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Abstract

Population dynamics are affected by changes in both the mean and standard deviation of climate, e.g., changes in average
temperature are likely to affect populations, but so are changes in the strength of year-to-year temperature variability. The
impacts of increases in average temperature are extensively researched, while the impacts of changes in climate variability
are less studied. Is the greater attention given to changes in mean environment justified? To help answer this question we
developed a simple population model, explicitly linked to an environmental process. We used the model to compare the
sensitivities of a population’s long-term stochastic growth rate, a measure of fitness, to changes in the mean and standard
deviation of the environment. Results are interpreted in light of a comparative analysis of the relative magnitudes of change
in means and standard deviations of biologically relevant climate variables in the United States. Results show that changes
in the variability of the environment can be more important for many populations. Changes in mean conditions are likely to
have a greater impact than changes in variability on populations far from their ideal environment, for example, populations
near species range boundaries and potentially of conservation concern. Populations near range centres and close to their
ideal environment are more likely to be affected by changes in variability. Among pest and insect disease vectors, as well as
species of commercial value, populations likely to be of greatest economic and public health significance are those near
species range centers, living in a near-ideal environment for the species. Observed changes in the variability of climate
variables may benefit these populations.
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Introduction

Ongoing climate change is most readily characterized by

changes in the mean state of climate variables (e.g., increases in

mean temperature [1]), and the impacts on ecosystems of changes

in mean environmental state are studied closely [2,3]. However,

rising levels of greenhouse gases may also affect climate variability

[4]. An increase in variability could also affect populations’ fitness

[5–9]. How do changes in the variability of climate compare to

changes in the mean values of climate variables in terms of the

importance of their impacts on populations? To help answer this

question, we here consider the simplest possible population model

that can be linked to an environmental process.

Changes in mean climate have been well documented (e.g., [1]),

and while changes in variability have received less attention, they

have been studied at different temporal resolutions (e.g., daily [10];

monthly [11,12]; seasonal [13]; annual [4,14]), using both

empirical data michaelsetal [15–17], and forecasts from a range

of models [18–20]. These studies show that for some temporal

resolutions, the variability of climate is changing.

Environmental variables affect annual population growth rates

and vital rates such as survival probabilities and fecundity rates; it

is through these rates that changes in the mean or variability of

climate can affect long-term population growth rates. Determining

the consequences of climatic changes on population growth

therefore requires understanding the relationship between envi-

ronment and annual growth and vital rates, i.e., how an

environmental signal is translated into biological processes

[3,21]. For ectotherms, which comprise over 99% of all species

[22], temperature alters the speed at which individuals pass

through life stages, thereby influencing population growth rate

[23–25]. In ectotherms, the relationship between temperature and

annual net population growth rate (henceforth called the response

function) typically has a single peak; there is an ideal temperature

that maximizes the population’s performance [21,23,26–32]. An

argument for a single-peaked response function can also be made

for endotherms [33] and other environmental variables such as

precipitation [26]. Alternative shapes of functional responses may

occasionally be reported in studies, but these can often be

considered special cases of the single-peaked response function; we

come back to this point in the Discussion. The specific shape of the

response function for a species may determine how variability in

temperature or another environmental variable affects the long-

term population growth rate [34–37]. If a response function is log-

convex (the log of the function opens up) for the range of an

environmental variable that pertains in a locale, then an increase

in variability may in fact benefit the population; if the function is
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log-concave (its log opens down) for the pertinent range of the

variable, then variability is detrimental for the population [34,35].

The response function therefore plays an important role in

determining the impacts of climate change on populations. There

are several important studies that compare the effects of changes in

mean and variability of vital rates on long-term population growth

rate (e.g., [3,38–40]). However, changes in the mean environment

can modify both the mean and standard deviation of vital rates

and annual growth rates, as can changes in the standard deviation

of the environment; understanding the relative importance of

changes in means and variabilities of vital rates and annual growth

rates does not necessarily translate directly to the relative

importance of changes in the means and variabilities of

environmental variables for long-term growth. A priori, the

translation from environments to annual growth and vital rates

may affect the relative importance of means and standard

deviations. This possibility can be investigated by explicitly using

response functions to characterize the relative sensitivities of a

population to changes in the means and standard deviations of

environmental variables.

In addition to examining relative sensitivities, to understand the

relative importance for populations of changes in the means and

standard deviations of environmental variables, it is also necessary

to understand the relative magnitudes of these changes. Even if,

hypothetically, a population were more sensitive to changes in the

standard deviation of an environmental variable than to changes

in the mean of the same variable, if the mean of the variable is

changing much more rapidly than the standard deviation, changes

in mean may impact the population more. Sensitivities of a

population to changes in means and standard deviations of

environmental variables must be multiplied by the changes taking

place to assess relative importance of the two types of change.

We know of only two studies that incorporate response functions

and compare the effects of changes in mean and variability of the

environment, as opposed to vital rates, on a population. Van de

Pol et al. [37] and Jonzén et al. [41] parameterized stage-structured

stochastic population models using populations of oystercatchers in

the Netherlands and red kangaroos in South Australia, respec-

tively. Van de Pol et al. concluded that time to extinction is more

sensitive to changes in the environment’s mean than its standard

deviation, a result further magnified by the fact that climate

models predict greater changes in mean temperature than in its

standard deviation in the Netherlands. Jonzén et al. also found

sensitivity of population growth to be greater to changes in mean

rainfall than to changes in the standard deviation of rainfall,

although the two sensitivities were similar enough that changes in

standard deviation would still be important unless changes in

mean rainfall were much greater than changes in the standard

deviation of rainfall.

In this study we aim to compare the effects of changes in mean

and variability of inter-annual physical environmental conditions

on long-term population growth rate, which we use as a measure

of fitness, adopting a simple, strategic approach rather than

parameterising a complex model of a single population as in

[37,41]. Both approaches are valuable. We provide a theoretical

approach based on an unstructured, annually censused popula-

tion, which we assume is explicitly linked to an annual

environmental variable via a response function. The model is

the simplest possible stochastic matrix model, a class of model very

widely used for analysis of the growth rates and extinction risks of

real populations (e.g., references [42,43]). We first derive the

population long-term stochastic growth rate as a function of the

environment and the response function. We then derive the

sensitivity of long-term growth rate to changes in environmental

mean and variability. Finally, we compare sensitivities to observed

changes in the means and standard deviations of several

environmental variables likely to influence populations. We

provide answers based on our model to the following three

questions: (1) Given an increase in the mean or standard deviation

of the environment, does the long-term growth rate increase or

decrease? (2) If mean and standard deviation are perturbed by the

same small amount, which causes the greater impact on the long-

term growth rate? (3) What are the relative magnitudes of

observed changes in mean and standard deviation of climate

variables, and how do these relate to the sensitivities computed in

(2) to yield an overall idea of whether changes in climate means or

standard deviations are more important for population dynamics?

We discuss results in view of currently ongoing climate change,

and identify potential consequences for populations of conserva-

tion concern as well as pests, disease vectors, and exploited

populations. We indicate conceptually why results are likely to

generalize from the simple model we employ to more complex

models and real populations.

Methods

Theory
For nt representing the population in year t, the base model [44]

is

ntz1~lt nt, ð1Þ

where lt is the net growth rate of the population in year t. We

assume lt~f (wt), where wt is the physical environmental variable

and f is the response function. Let p(wt)~ ln f (wt) be the log of

the response function. For the stochastic model, population size

asymptotically approaches a lognormal distribution, with mean t
times a quantity denoted ln ls (a in [45]; ’’infinitesimal mean’’ m in

[46]; �rr in [47]); ln ls is the long-term stochastic growth rate

[42,45,48],

ln ls~E ( ln lt)~

ð?
{?

p(wt)Q(wtjm,s)dwt, ð2Þ

where Q(wtjm,s) is the probability density function (pdf) of wt, with

mean parameter m and standard deviation parameter s [47,48].

The integral in equation (2) is the definition of the expected value.

Second-order approximations to ln ls [45,48] are used, but

equation (2) is an exact formula that applies in the case of an

unstructured population. The long-term stochastic growth rate

ln ls represents the rate at which almost every realization of the

population grows [7,42,49] and is widely studied as a fitness

parameter boyceetal06 and in practical application [42,43]. The

sensitivities of ln ls to changes in mean and standard deviation of

the environment are obtained simply by taking the partial

derivatives of equation (2) with respect to m and s, moving the

partial derivatives under the integral symbol and applying them to

Q(wtjm,s). This approach applies generally, for any p(wt).
For concreteness, we adopt a flexible parameterization for p.

We transform wt such that its distribution in the focal location is

N (0,1) (see Section S1 in File S1). This step should result in no loss

of generality for many environmental variables, such as mean

annual temperature and rainfall. For some aw0, p(wt) is taken to

be a1 ({wtzb)azc for wtƒb and a2 (wt{b)azc for wt§b
(Figure 1). This function is single peaked. The maximum height of

the response function is controlled by c. The ideal environment, at

which the response function is maximized, is controlled by b; the

term ’’ideal environment’’ is henceforth used to refer simply to the

Sensitivity of Long-Term Stochastic Growth Rate
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value of wt at which f is maximized. The rate of falloff of p as wt

decreases (respectively, increases) from the ideal environment is

controlled by a1 (respectively, a2); both are taken to be negative.

The ratio fs~a1=a2 is a measure of asymmetry of the response

function around b; so a1 and a2 control the rate of falloff of the

response function from the ideal environment and their relative

magnitude controls symmetry. The functional form or general

shape of the falloff is determined by a (Figure 1E, F); a is included

as a variable (as opposed to a fixed value such as 2) for flexibility,

so that response functions of a variety of shapes can be considered.

The log concavity of each half of the response is controlled by a,

with aw1 corresponding to log-concave response functions and

av1 to log-convex ones; log-concavity has been important in

prior work [34–37]. The response function shapes that can be

generated with our parameterization (examples in Figure 1) are

similar to many reported response functions [23,26,28,29]. The

parameterization of p was chosen because it is very flexible,

encompassing a wide range of possible relationships between the

environment and vital rates, including asymmetries and different

rates, functional forms, and log-curvatures for falloff of the vital

rate from the optimum. The parameter b is measured in units

equal to the standard deviation of the local environment because

we re-scaled wt to make it standard normally distributed. Here the

term ’’local environment’’ refers to the distribution of wt. Larger

values of jbj describe populations living in a suboptimal

environment (for example, those living in environmental range

margins or struggling to adapt to climate change), whereas jbj*0
represents populations living in a close-to-ideal environment.

Substituting the above parameterization of p(wt) into equation

(2), we get ln ls as a function of the parameters that define the log

response function,

ln ls~a1

ðb

{?
({wtzb)a Q(wtjm,s)dwt

za2

ð?
b

(wt{b)a Q(wtjm,s)dwtzc

ð3Þ

(Section S2 in File S1), where Q(wtjm,s) now represents the pdf of

the normal distribution with mean m and standard deviation s. It is

straightforward to compute the partial derivatives of ln ls with

respect to m and s at m~0 and s~1 (Sections S3 and S4 in File

S1). These are the instantaneous rates of change of ln ls per unit

change in m and s respectively, where the unit of change in m and

s is one standard deviation of wt. The signs of these sensitivities

indicate whether a small increase in mean or standard deviation of

the environment increases or decreases ln ls. Following the

rationale of [37], the relative magnitudes of these sensitivities

provide an estimate of whether small changes in environmental

mean or standard deviation have a bigger influence on ln ls.

Analysis of climate data. To analyze changes in environ-

mental variables, we downloaded Version 2 of the United States

Historical Climatology Network database (USHCN [50,51]) and

extracted annual time series of mean summer and winter

temperatures, minimum winter temperatures, maximum summer

temperatures, and total spring precipitation for locations in the

conterminous United States (Section S5 in File S1). Annual time

series were used because our model is more consistent with

annually measured populations and environmental variables. We

chose weather variables that are likely to be biologically

meaningful to populations living in temperate latitudes. The

USHCN data were filtered to include only time series that covered

the entire 1911–2010 period. Each time series was then split into

two periods (1911–1945 and 1976–2010), each of 35 years length.

We calculated the mean and standard deviation of the climate

variables listed above, for the two periods separately. Prior to

calculating the standard deviation, each time period was

detrended to remove quadratic and linear trends that could

otherwise inflate the amount of variability measured. Because

detrending can also remove low-frequency variability, we repeated

analyses with linear detrending, and again with no detrending. To

approximate normality, square-root precipitation data were used.

Although prior climatological analyses have examined changes

in the means and standard deviations of climate variables (e.g.,

[1,4,10–17]) these studies have not sought explicitly to compare

the relative magnitudes of changes in means and standard

deviations for multiple biologically important variables, using the

same data for both statistics to ensure comparability. A direct

comparison is key for our research purposes. Hansen et al. [17]

computed means and standard deviations using the same data set,

but examined only season-average temperature variables, and

used data which represent spatial averages computed over 250 by

Figure 1. Example log and linear response functions. In the
model considered, the response function is the relationship lt~f (wt)
between the net growth rate, lt , at time t, and the environment, wt , at
time t. In this figure, we indicate the flexibility of our parameterization
of f (see main text for details). A log response function p(wt) (A) and
corresponding linear-scale response function f (wt) (B) for a~2,
a1~a2~{0:05, b~3, and c~ ln 2. Region (i) represents a suboptimal
environment and region (ii) represents an optimal environment. An
example is also shown for an asymmetric response function with
fs~1=3 (a1~{0:05, a2~{0:15) on the log (C) and linear (D) scales, for
b~0, c~ ln 2, and a~2. Standard normal distributions (B, D) represent
the population’s local environment wt. In B, the population is in a
suboptimal environment, for instance at the periphery of the species’
range. In D the population is close to its ideal environment. Response
functions on the linear (E) and log (F) scales for different values of a,
ranging from a~1:5 for the light grey, to a~3 for the black line, for
fs~1, and a1~a2~{0:5. The intermediate values of a are 2 and 2.5.
doi:10.1371/journal.pone.0063974.g001
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250 km or 1200 by 1200 km grid squares. Such low spatial

resolution is probably less relevant to many populations than the

higher resolution used here.

Results

Theoretically Predicted Sensitivities
We now provide answers to questions (1) and (2) posed in the

Introduction by considering a simple special case and then by

showing the general case produces substantially the same results.

The special case is a~2 and a1~a2~a (so fs~1). For this special

case, the log response function is symmetric (Figure 1A and B) and

ln ls and sensitivities can be calculated entirely analytically:

ln ls~a (b2z1)zc; ð4Þ

L ln ls

Lm
jm~0
s~1

~{2ab; ð5Þ

L ln ls

Ls
jm~0
s~1

~2a; ð6Þ

(Section S6 in File S1). The signs of the sensitivities of ln ls to

changes in m and s provide an answer to the first question posed in

the Introduction: given a change in the mean or standard

deviation of the environment, does the growth rate increase or

decrease? The sign of the sensitivity of ln ls to changes in m is the

same as the sign of b, since av0; hence any change in the mean

environment toward a population’s optimum will increase ln ls, as

expected. The sensitivity to changes in s is always negative; hence

any increase in s is detrimental to the population in this special

case; this is consistent with prior work relating the effects of

increased environmental variation to log-concavity of the response

function [34–37] because for a~2, the response function is log-

concave. Analysis of the absolute ratio of the two sensitivities,

which is jbj, answers our second question: if mean and standard

deviation are perturbed by the same amount, which causes the

greater impact on the growth rate? For jbjv1, changes in s have a

greater effect, whereas for jbjw1, changes in mean environment

are more important. For fixed values of a and c, larger ln ls

happens only through smaller jbj (recall av0), which means the

absolute ratio of the two sensitivities is smaller; so larger long-term

growth rates mean greater relative sensitivity of the growth rate to

changes in environmental variability.

Log response functions may often be asymmetric and a may

differ from 2, so how contingent are the above results on the

assumptions made by the special case? We numerically analyzed

the sensitivities of ln ls for a range of values of fs and for a~1=2,1
and 2 and results remain largely the same in substance. Figure 2A–

C shows that L ln ls=Lm, plotted against b, changes sign from

negative to positive at a value of b close to 0, with some small

variation in the value of b at which the sign changes, depending on

the values of fs and a. Figure 2D–F illustrates that for a§1,

L ln ls=Ls is always negative. For av1, this sensitivity can be

positive for larger values of jbj. Since av1 means parts of the log-

response function, p, are convex, and earlier work shows that

convexity of the log-response function is associated with the

possibility that increased environmental variance can benefit

populations [34–37], the result from our model that L ln ls=Ls can

be positive for av1 is consistent with earlier work. Figure 3

compares the absolute magnitudes of the sensitivities. For b close

to 0, the sensitivity of ln ls to changes in s is generally comparable

or larger in magnitude than the sensitivity to changes in m. The

specific interval of b in which the sensitivity of ln ls to changes in s
is larger varies depending on fs and a. But regardless of this

variation the conclusion holds that for small jbj (jbj *; 2 for the

model parameters we examined), changes in environmental

standard deviation are expected to be comparably or more

important for long-term stochastic growth rate than changes of the

same magnitude in the mean environment. This conclusion holds

regardless of the concavity of p, controlled by a. This suggests that

the overwhelming emphasis of past research on the impacts on

populations of changes in means of environmental states is

misplaced and more attention should be paid to impacts of

changes in environmental variability. Generality of the results to

different distributions of wt and different parameterizations of p is

explored in Section S7 in File S1. Figure 3D–F shows that for

given c and a, larger values of ln ls are within the range for which

jL ln ls=LsjwjL ln ls=Lmj, i.e., across a species environmental

range, populations with comparatively higher growth rates are

likely to be more affected by changes in variability of the

environment than changes in mean.

Figure 2. Comparison of signs of sensitivities. The sensitivities
L ln ls=Lm (A–C) and L ln ls=Ls (D–F) are displayed; they were calculated
numerically (Sections S3 and S4 in File S1). For bw0, the slope of the
response function at the mean value of the local environment is
positive (e.g., Figure 1B), and for bv0, the slope is negative; therefore
the sensitivity to changes in m is largely of the same sign as that of the
slope of the response function, as expected (A–C). The message here is
that shifts of the mean environment toward the location of the peak of
the response function usually cause an increase in ln ls, as expected,
except possibly for some mean environments close to the peak. For
a§1, sensitivity to changes in s is always negative (E–F); for av1,
sensitivity to changes in s can be positive (D). The message here
parallels prior work: for a log-concave response function (a§1),
increased environmental variance always reduces the long-term
stochastic growth rate; but for av1, the reverse can be true (see main
text). Sensitivities did not depend on c. Signs of all sensitivities are
identical to those displayed here for other values of a2 because
changing a2 only rescales the vertical axes of all panels (Sections S3 and
S4 in File S1). Here, a2~{1, and a~1=2 (A, D), a~1 (B, E), or a~2 (C, F).
doi:10.1371/journal.pone.0063974.g002
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Results of Climate Data Analysis
The third question posed in the Introduction was: what are the

relative magnitudes of observed changes in mean and standard

deviation of climate variables? Results are shown for mean winter

temperature and total spring precipitation in Figure 4, and for

mean summer temperature, minimum winter temperature, and

maximum summer temperature in Figure S1 in Section S8 in File

S1. The magnitudes of changes in the means of all variables,

except total spring precipitation, were generally slightly but not

markedly larger than those of standard deviations. For total spring

precipitation, changes in mean and standard deviation were of

almost the same magnitude. Results are also spatially heteroge-

neous. The only variable for which changes in standard deviation

are of the same sign throughout most of the United States is

minimum winter temperature (Figure S1E in Section S8 in File

S1), where variability decreased from 1911–1945 to 1976–2010.

For all other variables, the sign and magnitude of changes depend

on location. Changes in mean were generally slightly but not

markedly bigger in magnitude than changes in standard deviation

at local scales too (Figure 4E–F), although there are many

locations and weather variables where the reverse is true (e.g., for

summer mean temperature and precipitation). Although changes

in means were more often larger than changes in standard

deviation, both types of changes were similar in size, so results

comparing relative sensitivities of long-term stochastic growth rate

can also be interpreted as approximately reflecting the relative

importance of the two types of environmental change for

population dynamics. Results were very similar when linear

detrending or no detrending were used in place of quadratic

detrending.

Discussion

We showed for a simple model how the effects on population

dynamics of changes in the mean and variability of an

environmental variable compare. Our results indicate that for

small jbj, changes in the standard deviation of the environment are

at least comparably important to changes in the mean environ-

ment. In other words, whenever the distribution of values of the

local environment is close to the ideal environment, changes in

environmental variability will be comparably or more important

than changes in environmental mean for a population’s growth

rate. Recall that b controls the extent to which the distribution of

possible local environments deviates from the value of the

environmental variable at which the response function peaks.

We discuss the contrasting implications of these results for two

different kinds of populations: those living close to or far from their

ideal environment.

Populations living close to their ideal environment, such as those

in the centre of the species environmental range, are interpreted in

our model as those having small jbj. Populations of pests and insect

disease vectors that live close to their ideal environment are of

special interest because growth rates are highest and associated

economic and health problems are worst in those locations

reumanetal06, reumanetal08a, chavesetal11. Populations of ex-

ploited species, or of species that provide a major food supply for

Figure 3. Comparison of the magnitudes of sensitivities. The relative sizes of jL ln ls=Lmj and jL ln ls=Lsj indicate which has a stronger effect
on the long-term stochastic growth rate, changes in the mean of the environment (if jL ln ls=LmjwjL ln ls=Lsj) or changes in the standard deviation
of the environment (if jL ln ls=LmjvjL ln ls=Lsj); relative sizes of these quantities are depicted here. (A–C) Absolute values of the sensitivities of
Figure 2; solid lines are jL ln ls=Lmj (taking L ln ls=Lm from Figure 2A–C) and dotted lines are jL ln ls=Lsj (taking L ln ls=Ls from Figure 2D–F). Dots
indicate points at which solid and dotted lines of the same color cross, and hence where changes in mean environment become more important than
changes in the standard deviation of the environment, or vice versa. Dots line up with the endpoints of the ranges below each plot and indicate the b
for which jL ln ls=LsjwjL ln ls=Lmj (b *; 2). The message here is that when the mean environment is close to the peak of the response function,
changes in the standard deviation of the environment have a bigger effect on the long-term stochastic growth rate than changes in the mean of the
environment. (D–F) The difference ln ls{c, which shows how ln ls depends on b. Dots are placed to line up with those in panels A–C, to show that b
for which jL ln ls=LsjwjL ln ls=Lmj correspond to b for which ln ls is large. Vertical lines indicate maxima. The maxima occur at values of b for which
the sensitivity to changes in s is greater than the sensitivity to changes in m. Here a2~{1, and a~1=2 (A, D), a~1 (B, E), or a~2 (C, F). Conclusions
are identical to those displayed here for other values of a2 because changing a2 only rescales the vertical axes of all panels (Sections S3 and S4 in File
S1).
doi:10.1371/journal.pone.0063974.g003
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exploited species (e.g., copepods), are also of greatest interest, for

economic reasons, in locations close to the species’ ideal

environments. For these populations, our results show that any

increase in variability of the environment is detrimental, and that

furthermore, changes in variability are more important than

changes in mean. Given that the variability of temperature has

decreased in many locations of the United States over the past 100
years, our model suggests that pests and disease vectors, but also

potentially some exploited species, may stand to benefit from

ongoing climate change in areas where the environment is already

ideal for the species and they are already most prevalent.

Climate change has led to shifts and contractions in species’

range sizes [2,54] compounded by habitat loss and fragmentation

[55]. Populations struggling to adapt to rapid climate changes will

often be those living on the trailing edge of changing species

ranges, where environmental conditions are suboptimal. Such

populations may be of conservation interest; they are interpreted

in our model as having large jbj. For these populations,

environmental variability can be beneficial if the log response

function is described by av1, i.e., if it is convex. Our results also

show that for these populations, changes in mean environmental

conditions have a greater effect than changes in variability.

Comparisons with other Studies
Prior studies, mentioned in the Introduction, have compared

the impacts of changes in mean and variability of vital rates on

ln ls, generally finding that populations are more sensitive to

changes in vital rate means than they are to changes in vital rate

standard deviations. Our study complements these earlier studies

by using a response function to compare the impact of changes in

mean and variability of the environment on ln ls. Our finding that

changes in environmental variability can be more important than

changes in environmental mean stands in counterpoint to the

earlier results, and emphasizes the non-equivalence of studying the

effects of changes in environmental and vital rate distributions.

Morris et al. morrisetal08 concluded that although all species they

examined were more sensitive to changes in vital rate means than

variances, the greater importance of changes in means was

reduced for shorter-lived, faster growing species. Our result that

faster-growing populations, i.e., those close to their ideal environ-

ment, are more susceptible to changes in environmental variance

appears to parallel the result of Morris et al., but for environments

instead of vital rates.

Only two empirical studies currently exist that can be directly

compared to our theoretical predictions, and they provide support

for our conclusions, though with caveats. Van de Pol et al. [37] and

Jonzén et al. [41] used structured population models, parameter-

ized for a population of oystercatchers [37] and a population of

red kangaroos [41]. The oystercatcher population has been

declining at a rate of *5% per year vandepoletal10; it therefore

may be living in less than ideal conditions. Van de Pol et al.

conclude, as our model would suggest, that changes in mean

environmental conditions will have a greater effect on this

population than do changes in variability. The red kangaroo

population of [41] probably lives in a closer-to-ideal environment

for the species, as it has a substantially positive ln ls: Jonzén et al.

estimate that growth rate will be greater than 1 even with annual

harvesting of up to 20%. Consistent with our model, the sensitivity

of ln ls to changes in mean rainfall (after converting the elasticities

provided in [41] to sensitivities) is only *2:4 times greater in

magnitude than that to changes in the standard deviation of

rainfall: sensitivity to changes in standard deviation is important

for the kangaroo population. These comparisons are subject to the

caveats that: 1) other hypotheses besides a sub-optimal environ-

ment have been proposed as possible causes of the decline of the

oystercatcher population [56]; 2) only these two studies are

currently available for comparison. More insight can be gained in

future work by replicating the efforts of [37] and [41] for other

Figure 4. Relative changes in mean and standard deviation of climate variables in the United States. Both the mean and standard
deviation of biologically important climate variables are changing; this figure indicates the relative magnitudes of these changes. If m1 and sd1 are the
mean and standard deviation of winter temperature in a location for the period 1911–1945, and m2 and sd2 are the mean and standard deviation of
winter temperature in the same location for the period 1976–2010, then: panel A shows m2{m1 , the degree of change in environmental mean; panel
C shows sd2{sd1 , the degree of change in environmental standard deviation; and panel E shows jm2{m1j{jsd2{sd1j, which indicates the relative
magnitudes of these changes and is positive when changes in mean exceed changes in standard deviation and negative otherwise. White
corresponds to no change on A–D and to equal changes in mean and standard deviation on E–F. Environmental variables depicted are winter mean
temperature (A, C, E) and total spring precipitation (B, D, F). Mean and standard deviation of total spring precipitation (B, D, F) use the square root of
the precipitation values (Methods). Other weather variables are shown in Figure S1 in Section S8 in File S1. The main message here is that changes in
the means of most environmental variables are slightly but not markedly bigger than changes in their standard deviations.
doi:10.1371/journal.pone.0063974.g004
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populations. This is a non-trivial effort. Many years worth of data

are necessary for each population (e.g., 25 years of data were used

in [37]). Each monitored population would correspond to a single

point in parameter space of a general theoretical analysis. A

principle value of our modeling is in guiding future empirical

work. Our findings help inform what populations may be of

interest to compare. We suggest the comparison of populations

thought to be living in close-to-ideal conditions with those far from

ideal conditions. For example, one could replicate the study of van

de Pol et al. with other oystercatcher populations across a gradient

of environmental conditions, including expanding populations.

The distinction between log-concave and log-convex response

functions has been emphasized in prior work as important for

whether increased environmental variance will increase or decrease

population long-term stochastic growth rate [34–37]; for log-

concave (respectively, log-convex) response functions, it is easy to

see that geometric-mean vital rate values are lower (respectively,

higher) under increased environmental variance. However, if the

mean local environment maximizes or nearly maximizes a response

function, then the response function is effectively log-concave for

relevant environments: increased environmental variance can only

decrease geometric-mean vital rate values, because increased

variance includes more environments that are farther from the

environment that optimizes the vital rate. Thus, distance of the

mean local environment from the population ideal environment

(with distance measured in units of the standard deviation of the

local environment) supersedes the question of log-concavity. The

log-concavity distinction still makes a difference far from the ideal

environment (compare figures 2D–F).

Biological Realism and Possible Future Work
Our model is simple, but main conclusions are intuitively

sensible and seem likely to generalize to other models. Because the

relationship between log annual population growth rate and

environment peaks in our model at the optimum environment,

geometric-mean growth rate will not be strongly sensitive to

changes in environmental mean when environmental mean is

close to optimal. For instance, when aw1, the slope of the log-

response function close to the ideal environment is close to zero, so

small changes in mean environment from the optimum have little

effect on geometric-mean annual growth rate. On the other hand,

because rates decline with departures from the optimal environ-

ment in either direction of the optimum, changes in environmental

variance may strongly affect geometric-mean annual growth when

the mean environment is optimal, because larger environmental

variances include more values of the environment that are far from

the optimum. This simple conceptual reasoning is made precise by

our modeling results. Similar reasoning holds for any model for

which all vital rates can be written approximately as functions of a

single environmental variable. For any fixed value of environ-

mental variance, ln ls must have a maximum at some value of the

environmental mean. Sensitivity of ln ls to changes in the mean

environment must approach zero here, as long as ln ls is a smooth

function of environmental mean. For fixed environmental

variance, the ideal mean environment is the one that maximizes

ln ls. As long as the local environment is close to this ideal

environment, one therefore expects sensitivity of ln ls to changes

in the mean environment to be very small, and hence it is likely

that sensitivity will be greater to changes in the standard deviation

of the environment. This reasoning applies to stage structured

models, and to density-dependent models if ln ls is replaced with

some other measure of population success (e.g., average popula-

tion size). The potential importance of these observations for real

populations seems largely overlooked by prior work, which

generally compares the importance of changes in the means and

variances of vital rates. For populations strongly affected by two or

more environmental variables, potentially acting on different vital

rates, there may be no single ideal environment. Instead, tradeoffs

may occur, whereby various mean values for one environmental

variable can be paired with different mean values of the other

variable to maximize ln ls. This may be an important topic for

future study.

Many species show a ’’storage effect,’’ a well-studied phenom-

enon by which some life stages are less susceptible to adverse

environments than other life stages; storage effects are a classic

mechanism of species coexistence [57–59]. Our model cannot

incorporate storage effects because it is unstructured, so investi-

gating how storage effects impact the main conclusions of this

study may be another important topic for future research. Species

exhibiting storage effects include long-lived species with resistant

adult stages (e.g., trees), as well as species with spores or seed banks

(e.g., fungi and annual grasses; [60]). Our model corresponds

instead to another large category of species with no storage stage,

e.g., insects and other organisms that overwinter as eggs which are

not viable beyond the following spring. Although eggs may be

insensitive to the winter environment, this is not a storage stage as

long as eggs cannot remain viable beyond spring. The insensitivity

of storage phases to bad environments may make it appear as

though species with storage phases must be more sensitive to

changes in environmental means than to changes in environmen-

tal variation. However, storage phases are only insensitive to

environmental variation in the sense that they can tolerate bad

conditions. From another perspective, storage phases are very

sensitive to environmental variation because they respond strongly

to good environments. For instance, spores or seeds in a seed bank

emerge when conditions are suitable. Also, adult stages may

reproduce prolifically under good conditions. This alternative

form of sensitivity to the environment may translate into sensitivity

of population long-term stochastic growth rates to changes in

environmental variability. Both modified standard deviation of

environment and changes in the mean of the environment can

decrease the fraction of years for which environmental conditions

are acceptable for seeds or other storage phases to become active.

If all vital rates are affected primarily by the same environmental

variable, then the logic of the prior paragraph still applies, even if

there are storage effects, suggesting the main conclusions of this

study may still hold in many cases even with storage effects.

Stage structure must be introduced into the model to analyze

storage effects or to illuminate possible consequences of multiple

environmental variables acting on different vital rates. For a

general stage-structured model, n vital rates or stochastic matrix

elements would be linked to n potentially different environmental

variables wi,t (i~1, . . . ,n) by different response functions, each

with its own ai, a1,i, a2,i, bi, and ci, resulting in n sensitivities of

ln ls to changes in mi and si. The wi may also be correlated and

this correlation structure may be affected in unknown ways by

climate change. The mathematical complexity here may be

difficult to manage in the general case. Not all parameter

combinations are equally likely, though. For instance, slow-

growing populations such as oystercatchers have high adult

survival rates probably described by a concave function, and have

low fecundity rates likely described by a convex function [37]. A

similar pattern is observed in many organisms (e.g., fish [61];

perennial and annual plants [62,63]). Whether these biological

regularities can be formalized and used to simplify the mathemat-

ics remains to be seen. If a general model proves too complicated

to immediately provide insight, a sensible next step may be a 262

matrix model of a population with juveniles and adults (non-
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semelparous, as semelparous populations are covered by our

model; Section S9 in File S1). Such a model would make it possible

to study the differing impacts of climate change on fecundity and

survival rates, as well as effects that may only emerge when some

stage structure is present. For an age or stage structured model, the

exact formulation of ln ls used in this study would no longer be

valid, but Tuljapurkar’s [45,48] approximation could be used. For

the unstructured case, the approximation yields qualitatively

similar results to the ones presented here (results not shown). An

alternative approach would be possible if sufficiently many case

studies were available for which population models were

empirically established, with vital rates explicitly linked to

environmental variables. Given such a model, it is straightforward

to evaluate the relative sensitivities of ln ls to changes in the mean

and standard deviation of the environmental variable, as done in

references [37] and [41], but a substantial number of case studies

would be needed to draw general conclusions.

The long-term stochastic growth rate for a stage-structured

model is also affected by autocorrelation in the environment

[42,45,48]. The autocorrelation of environmental variables is also

changing due to climate change [64]. It would be possible, using a

stage-structured model, to compare the relative effects of changes

in mean, variance, and autocorrelation of the environment on

population dynamics (as done for a single oystercatcher population

in [65]). Finally, the sensitivities of ln ls are linear approximations

of the functions that relate ln ls to m and s, and therefore assume

small changes in the environment. More substantial environmental

changes may entail nonlinearities for which a linear approxima-

tion is no longer sufficient. An examination of such nonlinear

effects may be analytically intractable, though simulations and

numeric work may provide insights.

We considered annual environmental variables because most

demographic data and models of the type we consider have an

annual time step. But annual environmental variables, such as

spring mean temperature, are averages of shorter-time-scale events

(e.g., spring mean temperature may be calculated as the mean of

daily temperatures during spring). We do not here consider

standard deviation of, for instance, daily temperatures measured in

the spring, nor do we consider the effects of changes in such a

standard deviation. Other studies do consider these shorter time-

scales [66] instead of considering inter-annual standard deviations,

as we do. A comparison of the importance of changes in inter- and

intra-annual standard deviation may be an interesting topic of

future research.

Common sense and appropriate empirical evidence support the

assumption of a peaked, skewed response function, but we admit

the possibility that other response functions could occur in some

circumstances; our analytic approach could easily be adapted to

essentially any response function. Focal-population studies, such as

[67], in which vital rates of a single population are related to values

of an environmental variable experienced by that population, need

not necessarily show a peak in the response function, even when

one exists. A population would need to be living close to its ideal

environment for the peak in the response function to be apparent

in locally gathered data, and even in that case, unless the local

environmental variability were large, the response function may

appear to be flat to within the accuracy of measurement of vital

rates or annual growth rates. Local environmental variables do not

usually span much of the range of environmental values the species

could potentially experience across its geographic range, hence

peaks will often not be visible in such studies. This does not,

however, preclude the presence of a peak in the whole response

function, but instead indicates that many studies look at narrow

environmental ranges [29]. Different kinds of studies in which

response functions are measured across a wider range of values of

the environmental variable are more appropriate for assessing the

shape of a response function. Empirical evidence of peaked

response functions in both ectotherms and endotherms can be

found in [27–29,31,32], and theoretical support is provided by

[30] (some results of these studies are summarized in Section S7).

Apparently saturating response functions are usually more likely to

be unimodal response functions, with a peak that is remote from

the range measured in a locally focussed study. Threshold

response functions may also be possible, for instance if populations

respond differently below and above the freezing point of water.

However, these seem more likely to be important at shorter time-

scales (e.g., daily or hourly) than the annual time-scales considered

here. The annualized environmental variables we use are more

likely to be statistically related to annually measured vital rates,

and will not usually have discontinuous thresholds. Nevertheless,

our analytic approach can easily be applied to any alternative

response function if a particular shape not encompassed by the

parameterization we have used is found to common enough to

warrant study (Section S7).

Supporting Information

File S1 Supporting information.

(PDF)
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