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INTRODUCTION 

This thesis is concerned with certain generalised 
• • I • • 

per_inutation _groups called complete monomial . groups 
. _ . .. .. . . . . . . 

and some or their subgroups. For th~ .case ot finite 
permuta,tl~ns · t~1s· .· grou~ .wa.s first studie~ b;y _Ore [41 , 

.,,. ' . ' ' 

and "for. _the case ot infinite permutati,ona by 
Crouch_ f.l] • The ~oat_ important resuli .. obtained is 
t~e - de~ermination . ot ~11 . automorphiams of a large olaea 
ot monomial grou~s~ In addition, the derived series 
is studied. 

Let J ~~ a set of n elements and H a group. Then 
. . . - .. ' . . . ' . . ·. 

a monomial s~bstitution u is a trnsformation that 
maps every element x of the set B onto an element ot 
B multiplied b;y an element h ot H in such a manner 
that it induces a one•toMone mapping ot B onto itself. 
The elements h are called factors ot the substitution 
u. It we consider the set of all such monomial 
substitutions, and let successive application ot the 
mappings be the defined operation we obtain a group 
which we call the complete monomial group. Those 
monomial substitutions which map each x of B onto 
itself multiplied by some element of H will be called 
multiplications. The a·et of all multiplications which 
we will denote b7 Vn torm a normal subgroup of the 
complete monomial group ~(H). The set of eubetitutiona 
which map ever7 element of B onto some element ot B 
multiplied b7 the identity ot H form a subgroup Sn of 

~n(H). Sn is the symmetric group on n objects. 
~n(H) is the union of Vn and Sn' and the intersection 
ot Vn and Sn is the identity E ot ~n(H). 

In this paper we consider some monomial groups 
resulting when the restriction that the given eat be 
tinite is removed. Such groups we will denote b7 
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~(HJ B, c, D), d:i c, D :s sf, d - No, H and B 

_denoting the given group and the order ot the given 
eat r&speotively, C a cardi~ai such that all monomial 
subst~\u~i~ne ot the group have fewer than C factors 
ditt~rent ' ·rrom . the identity o~ H, . D a cardinal 
such ~h~~ · ~ll ~onomiai substitutions of the group 
have fe~er. th~~ » elemenis ~t the given set ~apped 
into elements di.stinct from. themselves, st the suooeaser 
ot B. As ·bfttore the set of ~11 ·· multiplications form a 

. no·;~~i .. ~Ubg~~Up o&'il~d. the b aeis. group, the set Gt all 
per~utatio,ns to~in a subgroup, an<i the monomial group 
i 's the union of · these ~wo : groups, and the tw~ groups 
meet in the identity onl7 of the monomial gr~up. 

Ore [4.1 . has determined the derived series and 
the. ·rorm ot an7 ·automorJ>hiam of the complete monomial 
group. when_ the gi~en set has finite order. In this 

. paper we obtain similar . results tor so~~ ~t the 
·Dionomia.l groups ~"HJ B, C, D), and determine in 

addit~on the automorphism groups of some of the 
~onomi•l gro~ps. 

Cb'El.pters ·I, II, and III contain preliminaries 
. for the f~llowirig chapters. 

Chapter IV contains the . ma~n results ot the 
paper. For the group ~(HJ B, d, C), C < Bt, the 

torm _~t all autom9rphisms· is established and the 
automorphism. group is determined in terms ot the 
automorphism group ot H. Chapter V gives the 
. automorphisms · of the Alternating Monomial Group 

when the given set is finite, H contains no subgroup 
.isomorphio to the alte~nating group on n •l objects, 
and n>6. It is ~lso shown that the automorphism 
group of ~(HJ B, d, d) is -isomorphic. to the group 
ot sutomorphiams of its subgroup consisting of all 



alternating subatitutions. In The concluding 

chapter .the deri~ed · series of ~(HJ B, c, D), 
C S D• .is determined. 

iv 



CHAPTER I 

PRELIMINAR~ES 

Let H b~ an arbitrar7 group, and '. let s·be a set 
. ... . ' . 

with . · Qrder · B~ · B 2: . d; d • . N
0

• We will denote element• 

ot ~ b1". h .and k, and x will be used to denote element• 

ot s.- · 

· . A monomial substitution over H is a linear t.rane-

f or~ation mapping each element x of S in a one-to-one 

manner onto some element of s multiplied by an olement 

qt H~ . • ~ubstitution u will be written, 

U• 

The element b of H will be termed a factor ot u. The 

multipl;cation .hx is a formal one with the associative 

prop~rt;y h(kx) = (hk)x. It a second substitution u• 

be given by, 

U I m • • •h i (
.. x 

. . t t ... ) ' 
then ~he product uu• is defined b7, 

·. uu' .. ( ••• tljht~· •• ) • 

With this definition ot multiplication the aet of 

monomial subs~itutions over H form a group, hereafter 

called the monomial group or symmetry. 
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A substitution having each of its factors the 

identity .element e ot H will be called a permutation • 

. The. sa.t .. of a11 permutations contained in the monomial 

group. torm a subgroup and is the symmetrio group on B 

objects .. We will use the cyclic notation oommonl;y 

used with symmetric groups to represent a substitution 

which is a permutation. We will use s to denote a 
• • • ' 1 • • ~ ' • • 

substitution which is a permutation. 
' ' . ' . ·~ . . . .. · ' . ' : 

.A substitution which sends ~aoh element of B 

irito ·itself. multiplied by an element ot H will be 

called a multiplication. The set of all multiplications 

contained in the monomial group form a subgroup whioh 

is the .. strong direQt sum ot groups Ha, eaoh He& is&-

morphic ta H. We will use v to denote a substitution 

which ~s a ·multiplication and such a substitution will 

be given· by recording only its racters in sequence 

form. 

For the monomial group ~(HJ B, c, D), S(B, D) 

will denote t~e subgroup consisting of all permutations, 

while :v(s,· C) . will _denote the subgroup conoisting of 

all -multipli.cations. We may now reinterpt the symbols 



in the monom~aL ~roup designation as follows, H a 

given; arbitrary group~ B the order of a given sets. 

C ·:a cardinal ·. numher such that for any substitution ot 

the ,monomial group the number of non-identity tactors 

is less :than c~ : D a cardinal number such that !or any 

substitution of the monomiai group the number ot 

elements or s being sent into elements or s distinct 
• : • . : " ; _· ' : , • ' ' : . ' ! • ·~ ~ 

f~om themselves is lees than D. It .is clear that both 

C and D must alwa7a be less than or equal to at. 
In the event C • D • B~~ ~he resulting monomial group 

is ref ered to as the complete monomial group. 

The concept of alternating as associated with 

permu.tation groups ma7 . be extended in an ebvioua manner 

to monomial groups. When con~idering an alternating 

monomial group we will indicate this by.placing an A 

-aa a · subscript ta 2:• In this case the oardinAl 

number D is meaningless unless D < d.. · When all i'inite 

even . permutations are to be considered the cardinal D 

l'rill be emitted. 

The ~et ot all permutations of the monomial greup 

~(HJ ~. C1 D) form a subgroup which will be denoted 

b7 S(B, D). Thia group ia uell known, and the prin-



4 

cipal pro~erties .of its automorphisms as they relate 

t .o this P.ap_er will be recorded in the following chapter. 

The set or all multiplications or the monomial -group ~{HJ . B, C, D) form a su~group denoted by V(B, C). 

This subgroup is more0ver a normal aubgrGUPo 

Any substitution ma7 be written as the product 

or a multiplication and a permutation. Thia shows 

that any monomial group may be written as the union 

or the subgroups consisting of all multiplications, 

and permutations. Ir we employ E to denote the identity 

or the, group ~(H-;: B, O, D), we may write, 

~(H; B, C, D) • V(B, C)V S(B, D),, 

'f(B, .C) n S(B, D) • Eo 

We say ~(H; B, c, ~) splits over the basis group V(B, C). 

A multiplication which has only one distinct factor 

is called a scal12r and will be written [h1. The set 

of all. scalars form a subgroup of ~(H; B, c, ~). 

The jcalars are the only elements or the monomial 

group ,which commute with all permutations. A scalar 

~] will co~ute will all multiplications if' and onl7 

if h belong~ to the center of H, hence the center ot 



s 
the monomial · group ia the set or all scalars f}t] 

such that h belGngs ·to the center of H. 



CHAPTER II 

AUTOMORPHISMS OF THE BASIS 

AND PERMUTATION GROUPS 

In the study of the automorphisms of the various 

monomial groups we will discuss the automorphisms 

of the basis group, and isomorphisms or the permutation 

group with other subgroups or the monomial group, 

which can be combined in a natural way to form an auto-

morphism 0£ the containing monomial group. For the 

monomial ~roups considered, we will be chiefly con-

cerned with the basia group V(B, d), and a variet7 0£ 

permutation groups.. We include then a preliminery 

discussion of the endomorphisms of V(B, d), and auto-

morphisms of some permutation groups. 

Theorem 1 All endomorphisms of Vn are obtnin-

2 able through the possible sets or n endomorphisms 

i Tj' i, j = 1 1 2, --- 1 n , of H satisfying the 

conditions, 

by the correspondence of a general element 
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( h T1h T2 : •• h Tn h T1h T2 •••h Tn •••). l l 2 l n l' l 2 2 2 n 2' 

The proof is contained in [i., page 45]. 
Theorem 2 Ir T is an endomorphism or V(B, d), 

then there exists i endomorphisms Tj or H such that, 

(l) (e, ••• ' e ' hi' e ' • • • )T • 

1 1 ), tor all h1e H • (hi Tl' . . . ' h1Tj, ••• 

( 2) For all h e H, and all 1, hT1 
j • e, fG>r all 

but a finite number of j. 

(3) i j j i hiTmhjTm = hjTmhiTm' tor all m and all 

i, j such that 1 .,& j. 

qonversely if lT;} is a collection ot endomorphisms 

of H, such that (2) and (3) are true, then there exists 

one and only one endomorphism T or V(B, d) such that 

(1) is true. 

Proof Suppose T is an endomorphism ot V(B, d), 

then, 

( e , • ~ • , . e , hj 1 e , • • • )T • 

Let k1 = hjTf 1 then since T is an endomorphism of V(B, d), 
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i ' ' each T j maps H on.to a subgroup ot H, and is moreover 

4n; endo~orphism of H~ Since T is an eridomorphism or 

V(B, d), the image . multiplication ·must be an element 

ot thi~ group~ hence for all h e H, and all 1, hT~ - e, 

for all' but · · £inite number or j. 

The two ~laments or ~(B, d), 

( e 1 ••• ~ e , h1 , e , ••• ), 

( e ' • • • • • • ), i ~ j, 

commut.e and hence their endomorphic images commute. 

That is, 

i · ~ j i .J. 
hiTnhj~n . ~ hjTnhiTn' 1 r jo 

,conversely, ,if { T~j be a collection of endo-

morphisms of H, such that (2) and (3) are true, there 

exists one •nd onl7 one endomorphism T of V(B, d) auch 

that (l) .is t~re. i 
~ince the Tj are endomorphisms 0£ 

t~~ group H, and by r~aaon of (2) the corresp~ndence, 

( e , • • -. '· e ' · h j, e , • • • ) t0 

(hjTi, hjT~, hjTg, • • • ), 

is a correspondence onto a subgroup or V(B, d). It 

follews from (3) that the correspondence is multiplication 



preserving. The correspondence T is then an endo-

morphism or V(B,, d). That it is unique follows from 

tha. fact that the set of elements ot the form 

( .. • .. · ·, ... ) 

generate the group V(B, d). 

W~ now inquire as to the necessary and sufficient 

conditions that T be an automorphism ot V(B, d). This 

requirement . is . that T be one-to-one nnd onto tho group 

V(B, d), since T is already an endomorphism ot V(B, d). 

That is, given an arbitrary element, 

• • • e I • • • ) 

of V(B, d), does there exist an element 

••• , e , h1 , ••• , h1 , e 1 ••• ) 
1 n 

such that vh~ • vk. We have that vhT -
i : . i . 1 il 1~ i 

(hi Tllhi Tl2~··hi Tln' hi T2 hi T2 •••hi T2n' ••• ), 
1 2 n l 2 n 

where only .a fi~ite number of the factors are different 

from the identity. If equality is to exist between 

that multiplic'ation and vk the non-identity factors must 

occur in the same positions as the non-identity fact~rs 
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of vk. The equality or factors gives .is the fol2 .owing 

o~t or equations, 

Therefore T is one-to-one and onto if an~ only if the 

set of equations have unique solutions h1 , 
j 

j = l, ••• , n, in H. 

Thus we may state more precisely, T is an auto-

morphism or V(B, d), if and only if for each finite 

set M of order ru of elements or H, and each finito aet 

of distinct indices A, such that the two seta correo-

pond in a one-to-one manner, there exists a second 

unique subset N or order n of H, together with an 

unique set of distinct indices B, where the two sots 

correspond in a onc-to•one manner, such that the set 

of elements of H, N, A, and B are related in the 

following manner, 
i . i . i 

h T 1h T 2 ··~hi Tjn • 
. 11 jw 1 2 jw n w 

kj I W ~ l, ••• I m, 
w 

where the hi . s N, kj e M, it e B, jw s A, 
t w 

t == l , ••• , n, w • l , ··~ , m. 
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Theox-em 3 Every element of S(B, C), d ~ C ~ Bt, 

ma7 be w~itten as the product of two elements or 
~(B, C) ea~h having order two. 

Theorem 4 Every automorphism of S(B, Bf), 

at ~ d, .is an inner automorphism. 

Theorem S Every automorphism of S(B, C), 

d < C < ,Bf is the restriction of some automorphiom - - ' 
ot S(B, · B~) . to S(B, C). 

Theorem 6 The group of autoraorphiams ot A(B, Bf) 

is isomorphic to S(B, Bf), B ~ 51 B ~ 6. 

A(B, Bi) is that aubgroup of S(B, Bf) consisting 

of· all even permutations contained in S(B, Bf). 

The pro~f of Theorem 3 is found in ~], Thoorem 4 

in [6] 1 Theorem S in [7], and Theorem 6 in [3] and [7J. 

Theorem 7 If, 

(1) N is a ncrmal subgroup of a group G, 

(2) G splits over N, Gm N VH, Mf\ N • e, 

(3) M' end N' are groups isomorphic to M and N 

respectively, a the isomorphism of M to M•, 

~the isomorphism of N to N•, N' normal in G', 

· and· G' . = l~ ' V N ' , H' (\ N • -= e, 
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then the correspondenceµ, (mn)µ · · man~ defines ~n 

isomorphism betwoen G and G1 if and only if 

. .;.1 ( -1 · manpa a = _mnm )~ 1 

for all m e M and all n e H. 

Proof Let µ be an isomorphism ot G tG G•, and 

let m s M, n • N, then, 

-1 (nm.)µ a (mm n~)µ, 

. . . . -1 . 
n~ma = ma(m nm)a, 

(m-1 )a(n)~(m)a m (m-1nm)~. 

Conversely if (m)a(n)~{m-1 )a • (mnm-1 )~, we need 

only show that multiplication is preserved b~ µ to 

know thatµ is an isomorphism ot G to G'. Consider, 

(m1 n1 )µ(l42n2 )µ • (m1~a(n1 )f)(m2)n(n2 )p, we have 

-1 
(n1 )~(m2 )a ~ (m2 )a(m2 n1m2 )~, and hence 

_, 
(m1 n1 )µ(m2n 2)µ = (m1 )a(m2)a(m2"·n1m2 )'3(n2 )'3 • 

= Cm1m2 )a(m;1n1m2n2)p a Cm1 m2m;1n1m2n2 )µ ·-

= (m1n1m2n2)µ. 



CHAPTER III 

·IMAGES OF SOME SUBGROUPS UHDER · 

AUTOMORPHISMS OF THE CONTAINING MONOMIAL GROUP 

Theorem 8 ~he basis group of ~(H; B, d, d) 

is a characteristic subgroup or ~(H; B, d, d). 

Theorem 9 The basis group of ~A(HJ B, d) is 

a characteristic ·subgroup ot ~A(HJ B, d). 
. , 

grOU:9 of ~A,n(H) Theorem 10 The be.sis for n~ ,, 
is a charact'3?-istic subgroup of ~,n (H) • 

~A,n(H) . is that subgroup .or the oomplete monomial 

group forme~ from the given group H, and a set of order n, 

consisting of all even monomial substitutions contained 

in the camplete monomial group. 

The pr~of s of Theorems 8, 9, and 10 are found in 

(l] • We will extend the results ot Theorem 8 to show 

that the basis group of ~(H; B, d, C), d ~ C ~ st, is 

a characteristic subgroup of ~(HJ B, d, C). 

Theorem 11 If d S CS Bf, d SD S Bt, and N is 

a subgroup or V(B, .d), then N is normal in ~(HJ B, d, d) 

if and only if N is normal in ~(H; B, c, ·n). 
Proot Suppose N is a normal subgroup of 

~(MJ B, d, d) an~ N is contained in the basis group V(B, d~ 
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Let vs s ~(HJ B, C, D) and v' s N, and o~nslder 
. . . 1 

(vs){v•)(vs)- • We · may, by renson of Theorem 3 1 write 

s a~ a product of elements s1 and s 2, where the order 

or s1 arid s 2 is two, and henoe each is the product of 

disjoint transpositions. Our product ·of consideration 

may the~ be 'reeord~d as (v)(s1s 2 )(v 1 )(s1e 2 )~1 (~)-1 • 

Define F(v), for any multiplication v to be the 

set of indices i such that the i-th factor of v io 

different from the identity. The order of F(v 1 ) in 

finite. If (xi, xj) ia a transposition of s 2 such 

that neither i nor j belong to ~(v•), then (xi' xj) 

commutes with the remaining transpositions of s 2 ne 

well as with vr, sc we may eliminate all such trann-

positions from s2 • Denote the depressed s 2 b7 s~, 

which will . consist of only those transpositions which 

move some x1 where 1 belongs to the indexing set F(v•). 

But since the order of F(v') is finite s2 belongs to 

S{B, d). But N is normal in ~(H; _B, d1 d) and hence 
. -1 

we have _ (s~)(v•)(s~) . 6 N. Similarly we may treat 

s1 eli~in~ting those transpositions (x1 , xj) such that 
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-1) neither i nor j ·belong to F(s~v's~ , causing s1 to 

be depressed to an element sf of ~(H; B, d, d). We 

' ' ' -1 then s~e that (sisl)(v•)(a!s~) £ N. · Finally con-

jugation by v is equivalent to conjugation by v1 

where v1 has factors agreeing with v in those positions 

i such th~t i e F(s{s~v's&~13i-l) and the remaining 

factor~ of _v1 are the identity. Then v1 s ~(HJ B, d, d), 

and o~~e more t~~ normality ot N in thi~ group inourea 

(vs)(v' )(vs)-l s N• We have shown that it N is con-

tained in the basis group of ~(H; B, d1 d) and is normal 

in ~(H; B, d, d), Then N ia normal in ~(HJ B, c, D), 

. ' -l . t d .$ C $ B , d S D :;, B • 

Conversely if' N is contained in V(B, d) and it N 

is normal in. ~(HJ B, c, D), ~~ is clear that N is 

~orma,l in ~<H~ B, d, d), which establishes the theorem. 

This together with the results of ~. page 7~ 

gives us the following theorem characterizing all 

normal subgro~ps of ~(H; B, C, D) which are contained 

in the basis group V(B, d). 



16 

Theorem 12 Any normal subgroup N of >(H; B, C, D), 

d :S, C ~at, contained in the subgroup V(B, d) is 

obtained by the following construction. Let subgroups 

G and G1 of H be chosen such that, 

(1) G and G1 are normal subgroups of H with 

G containing G1, 

(2) G/G1 belongs to the center or H/G1 , 

then N is a subgroup of V(B, d) consisting of elements 

of the form, 

( e , • • • ' e , ••• • • • ) 

where the gi. belong to G and the product of all non-
J 

identity factors belong to a1 • 

then, 

Theorem 13 If 1 

(1) M is a normal subgroup ~r ~(H; B, d, C), 

d S C :5, Br, 
(2) M is not contained in V(B, d), 

(3) N==Mf\V(B, d) 1 

(1) N is a normal subgroup of ~(H; B, d, C), 

(2) the structure of N is as outlined in Theorem 12 

such that G = H, and H/G1 is abelian. 
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Proof Since the intersection or two normal sub-

groups is a normal subgroup, N is a normal subgroup 

of ~(H; B, d, C). 

Let u e M, u ¢ N, then there exists i, j such 

Let v = ( • • • 1 k11 e , • • • 1 e , k j 1 a 1 • • • ) be 

1 t r V(B d) Then U-lv-1uv e N. The J-th an e amen o , • 

-1 -1 factor of the commutator is hi k1 hikj, which is an 

arbitrary element of H since k1 and kj are arbitrary • 
. \ 

Hence G ~ H. 

Th~vrem 14 The basis group V(B, d) is a 

characteristic subgroup or ~(H; B, d, C), d S C ~Br. 

Proof The proof follows closely the proof that 

the basis group is a characteristic subgroup or 
'-' 

[1]. >CH· B, d, d), as contained in - , 
We deny the theorem, then there exists an auto-

morphism µ such that V(B, d)µ is not contained in 

V(B, d). There exists a normal subgroup M such that 

Mµ == V(B, d). -1 Then V(B, d)µ = M, and 
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V(B, a) is not contained in V(E, d)µ-l g M. 
~ ·-. . . 

~(HJ B, d, ~)/V(B, d) is isomorphic to S(B, C). 

Moreover ~(H~ ·B .. d, C)/M ia isomorphic to S(B, C), 

under the isomorphism a, (Mu)a • s, where e is 

de.fined by the equalities, 

(Mu)µ = Mµ,uµ, • V(B, d)(uµ) • V(B, d)(ve) • V(B, d)a. 

Let groupa K and N be defined by , 

K a V(B, d) \.) M, N • V(B, d) {\ M. 

Both K and N are normal in ~(H; B, d, C). The quotient 

group K/M is a normal subgroup of ~(H; B, d, C)/M, 

and ainca V(B, d) is not contai~ed ih M, K/M is not th• 

identity. Then K/1-i must be isomorphic to a non-identit7 

nor~al subgroup of S(B, C). But the nor~al subgroupa 

of S(B, C) are the groups A(B, d) and S(B, D), D :s_ c, 

as is shown in [7]. Each or the normal subgroups of 

S(B, C) are non-abelian and hence K/M is non-abelian. 

K/M is isomorphic to V(B, d)N by reason or the secord 

isomorphism law. The form of N was determined in Theoems 

12 and 13. · W~ may establish an isomorphism bet~een 

V(B 1 d)/N and H/G1 • but H/G1 is abelian, hence so are 
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V(B, d)/N and K/M. But this is a contradiction 11nd 

hence our asnumption was false. This est~blishoa the 

theorem. 

Theorem 15 If G == ll V M, M r\ M .. e, N n 

characteristic subgroup 0£ G, µ an nutomorphiam ot G, 

m µ = n'm', {m)~ ~ m', th3n ~is an automorphism or M. 

Proof ~ is multiplication preserving. 

n'm'n'm' a 1 1 2 2 

The correspondence ~ is onto. Let m s M, then 
-1 . 

mµ· = n'm', (n 1m' )µ == m, (n• )µ{m• )µ • m, 

m•µ ~ {n•-1 )µm, hence (mt)~= m. 

Theendomorphism ~ of M has kernel e, since N 

is a characteristic subgroup or G, and hence, 

(m)µ = n'm', m'= e, if and only if m ~ e. Then~ is 

an automorphism of M. 

Corollary l Let µ be an automorphism ot 
. -I 

~(H; B, d, C), d SC~ B , and let s 6 S(B, C), 



20 

sµ = v•s•, aA. =a•, then~ io an automorphism ot S(B, C). 

Proof ~(H; B, d, C) splits over th~ bnAi~ croup 

V(B, d). V(B, d) is a charact9ristie subgroup of 

;(HJ B, d, C) b7 reason of Theorems S and 14. The -
Corollnr7 then follows from Theorem 15. 

Corollary 2 Let J.' be c.n c.utomorphiam or ~A, n (H), 

s e A0 , (s)µ • v 1 e', (a)~= s•, then~ is an auto-

morphism or A • n 

Proof ~A,n(H) splits over the basis group Vn• 

Vn is a characteristic subgroup of . ~A,n(H) by reason 

of Theo~em 10. The Corollar7 then follows from 

Theorem 15. 

Corollary J Let µ be an automorphism ot 

~A(HJ B, d), s s A(B), (s)µ • v•s•, then the corres-

pondenoe ~, (s)~ • s• is an automorphism of A(B). 

Proof ~A(H; B, d) splits over the basis group 

V(B, d), and .V(B, d) is a characteristio subgroup or 
~A(H; B, d) by reason of Theorem 9. The Corollary 

then follows from Theorem lS. 

Theorem 16 ~(H; B, d1 d) is a characteristic 

subgroup af ~(H; B, d1 C), d ~ c ~ af. 
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Proof Let µ be an automorphism of ~(H; B, d, C) 

and vs E ~(H; B, d, d). Then consider (vs)µ a 

ev)µ(s)µ. Since V(B, d) is a characteristic subgroup 

ot ~(H; B, d, C), (v)µ E V(B, d) C: ~(H; B, d, d). We 

must then conclude that (s)µ e ~(H; B1 d, d), for all 

s e S(B, C) in order to establish the theorem. (s)µ 

is some element v'a' e ~(H; B, d, C). According to 

Corollary 1 of Theorem 15 the correspondence s to D t 

induced by µ defines an automorphism or s(B, c). 

Then according to Theorems 4 and 5, 

(s)µ = v'(sI 8 +), where a + S(B, Bf) and E I + is 
0 

is the automorphism induced on S(B 1 C) b;y µ. It 

s e S(B, d), and since S(B, d) is normal in S(B, C), 

Then (vs)µ~ (v)µ(v•)(sI +). Each s 

member of this product is an element of ~(H; B, d, d), 

hence the product is and element or ~(H; B, d, d). 

Thus an;y automorphism of ~(H; B, d, C) takes elements 

of >(H; B, d, d) into ~(H; B, d1 d), and the theorem is 

established. 

Theorem 17 The group ~A,n(H) splits over the basis 
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group 1 ~A, n ( H) == V n V T, V n I'\ T Cl E. 

The group T is conjugnte to some group T
0 

obtained 

as follows. Let G be a subgroup of H which is the 

homomorphic image of An_ 1 • bo 

~enerators of G satisfying the following relationo, 

• • • ' n • 

Let s1 = {l, i, 2) for 1 ~ 31 ••• 1 n generate the 

group An. Then the elements or T are obtained from 
0 

the elements or A by the isomorphism ~ dctinad by n 

83 ¢ == ( e I e ; e ' 841 • • • ' gn)(l, 3, 2) 

. si ¢= ( e , gi, 2 2 2 2 
gi" gig4' .. ,. , gigi-1' gi' 

2 ... gf gn)(l, 1 .. 2) gigi+l' , 

£or 1 = 41 ••• , n. 

The proof of the theorem is contained in ().]. 



CHAPTER IV 

AUTOMORPHISMS OF ~(H; B, d, C), d S C < B+ 

We will first find the automorphism group of 

>CH• B d d) and then the automorphism group or - 1 I I 

~(H; B, d, C), d < C < B+. By reason of Theorem 16 

the problem of finding automorphisms of ~(H; B, d, C) 

is made easy once the automorphisms or >CH; B, d, d) 

are known. It has seemed advisable to treat the 

problem in the two cases even though some duplication 

in calculations is involved. 

Before proceding to the problem of determining 

the automorphism group of ~(H; B, d, d) we mak0 the 

following considerations. If T is any automorphism 

of the group H, we define an automorphism T' ·or V{B, C)•· 

+ d S C .S B , by the correspondence, 

Let I denote the identity automorphism of S(B, D), 

+ d S D S B 1 then according to Theorem 7 the corres-

+ + pondence T 1 (vs)T = {v)T•(s)I, for all vs V(B, C) 

and all s s S(B, D) is an automorphism of the group 
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· ~{ H; B 1 C 1 D) if and only if' 1 

-1 -l (s)I(v)T•(s )I= {svs )T'. 

Since V(B, C)" is a normal subgroup of >(H; B, C, D), 

this is an equality between multiplications, and it 

is easy to see that the corresponding factors of' the 

two multiplications are equal. + Hence T ia an auto-

morphism or >(H; B, c, D). 

In a similar manner we may associate with any 

endomorphism K of the group H and endomorphism K+ 

of V(B, C). 

Theorem 18 µ is an automorphism of' ~(H; B, d, d) 

if and only it there exists, 

(1) s+ an element of S(B, B+), 

(2) v+ an element of V(B, B+), 

(3) T an automorphism of H, 

such that, 

+ -(u)µ = (u)T I
8

+Iv+ 1 for all u e ~(H; B, d, d). 

Proof Supposeµ is an automorphism of >(H; B, d, d). 

Then ~(H; B, d, d) = V(B, d)µ V S(B, d)µ. But V(B, d) 1 

by reason or Theorem S, is a characteristic subgroup or 

~(H; B, d, d), hence ~(H; B, d, d) c V(B, d)\..J S(B, d)µ, 

and V(B, d) (\ S{B, d)µ == E. 
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There exists an isomorphism between S(B, d) and 

S(B, d)µ, whose form we now seek to discover. Since 

S(B, d)µ is contained in ~(H; B, d, d), the image of 

any element s E S(B, d) must have the form v's 1 , where 

v• e V(B, d), s 1 E S(B, d). We have seen in Corollary 

l of Theorem 15 that the correspondence s to s' is an 

automorphism or S(B, d), and hence there must exist an 

element s+ E S(B, B+) such that s 1 ~ (s)I +1 since s 

according to Theorems 4 and 5 all automorphisms or 

S(B, d) have this form. + The element s io tho element 

whose existence was asserted in (1) of the theorem. 

Any element of S(B, d) may be written as the 

product of a finite number of elements or the form 

(1, i). Hence to discover the image of (1, i) under 

µ, is to know the image of all permutations. We 

therefore reduce our study or aµ to that or{l, i)µ. 

We next proceed to the characterization or v1 
+ and the calculation of the multiplication v or 

V(B B+). , 
Since the order of any transposition is two, 

we have, 
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This equality can exist if and only if each factor 

+ + or vi has order two except possibly the la and is 

+ + factors, and moreover the ls and is factors must 

be inverses of one another. 

We have in Theorem 2 discovered the form which 

all endomorphisms or V(B, d) must have, and hence 

the form of all automorphisms of this group. For an 

arbitrary element v of V{B, d), 

v = ( ••• 

we have, 

(v)µ 

• • • I hi I e I • • • ) 
n 

• • • ) I 

i where the Tj are endomorphisms or the group H, and 

only a finite number of the factors or the multipli-

cation are different from the identity. 

In the calculations which follow the subscript 

of an element h will always indicate the position 

of h in a multiplication, that is hj will be the j-th 

factor of some multiplication v. When ever we require 

two factors of an element which is a multiplication to 
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be.distinct we will indicate this by employing aupor-

scripts, distinct superscripts indicate that the two 

factors are distinct elements of H. Whenever a 

multiplication has undergone a transofrmation by a 

permutation we will employ superscripts to indicate, 

after the shuffling of factors, the equality existing 

between the factors of the original and resulting 

multiplication. Like superscripts indicating the oame 

group element. 

Let us · consider generating elements, 

s = (1, i) of S(B, d), 

v :11 { • • • 1 e 1 h j , e , • • • ) of V ( B, d) • 

Since µ is an automorphism of >(H; B, d, d) we have, 
~i -1 ( s)µ(v)µ( s )/.t == { svs )µ, where 

(1, i)µ == 

= ( ••• . .. , k1 , e 1 ••• )(ls+, is+), 
n 

( • • • , e , h j , e , • • • )µ c:s 

where only finitely many of the factors are different 
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from the identity. We compute this equality considering 

two cases. 

Case l Suppose j ~ 1, j ~ 1. Then since 

(svs-l) - v. th lit d t - , e equa y re uces o, 

. -1 
(s)µ(v)µ(s )µ == (v)µ, or 

... ) ( + +) 
I ki I e I • • • la I io 

n 

••• ) >< 

••• • e , 
-1 k , • • • , 
11 

e , • • • iJ 

Direct computation on the left side or the equality 

yields the following multiplication, 

( ... 
• .• • J • • • 

. . . , 
Then the resulting equality between multiplications 

demands equality between corresponding ractora. Hence 

we ~ave, 

(i) 
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(ii) .hTi = . k1 hTi k~1 , 
m m m m 

+ is • Since in equality (i) a~d (ii) h represents 

the same group element we have dropped the subscript. 

Case 2 Suppose j • l ~r j • i. Either equality 

will yield the same result, and hence both oases are 

included in one consideration. The calculations 

recorded are tor . j • l. 

. . . ) 

• • • 

-l (s)µ(v)µ(a )µa. ( 

, 8 - (1, 1), 

e , • • • ), and 

• • • , e ' h1 , e , • • • i )µ, or 

L< • • • , e , k1 , 
. l 

•••, k
1 , e · , ••• )(ls\ is+) 

n 

••• ) >< 

+ is+)( -1 -1 D (le · , ••• , e ' ki , • •• , ki , e , • • • 
l n 

l i l 1 l i ) . • ( hiTl' hiT2' h1 T.3, ••• 

Direct computation on the left side or the equality 

yields the following multiplication, 

( •.•. • •• 
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. . . 
• • • . . . ) . 

Then the resulting equality between multiplic Ltions 

demands the following equality between ractoro. 

m = l, ••• + + 
1 n, 1 ~ ls 1 i ~ is • m m 

(iv) 

(v) 

The equalities (i) through (v) are restrictions on 

i the endomorphisms Tj or H. We may now further our 

study of images or multiplications under µ in viow 

of these restrictions. 

Suppose j ~ l and consider, 

( • • • , e , h j , e , • • • )µ :a 

According to restriction (i) each factor in the image 

multiplication is conjugate to hjTi
8

+ except the 

factor hjT1
8
•. But sinceµ is an automorphism or V(B, d), 

the image multiplic&tion must be an element of V{B, d), 
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hence only finitely many of the factors may be 

different from the identity. It then follows that 

every !actor save the factor hjT~ 8 + must be the identity 

and in this case the factor hjT~ 8 + must be different 

from the identity. That is f'or j different f'rom l, 

( • • • , e , hj , e , ••• )µ, -

( • • • e , h Tj + e , ••• ) . ' j js 
, 

We next consider the case where j • l. 

It we rewrite (v) in the form, 

we see .that_ every factor of the above recorded image 

multiplication is conjugate to some element hiTi
8
+. 

But we have observed in the previous consideration 

that for'j ~ l. hjT~ 8+ is the identity element, and 

hence all factors ot the image multipiication are the 

+ identity except the ls factor. That is, 

e , ••• )µ - ( • • • , e ' 

In the beginning we assumed the most general 

repre~entation of an automorphism of V(B, d) tor µ. 

) . 
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and for the correspondence assigned we hnve only an 

endomorphism of V(B, d). We must now determine what 

further restrictions are ne~essary to insure that the 

correspondence is an automorphism or V(B, d). Suppose 

we are given an arbitrary ruultiplication or V(U, d), 

( ... I • • • I h I 
in ' e , . . . ) . 

We ask if this multiplication arose from the image or 

some other raultiplication under /t. Thia is uquivalont 

to asking under what conditions will the set or 

equations, 
i 

h Tm + = • • 6 1 m l.m 
h! 

1 m 
I Cm l, ••• I n, 

have unique solutions h1 , m • l, •••, n, in H. Such 
m 

a unique set of solutions can exist if and only if 

the Ti
5

+ are automorphisms or the Group H. With this 

added restriction we have comploted the characterization 

of the imnges of multiplications, but will latter employ 

(iv) to change the repreoentation. 

Let us refer to equality (ii) restricting the 

+ endomorphisms whose subscripts are different from ls 

+ 
and is • + We have seen that if i be different from js m 
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then hTj· · is the identity. In case 1, which produced . i 
m 

equality (ii), we have restricted j to be different 
+ 

from l and i, so that j may be so chosen that je - im• 

and the following equality- results, . 

j -1 j 
kj 8 +hTj 8 +kjs~ - hTj 1 +. 

Inasmuch as we have required that T~ 8+ be an automorph-

ism of H, we oan only conclud6 that kj
8

+ belongs to 

the center of the group H. That is the multiplication 

componnent of the image ot (l, i) under µ must havft 

+ + every factor except possibly the ls and the ia 

factors · belonging to the center or the group H • 

. We wil1 now show that the taotors of this 

aultiplication l!hich do no~ .o~oupy the ls+ and is+ 

positions are the identity element. 

Since . Cl~ i)(l, j) has order three, we have, 
. . 3 

~l, ·1)(,1, j)µ] -

li k1 , k 2 ., k3 , • • • ) (ls+, is+) >< 

( h1 , h 2 , h3 , ·~· )(ls+, js+~ 3 a E. 

By direct calculation we see that it n be different 

+ + + from la 1 is , and js 1 then the n-th factor ia, 
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We have prevously seen that both h and k belong n n 

to the center or the group II, and moreover each ha.e 

order two. It then follows that h and k are 
n n 

+ inverses of one another. The ls factor or the 

~bove product is, 

k +h +k +h +k +h + • e, ls is is ls j s j s 

which, in view or tho centrality of the oloments 

kj
8

+ and h18+ together with the equ~lity, 

Thus the factors of the image multiplicat-

ions of (l, 1) and (1, j) are the same if we exolude the 

+ + + + ls 1 is 1 and js factors, and further the js factor 

bf t ·qe multiplicatt6h componntJht o:C (1, 1)µ is equal to 

+ the is factor of the multiplication componnent or 

· ~ In a similar manner by co~s1dering {l, j)µ and 

(1, t)µ where t ~ 1, t ~ j, we find that ths ts+ 

factor or the multiplication component oi (l, j)µ is 

+ equal to the js factor or the multiplication component 

ot (l, t)µ. 
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+ !a at ors or the multiplication cocponent or But the ts 

(1 .. i)µ and (1, j )µ. + are equal, and the je f ector of. 

the multiplication component of (1, i)µ and (1, t)µ 

are equal. That is the t3+ and js+ £uotora or the 

multiplication corapono~t or (1, i)µ are equal, nnd 

hence all factors of the multiplication componenet 

+ + of (1, i)µ except possibly the ls and is fnotors. 

But this multiplication is an element of V(B, d) and 

hence all factors ~xcept ... + poosibly the ls and is 

factors muot be e. Thon, 

(lJr i)µ, = ( ••• , e , k1s• 1 e , ••• , e , k10·1 e 

" + 
• • • J~ts·, is ). 

Let 4'. be the multiplication or V(B, +,. 
v B J 

+ + 
who~e ls · factor is e, and wh~ae is factor le the 

is+ factor k18+ of the multiplication component or 

(l, i)µ. + This multiplication v is the element of 

+ 
V(~, B ) whose existance we asserted in (2) of the 

theorem. 

We have seen that, 

( h1 , e , • • • )µ = ( • . . , e , h1T~8 + 1 e , • • • ) 

where T1 + ls is an automorphism or H. Let T1 + generate ls 

, 



in a manner described in the discussion preceding 

this theorem, an automorphism T+ ot ~(HJ B, C, D), 

+ d ~ c, D ~· B , which is moreover an automorphiom ot 

~(HJ B, d, d) sinoe ~(HJ B, d, d) is a characteristic 

subgroup of ~(HJ B, D, ~). This is the automorphism 

which forms the first component ot µ, and T~8+ i1 the 

automorphism ot H whose existance we asserted in (3) 

of the theorem. 

If we now refer to restriction (iv) on the auto-

. i morphisms T18+, 

that we ma7 write, 

c· ••• . ' e , h j , e , 

( ·~· J e • 

(l, i)µ -

we observe 

••• )µ -

' e ' 
... ), 

( • • • , e 1 k18 +, e 1 • • • , e , k111 + 1 e 1 • • • ) 

+ + >< (ls , is ) 

which we may now reoQr4 in eimplitied form as, 

( • • • ' 8 ' hJ' e , . • • • )µ. a 

( • •.• ' e 

+ (1, i)µ = {l, i)T .I 8 +Iv•• and hence for an arbitrary 
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+ (u)µ • (u)T I +I +. s v 
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Conversely suppose we are given an element 

of S(B, s•), + e V(D, B+), T an automorphism or v 

Then I +, s I +, v and T+ are each automorphisms of 

+ 
B 

H. 

>CH· - ' 
B, c, D)' dS, c, D S. a• 

' and hence the product 

+ T I 6 +Iv+ is an automorphism of the group. Then the 

isomorphic. + But each of the nutomorphioms T 1 I +, 
" 

and Iv+ take elements or ~{H; B, d, d) into 

>"(HJ B, d, d). Hence the restriction or the auto-

is an automorphism of the latter group. This is the 

automorphism µ, and the proof of tha theorem ie 

complete • . 

Corollary l 

ism of ~(H; B, d~ d) if and only it T+ ie generated 

+ by an inner automorphism T = Ih-l of H, s E S(B, d), 

+ 
v is the product of ·an element of V(B, d) and the 



+ If T . is generated by the automorphism 

+ + + + 
Iil .. l.' ·• s · e s ( B, d) , v - v 1 [lil , v 1 e V ( B, d) , 

+ . + 
~ = · T I +I + r'-'1 .. < :.T. ~ · +I._ r.:i I + • 
,. . . • 8 VlUlJ . ·""···· 8 . LW Vl 

~ ' ' . .· ~ ::- . · .. • . 
+ . . 

T I Oh, I + I ~ - I +I + - I + +, us .. v1 e v1 v1 e 

and hence µ · is· an, inner automorphism of ~(HJ B, d, d) • 
·. l ' .. 

· Conversely i,.uppoae µ is an inner automorphism ot 

~(Hj B, .·d, d) ', then, 
' . '' 

µ m.I ~I · ~ 
1 
•I ,I ,. u v • . s. v 

+ + + where; s' . £ S(BI d), v e V(B, B ) , v - v• Du • 

=- v' £ V(B, d). 

Theorem 19 The group of three-tuplea (T, + + a 1 T ) 1 

+ + where T is an automorphism or the group H, a s S(H, B ) 

+ + v e V(B, B ), with the operation, 

IS homomorphic to the automorphism group ot ~(HJ B, d, d) 

+ + under the correspondence ~' (T, s , v )~ • µ, 

+ µ ~ T 1
8
+Iy•, and the kernel X of ~ is the aet of all 

+ + + three-tuples (T, s , v ), where a is the identity 
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permutation of S(B, B+), v+ is a scalar Dtl ot 

+ V(B, B ) , and T is the inner automorphism Ih-l or 

the group H. 

Proof We will first show that the set ot 

+ + three-tuples (T, s , v ) with the above defined 

operation form a group. 

Consider the element (T , 
0 

+ + s , v ), where T 
0 0 0 

+ is the identit~ automorphism ot the group H, e
0 

the identity element of the group S(B, B+), v: ia 

the identity element ot the group V(B, B+). To 

demonstrate that this element is the identit7 element 

of the set ot three-tuples we make the following 

calculation. 

(T, + + e , v )( T 0, 

+ + If (T, s , v ) be an arbitrarT element ot the 

set we see that, (T-1 ,s+-l, : -l(v+-lT-l)a+) is an 

inverse tor this element since, 

(T + +)(T-1 +-1 +-l( +-1 +-1 +) , s , v , a , 1 v T )a -

+ + (T 1 a 1 T ). 
0 0 0 
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the set since the first two components clearly belong 

+ to the automorphism group or H, and S(B, B ) respectively 

+ and the third component ia an element of V(B, B ) 
+ + since T restricted to V(B, B ) is an automorphiom or 

+ that group, and further since V(B, B ) is normal in 

~(HJ B, B+, B+), conjugation by a permutation or any 
. + + 

element of V(B, B ) produces an element of V(B, B ). 

It follows from the definition of the operation 

for th~ sa~ of three-tuplos that the set haa the 
~~ \· :- -: .. r: 

closure property. Therefore it remains to demonotrat• 

that the associative law holds. 

Hence the set of three-tuples with the defined operation 

form a group. 
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Let ~ be the correspondence between the group of 

three-tuples and the automorphism group ot ~(HJ B, d, d) 

as defined in the theorem. We will ehow ). is a 

homomorphism. 

The correspondence ~ is onto, tor given any auto-

+ morphismµ - T I 8 +IT+, there exists a three-tuple, 

namel7 (T, a•, v+) suoh that (T, a•, v·)~ • µ. 

). is a multiplication preserving oorreapondono•·· 

We desire to change the form of that portion of the 

product which occurs within the braces, so let ua 
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and hence, 

?\.1 hence 

Therefore ~ is a homomorphism from the group of throe-

tuples onto the automorphism group of ~{H; B, d, d). 

We compute the kernel K or A. Let µ
0 

£ K. 
+ 

(l~ i)µ
0 

- (l, i)T I +I + - (l, i) s v 

+ But T acts as the identity automorphism on permutations, 

and therefore the equality reduces to, 

+ which can exist for all i if and only it a leaves all 

i fixed and therefore is the identity permutation. 

Then, (1 1 i)Iv+ ~ (1, i), for all i, if and only if v+ 

is a scalar [h] • 
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Consider, 

(h, e , • • • ) µ - (h, e , • • • )T+I +I + • 
0 8 v 

e ' • • • ) • ( h I e ·. I • e • ) • 

This equality can exist if and only it T • Ik~1. 

Thus we have shown that the kernel K of ~' 

' + + + is the set ot three-tuples (T, e 1 v ), where • 

+ + is the identity permutation ot S(B, B ), v a scalar 

k 
+ ' . 

of V(B, B ), T the inner automorphism Ik-l ot H. 

Cerolla~~ · l Let A denote tho automorphism group 

of ~(HJ B, d, d), A
8 

those elements of A whioh leave 

S(B, d) fixed elementwise. Then, . 

(l) A is a subgroup 0£ A, such that any auto-s 

morphism µ in A has the form, 
s 

µ - T+I [bl, [h] a scalar ot V(B, B+). 

(~) The set ot two-tuples (T, h), T an aut~morphiem 

of H, h an element ot H, form a group with 

(3) The group or two-tuples are homorphia to A
8 

under the homomorphism ~. 
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+ 

( TI h )1'. = µI µ = T I [ h] • 

(4) The kernel K of 1'. is the set of two-tuples 

Proof The assertions (1) through (4) are 

~mmediate consequences of the theorem, since the set 

of two-tuples form a group isomorphic to a subgroup 

of the group of three-tuples under the c9rrespondonce, 

( ) <--> ( T ' 
+ [h] ) . T , h 8 , 
0 

Theorem 20 µ is hll automo!9phism of ~(H; a, d, c), 
+ 

d < C < B , i.f and only if there exists, 

(1) + e S(B, B+) B , 
(2) + e V(B, d), v 

{3) T an automorphism of H, 

Proof We have seen in Theorem 16 thnt 

>CH; B, d, d) is a characteristic subgroup ot 

>CH· B d C), hence ifµ is an automorphism or -- , , ' 

~(H; B, d, C) its restriction to 2:(HJ B, d, d) is an 

automorphism of that group. We have in Theorem 18 

determined all automorphisms of ~(H; B, d, d), hence 
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we will be· concerned l'lith extending the automorphiame 

or ~(H; B, d, d) to automorphisms of ~(H; B, d, C). 

As is evident from the statement of the theorem not 

all ~utomorphisma of ~(HJ B, d, d) ma7 be extended to 

an automor~hiam ot ~(HJ B, d, C). 

+ There is determiPed by µ an element s ot 

+) ' S(B, B · $Uoh that, . 

. (s)µ.;. (v' )(eI +), s s S(B,· d). 
8 

Its e S(B, C).then, 

., d ) µ as ' v I s I I v I e v ( BI d) , s ' £ s ( BI c ) • 

According to Corollary l of Theorem 15 tho oorrea-

'pondence. ·"-, aA. =a•, is an automorphism cat S(B, C). 

The automorphism induced on S(B, d) b7 µ extends to 

S(B, C) in one and only one wa7, by reason ot Theorems 

4 and;, hence~- I+, and ths elements s• a S(B, B+) s 

is the element whose ex.iatance was assetted in {l) of 

the theorem. · · 

~ Any~lement as S(B, C), according to Theorem 3, 

ma7 be decomposed into the product ot two elements a1 a2 

such that the order ot •ach s1 and s2 is two. We will 

therefore reduce our stud7 of sµ to that of a1µ. 



We then have, 

We observe the factors or v1 considering two cases. 

Suppose n is an index such that x does not n 

belong to the set of elements moved by a1I 8 +, then 

it follows from the abo~e equality that the n-th 

factor of v1 has order two. On the other hand i! 

i is an index such that xi is moved by (s1 )I 8 +, 

then there is an index j such that (xi, xj) is a 

transposition ot (s1 )I
8

+. Then the above equality 

demands that the i-th and j-th tactora or v1 must be 

inverses of one anbt~er. 

If n is an index such that x does not belong 
n 

to the set or elements moved by a1 , we will show that 

k + belongs to the center of the group H. Let, ns 

v == ( •• ·• ,e,h ,e, n 
... ) 

and consider, 

(s1v si1 )µ ~ (v)µ ~ ( 

= (sl)µ(v)µ(sil)µ = 

• • • , e , h Tn + e , · • • • ) 
n ns ' 



( ... I e J k ··h Tn +k-l+ ns' n ns ns ' 
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e ~ • • • ) • 

This equality of multiplications demu.ndo the toll.owing 

equality of factors, 

hTn + ~ k +hTn +k-1+. ns ns ns ns 

Since T0 + is an automorphism or the group H, it ns 

follows that kns+ belongs to the contar ot H. Thnt ie 

all factors ot v1 belong to tho center or H oxoopt 

possibly those factors j such that x~ + belongs to the 
.J s 

We next show that each of these factors which 

belong to the center or H is moreover the identity 

element of H. Let, 

••• 

and define an element st E S(B, C) as follows, 

where the xt. do not belong to the set of elements 
l. 

moved by s1 , and hence st has order two. The 

existence of such an element st is insured since we 

+ have required that c < B 1 and hence s1 must move fewer 



than B elements. Since atsl has order three, we have 

v -t 
. . . ) . 

By direct -calculation of the above equality we 

discover that ~e have in the ls+ position tho factor, 

h +k +h ' +k +h +k + - •• ls 2s 2s ls t2.8 t 2 a 

But x2 does not belong to the sot of elemonta mJved 

by at dnd xt does not b«llong to the S3t o! elements 
2 

moved by s 1 , hence k28 + and 

0£ H, and since, h1a•h2e+ 

reducea to k · +H + • e. 
2s t2B 

.. 
ht 8 + belong to tho oonter 

2 

k1 +kt + •• , 
8 2• 

the tactor 

Then k2 + • ht + ainoe 
• 2' 

since each ot the elements has order two. 

Consider a third permutation ot S(B, C), 

where the x do not belong to the set ot elements 
. vi 

moved by a1 or st. 

Then calculations similar to those just performed with 
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·the elements at and a y-ield, w 

K + - ft •• , i - 2, 4 ,, 6 ••• 
•18 ' i 

.but., h ·- k . + and hence, 
'wis w s ' 1 

·Therefore al1 factors ot v1 are equal except poasibl7 

those factors hj suoh that xj(s1 )I
8

+ ~ xj. But 

,v1 s V(B., d).~ and hence all factors ot v1 are e 

ex~ept possibl7 the factors hj, .j an index euoh that 

xj'( a~) I 8 + f- x j • 

We have then the following information reagarding 

It x doea not belong to the m 

set ot elements moved by s1 then h + iu the identit7. ma 

of ~(HJ B, d, d), a characteristic subgroup ot 

~(HJ B~ d, C), we have , Cx1 , xj)µ -

( ••• , 8 ' ~ 8 + I • I •• ~ I e I hj 8 + . I e ' ••• ) (Xi. • ~ Xj ~ +) ' 

' 



• v•(s')I , where si = s (x1, xj). 
l l s+ 

so 

Since (xi, xj) is not a transposition or Si the 

+ · + + is -th and js -th £actors of vl are e, but the is -th 

tact or or v• is the product or the + factor ot 
1 is -th 

v1 and + the js -th fnctor of the multiplication com-

(x1 , xj)µ. the + + ponent or Hence is and jo !actors 

of v1 are identical with the factors in the corres-

ponding positions of the multiplication component 

of (xi' xj)µ. The multiplication component of 

(x
1

, xj)µ was formed by conjugating (xi' xj)I
8

+ 

+ + with an element v1 s V(B, B ). It is evident that 

+ + 
the is and js factors of v1 can be formed in the 

same manner. 

In the event that s1 moves an infinite number 

of elements, it is not possible that all hj
8

+ be 

different from the identity, yet we have seen that 

all hjs+ are formed by conjugation by the element 

+ . 
Il determined by the restricition of µ to 

~(HJ B~ d, d). If {x1, xj) be a transposition of s1 , 
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+ + 
and it the i~ and js factors of v~ are distinct, 

+ + then the is~ and js factors of Vl will be distinct. 

+ in such a that this We ·must then restrict v1 manner 

situation can happen only a finite number of times. 

Hence we must require that two !actors of + ' no v1 be 

.repea'fj~d in~initely often, and there must not occur 

+ in v1 an infinite number of distinct factors. Under 

these restrictions v1 will always be an element of 

V(B, d). 
+ v1 so restricted may then be written as a 

product v+[k], where v+ s V(B, d), and [k] s V(B, B+) 

k ·being that factor of v• which was repeated l 

infinitely often. Then, 

T+I +I[ :iI + = T+ I[k]I +I + m T+I +I + 1 l s k_j v l s v s v 

+ where T is generated by the automorphism Tik of H. 

+ + Conversely given an element s e S(B, B ), 

+ + ' 
v e V(B, B ), and T an automorphism of H, then 

I + I + d T+ t -~( H; B. B+ , B+) • s, v, an . are · au omorphisms of , 

Hence the groups ~(H; B, d, C) and ~(HJ B, d, C)T+I +I + 
8 v 



are iso_m~rphic ·. But each ot the e:utomorphisma T+ ' · 

. I
8 

+, ,and t,
1

.'+ ot.'. ~(HJ ·B~ .B•, B+) :·. i>akes elements ot 

·~(HJ B, d, C) into. elements o~ ~(HJ B, d, C). :He.nee 
~ • . . ·. .: .. 

+ · ·,the restriction of the aut,omorpbism T I fl +of . a T 
- .. ~ + .: -
~(HJ B~ 81 .B ) ~o ~(HJ B, d, 0) is an automorphism 

ot th,e le.it.er g~oup. · This is the automorphi.em µ, 

and this c.ompletes the proof ot the .• theorem. 

· ... Cerol:lary l µ is an inner automorphism ot 
. . . 

~(H) B~ · d, C)~ 4 < C < B+, it and oni7 it r• is 
' . 

·g:enerated b7 the identit7 automorphiam of H, and 

a• is an 'elem•nt of S(B, ·c) ~ ; 

+ · · . Proof .· ·It· T · is generated by the identit7 auto-
. . 

morphism· ot _H, and s.• s, S(B, · C) , then, 

and hence p. is an inner automorphism. 

Converaely' suppbse µ ia inner, 

. µ • I~~ u 8 ~(HJ B, d, c), then 
. . + + 

p, • I - 'l I +I +, and T I + - I I +-1 1 . U 8 Y S UY 

Horeova~, (a)I • • (s)l ·I + to~ all a e S(B, C), 
. . 8 . . u v ' 

+ theretore a · . e S(B, O). + Then finally T • IuI(T+e+)-1 

is an inner automorphism. 
+ . 

Since T leaves S(B, C) 
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+ fixed. .elementwise, T · ... I Ch], . . but [eJ is th9 onl7 

. . . . - + 
acalar Qt ~(HJ .B, d, C), henoe ~ T ie gene~a~~d 

i• :. • . . , ' . . • . . · : ' 
. --

b7 the identity automorphism. 
. ,. .. . ~ ' . ; ! 

. . ' . + + . + + 
. (!~ . a,• · ), ·fan automorphism of H, a e S(B, B ), 

; : ·, : ; ,~ ,. ·' : ~ • { • ; ~ • ' I ' • • 

' 

i~ ~eom~r~hi~ t~ th~ automorphism group of · 

·. · Pi;-oof . , __ The set of threCJ-tuples form a aub-

group . of . 't.h~ .•et; 'ct three-tuples of Theorem. 191 

an~ · .hence :the : mapping dtt:tined there is a homG>-

morphic mapping .of the: aet of thr•e~tuplea named 

ab,v~ ~nto the •utomorphism group ~t ~(HJ B, d, C). 

Call thi~ · restriotion of .~h~ h~momorphiam ~ ot 
' . 

Theorem 19~ ~·. Then the kernel K1 ~t ~· is 

contained in the . kernel K ot ~ • . But the onl7 

acal~r ~on~~ined . 1~ V{~, d) is the identity mult-

ip~icat,iol!-i ·:hence . It• has ·order one, and >-' :S.a the 

· ded.:r~d : :·iso~or~hism. 



CHAPTER V 

AUTOMORPHISMS OF .THE 

ALTERNATING .MONOlUAL GROUP 

· S~_ppose .. ~' . i~ an automorphism .ot ~A,n (H) • 

. Ao,cor~i~g to ,·T,heoreni 10, vn is ·a characteristic sub-

gr6up ot =~ .. :· , (ii)' and hence, " . . . ~,n . . 
' . 

>~ · n'(uJ·-·v · u Aµ•, and V (\A µt • . E. -11., · ·. . . n . n n n · 

Then ·Aµ• ia .oorijugate .to a group T which .is isom• 
n o 

orphic to A. under an isomorphi.am · ~ aa determined 
n 

in Theorem 17. · ., 

Arf' .;. . ~-~'?0u~ u e ~A,.n(H), and we ma:r write, 

A:. µ ' I . ~· . ~ ' I A rp· - T . , : a'nd . A µ I I 'g,-1 - A . • 
tt u o n o . n u n 

. :'. ·. ; ··· .. -1 :· . ~· i •. . . " ·, .. . . 

Then µ•I - ·is · an · automorphis~ of A,·· ~nd by reason u . n 
: • ~ ' • • •• ~ .. I • ~ '· • • • • • I ~ . +· 
of Theorems 4 and 6 there exists an a 8 S. . BU.Ch that 

n 

.. 
bav• extended ~ to an automorphism µ ot the group 

t • ' . 

~A,~{~)- , :· µ, - 1 8 +-~flu' and µ, • </J en An. 

Then we ma~ wri~e, 

(1j .3, 2)µ, ·• (e, 

(l;" i, 2)µ, ·.;;. ( e 

e, e, .g4' • • • , gn){l, 3, .i) 
2 . 

, .. g1•· 2 . 
g1• gig41 · .••~ · . I 

2 . : 
, gign)(l, i, 2), ••• 
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i ~ 4, ~·~, n , where the gi are as defined 

in Theorem ~7. 

Consider generating elements (1, 1, 2) or. A 
n 

and { ·~· , e » hj, e, .••• ) of Vn• Then sinceµ 

ia an automorphism of ~A,n(H), 

{s)µ(v)µ(s-1 )µ = (svs-1 )µ, ror all s E A n 

and al1 v e V , and in particular for the generating 
n 

elements named above. The form. of an endomorphism 

of V was determined in Theorem l as a function of 
n 

2 n endomorphisms or H. The above equality will 

serve to restrict these endomorphisms of H in suoh 

a manner as to have an automorphism ot Vn which 

extends to an automorphism of ~A,n(H)~ It will be 

necessary to consider a number of cases. In each 

case the above equality has been calculated for the 

generating elements, but such calculations have not 

been recorded, only the resulting restrictions of the 

- 1 endomorphisms Tj or H. 

Cas~ 1 j ~ l, 2, 3 and i - 3 



Case 2 . 3 .~ land 1 • 3 

(1) hs .- h'l'~ 

( 2) hTi - h't~ 

(,~ . ~Ti ~· hT; 
' 1 

(4) 8ath-r;g-; • hsr:, m ss .4' •••, n. 

Case 3 j • 2 and i • 3 

(1) 

(2) 

(3) 

2 . 3 
hT; ~ hT1 

hT2 • hT3 l . 2 

hT~ =, hTj 
2 -1 _1 . 

(4) Sm_hTm!m . = . h1ii., m • 4, • • •, n. 

Case 4 j•3 . and i ~ 3 

( ) 
- 1 -1 l ' . . 

~ . Bmh~Sm * h'lm' m • 4, • • •' n. 

Case 5 1 ~ 3 and j 1' 1; l, 2. 
j j 

(1) hTi • hT1 
. . j -1 j 

(2) 81hT18i • hT2 
2 j -12 c j 

(3) s1hT2g1 • hT1 
2 .. 

(4) sfhT!si1 - hr; 
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(S) g~8mhTj~1s2i1 - hT;~ m • 41 •••, n. m ~ 1. 

Case 6 i ~ 3 and 1 .. j 

(l) 

(2) 
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(3) gfhT~gf-1 = hTt 

(4) g2hTig2-l = hTl 
:1 .3 i 3 

( 5) g2g hTig-lg2-l == hTl, m = 4, ••• , n. m ~ i. 
i m mm i m 

Case 7 f ~ 3 and j = 1 

(l) hTi = hTi 
(2) l -1 2 gi hTl gi =. hT2 

(3) 2 1 2-1 . 2 
gihT2gi cs hTi 

(4) g2hTlg2-l = hT2 
i .3 i 3 

-l hT2 n. m r/: ( ;) g2g hTlg-lg2 == m cs 4, • • • I i m mm i m' 

Case a i :/:: 3 and j = 2 

( l) hT2 hTi i == l 

{2) 2 -l hTi gihTlgi = 2 

(3) g2hT2g2-l • hTi 
i 2 i i. 

(4) 
-1 g2hT2g2 = hTi 

i 3 i 3 

(5) g2g hT2g-lg2-l == hT1 m =- 41 ••• n. m ~ i m mm m m• I 

Theorem 22 If n > 6 and H contains no subgroup 

isomorphic to A 1 , then any automorphism of >A (H) n- - ,n 

differs from an automorphismµ of ~A,n(H) by an 

+ -automorphism I +, u e > (H), where µ is constructed u -n 

in the following manner, 

(a)µ ~ s, for all s e A , 
n 

i • 

1. 
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( h1· · h21 h3i ••• , hn )µ, m 

{<n1, ll21 h.3 ' ~ .... ' ·hn ) fpKJ} T\ n 
p a fl hs, 

i-1 

whereT+ is generated by an automorphism ' ar ·H, ·and 

K· is an endomorphism ot H mapping H upon a subgroup 

of its cent~~ i~ : su~h a manner that l + nK is a 

central automorphism -of H. 

Proof ·For n > 6 the only homomorphic image of 

An-l in the group H is the identity subgroup, eince 

we have required that H contain no subgroup ie0morphio 

te An-i· That is in the preceding calculations, 

11 • e' i = If.' ••• ' n. From these calculations we 

pick the following restrictions on the endomorphisms 

(i) i . 1 
hTl. =- hT1 

· ' 

(ii) l i 
hT1 - hT1 

.. 

(iii) hT{ •hTi, i .r j, j .r l 

(iv) hT
2 

-
i i ~ 2 l •, . hT1 , 

{i) tGllows from 3 case 6, 3 case S, l case S 

for i ~ -. 2, ):. Then from l case 7, l case 2, and 

from 1 case 8, 3 case 7 1 3 case 2, l case 3, combined 
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with the equ~lity just established we have (i), and 

2 3 moreover have shown that hT1 = hT1 • 

(ii) follows from l case 6, 2 case 21 and 

3 case 3. 

(iii) follows from l case ;, and l case 1 for 

j ~ 2, and for j = 2, fro~ l case 71 3 case 6, 1 case 

l, and l case S, l case 2, (i) and l case 3. 

Finally (iv) follows from {i), l case 7 1 and 

l case 2. 

If we set, T~ ~ T', and T~ = ~ 

we may write by reason of Theorem 1 1 and (i) through 

(iv) above, 

( • • • 1 e , hj , e , • • • )µ e1 

• • • 

where hjT• is the j-th factor of the image multi-

plication. 

The permutability conditions of the endomorphisms 

of H now become, hY'kT = kThT 1 • 

Since the elements ( h , · e , ••• ) ~nd 

(e 1 k 1 e 1 ••• - ... - -) commute, we have hTkT = kThT, 

for all h s H, ks H. That is HT is an abelian sub-
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group, and is moreover _ contained in the center of H1 

since H = HT' lJ HT 
• 

• • • , k ) e v ,, 
n n then since 

Jt is an ~utomorphism or ~A,n(H) 1 tho following set 

of equations must have a unique set of solutions 

h. e H, i ~ l, ••• , n. 
1 

h T ' h Th T ••• h T = kl l 2 3 n 

h 1Th 2 T 1 ~ T • • • • h n T = k 2 

h Th Th T•••h T' - K • l 2 3 n n 

If we agree to let T be the correspondence 

we may rewtite the above set or equations in the 

follo~ing simplified form, with the aid of the 

permutatibility conditions, 

• • • I h TpT = k I n n 

n where p =i~lhi. I£ we further alter the equations by 

employing the relations, 

and multiply the first equation by the equation 

resulting from taking the inverse or both sides ot 
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the m-t.h equation we obtain, 

Since these conditions must be satisfied by some yi 

for every set or elements x1 s H, it follows that T 

must be a correspondence of H onto itself. The 

correspondence T is moreover an automorphism of H. 

That T is multiplication preserving followa from the 

tact that HT is containod in the center or H. T is 

onto, and has kernel e. Suppose the kernel is 

different from e, then there exists nn element h s H, 

h ~ e, such that, 

hT = hT'h-lT = e, hence, hTt ~ hT, and · 

( e ; h , e , • • • )µ == (!ti] == ( h , e 1 • • • )µ. 

But µ is an automorphism or V 1 and hence we hnve n 

reached a contridiction. This shows that T is an 

automorphism o! the group H. 

Then by reason 0£ Theorem l and the permutntib-

ility conditions we may write, 
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= ( hl, h2, h3' ••• h )r+[pTJ. , n 

Define corr~spondences a and ~ of v as follows, 
n 

( hl' h2' h3' ... h )a = , n 

( hl' h2,, h.3' ••• hn ) [PK]' where K == TT-l , I 

( hl' h2, h31 •• 0 , hn ) (i == 

( h1, h2' h3' ••• , hn )T+. 

Then (v)µ = (v)a(3, for all v E vn. But (3 is an 

automorphism of V and hence a must be an automorph-
n 

ism or v • n That is the set or equations, 

hi(pK) .. k11· i == l, 0 •• ·' n, 

where the ki are an arbitrary given set of elements 

or H~ must have unique solutions h1 in H. Since the 

center of any group is a characteristic subgroup, 

- -1 K = TT , maps H onto a subgroup or its center. 

Ir as before we set# 

we see from the former equa~ity that y ~ x , and m m 

moreo~er the set of equations reduce to a single 

equation, h(hn)K = h (l + nK) be a defining relation 

for (1 + nK), the single equation of consideration 



We see that the correspondence 1 + nK must b~ onto the 

group H, since this equation must be satisfied' for all 

k s H. (l + nK) is a multiplication preserving corres-

pondenae since K maps H onto a subgroup or ita center. 

Thus 1 + nK is a homomorphic mapping, with kernel e. 

To establish this we suppose that there exists an 

h s H, h ~ e, such that, 

h(l + nK) = h(hn)K = a, then 

But a is an auto:orphism of V and hence this cannot n 

be; and therefore 1 + nK has kernel e and is an auto-

morphism of the group H. Then, 

( hl, h2, ••• I h )µ -n 

{c h11 h2, h3, ••• , hn)[ptjf T+ ' 

where T and 1 + nK are automorphisms of H, 1 + nK 

being a central automorphism of H. 

In the beginning we started with an arbitrary 

automorphismµ• of ~A,n(H), but multipliedµ• by 

another automorphism of >A,n(H) to form another 

automorphismµ of ~l,n(H), which took generating 



three cycles of A onto the product of an element or n 

Vn and the initial three cycle. The further require-

ment that n > 6 caused the multiplication component 

of the image element to be E. Then (s)µ ~ s, for all 

s s A • This completes the proof of the theorem. 
n 

'fheo rem 23 Given an automorphism T of H, an 

endomorphism K of H, such that K maps H onto a sub-

group of its center and (1 + nK) is a (central) 

automorphism of H, the the correspondence µ1 

(a)µ~ s, a .a A , n 

where p is the product of the factors or v, is an 

automorph. i. sm or >~ · (H). 
-,~,n 

Proof V and V µ are isomorphic, under the n n 

correspondence µ• Let, 

(v1)µ = {v1 [p1K]jT+. (v2)µ = {v2 [p2~jT\ then 

(vl)µ(v2)µ = {v1 ~lK]JT+{v2 IP2~}T+ • 

{ vl 1!>1~ v2hK]~ T+ = {v1v2 ~1P2i{J} T+ ,. Cv1v2)µ. 

Hence µ preserves multiplication, an~ ~ ia clearly 

onto. The homomorphism µ has kernel e, which will 

be established by denying this statement. Then there 



existo v e V , v f E, such that n 

( v )µ -_ {v [pr;Jj T+ == E. 
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Since T+ is an automorphism o~ Vn' v[J>K] u: E) 

and hence v must be a scalar h 1 and 

h(h0 )K ~ h(l + nK) = e, 

but (l + nK) is an automorphism of H and honoe h =- e 1 

and v :;' E, is a contridiction. 

Let G = (V )µ l.) A • (V )µ is a normal 
n n n 

of G, and (V )µ n A = :r:;. Then according to 
n n 

G and >A . (H) are isomorphic if and only if, - ,n 

and 

(s)µ(v)µ(s-1 )µ c (avs-1 )µ, !or all a £ 

all V E V • n 

subgroup 

Theorom 

A n 
, 

+ 
{ s)µ{v)µ(s-1 )µ == s(v)µs-l =- s{v fpKJ} T s-l"' 

= s(vT.0°) (j>KT]s-l= s(vT +)s-1 [pKTj. 

(avs-1')µ = [<svs-1 ) (p•K]5T\ where p 1 is the 

product of the factors of (svs-1 ). But since K maps 

H onto a subgroup of its center pK = p•K, and 

Therefore G and >A· (H) are i ·somorphic u.1der µ. - ,n 

7) 
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But G - - ~A,n(H). It is clear that ~A,n(H) contains G. 

To show the inclusion in the reverse sense we need 

on;Ly- show that if' v s ~A,n(H) then v s G. Let 

v ~ (h1, h2, h3, ••o , hn ), then we ask it there 

exists an element, 

v• ~ ( k1 , k2 , k3, ••• 

( vt )µ .. {vt [P' iilJ T+ .. 

, k ) e V , such that n n 

v, that is does the set 

ot equations, 

{ki(p•K>)T = h1, i - 1, •••, n, 

have solutions k1 e H. The construction employed in 

the previous theorem when viewed in reverse order 

shows that if we set, 

and define y, m = 2 1 ••• , n, to be 7 ax T-1 , 
m m m 

the set or equations are seen to have solutions, 

kl - {hl T-1<1R2Y1>-1 xJc1 + nK)-l 

k - 7 k , mm 2, ••• ,n~ 
m m 1 

We demonstrate that the ki' i ~ l, ••• ,n, are factors 

of a multiplication v• such that (v•)µ = v, by showing 
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~hat t~ey satisfy the above set of equations. We show. 

that th~ first equation is satisfied. 

We now show that the m-th equation is satisfied. 

km == (ym) [{hi T-1 <1R2y1)-1K] (l + nK)-~, 
n n · ~l n -1 

km(km)K = Ym(ym)KqlT (i~2yi) K, 

n) ( n ) n)-1 -1 -1 km(km K i~2Yi K(ym K • ym(h1 )T ~ (~h1 )T 1 

· n ( n -1 -l km(k1 )K i~2yi)K == (xmh1 )T · · == hmT 1 

km(p' )K = h~T-1 , [km(p' )19 T cs h~. 

G =>A (H), and ~ence µ is an automorphism or - ,,n 

Theorem 24 The automorphism group or ~A~~, B, d) 

is isomorphic to the automorphism group or 

~(H; B, d,, d). 

Proof Letµ, be an automorphism of ~A(H; B, d), 

s = (l, i)(m, n) e A(B) 

V ~ ( ••• , e , hj, e 1 •• 0 ) S V(B, d). 

Then by Theorem 6, 
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••• 

+ + a e S(B 1 a_)~ and only finitely many of the k's are 

different from the identity. From Theorem 2 we have, 

. . . ) 
T~ endomorphisms of H. If we then compute the equalit7 

(s)µ(v)µ(s-1 )µ = (~vs-1 )µ, 

the restrictions placed on the endomorphisms T~ 

are such that the images of multiplicationa under 

and automorphism of ~A(H; B, d) are determined in 

the same manner as under an automorphism or 

~(H;-B, d, d). We may determine the image ot 

permutations by reproducing the calculations or 

Theorem 20 1 for the images of permutations there 

were determined irrespective oftheir b~ing and even 

or an odd permutation. Thus all automorphisms of 

~A(H; B, d) are restrictions of automorphisms ot 

~(H; B,, d, d) • 



CHAPTER VI 

COMMUTATOR SUBGROUPS 

OF THE MONOMIAL GROUPS 

We will use G' to denote the commutator subgroup 

of the group G. 

Theorem 2; The com.mutator subgroup V'(B, C), 

+ d ~ C .S B , of V(B, C) is the set of all elements 

where there exists an integer N such that each h{ 

is the product of N or fewer commutators of H. 

Proof Suppose v E V1 (B, C) and via a com-

mutator~ then there exist~ a ~l and v2 or V(B, C) 

It then follows that 

every factor of v must be a commutator of H and 

hence an element of H1 • 

If v e v•(B, C) but is not a commutator, it is · 

a product . of a finite number of commutators, v -
., 

= Y1v2v3• ••vN. Since each vi, i := l, ... , N" is a 

commuta.tor of V(B1 C), each £_actor of : ~~~ 
1 z:: 1, ! ! ! I 

, N, is a com'lllutator of the group H~ Therefore 
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every factor , o~ v is the product of N or fewer com-

mutat0ra ot ,H, and is then an element ot H'. 

Conversely if v e V(B, C) and has the form 

v - ( h', h', h',··· . l 2 3 ), _hi_ e H•, and 

there exists an integer N such that ea.ch hi 
is the pr,oduct ot ·N or f'ewer coDl.11\utatora of H, we 

see that v 'can be decomposed into a product or N 

or tewer comm~tators fr6m V(B~ C). It ~hen follsws 

that v e V'(B~ C). 

Theorem 26 The commutator subgroup s•(B, C), 
· + d < 0 SB , of S(B, C) is S(B, C). The commutator 

subgroup S'(B, d) ot S(B, d) is A(B, d). 

The proof is contained in [5]. 

Theorem 27 The commutator subgroup 

~·(HJ B, d, d) or ~(HJ B, d, d) ia A(B, d) U V+(B, d) 

where V+(B, d) , is the set ot all elements or V(B, d) 

whose product of factors is a member ot H'. 

~root. , BY _ rea~on ot Theorem 26 we have~ 

~· (H; B, . d, d.) =' A(B, d) I 

and we now show that, 

~· (H; B, d 1 d) ~ V+ (B, d). 
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+ Suppose ( h1 , h2 , h3 , ••• ) e V {B, d), and let ij, 

j = 1 1 ••• , n , denote the subscripts of its non-

identity factors. Then consider the elements, 

v = ( ••• , e , h1 . 1 e , ••• ) 
j 

s = (x1 , xk), then 
j 

V S V
-1

8
-1 _ ( - ••• , e I h1 I e , ••• I e I 

j 

~:1 , e , ••• ) bel~ngs to ~1 (H; B, d, d). 
J_ j 

Moreover since .h and ij are arbitrary, any element of 

the above form belongs to ~ 1 (H; B, d, d). Thia being 

the case; the . element, 

( • • • I e J hi I 
. . . l 

• • • , hi I e I • • • , e I 

n 

belongs to ~•(H; B, d, d), and further since 

( ... , e ' • • • ) 

belongs to ~1 {H; B, d, d). Finally the product of the 

two multiplications must belong to ~'(H; B, d, d), but 

+ this product is the element of V (B, d) selected 

earlier. That is, 
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. -~, (Hj d, :'d) + d), B., ::> · ·V {B, and 

·· ~f{ff.; B, d, d) ~ + V (B, d) U A(B, d). 

Since ·G/G 1 is abalinn for any group ·G, and G• 

· · · · 1a the smallest. group for which· ·this. is true, we will 
' .. 

- + have. 2: 1 _{~; B, , d) d) C V (B, .d) l! A(B, d), if we 

can show that ~(HJ B, , .d, d)/V+ (B, d) U A(B, d) is 

+ It tollows from the definition of V (B, d) that 
+ . + V (B, d) contains V1 (B, d), and hence V(B, d)/V {B, d) 

is an abelian group. Therefore any two multiplications 

commu~ e m~ d -[v + ( B ~ d) u A ( B ~ d)J .• Since A(B, d) 
' ' 

- . 
consists or ·all ~ven permutations. the~e are but two 

coseta of A{~, ~) in S(B, d), na~ely A{B, d) and 

(x1 , x 2)A(B, · .d) • ·. Thus any element of the tact or group 
. .• ' . ' .. ' . . . .. . 

- + ~(ff; B, d) · d)/V· (B, · d) U A{B, · d) has. one ot the forms, 

. v ij~ ~B, ,d} .u A(B, du • . ~r 
V(xp ~} ~+(B, d} U A(B, dI}, T e V(B, d}. 

Now it, v ~ ( k1 , k2, k3 , ••• . ), 

~ ' -1 -1 
: Y(Xl' x2)~ . (xl' . x2) • . 

( -i : -i ··~ ) s v•cs, d). . klk2 I k2~i I 
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That is (x1 , x 2 ) and v commute mod [v+(B, d) U A(B, d)j. 

It then follows that ~(H; B, d, d)/V+(B, d) U A(B, d), 

is abelian, and hence, 

~' (H; B, d, d) C V+(B, d) lJ .k(B, d), 

which together with the inclusion in the reverse sense 

which was previously established, yields, 

,>t (H; B, d, d) = V+(B, d) l.) A(B, d). 

This completes the proof of the theorem. The next 

theorem assets that the derived series for 

~{H; B, d, d) consists of but two distinct terms. 

Theorem 28 The CoDUnutator subgroup 

>''(H; B, d, d) of ~'(H; B, d, d) is ~'(HJ B, d, d). 

Proof We show that ~''(H; B, d, d) contains 

+ both V {B, d) and A(B, d), and then the conclu8ion 

will follow. 

A(B, d) is simple [7],, while A'(B, d) is a 

characteristic subgroup or A(B, d). But A•(B, d) ia 

different from the identit7, hence A(B, d) - A'(B, d), 

and hence >''(H; B, d, d)::) A(B, d). 

We next show ~11 (H; B, d, d) :::> V'(B, d). 

According to Theorem 27, ~(Hz B, d, d) contains the 
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elements, v .~ ( h 1 h-1 , e 1 ····· ) . I 

-1 v' = · ( k , -e , k 1 e , • • • · ) • It then f o 11 ow s that 1 

-1 -1 -1 l v v• v v• = { hkh k- , e , •••) E >••(HJ B, dJi). 

Therefore any element of V1 (B, tl) is the product of 

elements of ~·•(H; B, d, d) and hence an element or 

;''(H; B, d, d). That ia ~ 11 (H; B, d, d) contains 

V1 (B, d). 

L t ( h h- l 0 I • • • ) e v = 1 e 1 e , , 

s = (1, 3, 2), then 

V S V-ls-l =. { h 1 h-l. e 1 ) - ) ., • • • E ~" ( H, BI d, d 

since s and v belong to ~'(H; B, d, d). ~hen con-

jugation by appropriate elements of A(B, d) will move 

the non-identity factors into any desired pooition, 

and the resulting multiplication is again an element 

of ~''(H; B, d, d} since the commutator subgroup is a 

characteristic subgroup. 

... , · hn, e , • • .• ) 

+ be an element or V (B, d), then, 

... ( • • • I e I e ' •. • ) , 
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- ( ••• ;,-e ) h h h ···h, l 2 3 n e , • • • ) E >••(H; B, d1 d), 

-since the last multiplication in the product is an 

element of V 1 (B, d) which is contained in ~''(H; B, d, d). 

Therefore ~' 1 (H; B, d, d) contains V+(B, d), and hence 
-P ?_\ H; B, d, d) contains V+(B, d) U A(B, d) m: 

> 1 (H; B, d; d)-. 

Theorem 29. The commutator aub~roup ~A (H; B, d) 

of 2:A ( H ; B, d) is V + ( B, d) U A ( B, d) • 

Proof We have, 

>' (H; B,, d, d) C >A (H; B, d) C >(H; B, d, d) 1 

hence, 

>11 (H; B, d, d) C ~A(H; B, d) C '>•(H; B, d, d). 

Then by reason of Theorem 28, 

~'(H; ~, d, d) = ~''(H; B, d, d) = V+(B, d)lJ A(B, d). 

Hence >• (H; B, d) = V+(B, d) U A(B, d), as waJ to -A 

be shown. 

Theorem 30 The commutator subgroup 

~ 1 (H; B, c, D), d < C ~ D $. B+, of >(H; B, c, D) is 

~(H; B, C, D). 
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Proof . It is shown in [5] that the commutator 

subgroup of S' (B 1 D) of S(B, D.) is S(B, D). Hence 

>• (H • 
- J 

B, c, ·n) contains S(B, D). We next show that 

>r (H. - ' B, C, D) contains V(B, c), ' and having established 

this the conclusion of the theorem will follow. 

Let, a = ( • • ·• ·· , x_ 1, x0 , x1 , x 2 , • • • • . ; • • • xe, 

Then, -1 -1 s v s v = ( . . . , 

to ~1 (H; B, C, D). 

Let v == { c ••• • • • ; • • • , c , e 

ce+l' ce+2 ,~~.~ ), be an arbitrary element 0£ V(B, C), 

and consider the following set of equations • 

. . 
-1 -1 

hoh-1 == c -1' hs+l hs == cs , ••• 

h h-l -1 = co , hs+2he+l . = ce+l' ••• 1 0 

h h-1 = cl , he+3h;!2 :::: c &+2' ••• 2 l 
. . 
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This set of equations has solutions, 

: : 

h -1 = e ' he = e , ••• 

ho == c -1 I hs+l = Cc; I ••• 

. h1 = cac-l , he+2 - C6+1CE , ... 
h2 == clcOc-1' he+3 :: 0 e+2°e+l0 e•••• 

The factors of v are completely arbitrary. If we 

take the factors of v to be as indicated above we 

see that, 

-1 -1 -s vs v ~ v s ~'(H; B, C, D), and hence c 

>• (H, B, D, C) contains V{B, C) 1 and .therefore 

>(H; B, D, C) = ~'(H; B, D, C), as was to be shown. 

Corollary l Any element u s >(H; B, C, D), 

+ d < C :£ D ~ B , is the product of at most two 

commutators. 

Proof Every element of S(B, D) is a com.mutator 

of S(B, D), .which is demonstrated in [s]. Every 

element of V(B, C) is a commutator or >CH· - , B, c, D) 

as was shown in Theorem 30. Therefore any element 
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of ~(H; B, C, D) which is either a multiplication sr 

a permutation is a commutator. Since every element 

ot ~(H; a, C, D) , has the form vs, v e V(B, C), 

a 6 S(B, D), other elements or ~(H; B, C, D) are the 

product or at most two commutators of >(HJ a,· C, D). 
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