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INTRODUCTION. 

The function r(x) as a solution of the difference 

equation 
y(x+l) = x y(x) (1) 

has been investigated. at length by Batchelder' and others. 

The . second principal solution, r (x)' has not been $0' 

completely investigated, although ];Jatchelder does.derive 

expressions for it in terms of the gamma function. Our 

object here is to find an expression for r (x) in the form 

of an infinite product directly fr~m the difference equation 

and to study various related functions. 

To do this we will make use of various results 

obtained. by Batchelder. First, we will use the theorem on 

the solution of the general linear homogeneous equation of 
the first order stated by Batchelderzas follows: 

"The linear homogeneous dffference equation 

y(x+l l · - r(x)y(x) = o (2) 

where the rational function. r(x) may be written 

r(x) = xP-(c 0 + .~ + ~ + - - - - ) x. xa . 

where p. is an· integer and c 0 f o, is satisfied formally by 

l. Batchelder, Paul M. "An Introduction to Linear Difference 
Equations." 1927. 

2. Batchelder. Page 40. 
1. 
~-



the series 

there exist also two analytic solutions 

h(x) Lim 1 1 l T(x+n+l), - . n=~ rrxr r(x+l) • • • • • • r(x+n) 
(4) 

g(x). = L~m· r(x-l)r(x-2) ••••• r(x:n) T(x-n), n= "'O 
( 5:). 

where t (x) is the sum of the first . k terms of S (x). 

The solution h'(x) is analytic throughout the plane 
except for poles at the zeros of r{x) and points congruent 
on the left; it vanishes at the poles of r(x) and points 

congruent on the left; it is represented asymptotically by 
s(x) in the sector --rr <.. arg x <-.tr. The solution g{x) is 

analytic throughout the plane except for poles at points 

congruent on the right to the poles of r(x); it vanishes 

at points congruent on the right to the zeros of r(x); it 
is represented asymptotically by s{x) in the sector 

O ~ arg x ~ 21T. The solutions h(x) and g(x) are called the 
first p~incipal solution and the second principal solution 

respectively. They are uniquely ·determined apart from a 

constant factor, by their asymptotic properties." 

We will also frequently use the following relations 

between r (x) and r (x). 

F(x)= (1- e21Tix)r(x) 

f (x) = •21Tie1TiX 
r (1-x) 

(6) 

(7) 



THE FUNCTION t (x) • 

Solution of the Difference Equation. 

Since the first particular .solution, r(x) of 

equation (1) comes from h(x) in the general theorem, the 

second principal solution, r (x) must come from g(x) • We 

have r(x)=x, c =l, 0 c, =c2 = - =O, and 

s(x) = xx-t e-x (s + !!.. + - - - - ). (8) 
0 x 

Using the first term of S(x) as T(x), as Batchelder has 

shown we may do, we have 

T(x-n) = (x-n)x-n-t e-x+n e0 • 

Therefore we have 

g{x) = f (x) = ~!1! {x-1 ) .(X-2) • • • • {x-n){x-n)x-n-te-X+nBo• 

To evaluate this limit, we(divide by l(O). 

and 

l ( 0) = ~~'!, (-1 ){-2) • • • • (-n) (-n )-n-t en So 

rw= rroY 
Lim (x-1) (x-2) • • • • (x-n) (x-n )x-n-t e-x+n s0 

n:i: 00 
( -1) ( -2) • • • • ( -n )( -n rn·f en s

0 

or™= Lim (l-x)(2-x) 
n=0o 1 2 

••• 
• • • 



We can evaluate the terms Lim· (x-n)X n=cn n and 

as follows: 

L. ~m f x-n)· -n-t = Lim 
n= 03 \:-n n=CY-1 

L-;m (~)x = (-l)x 
n= 00 n 

Then ~= f\OY . 
Lim (1-x)( 2-x) n=Qo 

• • • • 

.!!. 
Lim (x_-nn)-n-t 
n=~ 

To determine the constant r(o) we make use of equation (7): 

f(x) = 

Since r(l)=l, we have 

-21Tie'TfiX 
r (1-x) 

f (O) = -2TTi. 

(7) 

Therefore r·Cx) = 21Ti(-l)x+l L~m (l-x)(2-x) •• (n-x)nx. (10) 
. n=ao l!t 

By the general theorem, l(x) is analytic throughout 

the plane, havin~ first orde_r zeros at 1, 2, 3, • • •, n, • • •. 

It has no poles in the finite plane, but has an essentially 

singular point at infinity. 

The infinite product for 1(x) may also be written 

in the form 

r(x) 



. . o" 

l(x) = 2111(-1)x+1 D (1 - ii)(1 + ~r . 
·A second infinite product for r (x) analogous to 

the second fo~ for r (x) may be obtained as follows: 

r(x) 

f (x) 

= 2TTi-(-l)x+l L~m (l-xH2-x) • • (n-x)nX 
n=- . l!!. 

,,, 
= 2rri(-l)x+l ~m x log mn.!lte m=C» e · n 

n=1 

Using the definition of / given by 

.-y = L~m ( l + i + _ n= 00 -:a-

this equation may be written 

- + -1.... - log n) 
n-1 

00 ~ 

(11) 

(10) 

r (x) = 21!1(-l)x+l e- x n (1 - ii) en (12) 
n::t 



A second Method of Solution. 

The function l(x) can also be found without making 

use of the asymptotic series s(x), or T(x). We have seen 

that g(x) has-zeros at 1,2, ••••• Therefore we proceed 

to · set up a product having these zero points and multiply 

it by exponentials (which have no zeros) in order to make 

it converge and satisfy the difference equation 

y ( x+ 1 ) - x y (x) • (1) 

We can do this, since by the factor theorem of 

Weierstrass~ a function is determined by its zero points 

and poles, except for an exponential ,(or constant) 

multiplier. 

The product 

converges and has the required zero points. To make it 
satisfy the .difference equation, we multiply it by an 

exponential eG(x) and determine the form of G(x). We 

then have 
<Y-1 

j(x) = eG{x) n ( 1 - ft) eii 
h =I 

·--1. Weierstrass, ·K. "Ueber die Theorie.der analytischen 
Facultaten." Journ. fur Ma,th. Vol.51. P~ .• 1•60. 1856. 

i 

6. 



where G(x) is to be chosen so that 

F ( x+ 1 ) = x I ( x) • · 

x 
Then x) '!I - - ,·e n· 

Dividing by the second side, and taking the limit of m 

terms:. 

e G(x+l) Lim . 
G(x) m=t:;<:J 

x e 

G(x+l)-G{x) e 

WI n ... =· n ..,,., 

~ 
n-x-1 e n 

n 1 = 
~ ~ 

n en 

n n-:x: e -.ft 
n-x-1 

n:: I 

= Lim 
m=~ 

x(1-x)(2-x) •••(m-x) 
( •i: )( 1-x) •.. (m-1-x) 

Lim log (m-x) - i! = - . e · "•' n 
m=~ 

-i! 
e ... , n 

= - Lim ·· log (m+l) - i l log~ 
m=<><> e "'' n e m+l 

= - - 'Y Lim m-x 
e m=~ m+l 

' 

-'Y = - e 

eG(x+l)-G(x) = elog (-1) -'Y 

We have then to solve the difference equation 

G ( x+ 1 ) - G ( x ) = 1 og ( -1 ) - 'I 



The .·general solution i's 

And 

Hence-

G (x) = S [log ( -1 ) - 'Y] 

G ( x) = x [ 1 og ( -1 ) - 'Y] 

+ c 

+ c. 

x log (-1) -~x c ( l)x -x~ c e e e = - e e 

~ x 
= (-l)x e-'Yx ec n ( 1 - !) en 

11 =I 

To determine the constant e 0 , we have, setting x = o, 

f (o) = ec 

But we have shown that 

r ( o > - -2rri. 

Therefore 
r(:x:) = 2TTi (-1 )X+l e-'YX n ( 1 - ~) e'fr_ (12) 

n :1 

which is the second form as obtained above. 

If the function is found by this method, the 

other product form can easily be found in the same way as 

we change from one to the o.ther in the gamma function. 



Relation of FCx) ~ Sin~ 

As for the gamma function, we should expect to find 

a relation between r(x} and the trigonometric functions. 

The function s;n x has zeros at all positive and negative 

integers and at zero. \(x) has zeros at all positive 

integers. 

integers. 

1(1-x) has zeros at zero and the negative -

Consequently we are led to form the product 

and find its relation to sin x. 

We have, using the first form of the infinite 

product 
CJ 

l{x) = 2Tfi(-l)x+l n (1 _ ~)(1 
n::1 

OJ 

l ··)x +-n (11) 

= -x F{-x) = -x 2rr1(-1>-x+1n (1 + ~ )(1 1 )-x +-n 
. l'pl 

. ~ 

The ref ore f(x) F<1-x) = 4rr'x n (1 - ~) 
h=• 

But we have that . sin x = !x n (1 - n:;.) 
l'l: I 

or 
~ 

• TTX n(· -· 2£_
2

) s1n-rr = x \1 n:;z 

~ 
,,.,,, 



Hence r(x) \(1-x) = 41T sin TIX 

From.this last relation we obtain 

f(t) r (t) = 4rr sin trr = 4Tf. 

r(-~) = 2rrr. 

lli 
·(13) 

This is the same value that is obtained from the relation 

r(x) = (1 - e21TiX) r(x) 

l(t) = 2 l(t) = 2rrr. 

( 6) 



Another Relation Between [ (x) ~ F (x). 

, . 

From the relation between F (x) and sin x as 

derived above,.we are· able to obtain another relation 

between r (x) _and r (x) • . 

Ai so 

Hence 

:But 

We have 

t(X) r(l-x) = 4TT sin TIX• 

eix 
sin x = 

r(x) t(l-x} 

-ix 
- e = 
2i 

2ix , 1 e -
2 . ix 
ie 

= 4 rr 1 - e 2~ix -
•2ieTTlX 

r(x) rc.1-x) = 4 TT 
.-2ielTfX 

(13) 

( 6) 

or r(x) = 2 ie-nix (14) 
r(1-x) 



~·Multi;plication Theorem for f(x). 

From "Gauss's multiplication theorem" for r {x) 

fiqx + ~) (15) 
I< =o 

and the relation between r {x) and [{x) given by eq. ( 7)' 

we can obtain the multiplication theorem for r(x). 
Substituting {rue) for x in eq. {?), we obtain 

-21Tie1Tinx = _..............,.___ 
T(l-nx) 

(16) . 

Substituting (-x) for x i.n eq. {15 ), we also obtain 

r(-nx) = n-nx-t 
Q..::.1 

(21f) ~ 

If now we set (-nx) = z, we have from the difference equation 

for (x) 

Hence 

. r ( -nx) = r( z ) = [(z+l) = 
z 

rc1-nx) 
-nx 

(17) 



We have previously obtained the relation 

r(x) = 
2rrie-rrix 
r (1-x) 

Substituting (-x + ~) for x, 

~ k) Iii (x - ~) = 2nie r(-x + n F (1 + x - .!. } n 

The product in eq. (17) then becomes 

Equation (1?) now becomes 

r(1-nx) n __ .e __ -_lT_i_ii __ 
!PO r (1 + x - k} 

n 

Using this expression for r{l-nx), eq. (16) becomes 

(14) 

(18) 

F (nx) 1 nvi~I lTik -( k) 
\" -rrix] n e ?I' r l + x - n 
@11ie 1<.-0 

r (nx) = 



Since ftr(1 + x - ~) = 11 r(:Z: + ~) 
~=o 1<.:.1 · 

.n-1 1 

we obtain as a final form for r(nx) 

\{nx) 
1 nnx-2 = tl.:1 (-211) I!. 

(19) 



~Logarithmic Derivative .Qi F!x). 

we now proceed to find an expression for the 

logarithmic derivative of r(x). From the equation 

(12) 

we obtain by taking the logarithm of both sides 

log r(x) = log 2ni + (x+l) log (-1) -'Y x + ~J~ + log n~x) 

Differentiating, and denoting 1 1 (x)/ l(x) by lp (x) 

· r 'f x ~ "' ( i i ) tp (:x:) = r- x = log ( -1) - "Y + ~ - - -
•n~ n n-x 

y; (x) ~ log ( -1) - 'Y + < (_1.__ + ! ) 
- L x-n n 

. '1-= I 

For the multiple valued term 

log (:l) = log· 1 + i am (-1) = i (2n+l )ir 

we may take TTi, (n=O), since Lp(x) exists in the sector 

O <. am x .{.... 2v. The positive axis of reals is excluded 

since ~ (x) ha.s poles at the positive integers. 

4J (x) C? ( 1 . ) = Tii - ry + ~ X-i1 + 1 
h:r n (20) 



W(xl Defined ~ .!.!.§. Difference Equation. 

From the equation 

r(x+l) = x r (x) 

we obtain by logarithmic differentiation 

or y;(x+l) = ! + lp (x) (21) 

Therefore YJ (x) is a solution of the difference equation 

y(x+l) - y(x) = 1 
I X 

(22) 

We now proceed to find a solution of this equation 

and to determine the additive constant (or periodic 

function) so that the solution is identical with 4J (x). 

The expansionsto the right and to the left ·are 

given by 

Yi (x) = J_ + J_ + _i_ + x-1 x-2 · x-3 

We have then, the two symbolic solutions: 



17. -
= - i _L 

n:o x+n 

It is evident .that neither of these solutions converge, 
so we attempt __ .to find a.n additive constant which will make 
the sums finite. It is evident that the series 

-~( 1 - 1 ) 
ri :o x+ii n+T 

i_ 1-x 
n::o (x+n )(n+l) 

converges for all values of x except x = o, -1, -2, -----
The function defined by the series · 

-~ (x!n - n!1) 
is then the solution of the difference equation, as may ·be 
readily seen by substitution. 

It is also evident that the . series 

, -r_r ...L + -L) 
n::1 \x-n n 

converges except for x = 1 1 2, ·3, - - - , and satisfies 
the difference equation. 

We may then write 

\fJ (x) = c, - z -= ( 1 
h:o x+n n!1) (23) 



and (24) 

where, C., and CI?. are constants or periodic functions, 

determined so that these functions coincide with lp(x). 

From the relation 

r { x) = ( 1 - e 2Trix) r { x) (6) 

we obtain by logarithmic differentiation 

lfJ (x) = 2 lT i + LJJ { x) 
1 -2rrix T 

- e 
(25) 

Also we have the following expression for the logarithmic 

derivative of the gamma function: 

Hence 

00 

1 1 ) u1(x) = - 'Y - '° (- - -T . ~0 x+n n+l 

y; (x) = c, - 2_ - - - = .. - 'Y - L -1..... - .l:... 
00 

( 1 · 1 ) 2 TT f . <:::( . ) 
n-::o X+D n+l , l-e-21T1X ti:o X+n n+l 

Therefore 

and 

c, = 2 tf i 
•2rrix - 'Y 

1 - e 

- ( ) = 2 -rr i ' ·~ ( 1 l ) 'f x 1 _ 
0

-2TTix - 'Y - t;-
0 
x+~ - n+l (26) 



To determine C2 we have, by eq~ (25) 

.· 
l 11 .(x) = 2 ir i . + lf' (x) 
I 1 - e-2TrJ.X 

(25) 

and in particular, lp(t) = 1Ti + lfJ(t). 

from the equ&tion 

17>(1 1) . ~ ( x) = - 'Y - ~ i+"ii - n+ 1 = - 'Y -
2 · 1-x 
..,:: 0 (x+n )(n+l) 

we obte,in 
. O" 1 .. 

= - 'Y - ~ (1+2n)(n+l} 

or [ 
1 l 'f (~-) = - 'Y - 1 + 2•3 + 3-5 + - - - -1 

From equation (24), we obtain 

or [ l 1 ' 1 lf ('!) = Ca - I + ~ + 3-5 + - - - -] 
Substituting: 

Cz - [f + 2;3 + 3:5 + - j = lTi - 'Y - [i + 2:3 + - J 
Cz = 'rr i - '}' 

'f (x) = rri-'Y+2-+-°"' ( 1 1) 
"':' x-n n (27) 



We then have two expressions for '+' (x): 

tp{x) = 2 IT" i - '}' - ~ (_l._ - l_) 
1 - e-2nix n:o x+n n+l) (26) 

· tu. (x) = Tri - 'Y + ~ ( : + l) 1 . . ..,::, x n n (27) 

The second of-these equations is the same form as found 

from _the logari thrnic diffe·rentiation of the infinite 

product for r {x >.• 
It is evident that the second form for lp (x) is 

the more convenient. From the second form, we see that 

'f'(x) has poles of the first order at x = l, 2, 3, - - -. 

This also appears from the first form, since the term 

2-rri 
1 _ e-2rrix 

becomes infinite for these values, while the series remains 

finite. The first form, however, becomes indeterminate 

for x = o, -1, -2, - - -, since both the exponential term 

and the series become infinite for these values but differ 

in sign. 

Since 4'(x) is the logarithmic derivative of 1(x), 

we know, from function theory~· that it has first order poles 

at the zeros of r (x) with r~sidue (+l) since the zeros of 

r(x) are of the first order • 

. -
1. Tovmsend, E. J. "Functions of a Complex Variable." (1915) 

PP• 296-297. 



The Derivative .Qf W (x) •. 

From the equation 

<u(x) = rri - -y + < (-1... + l) 
-' c_ x-n n h=1 

(27) 

we obtain by differentiating 

= - :i_ 1 
~::' (x-nY 

.9:...~(x) = - i. 1 . (28) 
dx · .., =, ( -x+n )~ 

This series is real for real values of x. If we define, 

with Batchelder, a function · 

we see by comparing (28) and (29) ~hat 

~lp(x) = - ~ (-x,1,2) (30) 

By differentiating eq. (28), we likewise obtain 

d~ __ , -2 ~ 1 
dx~ ~(x) L "'=' (-x+n}3 

d'2. 
dx.e 'f(x) = -2 r (-x,1,3} 



~ 

The function\.{J(x) is a solution of the difference 

equation 

y(x+l) - y(x) = f (22) 
' 

J3y differentiation, we obtain 

y ' { x+ l ) - y' (x) = - ~ (31) 

Then ~o/(x) is a solution of this equation, and in fact 

may be defined by it except for a periodic multiplier. 

From eq. (31), by expanding to the left, we obtain 

Y1(x) 
1 1 1 = - -.---.-

(x-1)1?. (x-2) ~ (x-3 )a. 

= - i 1 
"t= I {x-n)~ 

C ompari son v1i th eq. (28) shows that 

( ) - d -Y1 x = dx lp(x). 



Value of F(x) for ~Values of & 

The value of r (x) for any particular x may be 
obtained by evaluating one of the products 

oO . x 
r(x) = 21Ti(-l)x+l n (1 - ~)(1 + *) (11) 

n: I 

r(x) (12) 

Howeve.r, since we have tables for the gamma function, it 

is easier to calculate the value of F(x) from one of the 
relationsi 

r(x) 

r(x) = -21Ti errix 
I (l-x) 

Having obtained the values for any unit interval, r(x) 

for any other x may be found by means of the difference 
I 

equation: 

r ( x+ 1 ) = x r (x ) • 

. For real values of x, we at once ·see from (6) or 
( 7) that r(t 2n;1 ) is real and from eq. ( 7) that r(-n) 

is imaginary. (In all of these expressions we take n as 

( 6) 

(7) 



a positive integer.) We have already noted that F(+n) 

is zero. These same results might also have been obtained 

in another way. We have defined r ( O) as (-2TTi) and we 
, . 

have found that r(t) = 2rw, hence, applying the diffe~ence 

equation, we ~ee that for negative integers r(x) is 

imaginary, and for other multiples of one half is real. In 

fact from the two values 

r{ o) = -2 rr i 

F(t) = 2rrr 

and the difference equation we obtain, where n is a positive 

integer: 

r(+n) = o. 



Graph of F(x} for Real Values of ~ 

Since the value of r(x)_ is in general complex 

for real values of x, if we ·wish to graph F ~x) for such 

values, we must u-se the entire complex pla.ne. The 

prev_ious work has given us the points on the axis of reals 

and on the axis of imaginaries of such a graph. We may 

find other points from the relation 

t(X) = (1 - e21TiX) r(x) ( 6) 

The graph of f (x) for real values of x from (-4) 

to {+4), at intervals of one tenth, has been obtained 

from this relation. The value of r(x) was taken from 

Legendre's tables' and the exponential factor was calcula-

ted from the relation 

2TTiX e 

1 _ e2rrix 

= .cos 2nx + i sin 2TTx. 

= (1 - cos 2rrx) + i sin 2rrx. 

- . -
1. Legendre's Tables: "Traqts for Computers •. " Edited by 

Karl Pearsons. 1921~ No. IV. "Tables of the 
Logarithms of ·the complete r-function to Twelve 
figures." (Originally computed by A.M.Legendre.) 



26. -
The following fundamental set was obtained 

2£!.. r (x). 

o.o - 6.28318 i 

0.1 1.81675 - 5.60484 i 

0.2 3.17218 - 4.36617 i 

0.3 3.91602 - 2.84510 i 

0.4 4.01269 - 1.30381 i 

o.5 3.54491 

0.6 2.69391 + o.87.533 i 

o.7 1.69918 + 1.23453 i 

o.a o.80446 + -1'~10?20 i 

0.9 0.20409 + o.62813 i 

1.0 0.00000 

In the graph on the following page the point 

marked 0 corresponds to the zero value of x. As x takes 

on positive.values from Oto 1, \(x) takes on the values 

along this curve to the right to the origin. As x travels 

on to the right on the a.xis of reals, r(x) takes on the' 

values on the successive curves through the origin, becoming 

zero for positive integral values of x, and each curve being 

larger than the previous one. For negative values, the 

curve starts at the same :point and goes ·off in the opposite 

direction, forming a spiral-like curve about the origin. 
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THE FUNCTION W(x). 

Solution of ~ Difference Eguation. 

We h~ve seen that r(x) is, in general, complex 

for real values of x. By studying the expression 

\(x) l)x +-
n 

(10) 

we see that the imaginary values are due to· the factors 

The function defined by the infinite 

product is then real for real values of x. 

We will now consider the difference equation 

y(x+l) = -x y(x) (33) ~ 

and show that the infinite product 

is a solution of this equation. 

From the general theorem the series which satisfies 

equation (4~) is 
. ' 



Taking T(x) as the first term of s(x) we have 

T(x7n) = (x-n)x-n-t e-x+n (-l)x-n s
0 

The two analy-tic solutions of eq •. (33) are then 

( ). Lim 1 l · 
h x = n=~ (-x) (-x+l) 

. ..1. ••• . · 1 . (x+n)x+n-2e-x-n( l)x+n 
(-x+n-1) - so 

We ·shall here study the second of these principal 

solutions and denote it by W(x). We then have 

and W(O) = Lim 1•2•3•. • • • •n n=c:-..) . -· 

By division 

W(x) _ Lim (l-x)(2-x) • • • 
W( 0) - n=~ l!L (n-x) (2£:.!!.)-n-t (x-n)x x -x( vc. -n --- n e -lJ n 

As for the function ·r(x), eq. (9) 

Lim . n=C'::> 



Also Lim 
n= oo . · 

The ref ore 

x 
(xn-n) (-l)x = Lim 

n=t:7.J 

~= WTOY 
Lim (l-x)(2-x) • 
n=c~ l.!! 

• • 

This infinite _ product is the same as that occurring in 

r (x) and can~ be evaluated in the same way. Then, 

choosing the constant s 0 so that W(O) = 1 we have 

°"' lr w(x) = TI (1 - ;J(1 +-n 
\'):I 

0-:> x 
w(x) -f'X IT ( 1 - ;J en = e 

( 36) 

(37) 



Solution .Q.f the Difference Equation ]2x. 

Weierstrass's Theorem. 

We can solve the difference equation (33) by use 

of Weierstrass's Theorem. Since g(x) has zeros at the 

positive integers, W(x) must have the form 

G( ) ~ x 
W(x) = e x TT (1 - ;) eYi. 

h-=-1 

The function G(x) must now be determined so that 

Then 

W(x+l) = -x W(x) 

W( 0) = 1. 

G(x+l) 
.,., x+l Lim D <i - x~l) e--rr e m=~ = 1. 

G(x) Lim fr (1 - ~) 
x 

-x e m::c-o err 
n=\ 

eG(x+l)-G(x) 

= Lim (-x)(l-x)(2-x) • • • (m-xJ 
m=~ (-x) ( 1-x) • • ••••• _. (m-1-x 

-~1 
= ~~~ (m-x) e tt=• n 

~ 

(38) 

... 1 - L-:-
e "'"' n 



(m+l) M'l m-x 
G(x+l )-G(x) L~m e log -:L- log m+1 

e = m=e?O n:rn e 

, e 
G(x+l )-G(x) 

= e -')' 

. G(x+l) - G(x) = - ry 

Then G(x) = •7X + C 

Subs-ti tuting .this value in eq. (38) 

W(X) = e-'>'x e0 fr (1 - ~) e;_ 
h: I 

To determine the value of c, we have 

W( 0) = e 0 = 1~ 

since we have chosen to take W(O) = 1. Then 

W(x) = e-'Yx 
x X) -- - . en n, 

YI"-\ 

which is the same expression for W(x) as that given by 

eq. (37). · 



Relation of W(x) and Sin &, 

Since W(x) has zeros at all ,positive integral 

values of x, W(l-x) has zeros at x = 0 and all negative 

integral values of x. The product W(x)W(l-x) will then 

have zeros at all positive and negative integers and at. 

zero. From the difference equation (33) 

Hence 

From eq. ( 37) 

and 

Therefore 

W(l-x) = x W(-x) · 

W(x) W(l-x) = x W(-x) W(x)~ 

W(x) 

w(-x) = e'YX 
.x x) -n + - e n 

X n~ f1 - _xn:) W(x) W(l-x)·= \ ... 
f'l=I 

The right side of this equation is the infinite product 

for sin rrx • 
1T 

We theref9re have 

Vl(x) W(l-x) = sin rrx 
1T 

If we set x = t in eq. (39) we obtain 

w(t) = i.. 
l1f 

(39) 



Relation of W(x) fil!Q.. r(x). 

We will now express W(x) in terms of r(x). From 

the equations· 
~ 

F(x) = (-2rri )(-1 )X IT ( 1 - ~) (1 + !)x 

W(x)= 1/(1-~)(1+~)x 
t'J':I 

l(x) = (1 - e2Tiix) l(x) 

we at once obtain W(x) = (1 ~ e2nix) r(x) 
-2 TT i (-1 )X 

Since (-l)x = efiix, if we ,take the simplest value for 

the amplitude of (.-1) 

W(x) 

But since' 

, 
This reduces to . 

W(x) = sin lfX 
TI r(x) 

r(x) r (1-x) = _1T_ 
sin rrx 

W{x) = - 1--r (1-x) 

(x) 

(11) 

(36) 

(6) 

(40) 

(41) 

1. Euler, L. "Evolutio Formulae Integralis, etc." Novi 
Comment. Acad. Petrop. Vol.16. (1771) :pp. 91-139. 

34 • . 



Determination .Qf the Constant .§.a.!. 

The· Asymptotic Series for W(x). 

We are now able to determine the constant s 0 in 

eq. (34) 

s(x) = (-l)x ;xX-t e-x (s 0 + !!.. + - - - ) (34) 
x 

Since W(:x) .,.._ s(x) in the sector· O <am x L.-. 2-rr, we may 

write for large values of x 

where L~m £(x) = O and :x?C-t denotes the branch of the · :x=oo ' 

function for which W(x) ~ S{x).. We have 

W(x) W(l-x) = x W(x} W(-x) · 

W(l-x) = x W(-x) = x (-1 )x (-xrx-t ex s 0 [1 + E,(xg 

Hence W(x) W(l-x) x+.1.2 ( )-x-i = x -x ~ s 0 

W(x) W(l-x) = (-1 )x+t s0 ~ + t' (x)] 

where Lim Lim E' (x) (-1) ={~) . x::oo E,(x) = O, X::oc = o, and • 

Then, since am (-x) = amx+ir, if x be taken in the 

M!. 



36 •. 
upper half of the p].ane, the amplitude of ( -1) = - TT , a~ 

(-1) = -ni e • In the upper half plane: 

and W(x) W(l-x) = -i e-TiiX B~ [1 + B'(xll 

But from eq;_(39) we have 

Equating 

W(x) W(l-x) = sin rrx = 
1T 

(l _ e2rrix) 

-2TTi errix 

21Tix 
[1 + f.' (x )}= 1 - e 

-2rri e lTix 

2TTiX 
a~ [1 + E' (x)] = 1 - e 

-2Tr 

If riow we let x become infinite along the positive a.xis 

of imaginaries we obtain 
S R. = 1 

0 -=2Tt··· 

or 1 

Vie here take the positive root since W(x) is positive·when 

x is real and ·negative. 

-f Substituting the value of s 0 in eq. (34) we obtain 
_,,. 

s(x) 

S(X) = (-x)x-t e-X _L rl + t(xll (42) f2TI l' . 



~Multiplication Theorem £Q.!:. W{x). 

From the multiplication theorem for the gamma· 

function 

r<m:) nnx-t 
= ------

(21T) 

and the relation of Vl(x) to the gamma function 

W(x) = l r (1-x) 

we can derive a multiplication theorem fo~ W(x). 

Substituting (nx.) for x 
W(nx) = __ l __ 

r (1-nx) 

We have previously derived 

From eq. ( 41) 

r<1-nx) 

r(-x) = - 1-
, W(l-x) 

and by replacing x by· (x - · ~) 

r(-x + ~) = __ l~­
w (x+l- *) 

(15) 

(41) 

(43) 

(17) 

( 44) 



38. -
We also have frw(:x: + 1 - *' (45) 

1<:0 

Combining (17), (43), (44), and (45): 

(46) 

which is the multiplication theorem for W(x). 



Values of W{x) for ~ Values of ~ 

From the fact that W(O) = 1, and W(t) =} 
and the difference equation 

W(x+l) = -x W(x) 
we can easily obtain, where n is a positive integer, 

W(+n) = 0 . 

Vl(-n) = ..L 
l!l 

W l2n+
2
1) : 2n-l 2n-3 
=~~ ••• 31-1 

2 2 ITT' 

w I_ 2n
2
+1) = 2 _g_ 2 2 1 \ 2n+l ·2n-l •••• 3 1 rn=: 

(4?) 

The value of W(x) for any other real value of x 
may be most readily obtained from the relation 

W(x) = 1 r (1-x) (41) 
Legendre' has computed a tabl~ . of logarithms to twelve 
places of the gamma function for values of x from 1 to 2 
at intervals of one-thousandth. Gauss2 has also computed 
a table of the logari thma of fT(x) to 20 decimal places 
where TTCx) = r Cx+1) for va1u'es of. x between o and i at 
intervals of one-hundredth. By means of these tables and 
the difference equation for the gamma function the value 
of rCx) and hence of w{x) may be accurately found. 

1. Legendre. (See footnote, page 25.) 
2. Gauss, Carl Friedrich, "Werke" (18?6) pp. 161-162. 

~ 



The Logarithmic Derivative of W(x). 

To obtain the logarithmic derivative of W(x), we 

take the logarithm of both sides of the equation 

cc- x 
W(x) --rx n (i - ~) err = e 

t>-=1 

log W(x) = --YX + i, ~og n~x + ~) 

Differentiating and denoting W'(x) by /((x) 
., W(x) 

')( (x) = W'(x) = _ 'Y + ~ (-L + 1.) 
. w(.x) · .,~, x-n n 

From the equation 

W(x+l) = -x _W(x) 

we obtain by logarithmic differentiation 

W' x+l 
W x+l 1 W' fxl = x +. w x 

(37) 

(48) 

X (x+l) = ~ +X(x) (49) 

which is the difference equation satisfied by ")( (x). From 

the form of this equation, we see that X (x), lf (x), and 

~ 



lfJ(x) are all solutions of the equation 

y ( x+ 1 ) = l + y ( x) • x . 

In fact, both X(x) and lp(x) come from the second 

principal s·olution and differ only by the additive 

constant Tri-. 

(22) 

From the relation of W(x) and the gamma function 

W(x) = - 1--. r(l-x) (41) 

we obtain log W(x) = - log r (1-x) 

and differentiating X (x) = lp (1-x) (50) 

which is the relation of ')((x) to the logarithmic 
I 

derivative of the gamma. function. 

The relation of /(.(x) and the circular functions 

may be derived. from eq. ( 39) ~-

W(x) W(l-x) :: sin irx 
1T' 

We have log W(x) + log W(l-x) = log sin "TTX log 1T 

Differentiating X (x) - X (1-x) = Trcot rrx 

(39) 

( 51) 

This last result may be obtained directly without 
use of eq. (39). We have 

(48) 



-X (l-x) =-'Y+~( 1 +l) 
n~• 1-x-n n 

Subtracting 

1 . en ) =-+~(1 + 1 x t7:1 x:n X+ii 

We have, however, from Pierpont' 

cot z = 1 + 2 z 

D'I 

or, setting z = rrx, ircot irx = i + 2 ?, x2~n2 

The ref ore /((x) -")((1-x) = ircot1Tx. 

From the multiplication theorem 

W(nx) 
n·I 

= (21T) T 
-x 

( 51) 

(46) 

we obtain by logarithmic differentiation the multiplica-

tion theorem for ')( (x). 
• 

l~ Pierpont, James, "Functions of a Complex Variable." 
(1914) Page 285. 



n )<'.(nx) = n log n -1 +ix(x + nk) (52) 
x K'=-1 

From the difference equation satisfied by X(x), 

eq. (49), we obtain the two expressions: 

.,. . , 
:""V1x)+l 1 . 1 =X(x)+<-L "'- \ i + X+I + -:- - + x+m-1 ~ x+n 

(53) 
"'X(x+m) 

X (x-m) = X (x) - · 1 1 - - - - - 1- = X {x) - i -L x-1 - x-2 · :x:-m ... =, x-n 
( 54) 

Equation ( 48) at once gives us -X ( 0) = - 'Y and 

from eq. (50) we have 

/( (t) = 4'(t) ·=-- - "/ - 2 log 2, 

where the value of <f {'t) is that giyen by Gauss'. Since 

W(x) has zeros at the positive integers, /((x)·ha.s poles 

at these points. From these values and eq. (49) we have, 

where n is a positive integer, 

-Y. (-n) = • 'Y + i 1 
/' ' K•I K 

"' x(2n2+1) = - ~ .. 2 1og 2 + 2 L: _L 
1(::1 2k-l 

x (- 2~+1) 
n+l 

= - 7 - 2 log 2 + 2 2 __!_ 
11':1 2k-l 

X (+n) = oo 

1. Gauss, Carl Friedrich, "Werke." (18?6). Page 155. 

(55) 



lli 
Since Gauss' has computed a table of 'f> (x+l) for 

-
values~of (x+l) from 1 to 2 by hundredths, the values 

, 
being, given to eighteen decimal :places, the value of X (x) 

for any real value of x may be found from this table and 

the relations 

?( (x) = lf (1-x.) (50) 

X(x+l) = i + X(x) (49) 

. -
1. Gauss, Carl Friedrich. "Werke." (1876) PP• 161-162. 



The Derivative of the Logarithmic 

Derivative of W(x). 

From equation (48) 

/(. (x) = - V + Z - + -. oO ( 1 1) 
..,;, x-n n (48) 

we obtain by differentiation 

d . 
dX''X(x) = - ~ _1_ 

..,= 1 (x-n )~ (56) 

If we denote ~ 'X (x) by e(x), we have, by com:pari son 

with the equation for the derivative of tp(x), eq. (28), 

and by eq. ( 30) 

e(x) = L X (x) = .!L 4-' (x) = - i-1- = - tb(-x,1,2) 
dx · dx n-:1 (x-n)2 T (B?) 

By differentiating eq. (49) we find for the 

difference equation satisfied by e(x) 

e.(x+l) = - .1:.. + e (x). 
x~ 

·Similarly, by differentiating eq. (50), we find, where 

d I 
f(x) = dx tp(x), e ( x ) = -. cp ( 1-x ) 

(58) 

(59) 

1. The function ~(x) as here: defined is the special case 
of the function ct>(x,r,k) when r=l,k=2; t_hat is, 
~(x) = f (x,1,2). 

45. 



Also, from eq. (51) we find by differentiation, 

e (x: ) + e ( 1-x ) = -TT"l 

sin2 lTx 
(60) 

From (56) and (60) we can readily find a series 

sini. irx • 
We have 

Adding 

Therefore 

e(x) O? 1 =-2.--
t'l"!l (x'-n )..e. 

e(1-x) - - f 1 
n~• ( 1-x-n t 

e(x)+e(1-x)=-·~r 1 + 1 ] 
n=t l (x-n)2 (1-x-n)~ 

e(x) + 9(1-x) =-~f- 1~+ 1 1 
h=, \_(x-n) . :(:x:+n-1 )2 

00. 

e {x) + e (1-x) = - z. 1 
-eo (x+n )'~· 

ITf! ·~ 1 ---= L 
sin 2 

'lTX -co {x+n )2 

(56) 

From eq. (52) we obtain by differentiation, the 

multiplication theorem for e(x) • 

..., 

n2 e (nx) = !~ + fu e(x + ~) ( 61) 



ili 
The multiplication theorem for e (x), eq. (61), 

may also be obtained from the corresponding equation for 

~; (x) given by Godefrey': 

and the relation e(x) = - ~ (1-x) 

We have, by replacing x by (nx) in this last equation 

e(nx) =.,; q>(l-nx) 

and by replacing x by (-x) in eq. (62) 

From the equation 

by setting z = -nx, 

or 

Also from ·eq.· ( 59), 

n·I 

cp ( ~+ 1 ) = - .1... + q, ( z ) z-' 

o/(-nx) = <J>(l-nx)+_L_ . n~ xe. 

n~ cf (-me) = n2 ~ (1-nx) + · ...L 
x~ 

- dl ( -x· + k ) = e ( 1 + x - ls.) 
T n n 

Moreover . 2. e-(r + x - k) = 
l\':o ' n 

" 2-e(x. + k) 
K"'C D 

(62) 

( 59) 

' (63} 

(64) 

(65) 

(66) 

1. Godefrey 1 Maurice. "Theorie Elementarie Des Series"·· 
(190~) . Page 236. 



lli 
Combining (63), (64), (65), and (66), we finally obtain 

n2 & {me) = xli + :2: e(x + k) 
. \i::I ll 

(61) 

From ·the difference equation (58) we find the two 

ex:pressi ons - · 

{} (x+m) = 8(x) · - ~ - _J__( ~-
X"" (X+l J 

l ..... 
(x+m-1 J~ = e (x) - ~(x+m:i 

e(x-m) -e(x) + . 1 + 1 + - + 1 -e(x)+~ 1 
- · (x-1)~ (x-2 )~ (x-m)~ - ~ (x-n)sr 

We easily obtain from eq. (60) that e(t) = .frr2
• 

To obtain the value of e ( 0) we have from eq. ( 57) 

e ( o) 

From these values and eq. (58) we find, where n is a 

positive integer 

e ( +n ) = - e;>Q 

2. . n 

e (-n) = - 1!.:... + 2 ..!.. 
6 t«=1 k ~ 

eW~+1) 
-rr2. h 

= - 2.., 42 1 
\{:' ( 2k·l )~ 

e~2n~1) lTZ ti+\ 

4 6 (2~-1 , .. = - - -2 

(67) 

(68) 



To determine the value of e (x) for any other 

real value ·of x, we can make use of the relation 

e(x) = - ~ (1-x) 

To do this, however, we must first determine the value 

49. 

(59) 

of cp (x). We do this, instead of determining the value 

of e(x) directly so that all our fundamental tables will 

be for the gannna function or its derivatives. 



Calculation of t (x) for ·Real Values of.~ 

We have, from Batchelder~ the following equations 

for ~ (x): 

P(x+l) = - ..L + t (x) 
x~ 

~ (x) = i_ l 
n:o (x+n) 2 

() 1 1 ·1 l . 9 x ,...._, x + 2x.c + W - 30xs- + 

2. and from Godefrey: 

~ (x-m) = t (x) + 1 + l + -· _ + _....1~ 
T (x-1 t (x-2 )~ . (x-m )2. 

1 (x) + ~ (1-x) = _ir~~­
sin~ lTx 

(69) 

(70) 

(71) 

(72) 

(73) 

From eq. (73) by setting x = t, we immediately 

obtain the value 

By substituting x=l in eq. (70) we obtain, as in eq. (68) 

00 

'/'(l) =~ l 
n=<l (n+l )2 

l. :Batchelder, pages 23-29. 
2. Godefrey, Maurice. "Theorie Elementarie Des Series." 

(1903) Page 236. 



51. 

The series in eq. (~O) converges too slowly to be 

of practical value in the computation of cp (x) for real 

valu~s of x. However, for large values of x, ~(x) may 

be accurately determined from eq.- (71). We must then 

determine how large x must be taken so that the error will 

be less than_a preassigned constant. Ey actual aubstitu-

tion of x=lO we find the value of the series in eq. (71) 

for.this value to be, to seven decimal~places, 0.1050170. 

Taking this as the value of 4> (10) we find from eq. ( 72) 

that ~(1) = 1.644943. Comparing this with the value 1T
2 

6 
= 1.644934, we see that the error is less than one in the 

fifth decimal place, which is sufficiently near the correct 

value for purposes of graphing the function. By calculating 

f (x) at intervals of one tenth between x=lO and x=ll from 

eq. (71),· and reducing these values to the interval between 

1 and 2 by. eq. (72), we obtain the following fundamental 

table: 

2£.!.. p (x). 

1.0 1.64493 
1.1 1.43330 
1.2 1.26738 
1.3 1.13425 
1.4 1.02536 
1.5 o.93480 
1.6 0.85862 
1.7 o.79323. 
1.8 o.73698 
1.9 0.68797 
2.0 o.64493 



Graphs. 

In the following pages the functions W(x), 'X(x), 

and e(x) are graphed for real values of x. 

The f~nction W(x) is given for the interval 
. -3 < x < 6. 

The values.for this graph were obtained for one-tenth 

intervals from the relation 
W(x) = _...._l_ 

r (1-x) 
(40) 

and Legendre's table of· the logarithm of. the gamma function. 

The function X (x) is given for the interval 

-4 < x ..(. 8 

Thia function was plotted for values of x differing by .05, 
the value being found by means of the relation 

X(x) = ~ (1-x) 
and Gauss' a table for tp (x). 

The function 9(x) is given for the interval 
-5 _< x ~ 7 

( 50) 

This graph was plotted using the values of 8(x) derived 

from the relations 
e (x) = - 1 (1-x) 

f'.J (x+l) = - 1a + e (x) x 
and the table for f (x) as given on page 51. 

For purposes of comparison the graphs of the 

functions r(x), tp(x), and P(x) are, given ror the 

corresponding (not the same) intervals. 
52. 

(59) 

( 58) 
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