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INTRODUCTION

This thesis is concerned with certain 3eneralized
permutation groups called complete monomial groups
and some of their subgroupa. For the case of finite
permutationa this group was first studied by Ore [},
and for the case of infinite permutations by
Crouch (1] . The most important result obtained is
the;détermination of all automorphisms of a large olass
of monomial'gfoups, In,addit;bn, the derived series
is studied. ‘ . |

Let B be a aet of n elements and Ha group. Then
a ponomial subgtihution u is a trnsformation that
mapé every eieﬁant x of the set B onto an element 6:
B multiplied by an element h of H in such a manner
that it induces a one«to-one mapping of B onto itself,
The elements h are called factors of the substitution
u. If we consider the set of all such monomial
substitutions, and let successive application of the
mappings be the defined operation we obtain a group
which we call the completé monomial group. Those
monomial substitutions which map each x of B onto
itself multiplied by some element of H will be called
multiplications. The set of all multiplications which
we will denote by Vn form a normal subgroup of the
complete monomial group E;(H). The set of substitutions
which map every element of B onto some element of B

multiplied by the identity of H form a subgroup Sn of

; (H). S, is the symmetric group on n objects.
> (H) is the union of V_ and 8 , and the intersection
of V, and S5, is the 1dentity E of > (n).

In this paper we consider some monomial groups
resulting when the restriction that the given set be
finite is removed. Such groups we will denote by
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S(H; B, 6, D), dS €, D £ 5", d= N, H and B

denoting the given group and the order of the given
set respectively, C a cardinal such that all monomial
’aubstitutions of the group have fewer than C factors
different from the idantity of Hy, D a cardinal

such that all monomial aubstitutiona of the group

have fewer than D elementa of the given set mapped
into elements distinct from themselveo, B’ the successor
of B. As before the set of all multiplicationa form a
vnormal subgroup nalled the basis group, the set of all
‘,permutations form a subgroup, and the monomial group
‘15 the union of these two groups, and the twe groups
meet in the identity only of the monomial group.

' Ore [4] has determined the derived series and

the form of any automorphism of the complete monomial
group when the givin set has finite order., 1In this
paper we obtain similar results for some of the
‘monomial groups S{H; B, C, D), and determine in

addition the automorphism groups of some of the
monomial groups. :
Chapters I, II, and III contain preliminaries
- for the following chapters, '
Chapter IV contains the main results of the
paper. For the group S(H; B, 4, C), € < B*, the

form of all automorphiams s established and the
automorphism group is determined in terms of the
automorphism group of H. Chapter V gives the
' automorphisms‘o£ the Alternating Monomial Group
when the given set is finite, H contains no subgroup
isomorphic to the alternating group on n =1 objects,
and n>6, It is also shown that the automorphism
group of 3(H; B, d, d) is isomorphic to the group
of sutomorphisms of its subgroup consisting of all



alternating substitutions. In The concluding
chapter the derived series of >(H; B, C, D),
C <D, is determined.

iv



CHAPTER I
PRELI&INAﬁIES

‘Let H be an arbitrary group, and let 5 be a set
witix: 'orc’isr‘B.; ‘:B > d; ,d,nvN;. We will denote elements
beﬁvbfxﬁvaéé k;vand x will be used to denote elements
of S,
’ A mon;miai suﬁstiiution o?erFH 1sval11near trans-
fbrméﬁidh mapping éach elemaht x of S in a one-to-one
manner onto some element of S multiplied by an olement
of H. A substitution u will Be writﬁen,

u = .(”’ hjx§ ...) .
TheAeléﬁent h of H will be termed a factor of u. The
ﬁuliiplicaticﬁ_ﬁx 1§ é formal one with the associative
ﬁ:gpg#iy'h(k$) = (hk)x. If a second substitution u!
be glven by;

} 2 b 4
u' = (... J .
_ : .. htxt XX} »
then the product uu' is defined by,
v x, _
Pl
“lu ...hjhtxt... .
With this definition of multiplication the set of

monomisl substitutions over H form a group, hereafter

called the monomial group or symmetry.
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A substitution having each of its factors the
identity.elemept e of H will be called a permutation.
The‘setuéf all permutations contained in the monomial
group‘fgrm a subgrouﬁ and 1s the symmetric group on B
qugctﬁ; We will use the cyclie notation commonly
used with_symmetric groups to represent a substitution
‘which is a permutation. We will use s to denote a
suh§titution which 1s a permutation,
_ AA§ubstitution which sends each element of B
into itself'mgltiplied by an element of H will be
céiléd a mpltiplication. The set of all multiplications
égntgingd;g th; mqnomial group form a subgroup whioh
is thé‘étréngdirgqtsum of groﬂps Hy, each Hy ise-
moféﬁ#ébté.ﬂ. We will use v to denote a substitution
ﬁhich‘;s~a mu1tip1ication and such a substitution will
Bg given by recording only its fabt@rs in sequence
form.‘.
Box; the monomisl group S(H; B, ¢, D), 5(B, D)
will déﬁoﬁe thé subgroup consisting of all permutations,
whilefv(B; C) will denote the subgroup consisting of

all~multipli¢atiéns. We may now reinterpt the symbols
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in the monomial group designation as :ollows, Ha
given arbitrary group; B the order of a given set 8,
C a cardinal numher such that for any substitution of
the monomial group the number of non-identity factors
is less than G;-D a cardinal number such that for any
substitution of the monomial group the number of
g}emgn?g of S being sent into elements of 3 distinct

from themselves is leass than D It is clear that both
gt

In tha event C=D= B*, the resulting monomial group

C and D must always be less than or equal to

is refered to as the complete monomial group.

The concept of alternating as associated with
permutation groups may be extended in‘an ebvious manner
to monomi§1 éroups. When considering an alternating
mongmiai é}oup we will indicate this by. placing an A
as afaubscriét to >. 1In this case the cardingl
number D is meaningless unless D < d, 'ﬁhon all finite
even permutatidns are to be considered the cardinal D
will be omitted.

The set of all permutations of the monomial greup

S(H; B, C, D) form a subgroup which will be denmoted

by 8(B, D). This group is well known, and the prin=
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cipal properties of its automorphisms as they relate
to_this paper will be recorded in the following chapter.

The set of all multiplications of the monomial

group E(H; B; C; D) form & subgroup denoted by V(B, C).
This subgroup is‘moreover a normal subgr@npo
Any‘substitution may be written as the product
of a2 multiplication and a permutatipn. This shows
that any monomial group may be written as the union
of the subgroups consisting of all multiplications,
and permutations. If we employ E to denote the identity
of the group >(H; B, C, D), we may write,
S(H; B;,c; D) = V(B, ¢)\V s(B, D),
¥(B, ¢) N\ 5(B, D) = E.
We say >(H; B, G, D) splits over the basis group V(B, C).
A multiplication which has only one distinct factor
is called a scaler and will be written [h]. The set
of all scalars form a subgroup of >(H; B, C, D).
The scalars are the only elements of the monomial
group which commute with all permutations. A scalar

‘}J will commute will all multiplications if and only

if h belongs to the center of H, hence the center of



the monomial -group is the set of all scalars Eﬂ

such that h belongs to the center of H.



CHAPTER II
AUTOMORPHISHMS OF THE BASIS
AND PERMUTATION GROUPS

In the study of the automorphisms of the various
monomial g?oups'ﬁe will discuss the automorphisms
of the basis group, and isomorphisms of the permutation
group with other subgroups of the monomial group,
which can be combined in a natural way to form an auto-
morpﬁism of the cpntaining monomial group. For the
monomial groups considered; we will be chiefly con-
6erﬁed with the basie group V(B, d), and a variety of
permuﬁation groués._ We include then a preliminery
discussiqn of.ﬁhe endomorphisms of V(B, d), and auto=-
morphisms of some permutation groups,

Theoreﬁ 1 All endomorphisms of Vn are obtain=-

able through the possible sets of n2 endomorphisns

T‘;,‘ 1, =1, 2, === , n, of H satisfying the
conditions,
i j i ® 00
hTkT) = kTdntl, m =1, **, n, 1 £,

by the correspondence of a general element

v = (hl, h2, h3’ se Y hn) t@



1 S 1 iBese, M was
(hyTyhpTy "7 "BpTys By TohpT " "hpTp, 77D
The proof is contained in l;, page h5].

Theorem 2 If T is an endomorphism of V(B, d),
then there exists endomorphisms Tg of H such that,
(1) (e, see , @, hi" e , oo )T—
(h, i, +ee, n, 7Y, ce0 ), for all h,e H
i'1? S S L » i ¢

(2) For all h € H, and all 1, hT§

= ¢, for all

but a finite number of J.
(3) byTrh,T3 = hyTdn 22, for all m and all
i; J such that 1 # j.
Conversely if {T;} is a collection of endomorphisms
of H, such that (2) and (3) are true, then there exists
~one and only one endomorphism T of V(B, d) such that
(1) is true,
Proof Suppose T is an endomorphism of V(B, d),

then,

(e,.i_o ,.e,hj’s,o-. )Tll
( kl, ka, kB’ LI} ).

Let k, = thg, then since T is an endomorphism of V(B, d),
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each Ti maps'H~oﬁto a subgroup of H, and is moreover
Qn“endbhbrphism of H. Since T is an>eddomorphism of
v(B, d);“the 1mage‘muitiplicat16n'must be an element

of this group, hence for all h € H, and all i, hT§ = e,

for all but a finite number of J.
The two elements of v(B, d),
( & 5 st 5 @, hi’.e g B2 ),'
(e ; eee é ’ hj: e, +o0 ), L 43,
commute and hepce their endomorphi; imagea commute.
That is,
i i

Tyl =1 TjhiTn, 14 3o

PaTayTa = Byta

i
.‘ Converse1y,;if {T;} be a collection of endo-
morphigms,of H, such that (2) and (3) are true, there
exists one‘gnd only one endomorphism T of V(B, d) such
that (1) is ture. Since the Ti are endomorphisms of
the group H, and by reason of (2) the correspondence,
( e 5, *°¢ i e ; hj’ e , *°° ) to
(hJTi, hJT%;.hJTg, e ),
is a cor;espoﬁdenﬁe onto a subgroup of V(B, d). It

follows from (3) that the correspondence is multiplication
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preserving. The correspondence T is then an endo-
morphiém of V(B; d). That it is unique follows from
the fact that the set of elements of the form

B QIR ; hj’ 8 5, sec )
generate the group V(B, d).

We now inquirevas to the necessary and sufficient
conditions that T be an automorphism of V(B, d). This
requirement. is that T be one-~to-one and onto the group
V(B; d); éince T is already an endomorphism of V(B, d).
That is, given an arbitrary element,

vkﬂ( s 8 ’ kjl’ s kj 9 € 4 s )

of V(B, d), does there exist an element
vhﬂ(ooo’_e’hi’ooo,hi’e’ncc)
1 n

such that vh? =V We have that th =

S TR i i, 4, i
(hil'rl hy Ty sehy Tl » By Ty TpTethy Tpt, oo )»

where only a finite number of the factors are different
from the identity. If equality is to exist between
that multiplication and Vi the non-identity factors must

cceur in the same positions as the non-identity factors
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of V. The equality of factors gives as the following

‘set of equations,

i i i

1 n
h T h T “‘h T ='k ,Wﬂl, L ,mo
il 3w iz Jw in Jw jw

Therefore T is one-to-one and onto if and only if the

set of equations have unique solutions hi ’

=1, *+* , n, in H,

Thus we may state more precisely, T is an auto-
morphism of V(B, d), if and only if for each finite
set M of order m of elements of H, and each finite set
of distinet indices A, such that the two sets corres-
pond in a one~to=one manner; there exists a second
uniqué susset N of order n of H; together with an
unique set of distinct indices B, where the two sots
correspond in a one-to-one manner, such that the set
of elements of M, N, A, and B are related in the

following manner,

. il '12~ .
h, T,"h, T,%***h, T," =k, , w= 1, ¢°¢ , mnm,
_ ,11 Jw 12 Jw in Jw Jw
where the hii € N, kJw e M, it € B, Jw €A,

t=1, *** , n, w=1, °** , m,
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Theorem 3 Every element of s(B, C), d<C< B,
nay be written as the product of two elements of
S(B, C) each having order two.

Theorem L Every automorphi;m of S(B, Bf),
B* g_d,vis an inner automorphism,

Theorem 5 Every éutomorphism of s(B, C),

d<6 533{; is the restriction of some automorphism
ot 5(8, B') to s(B, C).

B{)

Theorem 6 The group of automorphisms of A(B,
is isomorphic to S(B, Bf), B> 5, B# 6.

A(B, B*) is that subgroup of S(B, B*) consisting

Bf).

éftall even permutations contained in S(B,
The éro§f of Theorem 3 is fdun& in [2], Theorem 4
in [6], Theorem § in [7], and Theorem 6 in [3] and (1].
Theorem 7 If;
(1) N is a ncrmal subgroup of a group G,
(2) G splits over N, G = N UM, MN\ N = @,
(3) M!' end N' are groups isomorphic to M and N
respeétively, a the isomorphism of M to M!,

B the isomorphism of N to N', N' normal in G!,

‘and G' = M'"\J N', H'"\ N! = o,



12
then the correspondence g, (mn)x = mand defines wun
isomoréhism between G and G' if and only if

‘ mdnﬁmgla = (mnm'l)B,
for ali.m € M and 2all n e N,

Proof Let p be an isomorphism of G to G', and
let m ¢ M, n 8 N, then,

(nm)p = (mmnlnm)p,

nBﬁa o= ma(m-lnm)ﬂ»
(n"Ha(n)Blm)e = (n tnm)B.
Conversely if (m)a(n)B(m-l)d - (mnm-l)a, we need

only shoﬁ that multiplication is preaérved by ¢ to
kné? thaﬁ £ is an isomorphism of G to G', Consider,
(mlnl)p(mznz)p = (mIOQ(nl)B(mz)a(nz)B, we have
- (ng)B(my)a = (mz)a(mglnlmz)ﬁ, and hence
(myny Jr(myny e = (my)a(my)a(ng nyn,)B(ny)B =
= (mlma)a(mglnlmznz)ﬁ = (mlmzmglnlmznz)u‘-



CHAPTER IIIX
-IMAGES OF SOME SUBGROUPS UNDER

AUTOMORPHISMS OF THE CONTAINING MONOMIAL GROUP

Theorem 8 The basis group of E(H; B, d, d)

is a characteristic subgroup of >(H; B, 4, d).
| Theorem @ The basis group of EA(H; B, d) is
& shapacterintic subgroup of EA(H; B, d).

‘Theorem 16 The basis group of E&’n(ﬂ) for n 2 §,
is a characteristic subgroup of Ei,n(ﬂ)-

EA;n(H) is that subgroup of the ocomplete monomial
group foiﬁed_from the given group H; and a set of order n,
consia£ing of éll‘even monomial substitutions contained
in,tﬁe éémbleté monomial group. |

The pqufs’of Theorems 8, 9, and 10 are found in
DJ. We‘willyéxtend the results of Theorem 8 to show
that the basis gréup of >(H; B, d, C), d<C< B’l, is
a characteristic subgroup of >(H; B, d, C).

fhéorem 11 I1£d<LC< B*, d <D S‘Bf, and N is
a subgroup of V(B,.d); then N is normal in E(H; B, d, d)
if and only if N is normal 4n >(H; B, C, D).

Proof Suppése N is a normal subgroup of

E(H; B, d, d) and N is contained in the basis group V(B, d)-
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Let vs € E(H;‘B, C, D) and v' ¢ N, and conslider
(vs)(v')(#s)-l. We may, by reason of Theorem 3, write

s as a product of elements 8y and 851 where the order

of sy and 8, is two; and hence each is the product of
disjoint transpositions. Our product of consideration
may then be recorded ae’(v)(élsz)(v')(5152)71(§)-1.
ﬁefine F(v), for any multiplication v to be the
set of indices i such that the 1-th factor of v is
different from the identity. The order of F(v') ia

finite,. If (xi, xj) is a transposition of 8, such
that neither i nor J belong to ¥(v!), then (xi, xJ)

commutes with the remaining transpositions of s, as

2
Well as with v!, sc¢c we may eliminate all such tranas-

positions from Sy Denote the depressed s, by s

2 B 8
which will consist of only those transpcsitions which
move some xivwhere i belongs to the indexing set F(v!').
But since the order of F(v') is finite s} belongs to
'S(B; d), But N is normal in E(H;‘B, d, d) and hence
we have_(éé)(v')(sé)fl € N. Similarly we may treat

Sy eliminating those transpositions (xi, xJ) such that
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neither i nor j belong to F(sév'sé-l), causing s, to

be depressed to an element si of E(H; B, d, d). We
then see that (sisé)(v')(sisé)-l ¢ N. PFinally ocon=-
jugation by v is equivalent to cenjugation by vy

where'vi'has factors agreeing with v in those positions

=1

i such that 4 évF(sisév'sz ai-l) and the remaining

factois of v, are the identity. Then v, & §(H; B, d, d),

1l
and once more the normality of N in this group insures

that (visisé)(v')(vlsisé)~l € N, and hence

(VB)(V')(ﬁS)-l € N. We have shown that if N is con-
tainéd'in the ba#is group of >(4; B, d, d) and is normal
in :>:(H; B, d, d), Then N is normal in S(H; B, C, D),
d<¢<8, d<b< B,
Gonfersely if N is contained in V(B, d) and if N
is gma'l in >(H; B, c; D), it is clear that N is
ﬁormal 1# E{H; B, d, d), whié£ e§tab1ishes the theoren.
.ihis together with the results of [1, page 7] |
gifes us ﬁhg foiiowing theorem characterizing all
normallsﬁbgroups of E(H; B, C; D) which are contained

in the basis group V(B, d).
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Theorem 12 Any normal subgroup N of >(H; B, C, D),
ad<cCc< B%; contained in the subgroup V(B, d) is
obtained by the following construction. Let subgroups
G and Gy of H be chosen such that,

(1) G and G, are normal subgroups of H with

1

G containing Gl’
(2) G/Gl belongs to the center of H/Gl,
then N is a subgroup of V(B, d) consisting of elements

of the fornm,

(e,---,e,g,--'-,g,e,-.s)
i1 in

where the gy belong to G and the product of all non-
J
identity factors belong to Gl.
Theorem 13 If,
(1) M is a normal subgroup of >(H; B, d, C),
d<C<g B*»
(2) M is not contained in V(B, d),
(3) ¥ =MNV(B, d),
then,
(1) ¥ is a normal subgroup of E(Hi B, d, C),

(2) the structure of N is as outlined in Theorem 12

such that G = H, and H/Gl is abelian.
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Proof Since the intersection of two normal sub-
groups 1s a normal subgroup, N is a normal subgroup
of >(H; B, d, C).
Let u € M, u £ N, then there exists i, j such

that 1 # j and,
X
L)
u= s e 0 LI ) .
( Byxy

Letvz(-oc,ki’e,ooo’e,k:j,e,aoo) be

1 =1

an element of V(B, d)s Then u v ~uv € N, The j~th

factor of the commutator is h;l Ilhikj’ which is an
arbitrary element of H since ki and kJ are arbitrary.
Hence G = H. L
Thevrem 14 The basis group V(B, d) is a
characteristi9 subgroup of >(H; B, d, C), d <CX< B{.
Proof The proof follows closely the proof that

the basis group is a characteristic subgroup of
E(H; B, d, d), as contained in Eﬂ "
We deny the theorem, then there.exista an auto=-

‘morphism £ such that V(B, d)z is not contained in
V(B, d). There exists a normal subgroup M such that

Mg = V(B, d). Then V(B, d)u™t = M, and



18
V(B, d) is not contained in V(3, d)p-l = N,
>(H; B, d, ¢)/V(B, d) is isomorphic to S(B, C).

Moreovéf E(H} B, d, c)/M is isomorphic to S(B, C),
under ﬁhe»iaomorphism Q, (Mu)a'- s, where s is
defined.by the eqﬁalitiea,
(Mu)y = Mpuy = V(B, d)(uz) = V(B, d)(ve) = V(B, d)s.
Let groups X and K be defined by ,
K = V(B, d)UM; N=V(B, d)/\ M,
Both K and N are normal in E(H; B, d, C). The quotient
group K/M is a normal subgroup of >(H; B, d, C)/M,
and since V(B, d) is not contained ih M, K/M is not the
identity, Thean/M must be isomorphie to a non-identity
normal subgroup of S(B; C). But the normal subgroups
of S(B; C) are the groups A(B, d) and 5(B, b), D <_C,
as is shown in [7]. Each of the normal subgroups of

- 8(B, C) are non-abelian and hence K/M is non-abelian,
X/M is isomorphic to V(B, d)N by reason of the secord

isomorphism law, The form of N was determined in Theoems

12 and 13. We may establish an isomorphism between

V(B, d)/N and H/Gl, but H/G1 is abelian, hence so are
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V(B, d)/4 and K/M, But this is a contradiction and
hence our assumption was false. This establishes the
theorem.

Theorem 15 If G=NUM, N \M =96, N a
characteristic subgroup of G, 4 an automorphism of G,
mg=n'm', {m)\=m"'", then A is an automorphism of M.,

Préof A is multiplication preserving.

(mymy)n = () i(ay)n = niningmy =
= (nim]'_némi-l)(mimé) = nimjmp, and hence

(ml) AN = nm!, (mz) A = h:'z, (mlmz) A= mim:'a,

(mg N(mp)N = (mymy)n.

The correspondence A is onto, Let m € M, then
mﬂfl = n'm'; (n'm')g =m, (n')u(m')y = m,
m'y = (n"-l),um, hence (m')\ = m.

Theendomofphism N of M has kernel e, since N
is a characteristic subgroup of G, and hence,
(n)g = n'm', n'= ¢, if and only if m = e, Then A is
an autom§rphism of M.

Corollary 1 Let g be an automorphism of

E(H; B, d, €), d < C K B’l, and let s € S(B, C),
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s = v's'; sh = s', then A is an automorphism of S(B, C).

Proof _;_:(H; B, d, C) splits over the basis group

V(B, d). V(B, d) is a characteristic subgroup of

g(Hs B; d; C) by reason of Theorens 8 and 1l4. The
Corollary then follows from Theorem 15.
Corallary 2 Let g bc cn eutomorphiem of Ek,n(n)’
8 € An; (s)u = vist, (s)h = 5', then N is an auto-
norphism of An.
Proof EA;n(H) splits over the basls group Vo
v, ig a characteristic subgroup of.EA,n(H) by reason
of Theorem 10, The Corollary then follows from
Theorem 15,
Corollary 3 Let 4 be an automorphism of
EA(H;‘E; d). 8 € A(B), (s)z = v's', then the corres—
pondence h; (s)N = s' 48 an automorphism of A(B).
Proof gAtH; B, d) splits over the basis group
V(B;‘d), and.V(B; d) is a characteristic subgroup of
EA(H; B; d) by’reason of‘Thaorem 9. The Corollary
then follows from Theorem 15.
vTheorem 16. E(H; B, d,’d) is a characteristic

subgroup of g(Hi B, d, C), 4 £C < Bf.
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Proof Let z be an automorphism of >(H; B, d, C)

and vs € E(H; B, d, d). Then consider (vs)y =

dv)e(s)r. Since V(B, d) is a characteristic subgroup
of >(H; B, d, €), (v)x & V(B, d) < >(H; B, d, d). We
must then conelude that (s)z € >(H; B, d, d), for all
s € S(B; C) in order to establish the theorem. (s)u
is some element v's'! € E(H; B, d, C). According to
Corollary 1 of Theorem 15 the correspondence 8 to st
induced by z defines an automorphism of S(B, C).
Then according to Theorems ) and 5,
(s)p = V'(818+), where s ¢ s(B, B{) and I + is

is the automorphism induced on S(B, C) by g. If

s € S(B; d), and since S(B, d) is normal in S(B, C),
(sIB+) € S(B; d)e Then (vs)y = (v)p(v')(sIB+). Each
member of this product is an element of >(H; B, d, d),
hence the product is and element of >(H; B, d, d).
Thus any automorphism of E{H; B, d, C) takes elements
of E(H; B; d, d) into E(H; B, d, d), and the theorem is
established.

Theorem 17 The group EA n(H) splits over the basis
kP



group, ?-A,n(H) = Vn\/ T, Vn/\ T = I,

The group T is conjugate to some group To obtained
es follows. Let G be a subgroup of H which is the
homomorphiec image of An -1 Let gh, cee s By be
benarators of G satisfying the following'relationo,
)3

(1) (ﬁi

= 8y, L= L , e++ , n.

£a) (gigj)2 = @, where i # J.

Let 5, = (1, 1, 2) for 1 =3, +-+ , n generate the
group Ap. Then the elements of To are obtained from

the elements of An by the isomorphism ¢ defined by
s 0=C(e, e, e, g, , )1, 3, 2)
8y ¢ = (e, By Ei: Siﬂha ser 8581_19 8::
8585410 ' 5 83e,0(1, 1, 2)
for i =L, ¢¢¢ , n,.

The proof of the theorem is contained in DJ.



CHAPTER IV

AUTOMORPHISMS OF >(H; B, d, C), d < € < B'

We will first find the automorphism group of
E(H; B, d, d) and then the automorphism group of
E(H; B, d, C), d < C < B, By reason of Theorem 16
the problem of finding automorphisms of >(H; B, d, C)
is'made easy once the automorphisms of E(H; B, d, d)
are known. It has seemed advisable to treat the
problem in the two cases even though some duplication
in calculations is involved.

Before proceding to the problem of determining
the automorphism group of §(H; B, d, d) we makoe the
following considerations. If T is any automorphism
of the group H, we define an automorphism T!':'of V(B, C),
dL ¢ B+, by the correspondence,

( by, by, b

3’ veo )Tl._..=

( byT, hyT, BT, *o¢ ).

3
Let I denote the identity automorphism of S(B, D),

d <D< B+, then according to Theorem 7 the corres=
pondence T*; (VS)T+ = (v)T'(s)I, for all v € V(B, C)

and all s € S(B, D) is an automorphism of the group



24
' E(H; B, C, D) if and only if,

(8)I(v)T'(s™H)I = (sve L)1,
Since V(B, C) is a normal subgroup of >(H; B, C, D),
this is an equality between multiplications, and it
is easy to see that the corresponding factors of the
two multiplications are equal. Hence Tt is an auto-
morphism of E(H; B, C, D),

In a similar manner we may associate with any
endomorphism K of the group H and endomorphism k*
of V(B, C).

Theorem 18 4 is an automorphism of >(H; B, d, d)
if and only if there exists,

(1) s’ an element of s(B, B+),

(2) v' an element of v(B, B+),

(3) T an automorphism of H,
;uch that,

(Wp = (u)T+Ia+Iv+ , for all u & E(H; B, d, d).

Proof Suppose £ is an automorphism of E(H; B, d, d}.
Then >(H; B, d; d) = v(B, d)u\V 8(B, d)u. But V(B, d),
by reason of Theorem 8, is a characteristic subgroup of
>(H; B, d, d), hence >(H; B, d, d) = V(B, 4)\” s(B, d)x,

and V(B, d)(\S(B, d)uz = E,
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There exists an isomorphism between S(B, d) and
S(B; @)p, whose form we now seek to discover. Since
S(B, d)g is contained in >(H; B, d, d), the image of
any element s € S(B, d) must have the form v's', where
v! ¢ V(B, d), s' € S(B, d). We have seen in Corollary
1l of Theorem 15 that the correspondencé 8 to s!' is an
automorphism of S(B; d), and hence there must exist an
element s’ € s(B, B+) such that s' = (s)Is+, since
according to Theorems 4 and 5 all automorphisms of
S(B, d) have this form. The element s” is the element
whose existence was asserted in (1) of the theorem.

Any element of S(B, d) may be writton as the
product of a finite number of elements of the form
(1, i). Hence to discover the image of (1, i) under
My 1s to know the image of all permutations. We
therefore reduce our study of sz to that of(l, 1i)u.
(1, i)p = vys', where 8! = {ds i)Is+.

Ve next proceed to the characterization of vy
and the calculation of the multiplication v+ of
v(B, BY).

Since the order of any transposition is two,

we have,
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K_l, i),cg__’ L. Ei(ls+, is+)] S
This equality can exist if and only if each factor
of vy has order two except possibly the 18" and is+
factors, and moreover the 1s’ and 1s+ factors must
be inverses of one another.

We have in Theorem 2 discovered the form which
all endomorphisms of V(B, d) must have, and hence
the form of all automorphisms of this group, For an
arbitrary element v of V(B, d),

v = ( ) s © hi y **° hi s 8 5 oo )

1 n
we have,
i i i
- 1 2 n
(v)ﬂ - ( h Tl hi Tl '0'h1 Tl » L )
l 2 n
i i i
R W 'L JE P T S A

e T e

where the Ti are endomorphisms of the group H, and

J
only a finite number of the factors of the multipli-
cation are different from the identity.
In the calculations which follow the subscript
of an element h will always indicate the position

of h in a multiplicatlon, that is h, will be the j=th

J

factor of some multiplication v. When ever we require

two factors of an element which is a multiplication to
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be distinct we will indicate this by employing super-
seripts, distinct superscripts indicate that the two
factors are distinct elements of H., Whenever a
multiplication has undergone a transofrmation by a
permutation we will employ superscripts to indicate,
after the shuffling of factors, the equality existing
between the factors of the original and resulting
multiplication. Like superscripts indicating the same
group element.

Let us consider generating elements,

s = (1, 1) of (B, d),

ve=( eee , e, hj s 8 5 se+ ) of V(B, d).
Since gz is an automorphism of >(H; B, d, d) we have,

(B)ﬂ(v)ﬂ(s;i)u = (svs-l)u, where
(1, i)p =
» e, «0.)(18", 187),

=(ko-o s e’ki, e ’ki

1 n
(...’e,hj,e,...)ﬂ,u
( ny1d, nyrd, nyd, -+ ),

where only finitely many of the factors are different
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from the identity. We compute this equality considering

two cases.
Case 1 Suppose J# 1, J # i. Then since

(svs‘l) = v, the equality reduces to,

ledplw)iala g = {vig, on

+
B ses , & kil’ cee ki 3 6 5 oo )(lB » ia*)
n

k J J ...
>< ( b1y, T3, h,T ) ><

2’ 3%
+' + - -1
(13 » is )( LA > e , k l, eee 5 k y € 5 v ﬂ
iy 1
n
= ani, hJT%, th%, cee ).
Direct computation on the left side of the equality

yields the following multiplication,

. -1
( eee 4, h Ej’ ese .k h TJ k g "%
3 a 1 M e
co 0 j » cee J -l K
. kls+hJTis+kls+' ’ kis+thla+kis+’
: j -1
..y k n.T k see ),
B W i M VLRSS

Then the resulting equality between multiplications

demands equality between corresponding factors. Hence

we have,

+hTd Zi+,

(1) n1’ J

iS+ = k

is s+k
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J J -1
(11) hT§y =k, hTy k,°,
n m m nm

for m.n'l; e ; n; i # 1a+, i, % is*, and j ¥ la*,
J # 1s*. Since in equality (i) and (ii) h represents
the same group element we have dropped the subseript.

Gase 2 Suppose J =1 or J =41, Either equality
will yleld the same result, and hence both cases are
included in one consideration. The calculations
fecorded ar§ for § Q 1.

v = (‘hi, ° sttt ), 8=(1,1),

- . .
(svs 7)) = ( e0e , @ ’ hi » €, *++ ), and

(8)u(wa(s™ g = (vev y o, BY 4 @, ooe dty or

*
N’
~~~
[
-]
+
-
VY
Q
+
~

B"':e:k s **c o k, , @, e
i1 in '

11 1,1 1 L., '

.;; (nlrl, hyTy» thB, ' ) ><

(18*, is )( see [:] » kil ’ e ece » kil » e » s e -2]
: : 1 n

= ( hiTi, himé, hiwé, s33 ),

Direct computation on the left side of the equality

yields the following multiplication,

1.1 ' 1.1 -1
( eee 5 AT, eee , k, hiTy k
1'm i,174,7y, 0



S . RS | 1,1, -1
o, 11 -1
see k, hiT, k cee ).

Then the resulting equality between multiplicutions
demands the following equality between factors.
(111) BT} =k, nT} K%,
m m "m°m

' + +
m=1, ¢+ , n, 1m ¥ 1ls , im # 1is .

i 1 -1
(iv) hTis+ = kis+ths+kis+’

i 1 -1
(v)  RTy + = kg +hTy +k o+,

The equalities (i) through (v) are restrictions on
the endomorphisms T§ of H., We may now further our
study of images of multiplications under g in view
of these restrictions.

Suppose J # 1 and consider,

(eee sy e, hj > 8 5 eee i =
T%;,thg; thi, cee ).

3
( thl’ hj

According to restricticen (i) each factor in the image

multiplication is conjugate to this* except the

factor hJT§s+' But since gz is an automorphism of V(B,

the image multiplication must be an element of V(B, d),

d),
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hence"only finitely many of the factors may be
different from the identity. It then follows that

ng + must be the identity

and in this case the factor thg + must be different

from the identity. That is for j different from 1,

every factor save the factor h

( -010 ’;e”hj’e’ LI )”-

(".'.,'e‘;th"-,eA,"’ ).

JJs

We next consider the case where j = 1,

( hl 9 © 5 oo )ﬂ-’ ( thll., thég th;” LR )o

If we rewrite (v) in the form,

1 i l
i#—ki +hT +

hT 1s ia ’

we seeAthat_every factor of the above recorded image

1

multiplication is conjngate to some element h1 1

But we have observed in the previous consideration
that for J £ 1, hjri + 15 the identity element, and
henoe all factors of the image multiplication are the
identity excépt the 18+ factor. That is,

(hi’e,voo' )#n( ao-’e’th}.s§,e'ooo ).

in the béginning we assumed the most general

representation of an automorphism of V(E, d) for x,
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and for the correspondence assigned we have only an
endomorphism of V(B, d). We must now determine what
further restrictions are neqesséry to insure that the
correspondence is an automorphism of V(B, d). Suppose
we are given an arbitrary multiplication of V(B, d),

( ree L o€, h]!. ’ see h' » e, see )‘

1 n

We ask if this multiplication arose from the image of

some other multiplication under g, This is caquivalent

to asking under what conditions will the set of

equations,

i
h, Tims*zh:{ ,m=1, *** , n,
m m m

have unique solutions h1 s m=1, °**, n, in H, Such

m
a unique set of solutions can exist if and only if
thé Tis+ are gutomorphisms of the group H. With this
added restriction we have completed the characterization
vof the images of multiplications, but will latter employ
(iv) to change the representation.

Let us refer to equality (ii) restricting the

endomerphisms whose subscripts are different from ls+

+
and is , We have seen that if B be different from js‘
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then hTJ  is the identity. In case 1, which produced

m

equality (4i), we have restricted J to be different

: , ‘ .
from 1 and 1, so that jJ may be so chosen that js8 m s B
and the following equality results,.

J 1 J
kjs+hTJs+kJs¢ = hTJa*’

Inasmuch as we have required that TJ + be an automorph-

Js

ism of H, we can only conclude that k, + belongs to

| is
the center of the group H. That is the multiplication

componnent of the image of (1, 1) under g must have

every factor except possibly the 15* and the ia*
factors belonging to the center of the group H,.

| We will now show that the factors of this
multiplication which do not occupy the 1s* and s’
positions are the identity.element.

Since (1; 1)(1, j) has order three, we have,
[, va, 94’ -

[( k1’ kz, k3’ .. 0.8 )(18*’ is+) ><
( hys by, h3: -se )18, Js*ﬂ 3 - E,
By direct calculation we see that if n be different

from 18+, 1s+, and Js+, then the n~th factor is,
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knhnknhnknhn = @,

We have prevously sesa that both hn and kn belong
to the center of the group iI; and moreover each has
order two. It then follows that hn and kn are
inverses of one another., The ls* factor of the
above product is,

k18+his+kis+hls+kjs+hja+ = ©

which, in view of the centrality of the ceclements

k. # and h

js is+ together with the equclity,

kygtksgt = hygthygt= e,

reduces to, his+kjs+ = @, Jince his+ has order two
hyg+ = k35+. Thus the factors of the image multiplicat-
ions of (l; i) and (l; j) are the sams if we exclude the
ls+, is+, and js‘ factors, and further the Js+ factor
6f the multiplicatiéh cémpbhnent of (1, 1)z is equal to
the 1g+factor of the multiplication oompongent of
(X Jiie

In a similar manner by considering (1, j)uz and
(1, t)p where t # 1; t # j, we find that tho ts'
factor of the muitiplication component of (1, J)x is
equal to the JS+ factor of the multiplication component

of (1, t)u.
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But the ts+ factors of the multiplication corponent of
(1, 1)z and (1, §)g are equel, and the jJs foctor of
the multiplication component of (1, i)z and (1, t)u
are equal. That is the ts and Js+ fuctors of the
multiplication componont of (1, i)u are equal, and
hence all factors of the multiplication componenet
of (1, i)p except possibly the 1s' and 1s* factors.
But this multiplication is an element of V(B, d) and
hence all factors except possiﬁly the ls+ and ia+

factors must be e, Thon,

(1, i)ﬂ'”‘( Tt s @, Kygty e, 0ty 8, kg%, 0,
‘oo }(ésé, is+).
Let v. be the multiplication of V(B, B')
whose ls+ factor is e, and whcse :!.s+ factor iz the
is+ factor kis+ of the multiplication component of
(1, 1)z. This multiplication v  is the element of
V(E, B+) whose existance we asserted in (2) of the
theorem,

We have seen that,

( hl, € 5 oo )ﬂs( see 3 © » this"" 8 5 e )

1
where Tls+ is an automorphism of H. Let Tis+ generate
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in a manner described in the discussion preceding
this theorem; an automorphism 1 of 3(H; B, C, D),
d 5}0; D < Bf; whieh i1s moreover an automorphism of
>(H3 B; d; d) since S(H; B, d, d) is a characteristic
subgroup of >(Hj B; D; C). This is the automorphism
which forms the first component of 4, and Ti’* is the
automofphism of H whose existance we asserted in (3)
of the.theorem.

If we now fefer to restriction (iv) on the auto-

. S | 1 ,.-1
morphisms Tis+’ hTiB+ = k18+thu*k18+, we observe

that we may write,
(."",e)hd,e, LN ] )IL-
, 1 .
(e0r , @, kj *hJTls*kJ' ’ » **° ),
»(1: i)ﬂ -
( °°°, &, kls*’ e, *** , 8, kil+ > @ 5, **° )
>< (18", 1s5%)
which wé may now record in simplified form as,
( eve , @8, hJ: 8 5 000 Y=
( s s | | h ‘ . ¥ + +
SRR ¢ , By, e, ¢ )T I. Iv »

' ' ' +
(1, L)p = (1, 1)T I +I,+, and hence for an arbitrary



element u of >(H; B, d, d),

(W) = (u)T+Is+Iv+.

Conversely suppose we are given an element st
e + +
of S(B, B'), v. € V(B, B'), T an automorphism of H.
Then I5+’ Iv+, and T+ are each automorphisms of
>(H; B, €, D), d £ C, DB, and hence the product

+
T Ig*+I,+ is an automorphism of the group. Then the

groups E(Hg B, d, d) and E(H; R, d, d)T+IS+Iv+, are
isomorphic. But each of the asutomorphisms T+, I.*
and I_+ take elements of S(H; B, d, d) into

S(H; B, d, d). Hénce the restriction of the auto-
morphism T'I_+I_+ of >(H; B, C, D) to >(H; B, d, d)
is an automorphism of the latter group., This is the
automorﬁhism ﬂ; and the proof of the theorem is
complete.

Corollary 1 pn = T+Is+1v+ is an inner automorph-
ism of S(H; B, d, d) if and only if 7t is generated
by anvinner automorphism T = Ihfl of H, e’ ¢ s(B, d),
v’ is the product of -an element of V(B, d) and the

scalar |h| of =(H; B, B*, B*).
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Proof If T+.is generated by the automorphism
Ih-l: s” e S(B, d), v = vl[h_‘j, v e V(B, d),
[h] & v(n, B ), then,
ﬂﬂTI"'I +D‘] -TI'PID{‘I*'N

Tz[hjr *I;nIa*I;uI Ia»«,

kah& henne ﬂ‘ig'anfinner automorphism of E(H; B, d, 4),
'CngerselyISuppoae # 18 an inner auﬁomorphiam of
>(H; B, d, d), then,
b a‘I;u = Iv.'a' ‘ IB'IV'.
Hence 4f h = e, and T = I -1, 4 - T'I VI ¢,
3 ' e - +
where, s' & S(B, d), v eV(B, B ), v =v'[h] =
= v! g V(B, d).
Theorem 19 The group of three-tuples (T, s, v ),
where T is an automorphism of the group H, st ¢ s(y, B‘)
+ .
v g V(B, B ), with the operation,
: A + +
(Tl’ 81 vl)(Tgl Bgs Vz) -

+-1)

+
(7375, 8383, voo5(viTy)e, ),
IS homomorphic to the automerphism group of >(H; B, d, d)
under the correspondence A\, (T, s*, v*)k.- B

L= Tf18+1'+, gnd the kernel K of A is the set of all

' o+ e *
three~tuples (T, s , v ), where s is the identity
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permutation of S(B, B*), v' is a scalar [h] of

v(B, B+) » and T is the inner automorphism I .3 of

h

the group H.
Proof We will first show that the set of

three-tuples (T, a+, v*) with the above defined

operation form a group.

Consider the element (T , s+, v’), where T
o) "o’ o o

is the identity automorphism of the group H, s;
the identity element of the group S(B, B'), v; is
the identity element of the group V(B, BY). To

demonstrate that this element is the identity element

of the set of three~tuples we make the following
caloculation.

* + o+
(T, 85 v')(T,, 65, Vo) =

4+ 4 4+, 4 4, 4=l + +
(TTO, 8,8 » voso(v To)s° ) =(T, 8, v ).

I¢ (T, s+, v') be an arbitrary element of the

set we see that, (T'l,5+'1, M -l(v*-lT-l)a*) is an

inverse for this element since,

(T: 3+; V+)(T-1) 5+-l: 3*-1(7*-1T+-}5+) -

B
(Tot 3°s 70)-

+=] +-1( +-1 ¥=1

Then ( T , 8 —, )s*) is an element of
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the set since the first two components clearly belong
to the automorphism group of H, and S(B, B+) respectively
and the third component is an element of V(B, B+)
since T+ restricted to V(B, B+) is an automorphism of

+
that group, and further since V(B, B ) is normal in

E(H; B, B+; B+); conjugation by a permutation of any
element of V(B,lB+) produces an element of V(B, B*).
It follows from the definition of the operation
for the set of three-tuples that the set has the
+ A
closure property. Thereforg it remains to demonstrate
that the associative law holds.
Ty, i, vi)(Ty, 3, v3)] (T4, 83, v3) =
[117, s3sls vhss(viTs)es~l (75, s}, v3) =
[?1T2T3,~s§a§si,{v§s§ vasa(IiTz)sEi} Tgsg'l]-
[?1T2T3’ sgszs{, vgsg(VET;)sé(vITzT;)sgl a;-¥].
(7 83, vi) [(75, 35' v3) (T3, 83, v3) ] =
(1, 1, v [T,05, s3of, visd(vind)el 1=
[TszTB; s;s;s{, v;s;(v;T;)a;" a;s;(v;T;T;)s;-ls;-l -
[1,7,%5, 38387, v3e3(viny)eptvinrs)asss —
Hence the set‘of three~tuples with the defined operation

form a group.
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Let A be the correspondence between the group of

three=tuples anq the automorphism group of E(H; B, d, d)
as defined in the theorem. We will show A is a
homomﬁrphism.

The correspondence A is onto, for given any auto-
morphism g = T*I’+Iv*, there exists a three-~tuple,
namely (T; s+; v') such that (T, 8*, v')a = Lo

N is a multiplication preserving correspondonoce.
Let;.(Ti;aI; v;)x ->p1; (T,, a;, VoA = #y, AND then

(Tl; 8y » vl)x(ra; 8ys Vo)M= papta.
conaider;ply2 = T;In{IvIT;IB;Iv; -

e .

We desire to change the form of that portion of the
product which occurs within the braces, so let us

observe its eftect upon an element of the group,

+=1 +
(ve) 1} 1,1, 11, L0 ] =

171 2
+ +[ + + _+=)1 4= +—{] + _+=1 =1
v232[}lalvT2 ssl vl T2 32 vz =

LI P R S 4=1, 4+ 4=l 4=1 4-1
v2§2(v122)sl(vs)sl (vng) 8, Vv, =
(vs)IB+Iv+T+I +Iv+ = (ve)I_+ _+, +

1 1°2 %2 V2 Va8,V

(vs)I_+ +, + + +=1 4+ + = (vg)I + +I_+ 4+, + 4, +=1
v28,(7T5) 8, Tey8y 8,8 Vy8,(vT,)s,

+ + -
T8

L]
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= 1T} B
That is ) 1T213;s;1v;s;(vIT;)5; l’

and hence,

+  + + t ) =] =
(T1T2, 8,875 vzsz(vsz)s2 A Byl oe

+ + + +
But, (Tl’ 8y Vl)(Tza S5 Vz) A =
+ + TR I T
Ty Tos 8,895 vzsz(vl’l‘z)s2 i N, hence
+ + + +
(Tl"sl’ Vl)N(Tz: So» Vg)h o

+ + +

A +
(le sl’ vl)(TzD 52) V2) 7\' .

Therefore N 1s a homomorphism from the group of throe-

tuples onto the automorphism group of E(H; B, d; d).
We compute the kernel K of A. Let Koy E K.

4+

(1, i)[to = (1, 1)T I +I ¢ = (1, 1)

But T* acts as the identity automorphism on permutations,

and therefore the equality reduces to,

(1, i)Is+Iv+ = (1, 1),

which can exist for all i if and only if s* lezves all
i fixed and therefore is the identity permutation.
Then, (1, 1)I* = (1, 1), for all i, if and only if v'

is a scalar [ﬁ]. :



L3
Consider,

' ' | +
(hy @ 5 *¢9 ) ko = (hy e , *¢¢ )T I+ ¢+ =
— -] : :
(kitTk “, e , *** ) = (h, @, *** ).
This equality can exist if and only if T = Ik-1.
Thus we have shown that the kernel K of A,

: o+ + +
is the set of three-tuples (T, s , v ), where s
1s the identity permutation of S(B, B'), v' a scalar

k of V(B; B*), T the inner automorphism I,-1 of H.

Corollary 1 Let A denoie the automorphism group

ofﬂ§(ﬂ;_3, d, 4), A, those elements of A which leave
8(B, d) fixed elementwiss. Then,

(1) AB is a subgroup of A, such that any auto-
morphism g in Aa has the form,
p-’T*Ilh], [h] a scalar of v(B, B*).

(2) The set of two-tuples (T, h), T an automorphism
of Hy, h an element of H, form & group with
the operation, (Ty, hy)(T,, hy) =
(Tirz; hy(hyT,)).

(3) The group of twoe-tuples are homorphic to A.

under the homomorphism A,



hi
(T, BN =4, p = T+I[h].
(L) The kernel K of A 18 the set of two-tuples
( Ih'l’ h ).

Proof The assertions (1) through (4) are
1mmediate consequences of the theorem, since the set
of two-tuplas form a group isomorphic to a subgroup
of the group of three-tuples under the cprrespondenco,

(T,0h) <> (1,8, )

Theorem 20 4 is an automorphism of E(H; B, 4, C),
d<C< B+, if and only if there exists,

(1) s e s(B, B+)’

(2) v & ¥(B, 4d),

(3) T an automorphism of H,

such that, (u)g = (u)T'I_+I_+, for all u € >(H; B, d, C).

Proof We have seen in Theorem 16 that

;(H; B, d, d) is a characteristic subgroup of

E(H; B, d, C), hence if g is an automorphism of
>(H; B, d, C) its restriction to >(H; B, d, d) is an

automorphism of that group. We have in Theorem 18

-

determined all automorphisms of E(H; B, d, d4), hLence
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we will rbe”conOerned with extending the automorphisms
of >(H; B; d; d) to automorphisms of >(H; B, d, C).
As is e'vi‘de'nt from the statement of the theorem not
all hutonﬁoxfphisma of :>:(H; B; d; d) may be extended to
an auttl)moz"_phisﬁ of E(H; B; d; c).
There is d.etve‘rmined by z an element s of

s(s, B") ‘su?h ££;t,.

““““ | V(B‘)ﬂ ;‘" ("?')l(ﬂxa"): s € S(B’& d).

If s ¢ S(B, C) then,

(s)g = vis', v' g V(B, d), s' ¢ 3(B, C).
IAcc;rding to Corollary 1 of Theorem 15 the corres-
‘pondence “)u.; 8N = a'; is an automorphism of 8(B, C).
The automorphism induced on S(B, d) by u extends to
S(B; IG) in one and only one way, by reason of Theorems
4 and 5, hence A = IB+, and the elements s 8 S(B, B+)
is the element whose existance was assetted in (1) of
the theorenm.

- Any ‘elen;ent 8 8 S(B; C), according to Theorem 3,
may be‘deé_qmpésed into the product of two elements 5,8,
such that the order of each 8; and s, is two. We will

therefore reduce our study of sz to that of LT
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We then have,

(sl)p = vl(3118+), v, € V(B, d).

. 2 .
+
and since sl has order two, lvl(alIs )l = E,

We observe the factors of vl considering two cases,

Suppose n is an index such that x, does not

belong to the set of elements moved by s;I.*, then
it follows from the above equality that the n-th
factor of vy has order two. On the other hand if
i is an index such that x, is moved by (sl)Ia+'

then there is an index j such that (xi, xJ) is a

" transposition of (sl)IB+. Then the above equality
demands that the i-th and j=-th factors of vy must be
inverses of one anotther.
If n is an index such that x does not belong
to the set of elements moved by 8,5 We will show that
koot belongs to the center of the group H. Let,
v=( ¢, e, hn y B 5 *os )
and consider,
(8yv Szl)ﬂ =(v)g=0(*"*, e, h TO 4, @, soe

n ns

= (s u(vuls] ) =
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~1 =],
Vl(slls"‘)( eee 5 € , h Tn +, € 5 oo )(31 )Is+(v1 ) -

n*ns
n -1 .
(eee s 0, kng hpThg*kpg* 5 @ 5 = ).

This equality of multiplications demands the following
equality of factors,
AT® 4 = k__+hT" +k-l+.
ns ns ns ns
Since Tﬁs* is an automorphism of the group H, it
follows that kns+ belongs to the center of H. That is

all factors of vy belong to the ceater of H excapt

possibly those factors J such that x, + belongs to the

g J 8
set of elements moved by (sl)Is*.

We next show that each of these factors which
belong to the center of H is moreover the identity
element of H. Let,

?l == (xl" xz)(xaj xlb) cee

and define an element s, & S(B, C) as follows,

8 == (x X )(x X ) L3N 2 Y
t | 1’ t2 3? th

wheré the xt do not belong to the set of elements
i

moved by 8q, and hence Bt has order two. The

existence of such an element s, 18 insured since we

t

have required that ¢ < B+, and hence 8y must move fewer
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than B elements. Since stsl has order three, we have

B”i%)ng =k,
(Sl)ﬂ s 71(31)18*: = ( h1: hzs h3’ vev ),
(St)l-" " vt(st)IB*, vt - ( kl’ kz’ k3’ eie e )0

By direct celculation of the above equality we
discover that we have in the 18" position the factor,

hls+k2s+h23+kle+htd;kt23+ =

But x, does not belong to the sot of slements muved

does not belong to the sat of elements
2

moved by 8y hence k28+ and htzs* belong to the center

of H, and since, hls+h25+ = kla+kt .+n e, the factor
2

by 8, and x,

reduces to k., +H + = g, Then k
2s tzs

since each of the elements has order two.

2'+ - ht28+ since

Consider a third permutation of S(B, C),
s, = (x4, x_ )(x,5 x ) coo
w 1 Vo 3 wh
where the xﬁ' do not belong to the set of elements

i

moved by 8y or st.

‘(Bu)” P vw(sw)Is+, v"-‘( 295 Lo f3’ cer),

Then calculations similar to those just performed with
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‘the elements 8, and aw yield,

K +=2¢ + 1=2, 6 ese
a » » ] »
¥ t,®

but, hw18+ = kwis*’ and hence,

h + = f 4= h +,
wis tia tia

‘Therefore all factors of vl are equal except possibly

those factors h, such that xd(sl)la* % xd. But

3

W

, € V(B, d), and hence all factors of v, are e

1l

except possibly the factors h.1 J an index such that
’
: + .
xy(8))1 * 7 =,
We have then the following information reagarding

vir B4 = vl(al)g* « I (xi, xJ) is a transposition
of s, then h, +h, + = e, If x does not belong to the
1 is Js m

set of elements moved by 8y then hms* is the identity.

Let us consider (sl)p(xi, xd)p, where (xi, xj) is

a transposition of 8y Singe_(xi, 13) is an element

of 3(H; B, 4, d), a characteristic subgroup of
E(H; B’ d, C)’ we have ? (xi’ XJ)[L =

( oo, 0, h18+’ @, " , 6, hds": e, ...)(*18':

x:,‘_*.’)»
-
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= vi(s!)I where s8] = 8 (x;, x,).
1 1 B+, i S

Since (xi,'kj) is not a transposition of s} the

is'~th and js'-th factors of vl are e, but the 1s*-th

factor of vi is the product of the is*-th factor of

vy and the js+-th factor of the multiplication com=-
ponent of (xi; xj)ﬂ. Hence the is'® and jo’ factors
of v, are identical with the factors in the corres-
ponding positions of the multiplication component
of (xi;_xj)p. The multiplication component of

(xi’ xd)ﬂ was formed by conjugating (xi, xj)Is+

with an element v; e V(B, B'). It is evident that

the is+ and js+ factors of v, can be formed in the

same manner.

In the event that s, moves an infinite number

1

of elements, it is not possible that all h a+ be

J
different from the identity, yet we have seen that
all hjs+ are formed by conjugation by the element
II determined by the restricition of p to

E(H; B, 4, d). If (xi, xj) be a transposition of 8.5
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and if the is and js factors of v, are distinct,

: + +
then the is- and js factors of wv; will be distinct.

We must then restrict vI in such a manner that this

situation can happen only a finite number of times.
Hence we must require that no two factors of vi be
repeated infinitely often, and there must not occur
vin'v; an infinite number of distinect factors. Under

these restrictions vl will always be an element of

v(B, d).

vI so restricted may then be written as a

‘ +. ) +
product v [kl, where v & V(B, d), and [k] e V(B, B+)

ES

1 which was repeated

k being that factor of v
infinitely often. Then,

”=T+I+I+=T+I+I+ =
1°s v 1*s “v [k]

I += I+I+=T+I+I+,
v v 8 v

TYI +I pt
18" 1 Tnats

[x]
where 'I‘+ is generated by the automorphisnm TIk of H,
Conversely given an element s ¢ s(B, B+),

+ 4 :
v € V(B, B ), and T an automorphism of H, then

, . _ _
I,*, I,*, and T are automorphisms of >(H; B, B*, B*).

Hence the groups §(H; B, d, C) and E(H; B, d, C)T*IB+IV+
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are 1sqmqrphie;b But each of the automorphisms T*,

11’+;‘and11v} 6rﬁ§KH;iB;_§*; B+): takes eieméﬁts'off
(13 B‘,'_ d;‘c)u into elements of 2(H; 3; c:; C). Hence
~tﬁe restriction'of the automorphism T+I 11 +of
>(H; B, B, B ) to >(B; B, d, C) is an automorphium
of the 1stter group. ,Thia is the automorphipm iy
: gnd this cpmpletes the prqof of_the,theoreh.
- Corollary 1 4 is an inner automorphism of
>(H) VB;; 4, €), 4 < C<B*, if and only if T* i
gbnbiatéd by the identity automorphism of H; and
8’ 1s an element of s(n;‘c), : ,
. Proof - If T 4s generated by the identity auto-
morphism of H, and a* & S(B, ¢) , then,
Y '?:'1“;"18*17* - 1‘."“8*; »V+PA+ & >(H; B; d, €),
and hence £ is an inner automorpﬁiam.
Gonfora?i&;suppbse p is 1n£er;
L= I , ue >(H; B, d, C), theg

Moo= I = T I +I +, and T I ot - b d I +-1,
Horeover, (n)I + = (s)I I + for all s ¢ s(B, ¢€),

the;eforol- € S(B, c). Then finally - I I(v* +)-1

is an inner automorphism; Since rt 1eaves 3(B, C)
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fixed elomentwise; ?” -I[H];Mbut [e] is ths only
aoolar of ;tH; B;.d; C); honoo:?f ie generated
‘by tho identity automorphism.

Thoorom 21 The group of ‘three~tuples
v(T,xs ; v ), T‘an automorphism of H, s’ ¢ S(B; B+),
v g V(B,jd), with the operation,

(Tl’ ,31! Vl)(Tl’ 31: 71) =

(T e; I, vys,(vT5)a; ),

ié #éomorphio to the automorphiam’group of

- S(ay ‘z'a,i.f 4, €), d< ¢ < B,

ngrootexwhe set of‘three-tupioo form a sub-
group of the set of threo-iuples of Thooremﬁl9;
andghanoo=the:mapping defined there is a homo-
morphioAmappiog of the set of'throeétupleo named
above onto the automorphism group of >(H; B, d, ¢).
Call this: restriotion of the homomorphiam N of
Theorem 19,1h'. Then the kernel K' of A' is
oontainod iooohe'keonol‘x of n. But the only
soalorvoontoinodl;o V(B; d) is tho idootity mult-
1?14535i§#;nh°n§°,5? has order ono; and h'.ia the

dasirodoisomorghism.



- CHAPTER V
AUTOMORPHISMS OF THE
 ALTERWATING MONOMIAL GROUP
: Sanoaéiy"if an automorphism of Eﬁ,n (1).
’According ta fh§orem 10;‘vn is a character;atio sub-
vgronp of -A '(H); and hence, -

(H)-VUAﬂ',andV f\A,ut-E.

Then Anﬂ‘-ia cénjﬁgatevto a grbup To which is isom=
okphig to'A# undér an isomorphism'¢ a8 determined
in Theorem 17.'

o © -] - .
Ang! =u T u, ue Zﬁ,n(ﬂ)’ and we may write,

Aﬁp'f:“‘ = To; A ¢ —Vro , 'and«Anu'IﬁqS“l - A .
Th;; ﬂ}Iﬁ¢-l'iélan‘aﬁtomoiphigm“or Ay " and by reason
of Theorems 4 and 6 there exists an s ¢ S_ such that
xs; a‘;{Iﬁé;iJoﬁ Ay “Then ¢ B'Is;-ipflh, and we
ha?a e#téndod ¢ to an automorphigm /) of tho group
>i n(H). o= I *-1@'1 i and o ¢ on A .

Then we may write,
(1: 3: 2)# - (’a e, e, Sho b & ; 8, )(1: 3: Z)

(1, 1, 2)# = ( e, Si: 31) afsh. St

gigi;l’ 51) 8151*11 see 818n)(1’ i, 2)’
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i= h; :~f; n ; where ths g, are as defined
in Theorem 17.
Consider generating elements (1, 1; 2) of An
and ( *-° ; e , hj; e ; see ) of v, Then since

is an automorphism of E%,n(ﬂ),

(s)p(v)u(s’l)p = (svs-l)p, for all s € A_
and gll v e Vn; and in particular for the generating
elements named above. The form of an endomorphism
of Vn was determined in Theorem 1 as a function of
' n2 endomorphisms of H. The above equality will
serve to restrict these éndomorphisma of H in such
a mannervas to have an autémorphism of Vn which
extends to an automorphism of EA;n(H)’ It will be
necessary to consider a number of cases. In each
case the ébove equality has been calculated for the
generéting elements, but such calculations have not

been recorded, only the resulting restrictions of the

endomorphisms T; of H.

Case 1 J# 1, 2, 3 and i = 3

(1) v} = n1d = n1J

(2) gith.gi = h Ti, i= l}, *eesy, N
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Case 2 J =1 end { = 3
(1) b1} = bt
(2) hIy = b
(3) b =nel
(8) Eth:;B.i’_' h‘li; m= k4, *t, N
Oago 3 J= 2 and :l.i='3
(1) w1y = by
(2) hT2 = n13
(3) b3 = n)
W) gpr2gt = w13, m =k, e, n
Case 4 Jj=3 and i=3
(1) g hTgt = hil, m= 4 **%, n.
Case 5 1% 3 and J # 1; 1, 24
(1) nr) = nti |
(2) eznrier® = a3
(3) sth%sila'? bt
’ -2 )
(L) efhTgs; = hTy
(5) e hP %t = n1d, m= 4y 0, neom AL
03506 i¥3 and 1 = J
(1) T} = b1} |

‘2) githgi ﬂhTz :
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' -1
ni 1

C2nd g2 =1 _ a7l
(%) gihTB i h 3

(5) gZS hTi “lgz l = th’ m = h’ KX ) > Nne N * i.
i'm m i m

Case 7 1% 3 and j =

ml 2
(1) hTy = hI]
1 -1

(2) githgi .hT2
-1

1277 _ 2

(3) T 281 hTi

2hT1 2=l _ 2
(4) iy Bgi e

-1 o~1 '
g2g nTle~lg § =-hT§, me L, **° , n.m# 4.

Case 8 1 # 3 and j=

(5)

-

(1) h1? = hT]

i

2 -1 _ ol
(2) githg hT2

2,m2. 21 L od

-1

2 2~ i

T

(%) hTBgi = h 3

(5) &2gh72g 12 = nrd, ma= s, v, nm ot
Theorem 22 If n > 6 and H contains no subgroup
isomorphic to A l; then any automorphism of > (H)
differs from an automorphism g of > (H) by an
automorphism I +, ut e En(H), where 4 is constructed

in the following manner,

(s)r = 8, for all s € An,
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( hl;-h_z;_hg;' sev 5 by Ju=

{(h‘l, bg,hB. » by )[pK]}T+, P aiﬁlh‘
where T‘ 1$ generated by an automorphism of H, and
K;ié‘an endémorpﬁism of'H mapping H upon a subgroup
of its qenfexfiﬁ suéh a manner that 1 + nk is a
central auﬁomofﬁhism~of He

PQ&of- F6r ﬁ > 6 the only homomorphic image of
X o Sn the group B 1s the identity subgroup, since
ve ha#errequired that H contain no subgfoup iéomorphio
to An;l; Thﬁt is in the preceding calculations,
g = 5; i1 =14, *** , n. From these calculations we

pick the following restrictions on the endomorphisms

i

Ty |
‘ i 1
(1) h'l'l = h‘l’i

(1;) hTy hTy

(111) hTi - hT{, 143, §%1
(iv) h'l‘i -nri, 1> 2

i
1

(1) follows from 3 case 6, 3 case 5, 1 case 5
for i % 2, 3)_ Then from 1 case 7, 1 case 2, and

from 1 case 8, 3 case 7, 3 case 2, 1 case 3, combined
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with the equality just established we have (i), and
2 3

moreovar have shown that th = th.

(ii) follows from 1 case 6, 2 case 2, and
3 case 3.

(iii) follows from 1 case 5, and 1 case 1 for
j# 2, and for j = 2, from 1 case 7, 3 case 6, 1 case
1, and 1 case 8; 1 case 2, (1) and 1 case 3.

Finally (iv) foilows from (i), 1 case 7, and
1 casé 2.
=T

= 7', and 77

If we set, Tl 1

1
we may write by reason of ?heorem 1, and (i) through
(iv) above,

(eeve , e, hj y B 5 %0 Ju =

(hj&?, cor hJT , h,Tt, h, T, eee , hj'T').

J J

J
plication.

where h T' is the j=th factor of the image multi-

The permutability conditions of the endomorphisms
of H now become, hT'kT = kThT'.

Since the elements ( h , e ; see ) and
(e, X, e, ¢+ ) commute, we have hTkT = kThT,

for all h € H, ke H. 'That is HT is an abelian sub-
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group, and is moreover contained in the center of H,

since H = HT'\J HT

Let ( kys ks k3, cee kn) € Vn’ then since

M is an automorphism of E; n(H), the following set
2

of equations must have a unique set of solutions

hi s I'{, izl, LA 9 n.
th'hzThBT"'hnT = k

™ Tt -;ooc —.=
thhz- gT hnT k
H H :

—-oo ]
thhzTh3T hnT

i
=
*

If we agree to let T be the correspondence

hT = hT'h T,
we may rewiite the above set of equations in the
following simplified form,:with the aid of the
permutatibiiiiy conditions;

hl'rp'f =k, hz’l‘p'_f = kz; ses hnTpT = k_,
where p =iﬁlh;' If we further alter the equa@ions by

enploying the relations,

hm = ymhl’ km = xmkl, m = 2, o0 ) n’

and multiply the first equation by the equation

resulting from taking the inverse of both sides of
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the m~th equ;tion we obtain,
Tt = xm; m = 2; *** , No
Singe these condltions must be satisfied by some 75

for every set of elements x, € H, it follows that T

b
must be a correspondence of H onto itself. The
correspondence T i3 moreover an automorphlism of H,
That T i3 multiplication preserving follows from the
fact that HT is contained in the center of H. T is
onto; and h;s kernel e. Suppose the kernel is
different from e; then there exists an element h € H,
h # e; such that,

15 = @, hence, hT! = h?, and

“hT = hT'h”
(esh,o,  du=[0T]=Ch,o, -
But 4 is an automorphism of Vn, and hence we have
reached a contridiction. This shows that T is an
automorphism of the group H.

Then by reason of Theorem 1 and the permutatib-

ility conditions we may write,

( hl’ hz: h3) I hn e =

Tﬁ?, h

( h,TPT, h, TpT, *+* ,h TpT ) =

3
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_ , . _ Y
= ( hy, hy, by, oo, om0 [ETL
Define correspondences « and § of Vn as follows,

h * e ,h )a=

( Bys by By, .

1* g

; . R
o 3,"" s by )[}K], where K = TT 7,

( hl’ hzs h3’ 0y hn )B =

+

( hy, hy, h3; rue s hy )T,
Then (v)g = (v)aB, for all v &€ V,» But B is an
automorphism of Vn and hence o must be an automorph=-
ism §f Vn. That is the set of equations,

() = s L= 1y +e s
where the ki are an arbitrary given set of elements
of H, must have unique solutions hi in H. Since the
center of any group is a characteristie subgroup,
K= TT-} maps H onto a subgroup of its ceanter.

If as before we set,

hm = ymhl, km = xmkl; m= 2, **¢ , n,
we see from the former equality that ¥y = xm,-and
more®¥er the set of equations reduce to a single
equation, n(h")X = h (1 + nKj be a defining relation

for (1 + nK), the single equation of consideration
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being h(hn)K(§ x3"-xn)K = k.

-

We see that the correspondence 1 + nK must be onto the

gréup H, since this equation must be satisfied for all
k € H, (1 + nK) is a multiplication preserving corres-
pondence since X maps H onto a subgroup of its center.
Thus 1 + nK is a homomorphic mapping, with kernel e.
To establish this we suppose that there exists an
h € H, h # e, such that,

h(1 + nk) = h(h")K = e, then

[nla = [h(n™)x] = [el.
But @ is an automorphism of Vn and hence this cannot
be; and therefore 1 + nK has kernel e and is an auto-
morphism of the group H. Then,

( hys By, *o* , b Ju =

{( hl;’hZ’ h3; cee hn)[bKJ}T+ ’
where T and 1 + nK are automorphisms of H, 1 + nkK
being a central automorphism of H.

In the beginning we star#sd with an arbitrary
.autom§rphism u' of EA,n(H)‘ but multiplied x' by
another automorphism of Ea,n(ﬂ) to form another

automorphism g of Ex’n(ﬂ), vhich took generating
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thrée cycles of An onte the preduct of an element of
Vn andvthe initial three cycle. The further require-
ment that ; > 6 caused the multiplication component
of the iﬁage element to be E. Then (s)x = s, for all
s € An" This completes the proof of the theorem.

Theorem 23 Given an automorphism T of H, an
endomorphism K of H, sueh that K maps H onto a sub-
group of its center and (1 + nK) is a (central)
automorphism of H, the the correspondence u,

(s)u = s, 8.€ A

(Ve = {v BE)f 1Y, v o v,

" where p is the product of the factors of v, is an
automorpﬁisﬁ of Eﬂ;n(ﬂ)’

Proof Vn and Vnu are isomorphic, under the

correspondence L. Let,

(vl);z = {vl [le]} T+, (vz)/z = "(vz [1321{3} T+, then
+ +
(v lelv,)u = {vl E’1K]§T {vz [_iazx_']}'r =
+ +
{"'1 [p1¥] VzEzK:H I = {"1"2 @192@}T = (vyvo)u.
Hence i preserves multiplication, and g is clearly

onto. The homomorphism x has kernel e, which will

be established by denying this statement. Then there



existo ve ¥ , v # E, such that
(v)u ==J{v [pK]} ?* = B,
"‘* > .
Since T is an automorphism of V , V[}K] = E,
and hence v must be a'scalar h , and
o _
h(h")K = h(L + nK) = e,
but (L + nK) is an automorphism of H and hence h = e,
and v # E, is a contridiction.
Let G = (Vn)ﬂ L/Ar. (Vn)u is a normal subgroup
of G, and (Vn)u/”\An = E, Then according teo Theorecm 7,
G and.E%‘n(H) are isomorphic if and only if,
>
-1 -1
(s)u(v)p(s “Jun = (svs “)u, for all s & , ,

n
and all v € Vn.

(S)ﬂ(v)ﬂ(s_l)/x = s(v)ps L= S{V [pK_]} P gt =
s= s(vT#)[?K@]s‘%= s(vT+)a-l£pK@].

(svsnl)p = {ksvs—l)[é'fjjT*, where p' is the
o)

product of the factors of (svs ~). But since K maps

H onto a subgroup of its center pK = p'K, and
- + + -
{(svs 1)[13'1{]}? = s(v2*)s™ [prr].

Therefore G and EA n(H) are isomorphic uader p.
2



66

But G = ZA,n(H)’ It is elear that ZA’n(H) contains G,

To show the inclusion in the reverse sense we need

only show that if v ¢ Ekln(ﬂ) then v € G. Let
2

v = (hl’ hy, h3’ seo 5 h ), then we ask if there
exists an element,

30 *°t k. ) e Vn’ such that

vt o= (ky, ky k
(v')p = {v' [p'K]f ¥ = v, that is does the set
of equations,

{k (P8 T = byy £ = 3, =22, m,

have solutions ki € H. The construction employed in

the previous theorem when viewed in reverse order
shows that 1f we set,

hm=xmhl,m='2, ¢ , n ,
1

and define V= 2, *** 4, n, to be T = me .

the set of equations are seen to have solutions,
- -1 -1 } -1
ky {hlw (iﬁzyi) K{(1 + nK)
km ox ymkl, m= 2, *°* ,n.

We demonstrate that the k;,

i=1, *** ,n, are factors

of a multiplication v' such that (v')z = v, by showing
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that they satisfy the above set of equations. We show.
that the fiz;st equation is satisfied.»

Ky (DGR 7 K = 1172,

k (p*)K = b, 770, Tie (p)K]T = by
We now show that the m=th equation is satisfied.

ky = (yg) [{th-l(iﬁzyi)-IKj (1 + nK)-]J ’

i, (kp)K = ym(y;)KillT;l(iﬁzyi)-lK,

ke (KDK (33,71)K(ym) "2k = 3 ()T (x b )10,

K (K)K( .7 51)K = (x b, )T % = p g~k
m' 1 i==2y m 1 m )

km(p')K = h,m’l"l, [km(p')iﬂ'r = h_.

G = ?-:A n(H), and hence £ is an automorphism of
2

EA,n(H)'

Theorem 24 The automorphism group of '_-?_-As}{, B, d)
is isomorphic to the automorphism group of
S(8; B, 2, a).

Proof Let /4 be an automorphism of EA(H; B, d),

s = (1, 1)(m, n) € A(B) |

Vﬂ(ooo,e,hj,e,“°)EV(B, d)o

Then by Theorem 6,
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(S)]L = (kl) k2’ se ’ kn) (l) i)(m) n) IS+’
+
8 ¢ S(B, Bj), and only finitely many of the k's ard

diﬁferent‘from the identity. From Theorem 2 we have,

(V)i = (n,1] JTg_, hT3s +=0 )

Tj endomorphisms of H, If we then compute the equality

(o de(wals™b = (sva~tyg,
the restrictions placed on the endomorphisgs T;

are such that the images of multipllications under
and automorphism of EA(H; B; d) are determined in
the same mannsr as under an aubtomorphiam of

E(H; B, d; d); We may determine the image of
permptations by reproducing the calculations of
Thgorem 20; fgr the images of permutations there
wers de£ermined irresﬁective oftheir being and even
or an odd permﬁtation. Thus all automorphisms of

E;(H; B, d) are restrictions of automorphisms of

>(H; B, 4, d).



CHAPTER VI
COMHMUTATOR SUBGROUPS

" OF THE MONOMIAL GROUPS

We will use G' to denote the commutator subgroup
of the group G. |

Theoiem 25 The commutator subgroup V!(B, C),
d<CX< B*; of V(B, C) is the set of all elements

v = (hi; hé; hé, R h{ € H',
where there exists an integer N such that each hi
is the product of N or fewer commutators of H.

Proof Suppose v € V'(B, C) aﬁd v is a com-
mutator, then there exists a v, and v, of v(B, C)

‘ ‘ -] =1
such that v = vlv2v1 v2 R It then follows that

efery factor of v must be a commutator of H and
hence an element of'H‘.

IfAv € V'(B, C) but is not a commutator, it is
a product of a finite number of commutators, v =
;*Ylvsz...vN. Since each Vi i=1, ¢**, N, i3 a
commutator of V(B; C), each factor of‘?;? 1 =1, o

,'N, is & commutator of the group ﬁ; Therefore
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every factor of v is the product of N or fewer com-
mutaters of H, and is then an element of H'.

Conversely if v ¢ V(B, C) and has the form

v = ( hi’ his Bisee ), b} & H', and

there exists an integer N such that each hi

i# the product of N or fewer commutators of H, we
see thatFV“can‘be decdmpoééd into g product of N
or fewer commutators frOm'V(B; C). It then follows
that vve.'v'(a, c).
Théérem 26 The commutator subgroup S'(B, C),
d < C‘s ﬁ‘; of S(B, C) is S(B; C). The commutator
aubgroﬁp Sb'(B, &) of s(B; d) is A(B, d).
. Tﬁevproéf is contained in (}}.
Theorem 27 The commutator subgroup
Si(H; B, 4, d) of S(i; B, d, d) 1s A(B, a) VY ¥v'(B, a)
where V' (B, d) is the set of all elements of V(B, d)
whose product ;f factors is a member of H',
?roof‘wBy reaéon of Theorem 26 we have,
21 (H; B, 4, d) > A(B, d_);
and we now show that;

S1(H; B, 4, d) D V' (B, d).
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e ) g V+(B, d), and let i

Suppose ( hy, hy,, h3,

j’

J ='1, *** , n, denote the subscripts of its non-

identity factors. Then consider the elements,

vs(-oo’e,hi,e.’...)4

_ J
58 = (xi 5 xk), then
J
-1 =1
v 8 Vv s ==("',e,hi,e,"',e,
-1 ee —|
bij s € » *** ) belongs to >'(H; B, d, d).

Moreover since h and i, are arbitrary, any element of

J
the above form belongs to >'(H; B, d, d). This being

the case, the element,

( ses 4, € hil y °°** hi 3 © 5 e , €,
v 0 "

%, S e -1
h.“h  h ™ eeeh, " , @ , sce ),
1y74,04, b

belongs to >'(H; B, d, d), and further since

h, h, h, <+<h € H', we have,
%1 43 13‘ ’?n .

( soe e h h h ooah » e [ )
* * i1 12 13 in *

belongs to >'(H; B, d, d). Finally the product of the
two multiplications must belong to >'(H; B, d, d), but
this product is the element of V+(B, d) selected

earlier. That is,
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- S1(H; B, d, ‘a) D v*(s, d); and
Sr(H; B, 4, 4) O v*(s; d) UA(B; d).
Since'G/é"is abelian for any group-G,‘and G!

- ié the smaliést.group for which this.ia true, we will
have >'(H; B‘;' a, Q) < v*(n;:d) QA(B, d), if we
qgn_gyéw‘ﬁhgt E(H; B; d; d)/?+(B,’§)LJA(B, d) is
abeligq.

oIt r;a_llof:g from the definition of V'(B, d) that
v*(s; d) contains v'(B; d); and hence V(B, d)/v*(a, d)
vis an gbelign‘éroup. Therefore any two multiplicationa
comnute mod [v*(B, 4) U A(B, a)]. Since A(B, q)
qonéigta éfiéil‘even permutations‘th;re are but two
ooaeté‘of A(B;(ﬁ> in s(B, d);‘nahely A(B; d) and
(xl; xz)A(B; d);  Thus any element of the factor group
E(H; B; d;'d)/V+(B;‘d)LJ.A(B;'d) has one of the forms,

‘.vE (B, d)UA(B, d)], or

| V(xl, x2>l:v (8, ) UAB, d)], ve U, ).

Now if, v = ( kl’ kzx.k3’ "'_)s

,v(xl, xz)?f (xl, xz)‘l
-1 -1 L
(k"5 k™, **0 ) e Vi(s, a).
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+
That is (xl, x2) and v ¢cmmute mod [y (B, d) U A(B, dz].

It ihen follows that >(H; B; d, d)/v'(B, 4) Y a(B, d),
is abelian; and hence;

St(H; B, d, d) & V'(B, a) YUL(B, d),
which togeﬁher with the inclusion in the reverse sense
which was previously established; yields,

Se(n; B, o, a) = v'(B, d4) U A(B, d).

This completes the proof of the theorem. The next
theorem assetﬁ that the derived series for
S(H3 B, d; d) consists of but two distinct terms.

Theorem 28 The commutator subgroup
| >'t(H; B; d, d) of >'(H; B; d; d) is >'(H; B, d, d).

Proof We show that >''(H; B, d, d) contains
both v*(B, 4) and A(B, d), and then the eonclusion
will follow,.

A(B; d) is simple [ﬁ],.whilé A'(B, d) is a
characteristic subgroup of A(B, d). But A'(B, d) is
different from the identity, hence A(B, d) = A'(B, d),
and hence >''(H; B; d; d) 2 A(B, d).

We next show E"(H; B, d, d) > Vv'(B, d).

According to Theorem 27, >3 (H: B, d, d) contains the
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elements, v.= ( h , h'l’ B, e ),

vi={(k ,-e, k-l, e, “°" ). It then follows that,

1l -1 1

vv'v vt o= {(hkh k-1, &, *** ) e S''(H; B, dd ).

Therefore ﬁny element of V'(B, d) is the product of
elements of E"(H; B, d, d) and hence an element of
>''(H; B, d, d). That is 2''(H; B, d, d) contains

vi(B, d).

1

Let v=(h, e, e, h 5, e, ")

s = (1, 3, 2), then

i ~1 1

vsv s =(h,h ", e, s )¢ St1(H, B, d, d)

since s and v belong to >'(H; B, d, d). ‘hen con-
jugation by appropriate elements of A(B, d) will move
the non~identity factors into any desired position,
and the resulting multiplication is again an element
of E"(H; B, d, d) since the commutator subgroup is a
characteristic subgroup.

Let v' = ( hy, hy, hyy *=* 5 by e, oo )
be an element of V (B, d), then,

1l -1
hlaen

-] -
vt = (hl’ hl > & 5 °°° )( e, hlhz) h2

=l =Ll.=1
ooo)( e , €& , hlhth’ h3 h2 hl » e 2 oo )'oc

1 -1 -1

LN '.I- l
coef » €5 hyhy"""h s h "h

st e, vee)
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(ee+ 5 e hyhphgeesh , @, ==o ) & 211(H; B, d, d),

since the last multiplication in the product is an
element of V'(B, d) which is contained in >''(H; B, d, d).
Therefore >''(H; B, d, d) contains V'(B, d), and hence
EZ'Hz B, d; d) contains V (B, a) U A(B, d) =
>t (H; B; d; d).

Theorem:29. The commutator subgroup EA (H; B, d)
of 3,(H; B, d) is V'(, a) U(B, q).

Proof We have,

>'(d; B, 4, ) © 3, (H; B, a) C 3(H; B, 4, d),
hence,
>''(H; B, d, d) C =)(H; B, d) C 3>'(H; B, d, d).
Then by reason of Theorem 28,
>'(H; B, d; d) = S''(H; B, d, d) = V' (B, d) U A(B, d).
Hence kEA(H; B, d) = V+(B, d) Va(B, d), as was to
be ahowqf

Theorem 30 The commutator subgroup
_E'(H; B, G, D.). d<C<DZ 5;', of >(H; B, C, D) is

E(H; B, C, D)O
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‘Proof It is showa in [5] that the commutator
subgroup of’S'(B, D) of S(B, D) is S(B, D). Hence
E'(H; B, C;TD) contains S(B, D). We next show that
>t(H; B; C, D) contains V(B, C), and having established
this the conclusion of the theorem will follow.

Let, 8 = ( see x_l, XO’ xl, x2, ssee 3 oo xE,
xs+l, xs+2, x8+3, ) ),

v = ( ooe', h-l’ ho, hl’ hz, EEXFERRR he’

heyys hgaps oags oo )

1 &

-.. L] l .-
L l 2hl » .ll;

Then, sV s v = ( *¢¢, hoh:l, hlhg y h

1 -1

-1 -
e+l? he+3ha+2'

*ees hg ™y Beyoh

ees ), belongs
to >'(H; B, C, D).

Let ch( ses C_q1» %p» C3» **° 5 *** o Ceo

Cea1? Ceapr ittt ), be an arbitrary element of V(B, C),

and consider the following set of equations.

l -l o o0
hoh_ 3 = ¢35 Bgyghe ce

—l = -1 . s o0
hyhy %o » heaolesy = Ceay

_l—_‘ -1 = LK
hzhl €, » he+3hs+2 Cesn?

e
e

[ .
* .
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This_éet of equations has solutions,

h"'l = e > hE = @ y °*°°
ho = 0_1 » h€+l = 0& ) oo
‘hy = cgoy hoyo = Coyq¢e 9 vee
. h = h coe

g+3 = %e+2%+1%

H

sy o8
"” s

" se

The factors of v are completely arbitrary. If we
take theAfactors of v to be as indicated above we
see that,

-1 -1
s vs v

- v, ® >1(H; B, C, D), ;nd hence
>'(H, B, D, C) contains V(B, C), and therefore
g(H;VB, D; ¢c) = E'(ﬁ; B, D, C); as was to be shown.

Goroilary 1 Any element u € >(4j; B, C, D),
d<C<TIZ B+, is the product of at most two
commutators.,

Proof Every elément of S(B, Dj is a commutator
of S(B, D), which is demonstrated in [5]. Fvery
element of-V(B; C) is a commutator of >(H; B, C, D)

as was shown in Theorem 30. Therefore any element
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of >(H; B; C; D) whioch is either a multiplication er
a permutat%on is a commutator. Since ever& element
of E(H; B; G; D) has the form vs; v e f(B, c),
8 g S(B; D); other elements of >(H; B, C, D) are the

product of at most two commutators of >(H; B, C, D).
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