non-coding RNAs, such as miRNAs, may be an essential step in cancer 
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development (Haug, Hald et al. 2015; Rodriguez, Silva et al. 2015; Warnecke-Eberz, 

Chon et al. 2015; Rooj, Mineo et al. 2016). 

 

Perhaps one of the most interesting discoveries of the past few years was the 

identification of miRNA processing machinery within tumor-derived exosomes (Melo, 

Sugimoto et al. 2014).  Melo and colleagues identified Dicer, Ago2, and TRB (all 

members of the RISC-loading complex) within exosomes.  The discovery of this 

machinery was significant because of the integral role it plays in pre-miRNA processing 

into mature miRNA.  This study provided intriguing evidence that exosomes derived 

from both breast cancer cell lines and patient sera were capable of processing pre-

miRNA into mature miRNA independent of the cellular environment.  In addition, uptake 

of these exosomes triggered “normal” epithelial cells to form tumors in a Dicer-

dependent manner. 

 

The transfer of proteins, especially oncogenic proteins, from tumor cells to cells in the 

microenvironment has been observed in the evolution of multiple types of cancers.  Our 

group was the first to show that circulating exosomes derived from GIST patient serum 

or conditioned media of GIST cell lines contain the constituently active, oncogenic KIT.  

KIT, also known as CD117 is the normal cellular homologue of the viral oncoprotein v-

Kit (v-Kit, Hardy Zuckerman 4 feline sarcoma viral oncogene homologue) and is a 

member of the receptor tyrosine kinase subclass III superfamily that includes receptors 

for platelet derived growth factor (PDGF), macrophage-colony stimulating factor (M-

CSF), and FLT3 (Tarn and Godwin 2006). 
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Atay and colleagues reported that uptake of these so called “oncosomes” by normal 

progenitor smooth muscle cells triggered the activation of oncogenic signaling pathways 

downstream of KIT and lead to a tumor-promoting phenotype within these recipient cells 

(Atay, Banskota et al. 2014).  We reported that GIST cells not only constitutively 

released low levels of MMP1, but that challenging myometrial smooth muscle cells with 

GIST patient-derived exosomes (but not exosomes from healthy donors) significantly 

increased MMP1 production, which in turn enhanced GIST cell invasion.  We assessed 

direct/indirect exosome-mediated MMP1 induction using siRNA and inhibitory drug 

strategies to reduce MMP1 production by myometrial cells and were able to mimic, in 

vitro, the exosomeMMP1 expression feedback loop.  In particular, in vivo-derived 

exosomes appeared to be potent exogenous source of MMP induction in stromal cells, 

which in turn acted as a pro-invasion factor for GIST cells (Atay and Godwin 2014). 

 

Likewise, oncogenic KRAS has also been reported as a component of exosomes 

derived from mutant KRAS-expressing colon cancer cells and uptake of these 

exosomes triggered enhanced invasiveness in recipient cells (Higginbotham, Demory 

Beckler et al. 2011).  In other studies, exosomes derived from mutant KRAS cell lines 

were shown to increase the production of tumor-promoting proteins such as EGFR, 

SRC family kinases and integrins (Higginbotham, Demory Beckler et al. 2011; Demory 

Beckler, Higginbotham et al. 2013).  Rodriguez and colleagues reported that breast 

cancer cells over expressing oncogenic CXCR4 exhibited an increase in stem cell 

markers, as well as proliferative, migratory and invasiveness properties.  Importantly, 
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exosomes derived from these cells were able to transfer a portion of these 

characteristics to recipient non-tumorigenic (T47D) cells (Rodriguez, Silva et al. 2015). 

 

While the presence of genomic DNA in exosomes is still under debate recent work has 

identified dsDNA of tumor suppressor genes TP53 and KRAS in exosomes derived from 

the pancreatic cell lines and serum of patients with pancreatic adenocarcinoma.  

Importantly, deep sequencing of the exosomal DNA revealed mutations identical to the 

parental cell lines (Kahlert, Melo et al. 2014).  Through the transfer of mRNA, miRNAs, 

DNA, or proteins, exosomes have shown to be effective vehicles for oncogenic 

transformation, (Figure 2.03) and, as we will discuss, tumor progression. 

 

 

 

 

Table 2.01  Exosomal Content Associated with Tumorigenesis  

Function Malignancy Exosomal 
Content 

Reference 

Neoplastic 
Transformation 

 

Prostate cancer 
Breast cancer 
 
 
 
 
 
 
GIST 

miR-125b, miR-130b, 
miR-155 
miR-140 
 
Dicer, Ago2, TRB 
 
CXCR4 
 
KIT 

(Abd Elmageed, Yang et al. 
2014) 
(Gernapudi, Yao et al. 
2015) 
 
(Melo, Sugimoto et al. 
2014) 
(Rodriguez, Silva et al. 
2015) 
 
(Atay, Banskota et al. 2014) 
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Angiogenesis 

Chronic Myeloid 
Leukemia (CML) 
 
Colorectal Cancer 
Glioblastoma 
Multiforme (GBM) 
Lung Cancer 
Melanoma 
Pancreatic 
Cancer 
 
Multiple Myeloma 
Glioblastoma 

miR-210 
 
 
 
 
           
           miR-9 
 
 
 
 
miR-135b 
EGFRvIII 

(Umezu, Ohyashiki et al. 
2013) 
(Zhuang, Wu et al. 2012) 
 
 
 
(Umezu, Tadokoro et al. 
2014) 
 
 
 
 
 
(Al-Nedawi, Meehan et al. 
2008) 

Invasion/ 
Migration 
 

Breast cancer 
Chronic Myeloid 
Leukemia (CML) 
Gastric cancer 
Breast cancer 
 
Colon cancer 

miR-223 
miR-92a 
 
miR-221, miR-222 
miR-10b 
miR-223 
KRAS 

(Yang, Chen et al. 2011) 
(Tadokoro, Umezu et al. 
2013) 
(Wang, Zhao et al. 2014) 
(Singh, Pochampally et al. 
2014) 
(Yang, Chen et al. 2011) 
(Higginbotham, Demory 
Beckler et al. 2011) 

Metastasis 

Breast cancer 
 
Bladder cancer 
 
 
 
 
Hepatocellular 
carcinoma (HCC) 
Lung Cancer 

miR-122 
 
miR-105 
miR-23b 
 
 
 
miR-584, miR-517c, 
miR-378 
miR-21, miR-29a 

(Fong, Zhou et al. 2015) 
 
(Zhou, Fong et al. 2014) 
 
 
 
 
 
(Ostenfeld, Jeppesen et al. 
2014) 
(Kogure, Lin et al. 2011) 
(Fabbri, Paone et al. 2012) 

Immune 
Inhibition 

Nasopharyngeal 
carcinoma 
 
Glioblastoma 
 
Prostate cancer 

miR-24-3p, miR-891a, 
miR-106a-5p, miR-
20a-5p, miR-1908 
miR-451,miR-21 
 
FasL 

(Ye, Li et al. 2014) 
 
 
 
(van der Vos, Abels et al. 
2016) 
(Abusamra, Zhong et al. 
2005) 

Therapeutic 
Escape 

Breast cancer 
 
 

miR-127, miR-197, 
miR-222, miR-223 
miR-222 
HER2, EPCAM 

(Lim, Bliss et al. 2011) 
 
(Chen, Liu et al. 2014) 
 
(Battke, Ruiss et al. 2011) 
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ANGIOGENESIS 

 

The high energy demands of growing tumors and exposure to hypoxic conditions 

requires increased angiogenesis (Shweiki, Itin et al. 1992; Paduch 2016).  Exosomes 

have been implicated in the production of new blood vessels (neo-angiogenesis), which 

supply developing tumors with nutrients and oxygen (Janowska-Wieczorek, 

Wysoczynski et al. 2005; Al-Nedawi, Meehan et al. 2008).  Likewise, exosome secretion 

has been implicated as a mechanism by which neoplastic cells survive the oxygen 

depleted hypoxic core of developing tumors (King, Michael et al. 2012; Kucharzewska, 

Christianson et al. 2013; Ramteke, Ting et al. 2015).  Janowska-Wieczorek et al were 

the first to demonstrate that uptake of platelet-derived microvesicles and exosomes 

resulted in increased expression of angiogenic factors, as well as, invasive capacities in 

recipient human lung cancer cell lines (Janowska-Wieczorek, Wysoczynski et al. 2005).  

Likewise, Al-Nedawi et al reported that transfer of the mutated oncogenic epidermal 

growth factor receptor (EGFRvIII) from EGFRvIII+ to EGFRvIII- glioma cells elicited 

enhanced production of the angiogenic factor VEGF and anchorage independent 

growth via activation of MAPK and AKT pathways (Al-Nedawi, Meehan et al. 2008).  

Hypoxic conditions in GBM promote secretion of tumor-derived exosomes which trigger 

protease-activated receptor 2 (PAR-2) signaling in endothelial cells thus enhancing 

angiogenesis (Svensson, Kucharzewska et al. 2011) and exosomes derived from 

multiple myeloma cells under hypoxic conditions are enriched with miR-135b which 

enhances angiogenesis in endothelial cells by suppressing targeting-factor inducing 

hypoxia factor 1 (HIF-1) (Umezu, Tadokoro et al. 2014).  Additionally, hypoxic 
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conditions may also trigger exosome secretion, which acts to enhance metastasis to 

new sites as reported in breast and squamous cell carcinomas (Park, Tan et al. 2010; 

Wang, Gilkes et al. 2014). 

 

NICHE FORMATION, METASTASIS 

 

Upon the establishment of the primary tumor, severe conditions established during 

cancer progression frequently result in the movement of tumor cells to secondary 

metastatic sites.  Exosomes have been implicated in preparing such sites or ‘niches’ for 

suitable and sustainable secondary tumor establishment, a task, which involves 

multilayered communication.  Peinado and colleagues reported that melanoma-derived 

exosomes injected into mice functioned to induced vascular leakiness at pre-metastatic 

sites and triggered changes gene expression (such as increases in extracellular matrix 

remodeling factors) in lung tissue towards a more tumor-supporting environment 

(Peinado, Aleckovic et al. 2012).  Importantly, the exosome-mediated cross talk 

between tumor cells and the surrounding stroma has recently been shown to be bi-

directional.  For example, Zhang and colleagues reported how organized exosome-

mediated conversations between tumor cells and cells of the microenvironments of 

specific organs dictated future sites of metastasis (Zhang, Zhang et al. 2015).  This 

group demonstrated that astrocyte-derived exosomes were capable of transferring 

tumor suppressor gene, PTEN-targeting miRNAs to metastatic tumor cells, thus 

promoting the advancement of metastatic sites within the brain. In addition, exosome-

inflicted loss of PTEN within these tumor cells increased secretion of myeloid cell 
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recruiting chemokines, which further enhanced tumor development (Zhang, Zhang et al. 

2015).  Interestingly exosomal PTEN-targeting miRNAs were not found in exosomes 

derived from other organs, and therefore provided a novel insight alluding to the 

increased prevalence in certain malignancies towards metastasis of disease to the 

central nervous system.  Additionally, it has been suggested that exosomes can 

contribute to the accumulation of tumor cells in sentinel lymph nodes (Hood, San et al. 

2011).  Hood and colleagues demonstrated that exosomes derived from melanoma cell 

lines preferentially localized to ‘sentinel’ lymph nodes in vivo.  Uptake of these tumor-

derived exosomes primed the lymph nodes to become more tumor-supportive and mice 

with pre-treatment of tumor-derived exosomes had increased tumor cell accumulation 

within the sentinel lymph nodes. 

 

IMMUNE EVASION 

 

Solid tumor malignancies are frequently staged according their tumor size, sites of 

metastasis and involvement of their nearby (regional) lymph nodes, which can be 

thought of as the ‘base camps’ of the body’s immune system.  In order for continued 

proliferation within immunocompetent hosts, tumor cells have adapted complex 

mechanisms (i.e., the secretion of immunosuppressive factors, antigen presentation, 

and the ability to target regulatory T-cell function), which allow them to evade and/or 

suppress the body’s innate anti-tumor machinery (Vinay, Ryan et al. 2015).  The role of 

exosomes in immunology is perhaps the most extensively studied exosomal function to 

date. Clayton and Tabi were the first to report on the ability of exosomes to inhibit 
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immunological responses in cancer (Clayton and Tabi 2005).  In this formative study, 

the researchers demonstrate that the natural killer group 2D (NKG2D) is downregulated 

in leukocytes following exposure to tumor-derived exosomes, and their effector cytotoxic 

functions are impaired as a result.  Around the same time, Abusamra and colleagues 

identified the ability of exosomes derived from a prostate cell line to mediate apoptosis 

of CD8+ T-cells by the transfer of the Fas-L ligand (Abusamra, Zhong et al. 2005).  

Additionally, tumor-derived exosomes have been shown to impair anti-tumor immunity 

by inhibition of lymphocyte responses to IL-2 (Clayton, Mitchell et al. 2007), 

enhancement of pro-inflammatory cytokines (Deng, Cheng et al. 2012), binding tumor-

reactive antibodies (Battke, Ruiss et al. 2011), and education of macrophages and mast 

cells to become tumor-supportive (Yang, Chen et al. 2011).  In breast cancer, Yang and 

colleagues found that uptake of exosome-bound miRNA-223 from IL-4 activated 

macrophages increased the invasive potential of breast cancer cells in vitro (Yang, 

Chen et al. 2011).  Additionally, van der Vos and colleagues demonstrated that 

microvesicles from human GBM cells contained miR-451/miR-21 and were taken up by 

cells in the microenvironment (microglia, monocyte/macrophages) (van der Vos, Abels 

et al. 2016).  Upon exosome exposure, these recipient cells exhibited an increase in 

proliferation and changes in released cytokine profiles, which ultimately contributed to 

an immunosuppressive phenotype and tumor growth.  Lastly, Battke and colleagues 

demonstrated the seemingly simple, yet profoundly important role of tumor-derived 

exosomes in binding to tumor-reactive immunotherapies (i.e., HER2 targeting 

Herceptin®), thus sequestering the therapeutic compounds and protecting the parental 

tumor from attack (Battke, Ruiss et al. 2011).  
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CHEMOTHERAPY EVASION 

 

Despite a tumor’s ability to grow and metastasize, the ultimate cause of cancer-related 

mortality is the development of resistance to therapeutic interventions.  It should be of 

no surprise that exosomes have been linked to this process, for example, by excretion 

of chemotherapeutic drugs and transfer of resistance traits (mRNAs and protein) 

between individual tumor cells (Andre Mdo, Pedro et al. 2016).  In ovarian cancer, 

Safaei and colleagues demonstrated that platinum-resistant ovarian cancer cells 

exhibited increased intracellular pH levels, which corresponded with enhanced 

exosome-mediated efflux of the chemotherapeutic agent cisplatin (Safaei, Larson et al. 

2005).  In addition to physically exporting drugs, exosome transfer of factors which 

contribute to resistant phenotypes from drug-resistant to drug-sensitive tumor cells has 

been identified in prostate, lung, breast, neuroblastoma, and ovarian cancers (Corcoran, 

Rani et al. 2012; Chen, Liu et al. 2014; Lv, Zhu et al. 2014; Xiao, Yu et al. 2014; 

Challagundla, Wise et al. 2015).  The most notable mechanism of such action is through 

transfer of miRNAs.  One such example of this is in breast cancer, where exosomes 

derived from tamoxifen resistant-MCF-7 cells were found to contain and transfer miR-

221/222 to tamoxifen-sensitive-MCF-7 cells.  This transfer resulted in decreased target 

gene expression of P27 and ERα, which subsequently decreased tamoxifen sensitivity 

in recipient cells (Wei, Lai et al. 2014).  In Chapter 3 my studies demonstrate that 

uptake of exosomes derived from platinum-resistant ovarian cancer cell lines by 

platinum sensitive cells corresponds with increased epithelial to mesenchymal transition 

(EMT) and a loss of sensitivity to carboplatin.  Exosome-mediated EMT has been 
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observed in multiple types of cancer including melanoma and bladder cancers (Vella 

2014) and the addition of pharmacological EMT inhibitors is currently being evaluated 

for treatment of  malignancies such as prostate and lung cancers (Fischer, Durrans et 

al. 2015; Zheng, Carstens et al. 2015). 
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Figure 2.03.  Tumor-Derived Exosomes Contribute To Cancer Development and 

Progression.  Exosomes derived from cancer cells act on cells in the local and distal micro-

environment to enhance tumorigenesis.  Examples of this are; preparing extracellular matrix for 

establishment of new tumors, inducing neoplastic transformation of epithelial and other healthy cells, 

increasing angiogenesis, contributing towards anti-tumor immune evasion, recruiting and educating 

fibroblasts and other cells in the microenvironment to become tumor-supporting, and transferring 

factors which enhance drug resistance in neighboring tumor cells.  
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THERAPEUTIC USE 

 

Given the overwhelming importance of exosomes in cancer development and 

progression it is only natural that researchers have contemplated mechanisms in which 

to target and/or utilize exosomes in therapeutic applications.  The pivotal work for the 

latter came in 1998 when Zitvogel and colleagues demonstrated how exosomes derived 

from tumor-peptide pulsed dendritic cells (DEX) could be used as a tumor-vaccine. 

Researchers identified MHC-I, MHC-II, and T-cell co-stimulatory molecules on DEX and 

effectively used these exosomes to suppress growth of established murine tumors.  

This line of research was continued with the introduction of tumor-derived exosomes 

(TEX) as an alternative exosomal therapeutic option (Wolfers, Lozier et al. 2001).  In 

this study, Wolfers and colleagues demonstrated that TEX were more effective than 

irradiated tumor cells, apoptotic bodies, and tumor lysates at eliciting a T-cell mediated 

antitumor immune response and effective elimination of autologous tumors.  Clinical 

trials utilizing DEX (including studies with second generation DEX2) have been 

introduced in non-small cell lung cancer, melanoma, and primary as well as recurrent 

gliomas (Morse, Garst et al. 2005).  While results have been modest, there is sufficient 

evidence to warrant additional clinical trials in patients with glioma and NSCLC (Tan, De 

La Pena et al. 2010). 

 

In additional to their potential as a tumor-vaccine, exosomes have recently been 

evaluated for their uses as therapeutic delivery vehicles.  Strategies to load therapeutic 

material into exosomes include modifying parental cells to exogenously express small 
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non-coding RNAs, mRNAs, or proteins which are then sorted into exosomes (Lee, Kim 

et al. 2011; Wahlgren, De et al. 2012; Koppers-Lalic, Hogenboom et al. 2013; Ohno, 

Takanashi et al. 2013; Shtam, Kovalev et al. 2013; Cooper, Wiklander et al. 2014; 

Wang, Wang et al. 2015) and biomechanical loading of drug compounds directly onto 

isolated exosomes via various co-culture techniques.  Sun and colleagues were the first 

to demonstrate that exosomes loaded with the anti-inflammatory agent, curcumin, 

increased the solubility, stability, and bioavailability of curcumin and were more effective 

than curcumin alone at reducing inflammation (Sun, Zhuang et al. 2010).  Likewise, in 

vivo xenograft models have demonstrated that the efficiency of drug delivery is 

enhanced when pharmacological agents such as paclitaxel are pre-loaded into bovine-

derived milk exosomes as compared to drug alone (Munagala, Aqil et al. 2016).  In 

many cases, exosomes can be engineered to preferentially target specific subsets of 

cells, thus minimizing off-target effects and toxicity.  The idea of generating exosomes 

with this sort of targeting ligand has been shown to be effective in cancers such as in 

breast and lung (Tian, Li et al. 2014; Munagala, Aqil et al. 2016).  Importantly, in many 

cases, exosomes are derived from modified host-derived cells, thus the autologous 

exosomes are able to travel throughout the body with little to no immunological 

interference. 

 

Lastly – devices such as the M-trap and Aethlon ADAPT™ (adaptive dialysis-like affinity 

platform technology) have been developed which exploit the pro-tumorigenic potential of 

exosomes in vivo.  In the M-trap therapeutic strategy, exosomes isolated from the 

ascites fluid of ovarian cancer patients are embedded on a 3-D scaffold, which is then 
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placed within the peritoneal cavity.  Researchers observed that the implanted device 

attracted and sequestered circulating cancer cells which resulted in a reduced number 

of metastatic sites overall.  Importantly, the use of devices such as this is thought to 

generate more focal and therefore operable sites of metastasis (de la Fuente, Alonso-

Alconada et al. 2015).  The Aethlon ADAPTTM utilizes a technology previously designed 

to filter viral loads from patient plasma (Marleau, Chen et al. 2012).  In this proposed 

therapeutic strategy, exosomes bearing specific markers or oncoproteins (i.e., HER2) 

are captured and removed from patient plasma which results in a reduction of exosome-

mediated immune inhibition as well as decreased exosome-mediated inhibition of 

antibody-based therapies (i.e., Herceptin®).  Of course, while promising, this type of 

therapy is reliant upon identification of tumor-derived exosomal biomarkers, a field that 

is rapidly expanding.  

 

BIOMARKERS 

 

The unique phenotypes of tumor-derived exosomes make them not just an appealing 

choice for therapeutics, but also ideal targets for biomarker discovery given their relative 

abundance in bodily fluids and ease of accessibility.  Notably, exosomes biogenesis and 

output has been shown to be enhanced in cancer cells (Baran, Baj-Krzyworzeka et al. 

2010) and tumor-derived exosomes have been identified and isolated from several 

biological fluids including; blood, (Alegre, Zubiri et al. 2016; Herreros-Villanueva and 

Bujanda 2016; Taverna, Giallombardo et al. 2016) ascites (Runz, Keller et al. 2007; 

Peng, Yan et al. 2011; Carbotti, Orengo et al. 2013; Tokuhisa, Ichikawa et al. 2015), 
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saliva (Sharma, Gillespie et al. 2011; Lau, Kim et al. 2013; Yang, Wei et al. 2014; 

Sivadasan, Gupta et al. 2015), and urine (Mitchell, Welton et al. 2009; Berrondo, Flax et 

al. 2016; Hendriks, Dijkstra et al. 2016).  The presence of tumor-specific cell surface 

proteins allows for tumor-specific exosome isolation using immunocapture techniques.  

Upon capture, analysis of exosomal cargo provides a wealth of information regarding 

the current state of disease.  For example, exosome samples positive for EpCAM have 

been isolated from the ascites of patients and corresponded with overall survival and 

prognosis (Runz, Keller et al. 2007; Taylor and Gercel-Taylor 2008).  Additionally, the 

presence of Glypican-1 on exosomes has been identified as a marker for pancreatic 

cancer at both early and late stage disease (Melo, Luecke et al. 2015).  The most recent 

interest in the field has identified miRNAs as ‘disease signatures’ and multiple exosome-

associated miRNAs are now being used as disease biomarkers (as listed in Table 

2.02). 

 

With the expansion of exosomal biomarkers there is a tremendous need for tools to 

rapidly capture and analyze circulating exosomes.  Our lab was the first to truly develop 

an integrated microfluidic platform capable of isolating and interrogating specific 

subpopulations of exosomes from small volumes of plasma (He, Crow et al. 2014).  This 

novel microfluidic strategy or “lab-on-a-chip” was able to rapidly and quantitatively 

isolate and analyze exosomes, as well as intravesicular markers directly from human 

blood.  This microfluidic platform was shown able to integrate immunomagnetic isolation 

and enrichment, chemical lysis, and immune-sandwich chemifluorescence probing in 

one sequential process.  He and colleagues developed assays to capture non-small cell 
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lung cancer (NSCLC) and ovarian cancer-associated exosomes and showed that 

exosomal protein markers could accurately distinguish cancer cases from healthy 

individuals.  Importantly, the complete analysis, including two-stage immunomagnetic 

capture, was completed in ~2 hrs (0.5 hrs. off-chip incubation and ~1.5 hrs. on-chip 

assay) with as low as 30 µL of plasma samples.  The future relevance of this type of 

non-invasive biomolecular profiling cannot be understated in both diagnosis and the 

early detection of cancers where tumor biopsies are invasive, often difficult to obtain, 

and overly expensive. 
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Table 2.02  Exosomal miRNAs as Biomarkers 

 

Malignancy 
Exosomal 

miRNA 
biomarker 

Biological 
Fluid 

Isolated 
Diagnostic Value Reference 

Breast cancer 
miR-101, miR-
372, miR-373 

Serum 

Increased expression in 
breast cancer patients and 
miR-373 expression 
increased in receptor-
negative breast cancer 

(Eichelser, 
Stuckrath 
et al. 2014) 

Cervical 
cancer 

miR-21, miR-
146a 

Cervicovaginal 
lavage 

Increased expression in 
cervical cancer patients 
exosomes compared to 
healthy controls 

(Liu, Sun et 
al. 2014) 

Colon cancer 

miR-1229, miR-
1246, miR-150, 
miR-21, miR-
223, miR-23a  

Serum 
Increased expression in 
exosomes of colon cancer 
patients 

(Ogata-
Kawata, 
Izumiya et 
al. 2014) 

Colon cancer 
miR-17-92a 
cluster 

Serum 

Increased expression in 
colon cancer patients and 
higher levels were 
predictive of poorer 
prognosis 

(Matsumur
a, 
Sugimachi 
et al. 2015) 

Esophageal 
squamous 
cell cancer 

miR-21 Serum 

Increased expression in 
exosomes of cancer 
patients compared to those 
with benign disease 

(Tanaka, 
Kamohara 
et al. 2013) 

Hepatocellular 
carcinoma 

miR-718 Serum 

Exosomal miR-718 
expression decreased in 
HCC recurrent patients 
status post liver transplant 
versus healthy controls 

(Sugimachi
, 
Matsumura 
et al. 2015) 

Hepatocellular 
carcinoma 

miR-21 Serum 

HCC patients with 
increased levels compared 
to healthy controls and 
hepatitis patients 

(Wang, 
Hou et al. 
2014) 

Lung cancer 

miR-17-3p, 
miR-21, miR-
106a, miR-146, 
miR-155, miR-
191, miR-192, 
miR-203, miR-
205, miR-210, 
miR-212, miR-
214 

Plasma 

12 miRNAs detectable in 
exosomes and up-
regulation of total 
exosomes and miRNA 
levels in lung cancer 
patients  

(Rabinowits
, Gercel-
Taylor et al. 
2009) 
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Ovarian 
cancer 

miR-21, miR-
141, miR-200a, 
miR-200b, miR-
200c, miR-203, 
miR-205, miR-
214 

Serum 

Elevation of 8 miRNAs in 
ovarian cancer patients 
exosomes compared to 
those with benign tumors 
and healthy controls  

(Taylor and 
Gercel-
Taylor 
2008) 

Pancreatic 
cancer 

miR-1246, miR-
3976, miR-
4306, miR-
4644   

Serum 

In comparison to healthy 
controls up-regulation of 
expression in pancreatic 
cancer patients 

(Madhavan
, Yue et al. 
2015) 

Prostate 
cancer 

miR-375, miR-
1290 

Plasma 

Increased expression in 
castration-resistant 
prostate cancer patients 
and levels are associated 
significantly with poor 
overall survival  

(Huang, 
Yuan et al. 
2015)  
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CHAPTER 3 - EXOSOMES AS MEDIATORS OF PLATINUM RESISTANCE 

IN OVARIAN CANCER 
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INTRODUCTION 

 

Current interest in the EOC field is focused on the importance of intercellular cross talk 

mediated by soluble and insoluble factors between the EOC tumor and stromal cells 

during development, progression, and evolution of drug-resistance (Sung, Jan et al. 

2015; Wang, Niu et al. 2015; Coffman, Choi et al. 2016).  The EOC tumor 

microenvironment includes recruited host cells (i.e. endothelial cells, fibroblasts, and 

macrophages) that communicate with tumor cells and often are reeducated to supply 

functions, which enhance metastasis, vascularization, and immuno-evasion.  For 

instance, EOC tumors have been shown to produce significant levels of interleukin (IL)-

6, which triggers recruitment of monocytes from the peripheral blood, and via activation 

of STAT3, converts these cells into tumor supportive M2 tumor associated 

macrophages (Dijkgraaf, Heusinkveld et al. 2013).  Previous work from our lab 

demonstrated fibroblasts from normal human ovaries secrete high levels of hepatocyte 

growth factor, (HGF) which binds to and activates c-MET mediated signaling on EOC 

tumor cells.  This interaction leads to changes in biological processes including 

increases in tumor proliferation and metastasis (Kwon, Smith et al. 2015).  The 

mechanisms of cellular communication in these types of experiments include secretion 

of soluble factors, such as cytokines, mitogens, and growth factors; however, recently 

exosomes have been shown to be released by tumor cells and are emerging as a novel 

vehicle of cell-cell communication within the development and progression of EOC 

(Stoeck, Keller et al. 2006; Keller, Konig et al. 2009). 

 



59 
 

Exosomes contribute to EOC development by inducing immune evasion, assisting in the 

establishment of secondary tumor niches, and serve as intracellular communicators for 

cross talk between tumor cells and the surrounding stroma (Cho, Park et al. 2011; 

Peng, Yan et al. 2011).  More recently, exosomes have been shown to have a 

functional role in the development of chemotherapy resistance in breast, non-small cell 

lung, and prostate cancer; however, their role in platinum-resistance in EOC is unknown 

(Corcoran, Rani et al. 2012; Chen, Liu et al. 2014; Xiao, Yu et al. 2014).  While 

emphasis in the EOC field is focused on tumor-stroma communication during neoplastic 

advancement, we report here, the first evidence of the importance of the intricate 

exchange of exosome-mediated crosstalk within EOC tumors leading to 

chemotherapeutic resistance by way of activation of EMT.  Based on these novel 

findings, we propose the release of exosomes is a mechanism by which neoplastic EOC 

cells ‘educate’ each other, thereby exasperating the development of platinum-resistant 

disease. 
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MATERIALS AND METHODS 

 

Cells and Culture Conditions.  We utilized human ovarian cancer cells A2780, C30, 

CP70, C200, OVCAR5, A1847, and OVCAR10 (Behrens, Hamilton et al. 1987; 

Hamilton, Lai et al. 1989; Perez, Perez et al. 1992).  Ovarian cancer cell lines A2780, 

A1847, and OVCAR5 were authenticated by using multiplex short tandem repeat (STR) 

testing and compared to historical reference DNA preserved in the lab for these cell 

lines.  Testing was performed by the Clinical Molecular Oncology Lab at KUMC, a 

CLIA/CAP-accredited molecular diagnostics laboratory using the Promega PowerPlex 

16 System used for human identity testing run on an Applied Biosystems instrument. 

All cell lines were cultured in RPMI-1640 (Gibco, Thermo Fisher) media supplemented 

with 10% (v/v) exosome-depleted FBS, 2 mm L-glutamine, 0.2 units/mL human insulin, 

and 100 units mL penicillin-streptomycin at 37°C with 5% CO2.  Exosome-depleted FBS 

was obtained by centrifuging FBS for 18 hours at 100,000 x g followed by filtration 

through a 0.22 µm filter. 

 

Exosome Isolation.  Cell lines were cultured to 70-80% confluency and conditioned 

media was collected after 24-48 hours, spun for 10 minutes at 2000 x g, and pooled 

together.  Exosomes were isolated by differential centrifugation as previously reported 

(Thery, Zitvogel et al. 2002).  Briefly media was spun for 45 minutes at 10,000 x g to 

pellet large vesicles and twice at 100,000x g to pellet and wash exosomes.  Exosome 

pellets were resuspended in 50-100 µL of cold PBS and stored at -80°C. 
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Nanoparticle Tracking Analysis.  Purified exosomes were resuspended in 100 µL of 

0.22 µm filtered PBS and analyzed using a NanoSight LM10 instrument (NanoSight, 

Salisbury, United Kingdom).  Analysis was performed by applying a monochromatic 404 

nm laser to diluted exosomal preparation and measuring the Brownian movements of 

each particle.  The Nanoparticle Tracking Analysis software version 2.3 was used to 

analyze 60 second videos of data collection to give mean, median, and mode of vesicle 

size and concentration. 

 

Electron Microscopy.  Exosomes were purified as above and fixed using 2% 

glutaraldehyde in 0.1 M sodium cacodylate buffer at 4°C overnight.  The pellet was 

rinsed in 0.15 M sodium cacodylate buffer (pH 7.4), followed by a post fixation in 1% 

osmium tetroxide containing 0.1% potassium ferricynide buffered in 0.1 M cacodylate 

buffer for 1 hour.  Exosomes were dehydrated through a series of ethanol washes 

followed by a propylene oxide bath for 10 minutes.  Prepared exosome pellets were 

embedded in half propylene oxide/half embed 812 resin and cured in a 60°C oven 

overnight.  80 nm sections were cut using a Leica UC7 ultramicrotome and were picked 

up on copper thin bar 300-mesh grids and contrasted with 4% uranyl acetate and Sato’s 

lead stain.  Samples were examined using a transmission electron microscope JEOL 

JEM-1400 TEM at 80 KV.  Images were captured using a digital camera. 

 

Exosome Uptake and Fluorescent Microscopy.  Exosomes were labeled with PKH67 

Green Fluorescent Cell Linker (Sigma Aldrich, St. Louis, MO) in a modified protocol as 

described previously (Atay, Banskota et al. 2014).  A2780 cells were labeled with 
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PKH26 Red Fluorescent Cell Linker (Sigma-Aldrich) according to manufacturer’s 

instructions.  Adhered A2780 cells were exposed to exosomes at a concentration of 1 

µg/10,000 cells plated in time points of 0.5, 1, 2, and 24 hours.  Media was removed 

upon completion of all time points and cells were gently washed once with PBS and 

fixed with 4% paraformaldehyde.  After washing with PBS, cover slides were attached 

using a mounting medium containing DAPI.  3-6 images were taken of each time point 

and overlaid using MetaMorph Software (Molecular Devices, SunnyVale, CA). 

 

Cell Viability Assays.  Cells were treated with carboplatin (SelleckChem, Houston, TX) 

diluted from a 20 mM stock in PBS or PBS alone as a vehicle control.  Cell viability was 

assessed using Cell Titer Blue (ThermoFisher), as previously published (Sethi, Pathak 

et al. 2012). Fluorescence was read using the Tecan Plate reader by 560/590 

excitation/emission spectra.  All assays were conducted in technical triplicates and 

replicated at least 2 times.  Caspase 3/7 activity was conducted using Caspase-Glo® 

3/7 (Promega), according to manufacturer’s instructions.  Statistical significance 

between experimental and control groups was determined using Student’s T-test.  

Values of < 0.05 were considered significant. 

 

Platinum Detection and Mass Spectroscopy.  To detect levels of platinum in 

conditioned media, cell lysates, and exosomes we utilized inductively coupled plasma 

mass spectrometry (ICP-MS).  To prepare medial for Pt detection, 1 mL of exosome-

depleted media was added to 9 mL of 2% trace metal grade nitric acid and sonicated for 

30 minutes on ice.  Exosome pellets were prepared by re-suspending the pellet in 75 µL 
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of sub-micron filtered water upon which 215 µL of 70% trace-metal grade nitric acid was 

added.  For cellular lysate preparation 430 µL of 70% trace-metal grade nitric acid was 

added to 150 µL cellular lysate.  Both cell lysates and exosome preparations were 

incubated in a 60°C water bath overnight.  Platinum content was measured using the 

Agilent 7500 ICP-MS.   

 

SDS Page and Western Blot Analysis.  Exosome samples and cell lysates (prepared 

in Rippa buffer) were separated by adding 40 µg protein on 7%, 10%, and 4-20% Mini-

PROTEAN® TGX™ Precast Gels, (BioRad, Hercules, CA) and transferred to a supported 

nitrocellulose membrane (BioRad).  The membranes were blocked with 5% non-fat milk 

for one hour at room temperature.  Primary antibodies for exosome characterization 

were anti-tumor suppressor gene 1 (TSG101-clone C2), anti-asparagine-linked 

glycosylation homolog-2-interacting protein (ALIX-clone 3A9), and anti-glucose 

regulated protein 78 kDa (GRP78-clone G-10) (all from Santa Cruz Biotechnology).  

Anti-β-Actin clone AC-74 was purchased from Sigma-Aldrich. Primary antibodies for 

EMT and TGF-β pathway analysis were; Mothers Against Decapentaplegic Homolog 4 

(SMAD4), SMAD2 (clone 86F7), programmer of cell death 4 (PDCD4-clone D29C6 

XP®), Zinc Finger E-Box Binding Homeobox 1(ZEB1- clone D80D3) and N-Cadherin 

were from Cell Signaling.  TGFβrI (lot 2344723) and TGFβrII (lot 2283846) were 

purchased from Millipore (Temecula CA).  Membranes were incubated with primary 

antibodies overnight and washed thrice for 10 minutes before addition of HRP 

conjugated anti-rabbit or anti-mouse secondary antibody (BioRad) for 1 hour at room 

temperature.  After secondary incubation membranes were washed and treated with 
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ECL Western Blotting Substrate (Fisher Scientific) according to manufacturer’s 

instructions. 

 

Real time PCR.  Cells were harvested at 80% confluency and RNA was extracted using 

Trizol and Direct-soltm RNA mini-prep system (Zymo Research, Irvine CA).  Reverse 

Transcriptase was performed using the GoScriptTM Reverse Transcriptase System 

(Promega, Madison, WI) according to manufacturer’s instructions.  Real time PCR was 

conducted using SoSoGreen real time PCR Master Mix (BioRad).  Primers for EMT-

related genes were taken from Yew et al (Yew, Crow et al. 2013).  For miR-21 

identification, TaqMan Probes (Invitrogen) and RT-PCR primers specific to miR-21 

(Invitrogen) were used according to manufacturer’s instructions.  Primers for primary 

miR-21 were designed as previously published (Davis, Hilyard et al. 2008). 

 

Next Generation Sequencing 

DNA Extraction.  EOC cells at 80% confluency were trypsonized, collected, and washed 

2x with cold PBS.  DNA isolation was accomplished using the DNEasy blood and tissue 

kit (Qiagen, Hilden Germany) according to manufacturer’s instructions.  

 

Library Preparation.  The TruSeq Amplicon Cancer Panel (Illumina) was used according 

to manufacturer’s instructions.  Amplicon libraries were generated by hybridizing pairs of 

oligonucleotides specific to targeted regions to each DNA sample.  Unbound 

oligonucleotides were removed, and DNA polymerase and ligase were used to connect 

bound oligonucleotides by extension and ligation.  Primers containing index sequences 
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for multiplexing and adapter sequences for cluster generation were used for PCR 

amplification.  Libraries were quantified using the KAPA Library Quantification Kit 

(KAPA Biosystems, Inc.) specific to Illumina platforms and optimized for the Roche 

LightCycler 480 ii.  Sample libraries were normalized and equal volumes pooled in the 

final multiplexed sequencing libraries. 

 

Sequencing and Data Analysis.  Pooled libraries were sequenced on a MiSeq System 

(Illumina) using a 2 x 150 paired-end format using the Custom Amplicon workflow.  

Base calls were generated on-instrument with the Real Time Analysis (RTA) software 

(Illumina).  Reads were aligned to the Homo Sapiens – UCSC (h19) genome assembly 

and the Somatic Variant Caller (Illumina) was used for identification of variants.  The 

Illumina Variant Studio software was used to annotate all detected variants. All alternate 

variant calls were required to have Q scores of at least Q30 and occur at a frequency of 

≥ 15%. 

 

Mutant Plasmid Generation and Transfection.  The SMAD4 plasmid (pcDNA FLAG-

SMAD4M; Joan Massague, Addgene) was altered using the Quick Change II Site-

Directed Mutagenesis Kit (Agilent, Santa Clara, CA) according to manufacturer’s 

instructions.  Primers were designed using the Quick Change Primer Design software 

(Agilent).  All sequence validation was done using Sanger sequencing by GeneWiz, 

INC.  Transfection of plasmids into A2780 cells was accomplished using 

Lipofectamine® 2000 (Invitrogen) according to manufacturer’s instructions.  Transfected 

cells were maintained in media containing 500 µg/mL G418 (Corning). 
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Statistical Analysis.  Statistical analysis was performed using the two tailed Student’s 

t-test on both excel and Graph Pad Prism Programs and one-way ANOVA analysis on 

Graph Pad Prism. 
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RESULTS 

 

Exosomes from carboplatin-resistant cells modify the platinum sensitivity profile 

of recipient cells. 

Exosomes carry a range of nucleic acids and proteins and can have a significant impact 

on the phenotype of recipient cells as reported in melanoma, breast, non-small cell lung, 

and gastrointestinal stromal tumors (GIST) amongst others (Peinado, Aleckovic et al. 

2012; Atay, Banskota et al. 2014; Xiao, Yu et al. 2014; Rodriguez, Silva et al. 2015; 

Gorczynski, Erin et al. 2016).  For this phenotypic effect to occur, exosomes need to 

fuse with target cell membranes, either directly with the plasma membrane or with the 

endosomal membrane after endocytic uptake.  To examine if exosomes isolated from 

platinum-resistant clones are taken up by the platinum-sensitive parental population we 

utilized the classic A2780 cell line and two independently-derived carboplatin resistant 

clones, C30 (IC50 325 µM) and CP70 (IC50 120 µM) (Louie, Behrens et al. 1985; 

Behrens, Hamilton et al. 1987; Godwin, Meister et al. 1992) (Table 3.01).  

 

We first isolated exosomes from conditioned media of A2780, CP70, and C30 cells by 

ultracentrifugation (Johnstone, Bianchini et al. 1989; Raposo, Tenza et al. 1997).  

Isolated vesicles displayed between ~80-150 nm in size as determined by Nanoparticle 

Tracking Analysis (NTA) and scanning electron microscopy and contained common 

exosomal markers such as ALIX, TSG101, CD60, and the absence of either β-actin or 

GRP78 suggesting a true exosome population (Figure 3.01).  To visualize uptake of 

exosomes by recipient cells, the exosomes were labeled with PKH67 green and the 
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cells with PKH red fluorescent membrane dyes.  Recipient A2780 cells were then 

exposed to exosomes (1 µg/10,000 cells) derived from A2780 (autologous), C30, or 

CP70 cells for up to 24 hours.  Regardless of the source, exosome uptake was rapid 

and uniform across all experimental groups (Figures 3.02-3.04).  We have previously 

shown that the phenotypes of normal primary myometrial cells are dramatically altered 

towards the characteristics of donor tumor cells following uptake of tumor-derived 

exosomes from GIST cells and patient samples (Atay, Banskota et al. 2014).  To 

investigate if a platinum-resistant phenotype could be transferred by this mechanism we 

treated platinum-naive A2780 cells (carboplatin IC50 11 µM) with exosomes (0.5 µg 

exo/5,000 cells) from A2780 (autologous), CP70, C30, or vehicle (PBS) for 24 hours 

prior to treatment with 20 µM carboplatin for 48 hours (Figure 3.05).  We observed a 

near 2-fold (P<0.05) and 1.5-fold increase in viability of A2780 cells exposed to CP70-

derived and C30-derived exosomes, respectively, as compared to autologous 

exosomes or PBS (Figure 3.05).  Parallel analysis of caspase 3/7 activity by way of a 

fluorescent reporter assay revealed an average 20% decrease in cleavage of caspases 

3 and 7 indicating reduced apoptosis in cells treated with C30- or CP70-derived 

exosomes as compared to controls (Figure 3.05). 

 

To confirm this phenomenon is not limited to a select lineage of cells, we investigated 

the effects of exosomes derived from the unrelated, platinum-resistant OVCAR10 cell 

line (carboplatin IC50 200 µM) on A2780 cells and the effects of C30- and OVCAR10-

derived exosomes on the A1847 (IC50 67 µM) and OVCAR5 (IC50 44 µM) ovarian 

cancer cell lines.  OVCAR10 was previously derived from a high-dose carboplatin and 
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cisplatin refractory advanced ovarian tumor (Hamilton, Lai et al. 1989), while A1847 and 

OVCAR5 were derived from untreated advanced ovarian tumors (Eva, Robbins et al. 

1982; Godwin, Meister et al. 1992).  Exosomes were isolated and characterized as 

before.  Similar to previous observations, A2780 cells treated with OVCAR10-derived 

exosomes exhibited up to a 1.7-fold (P<0.05) increase in viability as well as 50% 

decreases in caspase 3/7 activity following carboplatin treatment (Figure 3.06).  In 

addition, we observed ~1.7 and ~2.0-fold increases in viability at 50 µM carboplatin for 

both A1847 and OVCAR5, respectively when treated with exosomes derived from C30 

or OVCAR10 as compared to cells treated with autologous exosomes (Figure 3.06).  In 

A1847 and OVCAR5 cells each group demonstrated a ≥50% change in caspase 3/7 

activity at 50 µM carboplatin concentrations in cells treated with C30- or OVCAR10-

derived exosomes as compared to controls (Figure 3.06).  Taken together our data 

demonstrate the development of platinum resistant disease may, in part, be mediated 

by cell-cell communication via exosomes. 

 

Exosomes induce a protracted phenotypic change.  

Recent studies by our lab and others have shown the effects of tumor-derived 

exosomes on recipient neighboring and distal cells can be both transient as well as 

prolonged and, in some cases, even exert a permanent phenotypic shift (Ogorevc, Kralj-

Iglic et al. 2013; Abd Elmageed, Yang et al. 2014; Atay, Banskota et al. 2014).  

Therefore, we next asked if the acquired platinum-sensitivity profile was durable.  We 

repeated the studies as indicated above and utilized an additional highly platinum-

resistant cell line C200 (IC50 >500 µM), which was derived from C30 by continuous 
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exposure to 200 µM cisplatin (Godwin, Meister et al. 1992).  A2780 cells were exposed 

to autologous, CP70-, C30-, or C200-derived exosomes (1.0 µg exosome/10,000 cells 

plated), for 24 hours after which the media was replaced and cells were cultured for up 

to 14 days in standard conditions.  Two-weeks after exosome exposure the recipient 

A2780 cells exposed to C200 or CP70-derived exosomes maintained more a resistant 

(~1.2-fold increase in viability, P<0.05) phenotype as compared to controls.  This 

increase in resistance was consistent across 20, 40, and 80 µM concentrations of 

carboplatin (Figure 3.07). 

 

A2780 cells treated with platinum-resistant exosomes have enhanced exosome-

mediated export of Pt.  

Several mechanisms have been previously described relating exosomes to the 

development of chemotherapeutic resistance.  These include the transfer or 

sequestering of miRNAs, transfer of oncogenic proteins or oncogene mRNA, and 

enhanced export of chemotherapeutic drugs including cisplatin and carboplatin (Atay, 

Banskota et al. 2014; Chen, Liu et al. 2014; Federici, Petrucci et al. 2014).  To address 

the latter, we determined the ability of A2780 cells pre-exposed to autologous, CP70, 

and C200-derived exosomes to export Pt by way of exosomes.  500,000 A2780 cells 

were treated with 250 µg exosomes, (autologous, CP70, or C200) for 24 hours.  The 

media was replaced and each group was treated with 100 µM Carboplatin.  After 24 

hours the media was removed, and depleted of exosomes.  Exosomes, exo-free media, 

and cells were processed to remove organic material with 70% trace-metal grade nitric 

acid (see materials and methods for further detail), and total Pt was detected using 
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inductively coupled plasma mass spectrometry.  A2780 cells exposed to CP70-derived 

exosomes had a significant (P<0.05) ~20% decrease in the amount of residual Pt within 

the media and a significant (P<0.05) ~25% decrease in the amount of cellular Pt 

(Figure 3.08).  Importantly, A2780 cells exposed to CP70 exosomes had a near 6-fold 

(P<0.005) increase in the amount of Pt/ng exosome (Figure 3.08).  Considering A2780 

cells exhibit a loss of sensitivity to carboplatin upon uptake of CP70-derived exosomes, 

these data suggest that the uptake of exosomes from more platinum-resistant cells 

could be enhancing the ability of the recipient cell to export Pt.  However, only A2780 

cells treated with CP70-derived exosomes exhibited this sort of phenomenon, therefore 

we investigated additional exosome-mediated mechanisms, which could result in 

changes if platinum-sensitivity profiles.  

 

Exosomes derived from platinum-resistant cells trigger EMT in platinum-sensitive 

A2780 cells. 

It is now widely accepted that EOC cells utilize EMT as a mechanism of escape from 

the deleterious effects of platinum-based chemotherapy (Latifi, Abubaker et al. 2011; 

Kurokawa, Ise et al. 2013; Marchini, Fruscio et al. 2013).  In addition, exosomes have 

been shown to carry cargo which triggers EMT-like changes in breast, colorectal, and 

urinary cancers (Galindo-Hernandez, Serna-Marquez et al. 2014; Franzen, Blackwell et 

al. 2015; Philip, Heiler et al. 2015).  We therefore chose to investigate the effects of 

exogenous exosome exposure on changes in EMT characteristics.  A2780 cells were 

treated with exosomes as above, and evaluated for induction of EMT, including mRNA 

and miRNA expression and morphological changes.  A2780 cells exposed to platinum-
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resistant exosomes for 24 hours demonstrated a 2-5-fold down-regulation in the 

expression of epithelial markers dystroglycan and E-cadherin and a 2-fold decrease in 

EpCAM as compared to control (Figure 3.09).  We also observed significant (P<0.05) 

increases in the mesenchymal markers occludin, paladan, and twist, as well as a 70-

fold increase in vimentin in cells treated with C200-derived exosomes (Figure 3.09).  In 

addition, we observed A2780 cells treated with exosomes from platinum-resistant cells 

displayed a 2-5-fold decrease in KLF4 (which has been shown to regulate EMT in 

multiple types of cancers) (Cui, Shi et al. 2013; Tiwari, Meyer-Schaller et al. 2013; 

Chen, Wang et al. 2014; Li, Wang et al. 2014) as compared to control (Figure 3.09). 

 

MicroRNA21 (miR-21) has also been shown to regulate EMT in cancers, such as 

breast, lung, and clear cell renal (Luo, Ji et al. 2014; De Mattos-Arruda, Bottai et al. 

2015; Cao, Liu et al. 2016).  We found that CP70, C30, and OVCAR10 cells have 18-, 

5-, and 6-fold increases in miR-21 as compared to A2780 cell lines, respectively (Figure 

3.10).  Importantly, A2780 cells treated with CP70- and OVCAR10-derived exosomes 

have nearly a 4-fold increase in miR-21 as compared to cells treated with PBS or 

autologous-derived exosomes (Figure 3.10).  Furthermore, there were no significant 

changes in primary miR-21 (pri-miR-21) levels (Figure 3.10), suggesting elevated miR-

21 levels are induced following uptake of exogenous exosomes. 

 

We further observed A2780 cells displayed an increase in spindle-like mesenchymal 

morphology only when exposed to C30- and C200-derived exosomes, and to a lesser-

extent, CP70-derived exosomes (Figure 3.11).  Taken together these data demonstrate 
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the transfer of a resistant phenotype may be driven, in part, through transfer or 

upregulation of factors, which contribute to EMT. 

 

Alterations in TGF-β/SMAD signaling effect platinum sensitivity through 

activation of EMT. 

To identify genomic alterations potentially associated with platinum-sensitivity in EOC, 

DNA sequencing was performed using a panel of cancer associated genes (TruSeq© 

Amplicon Cancer Panel; Illumina) in a series of EOC cell lines, including our 

experimental lines mentioned above (Table 3.02).  We observed several mutations 

specific to platinum-resistant cells including:  VEGF receptor 2 (KDR) G1348, which was 

present in OVCAR10, C30), and CP70 cells, Epidermal Growth Factor Receptor 

(EGFR) C797S and KRAS V125L and D132E which were observed in OVCAR10 cells 

(Table 3.02).  Most interestingly, and the basis of much of this thesis, we identified 

previously unreported somatic mutations in the MH2 domain of SMAD4, but only in the 

three highly resistant cell lines, CP70, C30, and OVCAR10 (Table 3.02).  SMAD4 is a 

key component of the Transforming Growth Factor-β/SMAD signaling pathway and is a 

known mediator of EMT responses (Figure 3.12) (Valcourt, Kowanetz et al. 2005).  

Interestingly the receptor complex is taken in to the cell via endocytosis and many 

components of TGF-β/SMAD signaling can be found within and on exosomes (Figure 

3.13).  All three of our most platinum-resistant cell lines contained a common 

SMAD4S344I mutation (OVCAR10 was homozygous for the S344I mutation), while C30 

and CP70 each harbor an additional acquired mutation (SMADS411C and SMADG508A, 

respectively).  Because these mutations were only identified in highly resistant cell lines 
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with prior exposure to cisplatin these initial findings suggest that a loss of function in 

SMAD4 may contribute or correspond with a loss of platinum sensitivity. 

We next used in silico analysis to determine the potential functional impact of these 

mutations (Reva, Antipin et al. 2011).  SMAD4 Q388R which is a missense change 

discovered in the platinum-sensitive cell line OVCAR4 received a score of 0.54 and, 

therefore, was predicted to have a neutral (no) effect on protein function.  The 

SMAD4S344I mutation, which is common to all 3 platinum resistant cell lines, was 

assigned a value of 2.765 and predicted to have a considerable effect on function.  The 

second acquired mutations identified only in CP70 (G508A) and C30 (S411C) were 

predicted to have a high impact on SMAD4 function (ranked at 3.365 and 3.395, 

respectively) (Figure 3.14).  

 

Mutant SMAD4 cell lines and exosomes elicit a resistant phenotype in recipient 

cells. 

To provide direct evidence that mutations in SMAD4 contribute towards a loss of 

platinum-sensitivity, we generated SMAD4 mutation specific plasmids using the Quick 

Change II Site-Directed Mutagenesis Kit (Agilent) (Figure 3.14).  We exogenously 

overexpressed these plasmids SMAD4S344I, SMAD4S411C, or SMAD4WT in A2780 cell to 

generate A2780S344I, A2780S411C, and A2780WT cell lines, respectively (Figure 3.14-

3.15).  Of these cell lines A2780S344I demonstrated a significant increase (P<0.05) in 

viability at 20 and 40 µM concentrations of carboplatin as compared to A2780WT (Figure 

3.16).  A2780S344I cells also exhibited an increase in mesenchymal markers N-Cadherin 

and ZEB1 as well as a decrease in the mediator of apoptosis, Programmer of Cell 
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Death 4 (PDCD4) (Figure 3.16), which is known to regulate EMT (Wang, Zhu et al. 

2013).  We also observed a more mesenchymal phenotype upon exposure of 

A2780S344I cells to 20 and 40 µM carboplatin as compared to A2780WT (Figure 3.17). 

 

To determine if SMAD4mut cell lines produce exosomes capable of transferring a 

platinum-resistant phenotype, we isolated exosomes from A2780WT and A2780S344I cells 

as described above.  Parental A2780 cells were then exposed to A2780S344I-derived 

exosomes as well as A2780WT-derived exosomes, or PBS.  Cells exposed to 

A2780S344I-derived exosomes exhibited a 3-fold increase in viability over both controls 

after exposure to 10 µM carboplatin for 72 hours (Figure 3.18).  In addition, A2780S344I-

exosome exposed cells exhibited a nearly 7-fold increase in their IC50 values as 

compared to cells treated with A2780WT-exosomes (8.2 µM vs. 55.5 µM, respectively) 

(p=0.0212) (Figure 3.18). 

 

Taken together, these data provide the first evidence that mutations, specifically within 

SMAD4, enhance the native chemo-resistance profile of EOC.  Specifically, cells 

harboring these mutations have survival advantages by way of increased EMT in 

response to carboplatin.  In addition, these cells generate and secrete exosomes 

capable of modifying the platinum-sensitivity profile of surrounding neoplastic cells, 

which enhances the development of platinum-resistant disease.  
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DISCUSSION 

 

Because the ovarian tumor mass is composed of a heterogeneous population of cells 

with a high degree of individual morphologies and genomic instability the development 

of platinum-based chemotherapy resistance is multifactorial and frequently due to a 

variety of changes in specific proteins, genes, or in gene regulation that are 

advantageous to chemotherapy resistance (Stewart 2007; Eckstein, Servan et al. 2009; 

Eitan, Kushnir et al. 2009; Cohen, Bruchim et al. 2012; Guddati 2012; Mir, Tortosa et al. 

2012; Shang, Lin et al. 2012; Barr, Gray et al. 2013; Diaz-Padilla 2013).  It is commonly 

believed that chemotherapeutic treatment for cancer causes or selects for intrinsically 

resistant populations of cells, which possess one or more of these advantages.  For 

example, Stronah and colleagues have shown that in response to cisplatin, DNA–

dependent protein kinase (DNA-PK) selectively phosphorylates AKT-S473 in the 

nucleus of platinum-resistant, but not sensitive cells, leading to the clinical development 

of platinum-resistant disease (Stronach, Chen et al. 2011).  Whether by selection of 

resistant clones or infliction of secondary aberrations, some tumor cells survive primary 

rounds of therapy, and eventually give rise to new cells, which form more therapy 

resistant tumors.  Here, we have investigated how drug resistant populations of cells 

perpetuate the development of platinum-resistant disease in ovarian cancer via 

exosomal mitigated cell-cell communication.  It is well understood that intracellular 

transport of genetic material including miRNAs and mRNAs as well as biologically active 

proteins from one cell to another occurs via microvesicles (Boelens, Wu et al. 2014; 

Chen, Cai et al. 2014; Chen, Liu et al. 2014; Federici, Petrucci et al. 2014; Lv, Zhu et al. 
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2014; Takahashi, Yan et al. 2014).  We and others have shown that extracellular 

vesicles may be involved in transformation of surrounding cells via transport of miRNAs 

and oncogenic proteins (Roberson, Atay et al. 2010; Atay, Banskota et al. 2014; 

Rodriguez, Silva et al. 2015; Zhang, Zhang et al. 2015; Maida, Takakura et al. 2016).  

Our current findings suggest that, as an ovarian tumor develops and evolves both 

genetically and epigenetically, it acquires properties that allow it to escape therapeutic 

attack.  We proposed that exosomes may be a previously unappreciated factor, which 

contribute to the advancement of drug resistant disease and thus disease progression. 

 

We present evidence demonstrating that exosomes derived from platinum-resistant 

EOC cells can transfer a portion of their chemo-resistant phenotype to platinum-

sensitive cells and this increase in resistance corresponds with EMT and mutations in 

SMAD4.  SMAD4 has been shown to be necessary for the transcription of EMT related 

genes through SMAD4/SMAD3 signaling (Do, Kubba et al. 2008) and EMT has been 

well established as a mediator of drug resistance in ovarian cancer (Helleman, Smid et 

al. 2010; Latifi, Abubaker et al. 2011; Marchini, Fruscio et al. 2013; Smolle, Taucher et 

al. 2014).  Here we provide the first evidence that mutations within the SMAD4 gene 

directly affect the platinum-sensitivity of EOC cells.  In addition, we are the first to report 

that cells harboring these mutations produce exosomes capable of transferring this 

resistant profile. 

 

TGF-β/SMAD signaling components are found within and on exosomes 

includingSMAD2, SMAD3, SMAD4, TGFβr1 and TGFβr2 (Figure 3.01 & 3.13); 
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however, a momentary transfer of protein alone does not provide sufficient evidence to 

explain a persistent phenotypic switch.  Evidence suggests that the transfer of exosomal 

mRNAs between cells may lead to more prolonged phenotypic changes (Deregibus, 

Cantaluppi et al. 2007; Valadi, Ekstrom et al. 2007).  We have identified very low levels 

of the SMAD4 mRNA within a portion of exosomal samples; however, we were unable 

to sequence this transcript, suggesting that the whole SMAD4 mRNA transcript may not 

be present.  Given this information, and the fact that SMAD4 is a transcription factor, we 

speculate that the exosomal contents responsible for the observed morphological 

changes may be products of aberrant TGF-β/SMAD signaling. 

 

Current evidence suggests that miR-21 may both be a product of and mediator of TGF-

β signaling in many pathological conditions (Garcia, Nistal et al. 2015; Lai, Luo et al. 

2015; Han, Wang et al. 2016).  We identified a 3- to 4-fold increase in miR-21 

expression in platinum-sensitive cells treated with platinum-resistant exosomes and in 

the parental platinum-resistant cells.  Up-regulation of miR-21 in multiple types of 

cancers, including ovarian, positively correlates with increased EMT (Wang, Gao et al. 

2014; Zhang, Pan et al. 2014; Zhao, Tang et al. 2014).  Therefore, a complementary 

mechanism to alter platinum sensitivity is exosome-induced up-regulation of primary 

miR-21 (pri-miR-21) in recipient cells.  Of relevance, recent studies by Davis and 

colleagues demonstrate that SMAD proteins can bind to the Drosha complex, resulting 

in the increase processing of pri-miR-21 to pre-miR-21 (Davis, Hilyard et al. 2008).  

Indeed, we observed increased miR-21 in A2780 cells treated with platinum-resistant 

exosomes but no significant changes in pri-miR21 suggesting increased miRNA 
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processing may be an important factor in EOC.  Although exciting, further research is 

warranted to further define the exosomal cargo that is directly responsible for 

influencing platinum sensitivity. 

 

In summary, we propose a new mechanism by which tumor cell-cell cross talk may 

actively enhance chemotherapy resistance throughout treatment.  It is important to note 

that the experiments conducted here are limited to a single exosome treatment, and do 

not mimic the potentially constant exposure to exosomes which likely occurs in vivo.  

This is especially relevant in EOC, where neoplastic cells have enhanced exosomal 

output as compared to normal epithelial cells (Gercel-Taylor, Atay et al. 2012).  Taken 

together, this work underscores the importance of cell-cell communication in the 

advancement of platinum resistant disease and provides novel insight as to how 

exosomal transfer further enhances EMT in response to frontline chemotherapy. 
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Table 3.01  EOC Cell Line Carboplatin IC50 Values 

 

Cell Line IC50 (µM) 
Fold Change 
(Over A2780) 

A2780 11 1 
OVCAR5 44 4 

A1847 67 6 
CP70 120 11 

OVCAR10 200 18 
C30 325 30 

C200 >500 >50 
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Figure 3.01  Characterization of EOC Derived Exosomes.  A. Nanoparticle analysis of 

exosomes derived from EOC cell lines A2780, CP70, C30, C200, and OVCAR10 shows particle size 

distribution.  B. TEM of representative exosome sample show exosomes of 80-100 nm (bottom and 

top arrow respectively) in size.  C. Western blot analysis of exosome isolates as compared with 

cellular lysates.  β-actin is used as a loading control for cell lysates.  D. Average concentrations of 

exosomes in µg isolated from ~ 1x10
6
 cells.  
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Figure 3.02  A2780 Cell Uptake of A2780-Derived Exosomes.  A. Representative fluorescent 

microscopy images of dapi (blue), cell membrane (red), exogenous exosomes (green), after exosome 

addition at 0.5, 1, 2, and 24 hours.  B. Average of a minimum of 3 images describing density of 

exosome/density of cell at each time point.  Error bars represent standard error of the mean. 
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Figure 3.03  A2780 Cell Uptake of CP70-Derived Exosomes.  A. Representative fluorescent 

microscopy images of dapi (blue), cell membrane (red), exogenous exosomes (green), after exosome 

addition at 0.5, 1, 2, and 24 hours.  B. Average of a minimum of 3 images describing density of 

exosome/ density of cell at each time point.  Error bars represent standard error of the mean. 

 



85 
 

 

 

Figure 3.04  A2780 Cell Uptake of C30-Derived Exosomes.  A. Representative fluorescent 

microscopy images of dapi (blue), cell membrane (red), exogenous exosomes (green), after exosome 

addition at 0.5, 1, 2, and 24 hours.  B. Average of a minimum of 3 images describing density of 

exosome/ density of cell at each time point.  Error bars represent standard error of the mean. 
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Figure 3.05  Exosome Transfer Corresponds with a Loss of Sensitivity to Platinum.  A. 

Overlay of A2780 cells (Red) exposed to exosomes (Green) derived from A2780, CP70, or C30 cell 

lines for 24 hours.  DAPI (Blue) is included.  B. Illustration of experimental protocol.  C. Viability of 

A2780 cells pre-treated with PBS (Black), or exosomes derived from A2780 (Red), CP70 (Green), or 

C30 (Dark Green) cell lines followed by exposure to carboplatin. D.  Caspase 3/7 activity as measured 

using Caspase Glo
® 

 luminescent reporter system in A2780 cells exposed to the same conditions as C.  

All values are normalized to vehicle.  Fold changes are relative to control (PBS – no exosome group) 

*P<0.05, **P<0.01   
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Figure 3.06  Transfer of a Platinum-Resistant Phenotype Extends to Other EOC Cells.  

A,C,E. Viability of platinum-sensitive cell lines A2780, A1847 and OVCAR5 with or without exogenous 

exosomes derived from either self/autologous (A2780, A1847, or OVCAR5) or C30 or OVCAR10 cell 

lines and treated with carboplatin for 48 hours.  All values are normalized to vehicle.  Fold-change is 

relative to control (autologous treated exo group) B,D,F.  Caspase 3 and 7 activity as measured by 

Caspase-Glo luminescent assay in the same conditions as above.  All values are normalized to 

viability.  Fold-change is calculated relative to control.  *P<0.05, **P<0.005 
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Figure 3.07  Extended Effects of Exosome Uptake.  Viability after 72 hours of carboplatin 

treatment of A2780 cells following a 24 hour exposure to exosomes derived from A2780 

(autologous), CP70, C30, or C200 cell lines and normal culture conditions for two weeks.  All values 

are normalized to vehicle.  Fold-change is relative to control (A2780-exo group) *P<0.05 
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Figure 3.08  A2780 Cells Have Enhanced Exosome-Mediated Pt Export with Prior 

Exposure to CP70-Exosomes.  A2780 cells were treated with either self, CP70, or C200 

derived exosomes for 24 hours and then exposed to 100µM Carboplatin for 24 hours.  A. ICP-MS 

analysis of the platinum content in the samples revealed significantly less platinum in the media of 

A2780+CP70exo than other experimental groups.  B. A2780+CP70 exo also had less platinum 

content per 1x10
6
 cells as compared to cells treated with self or C200 derived exosomes.  C. 

Exosomes isolated from the media of A2780+CP70exo group contained approximately 4-fold 

more platinum per µg exosome than exosomes derived from A2780+self (autologous) or 

A2780+C200.  (* = P<0.05,  *= P<0.005) 



90 
 

  

 

 

Figure 3.09  A2780 Cells Undergo EMT When Treated with Platinum-Resistant 

Exosomes.  A,B. Real-time PCR of epithelial (A) and Mesenchymal (B) mRNA markers cDNA 

from A2780 cells treated with either; A2780- (autologous), CP70-, C30-, or C200-derived 

exosomes for 24 hours.  All values are given as cDNA levels (Dystroglycan, ECadherin, 

EpCAM, KLF4, Occludin, Paladan, twist, and Viamentin) relative to two housekeeping genes 

(GAPDH and GUSB). 

 



91 
 

  

 

 

Figure 3.10  Platinum-Resistant EOC Cells Have Altered miRNA21 Expression.  A. Real-

time PCR of mature miR-21 level in A2780, CP70, and OVCAR10 cell lines.  B. Real-time PCR of 

primary miR-21, Pre-miR-21, and mature miR-21 levels in A2780 cells treated with exosomes from 

A2780 (autologous), CP70, or OVCAR10.  Primary miR-21 and Pre-miR-21 expression is relative to 

two housekeeping genes (GAPDH and GUSB).  Mature miR-21 expression is relative to U6.  Error 

bars represent standard error of the mean.  *P<0.05, **P<0.01 

 



92 
 

   

F
ig

u
re

 3
.1

1
  

A
2

7
8

0
 C

e
ll

s
 E

x
h

ib
it

 a
 M

e
s

e
n

c
h

y
m

a
l 

P
h

e
n

o
ty

p
e

 a
ft

e
r 

E
x

p
o

s
u

re
 t

o
 P

la
ti

n
u

m
-R

e
s

is
ta

n
t 

E
x

o
s

o
m

e
s

. 
 B

ri
g
h
t 

fi
e
ld

 i
m

a
g
e
s
 o

f 
A

2
7
8
0
 c

e
lls

 t
re

a
te

d
 w

it
h
 P

B
S

 (
v
e

h
ic

le
) 

o
r 

A
2
7
8
0

- 
(a

u
to

lo
g
o
u
s
),

 C
P

7
0

-,
 C

3
0
-,

 o
r 

C
2
0
0

-d
e
ri

v
e

d
 e

x
o
s
o
m

e
s
 d

e
ta

ili
n

g
 

e
n
h
a

n
c
e
d
 s

p
in

d
le

-l
ik

e
 a

n
d

 m
e
s
e
n
c
h

y
m

a
l 

m
o
rp

h
o
lo

g
y
 i

n
 c

e
lls

 t
re

a
te

d
 w

it
h
 p

la
ti
n
u
m

-r
e
s
is

ta
n
t 

e
x
o
s
o
m

e
s
 a

s
 c

o
m

p
a
re

d
 t

o
 c

o
n
tr

o
l 

(a
rr

o
w

s
).

  
S

c
a
le

 b
a
r 

=
 1

0
0
 µ

m
. 
  



93 
 

 

  

 

 

Figure 3.12  The TGF-β/SMAD Signaling Pathway.  Schematic representation of 

TGF-β/SMAD Signaling. 
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Figure 3.13  SMAD4 Components Within Exosomal Samples.  A. The TGF-β/SMAD 

signaling complex is taken in by endocytosis (Anders, Arline et al. 1997).  B.  Western blot 

analysis of SMAD4 and SMAD2 on exosomes isolated from healthy human serum, n=3.  ALIX 

and CD9 are exosomal markers. 
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Figure 3.14  Mutations in SMAD4 are Associated with Platinum Resistance.  A. Illustration 

of SMAD4 mutations identified in EOC cell lines ranked according to platinum-resistance (Top – 

most resistant, Bottom – least resistant).  B. Functional impact scores as predicted using Mutation 

Assessor, which mathematically assesses functional impact based upon an algorithm combining 

the overall conservation of the gene with the specificity of the mutation.  Values <0.70 are 

considered neutral, Values between 0.71 and 2.0 are considered of low and values between 2.1 

and 3.5 and >3.6 are considered to have medium and high impact, respectively. 
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Figure 3.15  Validation of Mutant Plasmids.  Specific point mutations were introduced 

into a SMAD4 plasmids using the Quick Change II sight directed mutagenesis technology 

(Agilent) to replicate the mutations found in the platinum-resistant cell lines.  Sanger 

sequencing results demonstrate successful mutagenesis replicating S411C (A) and S344I (B) 

specific point mutations.  
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Figure 3.16  Mutations in SMAD4 Contribute to Platinum Resistance and EMT.  A. Viability 

of A2780
WT

 and A2780
S344I

 after exposure to 20, 40, 80, 160, and 320 µM carboplatin for 72 hours.  

Values are normalized to vehicle (PBS).  B. Western blot analysis of EMT markers in A2780
WT

, 

A2780
S411C

, and A2780
S344I

 cell lysates.  c. Bright field images of A2780
WT

 and A2780
S344I

 after 

exposure to 0, 20, and 40 µM carboplatin for 24 hours.  Arrows indicate changes in morphology. 

*P<0.05 
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Figure 3.17  A2780
MUT

 Cells Undergo EMT in Response to Carboplatin.  Bright field 

images of A2780
WT

 (top) and A2780
S344I

 (bottom,) after exposure to 0, 20, and 40 µM 

carboplatin for 24 hours.  Arrows indicate changes in morphology. 
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Figure 3.18  Exosomes from Mutant SMAD4 Cell Lines Transfer Platinum Resistance.  A. 

Schematic of the experimental procedure.  B. Viability of A2780 cells exposed to PBS or exosomes 

derived from A2780
WT

, A2780
S411C

, and A2780
S344I

 cell lines for 24 hours prior to carboplatin 

treatment (10 µM for 72 hours).  Viability is normalized to vehicle within each exosome group.  C. 

Dose-response curves of A2780 cells pre-exposed to exosomes derived from A2780
WT

 or 

A2780
S344I 

cell lines for 24 hours followed by carboplatin treatment (0, 10, 20, 40, 80, and 160 µM) 

for 72 hours.  *P<0.05 
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CHAPTER 4 - TARGETING TGF-β/SMAD SIGNALING TO OVERCOME 

PLATINUM-RESISTANCE IN OVARIAN CANCER 
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INTRODUCTION 

 

The TGF-β/SMAD signaling pathway is composed of the serine/threonine protein kinase 

TGF-β receptors I and II (TGFβrI/II) which are activated when TGF- ligands (TGF-βI, II, 

or III) bind TGFβrII which in turn binds and phosphorylates TGFrI.  This activation 

triggers recruitment and subsequent phosphorylation and activation of receptor SMADs 

(SMAD2 or SMAD3).  Activated receptor SMADs form a heterodimer with SMAD4 and 

translocate to the nucleus where they bind additional cofactors as well as the SMAD 

Binding Element (SBE) and initiate transcription of target genes (Derynck, Gelbart et al. 

1996; Lagna, Hata et al. 1996; Zhang, Feng et al. 1996).  The TGF-β/SMAD signaling 

pathway is important in the regulation of several physiological processes including 

cellular proliferation, differentiation, and wound repair (Massague 2012).  This wide 

variety of functions is largely due to the extensive network of cofactors capable of 

binding receptor SMADs within the nuclease.  In addition, SMAD proteins have been 

implicated in functions outside of gene regulation including processing of miRNA, which 

was discussed in Chapter 3.  Given the fact that this pathway is a key regulator of 

processes such as apoptosis and EMT, it is of no surprise that it is frequently 

dysregulated in cancer (Siegel and Massague 2003; Massague 2008).  

 

TGF-β/SMAD signaling has been considered a ‘double edged sword’ in tumorigenesis 

(Raiborg, Rusten et al. 2003).  Early in tumor development, products of the TGF-

β/SMAD signaling pathway are considered to be largely anti-tumorigenic in nature, 

however, as cancer progresses the pathway is hijacked to be tumor-supportive (de 
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Caestecker, Piek et al. 2000).  Through decades of research has focused on this 

pathway, current ideas have evolved which view this switch as a dynamic event, 

involving specific regulation of key TGF-β/SMAD pathway components, such as TGFβrI 

and TGFβrII (Meulmeester and Ten Dijke 2011; Yu, Bardia et al. 2013).  Additionally, 

while it has historically been thought that SMAD2/SMAD4 and SMAD3/SMAD4 

complexes had redundant roles in gene regulation, the most recent work highlights very 

different roles of these complexes in cellular processes such as apoptosis (SMAD2) 

(Yang, Wahdan-Alaswad et al. 2009) and EMT (SMAD3) (Valcourt, Kowanetz et al. 

2005; Wang, Gao et al. 2014).  Disruption of the balance between SMAD2/SMAD4 and 

SMAD3/SMAD4 signaling has been implicated as a driver of invasion, metastasis, and 

poor clinical outcome in multiple types of cancer including gastric, breast, skin, and 

prostate (Yang, Wahdan-Alaswad et al. 2009; Petersen, Pardali et al. 2010; Wu, Li et al. 

2012).  In Chapter 2, I discussed how EOC cell lines harboring mutations in SMAD4 

exhibit a loss of sensitivity to carboplatin and this, at least in part, is mediated through 

an increase in EMT.  This being said, we hypothesize that cells harboring loss of 

function mutations in SMAD4 may have dysregulation of the balance between SMAD2 

and SMAD3 signaling. In addition, given the fact that there is a crippling lack of 

treatment options for women with recurrent or resistant epithelial ovarian cancer, we 

provide a novel therapeutic strategy involving combination treatment with carboplatin 

and inhibition of the SMAD4/SMAD3 signaling arm of the TGF-β/SMAD pathway to re-

sensitize cells to platinum.  
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MATERIALS AND METHODS 

 

Cells and Culture Conditions.  In these studies we utilized human ovarian cancer cells 

A2780, CP70, C30, OVCAR4, and OVCAR10 (Hamilton, Young et al. 1984; Behrens, 

Hamilton et al. 1987).  All cell lines were cultured in RPMI-1640 (Gibco, Thermo Fisher) 

media supplemented with 10% (v/v) exosome-depleted FBS, 2 mm L-glutamine, 0.2 

units/mL human insulin, and 100 units mL penicillin-streptomycin at 37°C with 5% CO2. 

 

Therapeutic Agents.  Cells were treated with carboplatin (SelleckChem, Houston, TX), 

Specific Inhibitor of SMAD3 (SIS3; SelleckChem), and Halaven® (eribulin mesylate; 

Eisai, Inc).  Carboplatin was diluted from a 20 mM stock in PBS.  SIS3 was diluted from 

a 10 mM stock in DMSO.  Eribulin was diluted in PBS to a stock concentration of 10 µM. 

 

Cell Viability Assays.  EOC cells were plated at 5,000 cells/well in black walled 96 well 

plates.  Cell viability was assessed using Cell Titer Blue (ThermoFisher), as previously 

published (Sethi, Pathak et al. 2012).  Fluorescence signals were detected using the 

Tecan Plate reader by 560/590 excitation/emission spectra.  Viability was determined by 

normalizing each treatment group to vehicle control.  Statistical significance between 

experimental and control groups was determined using Student’s T-test.  Values of < 

0.05 were considered significant. 

 

Combination Index and Drug Synergy.  Calcusyn (Biosoft) software was used to 

determine combination index values.  The software performs multiple drug dose-effect 
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calculations using the Median Effect methods as described by T-C Chou and P. Talalay 

(Chou and Talalay 1984).  5000 cells/well were plated in an 8x8 matrix and increasing 

doses of carboplatin (0-100 µM or 0-640 µM, vertical axis) + SIS3 (0-10 µM, horizontal 

axis) or carboplatin (0-100 µM or 0-640 µM, vertical axis)  + Eribulin (0-10 nM horizontal 

axis) were administered.  After 72 hours viability was determined using Cell Titer® Blue 

and normalized to vehicle controls.  All assays were run in duplicate. Values < 0.75 

were considered to be synergistic. 

 

SDS Page and Western Blot Analysis.  Exosome samples and cell lysates (prepared 

in RIPA buffer) were separated by adding 40 µg protein on 10% Mini-PROTEAN® TGX™ 

Precast Gels, (BioRad, Hercules, CA) and transferred to a supported nitrocellulose 

membrane (BioRad).  The membranes were blocked with 5% non-fat milk for one hour.  

Membranes were incubated with primary antibodies overnight and washed thrice for 10 

minutes before addition of HRP conjugated anti-rabbit or anti-mouse secondary 

antibody (BioRad) for 1 hour.  Membranes were then washed and treated with ECL 

Western Blotting Substrate (Fisher Scientific) according to manufacturer’s instructions. 

 

Real time PCR.  Cells were harvested at 80% confluency and RNA was extracted using 

Trizol and Direct-soltm RNA mini-prep system (Zymo Research, Irvine CA).  Reverse 

Transcriptase was performed using the GoScriptTM Reverse Transcriptase System 

(Promega, Madison, WI) according to manufacturer’s instructions.  Real time PCR was 

conducted using SoSoGreen real time PCR Master Mix (BioRad).  Primers for EMT-

related genes were taken from Yew et al (Yew, Crow et al. 2013). 
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Statistical Analysis.  Statistical analysis was performed using the two-tailed Student’s 

t-test on both excel and Graph Pad Prism Programs and one-way ANOVA analysis on 

Graph Pad Prism. 
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RESULTS 

 

Dysregulation of TGF-β/SMAD signaling is found in clinical EOC samples. 

Mutations leading to a loss of function in SMAD4 are well documented in cancers such 

as colorectal and pancreatic (Figure 4.01).  The TCGA reports (4%) of EOC cases 

possess genetic abnormalities (mutations, deletions, and amplifications) in SMAD4, 

and, when mRNA was evaluated, the percentage of cases with significant alterations in 

SMAD4 expression increased to 20% (Figure 4.02).  When key components of the 

TGF-β/SMAD signaling pathway (SMAD4, SMAD3, SMAD2, TGFβrI, TGFβrII, SMAD7, 

TGFβ1, TGFβ2, and TGFβ3) were evaluated together, over 63% (197 of 316) of EOC 

samples contained alterations in one or more of these genes (Figure 4.02) (Cerami, 

Gao et al. 2012; Gao, Aksoy et al. 2013).  In addition, enrichment analysis of samples 

with miRNA sequencing data and loss of SMAD4 (via gene deletion of mRNA down-

regulation) (n=61) revealed subsets of miRNAs, which are differentially expressed 

(Figure 4.03).  Importantly, miR-21, which was previously found to be upregulated in 

platinum-resistant cell lines and is a well-documented product of SMAD activity (Davis, 

Hilyard et al. 2008; Garcia, Nistal et al. 2015), was significantly (p=0.00417) 

overexpressed in cases with a loss of SMAD4 expression (Figure 4.03).  This data is 

interesting due to the fact that miR-21 is a known regulator of EMT, and has been 

reported to be upregulated in many types of cancer (Han, Xu et al. 2015; Qu, Lin et al. 

2016; Wu, Tao et al. 2016) and it is suggested that miRNA-21 expression could 

correlate with platinum-resistance in ovarian cancer (Echevarria-Vargas, Valiyeva et al. 

2014).  We continued by investigating correlations between SMAD2, SMAD3, and 
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SMAD4 expression and overall survival.  Out of 316 cases with complete data, no 

significant change in OS was observed in cases harboring SMAD4 (n=61) or SMAD2 

(n=81) down-regulation or deletions; however, patients exhibiting a loss of SMAD3 

(n=16) expression exhibited a significant increase in OS (~21.5 months, p=0.0386) 

further demonstrating the complexity and importance of TGF-β/SMAD signaling, 

specifically via SMAD3 and SMAD4, in EOC progression (Figure 4.04).  Lastly, in 

Chapter 3, we reported novel SMAD4 missense mutations in our most platinum-

resistant cell lines (CP70, C30, and OVCAR10).  To expand this analysis, we conducted 

mRNAseq on A2780, CP70, C30, OVCAR4, and OVCAR10 cell lines.  In analyzing the 

data, we uncovered additional missense mutations in key TGF-β/SMAD signaling 

components, specific to cells with a loss of platinum-sensitivity.  C30, CP70, and 

OVCAR10 each harbored a shared mutation in TGFβr1 (R321H) (Table 1.01).  

Additionally, C30 had a unique mutation in SMAD2 (G423R) (Table 1.01).  Importantly, 

we did not observe additional mutations in platinum-sensitive cell lines, A2780 or 

OVCAR4.  Taken together these data further supports the hypothesis that dysregulation 

in TGF-β/SMAD signaling is correlated with the advent of platinum-resistant disease. 

 

Platinum-Resistant Cell lines have preferential activation of SMAD3. In ovarian 

cancer, SMAD4 acts in conjunction with receptor SMAD3 to regulate transcription of 

EMT target genes (Do, Kubba et al. 2008).  In Chapter 3 we discussed the role of EMT 

in platinum-resistance. To gain a deeper understanding of how the TGF-β/SMAD 

pathway is altered in EOC cells harboring mutations in SMAD4 we first investigated the 

presence of SMAD2, SMAD3, and SMAD4 at the mRNA and protein levels (Figure 
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4.05).  SMAD4 was present in both the transcript and the protein level in all EOC cells, 

regardless of SMAD mutational status (Figure 4.05).  We discovered; however, that 

although SMAD2 and SMAD3 were present at the mRNA and protein levels in all cells, 

(Figures 4.05, 4.06) cells lines with mutant SMAD4 exhibited a near complete loss of 

receptor activated SMAD2, but not SMAD3.  This was not observed in cell lines WT for 

SMAD4 which contained receptor activated forms of both SMAD2 and SMAD3 (Figure 

4.06).  These data suggest that a loss of SMAD2/SMAD4 signaling and maintenance of 

SMAD3/SMAD4 signaling, may be important in a cell’s response to platinum.  Further 

investigation of the TCGA supported this concept, in that our analysis of platinum-

resistant vs. platinum-sensitive EOC samples revealed that over 25% of EOC cases 

had down-regulation of SMAD2 at the mRNA level regardless of platinum status (Figure 

4.02).  Interestingly, the platinum-resistant subset (n=197) exhibited an increased loss 

of SMAD2 expression over the platinum-sensitive (n=90) subset (32% vs. 24% 

respectively) (Figure 4.07).  Importantly, SMAD3 alterations were minimal (10% total 

genetic dysregulation in both platinum-sensitive and platinum-resistant subsets). 

However, there was a noticeable inverse shift between the subpopulations, with the 

platinum-resistant subset having increased up-regulation of mRNA over the platinum-

sensitive set, and vice versa for down-regulation of the gene (Figure 4.07).  Taken 

together these data suggest that a loss in SMAD2 signaling may lead to over-activation 

of the SMAD3 arm of the TGF-β/SMAD signaling pathway which, subsequently drives 

upregulation of survival pathways, including EMT, and ultimately a loss in platinum-

sensitivity (Figure 4.08). 
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Combination of SMAD4 inhibition with carboplatin increases cell death in 

platinum-resistant EOC Cell lines.  Our group previosuly conducted an RNA 

intereference lethality screen of the human druggable genome to identify molecular 

vunerabilities in epithelial ovarian cancer (Sethi, Pathak et al. 2012).  In analyzing data 

from that published study Sethi et al., observed no effect on tumor viability when 

blocking the TGF-β/SMAD pathway with siRNA against SMAD2, SMAD3, or SMAD4 

alone (Figure 4.09).  Given that SMAD4/SMAD3 signaling seems to be important for 

resistance to platinum we questioned whether inhibition of SMAD4 would impact 

viability upon treatment with carboplatin.  To test this hypothesis we transiently silenced 

SMAD4 using siRNA for 48 hours and then treated with either 50 µM or 200 µM 

carboplatin (depending on the sensitivity levels of the cell lines) for 72 hours.  We 

observed that cells with decreased levels of SMAD4 had significantly (P<0.05) lower 

viability as compared to control (scrambled) siRNA and this effect appears to be more 

pronounced in platinum-resistant cell lines (Figure 4.09). 

 

Combination of SMAD3 inhibition with carboplatin increases EOC cell death.  We 

next questioned the effects of SMAD3 inhibition in combination with carboplatin on cell 

viability.  We utilized the Specific Inhibitor of SMAD3 (SIS3), which selectively inhibits 

receptor phosphorylation of SMAD3 and SMAD3/SMAD4 oligomerization (Jinnin, Ihn et 

al. 2006).  SIS3 selectively inhibits TGF-β and activin signaling by suppressing SMAD3 

phosphorylation without affecting the MAPK/p38, ERK, or PI3-kinase signaling 

pathways (Jinnin, Ihn et al. 2006).  A2780 cells were treated with 3 µM SIS3 for 0, 1, 2, 

6, 12, and 24 hours.  A loss of pSMAD3Ser423/425 was observed by 6 hours (Figure 4.10).  
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Additionally, inhibition of SMAD3 corresponded with changes in EMT related genes.  

After 12 hours exposure to 3 µM SIS3, we observed a 2-fold increase in the epithelial 

marker EpCAM and 3-fold and 2-fold down-regulation of mesenchymal markers N-

cadherin and vimentin, respectively.  To address whether this inhibition would be able to 

sensitize cells to platinum we evaluated cell viability following a combination of SIS3 

with carboplatin.  A2780, CP70, and C30 cells were plated in an 8x8 matrix and treated 

with 0-10 µM SIS3 and 0-100 µM (A2780) or 0-430 µM (CP70 and C30) carboplatin.  

Cells were treated with increasing doses of SIS3, up to 10 µM, 3 hours prior to 

carboplatin (0-100 µM or 0-640 µM depending on cell line).  We observed synergistic 

effects, which contributed to increases in cell death over the effect of single drugs alone.  

Interestingly, this effect was observed in (A2780) as well as platinum-resistant SMAD4 

mutant cell lines (CP70 and C30) cell lines (Figure 4.11).  It is important to recall that 

both mutant and WT SMAD4 cell lines exhibited activated SMAD3/SMAD4 signaling, 

therefore the synergistic effects suggest that SMAD4/SMAD3 may be important in the 

cell’s response to platinum-based chemotherapy and that this treatment strategy may 

be applicable in both a platinum-sensitive and platinum-resistant setting. 

 

Combination of eribulin mesylate and carboplatin acts synergistically to enhance 

cell death.  Given the fact that SIS3 is not approved for patients we next sought to find 

a more clinically relevant drug capable of inhibiting the activity of SMAD3 and thus, 

evaluated eribulin mesylate (Halaven®, Eisai, Inc.).  Eribulin mesylate is a synthetic 

analogue of halichondrin B, a product isolated the Japanese sea sponge Halichondria 

okadai (McBride and Butler 2012).  Eribulin differs from other anti-microtubule agents in 
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that it can bind to the microtubule cap and inhibit tubulin polymerization, leading to 

microtubule arrest (McBride and Butler 2012).  Eribulin has been FDA approved for use 

in patients with metastatic breast cancer and liposarcoma (a specific type of soft tissue 

sarcoma) (Newman 2007; Vahdat, Pruitt et al. 2009; Twelves, Cortes et al. 2010; Mok, 

Geater et al. 2014; 2016).  Eribulin has been shown to prevent EMT by preventing 

receptor SMAD phosphorylation and subsequent activation with a seemingly stronger 

effect on SMAD3 than SMAD2 (Yoshida, Ozawa et al. 2014).  Maximum tolerated doses 

of eribulin mesylate in combination with carboplatin have been established for patients 

with non-small cell lung cancer (ClinicalTrials.gov Identifier: NCT00268905); however, 

clinical trials for eribulin in ovarian cancer have been limited to use as a single agent.  In 

a phase II trial, eribulin alone achieved partial response in 5.5% of women with 

platinum-resistant, recurrent ovarian cancer and in 19% of women with platinum-

sensitive disease.  The median progression-free survival was 1.8 months in the 

platinum-resistant group and 4.1 months in the platinum-sensitive group (Hensley, 

Kravetz et al. 2012).  Given our preliminary data supporting synergetic effects between 

SMAD3 inhibition and carboplatin, we explored the ability of eribulin to act in synergy 

with carboplatin.  To examine this hypothesis we plated OVCAR4 and OVCAR10 cells 

in an 8x8 matrix and exposed them to 0-64 nM eribulin for 3 hours followed by 0-100 µM 

(OVCAR4) and 0-640 µM (OVCAR10) carboplatin.  Excitingly, we observed significant 

synergy and enhanced cell death in cells with combination treatment over single agent 

alone (Figure 4.12) suggesting that this treatment strategy may be an effective option 

for women with platinum-resistant disease.  

 



112 
 

DISCUSSION 

 

Increased exposure to platinum contributes to the development of platinum-resistant 

disease and the current body of work suggests that the advent of resistant disease can 

be held off by increasing the platinum-free interval (PFI), either by extending the drug-

free time between platinum dosing or by alternating with non-platinum chemotherapy 

(i.e., pegylated liposomal doxorubicin) (Gordon, Fleagle et al. 2001; Fung-Kee-Fung, 

Oliver et al. 2007; Naumann and Coleman 2011).  These observations suggest that 

EOC is a dynamic disease and platinum resistance is not necessarily a stable 

phenomenon but may be inducible and perhaps reversible (Kuczynski, Sargent et al. 

2013).  We hypothesize that EMT is responsible, in part, for the development of 

platinum resistance; however, how the transition to a more mesenchymal phenotype 

contributes to protection from chemotherapy is still unknown.  The challenge, therefore, 

lies in identifying a druggable mediator of EMT across a large subset of EOC tumors.  In 

platinum-exposed and platinum-resistant EOC cell lines we have identified, for the first 

time, a dysregulation of SMAD2/SMAD3 signaling which favors SMAD3 over SMAD2.  

This is seen both in down-regulation of SMAD2 mRNA as well as a loss of receptor-

activated SMAD.  Importantly, SMAD3 is not affected.  In addition, survival data from 

the TCGA reports that patients with down-regulation of SMAD3 mRNA have improved 

OS although the n value for this study was low it further supports the theory that 

SMAD4/SMAD3 signaling is important to the development of platinum resistant disease.  

There currently are several TGF-β inhibitors including antibodies, antisense 

oligonucleotides, and receptor kinase inhibitors which have been introduced into clinical 
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trials for the treatment of a variety of malignancies (Buijs, Stayrook et al. 2012).  A 

sampling of the most recent include trabedersen (Isarna Therapeutics), a 

phosphorothioate antisense oligodeoxynucleotide specific for TGF-II (Schlingensiepen, 

Schlingensiepen et al. 2006; Schlingensiepen, Fischer-Blass et al. 2008), galunisertib 

(Eli Lilly), a TGFr1 inhibitor (Herbertz, Sawyer et al. 2015; Rodon, Carducci et al. 

2015), and PF-03446962 (Pfizer), a monoclonal antibody against TGFrI (Necchi, 

Giannatempo et al. 2014).  Interestingly, there are no current studies focused on 

inhibiting TGF-β/SMAD signaling in combination with carboplatin or cisplatin for 

treatment of platinum-resistant ovarian cancer.  We believe, given the above preliminary 

data that this novel strategy may advance our ability to treat platinum-resistant disease 

and/or prolong disease-free survival. 
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Table 4.01  Additional Mutations in Platinum-Resistant EOC Cell 

Lines 
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Figure 4.02  Dysregulation of TGF-β/SMAD Signaling Components in TCGA Samples.  Data 

from the TCGA reveals mRNA upregulation (pink), mRNA downregulation (light blue), amplification 

(red), deletion (blue), missense mutations (green), and truncated mutations (gray) in components of 

the TGF-β/SMAD signaling pathway in 316 EOC samples with complete data (mRNA, CAN, and 

sequencing). 
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Figure 4.03  Dysregulation of miR-21 in TCGA Samples.  Volcano 

plot of TCGA EOC samples with a loss of expression in SMAD4 by either 

mRNA down-regulation or gene deletion (n=61) demonstrating that the 

miR-21 levels (red dot) are significantly (p=0.00417) enhanced in this 

population of samples. 
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Figure 4.05  SMAD4 is Present in EOC Cell Lines.  A.  Gel electrophoresis of 

amplicon generated with target gene-specific primers (SMAD4, SMAD3, and 

SMAD2) demonstrates the presence of transcript mRNA in EOC cell lines.  B. 

Western Blot analysis of SMAD4 shows presence of the protein in EOC cell lines.  
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Figure 4.06  Loss of SMAD2 Activation Corresponds with a Loss of 

Sensitivity to Platinum.  Western blot analysis of EOC cells platinum-sensitive 

(A2780 and OVCAR4) and platinum-resistant (CP70, C30, and OVCAR10) both with 

and without TGFβ stimulation. 
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Figure 4.07  Loss of SMAD2 Expression Corresponds with a Platinum-

Resistant Phenotype.  A) TCGA data analyzed to show variations in regulation of 

SMAD2 mRNA between platinum-resistant (n=197) and platinum-sensitive (n=90) 

patient tumor samples.  B) TCGA data analyzed to show variations in regulation of 

SMAD3 mRNA between platinum-resistant (n=197) and platinum-sensitive (n=90) 

patient tumor samples. 
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Figure 4.08  Working Model.  Loss of SMAD2 leads to over-activation of 

SMAD3-mediated signaling, which in turn, leads to increases in EMT related 

gene expression and a loss of platinum-sensitivity. 
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Figure 4.09..Combination of SMAD4 inhibition with Carboplatin Enhances Cell  Death.  A. 

Viability relative to control siRNA after A1847 cell treatment with siRNA against SMAD2, SMAD3, and 

SMAD4 (Sethi and Godwin, 2012).  B. Viability relative to vehicle of A2780, OVCAR5, C30, and 

OVCAR10 cells after treatment with control or SMAD4 siRNA and carboplatin.  (OVCAR5 & A2780 50 

µM, C30 & OVCAR10 200 µM).  Viability is determined by Cell Titer Blue® (Promega) in each assay. 

**P<0.01  *P<0.05. 
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Figure 4.10  SIS3 Inhibits Phosphorylation of SMAD3 and Triggers EMT.  A. Western blot 

analysis of A2780 cells after 3 µM exposure to SIS3 shows a loss of phosphorylated SMAD3 by 6 

hr.  B. A2780 cells relative mRNA levels after 12 hr exposure to SIS3.  RNA levels are normalized to 

both GAPDH and GUSB.  *=P<0.05. 
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Figure 4.11  Synergistic Effects of SIS3 and Carboplatin.  Viability (bottom) and synergy (top) 8x8 

drug matrix of response to combinations of SIS3 and carboplatin.  Combination index scores as 

determined using CalcuSyn (BioSoft®) of <1 indicate synergistic effects (orange – red).  Viability is 

normalized to untreated control and scored as 100% (green) to 0% (red) indicating the amount of cell 

death as determined by Cell Titer Blue®.  Boxes indicate corresponding values within each cell line.  

Each matrix is representative of duplicate experiments. 
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Figure 4.12  Combination Therapy of Eribulin and Carboplatin is Synergistic.  A & C) 8x8 

drug matrix of viability response to combinations of eribuin and carboplatin in OVCAR4 (A) and 

OVCAR10 (C) EOC cell lines.  Viability is normalized to untreated control and scored as 100% (green) 

to 0% (red) indicating the amount of cell death as determined by Cell Titer Blue®.  B & D) 

Corresponding combination index scores as determined using CalcuSyn (BioSoft®) in OVCAR4 (B) 

and OVCAR10 (D).  CI values <1 indicate synergistic effects (orange – red).  Boxes indicate 

corresponding values within each cell line.  Each matrix is representative of duplicate experiments. 
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CHAPTER 5 - CONCLUSIONS AND FUTURE DIRECTIONS 
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CONCLUSIONS 

 

We are sitting at a new frontier of cancer research. The rapid advancement of 

inexpensive, specific, and sensitive genetic sequencing coupled with novel screening 

techniques to identify candidate drugs has made the concept of ‘personalized medicine’ 

a reality.  The addition of exosomes to this matrix elevates the utility of this approach to 

previously unthought of levels.  Our ability to catch a glimpse inside the innerworking of 

cancer cells, in real-time, and with minimally invasive procedures means that clinicians 

now have the possibility to interact more completely with the disease they are treating.  

In some ways it becomes a sort of conversation.  The clinician treats the tumor with a 

specific type of drug, the tumor then responds.  The clinician interprets the message 

sent via exosomes and responds by altering the therapy.  I feel, interrogation of this 

sophisticated exchange is one of the primary goals of personalized medicine and our 

increasing understanding of extracellular vesicles, such as exosomes will assist us in 

realizing this ideal.   

 

The use of exosomes as predicitive biomarkers is currently being investigated for a 

number of malignancies including breast, ovarian, and prostate cancers (Kharaziha, 

Chioureas et al. 2015; Lowry, Gallagher et al. 2015).  Researchers are attracted to 

these ‘mini-me’ versions of cells (this reference is credited to my mentor, Dr. Godwin) 

due to their unique makeup and relative abundance in biological fluids (up to 50-fold 

more) in disease states as compared to that of healthy controls (Gercel-Taylor, Atay et 

al. 2012; He, Crow et al. 2014).  However, our understanding of exosomes is still 
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rudimentary at best and the molecular decoding of these nanovesicles remains very 

challenging due to their unique properties.  For example, exosomes differ according to 

their cell of origin and their properties are highly dynamic, depending on cellular states, 

environmental factors or activating stimulus (Ge, Tan et al. 2012; Ohno, Ishikawa et al. 

2013; Phuyal, Skotland et al. 2015; Jelonek, Widlak et al. 2016).  Also, recent studies 

have revealed enormously diverse proteins (~42,000) and nucleic acids (>7,540 RNAs) 

in exosomes (Keerthikumar, Chisanga et al. 2016) especially those found in human 

blood (Zarovni, Corrado et al. 2015; Freedman, Gerstein et al. 2016; Willms, Johansson 

et al. 2016). 

 

A third confounding factor is the emerging disagreement on how to best effectivly 

characterize and ‘prove’ that isolated exosomal populations are truly pure.  While 

exosomes have a unique endosomal biogenesis pathway (as discussed in Chapter 2), 

and, are believed to have a type of organized shuttling of content, their size distribution 

overlaps with that of other secreted vesicles such as microvesicles and apoptotic bodies 

(Raposo and Stoorvogel 2013).  Therefore, isolation solely based upon size (or ability to 

pellet at 100,000xg as compared to 10,000xg) is potentially a flawed technique, albeit it 

currently the most accepted technique in the field of microvesicles.  Several bodies of 

thought suggest that the characteristic lipid dense membrane of these vesicles allow 

them to be further purified after initial isolation by centrifugation on a sucrose gradient, 

and this addition to centrifugation provides the most ‘pure’ and consistent exosomal 

preparation as reviewed by Abramowicz et al. (Abramowicz, Widlak et al. 2016).  The 

trouble then lies in how to best apply this type of technique within the clinical setting 
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where the sample volume is often small, turnaround time for lab results is of the 

essence, and ease of use is mandatory. 

 

I have previously published data demonstrating the isolation of exosomal populations 

via a microfluidic platform (as discussed in Chapter 2) (He, Crow et al. 2014).  While a 

population of reviewers would suggest (as righfully so) that the vesicles isolated from 

this and other microfluidic devices include vesicles not of endosomal origin it must be 

noted that common exosomal markers (such as CD63 and CD9) are found on a variety 

of EVs and both types of vesicles have been considered for biomarker development 

(Ohno, Ishikawa et al. 2013; Raposo and Stoorvogel 2013).  I suggest that the larger 

aim of one’s research be taken into account when considering whether to use 

exosomes or total EVs.  While additional purification may be relevent, and necessary in 

exosome-specific characterization investigations, a larger body of EV-based work 

focuses on how these vesicles contribute to disease and can be utilized to detect and 

combat maladies such as cancer.  That being said I pose a question, “If the overall goal 

of the research is to isolate vesicles secreted from a specific cell type for the detection 

and monitoring of disease, does it reallly matter if the preparation contains vesicles of 

mixed origin?”  These sorts of questions are becoming increasingly more common as 

we expand our understanding of the biology of secreted vesicles and should always be 

taken into consideration when reviewing or preparing for future studies. 
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FUTURE DIRECTIONS 

 

The utility of EV removal in combating platinum-resistant EOC.  In understanding 

the importance of the impact exosomes and other EVs have in the development of 

cancer progression, removal of these vesicles is an attractive therapeutic option.  As 

previously discussed in Chapter 2, devices such as  Aethlon ADAPTTM  (trade name 

Hemopurifier®) may be of use in combating metastatic disease (Marleau, Chen et al. 

2012).  This device utilizes a plasmapheresis cartridge, which allows cells to pass 

through, but captures vesicles < 200 nm with a custom designed affinity matrix.  It 

received IDE approval from the FDA to start clinical trials and the first patient completed 

the Hemopurifier Clinical study for the removal of Hepatitis C virus in February of 2015 

(Marleau, Chen et al. 2012).  I would suggest that this could be taken a step further and 

added to the primary standard backbone therapeutic regimen for women diagnosed with 

ovarian cancer.  As discussed in Chapter 1, successful cytoreductive surgery has a 

tremendous impact on OS in EOC.  As stated, this involves removal of as much of the 

visible tumor as possible (at least all tumor > 1cm) (Peng, Yan et al. 2011).  Tumor-

derived exosomes have also been implicated in the establishment of new tumor niches 

and in neoplastic transformation (as discussed in Chapter 2).  In fact, exosomes derived 

from the ascites fluid of EOC patients were shown to inhibit the cytotoxic effects of 

peripheral blood mononuclear cells, thus contributing to a less tumor suppressive 

environment (Peng, Yan et al. 2011).  Given that exosomes and microvesicles are 

nano-sized versions of the parental cell, and can function in lieu of their cell of origin, I 

hypothesize that the removal of these circulating vesicles from the blood of women 
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undergoing primary therapy could further limit the potential of tumor reoccurrence. While 

the Athelon has stated to have interest in working towards the use of the Hemopurifier® 

for the treatment of cancer, there are no clinical trials or pre-clinical data to date.  In 

addition, the use of exosomes for the treatment of cancer in clinical trials is limited to 

delivery of therapeutics or in immune system ‘priming’ (Clinical Trails.gov).  One hurdle 

to address, which has been discussed in Chapter 3, is how, exactly to target and 

capture all ovarian cancer-associated exosomes and EVs. 

 

Exosomal use as biomarkers in EOC.  Recent advancements in the molecular 

annotation of tumors have elevated the utility of personalized medicine in the clinical 

setting.  In addition, the development of databases such as The Cancer Genome Atlas 

Network, led by the National Institutes of Health, have streamlined the process of 

identifying novel therapeutic and prognostic targets thus shortening the duration 

between transitioning of therapeutic strategies from bench to bedside.  As was 

previously discussed, there is a dire lack of biomarkers for the early detection and 

monitoring of disease states in EOC and work form our lab and others suggests that 

isolation and characterization of EOC-specific EVs may prove clinically beneficial in 

both the identification of disease at earlier stages and/or in determining how the tumor 

responsiveness to a specific therapy (He, Crow et al. 2014).  Currently there are no 

comprehensive data sets analyzing the evolution of exosomal cargo throughout the 

development of chemotherapy resistance in EOC (Safaei, Larson et al. 2005; Yin, Yan 

et al. 2012; Pink, Samuel et al. 2015).  A tremendous hurdle in ovarian cancer research 

is a lack of tissue samples beyond primary cytoreductive surgery.  This is due to the fact 
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that most women will not undergo successive rounds of surgery upon relapse.  The 

ability to isolate tumor-derived exosomes from plasma and ascites therefore is exciting 

in that it provides researchers with more direct view of molecular changes, which occur 

with disease progression.  In addition, because exosomes can be isolated from patient 

samples the results can be more directly translated into the clinical setting.  Perhaps the 

most promising notion for ovarian cancer patients, as discussed at the beginning of this 

chapter, is that by evaluating changes in tumor-derived exosomal content, such as 

proteins and miRNAs, throughout a the course of the disease, we may be able predict if 

and when specific molecularly-targeted therapies would be advantageous.  Given that 

components of the TGF-β/SMAD signaling pathway are found directly within and on 

exosomes this work may prove useful as a foundation for research focused on applying 

exosomal biomarkers as a mechanism for predicting therapeutic response to platinum-

based anti-neoplastic agents.  In fact, recent work by Scjanik and colleagues has 

reported that exosomes derived from the plasma of patients with ovarian cancer had 

elevated levels of TGF-β1, which distinguished them from the exosomes derived from 

patients with benign tumors and normal controls (Szajnik, Derbis et al. 2013).  While the 

“n” value of this study was relatively small, the data supports the multifaceted role of 

TGF-β signaling in ovarian cancer and the importance of further examination of this 

pathway for biomarker applications. 
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Targeting TGF-β in Cancer 

 

The concept of targeting the specific molecular abnormalities of malignancies has 

proven to have significant impacts on progression free survival and overall survival in 

cancers such melanoma and lung adenocarcinoma.  For example, the discovery of 

BRAF V600E mutation, which is present in approximately 50% of melanoma cases led 

to a significant increase in overall survival by using targeted therapies (Mora, Alvarez-

Cubela et al. 2016).  Additionally the use of tyrosine kinase inhibitors such as erlotinib, 

gefitinib, and afatinib have resulted in increased overall survival by as much as 20 

months in patients with NSCLC harboring mutations in EGFR (Mora, Alvarez-Cubela et 

al. 2016).  While EOC cannot be defined by specific molecular drivers, which can cover 

the majority of patients, this work has identified genetic vulnerabilities in TGF-β/SMAD 

signaling which have the potential, when targeted in the clinical setting, to potentially 

increase both PFS and OS.  While TGF-β specific targeting agents are currently being 

used or have been examined for a wide variety of cancers, these agents act to suppress 

the pathway as a whole.  In this work we present a novel concept of targeting just a 

specific arm (SMAD3/SMAD4) of the TGF-β/SMAD signaling pathway.  Given that this 

pathway has roles in suppressing and promoting tumorigenesis, we believe that a more 

select inhibition of the SMAD3-EMT tumor promoting arm could prove more 

therapeutically beneficial in the clinical setting.  While SIS3 is an ideal candidate for this 

novel strategy due to its specific targeting of SMAD3, a more clinically relevant 

alternative is much needed.  Even though not specific for TGF-β/SMAD signaling, we 

propose the use of eribulin mesylate (HALAVEN®; Eisai Inc.) as a FDA approved option.  
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In addition, this work provides a solid foundation to justify a larger pharmaceutical 

screen to detect an even greater variety of SMAD3 inhibitors. 

 

Overall impact of this research on ovarian cancer.  There are numerous reasons 

that EOC remains such a difficult disease to treat.  I have discussed the late stage of 

diagnosis, general heterogeneity, and an incomplete knowledge of how cells lose 

sensitivity to platinum-based chemotherapy.  From detection of disease, preventing the 

advent of chemotherapy-resistance, and to re-sensitizing cells to chemotherapy this 

body of work addresses a full circle of the challenges facing clinicians, basic scientists, 

and, most importantly the patients.  We eagerly await the next decade as we advance 

the translation of exosome biology further into cancer management strategies and 

intensify the war on cancer.  
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