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INTRODUCTION.

The function { (x) as a solution of the difference

equation
' y(x+l) = x y(x) (1)

has been investigated at length by Batchelder' and others.
The second principal solution, f:(x), has not been so.

- completely investigated, although Batchelder does derive
expressions for it in terms of the gamma function. Our
object here is to find an expression for | (x) in the form
of an infinite product directly from the difference equation
and to sfudy various related functions.

To do this we will make use of various results
obtained by Batchelder. First, we will use the theorem on
the solution of the general linear homogeneous equation of
the first order stated by Batchelder®as follows:

"The linear homogeneous difference equatlon

y(x#1) - rlx)y(x) = - (2)

where the rational function r(x) may be written

r(x) = x%(cy + %;.+ i?-+ - ==

where p is an integer and c, # O, iS'satisfied'formally by

- - - - - - - - - = - - - - - - - - - -

1. Batchelder, Paul M. "An Introductlon to ILinear Difference
- Equations." 1927,
2+ Batchelder. Page 40,
' le
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the series

==k
s(x) = =T X THE x© (8 + S+ = = = )3 (3)

there/exist also two analytic solutions

= Lim 1 1
h(x) = _léfqr(ﬂﬂxil) veeres oEET T(x+n+l), (4)
g(x) = fl‘inj;r(x-l)r(x-z) ***** r(x-n) T(x-n), (59

where t(x) is the sum of the first k terms of s(x).

The solution n{x) is analytic throughout the plane
except for poles at the zeros of r(x) and points congruent
on the left; it vanishes at the poles of r(x) and points
congruent on the left; it is represented asymptotically by
S(x) in the sector -w < arg x <. The solution g(x) is

analytic throughout the plane except for poles at points
| congruent on the right to the poles of r(x); it vanishes
‘at points congruent on the right to the zeros of r(x); it
is represented asymptoticaily by S(x)'in the sector

0 <arg x £ 2T, The solutions h(x) and g(x) are called the
first principal solution and the second principal solution
respectively. They are uniquely determined apart from a
constaht factor, by their asymptotic properties."

We will also frequéntly use the following relations
between [ (x) and [ (x). 4 ;

F(x) = (1 - M%) 1 (x) (6)

F(x) = =Fa=) | “ (7)



THE FUNCTION [ (x).

Solution of the Difference Equatione.

Since the first particular solution, [ (x) of
equation (1) comes from h(x) in the general theorem, the

second principal solution, [ (x) must come from g(x). We

have r(x)=x, p=ly, €y =1y ©€=C,= - - - - =0, and
S(x) = 2FF e® (5o + B4 - - - - ) (8)

Using the first term of S(x) as T(x), as Batchelder has
ghown we may do, we have
T(x-n) = (x-n)x‘n'% e™Xn g .,

Therefore we have

g(x) = F(X) = ﬁii (x=1)(x=2) *o°° (x-n)(x-n)x'n-‘%e-x+nso.

To evaluate this‘ limit, we:divide 'by r“(o)'.

T (o) = Hm (-1)(- 2) veee (en)(-n)™P"F ¢ -

n"'“

and ;{%% Lim (x-l)(x-z) eess (x-n)(x-n)X"B-% o-xtn -

(1) (<2) oo (-n)(-n)™"% &% &,

or ‘E{E} Lim (I-X)(2-x) °** (n-x) (x-,g>x (x_n)-n-% Ko-x

. nsee 3 2 Xy n n -n

3.



4.
~ A - . x & - -n-
We can evsluate the terms Lill (?3'-9-) apg Lim (22.'_1’}.) :
3 ) n:."m n n:_-oa -n

as followss:

Lim (x-n)~B-% _ Lim 1 _ = X
n=< -n) T nsEe (l_x)n-l-% T emX e (9)
n

e (" -

- n=e n

e gg; _ Lim (1-x)(R-x) **-* (n-;) n* (-1)%

To determine the constant [ (0) we make use of equation (7):

= _ -2migiX '
‘ r(X) = r(l'X) (7)
Since [ (1)=1, we have
T (0) = -2mi.

‘ ‘ j e X
Therefore [(x) = 2Wi(-1)x+l lléti (1-x)(2-x1£)l— (n-x)n™. (10)

By the general theoreni, [ (x) is analytic throughout
the plane, having first order zeros at 1, 2, 3, *°°y n, ***,
It has no poles in the finite plane, but has an essentially
singular point at infinity. | |

The infinite productlfor T(x) may also be written

in the form

T (x) = ami(-1)*1 ﬁ (acx) (ar2)™

n



e = O3 _A x+1 _Xx 1\¥
'A second infinite product for | (x) analogous to

the second form for [ (x) may be obtained as follows:

F(x) = 2mil- l)x-!-l Lnn (1-x)12-xl£ e+ (n-x)n* (10)

[::(X) 2171( 1)x+1 le ex log m n-;x .
[2EN]

Using the definitidén of 7 given by

«y=L1m

=R b
~—
(¢}

(12)

(1 + 4%+ -~--+;l_-1ogn)
n-1
this equation may be written
. . - x

n=|



A Second Method of Solution.

fhe functionkf=(x) can also be found without making
use of the asymptotic series s(x), or T(x). We have seen
that g(x) has-zeros at 1,2, ¢« Therefore we proceed
to set up a product having these zero points and multiply
it bj exponentials (which have no zeros) in order to make
it converge and satisfy the difference equation

y(x+1) - x y(x). | (1)

We can do this, since by the factor theorem of
Weierstrasss a function is determined by its zero points
and poles, except for an exponential (or constant)
multiplier. |

- The product

h=t ) )
converges and has the required zero points. To make it

satisfy the difference equation, we multiply it by an

G(x)

~exponential e and determine the form of G(x)e We

then have

F(x) = gG(x) ﬁ (1 - %)e%cr

h=1

l. WVeierstrassy, Ke. "Ueber die Theorie. der analytischen
Facultaten." Journ. fur Math. Vol.5l. PP.1-60., 1856,

6.

-~



where G(x) is to be chosen so0 that

Fx+1) = x [ (x)e

Then G(x+1) W _ x+1 +1 ;Ax eG(X) m} (1

Dividing by the seqond side, and taking the limit of m

terms:
x+1
n-x-1 n
eG(x+1) Lim L. n © =1
G(X) m=co o n=x X
x e W n en

eG(x+l)-G(x)= I’iﬂ H fe -l

Nnex-1

n=1

- Lim x(1-x)(2-x) ***(m~x) . i%
ms e 1“5:)(1‘?..) eese (m"l"X)

- Lim ¢ log (m—x) - El
e o=

"

_ Lim log (m+1) -2 1 10gmx

m—-aa nl e m+l
.. -7 Lim m=x _ -7
‘:” m=e° m+l €

eG(x+l)-G(x) : ello;gl (=1) =7

We have then to solve the difference equation

G(x—!-l) - G(x) = log (~1) -"r



The .general solution is
G(x) =b [log (=1) -’7] +c

6lx) = x [10g (1) =] + o

ana  o%(®) o xlog (-1) ~vx e _ ()% -xvee

oo

Hence - T(z) = (<1)F 7= ecirﬂT (1 - %) e

n=1 -

BIX

To determine the constant e€, we have, setting x = 0,
[(0) = &°
But we have shown that

(o) =

I

1
Do
3
e

Therefore x
M(x) = eni(-1)¥*1 ¢=7x l } (1-Z) (12)
which is the second form as obtained above.

If the function is found by this method, the
other product form can easily be found in the same way as

we change from one to the other in the gamma function.



Relation of [ (x) and Sin x.

As for the gemme function, we should expect to find
a relation between I (x) and the trigonometric functions.
The funcﬁion sin x has zeros at all positive and negative
integers and at zero. T (x) has zeros at all positive
integers. [(1-x) has zeros at zero and the negative -

integers. Consequently we are led to form the product
F(x) T (1-x)

and find its relation to sin x.
Ve have, using the first form of the infinite

product ‘
T =z ﬂ )+ &) (11)

ca’

f:(l‘;x) = =X f:('X) = -# 2“:'(‘-.1)-}&1[:{(1 > %)(1 N %)-x

merefore  [(x) [(1-x) = 4mx | [ (1 - %)
h=t
Bat we have that  sin x = xﬂ( - nf;)

. sz - 5)



Hence Mx)T(1-x) = 47 sin wx (13)
From-this last relation we obtain

F(¥)T (%) = 47 sin 27 = 4T,

This is the same value that is obtained from the relation

Fla)= (-5 (6)
F(3) = 20 (3) = 2/,



Another Relation Between [ (x) and T (x).

' From the relation between [ (x) and sin x as
derived above, . we are able to obtain another relation

between [ (x) and [ (x).

We have ;
(x) T(1-x) = 4% sin mx. ‘ (13)
‘ ] 'eix - e-ix _ ezix‘; 1
Also sin x = " = ix
21 2ie
Fx) F(1-x) = anl=e X
Hence x) -x) = e
‘ -2ie"iX
But r(X) = Wr(x) (6)

r(x) |=(,l-JI) = ‘—gfr—m |
-2ie

. =Tix
o Mx) = 231

M (1-x) (14)

)
[
°

|



The Multiplication Theorem for [ (x).

. From "Gauss's multiplication theorem" for [ (x)

(x) = ﬂr (x + 3) (15)

and the relation between [ (x) andl(x) given by eq. (7),
we can obtain the multiplication theorem for [ (x).
Substituting (nx) for x in eq. (7)y we obtain

T P

f(nx) = (1o (16)'

Substituting (-x) for x in eq. (15), we also obtain

If now we set (-=nx) = z, we have from the difference eguation

for (x) |
[ (~nx) ér(z) = r:(az-fl) - r_('i;nx)
Hence RO - P Y (17)

(2m)™= L.

12,



|

We have previously obtained the relation

_ omie~TiX
M=) = TF =) (24)
Substituting (-x * £) for x,
| X
- Ti(x = =/
¥ -z
n F+x - %)

The product in eq. {17) then becomes

Lahd| =Tl i-l-(-

ﬁl‘-x+~—E‘ar1 }H £ 2 .k (18)

=0 F\l+x~a)

Equation (17) now becomes

-rri%fr

2rie =)

e F(l-l-x-.lé.)

M(1-nx) = -x nmﬂ% [ i Wix]n

Using this expression for M (1-nx), eq. (16) becomes

. A
-nx+
-xn nx+%

T (nx) _ -gmie o)™ 1 ﬁewi'}{r Tl +x-X)
Ygflerx]n ’ n

- -\ —
nnx % 1 i =

[ (nx) =

]
o
=]
—
o
<
M
'
:ili

k<o



' stnce e+ = - Elf)'; [Tra+k) .

hd-‘ ‘k : “ k : ]
ﬂeﬂln = - ﬂeﬂin = -ek x?l mi

we obtain as a final form for [ (nx)

_ : fx=3 k(n+1) =
[ (mx) = B =1) 2 Tr'ir—‘lw(x+

(em)®  =x

Bix

(19)



Th ogarithmic Derivative of [(x).

. We now proceed to find an expression for the

logarithmic derivative of M(x). From the equation
- <o x
Flx) = eni(-17*1 7% | [ n=x T  2)
hsy
we obtain by taking the logarithm .of both sides

log M (x) = log 2mi + (x+1) log (-1) -7rx .,.i(_ + log

Differentiating, and denoting [ (x)/(x) by ¥ (x)
Flx) = T <20 (1) - e 2 (2o L)
k})(x) = log (-1) - 7 *Z(x-n 1)

For the multiple valued term _

log (1) = log'l + 1 am (-1) = i(2ns1)T
we may take mi, (n=0), since W(x) exists in the sector
0 < am x < 2W, The positive axis of reals is excluded

since P (x) has poles at the positive integers.
—, ) o) 1 1
P(x) = wi ~fV+;(k___ﬁ+ﬁ) (20)

S5e

Gt



P(x) Defined by its Difference Eguation.

From the equation
F(x+1) = x T (x)

we optain by logarithmic differentiation

3

Cwy) 1, T
G - 2+ 6
or Plx+1) = 2+ Plx)  (21)

Therefore (P(x) is a solution of the difference equation

#(x+1) - y(x) = (22)

i

L L

We now proceed to find a solution of this equation
and to détermine the additive constant (or periodic
function) so that the solution is idehtical with P(x).

| The expansionsto the right and to the left are

given by
| N R - I
ye(®) = - r-mT-mEc-- - -

We have then, the two symbolic solutions:

16.



ApAi
=

Tp(x) =

]
Ms
‘H

yl(x) _ Ry X=-n

It is evident that neither of these solutions converge,
go we attempt to find an additive constant which will make

the sums finite. It is evident that the series

2 o1y oL S 1-x
nNzo X+n n+l nh=¢o X+n n+1
2l - w1) () (577)

converges'for all values of x except x = 0, -1, -2, —m——

The function defined by the series

is then the solution of the difference equation, as may -be
readily seen by substitutione.

It is also evident that the series

A

converges except for x = 1, 2y 3y = = = , and satisfies
the difference equation.

We may then write

Pix)=c, - > (2. 1) (23)



B

) (24)

=0

and @(X)=C.+f(§%'5+

where C, and C, are constants or periodic functions,
determined so that these functions coincide with P(x).

From the relation
T T(x) = (1 - e2™X) M(x) (6)

weé obtain by logarithmic differentiation

Pix) = —20i__ + w(x) (25)

Also we have the following expression for the logarithmic

derivative of the gamma function:

| - < (1 1
y(x) = -7 -2 (55 - w)
Hence
Tlx) = S (1 1\, _2mi  _ 5 1 1)
;Ly(x) ¢ ,,Z_o(xi-n n+1)‘ 1-g-2TiX 7 mo(i?ﬁ“ﬁ?i‘
. , -
Therefore c, = 2 -—jénix - Y
l-c¢e
_ _ oTi ; =N 1 |
and P(x) = i —’)/—hz_o(——-xu'_n —-——n+1) (26)



To determine C, we have, by ege. (25)

9 ) + T2 + ¢ (x) (25)
and izn parti;qlar, P(E) = wi+ ().
from the equation
W’“) ST i (35 - 'ﬁ%’l’)= - i (x+n)(n;17
we obtain | g(E) = = - ZW
or L{/(i-)=‘-'y-v-[l+-21.‘—3+-3%-g+----}

From equation (24), we obtain

=2

W%).'-'Ca'*é;;ﬁ—_l—z—ﬂ
T - [Fegdgegge -]

Substituting:
1.1 1 -
C. -(T+§1—5+-3;‘5+--]=Ui-7-[1+§-%~5+--j
C, = mi =7

P(x) = Tri-’)/+§_(-‘1-+-]-‘-) (27)

S\X=n " n



We then have two expressions for {(x):

Pix) = 1 __g:;;.rrix =7 = Z(i%ﬁ-ﬁ%'i’) | (2;5)
P(x) = Wi =Y +§(§%ﬁ + l) (27)

n _ ,

' The second of'thesebequétions is the same form as found
from the logarithmic differentiation of the infinite
product for [ (x).

It is evident that the second foim for U (x) is
the more conveniente From the second formy, we see that
Y(x) has poles of the first order at x =1, 2, 3, = =~ =,
This also appears from the first form, since the term

2wi
] - e~2TWix

becomes infinite for these vaiués, while the series remains
finites The first form, however; becomes indeterminate
for x= 0y -1y, =2y = - -,_since both'the exponential term
aﬁd the series become infinife for these values but differ
in sign.

Since ¥ (x) is the logarithmic derivative of ¥ (x),
we know, from function theory, that it has first order poles
at the zeros of [ (x) with residue (+1) since the zeros of

T (x) are of the first order.

1. Townsend, E. J. "Functions of a Complex Variable." (1915)
DDe 296-297.



The Derivative of q)(x).

From the equation

= L/ 1 .1

Ple) e mi -7+ 5 (e s 2 (27)
we obtain by differentiating

L F(x) = - Z (x_n)

L) - 1 _

V) = - Z o . (28)

This series is real for real values of X. If we define,

with Batchelder, a function

Pmk) = e I TR T T (29)

we see by comparing (28) and (29) that
L y(x) = - ¢ (-xi1r2) (30)

By differentiating eq. (28), we likewise obtain

dxa(P(x) 2‘2% (=x4n)’
S—F(x) = -2 $ (-x,1,3)
dxi.’



2

The function {(x) is a solution of the difference

equation , ‘
y(x+1) - y(x) = % (22)

By differentiation, we obtain

- y(x+l) = y'(x) = - ;1-5 (31)

Then"%gip(x) is a solution of this equation, and in fact

may be defined by it except for a periodic multiplier.
From eq. (31), by expanding to the left, we obtain

S . 1
(x-1)*  (x-2)° (x-3)*

]

¥y (x)

o
= 1

Cne (x-n)®

Comparison with eqe. (28) shows that

y1(x) = L §(x).



Value of [(x) for Real Values of X.

~ The value of [ (x) for any particular x may be

obtained by evaluating one of the products

-

)

ari (-1 [] (1 - )@+ %)x (11)

n=z|

(=)

o

2ni('—1)x+1k e”7% ]_f(l - Z) R (1é)

l_:(X)

Hdwever, sincé we have tables for the gamma function, it

is easier &b calculate the value of [ (x) from one of the

relationss ,
Cx) = (1 - e2™%) M(x) (6)
F(x) = =2mi ™% ,
(x) (1) (7)

Having obtained the values for any unit interval, & (x)
for any other x may be found by means of the differgnce
equation:

T(x+1) = x T (x).
- For real values of x, we at once -see from (6) or

2

is imaginary. (In all of these expressions we take n as

(7) that i=6t2211) is real and from eq. (7) that T (-n)

25



4.

s positive integer.) We have already noted that r(+n)
is zero. These same results might also have been obtained
in another w.ay. We have defined T (0) as (-27i) and we
have found that T (%) = 217, hence, applying the difference
équation, we see that for negative integers ‘\'—'(x) is
imagiﬁary, and for other multiples of one half is real, In
fact from the two values

T(0) -2mi
T (%) = 27

and the difference equation we obtain, where n is a positive
integers:

T (+n) = 0.

";(_n) - 2Trni
(-1)" |n
(32)

‘|=(2n+1) = 2n-1 = 2n-3
\ 2 2 2 o [ ] ® L]

S 2ntl) _ -2 -2 . . . =2 =2
T 23 ) 2n+I Zn-1 ° 3010

For any other real value of x, other than an integer or an
integral multiple of one half, we see from (6) or (7) that

T (x) is complex.



Graph of [(x) for Real Values of X.

Since the value ofvi=(x),is in genéral complex
forbreal‘valués of xy if we wish to graph i=(x) for such
values, we mist use the entire complex plane. The
previous work has given'us the pbints on the axis of reals
and on the axis of imaginaries of such a graph. We may
find other'points from the rglation

Pl = (- ™) M) , (6)

Y

~ The graph of [(x) for real values of x from (-4)
to (+4), at intervals of one tenth, has been obtained
from this relation. The #alue of {(x) was taken from
Legendre's tables' and the exponential factor was calcula-

ted from the relation

eZWix = ¢os 2nx + 1 gin 2wx.

1 -e2™X = (1 - cos 2rx) + i sin 2ux.

l. Legendre's Tables: "Tracgts for Computers.” Edited by

‘ Karl Pearsons. 1921. Noe. IVe "Tables of the
Logarithms of the complete T =function to Twelve
figures." (Originally computed by A.M.Legendre. )

25,



Thé following'fundamental set was obtained

X o (x)e
0.0 : - 6028318 i
0.1  1.81675 - 5.60484 i
0.2 3.17218 = 4.36617 i
T0.3 - 3.91602 - 2.84510 i
0.4 4,01269 - 1.30381 i
0.5 3.54491
0.6 2.60391 + 0.87533 i
0.7  1.69918 + 1.23453 i
0.8 0.80446 +.1.10720 i
0.9 0420409 + 0.62813 i
1.0 0.00000

~ In the graph on the following page the point
marked O corresponds to the zero value of x. As x takes
on positive values from 0 to 1, | (x) takes on the values
along this curve‘to the right to the origin. As x travels
on to the right on the axis of reals, [ (x) tékes on the
values on the successive curves through the origin, becoming
zero for positive integral values of Xy and each curve being
larger than the previous one. For negative values, the
curve starts at the same point and goes off in the opposite

direction, forming a spiral-like curve about the origine.
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THE FUNCTION W(x).

Solution of the Difference Eguation.

We have seen that [ (x) is, in general, complex

for real values of xX. By studying the expression

T(x) = zvi(;l)x+l ﬁ (1 - %)(1 + %)x (10)

nsi

we see that the imaginary values are due to the factors
2wi and (-1)%, The function defined by the infinite
product is then real for real values of x.

We will now congsider the difference equation
¥(x+l) = -x y(x) (33)
and show that the infinite product

864"

n=)
is a solution of this equation.
From the general theorem the series which satisfies

equation @3) is
s(x) = =% (-1)% e™* x% (54 + 4= (34)

28,



Taking T(x) as the first term of S(x) we have

]

- i . '
T(x+n) = (x+n )X 07T ¢7X"R (_;)Ftn

So
T(x<n) = (x-n)X0~F XD (L )FR

The two analytic solutions of eq. (33) are then

n(x) = ;ig,(:;) (;;il) ""T:E%E?IT(X*H)x+h'%e'x’n(-1)x+n
g(x) = f‘lim ( x+1)(-x+2) "‘(-x—bn)(x-n)x'n'% e-x-l-n'(_l)x-n 6

We shall here study the second of these principal

solutions and denote it by W(x). We then have

n=ee

Wx) = W (1-x)(2x) *** (nex) (x-n) =0 (g yrong

and w(o) = le 12 5-;'-- *n (-n)'n'% e (=1)°2 ¢

By division

W _ Lim (1- ‘2- cee (n. —p\"0-% - -
B - i o) oo ool ™ ) on o

As for the function - (x), ea. (9)

X

Tim (-n} n=z _ .

n=e  \ -n



Also | i:’i, (%—Q)x (-1)* = ﬁ:’i (E.zis)x = 1

n

Therefore

Ws’;-L’ (1-x)(2-x) * * * (n-x) n*
z g - Lim x X n-x) n

n.= ca m

This infinite product is the same as that occurring in
i=(x) and_can‘be evaluated in the same way. Then,

choosing the constant s, so that W(0) = 1 we have

[l

w(x) = 11 (i - Z)(1 + %)x (36)

n=1
oo

wix) = e"* [ (1-5) (57)

n={ n



Solution of the Difference Equation by

Weierstrasgs's Theorem.

We can solve the difference equation (33) vy usé
of Weierstrass's Theorem. Since g(x) has zeros at the

positive integers, W(x) must have the form

w(x) = &%) 1?7‘(1 _ %) é% (38)

The function G(x) must now be determined so that

W(x+1)

-x W(x)

{1 I

w(o) le

G(X"'l) le W(l _;_c___) =

Then X ) 5 ! : = 1.
X m X
2T @ -%) ®
- o) P - K
eG(x+1) G(X) - _x ilm n-x en n w e_%l'
= e N n-l-x

ﬁll-—'

Lim (-x)(l—x)(z-x) oo (q-x) -\i.
m=es (_x)(1-x)ecveceeee(m=1-x) €

-2

nat

H]

Sl

= LM (n-x) e

31,



. . i ml m=X
(O(xr1)-G(x) _ r5m 108 (m+1) -2 e1°g T

it

éao

eG(x-rl)-'G(x) -

a(x+1) - 6(x) = - ¥

]

Then - G(x) = =yx +c

Substituting this value in eq. (38)
: . . x
W) = e F e [ (2 -Z) e
nsit
To determine the value of cy we have
w(o) = e = 1,

since we have chosen to take W(0) = 1. Then

2

wx) = o ([0 -E) e

nay.

which is the same expression for W(x) as that given by

eqe (37).



Relation of W(x) and Sin x.

Since W(x) has zeros at all positive integral
values df Xy W(1-x) has zeros at x = 0 and all negative
integral valies of x. The product W(x)W(1-x) will then
'havg zeros at all positive and negative integers and at .

Zero. From the difference equation (33)

w(l-x) = x W(-x) -

Hence  W(x) W(1-x) = x W(-x) W(x).

« , " = X
From eq. (37) - wx) = e * H(l-%)en
vx T] /4 %
. ol o o= E "n
and | W(-x) = e ﬂ(l-{-n)e
. o 2
Therefore w(x) W(l-x)~= x ﬂ 1 - 25.?)

The right side of this equation is the infinite prdduct

for BIMLTX .  ye therefore have
Y in mx
w(x) w(1-x) = 82IE (39)

If we set x = % in eq. (39) we obtain

w(%) = 'Tflf"'

33



Relation of W(x) and [(x).

We will now express W(x) in terms of [(x). From

the equations -

R = (e ) (-1 TT (1-Z)+ 2 ()
w(x) = U(l.- %)(1 + %)x _ (3‘5)
Clx) = (1 - e2"1%) [(x) | (6)

W(x) - (l - eZT\'iX) r(x)
-2mi (-1)*

we at once obtain

since (-1)% = e"i%, if we ‘take the simplest value for

the amplitude of (-1)

-Tix nix , i -
Wix) = (e -e ) M (x) = 1 "R _ mTiX ()
w(x) = ——-——'Sil;l‘ Ix M(x) : (40)
But since O M(x) M(1-x) = o
‘ : sin Tx
This reduc,‘es‘to w(x) = 1 :
‘ ' : r(1-x) (41)

- - - - - - L4 - - - - o= ] - - - - - - &=

l. ZEulery, L. "Evolutio Formulae Integralis, etc." Novi
- Comment. Acad. Petrop. Vol.16. (1771) pp. 91-139.
34



Determination of the Constant sqe

The Asymptotic Series for W(x).

~ We are now able to determine the constant 8o in
eq. (34) -
i .
S(x) = (A F eF (g4 Zw o - o) (34)

Since W(x) ~ s(x) in the sector 0 < amx £ 2T, we may

write f‘or large values of x
W(x) = (-1)* xX°2 =X 8¢ [+ e(x)]

where iﬁi £(x) = 0, and xx’% denotes the branch of the

function for which W(x) ~ S(x)e We have

W(x) W(l-x) = x W(x) W(=x)

W(1-x) = x W(ex) = x (-1)% (-x)"%F % 5 [1 4 &,(x]

Hence  W(x) W(i-x) = #F (ax)F Y o 14 er(x]

W) W(ix) = (1 s B+ o]

where , ;I;‘inlc E(x) = 0 %i?; g'(x) = 0, and (-1) =@;) .

Then, since am (-x) = amx + T, 1if x be taken in the

35,



upper half of the plane, the amplitude of (-=1) = -1, and

(-1) = e ™, In the upper half plane:

(-1)’“’% = e"“i(x'*%).: i ¢~Tix

and W(x) W(l-x) = =i ¢~ "% 85 [1 + 8'(x)]
But from eq: (39) we have

2 ’TiX)
mix

W(x) W(1-x) = SBTX - (1 -
: -2ni e

2Mix

Equating -i ’*x"so L+ o(x)=ie
| -2mi eMX

' 2nix
o§ 1+ e(x)] = L=t —

If now we let x become infinite along the positive axis

of imaginaries we obtain

bl
]
[

° " -am

< 1
or s
We here take the positive root since W(x) is positive when

X is real and negative.

.~ Substituting the value of s, in eq. (34) we obtain

s(x) = (-1)F 7% 7% - '1,2% 1+ elx)]
s(x) = (-x)x'% e™® 1 [1 + ei(xﬂ (42)
2w '



'The Multiplication Theorem for W(x).

From the multiplication theorem for the gamma

function

. et o
. [ (nx) = (_Igl_n._)..... U r(x + %) (15)

and the relation of W(x) to the gamma function

1
Wix) = e
(x) F L) (41)
we can derive a multiplication theorem for W(x).
Substituting (nx) for x |

M (1-nx)

We have previously derived

[(l-nx) = =B X St X |
[Tri=+% an

(em& |
From eqe (41) M(-x) = S
- w(1-x)
and by replacing x by (x = %)
T
r( X + n) W(x-l-l- _) _ (44)
7o



We also have Ww(x + 1 - %) = Hw(x + %

Combi;ling (17)s (43), (44), and (45):

X

‘ _ DA-:J o _-%. n
W) s {201 B HRLE

which is the multiplication theorem for

()]
(0]
e

|

(45)

(46)



Values of W(x) for Real Values of x.

From the fact that W(0) = 1, and W(3) = r%_-—
and the difference equation
| W(x+l) = -x W(x)

-

we can easily obtain, where n is a positive integer,

W(+n) = 0
w(-n) = 1.
. (47)
W (2114-1) _-2n-1 2n=-3 31_1
2 -2 2 *** 99
W(_zn-l»l): 2 2 221
2 2n+l 2n-1 *°°° 3 1

The value of W(x) for any other real value of x

may be most readily obtained from the relation

wW(x) = r(1-x) (41)
Legendre' has computed a table of logarltMS to twelve
places of the gamma function fqr values of x from 1 to 2
é,t interva.ls of one-thousand{th. Ga,uss"'has also computed
a table of the logarithms of T[(x) to 20 decimal places
~where [J(x) = [(x+1) férv values of x between O and 1 at
intervals of one-hundredth. By means of these tables and
the difference equation for the gamma function the value

of [(x) and hence of W(x) may be accurately found.

- - - - - L - - - - - -

l. Legendre. (See footnote, page 25 )
2. Gauss, Carl Friedrich, "Werke" (18'76) PPe 161-162,
. ' 390



The Logarithmic Derivative of W(x).

To obtain the logarithmic derivative of W(x), we
take the logarithm of both sides of the equation

w(x) = g e ﬂ (1 - %) e%{I (37)

log W(x) = ~vx + i(log 1’%’5 + Fﬁ)
net

Differentiating and denoting ———(——l by )(

L3

’X(X)-’% A z(x-n ) (48)
From the eqﬁation
W(x+l) = -x'W(x)
we obtain by logarithmic diffe‘rent‘iation
Wix+l X OW(x
X (x+1) = L+ X (x) (49)

which is the difference equation satisfied by X (x)e From
the form of this equation, we see that X (x), ('(;(x),' and
40,



1.9
[
.

P(x) are all solutions of the equation

y(xt1) = 1 4 y(x). | (22)

In fact, both X(x) and P(x) come from the second
principal solution aﬁd differ only by the additive

constant Tis

From the relation of W(x) and the gamma function

W(x) T (1-x) L (41)
we oﬁtain log W(x?”= - log [ (1-x)
and différentiatiﬁg X(x) = Y (1-x) st (50)

which is the relation of X (x) to the logarithmic
derivative‘of the gamma function.
The relation of X (x) and the circular functions

may be derived from eq. (39):

W(x) w(1-x) = 8L TX : (39)
We have log W(x) + log W(l-x) = log sin Tx = log Tr
Differentiating  X(x) - X(1-x) = Tcot Tx (51)

This last result may be obtained directly without

use of eq. (39). We have

7<(x)=-7+§(x-}_#+%) ~ (48)



!»&
fav]
*

X(}-x) = | i(

ﬁll—'
S’

..x..n

=1 .1
z(x-n + x+n-l)

Subtra;ting Xx) = X (1-x)

1</ )
= =+
x hzw <x -n © x+n
=242 S _x
X L XRon?
We have, however, from Pierpont'
A . _ .
cot z== 4+ 2
‘ z hz. zR=n?m?
ory, setting z = wx, Tcot x = ';'Jé‘ D) Z
net xR -nf
Therefore X(x) - X(1-x) = Tcot wx. (51)
From the multiplication theorem
% + :
_(2m)?®  pfX-T T K
W(nx) = S [T wix + K (46)

k=1

we obtain by logarithmic differentiation the multiplica-
tion theorem for X (x).

le Pierpont, James, "Functions of a Complex Variable."
(1914) Page 285,



n )((nx)=nlog'n-%+§:x(x-!-%) (52)

From the difference equation satisfied by X(x),

eqs (49), we obtain the two expressions:

Klom) = Xx) + Lo v o ov o) + 2 5
| | (53)
Xtem = x1s) - Br- gy - - et - Bk

" Equation (48) at once gives us X (0) = =¥ and
from eq. (50) we have
X (3) = W) =-7 -2 1og 2,
where the value of (%) is that given by Gauss. Since
W(x) has zeros at the positive integers, X (x) has poles
at these points. From these values and eq. (49) we have,
where n is a positive integer, |
X ()= -7 +2

on+l) _ S 1
?((—"2—") _.-7.-2410&.2-}2;5&—:]7

n+l

X(,‘.%gil);_’ry-2log2+22§%‘:i'

n
3

X (+n)

1, Gauss, Carl Friedrich, "Werke." (1876). Page 155.



44.
Since Gauss'has computed a table of (P (x+1) for
values -of (k*l) from 1 to 2 by hundredths, the values
heiné,given to eighteen decimal places, the value of X (x)
for any real value of x may be found from this table and

the felations

-

X(x) = y(1-x) ’ (50)

X(x+1) = 2+ X(x) (49)

l. Gauss, Carl Friedriche. "Werke."

(1876) pp. 161-162.



The Derivative of the Logarithmic

Derivative of W(x).

From equation (48)

-

o 2/ 1 1
X)= -9+ —— =
K(x) = -y + (L4 L) - (a9
we obta.in by differentiation
Lxx)=-F 1 (56)
ax o(xen)®

If we denote %x;x(x) by ©(x), we have, by comparison
with the equation for the derivative of P(x), eq. (28),

and by eq. (30)

€(x) = %; 7<(x) = %; Plx)= -2 L= - ¢(-x51,2)

neTt - z
(X n) (57)
By differentiating eq. (49) we find for the
difference equation satisfied by ©(x)
R |
O(x+1) = = =% + O6(x). (58)

-Similarly, by differentiating eq. (50), we find, where

b(x) = S o(x), &(x) = - p(1-x) ' (59)

l. The function ¢(x) as here defined is the special case
of the function ¢(x,r,k) when r=1,k=2; that is,
?(X) = tf(x,l,2). 15



Also, from eq. (51) we find by differentiation,

-T2

o(x) + 6(1-x) = ————
(x) ( ) sin® wx

(60)

From (56) and (60) we can readily find a series

for _—asiir:f'rrxj . Ve have
&(x) = - i -(;ri-'-r-l—)-g (56)
- x) = -S> 1
6(1-x) g (1-z-n )
Adding o) + ox) = - > [do v o]
& 1 1
o (x) + 6(1-x) = -Z. (x-11) (x+n-1) 1
8(x) + 6(1-x) = - > : +1)a
-e= (x4n
vﬁl f ' ___TIE...;. = S 1
ereiore 'sinz - Z (x+n)2

From eq. (52) we obtain by differentiation, the

multiplication theorem for 6(x).

n* & (nx) = 3+ > o(x + K)

(61)



47,

]

The multiplication theorem for 6(x), eqe (61),
mey also be obtained from the corresponding eqﬁation for

B (x) given by Godefrey':

n® p(nx Z cr(x + k) (62)

and the relation 6(x) = - ¢ (1-x) (59)
We have, by replacing x by (nx) in this last equation
6(nx) = - ¢(1-nx)

and by replacing x by (-x) in eq. (62)

n=!

n* ¢ (-nx) = Z4>(-x+;) (63)
From the equation 'q»(zfl) - ;]-;- + $(z)
by setting &= -nx,  d(-mx) = $(1em) + L
or n* ¢ (-nx) = n* ¢ (1omx) + L (64)
Also froxﬁ eqe ('59), - ¢ (-x +..§) = e‘(l + x - 'lé) (65)
toreover ) KZ ol += - £) = ge( £ (66)

- - - - - - - - - - - - - - - - - s - -

1. Godefrey, Meurice. "Theorie Elementarie Des Series".
(1903) . Page 236,



48.
Combining (63), (64), (65), and (66), we finally obtain

n® & (nx) =%;L Ki o(x + ) | ‘(‘61)

From the difference equation (58) we find the two

expressions -

9(:;+m)=6(x)-~ —x‘-."l-l-)"" - m e(x)_zx+l

) = v 1 1. S 1
Olx-m) = Ox) + feyyt gyt~ ¥ Twr” O M Z

 We easily obtain from eg. (60) that 6 (%) = =37,
To obtain the value of © (0) we have from eq. (57)

@(O) = -é;ﬁ% = - :ﬂ; (67)

From these values and eq. (58) we find, where n is a

positive integer

6 (+n)

n) = o T > 1
é)(n) 6+ y k* .
(68)
@@z‘"’;‘)“‘éﬁ-‘lzm
on+l o
9(“%“)“"‘,'4215;37?



e

To determine the value of O (x) for any other

real value of x, we can make use of the relation
O(x) = - ¢ (1-x) | (59)

To do this, however, we must first determine the value
of ¢(x)e We do this, instead of determining the value
of O(x) directly so that all our fundamental tables will

be for the gamma function or its derivatives.



Calculation of ¢ (x) for Real Values of X.

We have, from Batchelder, the following equations

for ¢ (x):
) T p(x+1) = --}-{l{-f $ (x) (69)
- 1
4 (x) % T (70),,
O A )

and from Godefreyi

-m) = 1 R N
plmm) = ¢ =) (X-l) * (X-—2,)2+‘ ' (x-m)* (72)
x) = T2
$(x) + ¢(1-x) s (73)

From eqe (73) by setting x = %, we immediately

obtain the value -

$(3) = 37,
By substituting x=1 in eq. (70) we obtain, as in eg. (68)

p1)=3 1 -Z21_ 7

n=o (n'l'l )2 n=t N 6

- - - - - - - o - - - - - - - - - - -

l. Batchelder, pages 23-29.
2. Godefrey, Maurice. "Theorie Elementarie Des Serieg."
(1003) Page 236. ,
50,



51,
The series in eg. (70) converges too slowly to be
of practical value in the computation of ¢(x) for real
values of‘x. However, for large values of x, ¢(x) may
be accurately determined from eq. (71). We must then
deteymine how large x must be taken so that the error will
Ee less than a p}eassigned constant. By actual substitu-
tion of x=10 we find the value of the series in eq. (71)
for this value to‘be, to seven decimalﬁpléces, 0.1050170.

Taking this as the value of $(10) we find from eq. (72)
that ¢(1) = 1.644943. Comparing this with the value gﬁ

= 1,644934, we see that the errof is less than one in the
fifth decimal place, which is sufficiently near the correct
%alue for purposes of gfaphing'the function. By calculating
b(x) at interﬁals of one tenth between x=10 and x=11 from
eq. (71), and reducing these values to the interval between
1 and 2 by eq. (72), we obtain the foilowing fundamental
.table:

Xe $ (x)

1.0 1.64493
lel 1.43330
1.2 1.26738
1.5 1.13425
1.5 0.93480
1.6 0.85862
1.7 0.79323 .
1.8 073698
1.9 0.68797
260 0.64493



Graphs.

In‘the following pages the functions W(x), X (x),
and é(x) are graphed for real values of x.
The fpnctibn W(x) is given for the interval
-3< x < 6.
The values f6r this graph were obtained for one=tenth

intervals from the relation -

=1 , ‘
w(x) ER (40)

and Legendre's table of the logarithm of the gamma function
The function X (x) is given for the interval
-4 <x <8 |
This function was plotted for values of x differing by .05,
the value being found by means of the relation v
X(x) = ¢ (1-x) (50)
and Gauss's table for ¢(x).

The funetion BO(x) is given for the interval
=5 < x <7

This graph was plotted using the values of 6(x) derived

from the relations

o(x) = - ¢(1-x) C (59)
¢(x+1) = 4;}z+ 6 (x) (58)

and the table for ¢(x) as given on page 51,

For purposes of comparison the graphs of the
funetions [ (x), Y(x), and b(x) are given for the

corresponding (not the same) intervals.
524
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