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Abstract

Evolutionary rescue occurs when a population that is threatened with extinction by an environmental change adapts to the
change sufficiently rapidly to survive. Here we extend the mathematical theory of evolutionary rescue. In particular, we
model evolutionary rescue to a sudden environmental change when adaptation involves evolution at a single locus. We
consider adaptation using either new mutations or alleles from the standing genetic variation that begin rare. We obtain
several results: i) the total probability of evolutionary rescue from either new mutation or standing variation; ii) the
conditions under which rescue is more likely to involve a new mutation versus an allele from the standing genetic variation;
iii) a mathematical description of the U-shaped curve of total population size through time, conditional on rescue; and iv)
the time until the average population size begins to rebound as well as the minimal expected population size experienced
by a rescued population. Our analysis requires taking into account a subtle population-genetic effect (familiar from the
theory of genetic hitchhiking) that involves ‘‘oversampling’’ of those lucky alleles that ultimately sweep to high frequency.
Our results are relevant to conservation biology, experimental microbial evolution, and medicine (e.g., the dynamics of
antibiotic resistance).
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Introduction

The history of life is punctuated by periods of mass extinction. It has

become clear that we are now living through such a period: present

species extinction rates are 100–1000 fold higher than background

rates [1,2]. It is also clear that this burst of species extinction largely

reflects human activity, including the combined consequences of

habitat destruction, pollution, and climate change [e.g., [3],[1],[4],[5]].

Not surprisingly, present extinction rates— and the threat they pose to

biodiversity— have received much attention over the last few decades.

Until recently, population genetics has had little to say about

extinction. Extinction is, however, partly a population-genetic

phenomenon. Theory as well as experiments with microbes

suggest that some threatened species may be able to adapt to

environmental change on a sufficiently fast time-scale to prevent

their extinction. This phenomenon, so-called evolutionary rescue,

has been the focus of considerable empirical and, to some extent,

theoretical work [for an overview, see [6] and other papers in the

special issue of the Proceedings of the Royal Society B].

Here we extend the population genetic theory of evolutionary

rescue. We focus on a sudden environmental change that is severe

enough to lower the population’s mean absolute fitness below one.

Consequently, the population cannot replace itself and begins to

decline geometrically in numbers. Unchecked, this decline will

lead to extinction. To survive, the population must adapt and it

must do so quickly. As Maynard Smith [7] emphasized,

adaptation in a threatened population is unlike ordinary adapta-

tion. Instead, it is a race against extinction.

While a substantial literature considers the case in which

adaptation involves a quantitative genetic (polygenic) response to

selection, we consider the simple case in which adaptation involves

evolution at a single locus. This case appears to be important

biologically, as responses to human-induced change— e.g.,

insecticide resistance, industrial melanism, heavy metal tolerance,

etc.— often involve rapid change at single genes [reviewed in

[6],[8]]. We further consider an abrupt change in the environ-

ment, which then remains in this new state for the period of time

that we consider [for gradual change in the environment, see

reference [6]]. Finally, we focus on a particular regime in which

the allele that might rescue a threatened population is initially

rare, i.e., either present in low copy number or appearing as a

recurrent mutation. If the allele were not rare, the population

would suffer little risk of extinction in the first place. Put

differently, we restrict attention to that regime in which a species

suffers a great risk of extinction.

Evolutionary rescue is characterized by a U-shaped curve of

population size [9,10]. As Figure 1 shows, when the environment

changes at time t = 0, mean absolute fitness drops below one, and

the population begins to decline in numbers. Conditional on

evolutionary rescue, mean absolute fitness will, at some point,

rebound to exceed one and population size will begin to grow; this

occurs at time tmin. Population size will then continue to increase

until attaining some large stable value. As Figure 1 also shows, the

U-shaped curve for total population size is, in our scenario, the

superposition of two curves: one that characterizes the geometric

decline in number of individuals that carry the wildtype allele and

the other that characterizes the increase in number of individuals

that carry the beneficial allele.

Here our main goal is to better characterize evolutionary rescue

mathematically. In particular, we describe this U-shape curve
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analytically. We focus on the behavior of the average size of a

population through time conditional on evolutionary rescue

occurring. A complete solution to this problem has, to this point,

proved elusive. As we will see, part of the reason is that such a

solution requires incorporating a subtle population-genetic effect

(familiar from the theory of genetic hitchhiking) into this largely

ecological problem.

We emphasize approximate results throughout. Given the

complexity of ecological problems— all else is rarely equal in the

real world— we suspect that it is more important to obtain

approximate results that are intelligible and somewhat robust to

departures from assumptions than exact ones that are neither. Our

results are typically simple enough to allow intuitive interpretation.

Results

Model
We study the same model described in Orr and Unckless [11].

Briefly, we consider a haploid model in which adaptation involves

a rare beneficial allele at a single locus. Mating is random and

there is no population structure or migration. The environment

changes suddenly, altering the fitness of alleles; these new fitness

values then remain constant through the time period studied. We

assume no clonal interference among beneficial alleles.

Time is discrete and measured in generations. (We will, however,

make continuous time approximations when convenient.) At time

t = 0, a population of size N0 made up entirely (or almost entirely) of

wildtype individuals experiences a sudden environmental change. As

the wildtype allele has absolute fitness 1-r in the new environment, the

number of wildtype individuals decreases geometrically though time.

Following MacArthur and Wilson [[12], chapt. 4], Leigh [13], Lande

[14], Orr and Unckless [11] and others, we assume a simple form of

population regulation in which population size can grow exponen-

tially until it hits a carrying capacity, K.

A beneficial allele that increases absolute fitness to

1{rð Þ 1zsð Þ & 1zs{r either resides at low frequency, p0, at

t = 0 or arises recurrently by mutation after the environmental

change. If the allele resides in the standing genetic variation, k
copies are present at time t = 0 (p0 ~ k=N0). As noted in the

Introduction, we assume throughout our analysis that k is small

(though see Text S1). It seems likely that k might often be small in

actual threatened populations as such populations often begin with

fairly small sizes.

Evolutionary rescue, if it occurs, involves an increase in

frequency of the beneficial allele before the population goes

extinct. Any allele that can cause evolutionary rescue must enjoy

an absolute fitness greater than one, requiring s.r (assuming that

the product s * r is negligibly small).

One simplifying assumption that we make throughout is that the

quantity s-r is small enough to justify Haldane’s 2s (in our case,

2(s-r)) approximation to the probability that a unique mutation

escapes stochastic loss. Some mutations that might save a

population could be of large effect and would violate this

assumption. In such cases, it is straightforward to replace the

approximate quantity 2(s-r) in our calculations with the more exact

one, 1-exp(-2(s-r)) throughout. The results will be more cumbersome

and less intuitive but they generally do not change qualitatively.

While we are primarily interested in analytically characterizing

evolutionary rescue, we check all of our approximate analytic

results against computer simulations. These simulations are

described in Orr and Unckless [11]. Briefly, these are exact

stochastic (forward) Monte Carlo simulations that follow threat-

ened populations of a given initial size through time.

New mutation versus standing genetic variation
Orr and Unckless [11] calculated the probability that newly-

arising mutations cause evolutionary rescue. Given a per gamete

per generation rate of mutation, u, to a beneficial mutation of

fitness effect s (s.r), they showed that this probability is

Pnew & 1{ exp {
2N0u s{rð Þ

r

� �
: ð1Þ

Bell [15] derived essentially the same result.

Figure 1. A schematic of evolutionary rescue. Following an
environmental change, a population begins to decline as the wildtype
suffers a fitness less than one. A rare mutant allele with fitness greater
than one may increase in frequency, saving the population from
extinction. Together, the two genotypes yield a characteristic U-shaped
curve of total population size through time.
doi:10.1371/journal.pgen.1004551.g001

Author Summary

Changes to an organism’s environment may have such
adverse effects on fitness that the population begins to
decline in size. To survive, the population must adapt
before it goes extinct. Such ‘‘evolutionary rescue’’ is
characterized by a U-shaped curve: population size
declines and then recovers as a beneficial allele increases
in number. Here we describe this U-shaped curve
mathematically when the rescuing allele starts out rare.
We obtain several results. First, we calculate when
evolutionary rescue is more likely to come from new
mutation than from the standing genetic variation.
Second, by describing the entire U-shaped curve mathe-
matically, we derive the time until the average rescued
population begins to rebound in size as well as the
smallest average population size experienced before
rescue. We also find that evolutionary rescue from new
mutation takes longer and involves a smaller minimum
population size than rescue from the standing genetic
variation.

Evolutionary Rescue
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An analogous calculation lets us find the probability that alleles

from the standing genetic variation cause evolutionary rescue.

These alleles are present at time t = 0 at frequency p0. So long as

these alleles are rare and each copy enjoys an independent

evolutionary fate, we have

Pstand & 1{ exp {2N0p0 s{rð Þ½ �: ð2Þ

Eq. (2) is agnostic about the historical forces responsible for the

presence of the allele at t = 0. The allele may, for instance, have

been previously deleterious or previously neutral.

The total probability of evolutionary rescue from either new

mutation or the standing genetic variation (we ignore rare events

wherein copies of both types of alleles contribute) is

Ptotal ~ Pstandz 1{Pstandð ÞPnew or

Ptotal & 1{ exp {
2N0 s{rð Þ p0rzuð Þ

r

� �
: ð3Þ

It is easy to find the conditions under which evolutionary rescue

is more likely to involve the standing genetic variation versus a

new mutation, where both types of allele enjoy selective advantage

s. From Eq.s 1 and 2, this occurs when

p0 w

u

r
, ð4Þ

a result that seems not to have been noted in the literature. New

mutations are more likely than the standing variation to cause

evolutionary rescue when the inequality is reversed.

Eq. 4 is independent of both s and N0. Its dependence on p0 and

u is intuitive – a higher initial frequency favors a role for standing

genetic variation while a higher mutation rate favors a role for new

mutation. The effect of r is subtler. A population’s rate of decline

affects both standing variation and new mutation in that it

decreases the rate at which the number of mutant individuals can

grow (,1-r+s). But r has a further effect on new mutations. Each

generation, it erodes the raw material— wildtype individuals—

required for production of new mutations. Thought of differently,

Eq. 4 reflects the fact that the expected number of copies of the

beneficial allele in the standing variation is N0p0 while the

expected cumulative number produced by new mutation before a

population goes extinct is N0 u/r [see reference [11]]. Given the

shared factor of N0, the relative magnitudes of p0 versus u/r
determines which scenario involves the larger number of copies.

Although Eq. 4 is obviously approximate, it agrees remarkably

well with computer simulations (Figure 2).

If we were to assume that standing genetic variation segregates

at the deterministic mutation-selection balance (p0 = u/sd; where sd

is the fitness cost of the mutation before the environmental

change), Eq. 4 suggests that standing genetic variation is more

likely than new mutation to save the population when u/sd.u/r,

i.e., when sd,r.

Size of a rescued population through time: Standing
variation

We now consider the U-shaped curve in Figure 1. We would

like to characterize this curve mathematically, tracking the average

size of a population through time conditional on evolutionary

rescue. We first consider evolutionary rescue that involves a rare

allele from the standing genetic variation. We derive the average

population size through time (this section) as well as properties of

the average rescued population at the moment that it begins to

rebound (subsequent sections). We then turn to the case in which

evolutionary rescue involves new mutation, which is more

complex.

The total size of a population at time t conditional on

evolutionary rescue can be written Nt ~ Nwild ,t z Nmut,t D
Nmut,t w0, where Nmut,t D Nmut,t w0 is the number of mutant

individuals conditional on the allele not having been lost. Because

accidental loss of a rare beneficial allele typically occurs early, this

quantity can be interpreted, once t is appreciable, as the number of

mutant individuals present conditional on evolutionary rescue

ultimately occurring. Put differently, once considerable time has

passed, any beneficial allele that is still present has almost certainly

escaped accidental loss. Taking expectations,

E Nt½ � ~ E Nwild,t½ �z E Nmut,t D Nmut,t w0½ �: ð5Þ

The key to our approach involves finding E Nmut,t D Nmut,t w0½ �.
If the mutant allele were to increase in frequency deterministically,

loss would never occur and we would have E Nmut,t D Nmut,t w0½ �
~ k 1zsð Þ 1{rð Þ½ �t & k 1zs{rð Þt. Consequently, it might
seem that the expected population size would be

E Nt½ �deterministic ~ e{r t N0 zkes tð Þ, ð6Þ

where we use a continuous time approximation and that, in

continuous time, E Nwild,t½ � ~ N0 e{r t. We also assume that k is

small enough that the initial number of wildtype individuals is

,N0. Eq. 6 essentially reflects the approach of Gomulkiewicz and

Figure 2. The probability that a population is saved by new
mutation versus standing genetic variation. The standing genetic
variation plays a greater role in rescue when p0 . u/r. Simulations
assume N0 = 10,000, r = 0.00333, s = 0.01 and u = 1026 with 100, 000
realizations. Red line indicates p0 = u/r.
doi:10.1371/journal.pgen.1004551.g002
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Holt [9], although their single-locus model was diploid and

featured Malthusian fitness parameters.

While Eq. 6 is adequate when both alleles are common, it can

diverge dramatically from the correct solution when the rescuing

allele is initially present in low copy number (see below). The

source of the discrepancy is simple. Loss of rare beneficial alleles is

common and the above approach ignores this loss. More subtly,

loss of rare beneficial alleles affects not only the probability of

evolutionary rescue but expected population size when the

beneficial allele is not lost. The point was seen by Maynard Smith

[16] and emphasized by Maynard Smith and Haigh [17] in their

classic analysis of genetic hitchhiking.

The key point is that successful alleles— those that sweep to

fixation— are not a random sample of initially-rare beneficial

alleles. Instead, successful alleles are disproportionately those that

rise by genetic drift to higher than expected copy number in the

first few generations of their evolutionary histories [18]. Such

alleles have a greater chance of being successfully ‘‘grabbed’’ by

natural selection. Maynard Smith showed that this oversampling

effect could be taken into account in otherwise-deterministic

selection equations by a simple, albeit approximate, approach. It

is, he argued, as though the alleles that successfully fix began with

higher copy number than they actually did, a finding that often

plays a part in hitchhiking theory. [This point is also well known in

the branching process literature, at least in certain limiting cases,

e.g., 19]

This insight can be imported into our problem to find

E Nmut,t D Nmut,t w0½ �. Here we follow Maynard Smith’s [16]

informal argument. (He considers a unique new mutation but, as

we will see, his argument is trivially generalized to a rare allele

from the standing variation.) Maynard Smith noted that, with t
appreciable enough that a mutant allele has either been lost or has

reached large enough numbers that it will ultimately fix, we have

Nmut,t ~ Pr Nmut,t w0f gE Nmut,t D Nmut,t w0½ �zPr Nmut,t ~0f g 0,

where the left hand side is the number of mutant individuals

expected deterministically and Pr Nmut,t w0f g ~ Pr fixationf g.
Thus

E Nmut,t D Nmut,t w0½ � ~
Nmut,t

Pr fixationf g : ð7Þ

In the case of a new mutation in a stable population,

Pr fixationf g & 2s and, conditional on non-loss, the expected

number of individuals that carry the beneficial allele at time t is

larger by a factor of 1/(2s) than expected naively [17].

Our problem differs from Maynard Smith’s in two small ways.

First, our allele begins from the standing variation. Second, our

population is shrinking. Both effects can be taken into account to

calculate the appropriate Pr fixationf g in Eq. 7. Given k copies at

time t = 0,

Pr fixationf g~1{ Pr all k copies lostf g~1{ 1{2(s{r)½ �k ð8Þ

where 2(s-r) is the approximate probability of fixation of a unique

copy of the beneficial allele with small selective advantage in a

population that declines geometrically [20]. For an allele that

starts at low copy number, i.e., k is small, Eq. 8 is, to a good

approximation, Pr fixationf g & 2k(s{r). Thus Eq. 6 becomes

E Nmut,t D Nmut,t w0½ � ~
k 1zsð Þ 1{rð Þ½ �t

2k(s{r)
&

e s{rð Þt

2 s{rð Þ , ð9Þ

where the last step is a continuous time approximation appropriate

with small s-r.

Perhaps surprisingly, Eq. 9 is independent of k (for small k). In

words, the expected number of mutant individuals at time t
conditional on ultimate fixation equals the deterministic expecta-

tion for a single new mutation normalized by its probability of

fixation. This result has a simple interpretation. When starting

with small k and conditioning on fixation, descendants of only one

copy typically sweep to fixation. (This reflects the fact that the

probability of fixation of each copy is generally small with weak

selection, especially in a declining population.) The expected

number of copies present at time t conditional on ultimate fixation

is therefore the same as that for a single mutation normalized by its

probability of fixation.

Substituting in Eq. 5, the expected total size of a population at

time t conditional on evolutionary rescue is

E Nt½ � & N0e{r t z
e(s{r)t

2 s{rð Þ , ð10Þ

where we again use a continuous time approximation with

E Nwild,t½ � ~ N0 e{r t in continuous time. (We also again assume

that the initial number of mutant individuals is negligible

compared to N0.)

Eq. 10 is one of our key results. It lets us trace the expected size

of a rescued population through time. Figure 3 shows that Eq. 10

performs very well when compared to exact computer simulations.

Figure 3 also shows that Eq. 6, which ignores Maynard Smith’s

oversampling effect, performs poorly when the desired beneficial

allele is initially present as a small number of copies.

We can also find the variance in Nt conditional on evolutionary

rescue, at least roughly. Given that the two types propagate

independently, Var Nt D Nmut,t w0½ �~ Var Nwild,t½ � z Var Nmut,t D½
Nmut,t w0�. If we assume the wildtype population is large enough

that it behaves approximately deterministically (an assumption that

will break down at some point), most of the variance in Nt will

reflect variance in Nmut. Crudely, then, Var Nt D Nmut,t w0½ � &
Var Nmut,t D Nmut,t w0½ �. Theory extending Maynard Smith’s insight

shows that, conditional on fixation and with t large, the distribution

of copy number for a beneficial allele that escapes loss is

approximately exponential with the mean given in Eq. 9 [18,19].

Thus

Var Nt j Nmut,t w0½ � & Var Nmut,t j Nmut,t w0½ �

&
e s{rð Þt

2 s{rð Þ

� �2

:
ð11Þ

Figure 4 shows that this approximation performs well once t is

appreciable. The fit is less good early on.

Text S1 generalizes the results of this section when the number,

k, of copies of the beneficial allele present at t = 0 is not small.

Population rebound: Standing variation
We now characterize the average rescued population at the

moment it begins to rebound in size, i.e., the moment it hits its

minimal size in Figure 1. When does this rebound occur? And

what is the smallest size, E N½ �min, experienced by the average

rescued population?

To find the time the mean population begins to rebound, note

from Eq. 10 that

Evolutionary Rescue
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L E Nt½ �
L t

&
1

2
e{r t es t {2N0r½ �, ð12Þ

which equals zero when

tmin ~
1

s
ln 2N0rð Þ: ð13Þ

As L2E Nt½ � = L t2
w 0, Eq. 13 represents a minimum, which

can also be seen in Figure 3. Figure 5 also shows that Eq. 13 is

very accurate.

Eq. 13 shows, not surprisingly, that the greater selective

advantages of a mutant allele the shorter the time to rebound.

(It may seem surprising that s alone, not s-r, appears. The reason is

that the system of allele frequency changes depends only on the

fitness difference between genotypes.) The effect of r is harder to

intuit. Eq. 13 shows that, all else equal, faster population decline

increases the time until expected N rebounds. To understand this,

note that Eq. 13 represents a time that is conditional on rescue.

With larger r the probability of such rescue decreases but— if

rescue does occur— larger r slows the time to rebound. The

reason is that the absolute number of mutant individuals grows as

,1+s-r, which is smaller for larger r. It is also worth noting that

the time until rebound is independent of copy-number, k, of the

beneficial allele, so long as k is small. This can also be seen in

Figure 5. (See Text S1 for results with somewhat larger k.) Eq. 13

also makes clear that the time until rebound is more sensitive to s
than to N0 and r, which enter only logarithmically.

We can also find the minimum expected population size

experienced during evolutionary rescue. Substituting tmin into Eq.

10, we get

E N½ �min &
N0s

s{r
2N0rð Þ{r=s: ð14Þ

Figure 3 shows that Eq. 14 performs well compared to

simulations. The size of the average population at its minimum

will obviously affect a population’s genetic diversity post-recovery

as effective population size is sensitive to the smallest population

size experienced through time.

Our approach in this section has involved characterizing the

expected size of a population, E Nt½ �, conditional on rescue. Eq.

13, for instance, gives the time when E Nt½ � hits its minimum; this is

not necessarily identical to the average of the times when

individual realizations hit their minimum. Similarly, Eq. 14 gives

the minimum size of E Nt½ � conditional on rescue; this is not

necessarily identical to the average of the minima experienced in

individual realizations. (The minimum of the average need not

equal the average of the minima.) Nonetheless, Figure 3 shows

that our approach roughly captures the behavior of what might be

loosely thought of as the ‘‘typical’’ rescued population.

We can also specify relations between the numbers of mutant

and wildtype individuals present when the average population

rebounds. At tmin we find that

E Nmut, tmin

h i

E Nwild, tmin

h i ~
r

s{r
ð15Þ

to the order of our approximations. This result is independent of

N0 and p0, so long as k is small.

Simulations show that Eq. 15 is reasonably accurate. For

example, with s = 0.02 and r = 0.001, 0.005 or 0.01, Eq. 15 yields

Figure 3. The U-shaped trajectory for populations rescued from standing variation. 100 randomly selected successful realizations in gray,
mean of all successful realizations in black, Eq. 6 (without the oversampling correction) in blue, Eq. 10 (with the oversampling correction) in red. Ticks
on X-axis represent observed (black) and predicted (red) tmin (Eq. 13) while ticks on the Y-axis represents observed (black) and predicted (red) Nmin

(Eq. 14). A) N0 = 10,000, r = 0.01, s = 0.02, k = 1; B) N0 = 100,000, r = 0.01, s = 0.02, k = 1; 100,000 realizations.
doi:10.1371/journal.pgen.1004551.g003

Evolutionary Rescue
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0.053, 0.333 and 1.00, respectively. The observed values were

0.054, 0.316 and 0.923 given an initial population size of

N0 = 10,000 and k = 1 (100,000 successful realizations). If we

increase the initial population size to N0 = 100,000 (with k = 1), the

observed values were 0.054, 0.347 and 1.05 (100,000 successful

realizations). If, on the other hand, we increase the number of

copies of the mutant alleles segregating in the standing variation,

i.e., k = 10 and N0 = 10,000, the observed values are 0.051, 0.331,

0.951 (100,000 successful realizations).

Population return to carrying capacity: Standing variation
We can also estimate the time needed for the average

population to return to its pre-crisis carrying capacity, N0. This

occurs when Eq. 10 equals N0, which is roughly

treturn *
1

s{r
ln 2N0 s{rð Þ½ �: ð16Þ

This approximation is crude in several ways. First, we assume

that the number of wildtype individuals is negligible by the time

the population arrives at treturn.

Second, we assume that the carrying capacity in the new

environment is the same as in the old environment. This need not

be true and there is some experimental evidence that it is not, at

least in the laboratory [21]. Third, we assume, following

MacArthur and Wilson [12] and Lande [14] and others, that

the population maintains exponential growth until hitting carrying

capacity. Eq. 16 would almost certainly be inappropriate under

other forms of population regulation.

Size of a rescued population through time: New
mutation

We now turn to characterizing the U-shaped curve when

evolutionary rescue involves a new mutation. This scenario is

more complex than above as we must consider two dynamics: the

time until a successful new mutation arises and the time then

required for the allele to reach high frequency.

Figure 5. Time to minimum expected population size. Black lines
are predicted tmin (Eq. 13), simulation results with k = 1 are red dots,
simulation results with k = 10 are blue dots. Two values of r are used
(see plot), N0 = 10,000. 5000 successful realizations for each set of
parameters.
doi:10.1371/journal.pgen.1004551.g005

Figure 4. The variance in population size during evolutionary rescue. Observed variance of total population size (black), predicted from Eq.
11 (red), variance in the number of mutants (dotted blue), variance in number of wildtype (dotted green). A) N0 = 10,000, r = 0.01, s = 0.02, k = 10; B)
N0 = 100,000, r = 0.005, s = 0.02, k = 3; 100;000 realizations.
doi:10.1371/journal.pgen.1004551.g004

Evolutionary Rescue
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In particular, we modify the approach taken above to reflect a

delay in the time required for a new mutation to appear that

escapes stochastic loss. During this delay the number of wild-type

individuals continues to decline. Consequently, the mean popu-

lation size conditional on rescue will behave as:

E Nt½ � &
ð?

0

N0e{r t z
1

2 s{rð Þ e
(s{r)(t{t)

� �
f tð Þ dt, ð17Þ

where f tð Þ is the probability density of waiting times for the origin

of a successful new mutation. The quantity 2(s-r) in the

denominator again takes Maynard Smith’s oversampling effect

into account.

Orr and Unckless [11] showed that the distribution of waiting

times until the appearance of a new mutation that escapes loss in a

geometrically declining population is itself approximately geomet-

ric (, exponential):

f tð Þ & r exp {r tð Þ ð18Þ

In words, because the population declines geometrically, the

supply of new mutations declines about geometrically and,

consequently, rescue is more likely early than late. Although

improved solutions to the distribution of origination times of

successful mutations are possible (see Text S2, Figure S1), we rely

here on Eq. 18, which is simple and often adequate.

From Eq.s 17 and 18, we find that the expected population size is

E Nt½ � & N0e{r t z
r

s

e(s{r)t

2 s{rð Þ : ð19Þ

Figure 6 shows that Eq. 19 performs very well compared to

simulations. Figure 6 also shows E Nt½ � when alleles derive from

the standing variation (Eq. 10), allowing comparison between the

two scenarios. With new mutation, the U-shaped curved is

stretched to the right: recovery takes longer than with standing

variation, reflecting the waiting time required for the appearance

of a successful new mutation.

Interestingly, the expected size of a rescued population under

new mutation (Eq. 19) is identical to that under standing variation

(Eq. 10) except for the factor of r/s in the second term of Eq. 19.

Because, with rescue, r/s,1, the mean size of a rescued

population is, at any moment, smaller with new mutation than

with standing variation, reflecting the waiting time for the

appearance of a successful new mutation.

By analogy to Eq. 11, and continuing to ignore the variance in

numbers of wildtype individuals, the variance in population size at

time t is

Var Nt j Nmut,t w0½ � & Var Nmut,t j Nmut,t w0½ �

&
r

s

e s{rð Þt

2 s{rð Þ

� �2 ð20Þ

Simulations confirm that Eq. 20 performs well when t is not

very small (not shown).

We can also solve for the time at which the mean population

begins to rebound, conditional on rescue by new mutation. It is:

tmin ~
1

s
ln 2N0sð Þ: ð21Þ

Figure 6. The U-shaped curve for populations rescued by new mutation. 100 randomly selected successful realizations in gray, mean of all
successful realizations in black, Eq. 19 (expectation from new mutation) in red, Eq. 10 (expectation from standing variation) in blue. Ticks on X-axis
represent observed (black) and predicted (red) tmin (Eq. 21) while ticks on the Y-axis represents observed (black) and predicted (red) Nmin (Eq. 22). A)
N0 = 10,000, r = 0.01, s = 0.02, u = 1025 B) N0 = 100,000, r = 0.005, s = 0.015, u = 1026; 10,000 realizations.
doi:10.1371/journal.pgen.1004551.g006
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As Figure 6 shows, this result is quite accurate. Remarkably, tmin

is independent of r, to the order of our approximations. This is

because r plays two opposing roles in the time to E[N]min. First, as

r increases (with s constant), the rate of increase of the mutant

allele (with fitness 1+s-r) decreases. This increases the time to

E[N]min. Second, as r increases, the population declines faster, so

that— conditional on rescue occurring— the new mutation must

have arisen fairly soon after the environmental change.

As remarkably, tmin with new mutation is identical to that with

standing variation except that the quantity s replaces r in the

argument of the logarithm (see Eq. 13). Because s.r, tmin for new

mutation is larger than that for standing variation, again reflecting

the additional waiting time for the appearance of a successful new

mutation.

Finally, the mean population size at tmin with new mutation is

E N½ �min &
N0s

s{r
2N0sð Þ{r=s ð22Þ

Not surprisingly, this is smaller than the mean size found for

standing variation (Eq. 14). Because rebound occurs later with new

mutation, populations decline to a smaller average size before

rebounding.

We can also estimate the time needed for the average

population to return to its pre-crisis carrying capacity. This occurs

when Eq. 10 equals N0, which yields roughly

treturn ~
1

s{r
ln

2N0s s{rð Þ
r

� �
: ð23Þ

This equation is identical to that for the standing variation case

(Eq. 16) except, again, for the term of s/r in the argument of the

logarithm; consequently, treturn is longer for new mutation than it is

for standing variation. The same (serious) caveats apply to Eq. 23

as to Eq. 16.

Discussion

We have extended the population-genetic theory of evolution-

ary rescue. In particular, we have considered a scenario in which

the environment changes suddenly and the population attempts to

adapt to this change via evolution at a single locus. (Though far

from universal, considerable data indicate a role for single genes in

response to, e.g., human disturbance; see below.) We further focus

on a particular regime in which the desired beneficial allele is

initially rare, i.e., it is either present in few copies at time zero or it

appears as a new mutation after time zero. This regime is of

special interest as adaptation is far from deterministic and the

population is therefore seriously threatened by the environmental

change and suffers a considerable probability of extinction. If the

beneficial allele were much more common, adaptation would be

essentially deterministic and the population would suffer little

probability of extinction. Gomulkiewicz and Holt [9] considered

this case in which natural selection at a single locus determinis-

tically rescues a threatened population. (There is obviously a gray

area between the rare and common allele regimes; see Text S1 for

some analysis of this gray area.)

One of our most interesting findings involves comparing

evolutionary rescue from a rare allele that resides in the standing

genetic variation versus a new mutation. Eq. 4 shows that rescue

from the standing variation is more likely than that by new

mutation when the initial frequency, p0, of the beneficial allele

exceeds u/r. Conversely, new mutation is more likely to be

involved when p0,u/r. These results are independent of s— given

that both types of alleles share the same selective advantage— and

reflect the relative expected number of copies of the desired allele

that arise by new mutation before extinction versus that reside in

the standing variation.

We have also derived an approximate equation for the U-

shaped curve that characterizes evolutionary rescue (Eqs. 10 and

19). This curve describes the trajectory of expected population size

through time conditional on rescue. When beneficial alleles are

initially rare (small k), derivation of this quantity requires taking

into account a subtle population-genetic effect familiar from the

theory of genetic hitchhiking: rare beneficial alleles that sweep to

high frequency behave, in deterministic selection equations, as

though they began at a higher frequency than they actually did.

The reason, first seen by Maynard Smith [16], is that natural

selection is more likely to ‘‘choose’’ alleles that accidentally drift to

somewhat higher than expected frequencies early in their histories

[see also [18]]. Incorporating this oversampling effect into our

calculations, we derive several key quantities that characterize the

U-shaped curve of evolutionary rescue, including the time until the

expected population size begins to rebound (Eq.s 13 and 21) and

the smallest expected population size experienced (Eq.s 14 and

22). These quantities assume surprisingly simple forms and

perform well when compared to exact computer simulations given

small k.

The U-shaped curves of evolutionary rescue differ depending on

whether rescue involves new mutation (Eq. 19) or rare alleles from

the standing variation (Eq. 10). In particular, the waiting time until

the mean population size begins to rebound is longer with new

mutation than with standing variation. Similarly, the minimum

expected population size experienced during rescue is smaller with

new mutation than with standing variation. Both findings reflect

the fact that the U-shaped curve for rescue is delayed, i.e.,

stretched to the right, for new mutation relative to standing

variation. This, in turn, reflects that evolutionary rescue by new

mutation involves a waiting time that does not appear with the

standing variation— that required for the appearance of a

successful mutation, i.e., one that escapes accidental loss. We also

derive the variance in population size through time, albeit roughly.

Though beyond the scope of the current paper, our results have

some implications for the genetic diversity of populations that

experienced evolutionary rescue from a sudden environmental

shock. For example, as the minimum average population size is

always smaller under evolutionary rescue from new mutation than

from the standing genetic variation, populations that adapted via a

new mutation will likely often experience more loss in diversity

than populations that adapted from the standing variation. (It

must be emphasized, however, that our results involve the

expected size of rescued populations and there is often much

variation about these expected values.)

Our analysis does feature several important limitations. First, we

focus on adaptation at a single locus. While the frequency of

single-locus adaptation (or, more plausibly, adaptation that

involves a major effect at some single locus) remains somewhat

uncertain, matters are clearer when considering sudden and

dramatic environmental changes of the sort modeled here. Many

such changes, or at least those that have been analyzed genetically,

involve responses to human disturbance, e.g., antibiotic resistance,

insecticide resistance, industrial melanism, etc. These environ-

mental challenges are often met via evolution at a single locus

[reviewed in [6],[8]]. We suspect, then, that our results, while

limited, are relevant to fairly sudden evolutionary rescue from

human-induced change in the environment. Second, we have
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focused on rescuing alleles that are initially rare, i.e., either

residing at low copy-number in the standing genetic variation or

arising recurrently by mutation. Although this need not be the

case, evolutionary rescue of seriously threatened species will likely

often involve rarer rather than more common alleles as species

would not be much threatened to begin with if the rescuing allele

were common at the moment of environmental change. In any

case, the population-genetic theory of rescue in the case of

common alleles is straightforward as it is essentially deterministic

[9].

Third, our analytic findings are approximate. This partly

reflects the difficulty of the problem considered and partly our

attempt to uncover simple patterns that might characterize rescue.

Given the complexities of ecological change in the real world, we

suspect that it may be most useful, at least at this stage in our

understanding, to obtain theoretical results that are approximate

but intelligible than ones that are exact but difficult to intuit. In

any case, our analytic results generally perform well when

compared to computer simulations. We thus believe therefore

that our findings represent reasonable rules of thumb that

characterize evolutionary rescue when adaptation involves a single

gene.

While we have couched our results in terms of conservation

biology, it is worth noting that they are also relevant to a medical

context. Consider, for example, a pathogen population (e.g., a

bacterial infection in a patient) that suddenly encounters a

changed environment (e.g., antibiotics) in its host. In such medical

contexts, one obviously hopes to avoid evolutionary rescue of the

pathogen, ensuring that medical intervention drives the pathogen

to extinction. Because our approach employs branching process

theory, any threatened population has only two ultimate fates:

adaptation or extinction. As the probabilities of these events are

complementary, our analysis is obviously relevant both to

conservation biology and to medical intervention against patho-

gens. In particular, the conditions under which we are likely to

avoid adaptation of a pathogen to medical intervention are the

same as those under which the probability of evolutionary rescue

in our calculations is minimized.

Finally, empirical testing of our findings should be straightfor-

ward in the context of microbial experimental evolution research.

Indeed several studies have reported experiments that resemble

those needed to test our theory [e.g., [21],[22],[23]]. While more

replication would be needed to determine, for example, the

consequences of the oversampling effect and new quantities, e.g.,

tmin and Nmin, would need to be measured, we see no principled

problem with such direct experimental tests.

Supporting Information

Figure S1 The distribution of waiting times until a new

beneficial mutation arises that escapes stochastic loss and rescues

the population. Gray bars represent the observed distribution from

10,000 successful realizations, blue line is the predicted approx-

imate exponential distribution (Eq. 18), red line is the improved

distribution (Eq. S2.3). A) N0 = 10,000, r = 0.01, s = 0.02, u = 1025

B) N0 = 10,000, r = 0.003, s = 0.02, u = 1025.
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Text S1 Derivation of analytical results for the U-shaped curve

of evolutionary rescue when the number of starting mutants (k) is

not small.
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Text S2 Derivation of the distribution of waiting times until a

new mutation arises that eventually saves the population.
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