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ABSTRACT 

Because of their ubiquitous nature in many cellular processes, modulating protein-protein 

interactions offers tremendous therapeutic potential. However, protein-protein interactions remain a 

difficult class of drug targets, as most protein interaction sites have not evolved to bind small molecules. 

Indeed, some protein interaction sites are thought to be simply not amenable to binding any small 

molecule at all. Other sites feature small molecule binding pockets that simply are not present in the 

unbound or protein-bound conformations, making structure-based drug discovery difficult. Sometimes, 

inhibitors bind to multiple family members with high affinity, causing toxicity. In this dissertation I seek 

to address many of these challenges, by developing methodologies to assess the druggability of a target, 

assess the selectivity of known inhibitors, identify conformations that are sampled uniquely by a single 

protein, and identify inhibitors of protein-protein interactions. 

To assess druggability, I developed the “pocket optimization” protocol which uses a biasing 

potential to create an ensemble of conformations that contain pockets at a specified location on the protein 

surface. I showed that low-resolution, low energy inhibitor shapes are encoded at druggable sites and 

sampled through low-energy fluctuations, whereas they are not present at random sites on protein 

surfaces. 

 To assess selectivity and screen for inhibitors, I developed “exemplars”, representations of a 

pocket based on the perfect “non-physical” complementary ligand, allowing the comparison of pocket 

shapes independent of protein sequence. I predicted the selectivity of an array of inhibitors to a related 

family of proteins by comparing the exemplars from the known small-molecule bound conformation to 

the ensemble of exemplars from a “pocket optimized” ensemble. I identified distinct conformations that 

could be targeted for identifying selective inhibitors de novo by comparing ensembles of exemplars from 

related family members to one another. Finally, I developed a screening protocol that uses the speed of 

exemplar versus small molecule comparisons to screen very large compound libraries against ensembles 

of distinct, “pocket optimized” pocket conformations. 
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This dissertation is outlined as follows. In the first chapter, I will introduce the pocket 

optimization protocol and show that low-resolution pocket shapes are encoded into the protein surface at 

druggable interfaces. In the second chapter, I will introduce exemplars and apply them to predict 

selectivity. Finally, in the third chapter I will combine pocket optimization and exemplars to present and 

benchmark exemplar screening for identifying novel inhibitors of protein-protein interactions. 

 

The text of Chapter 1 is a reprint of the material from: 

Johnson DK, Karanicolas J (2013) Druggable Protein Interaction Sites Are More Predisposed to 

Surface Pocket Formation than the Rest of the Protein Surface. PLoS Comput Biol 9(3): e1002951. 

doi:10.1371/journal.pcbi.1002951 

Copyright © 2013 Johnson, Karanicolas. 

The supporting information for this chapter is included as Appendix A.1. 

 

The text of Chapter 2 is a reprint of the material from: 

Johnson DK, Karanicolas J (2015) Selectivity by Small-Molecule Inhibitors of Protein 

Interactions Can Be Driven by Protein Surface Fluctuations. PLoS Comput Biol 11(2): e1004081. 

doi:10.1371/journal.pcbi.1004081 

Copyright © 2015 Johnson, Karanicolas. 

The supporting information for this chapter is included as Appendix A.2. 
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The text of Chapter 3 is a reprint with permission from: 

Johnson DK, Karanicolas J. (2016). Ultra-high-throughput structure-based virtual screening for 

small-molecule inhibitors of protein-protein interactions. J Chem Inf Model Just Accepted Manuscript. 

doi: 10.1021/acs.jcim.5b00572 

Copyright © 2015 American Chemical Society 

The supporting information for this chapter is included as Appendix A.3.  
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INTRODUCTION 

Druggability of protein-protein interaction sites 

Modulating protein-protein interactions through small-molecule agents has exciting therapeutic 

potential. Because of the ubiquitous nature of protein-protein interactions, manipulating these interactions 

provides the opportunity to treat cancer, bacterial and viral infections, and other autoimmune disorders (1-

7). However, they are considered a challenging class of drug targets (8-12). Indeed high-throughput 

screening can have very low hit rates when applied to this target class, with rates as low as 0.01% having 

been reported against a large pharmaceutical library (13).  

In the cases where a protein structure has been solved for the unbound protein, as well as in 

complex a small-molecule inhibitor, and with its biological (protein) partner, it was observed that binding 

the small molecule was not associated with large conformational changes (8). However, the concave 

pocket at the small molecule binding surface of protein was typically smaller or absent from the unbound 

protein structure. Thus, the unbound structure had to undergo a small conformational change in order to 

expose a binding site that was previously absently in the unbound structure (8). 

Inspired by methods such “SAR by NMR” (14) and “multiple solvent crystal structures” (15) that 

assess druggability by the ability to interact with multiple probe molecules at the interaction site, I 

proposed two hypotheses. First, the ability to form a small molecule binding pocket at the protein-protein 

interaction site may be the limiting factor for druggability. Second, an inhibitor acting at a protein 

interaction site should have shape complementarity to specific surface pockets found in the low-energy 

ensemble. These two hypotheses imply that druggable sites differ from the rest of the protein surface in 

that, unlike random sites on the protein surface, druggable sites include a special subset of “pocket-

containing” conformations observed in the surface fluctuations under physiological conditions. 
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To test these hypotheses, I have developed a protocol to sample “pocket-opened” conformations. 

This method probes the pockets at a specified location and preferentially samples conformations that 

increase the pocket volume at this site.  

Selectivity of protein-protein inhibitors 

Selectivity of a compound for its desired protein target(s) is an important property that is typically 

optimized during the small-molecule drug discovery process (12). While some diseases, such as chronic 

myeloid leukemia, can be treated by targeting a single, dysfunctional protein, others, including various 

cancers, are more complex and involve multiple targets. The ability for a single drug to hit multiple 

targets – “polypharmacology” – has garnered interest in the treatment of cancer and psychiatric conditions 

(16). Compound promiscuity, however, has a clear downside due to the potential for adverse effects 

(toxicity) from unintended interactions with unrelated proteins, or from other family members of the 

target protein (17). One such example is ABT-263 (navitoclax), a Bcl-2 inhibitor that exhibited toxicity 

(thrombocytopenia) from its interaction with Bcl-xL (18, 19). 

A lead compound can be tuned for selectivity by exploiting differences in shape and electrostatics 

between target and off-target proteins. Structure-activity relationships (SAR) (20) or structural biology 

(21-23) can be used to identify features that would prevent an undesirable interactions. Unlike a number 

of “traditional” drug targets, such as kinases, that have had determinants of selectivity carefully mapped, 

for “non-traditional” drug targets, most notably small-molecule inhibitors of protein-protein interactions, 

rational design of selectivity is not trivial. 

We sought to predict selectivity of an inhibitor across members of a protein family. We 

hypothesized that proteins that interact with a given small molecule would have, in their low-energy 

ensemble, a conformation that presented an interface with both shape and chemical complementarity, 

whereas proteins that would not interact would not present a complementary binding site. To compare 
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surface pockets, I introduce the concept of an “exemplar”, a non-physical molecule that maps out the 

shape and chemical features of a pocket.  

Discovery of novel small-molecule inhibitors 

Pharmacophores, defined as “the ensemble of steric and electronic features that is necessary to 

ensure the optimal supramolecular interactions with a specific biological target structure and to trigger (or 

to block) its biological response” (24) have been used in drug discovery efforts for decades to design 

analogs (25-27). The first pharmacophore-building algorithms drew information from the ligand alone by 

finding shared functional groups in a consensus structural alignment of multiple active compounds (28). 

This approach has evolved to define key interactions from one or more crystal structures of a receptor 

with assorted ligands bound, as seen with tools such as LigandScout (29). With many traditional drug 

targets, even in the absence of known active compounds, one or more of the natural ligand(s) are known, 

so a starting approach could be to recapitulate the key interactions of these natural ligand(s). 

However some biological targets, such as protein-protein or protein-RNA interactions, have not 

evolved to bind any natural small-molecule ligand. Without a natural small-molecule binding partner to 

use as a template for building a pharmacophore model, it is not feasible to build a ligand-based 

pharmacophore until after an active compound has been discovered. Furthermore, it has been observed 

that some of the binding pockets on the protein surface are transient, seen neither in the unbound structure 

nor in that of the protein-bound complex (8). 

Because of these challenges, the focus of several groups has recently been on developing 

computational approaches that select some of the side chains from the natural protein partner (the 

“hotspot” or “anchor” residues) as the template to build a pharmacophore (30-37). However, this 

approach is limited by the chemical space from which to sample, limited by potentially low binding 

affinity by only recapitulating a subset of the natural binding partner’s interactions, and limited by not 
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being able to identify compounds that require conformational changes at the protein surface (because they 

do not resemble the natural binding partner). 

By virtue of being the mapping of the shape and chemical complementarity of a binding pocket, 

exemplars are, in essence, pharmacophores. Using the exemplar as a pharmacophore, combined with 

“pocket optimization” to create ensembles of pocket-opened conformations, we introduce a virtual 

screening protocol that uses exemplars to screen ensembles of conformations against very large datasets.  

In the chapters that follow I will describe the development of these tools, then conclude by 

assembling them into a unified pipeline for virtual screening. 
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CHAPTER 1: Druggable Protein Interaction Sites are More 

Predisposed to Surface Pocket Formation than the Rest of the 

Protein Surface 

 

 

David K. Johnson1 and John Karanicolas1,2* 

 

1 Center for Bioinformatics and 2Department of Molecular Biosciences, 

University of Kansas, 2030 Becker Dr., Lawrence, KS 66045-7534 

 

*To whom correspondence should be addressed. E-mail: johnk@ku.edu, 785-864-8298 
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1.1 Abstract 

Despite intense interest and considerable effort via high-throughput screening, there are few 

examples of small molecules that directly inhibit protein-protein interactions. This suggests that many 

protein interaction surfaces may not be intrinsically “druggable” by small molecules, and elevates in 

importance the few successful examples as model systems for improving our fundamental understanding 

of druggability. Here we describe an approach for exploring protein fluctuations enriched in 

conformations containing surface pockets suitable for small molecule binding. Starting from a set of 

seven unbound protein structures, we find that the presence of low-energy pocket-containing 

conformations is indeed a signature of druggable protein interaction sites and that analogous surface 

pockets are not formed elsewhere on the protein. We further find that ensembles of conformations 

generated with this biased approach structurally resemble known inhibitor-bound structures more closely 

than equivalent ensembles of unbiased conformations. Collectively these results suggest that 

“druggability” is a property encoded on a protein surface through its propensity to form pockets, and 

inspire a model in which the crude features of the predisposed pocket(s) restrict the range of 

complementary ligands; additional smaller conformational changes then respond to details of a particular 

ligand. We anticipate that the insights described here will prove useful in selecting protein targets for 

therapeutic intervention. 
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1.2 Author Summary 

Identifying small-molecule inhibitors of protein interactions has traditionally presented a 

challenge for modern screening methods, despite interest stemming from the fact that such interactions 

comprise the underlying mechanisms for cell proliferation, differentiation, and survival. This suggests 

that many protein interaction surfaces may not be intrinsically “druggable” by small molecules, and 

elevates in importance the few successful examples as model systems for improving our understanding of 

factors contributing to druggability. Here we describe a new approach for exploring protein fluctuations 

leading to surface pockets suitable for small molecule binding. We find that the presence of such pockets 

is indeed a signature of druggable protein interaction sites, suggesting that “druggability” is a property 

encoded on a protein surface through its propensity to form pockets. We anticipate that the insights 

described here will prove useful in selecting protein targets for therapeutic intervention. 
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1.3 Introduction 

Manipulating the interactions between proteins represents a promising avenue for therapeutic 

intervention in a variety of settings. Given the ubiquitous nature of protein interactions, selectively 

manipulating such interactions could serve as a means to treat conditions including viral and bacterial 

infections, cancer, and autoimmune disorders (1-7). In spite of recent ongoing efforts that have provided 

cause for optimism, protein interactions continue to be viewed as a challenging class of therapeutic target 

(8-12). While high-throughput screening efforts that fail to yield extensive hits are typically not reported 

in the literature, hit rates as low as 0.01% in a large pharmaceutical library have been described (13). 

This dearth of successful representatives to study has given increased importance to the several 

cases in which a protein structure has been solved in complex with a biological protein partner and also in 

complex with a small molecule inhibitor. Wells and McClendon (8) compared six such cases and 

observed that binding was not associated with a large conformational change in any of these examples; 

and yet, the concave pocket on the protein surface at which the small molecule binds was typically 

smaller or not present in the unbound protein structure. In order for inhibitor binding to occur, the surface 

of the unbound structure therefore had to undergo local rearrangement to reveal a small molecule binding 

site that would not necessarily be evident from the unbound structure (8). 

 Given the limited success in identifying modulators of protein-protein interactions, it has 

proven helpful at an early stage to validate a protein surface site by evaluating its “druggability”. As such, 

fragment-based methods have been developed to experimentally assess the druggability of a protein 

interaction site by determining which members of a small molecule probe set bind to a target protein, and 

where on the protein surface these bind. This experiment can be conducted using “SAR by NMR” (14), 

which tracks chemical shift differences to identify binding sites on the protein surface, or by the “multiple 

solvent crystal structures” method (15), in which independent structures of the target protein are solved 

after soaking with a collection of organic solvents. Both of these approaches aim to probe the regions of a 
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protein surface that can accommodate small-molecule binding, with a preference for sites that are not 

uniquely disposed to bind a particular pre-selected ligand. In either technique, specific regions of the 

protein surface that interact with a variety of probe molecules – albeit weakly – are inferred to be a 

putative site for more potent binding by some yet unidentified compound. 

Inspired by these methods, we hypothesize that the ability to form a binding pocket may be the 

limiting factor for druggability of a protein surface site. We further propose that compounds identified in 

biochemical screens as inhibitors of protein interactions result from natural shape complementarity to 

specific surface pockets that form with little energetic cost to the protein. Together these hypotheses 

imply that druggable sites differ from the rest of the protein surface, in that fluctuations under 

physiological conditions at druggable sites include a special subset of “pocket-containing” conformations. 

To test these hypotheses, we have developed computational methodology to explore protein 

fluctuations in a biased way, by providing a driving force towards conformations in which a surface 

pocket is present. Several other studies have generated ensembles of protein conformations reflecting 

fluctuations around the native state and used these either to assess druggability (38) or as a starting point 

for docking studies (39-46). Because these ensembles are generated in an unbiased manner, however, a 

large fraction of the resulting ensembles correspond to protein conformations that are dissimilar to the 

corresponding bound structure in both pocket size and hydrophobicity (40). One of these studies found 

that carrying out simulations in methanol led to formation of surface pockets which could accommodate 

small molecules (47), but the use of this non-biological solvent may lead to unphysical artifacts in the 

resulting models. Molecular dynamics has also been used in a computational analog of “SAR by NMR” 

in which simulations are carried out using an explicit mixed solvent, allowing druggable sites to be 

identified by locating accumulation of probe molecules (39, 42, 48). Though these methods proved 

effective for binding sites, the unbiased nature of the underlying simulations make these approaches very 

computationally intensive. Recently Kozakov et al. have developed a computational analog of the 

multiple solvent crystal structures method, by using docking to identify “consensus” sites at which several 



 10 

probe molecules cluster (49). They confirmed that these molecular probes indeed cluster at established 

druggable sites and that known inhibitors often occupy these consensus sites. Such an approach, however, 

cannot efficiently explore surface pockets that form via concerted motions involving the protein backbone 

due to the computational expense associated with repeatedly docking multiple small molecule probes. The 

biasing potential we describe here avoids this limitation by not needing to dock probe molecules, and 

therefore can be used in the course of a simulation that samples a broader range of conformational 

fluctuations. 

1.4 Results 

Quantitative analysis of surface pockets 

Because a wide, shallow pocket that is unsuitable for small molecule binding can have the same 

volume as a deep pocket that is more suitable for small molecule binding, we introduce the concept of 

“deep” volume of a pocket: the volume of the pocket that is well-sequestered away from solvent. To 

quantitatively identify small molecule binding pockets and measure their “deep” volume, we 

implemented a modified version of the LIGSITEcs algorithm (50). This approach starts by creating a grid 

around a protein and marking each grid point as occupied by protein, surface, or solvent. Next, the 

algorithm performs linear searches on the grid to find “Surface-Solvent-Surface” events: lines drawn 

between two surface points that pass through only solvent (Figure S1), indicating a concave region on the 

protein surface. To distinguish between total pocket volume and deep volume, pocket points that fall 

within 2.5 Å of solvent are marked as “surface pocket” points and are excluded from the “deep volume” 

calculation. Finally, the remaining contiguous points involved in these events are clustered into “deep 

pockets”. As expected, the deep pocket volumes we use here are correlated to, but smaller than, pocket 

volumes found by other pocket detection methods, such as Q-SiteFinder (41) (Figure S2). Our 

implementation differs from the original LIGSITEcs algorithm (50) in that our search is restricted to the 
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region around a specific “target” residue on the protein surface, allowing us to rapidly test for pockets at a 

specific surface site. Additional minor differences are described in Text S1. 

 

Figure 1: Identifying surface binding pockets. (A) Bcl-XL (grey surface) is shown in complex with an 

inhibitor (blue sticks). The protein surface features a large pocket (red spheres) complementary in shape 

to the inhibitor. (B) Deep pocket volumes of surface pockets at protein interaction sites harboring a bound 

inhibitor (red line) are larger than those found elsewhere on the protein surface (black line). Data are 

collected from a test set of seven proteins, each of which has been solved in complex with a small-

molecule inhibitor (Bcl-XL, IL-2, FKBP12, HPV E2, ZipA, MDM2, and the BIR3 domain of XIAP). 

A demonstration of this method is shown in Figure 1A. Bcl-XL is an anti-apoptotic protein in the 

Bcl-2 family whose over-expression has been implicated in the survival of cancer cells. A series of acyl-

sulfonamide-based ligands have been shown to inhibit Bcl-XL activity by competing for its peptide-

binding groove. Here, we have removed one such inhibitor from a co-crystal structure and applied our 

modified implementation of the LIGSITEcs algorithm at this surface site. The resulting pocket has 

intuitive shape complementarity to the ligand even though it was generated from the protein structure 

without the ligand present. This is unsurprising, given that the ligand occupying this pocket is 

complementary in shape to the protein surface. 

We compiled a test set of all seven proteins for which structures have been solved both alone and 

in complex with a small-molecule inhibitor bound to a protein interaction site (Bcl-XL, IL-2, FKBP12, 

HPV E2, ZipA, MDM2, and the BIR3 domain of XIAP) (Table 1). We compared the deep pocket volume 

at randomly selected regions of the protein surface (see Text S1) to the deep volume of the inhibitor-
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bound pocket. Since the pocket definition can depend somewhat on the particular “target” residue used, 

the deep volume of the inhibitor-bound pocket was measured several times using different target residues. 

As shown in Figure 1B, across all seven proteins, most pockets identified by this algorithm at randomly 

selected sites (black line) on the protein surface have a deep volume smaller than 25 Å3, and all are 

smaller than 75 Å3. In contrast, the distribution of inhibitor-bound pocket volumes (red line) is 

significantly shifted, with about half of the inhibitor-bound deep pocket volumes larger than 75 Å3. This 

observation is consistent with results generated using other pocket detection methods (51-55), although 

those other studies were not focused on inhibitors of protein-protein interactions. 
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Druggability of protein surface sites 

The results presented above demonstrate that inhibitor binding occurs at surface sites containing a 

pocket, and that these sites are distinct from the remainder of the protein surface. We therefore formulated 
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the hypothesis that the ability of the protein surface to form such pockets may be the limiting determinant 

of the inherent druggability at this site. 

Unlike previous standalone methods for pocket detection, we instead implemented our algorithm 

as a term in the Rosetta (56) energy function alongside the canonical energetic determinants of protein 

structure such as packing, hydrogen bonding, and solvation (see Methods section). By including this 

biasing term in the energy function, we may use any of the standard functionalities provided in Rosetta; 

inclusion of this term, meanwhile, will lead to simultaneous optimization of both “pocket score” and the 

traditional energy terms. In essence, the contribution from the “pocket” term serves as a proxy for the 

energy associated with binding of some (unspecified) small molecule partner. 

To test the hypothesis that pocket formation may be the limiting determinant of druggability, we 

performed biased and unbiased simulations on the unbound conformations of Bcl-XL, targeting residues at 

the protein interaction site as well as at equivalent randomly selected residues elsewhere on the protein 

surface. Surface sites included in the random set were matched to those at the protein interaction site on 

the basis of their secondary structure, and further that a contacting pocket of equivalent size to that of the 

protein interaction site (evaluated by Q-SiteFinder (41)) was present in the unbound conformation (see 

Text S1 and Figure S3); further, the random sites were each at least 12 Å from one another. Both 

backbone and sidechain degrees of freedom were allowed to move during simulations (see Methods 

section). The deep pocket volumes from each of 1,000 conformations generated via each method are 

shown as cumulative histograms in Figure 2A. Pockets at the protein interaction site (solid red lines) 

form more often and are significantly larger than those formed elsewhere on the protein surface (dashed 

black lines). The largest pockets in the biased simulations are sampled with much higher frequency than 

in the corresponding unbiased simulations (Figure 2A), demonstrating that the biasing potential drives 

sampling towards these conformations. These observations further hold for each of the other six 

additional proteins comprising our test set (Figures 2B-G), and also after inclusion of additional random 

sites (Figure S4) or starting from the protein-bound conformation (Figure S5). 
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To examine the physiological relevance of the conformations generated in biased simulations, we 

compared their energies to those obtained in equivalent unbiased simulations. For Bcl-XL, we used 

Rosetta to evaluate the (unbiased) energy for each of 1000 conformations generated from an unbiased 

simulation, a simulation with the biasing term applied to either the protein interaction site or a random 

surface residue, and equivalent simulations in which the weight of the biasing term was increased tenfold. 

In all cases we evaluated energies without contribution from the biasing term; a histogram of these 

energies is shown in Figure 3A. Conformations from the unbiased simulation (green solid line) have a 

very similar distribution of energies as conformations from a simulation in which the biasing potential 

was applied to a randomly selected target residue (black dashed line); this is unsurprising given that few 

of these conformations contain pockets, implying that a similar ensemble of conformations are sampled. 

Applying a stronger weight to the biasing potential using the same randomly selected target residue (solid 

black line) leads to conformations that are far less energetically favorable, indicating that pocket opening 

to satisfy the biasing potential could not be achieved without extensive energetic cost to the protein. In 

contrast, applying the biasing potential to a residue at the protein interaction site led to conformations that 

were only slightly higher in energy (and with overlapping distributions) than those conformations 

sampled in the unbiased simulation, for either weight of the biasing potential (red lines). A scatterplot 

showing the deep pocket volume for each of these conformations highlights the fact that conformations 

containing large pockets are sampled with the moderate biasing potential only if it is applied at the protein 

interaction site (Figure 3B, cyan vs. red points). Application of the stronger biasing potential to random 

(carefully matched) surface sites leads to generations of low-energy conformations without large pockets, 

and also pocket-containing conformations with much higher energy (Figure 3B, blue points). 
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Figure 2: Surface pockets emerge only at druggable sites. Volumes of surface pockets are shown from 

conformations generated with no biasing potential (left) and upon inclusion of a “pocket opening” biasing 

potential (right) for each of the seven proteins that comprise our test set. Surface pockets occur at 

druggable protein interaction sites (solid red lines) more frequently than elsewhere on the protein surface 

(dashed black lines). (A) Bcl-XL. (B) IL-2. (C) FKBP12. (D) HPV E2. (E) ZipA. (F) MDM2. (G) BIR3 

domain of XIAP. 

The same observations also hold for each of the other six proteins comprising our test set (Figure 

S6, Table 1). Collectively, these results demonstrate that pocket opening at the druggable site can occur 

with little energetic cost to the protein, while pocket opening elsewhere on the protein surface requires 

that the protein adopt a highly unfavorable conformation. 

It is notable that in each of these seven examples surface pockets were identified at the protein 

interaction site. It is equally notable, however, that similar surface pockets were not observed elsewhere 

on the protein surface (Figure 2). This comparison highlights the qualitative difference between the 

protein interaction site – already demonstrated to be druggable in a practical sense for each of these 

examples – and the remainder of the protein surface, at which high-affinity interactions with small 

molecules have not been observed. 

 



 18 

 

Figure 3: Energetic analysis of Bcl-XL pocket opening. (A) Conformations generated without the use of 

a biasing potential (solid green line) show a similar distribution of energies to those generated with the 

biasing potential at a randomly selected target residue (dashed black line); increasing the strength of the 

biasing potential here leads to conformations with higher energies (solid black line). In contrast, 

application of the biasing potential at the protein interaction site (red lines) leads to conformations with a 

distribution of energies that strongly overlaps with those energies of conformations sampled in the 

unbiased simulations, suggesting that these conformations represent low-energy states accessible to the 

unbound protein. (B) A scatterplot showing the deep pocket volume for conformations generated with the 

biasing potential applied to one of the random sites (moderate bias in cyan, strong bias in blue) or to the 

protein interaction site (moderate bias in red, strong bias in orange). Low-energy conformations 

containing large pockets are sampled only if the biasing potential it is applied at the protein interaction 

site; while large pockets are sampled using the strong bias at random sites, these conformations have 

considerably higher energy. All energies shown here were evaluated in the absence of the biasing 

potential, for fair comparison. 
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Pocket shapes are encoded on the protein surface 

The results presented above demonstrate that there is a natural predisposition towards pocket 

formation in certain druggable regions on the protein surface. We next asked whether these preferred 

pocket-containing conformations dictate the range of potential small-molecule inhibitors suitable for 

binding at this site. Should this be the case, protein conformations generated using a biasing potential to 

induce pocket formation should resemble inhibitor-bound conformations more than conformations 

generated using an equivalent unbiased protocol. 

Turning first to Bcl-XL, we aligned the lowest-energy conformation produced from the biased 

simulations described earlier (which were started from the unbound protein structure) to both unbound 

and inhibitor-bound crystal structures (Figure 4A). Direct superposition of the inhibitor from the bound 

structure onto the unbound crystal structure reveals extensive steric clashes (Figure 4B), highlighting the 

local protein conformational changes that must take place in order for inhibitor binding to occur. 

Remarkably, examination of the conformation from the biased simulation shows that part of the protein 

surface has adopted a shape highly complementary to the inhibitor (Figure 4C, right side) – even though 

no information about the identity of the inhibitor was included in the simulation that produced this 

conformation. Further, this conformational change occurred without direct involvement of the “target” 

residue at which the biasing term was applied. 

On the other hand, the conformation from the biased simulation did not recapitulate the bound 

conformation exactly: the latter contains an extension to the surface pocket (left side in the orientation 

shown) to accommodate the “tail” of the inhibitor (Figure 4D). Comparison of the protein backbone in all 

three structures (Figure 4A) reveals the protein structural reorganization required to accommodate this 

“tail”: the helix below the inhibitor (Figure 4A, foreground) unwinds on the left side, and tightens on the 

right side (in the orientation shown). Because the deep pocket volume is larger in the inhibitor-bound 

crystal structure than in the conformation from the biased simulation, we anticipate that sampling in these 

simulations was insufficient to fully recapitulate this highly concerted conformational change. 
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Figure 4: Representative conformations of Bcl-XL. An unbound crystal structure (pink), an inhibitor-

bound crystal structure (green, with inhibitor shown in sticks), and a low-energy conformation generated 

from the unbound crystal structure using the biasing potential (cyan, with target residue in red) are 

shown. (A) The overall protein architecture is preserved amongst all three; movement of the helix in the 

foreground upon binding is not recapitulated in the pocket-opened conformation. (B-D) The pocket 

revealed in this low-energy conformation nonetheless strongly resembles the surface pocket in the bound 

crystal structure, and even bears shape-complementarity to the inhibitor. The identity of the inhibitor was 

not used in generating this conformation, but was added retrospectively for visual comparison. 

The diversity of conformational changes associated with inhibitor binding in different proteins is 

highlighted in Figure S7. In IL-2, slight rearrangement of a helix (at top of the orientation shown) allows 

a sidechain rotamer change that both reveals the binding pocket and creates new interactions with 

inhibitor shown (Figure S7A). In contrast FKBP12, HPV E2 and ZipA each contain a pre-formed pocket 

on the unbound protein surface that strongly complements the inhibitor, indicating that inhibitor binding 

occurs primarily via a “lock-and-key” mechanism in these cases (Figure S7B-D). Expansion of the ZipA 

pocket observed in the biased simulations (Figure 2E) resulted from sidechain rearrangement on the 

surface to the left side of the binding site (in the orientation shown), without disrupting the pre-ordered 
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portions of the binding site. Nutlin binding to MDM2, on the other hand, requires splaying apart of two 

surface helices to create the binding pocket: this conformational change is dramatically recapitulated in 

the lowest-energy individual conformation from the biased simulations (Figure S7E). Finally, unlike 

these previous examples showing modest conformational changes, binding of a Smac-mimetic to the 

BIR3 domain of XIAP is associated with extensive rearrangement of long surface loops (Figure S7F). 

To assess whether the protein conformations generated using the biasing potential resemble 

inhibitor-bound conformations more closely than conformations generated using an equivalent unbiased 

protocol, we quantitatively compared the ensembles of conformations produced by each method. We note 

that neither method uses any knowledge of any particular inhibitor when generating an ensemble of 

conformations. Therefore, rather than report the protein RMSD in reference to one pre-selected bound 

conformation we instead individually computed the interface RMSD (iRMSD) relative to every available 

inhibitor-bound crystal structure (see Text S1), and took the lowest of this set of iRMSD values to reflect 

the suitability of this conformation for binding some (known) unspecified inhibitor. 

For each of the seven proteins in our test set described earlier, we show the iRMSD for each 

member of the biased and unbiased ensembles to its closest inhibitor-bound crystal structure (Figure 5). 

We note that the iRMSD values of conformations sampled vary across these seven different proteins; this 

stems from the fact discussed earlier that in some cases the unbound starting structure strongly resembles 

the inhibitor-bound structure (FKBP12, HPV E2, ZipA), while in other cases a more extensive 

conformational change accompanies binding (MDM2, XIAP) (Figure S7). For reference, we also indicate 

the iRMSD of the unbound starting structure relative to the closest and most distant inhibitor-bound 

structures (Figure 5, dashed brown lines) and the protein-bound structure relative to the closest and most 

distal inhibitor-bound structures (Figure 5, dashed green lines). 

Though there is overlap between the resulting distributions, for every one of the seven proteins 

we examined the conformations sampled in the biased simulations are closer to an inhibitor-bound 
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conformation than the conformations sampled in the corresponding unbiased simulations. This 

observation applies not just to the iRMSD of atoms directly involved in binding (Figure 5), but to the 

backbone atoms of the corresponding residues as well (Figure S8). Further, in five of the seven cases 

(Bcl-XL, IL-2, FKBP12, ZipA, and XIAP) the conformations generated from the biased simulations are 

closer than the starting unbound conformation to an inhibitor-bound structure (Figure 5). Conformations 

sampled in simulations of HPV E2 and MDM2 that moved further than the unbound conformation from 

the inhibitor-bound structures may be due to slight inaccuracies in the Rosetta energy function, or 

alternatively may be sampling novel truly “druggable” conformations for which complementary inhibitors 

have not yet been identified. 

 

Figure 5: Opening pockets shifts the conformational ensemble towards inhibitor-bound structures. 

Distributions of RMSD over interface atoms (iRMSD) to the closest inhibitor-bound crystal structure for 

conformations generated with (red lines) or without (black lines) the biasing potential. The iRMSDs from 

the unbound structure to the most and least similar inhibitor-bound crystal structures are also indicated 

(dashed brown vertical lines). For all seven proteins comprising the test set, the biased simulations 

produced conformations closer to an inhibitor-bound crystal structure than the unbiased simulations. 

To further characterize the pockets generated using the biasing potential, we evaluated the 

percentage of solvent accessible surface area that is hydrophobic (hSASA) for each pocket (Figure S9). 

While the hydrophobicity of the inhibitor-bound pockets vary amongst the different protein test cases, in 

each case the pockets generated using the biasing potential exhibit similar hydrophobicity to the 

corresponding inhibitor-bound conformation. Like the shape of these pockets, then, their hydrophobicity 

appears to be an intrinsic property resulting from details of the surface geometry and composition. 
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Collectively these results demonstrate that biasing simulations towards conformations in which a 

surface pocket is present drives the resulting ensemble towards the conformations observed in inhibitor-

bound crystal structures. Because no information about the identity of any particular inhibitory compound 

was included in the biasing potential, this suggests that the general shape (and hydrophobicity) of surface 

pockets available to a potential inhibitor is an inherent property of the druggable interface itself. 

Druggability of survivin 

The examples comprising our test set in the studies above were selected on the basis of a known 

compound directly inhibiting a protein interaction. For each of these cases, then, the druggable site is 

coincident with the protein functional site. We next turned to survivin, an example of a protein in which 

the two sites are non-overlapping. 

Survivin is among the most strongly tumor-specific proteins known (57), is a notable signature of 

unfavorable disease outcome (58), and has been well-validated as a therapeutic target using an antisense 

oligonucleotide (59) and a transcriptional repressor (60, 61). Despite this intense interest, however, no 

direct inhibitors of survivin function have been identified. Survivin carries dual functions which together 

explain its important role in cancer: it serves as an inhibitor of apoptosis and is also required for cell 

division (62). The anti-apoptotic activity of survivin derives from binding the Smac/DIABLO peptide via 

a BIR domain. While small-molecule inhibitors of other Smac-binding BIR domains have been identified 

(63-66) (we included the XIAP BIR domain in the test set described in previous sections), efforts in this 

vein using survivin have not yet proven fruitful (62, 67). Consistent with a hypothesis that the peptide-

binding surface of survivin may be intrinsically undruggable, an SAR by NMR approach used by Hajduk 

et al. found only a single probe that interacted with this site (of 9,370 probes tested) – a full order of 

magnitude fewer than the number of interacting probes found using proteins for which potent inhibitors 

have been identified (14). Intriguingly, this study revealed a separate distal site (Figure 6A) at which 33 
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probe compounds bound, well within the frequency observed for druggable sites on other proteins but not 

useful as a starting point for modulating survivin function. 

We carried out a series of biased simulations as described earlier, using the unbound crystal 

structure of survivin as a starting point. In agreement with results from SAR by NMR (14), we find that 

pockets at the “undruggable” peptide-binding site of the BIR domain do not form with any higher 

propensity than at randomly selected equivalent surface sites (Figure 6B). This result is particularly 

notable as it stands in contrast to our observations from the XIAP BIR domain, in which surface pockets 

are formed at the peptide-binding site (Figure 2G). Though beyond the scope of the current work, we 

anticipate that further detailed studies may reveal the precise origin of the differing propensity for binding 

small-molecules exhibited by the peptide-binding groove of these two highly similar BIR domains. 

Though large surface pockets do not form at the peptide-binding site of survivin, they do form 

readily at a specific alternate site: the same distal surface identified by Hajduk et al. (14) (Figure 6B, blue 

lines). Taken together, these studies of survivin suggest that low-energy fluctuations that induce pocket 

formation on the protein surface are indeed a primary determinant of druggability at protein interaction 

sites rather than a signature of the evolved protein-binding function of these sites. 
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Figure 6: Distinguishing druggable from functional sites on survivin. (A) The crystal structure of 

survivin, showing the protein interaction site (red) and the distal druggable site identified by NMR (blue) 

(14). (B) Volumes of surface pockets are compared for conformations generated with the biasing potential 

applied at random surface residues (dashed black lines), applied at the protein interaction site (dashed red 

lines), and applied at the distal druggable site (solid blue lines). Pockets emerge at the druggable site but 

not elsewhere on the protein surface. 

 

1.5 Discussion 

The results presented above support the hypothesis that the conformational transitions that open 

pockets at a druggable site occur with little energetic cost to the protein. This has two important 

consequences. 

First, pocket formation within the ensemble of physiological protein fluctuations occurs only at a 

limited subset of surface sites. Because pocket-containing conformations are rare, it is primarily the lack 

of a suitable surface pocket – and not chemical composition – that renders most protein surface sites 

undruggable. The highly restricted druggability of protein surfaces supported by both NMR (14) and 

crystallographic (15) observations that probe molecules interact with a very limited subset of the protein 

surface. Sites at which the unbound protein crystal structure includes a pre-formed pocket (HPV E2, 

FKPB12, ZipA) typically exhibit only minor conformational changes that change the size or shape of this 
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pocket, and are driven primarily by sidechain reorganization. In contrast, for the examples in which the 

unbound protein crystal structure does not have a pre-formed pocket or has only a small surface pocket 

(XIAP, MDM2, Bcl-XL, IL-2) concerted motions are needed that couple backbone conformational 

changes to the sidechain reorganization that reveals the binding pocket. In both cases, the biasing 

potential we describe here serves as a proxy for the binding energy associated with some (unspecified) 

complementary compound, and thus drives sampling towards these conformations. 

Second, these results suggest that a small number of low-resolution, low energy inhibitor shapes 

are encoded on the protein surface through intrinsic structural and dynamic features of the protein. We 

propose that low-energy fluctuations produce protein conformations displaying one of these preferred 

shapes, at which point a complementary small-molecule ligand may be accommodated. The protein then 

responds to the particular steric and chemical details of the ligand via subsequent smaller conformational 

changes, without changing the gross features of the pocket. This model implies that exploring the pocket 

shapes may give clues at low-resolution to the shapes of complementary ligands, and may form the basis 

for a computational screening approach that matches pocket shapes to potential inhibitory ligands. 

As pointed out by Cheng and colleagues (68), pocket formation is necessary but may not be 

sufficient for a protein surface to be druggable: the curvature and hydrophobicity of the pocket are also 

important. By applying their methodology to the pocket conformations generated using the biasing 

potential described here, it may be possible to filter for the most druggable conformations from among 

these pocket-containing ensembles. These conformations may not necessarily correspond to the protein-

bound conformation, which has been used in some cases as a starting point for mimicry by small-

molecules (31). Generating an ensemble of druggable conformations for a given protein target may prove 

valuable in identifying new inhibitory compounds, even in cases where one or more inhibitors are already 

known. Rather than aiming to identify additional inhibitors by analogy to these known compounds, or 

even using the protein structure solved in complex with one of these known compounds (or the natural 

protein partner), matching directly against an ensemble of pocket-containing conformations removes bias 
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towards this parent compound (or protein partner). We anticipate that the surface pockets to which the 

protein is most predisposed, as revealed by this approach and therefore identified without artifacts of 

conformational changes in response to any particular binding partner, may serve as an optimal starting 

point for computational screening and may facilitate identification of chemotypes unrelated to those of 

known inhibitors (“scaffold hopping” (3, 69)). These new scaffolds may in turn yield potent novel small 

molecule inhibitors through subsequent chemical elaboration. 

In principle, fragment-based approaches allow multiple probe molecules to be subsequently 

linked together to create a single compound presenting these probe moieties in the appropriate orientation 

(70). Computational solvent mapping (49), while suitable for assessing druggability in certain cases, may 

prove limiting for early drug discovery because of its inability to explore the concerted backbone motions 

necessary for thoroughly sampling the “pocket ensemble”. While FKBP sidechain motions within 6 Å of 

the binding site are sufficient for recognizing small probe molecules (70), the further necessity of 

backbone reorganization in other cases described here (XIAP, MDM2, Bcl-XL, IL-2) underscores the 

importance of backbone motions for conformational fluctuations that reveal surface pockets. Exploring 

these alternate conformations may further prove useful in guiding efforts to improve potency of known 

inhibitors, by identifying sites at which substituents can make additional strong contacts with the protein 

surface. 

Finally, we note that the generality of our approach is conducive to its large-scale application for 

comparing druggability across many protein interaction sites. In the future, we expect this approach may 

be used to address the outstanding question of whether these few successful examples of small-molecules 

disrupting protein interaction sites are outliers, or whether they instead represent the first step towards an 

important class of new tools for therapeutic intervention. 
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1.6 Methods 

Identifying Pockets on Protein Surfaces 

We implemented our modified version of the LIGSITEcs (50) algorithm in the Rosetta software 

suite (56). Briefly, a grid is centered at the residue of interest on the protein surface and grid points are 

marked as occupied by either protein (P) or solvent (S). The algorithm performs linear searches in the X, 

Y and Z directions as well as in each diagonal for “P-nS-P” events: cases where a line no longer than 12 

Å can be drawn between two points on the protein surface that pass through only solvent, establishing this 

solvent region as part of a surface pocket. Subsequent additional criteria were used to eliminate spurious 

definition of pockets and reduce the effect of grid-based artifacts (described in Text S1). Adjoining grid 

points defined as “pocket” were clustered to determine the deep pocket volume of the largest contiguous 

single pocket in contact with the target residue. 

 

Simulation protocol 

Simulations were carried out using the “relax” protocol (71) in Rosetta, which incorporates both 

backbone and sidechain degrees of freedom in a Monte Carlo search. To bias the simulations towards 

pocket-containing conformations we added to the standard energy function an additional energy term 

corresponding to the current deep pocket volume multiplied by a proportionality constant of -0.25 Rosetta 

energy units per Å3 (“moderate” bias). Simulations carried out with the “strong” bias used a 

proportionality constant of -0.25 Rosetta energy units per Å3. Data for each histogram was collected from 

1,000 independent simulations. The simulation protocol is described in complete detail in Text S1. 
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2.1 Abstract 

Small-molecules that inhibit interactions between specific pairs of proteins have long represented 

a promising avenue for therapeutic intervention in a variety of settings. Structural studies have shown that 

in many cases, the inhibitor-bound protein adopts a conformation that is distinct from its unbound and its 

protein-bound conformations. This plasticity of the protein surface presents a major challenge in 

predicting which members of a protein family will be inhibited by a given ligand. Here, we use biased 

simulations of Bcl-2-family proteins to generate ensembles of low-energy conformations that contain 

surface pockets suitable for small molecule binding. We find that the resulting conformational ensembles 

include surface pockets that mimic those observed in inhibitor-bound crystal structures. Next, we find that 

the ensembles generated using different members of this protein family are overlapping but distinct, and 

that the activity of a given compound against a particular family member (ligand selectivity) can be 

predicted from whether the corresponding ensemble samples a complementary surface pocket. Finally, we 

find that each ensemble includes certain surface pockets that are not shared by any other family member: 

while no inhibitors have yet been identified to take advantage of these pockets, we expect that chemical 

scaffolds complementing these “distinct” pockets will prove highly selective for their targets. The 

opportunity to achieve target selectivity within a protein family by exploiting differences in surface 

fluctuations represents a new paradigm that may facilitate design of family-selective small-molecule 

inhibitors of protein-protein interactions. 
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2.2 Author Summary 

Despite intense interest and considerable effort, there are few examples of small molecules that 

directly inhibit protein-protein interactions. Crystal structures of early successes have highlighted the 

plasticity of the protein surface, as some inhibitor-bound proteins are captured in conformations that are 

distinct from both their unbound and their protein-bound conformations. The lack of a single well-defined 

structure presents a challenge for predicting the members of a protein family to which a given compound 

will show activity (ligand selectivity). Here we generate ensembles of conformations from simulation, 

and show that we can predict ligand selectivity based on which family members sample conformations 

complementary to the ligand. This approach may present a new avenue for designing highly-selective 

inhibitors of protein-protein interactions. 
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2.3 Introduction 

Selectivity of a compound for its desired protein target – or targets – is an important property 

optimized in the course of small-molecule drug discovery (12). Some diseases, such as chronic myeloid 

leukemia, can be traced to dysfunction of a single protein target (BCR-ABL); in such cases, drugs such as 

imatinib are sought to act selectively against that target (72). Conversely, a number of drugs (such as 

sunitinib and chlorpromazine) have proven exceedingly successful because they act on multiple targets 

(73, 74); this has led to increased interest in “polypharmacology” to address complex disease states such 

as cancer and psychiatric conditions (16). A clear downside of compound promiscuity, however, is the 

potential for adverse effects (toxicity) due to interactions with unrelated proteins, or even interactions 

with other proteins in the same family as the target (17). One recent cautionary example is ABT-263 

(navitoclax), a Bcl-2 inhibitor that exhibited a dose-limiting adverse effect (thrombocytopenia) stemming 

from its inhibition of Bcl-xL (18, 19). 

Tuning the selectivity of a lead compound can sometimes be carried out by exploiting differences 

in shape and electrostatics between target and off-target proteins, using insights from structure-activity 

relationships (SAR) (20) or structural biology (21-23) to focus on features that will prevent specific 

undesirable interactions. While determinants of selectivity have been carefully mapped in a number of 

“traditional” drug targets, such as kinases, this has not yet been the case for emerging classes of “non-

traditional” drug targets, most notably small-molecule inhibitors of protein-protein interactions. 

Though extensive efforts to identify inhibitors of protein interactions have only recently begun to 

bear fruit, structural analysis of available examples has revealed that often the inhibitor-bound protein is 

captured in a conformation that is distinct from both the unbound and protein-bound conformations (75). 

In such cases, the unbound and protein-bound conformations could not have served to rationalize binding 

of the inhibitor its desired target, let alone explain selectivity against other members of the protein family. 
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We recently described an approach for biased exploration of protein fluctuations, in order to 

better sample pocket-containing conformations at protein interaction sites (76). We found that when 

starting from an unbound protein structure, we observe low-energy conformations that include deep 

surface pockets at druggable sites but not elsewhere on the protein surface. These findings supported a 

“conformational selection” model (77), whereby inhibitors recognize low-lying excited states of the 

protein that are naturally visited under physiological conditions. 

A natural implication of this conformational selection model is that the particular variety of 

pocket shapes visited by the protein surface will dictate the regions of chemical space in which 

complementary inhibitors can be found: this would have clear implications for designing new inhibitors. 

Conversely, one may instead view this complementarity from the perspective of the ligand: under this 

model, an inhibitor is expected to be active against a given protein if, and only if, the protein surface 

includes a suitably complementary pocket among those that are sampled under physiological conditions. 

Within a protein family, then, only the subset of family members that sample the corresponding pocket 

will be inhibited by this compound. 

The Bcl-2 protein family in humans is comprised of about 25 members that together regulate 

apoptosis through a series of protein-protein interactions that induce either pro-death (Bax, Bak, and 

others), pro-survival (Bcl-xL, Bcl-2, Mcl-1, Bcl-w, and others), or derepression/sensitizing (Bid, Bim, 

and others) activity (78). The critical step of disregulating apoptosis in tumor maintenance and 

chemoresistance has made certain members of this family exceptionally attractive targets for therapeutic 

intervention for many years, and in a variety of cancers (79). Despite the overall dearth of examples of 

small molecules that inhibit protein interactions, a number of such compounds have been reported against 

assorted members of the Bcl-2 family. Further, selectivity of these inhibitors against a panel of Bcl-2 

family members have also been reported in some cases. These data, together with the availability of 

multiple experimentally-derived structures of inhibitor-bound complexes, position the Bcl-2 family as a 
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rich model system in which we can explore the determinants of selectivity for small-molecule inhibitors 

of protein-protein interactions. 

Here, we use the Bcl-2 family to explore whether the ensemble of pocket shapes sampled on 

protein surfaces can be used to explain ligand selectivity. We will use simulation to generate ensembles of 

pocket-containing conformations (76), then directly probe whether a complementary pocket for a given 

ligand is present in the ensemble. If successful, this approach may allow us ultimately to predict, and by 

extension design, inhibitors with a desired selectivity profile; such compounds could serve both as a 

starting point for development of new therapeutics, and also as “tool compounds” to probe the underlying 

biological mechanism of disease. 

2.4 Methods 

Computational methods are implemented in the Rosetta software suite (56); Rosetta is freely 

available for academic use (www.rosettacommons.org), with the new features described here included in 

the 3.6 release. Computational methods are summarized below, with further detail (including Rosetta 

command-lines to access these tools) is available in the Supporting Methods section. 

Identifying surface pockets 

Pockets were identified using the “pocket” protocol in Rosetta (76). This is a local pocket 

detection approach adapted from the Ligsite algorithm (52), and it uses geometric criteria to identify 

concave regions on a protein surface suitable for small-molecule binding. The approach entails building a 

small grid in the vicinity of one or two “target” residues, then mapping the van der Waals surface for the 

whole protein onto the grid; the exposed grid points are marked as “solvent.” Next, the grid is screened to 

identify linear segments of solvent points that are bounded by protein points; the grid points along these 

segments are marked as “pocket” points. Pocket grid points are clustered into “pockets,” and then any 

clustered pockets not in direct contact with the target residue(s) are discarded. The “deep volume” of a 
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pocket is defined as the volume of the pocket that is well-sequestered from the solvent (more than 2.5 Å 

from any solvent grid point). 

Generation of a representative protein surface pocket is demonstrated in Figure 1. A number of 

related approaches have been described for identifying potential small molecule binding sites on protein 

surfaces in this way (51, 52, 80-84); the primary difference between these methods relative to the method 

described here is our use of “deep” pocket volume, which leads to improved discrimination when 

distinguishing known ligand binding sites from other shallow concave regions on the protein surface (76). 

These “deep” pocket volumes are correlated to, but smaller than, pocket volumes identified by other 

representative methods (76); in the context of this study, then, we expect that focusing our pocket 

description on regions in direct contact with the protein will allow the most critical features to be captured 

with minimal extraneous information. 

 

Figure 1: Building “exemplars” from surface pockets. (A) Bcl-xL (grey surface) is shown in complex 

with an inhibitor (spheres). (B) The protein surface features a large pocket (small white spheres) that is 

complementary in shape to the inhibitor. (C) From this surface pocket, an “exemplar” is built: a map of 

the “perfect” ligand to complement this protein surface, without considerations of atom connectivity. The 

exemplar is comprised of hydrogen bond donors (yellow) and acceptors (magenta) that complement 

surface polar groups on the protein, and hydrophobic atoms that fill the remainder of the surface pocket 

(cyan). In the studies we report here, we will use the shape and chemical features of the exemplar as a 

proxy for the shape and chemical features of the protein surface pocket. 
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Target residue selection 

 The selection of the target residue pairs is important in determining the location of the 

grid, and in turn may affect the resulting pocket shapes. To avoid biasing results towards any particular 

inhibitor – and to allow the method to be applied in cases for which no inhibitor has yet been identified – 

we did not use the structure of the protein in complex with any small-molecule ligand when defining the 

target residues. 

Instead, we developed an algorithm to select suitable target residues starting from the structure of 

the protein-protein complex. First, the “Robetta” server (85, 86) is used to estimate the contribution to the 

binding free-energy of each interfacial sidechain (ΔΔGres) via computational alanine scanning. All pairs 

of interfacial residues are then exhaustively tested by building a 24 Å candidate grid placed at the residue 

pair’s center of mass, and summing ΔΔGres for each residue that falls on this grid. To ensure that the grid 

placement captures the key energetic contributors to the protein-protein interaction, the residue pair that 

captures the largest cumulative ΔΔGres is used in subsequent studies. In essence, this approach aims to 

align the pocket grid such that it is optimally close to the energetically dominant residues of the protein-

protein interaction. This tool is implemented in the Rosetta software suite, and its use it demonstrated in 

the Supporting Methods section (56). 

The effect of the particular target residues used will be examined further in the Results section. 

Building ensembles of pocket-containing conformations 

Ensembles of pocket containing conformations were generated using the “relax” protocol in 

Rosetta, which incorporates both backbone and side chain degrees of freedom in a Monte Carlo search. 

Starting from the standard Rosetta energy function, we added a term corresponding to the “deep pocket” 

volume multiplied by a proportionality constant. This biasing potential favors pocket-containing 

conformations that have more deep pocket volume, and thus drives sampling towards such conformations. 
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In our previous work, we found that applying a proportionality constant of -0.25 Rosetta energy 

units per Å3 allowed identification of pocket-containing conformations with similar energies to those 

observed in unbiased simulations (76). In the present study, therefore, we reused the same proportionality 

constant. A separate independent trajectory was used to generate each of the 1000 output conformations 

used for each protein included in our studies. It took about 5 minutes to generate each conformation on a 

modern CPU, though the independence of trajectories made it trivially scalable to multiple processors. 

Generating “exemplars” to represent pockets 

To compare the shape and chemical similarity of surface pockets, we introduce the concept of an 

exemplar: a map of the “perfect” ligand that could complement a surface pocket, without the natural 

constraints of bond connectivity or chemistry. The lack of such physical requirements means that the 

exemplar does not correspond to any particular chemical entity, but instead simply consists of a collection 

of atoms in space. This collection occupies volume, and may include hydrogen bond donors and 

acceptors, but by construction does not imply any particular connectivity between the atoms. 

Exemplars are built from the “deep volume” that defines a protein surface pocket. First, the ideal 

location for a hydrogen bond partner of every donor/acceptor on the protein surface is determined; if this 

location lies within the pocket, then this region of the pocket volume is reserved for the polar group that 

will complement the protein surface. After placing these polar groups in the pocket, the remaining 

unoccupied volume is filled with hydrophobic (carbon) atoms using a greedy algorithm, such that the 

center of two atoms are no less than 1.7 Å apart. Exemplar points are then clustered together based on a 

proximity threshold of 5 Å, so that cases in which two small pockets flank the target residues are 

represented by a single exemplar. Generation of an exemplar from a representative protein surface pocket 

is demonstrated in Figure 1; complete details of our implementation are included in Supplementary 

Methods. 
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These exemplars are analogous in philosophy to the popular pharmacophore maps used in 

medicinal chemistry to reflect consensus properties of known ligands (87, 88); while the latter approaches 

rely on mimicry of the existing binding partners (31, 32, 89, 90), however, exemplars are instead built 

purely from features of the protein surface. Recently, the utility of protein-based pharmacophores has 

been explored for pose prediction and virtual screening (91-93), but such approaches have not been used 

for the comparison of pocket shapes as described below. 

Comparing exemplars 

Having represented the shape and chemical features of a protein surface pocket by its “perfectly 

complementary ligand” (the exemplar), we are now positioned to quantitatively compare pockets using 

standard tools developed for comparison of chemical entities in 3D, provided that these tools do not 

require (or assume) knowledge of bond connectivity. A variety of ligand-based shape comparison 

methods have been developed for aligning pairs of molecules on the basis of volume overlap (94, 95); a 

convenient modern implementation of this approach is the ROCS software (OpenEye Scientific Software, 

Santa Fe, NM) (3, 96). ROCS represents molecular shape as the sum of Gaussians centered at each atomic 

position, and can rapidly calculate the near-optimal alignment that maximizes volume overlap between 

two molecules. Chemical groups are also included as separate Gaussians in the scoring/optimization step, 

to include electrostatic effects. 

The results we present below are built upon quantitative comparisons of the similarity in shape 

and hydrogen bonding patterns for pairs of protein surface pockets. In all cases we carry out this analysis 

by generating an exemplar for each of the two pockets, then using ROCS to align and score the overlap 

between these exemplars. 

We note that method to define pockets, and thus exemplars, makes use of a grid centered at a pair 

of target residues. To quantitatively examine the effect of the grid orientation on the exemplar similarity, 

we used four pocket-containing crystal structures and rotated each to 100 random orientations. Using one 
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of these structures as a reference (ABT-737 bound to Bcl-xL), we found that rotated variants of this 

structure produced similar exemplars, as did rotated variants of a related structure (Bcl-xL in complex 

with a related ligand). In contrast, rotated variants of Bcl-xL bound to unrelated ligands, or rotated 

variants of Mcl-1, produced highly dissimilar exemplars (Figure S1). Collectively, these observations 

demonstrate that the orientation dependence of generating exemplars on a grid makes a negligible 

contribution to the exemplar distances we report below. 

2.5 Results 

The principal goal of the studies we report here is to understand how conformational changes at a 

protein interaction site can drive selectivity of the small-molecule inhibitors that bind at these sites. We 

have developed an approach for building an “exemplar” – a map of an idealized ligand – that describes a 

protein surface pocket and enables quantitative comparisons between pockets (Figure 1, Methods 

section). In each of the sections below, we use exemplar comparisons to examine the similarity of pockets 

observed on the surface of proteins comprising the Bcl-2 family. 

Plasticity of the protein surface allows recognition of diverse chemical scaffolds 

There have been dozens of reported inhibitors of Bcl-2 family members (18, 19, 97-115), 

spanning a broad range of chemotypes. Unfortunately, experimentally-derived structures are not available 

for the majority of these inhibitors in complex with their cognate protein partner(s); this makes it difficult 

to gain insight into the detailed basis for molecular recognition in these cases. Instead, we began by 

compiling a comprehensive collection of all structures in the Protein Data Bank containing a Bcl-2 family 

member in complex with a non-fragment small-molecule inhibitor bound at the protein interaction site: 

these are listed in Table S1. There are 28 such complexes, covering 26 unique inhibitors, and 3 different 

proteins are represented: Bcl-xL (14 structures), Bcl-2 (9 structures), and Mcl-1 (5 structures). 
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The diversity of the inhibitors in this set is readily apparent from the Tanimoto similarity of 

fingerprints describing each chemical structure (Figure 2a). Unsurprisingly, groups of compounds that 

are similar by this measure typically represent a chemical series designed by a single research group 

(e.g. compounds 1-3 from WEHI (116)). Given this collection of chemical scaffolds, we sought to ask 

how such diverse compounds could be recognized on the surface of a single protein family. There are two 

possibilities: either these compounds might adopt a shared three-dimensional structure not evident from 

their chemical structure (i.e. a non-obvious example of “scaffold hopping” (117)), or else the protein 

surface must be sufficiently malleable to adopt different conformations when binding different ligands. 

To test whether these distinct compounds present a common structure to complement the protein 

surface, we carried out comparisons of the inhibitors’ shape and chemical features in their active (bound) 

conformations (Figure 2b). To examine the pattern of similarity between chemical structure and three-

dimensional structure we sorted the all-vs-all Tanimoto scores for each set, and found a statistically 

significant non-zero Spearman correlation coefficient between these rankings (p < 10-35). This observation 

confirms that dissimilar chemical structures do not somehow adopt a shared three-dimensional structure. 

As expected, a given shape and pattern of hydrogen bond donors/acceptors is conserved within a chemical 

series, but not across different chemical scaffolds. 

To directly evaluate similarity of the conformations adopted by the protein to bind each ligand, 

we next carried out an analogous comparison using the exemplar derived from each inhibitor-bound 

pocket (Figure 2c). Here again we observe the same pattern of similarity, mimicking both that of the 

chemical structures (p < 10-26) and their corresponding three-dimensional structures (p < 10-20). While 

each of the inhibitors within a given chemical class bind to a very similar pocket on the surface of the 

cognate protein, different chemical classes each take advantage of a dramatically different pocket on the 

protein surface. Moreover, the surfaces of different proteins bound to similar ligands (e.g. Bcl-xL 

complex 7 vs Bcl-2 complex 19) resemble one another more closely than the surface of a single protein 

bound to chemically distinct ligands (e.g. Bcl-xL complexes 3 vs 7). 
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Figure 2: Bcl-2 family members recognize different inhibitors using distinct surface pockets. In all 

cases color gradient indicates the similarity between complexes, expressed as Z-scores (green are most 

similar, red are most dissimilar). (A) Chemical similarity of the inhibitors. (B) Three-dimensional 

similarity of the inhibitors’ active conformation. (C) Similarity of protein surface pockets, measured 

using exemplar similarity. Numbering in all cases corresponds to complexes in Table S1. A 

representative subset of the complexes are included in this figure; a corresponding figure containing all 

available complexes is available as Figure S2. 
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These observations highlight the plasticity of this protein surface: multiple members of the Bcl-2 

family can adopt similar conformations to bind a given ligand, yet a given protein can also form radically 

different surface pockets to accommodate different ligands. Together with the fact that the unbound 

structures of these Bcl-2 family members lack suitably deep surface pockets for inhibitor binding 

(Figure S3), the observations presented here underscore the fact that molecular recognition in this protein 

family cannot be explained using a single conformation, but rather an explanation of ligand selectivity 

will instead require consideration of the many available conformations that this surface can adopt. 

Ensembles of low-energy pocket-containing conformations 

To explore pocket-containing conformations of these proteins, we generated conformational 

ensembles using simulations in the presence of a biasing potential (76). In essence, energy associated with 

the biasing potential in these simulations serves as a proxy for the binding energy of some (unspecified) 

ligand, which in turn serves to stabilize alternate conformations of the protein surface. The biasing 

potential takes account of the protein surface geometry (“deep pocket volume”), but does not encode any 

information about the identity or features of any particular ligand. Thus, this approach allows efficient 

sampling of the conformational space available for protein reorganization in response to ligand binding. 

While other methods could have been employed to sample alternative conformations (such as unbiased 

molecular dynamics simulations with retrospective analysis to identify pocket-containing conformations 

(118)), we chose this approach because it allowed us to rapidly generate a large ensemble of pocket 

containing conformations. 

As noted earlier, our approach defines the relevant protein surface on the basis of the 

protein/peptide interaction site, and not based on any known small-molecule inhibitor (Methods section). 

In light of the fact that particular “target” residues are needed to produce the ensembles of pocket-

containing conformations, we begin by examining the effect of the target residues on the resulting “pocket 

ensemble.” 
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Starting with the Bcl-2 family member Bcl-xL, we selected the two top-scoring pairs of target 

residues resulting from analysis of its peptide-bound structure. We then used each pair of target residues 

to generate separate ensembles of 2000 pocket-containing conformations, with each trajectory initiated 

from the unbound structure of Bcl-xL. To visually compare the conformational “pocket space” sampled 

by these two ensembles we built an exemplar from each pocket, and used multidimensional scaling 

analysis (MDS) to construct the two-dimensional projection that best reflects the pairwise distance 

between every pair of exemplars. The resulting map demonstrates that these two ensembles are strongly 

overlapping, and points to the robustness of the conformational space sampled to the particular target 

residues used (Figure 3a). In light of the similarity between the ensembles, we used conformations 

generated using the second-best scoring pair of target residues (rather than the top-scoring pair), for 

consistency with our previous studies of Bcl-xL (76). 

While application of the same approach for selecting target residues led to similar residues for 

most members of the Bcl-2 family, the residue pair selected on Mcl-1 was notably different. While this 

derived exclusively from different energetic contributions to the protein-protein interaction from each 

protein surface, it is interesting to note that known inhibitors of Bcl-xL and Mcl-1 bind at slightly 

different regions on the surface of these two proteins (Figure S4). To ensure that the range of pockets 

across the Bcl-2 family would be fully captured in our studies, we used both the pair of residues derived 

from Bcl-xL and those derived from Mcl-1 to generate ensembles of pocket-containing conformations; in 

the analyses presented below, all such conformations are combined into a single ensemble regardless of 

the target residues used to generate them. 

To ensure that only physiologically relevant conformations were included in the subsequent 

analysis, we compared their energies to those obtained in equivalent unbiased simulations of the 

corresponding protein. Previously, we found that this method produced ensembles of pocket-containing 

conformations a slightly higher but overlapping distribution of energies than the unbiased ensemble (76). 

With the caveats that conformations generated in our “pocket opening” protocol are not drawn from a 
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Boltzmann distribution and the energy differences do not necessarily capture real differences in free 

energy, we instead simply collect pocket-containing conformations from the biased simulations that are 

within 15 Rosetta energy units of the unbiased ensemble. Thus, these represent conformations that are in 

principle available within the unbiased ensemble, but are simply not observed due to limitations of 

sampling. The distribution of energies observed in an unbiased simulation of each Bcl-2 family member is 

presented in Figure 3b, along with the range of energies spanned by conformations from biased 

simulations. 

 

Figure 3: Ensembles of low-energy pocket-containing conformations. (A) To examine the effect of the 

particular target residues used in generating the ensemble of pocket-containing conformations, we 

generated separate ensembles from the top-scoring pair of target residues (Ala93 and Arg139, green) and 

the second-best pair (Ala93 and Ala142, red). We use exemplars to compare the similarity of surface 

pockets on each conformation, and we show each conformation on the two-dimensional projection that 

best reflects the pairwise distances between them. The overlap between the two ensembles highlights the 
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robustness of the conformations to the particular target residues. (B) For each member of the Bcl-2 

family, we generated an ensemble of conformations from unbiased simulations; the distribution of these 

energies is shown (black). The range of energies for pocket-containing conformations generated using a 

biasing potential target residues derived from the Bcl-xL protein interaction site (magenta) or the Mcl-1 

protein interaction site (red) suggest that many of these conformations are energetically accessible to 

these proteins under physiological conditions. All energies shown here were evaluated in the absence of 

the biasing potential, for fair comparison. Each simulation is started from the structure of the unbound 

protein; a corresponding figure starting from the peptide-bound structures containing all available 

complexes is available as Figure S5. 

Ensembles of conformations sampled by Bcl-2 family members include the inhibitor-bound pockets 

We next sought to compare the surface pockets on conformations comprising these ensembles to 

those pockets observed on experimentally-derived inhibitor-bound structures. We again turned to MDS 

analysis, this time including exemplars built from the experimentally-derived structures of the unbound, 

peptide-bound, and inhibitor-bound protein. For each of Bcl-xL, Bcl-2, and Mcl-1 (all family members 

for which structures of inhibitor-bound complexes are available), the resulting maps show that the pocket-

containing conformational space sampled via simulation includes thorough coverage of experimentally-

derived inhibitor-bound structures (Figure 4). Though each simulation was initiated from either the 

unbound or the peptide-bound crystal structure, the resulting ensemble is notably distinct from these 

starting states; instead, the biasing potential drove sampling towards pocket-containing conformations 

that include examples very similar to the inhibitor-bound structures. In addition, each protein also samples 

a collection of conformations (marked “D”) with exemplars that differ from those observed in any 

available inhibitor-bound conformations: these will be discussed in more detail in the following section. 

In all three cases we find that these ensembles, generated without any prior information about the 

inhibitors, span the space of known inhibitors. This indicates that each protein is predisposed to adopt the 
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particular pocket shapes observed in the corresponding inhibitor-bound structures: these are not 

conformational changes that are “induced” by the inhibitor, but rather these are among a suite of available 

conformations from which the inhibitor may select. Upon binding, meanwhile, smaller changes to the 

protein surface may then occur in response to particular features of the ligand (such as reorientation of 

hydrogen bond donors and acceptors). 
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Figure 4: Maps of “pocket space” sampled by individual Bcl-2 family members. The ensemble of 

pockets observed from simulation: individual conformations are represented as points on a two-

dimensional projection that reflects the pairwise distances between their exemplars. The relative position 

of exemplars from experimentally-derived Bcl-xL unbound (“U”) and peptide-bound (“P”) structures are 

indicated, as are the positions of exemplars from Bcl-xL structures solved in complex with various 

inhibitors (numbers correspond to complexes listed in Table S1). Exemplars marked “D” correspond to 

the same “distinct” conformations described in Figure 5. 

Different Bcl-2 family members sample different ensembles of surface pockets 

To explore differences between ensembles of pocket-containing conformations of Bcl-2 family 

members, we carried out an analogous MDS analysis comparing exemplars from multiple family 

members; an important aspect of exemplar generation and comparison is that the description of a surface 

pockets is not tied to the sequence of the protein, allowing one to compare exemplars on the surfaces of 

different proteins. We compiled conformations generated from simulations of each Bcl-2 family member 

(Bcl-xL, Bcl-2, Mcl-1, Bcl-w, Bax, Bid, and Ced-9), and carried out MDS analysis using the complete set 

of exemplars (Figure 5a). Unsurprisingly, we observe that different family members sample different 

surface pockets; however, we do not observe such differences between the (closely related) human and 

mouse Mcl-1 sequences (Figure S6). 

In these projections we again note that the ensemble generated for a given protein spans the 

majority of known inhibitors of that protein. Unsurprisingly, given the similarity we observed between 

inhibitor-bound Bcl-2 pockets and inhibitor-bound Bcl-xL pockets (Figure 2c), we find that most pockets 

observed in the inhibitor-bound structures occupy a similar region on this projection (all except 1, 5, 6, 

and 23). Notably, many known inhibitors fall in a region of “pocket space” that is sampled by more than 

one protein. In the case of Bcl-xL, for example, many known inhibitors bind to pockets that are not only 

observed in simulations of Bcl-xL, but also in simulations of Bcl-2. On this projection, these inhibitors 
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(all except 1, 5, and 6) reside in a region sampled by both Bcl-xL and Bcl-2. Similarly, most of the Bcl-2 

inhibitors (all except 23) are in the same region sampled by both Bcl-xL and Bcl-2; in contrast, this other 

Bcl-2 inhibitor (23) overlaps with a regions sampled by Mcl-1 but not Bcl-xL. 

In addition to regions shared by more than one family member, each map contains a “distinct” 

region that is sampled exclusively by a single protein (Figure 5a, “D”). As expected, exemplars 

corresponding to these conformations are very different from those of the (unbound or peptide-bound) 

conformations from which the corresponding simulations were initiated (Figure 5b). Further comparison 

of the conformations themselves show that these alternate conformations are accessed primarily through 

concerted reorganization of the sidechains that comprise the surface pocket, though corresponding 

changes to the protein backbone – especially in the case of Mcl-1 – are also required to enable this 

reorganization (Figure 5c). In summary, relatively modest structural changes to the protein conformation 

can produce radically different exemplars, and none of the inhibitors described to date bind to these 

particular protein conformations. To facilitate further study of these alternate protein conformations, we 

have made several such representatives publicly available on Proteopedia (119, 120) ( 

http://proteopedia.org/wiki/index.php/User:John_Karanicolas/Selectivity_by_small-

molecule_inhibitors_of_protein_interactions_can_be_driven_by_protein_surface_fluctuations , with the 

first model for each protein corresponding to the conformation we highlight here). 

The regions that we have described as “distinct” on these maps correspond to pockets that are 

only sampled by a single member of the Bcl-2 family. In other words, these “distinct” pockets are far 

from each of the pockets sampled by other family members. So far, we have identified these regions 

visually on the basis of a two-dimensional projection of “pocket space”; to avoid the loss of information 

associated with reduction of dimensionality, however, we can instead identify “distinct” pockets using 

exemplar distances directly. 
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Figure 5: Comparison of “pocket space” sampled by each Bcl-2 family member. (A) A projection built 

using ensembles collected from simulations of several Bcl-2 family members: Bcl-xL (magenta), 

Bcl-2 (green), Mcl-1 (red), Bcl-w (orange), and Bax (cyan). Bid and Ced-9 were used in generating the 

projection, but for clarity are not included on this map. Target residues derived from the Bcl-xL protein 

interaction site were used in generating exemplars shown on the Bcl-xL and Bcl-2 MDS plots, whereas 
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target residues derived from the Mcl-1 protein interaction site were used in generating exemplars shown 

on the Mcl-1 MDS plots. For each of Bcl-xL, Bcl-2, and Mcl-1 we observe a distinct region of 

conformational space (“D”) that is not sampled by any other Bcl-2 family member. (B) Comparison of an 

exemplar from each “distinct” region to the corresponding unbound (“U”) or peptide-bound (“P”) protein 

structure from which the simulation was initiated. (C) Comparison of the conformation harboring the 

“distinct” pocket to the corresponding unbound/peptide-bound protein structure from which the 

simulation was initiated. 

 

For each conformation comprising the ensembles used above, we found the exemplar distance of 

the closest pocket sampled by a different family member. To avoid describing rarely-sampled (outlying) 

conformations as distinct, we subtracted from this the exemplar distance of the closest pocket from one’s 

own ensemble. This measure, that we will call “distinctness,” is largest for conformations taken from 

regions of pocket space that are well-sampled within a given ensemble, but not visited in the ensembles of 

the other family members. 

We evaluated the “distinctness” of each conformation in the ensembles presented above, and 

compiled the results for each family member into a histogram (Figure 6). As expected, these results are 

consistent with our observations from the MDS analysis presented above: all of the pockets sampled by 

Bcl-w strongly resemble pockets from other family members and are therefore not “distinct,” whereas 

Bcl-xL and Mcl-1 each sample certain highly distinct regions. Particularly striking from this analysis is 

the “distinctness” of experimentally-derived inhibitor-bound structures of Bcl-2 family members: none of 

these inhibitors take advantage of the “highly distinct” pockets available on the surfaces of Bcl-xL or 

Mcl-1. Rather, each of these compounds targets a pocket that is sampled not only by the cognate binding 

partner, but also by at least one other member of the Bcl-2 family. 
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Figure 6: Ensembles of available pocket shapes contain distinct pocket shapes. We define the 

“distinctness” of a pocket as the difference in exemplar distances of the closest conformation from a 

different family member, and the closest conformation from one’s own ensemble. Histograms are shown 

over conformations that comprise the ensembles used above. By this measure, all known inhibitors of all 

Bcl-2 family members bind to pockets that are not unique to their cognate target protein (i.e. low 

“distinctness”). Data are shown for three representative Bcl-2 family members, the complete set are 

included as Figure S7. 

 

Pocket shape similarity as a predictor of ligand selectivity 

As noted in the MDS analysis, the majority of known Bcl-xL inhibitors fall in a region of “pocket 

space” that is sampled by both Bcl-xL and Bcl-2 (Figure 5a). Given that Bcl-2 is found to form pockets 

that are similar to these inhibitor-bound Bcl-xL pockets, one might expect that these compounds would 

inhibit Bcl-2 in addition to Bcl-xL. Conversely, in light of the conformational selection model presented 

earlier, one would expect that the lack of similar pockets in the ensembles generated for other Bcl-2 

family members might suggest that these proteins would not be inhibited by these compounds. 

To explore this idea, we measured the exemplar distance between each known inhibitor bound 

pocket and each pocket observed in a given ensemble (starting from an unbound or peptide-bound 

structure). We then compared the most similar exemplar distances for each protein/inhibitor pair to 
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experimentally-derived binding data, to evaluate whether the pockets sampled in these ensembles dictate 

the Bcl-2 family members that will be inhibited by a given compound. 

The results from this analysis are presented in Figure 7a. Using pockets observed in inhibitor-

bound crystal structures of Bcl-xL (1-14), we find in many cases that highly similar pockets are sampled 

in ensembles generated from simulation of Bcl-xL and Bcl-2 (green), but not in the corresponding 

ensembles from Mcl-1 or Bcl-w (yellow/red): this represents a quantitative recapitulation of our 

observation that these ligands occupy surface pockets accessible only to Bcl-xL and Bcl-2 (Figure 5a). In 

light of this finding such compounds would be expected to bind Bcl-xL and Bcl-2, but not Mcl-1 or 

Bcl-w; available experimental binding data confirm that indeed this is generally the case. 

We observe a similar pattern for most inhibitor-bound crystal structures of Bcl-2 (15-21), which 

is again unsurprising given the similarity of these inhibitor-bound pockets to those of Bcl-xL (Figure 2c). 

The sole exceptions to this pattern are complexes 22 and 23, for which corresponding pockets are 

observed in either the Bcl-2 or Bcl-xL ensembles but not both. The former (22) is indeed a dual inhibitor, 

but binds in a shallow pocket that is not well-described by any Bcl-2 exemplar in our ensemble. The latter 

(23) is indeed selective for Bcl-2 over Bcl-xL, as anticipated from the lack of overlap with the Bcl-xL 

ensemble from simulation, and therefore represents successful recapitulation of the binding data. 

While we noted earlier that Mcl-1 can adopt conformations with highly distinct surface pockets, 

we also noted that inhibitor-bound crystal structures do not make use of these pockets (Figure 6). Rather, 

we find that these compounds (24-26) instead bind to pockets that are very similar to those included in the 

Bcl-2 ensemble (Figure 7a), and indeed experimental observations confirm that these compounds also 

inhibit Bcl-2, but not Bcl-xL. 

Among the most notable incorrect predictions are those involving Bcl-w: a number of these 

compounds inhibit Bcl-w (11, 12, 13, 16, 17), but corresponding pocket shapes were not included in our 

sampling. In retrospect, this may have arisen due to structural features of the starting conformation from 
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which this conformational ensemble was generated: when evaluated by Molprobity (121), this member of 

the NMR ensemble contained only 72% of residues in favorable regions of Ramachandran space. These 

unfavorable structural features may in turn have led to a lack of convergence of our simulations. 

Overall, however, there is a striking relationship between the pockets visited by a given ensemble 

and the experimentally-derived ligand selectivity. To quantitatively examine the ability of the pockets 

sampled in these ensembles to recapitulate the selectivity profile of a given ligand, we asked how well 

this approach could be used to distinguish the most tightly binding protein-ligand pairs (those marked 

with    ) from those pairs that bind too weakly to be detected/quantified (those marked with  ). For each 

inhibitor-bound crystal structure, we normalized the exemplar distances to the variation across the 

corresponding row; this essentially expressed ligand selectivity as a Z-score indicating how closely a 

given ensemble approached the inhibitor-bound pocket. Using these Z-scores to rank the likelihood of 

interaction for a given protein-ligand pair, we used a receiver operating characteristic (ROC) plot to show 

performance at this binary prediction problem (Figure 7b); we find that the predictions from this method 

far outperform those of a random classifier (p < 4x10-7). 
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Figure 7: Ensembles of available pocket shapes explain ligand selectivity across the Bcl-2 family. 

(A) For each inhibitor-bound pocket, the exemplar distance to the most similar pocket is indicated by 

color gradient, with all distances expressed as Z-scores (green are most similar, red are most dissimilar; 

the range of colors for each row is normalized across that row). Markings inside the cells denote 

experimental reports (2, 22, 107, 116, 122-130) for a given protein-ligand pair (Kd or Ki where available, 

otherwise IC50): ✔✔✔ indicates < 0.1 μM, ✔✔ indicates 0.1-1 μM, ✔ indicates binding weaker than 

1 μM, and ✗ indicates that binding was not detectable/quantifiable. Cells that do not include any 

markings correspond to protein-ligand pairs for which binding data has not been reported. Numbering 

corresponds to complexes as in Table S1. A representative subset of the complexes are included in this 

figure; a corresponding figure containing all complexes is available as Figure S8. The underlying raw 

data are included in Table S5 (exemplar distances) and Table S7 (citations to binding data). (B) A 

receiver operating characteristic (ROC) plot demonstrating the performance of exemplar distances for 

predicting whether a given compound is active against a particular member of the Bcl-2 protein family. 
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The absence of experimental binding data for many protein-ligand pairs is a natural shortcoming 

associated with culling this information from available reports in the literature. The complete maps of 

ligand selectivity for each compound, as inferred from ensembles generated by simulation, thus stand as 

completely new predictions in many cases (Figure S8). 

Because the pockets should match the shape of the ligand, a reasonable assumption would be that 

similar results would be found by comparing the shape of the inhibitor to the ensemble of pocket shapes. 

To explore this idea we measured the exemplar distance between each native inhibitor conformer and the 

most similar pocket observed in a given ensemble of Bcl-2 family members, and then compared these 

exemplar distances to experimentally-derived binding data. As expected, the predictions (Figure S9) are 

very similar when comparing to the ligand directly, as opposed to comparing against the ligand-bound 

pocket. 

Beyond the Bcl-2 family 

The abundance of reported inhibitors of Bcl-2 family members, including their selectivity across 

the Bcl-2 family, enabled the detailed comparison presented above. Due to the challenges encountered to 

date in identifying small-molecule inhibitors of protein interactions, however, there do not yet exist any 

further examples that we know of in which multiple compounds target different members of a protein 

family. Nonetheless, we were able to identify a separate example of a small-molecule inhibitor of a 

protein interaction that has been shown to inhibit select members of a protein family (for which at least 

one ligand-bound crystal structure is available): this is (+)-JQ1, a compound shown to selectively inhibit a 

subset of human bromodomains (21). While only one compound, binding data are available against many 

family members. Here, we have generated ensembles of pocket-containing conformations for 16 

bromodomains, and measured the extent to which each family member samples a pocket similar to that 

observed in the crystal structure of (+)-JQ1 bound to the first bromodomain of BRD4. In this single 

additional example, here again we find that the presence of complementary surface pockets in the 
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ensemble generated by simulation can accurately predict the ligand selectivity across a protein family 

(Figure 8), whereas we do not observe complementary pockets for family members that do not tightly 

bind (+)-JQ1. 

 

Figure 8: Pocket shapes explain (+)-JQ1 selectivity across bromodomains. For each bromodomain, 

the exemplar distance of (+)-JQ1 to the most similar pocket is indicated by color gradient, with all 

distances expressed as Z-scores (green are most similar, red are most dissimilar; the range of colors for 

each row is normalized across that row). Markings inside the cells denote experimental binding 

measurements (21) for each protein-ligand pair: ✔✔✔ indicates ΔTm > 7 0C, ✔✔ indicates ΔTm = 3-

5 0C, ✔ indicates ΔTm = 0-1 0C, and ✗ indicates no detectable binding. The underlying raw data are 

included in Table S8. 

 

2.6 Discussion 

Identification of small-molecule inhibitors of protein interactions immediately raised the question 

of how these compounds might interact with proteins that appeared to lack complementary surface 

pockets; the answer came through structural studies of an interleukin-2 complex that showed the ligand 

can occupy a hydrophobic groove not present on the unbound protein surface (75). These structural 

studies, together with analysis of binding thermodynamics, first pointed to the “adaptivity” of this protein 

surface: the protein can adopt multiple conformations, one of which presents a surface complementary to 
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the ligand. Our analysis of Bcl-2 family complexes supports this view, and extends it further: we find that 

the plasticity of the protein surface allows multiple distinct surface pockets to be presented, and these 

different pockets can be recognized by inhibitors with dramatically different chemotypes. 

Upon generating ensembles of pocket-containing conformations by simulation, we find that these 

ensembles span all the pockets used by known inhibitors – even though no information about any 

inhibitor was used to influence the simulations in any way. This observation provides strong and direct 

evidence for an underlying model of conformational selection (77): the protein surface is predisposed to 

adopt certain pocket shapes, and these shapes in turn restrict the range of complementary ligands. Upon 

binding, the protein may then undergo further smaller changes in response to particular features of the 

ligand. 

By comparing the regions of “pocket space” explored by several Bcl-2 family members, we find 

that certain shapes are available to all family members: we expect that compounds complementing such 

pockets will show very broad specificity across this family. We further find that most inhibitors reported 

in the literature bind to pockets that are shared by more than one family member, and accordingly most 

are found to be active against more than one family member. 

Conversely, we also find that many Bcl-2 family members sample pockets that are not accessible 

to any other family member: here lies a tremendous opportunity, since we expect that a compound built to 

complement such a pocket will prove highly selective for its target. Development of compounds that 

target these highly “distinct” pockets represents a tantalizing new strategy for drug discovery: by building 

target selectivity into the broad features of the chemical scaffold itself, selectivity may be more robustly 

preserved in the course of optimization of the compound for other orthogonal desirable properties 

(bioavailability, pharmacokinetics and pharmacology). Despite the existence of these pockets on the 

surface of Bcl-2 family members and extensive interest in identifying selective inhibitors, however, not a 
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single crystal structure reported to date includes a compound that targets any of these highly “distinct” 

pockets. 

How then can we identify compounds that achieve target selectivity by explicitly targeting these 

“distinct” pockets? We anticipate the solution may lie with the exemplars themselves. As noted earlier, 

the exemplar is essentially a map of the “perfect” ligand to complement a given pocket, albeit a ligand 

that is not physically realizable. Accordingly, we expect that the exemplar will serve as an ideal template 

for ligand-based screening of (virtual) compound libraries; tools such as ROCS (3, 96) that evaluate 

volume and chemical overlap may be used to find compounds that closely mimic the shape and chemical 

features of the exemplar. Indeed, the ability to assess the selectivity profile by comparing the native 

ligand conformer to the exemplars derived from the ensembles implies that ROCS is capable of 

identifying compounds with the desired shape and chemical features needed to strongly interact with a 

member of a protein’s ensemble. Together, this set of tools may provide both a means to identify pockets 

that “encode” a desired selectivity profile within a protein family, and also a means to connect the 

resulting pockets to specific compounds that exhibit this selectivity profile. 

The overall paucity of examples of small-molecule inhibitors of protein interactions necessitated 

our focus for this study be largely restricted to the Bcl-2 family. As selective inhibitors of other protein 

families involved in protein interactions are reported, it will be exciting to refine the insights presented 

here. In light of the fact that many of the other small-molecule inhibitors of protein interactions described 

to date also bind to similarly “adaptable” binding sites (8), meanwhile, we are optimistic that the 

perspectives presented here will prove extensible to these therapeutic targets as well. 
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3.1 Abstract 

Protein-protein interactions play important roles in virtually all cellular processes, making them 

enticing targets for modulation by small-molecule therapeutics: specific examples have been well 

validated in diseases ranging from cancer and autoimmune disorders, to bacterial and viral infections. 

Despite several notable successes, however, overall these remain a very challenging target class. Protein 

interaction sites are especially challenging for computational approaches, because the target protein 

surface often undergoes a conformational change to enable ligand binding: this confounds traditional 

approaches for virtual screening. Through previous studies, we demonstrated that biased “pocket 

optimization” simulations could be used to build collections of low-energy pocket-containing 

conformations, starting from an unbound protein structure. Here, we demonstrate that these pockets can 

further be used to identify ligands that complement the protein surface. To do so, we first build from a 

given pocket its “exemplar”: a perfect, but non-physical, pseudo-ligand that would optimally match the 

shape and chemical features of the pocket. In our previous studies, we used these exemplars to 

quantitatively compare protein surface pockets to one another. Here, we now introduce this exemplar as a 

template for pharmacophore-based screening of chemical libraries. Through a series of benchmark 

experiments, we demonstrate that this approach exhibits comparable performance as traditional docking 

methods for identifying known inhibitors acting at protein interaction sites. However, because this 

approach is predicated on ligand/exemplar overlays, and thus does not require explicit calculation of 

protein-ligand interactions, exemplar screening provides a tremendous speed advantage over docking: 6 

million compounds can be screened in about 15 minutes on a single 16-core, dual-GPU computer. The 

extreme speed at which large compound libraries can be traversed easily enables screening against a 

“pocket-optimized” ensemble of protein conformations, which in turn facilitates identification of more 

diverse classes of active compounds for a given protein target. 
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3.2 Introduction 

The concept of a pharmacophore dates back at least a century: it is traditionally attributed to Paul 

Ehrlich, who recognized that certain parts of molecules were responsible for their biological activity 

(131). This concept was modernized fifty years later, shifting away from chemical groups and towards a 

more abstract notion of chemical forces in three-dimensional space (132). The IUPAC now defines a 

pharmacophore as “the ensemble of steric and electronic features that is necessary to ensure the optimal 

supramolecular interactions with a specific biological target structure and to trigger (or to block) its 

biological response” (24). 

Pharmacophores enable design of small molecules capable of presenting specific functional 

moieties to elicit a desired biological response, and for decades they have been used to inspire medicinal 

chemists’ development of new analogues (25-27). Because they describe the spatial arrangement of 

critical interactions with a receptor, pharmacophores can also be used as templates for computational 

screens seeking to identify ligands containing functional groups positioned to recapitulate these 

interactions. 

The first computed example of a modern pharmacophore is attributed to Lemont Kier, who 

recognized the spatial similarity of (modeled) three-dimensional geometries of various muscarinic 

receptor agonists (133). Presently, a broad assortment of computational tools can be used to define 

pharmacophores in distinct ways (28, 29, 91-93, 134-137). The first pharmacophore-building algorithms 

drew information from the ligand alone: such approaches begin by finding a consensus structural 

alignment of multiple active compounds, then seek to identify shared functional groups in this set (28). 

More recently, development of tools such as LigandScout (29) allow key interactions to instead be 

defined from one or more crystal structures of a receptor with assorted ligands bound – here again, 

identifying features shared by multiple ligands to build a consensus pharmacophore. 
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More recent efforts have focused on building pharmacophore models from protein structures 

alone, solved without any bound ligand in the active site. These approaches typically begin by docking an 

assortment of small (chemically diverse) probe molecules into the active site, then evaluating the 

interactions with the protein that these probes make (91-93). Individual interactions presented by different 

probe molecules are then combined into a consensus pharmacophore, and used as a template to identify 

larger compounds that simultaneously recapitulate the interactions from multiple probes. As an 

alternative, other approaches instead define desirable three-dimensional properties of candidate ligands 

using the “negative image” of the binding pocket (135, 136). 

Pharmacophores have been applied extensively to many diverse targets, including enzymes (138-

141), G protein-coupled receptors (142-144), and transporters (145-147). In each of these cases, the 

protein target has evolved to bind some natural small-molecule partner: already this suggests that the 

chemical space of prospective hits may be similar to that of the natural binding partner(s) (148). In most 

such cases one or more of the natural ligand(s) are known, so the task that remains entails identifying 

alternate molecules that recapitulate the key interactions of these natural ligand(s). 

In some cases, however, an important biological target is not evolved to bind any natural small-

molecule ligand: these include protein-protein interactions, protein-RNA interactions, and others. 

Moreover, representatives from this target class include well-validated targets for cancer, viral and 

bacterial interactions, and autoimmune disorders (1, 2, 4-7, 149). Given the lack of a natural small-

molecule binding partner, it is not evident a priori in which regions of chemical space prospective 

inhibitors may reside – or even whether the protein surface is indeed druggable (or rather, “ligandable” 

(150)) with any small molecule at all (151). Until one or more small-molecule inhibitors have been 

identified, there are (of course) no active compounds to use as templates for building a pharmacophore 

model. As a further additional challenge, crystal structures of inhibitors bound to protein-protein 

inhibitors have shown that in some cases the binding pockets on the protein surface are transient, 

appearing neither in the unbound structure nor in that of the protein-bound complex (8). 
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Despite these challenges, pharmacophore models have still successfully been applied to protein-

protein interactions, in certain cases. Most notably, several groups have recently developed related 

computational approaches that select some of the side chains from the natural protein partner (the 

“hotspot” or “anchor” residues), and then use this collection of functional groups to build a 

pharmacophore (30-37). However, this approach comes with several important limitations. First, the 

inhibitors designed to match such pharmacophores may be limited in the chemical space they sample, 

given that they are built from mimicry of canonical amino acid side chains. Second, their binding affinity 

may also be limited, given that they make use of only a subset of the natural binding partner’s 

interactions. Finally, this approach cannot take advantage of conformational changes at the protein 

surface that might allow binding of small molecules that do not resemble the natural binding partner; as 

noted earlier, such conformational changes are frequently observed in crystal structures of inhibitors 

bound at protein interaction sites (8). 

In our previous work, we developed a biasing potential that can be used to create ensembles of 

low-energy pocket-containing conformations, starting from an unbound protein structure that lacks a 

surface pocket suitable for small-molecule binding (76). Others have shown that docking-based virtual 

screens can be improved by docking to an ensemble of receptor conformations, rather than to a single 

static protein structure (152-160). Thus, we surmised that the inclusion of many surface pockets – derived 

from “pocket optimization” biased simulations (76) – would facilitate identification of inhibitors beyond 

those that simply mimic the natural binding partner. 

In order to quantitatively compare the shape and chemical features between pairs of surface 

pockets, we then developed the concept of pocket “exemplars” and used them to compare pockets to other 

pockets in order to predict the selectivity of active compounds between related protein family members 

(161). Briefly, an exemplar is built from a protein structure by determining the locations of hydrogen 

bond donors/acceptors within the pocket that would form idealized interactions with the receptor, then 

filling the remainder of the pocket with a series of spheres that simply occupy volume. In essence, an 
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exemplar is the negative image of the protein pocket: it represents the “ideal” ligand that would 

complement a given pocket, albeit in the absence of physical chemical constraints (i.e. the bond 

connectivity is neither specified nor implied). 

By representing pockets through their “idealized” complementary ligands, we found that we 

could make accurate comparisons of pocket similarity (161). Here, we extend this approach further: 

instead of simply comparing exemplars to other exemplars, as done in previous work, we demonstrate 

that these exemplars can also be used directly as templates for very rapid pharmacophore-based virtual 

screening. The speed also enables us to screen against ensembles of conformations from the “pocket 

optimized” simulations, which had previously only been used to assess druggability and selectivity. 

Because exemplars are built directly from the protein structure, this approach is particularly well suited 

for regimes in which no natural binding partner for the protein target is available, or, as in the case of 

protein-protein interactions, the natural binding partner does not provide a suitable template from which 

to build a conventional pharmacophore. 

3.3 Computational approach 

Conformational sampling of the protein and exemplar-generation are implemented in the Rosetta 

software suite (56); Rosetta is freely available for academic use (www.rosettacommons.org). Virtual 

screening using the exemplar was carried out using the FastROCS (162, 163) and ROCS (163, 164) 

software. The relevant command lines used to run both Rosetta and FastROCS/ROCS are included as 

Supplementary Methods. 

In addition to the command-line program included in Rosetta, we have provided a tool to generate 

an exemplar from an input PDB file through the ROSIE web interface (165). This tool is available at: 

http://rosie.rosettacommons.org/make_exemplar . 

http://rosie.rosettacommons.org/make_exemplar
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Our approach for screening a chemical library using exemplars is summarized schematically in 

Figure 1; each step is described in detail below. 

 

Figure 1: Overview of the “exemplar screening” pipeline. The protein-interaction site of an unbound 

protein often lacks a suitable surface pocket for small-molecule binding. Through a series of biased 

“pocket optimization” simulations, a collection of low-energy pocket-containing conformations of the 

target protein is assembled. Each of these conformations is then used to build a unique “exemplar”: a map 

of the perfect ligand that would complement this surface pocket. The exemplars described in this study 

incorporate both the pocket shape and the locations of hydrogen bonding groups; the latter are not 

included in this schematic. Each member of a compound library is then rapidly overlaid with each 

exemplar, and compounds are ranked on the basis of how well they recapitulate the properties of their 

preferred (most-similar) exemplar. Because the exemplars are derived from the shape of the protein 

surface pocket, alignment of ligands to exemplars then allows trivial reconstruction of the protein-ligand 

complex, using the protein conformation from which the exemplar was derived. 
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Using pocket optimization to build ensembles of pocket-containing conformations 

To generate ensembles of pocket containing conformations, we use a Monte Carlo sampling 

technique implemented in the Rosetta software suite (56); this local move set was originally designed for 

refining templates in comparative modeling applications (166), and includes both sidechain and backbone 

moves among its degrees of freedom. In order to enrich our sampling with low-energy conformations that 

include surface pockets, we include a biasing term in the energy function that favors conformations in 

which a surface pocket is present (76). We have previously shown that this approach creates ensembles of 

pocket-containing conformations with energies that overlap those from the corresponding unbiased 

simulations, implying low energetic cost to open the particular pockets we observe (76, 161). For each 

protein of interest we carried out biased simulations, collected the final output structure from each of 

1,000 independent trajectories, and retained only those with energies comparable to those observed in 

analogous unbiased simulations (76, 161). 

In order to focus the resulting pockets on the intended surface (the protein interaction site, in this 

case), the energetic “bonus” associated with pocket formation is awarded only if the pocket is in direct 

contact with one or two pre-determined “target” residues. For this study we used an automated tool to 

determine the target residues (161), provided that a crystal structure of the protein-protein complex was 

available. In one case (Brd4) the crystal structure of the protein-protein complex included non-canonical 

amino acids at the protein interaction site, so for this protein we chose the target residues manually. 

Generating exemplars 

Starting from the conformation generated by the “pocket optimization” simulation, we defined 

the surface pocket as described previously (76). Briefly, the protein and its inflated van der Waals surface 

were mapped to a local grid centered on the target residues, and the pocket was identified by searching for 

linear segments of solvent bounded by the protein. The “deep” pocket volume was defined by removing 

the most solvent-exposed portion of the pocket. 
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We then generated an exemplar from each pocket, as described previously (161). Briefly, we used 

the protein conformation to identify the location of idealized hydrogen bond donors and acceptors that 

overlap with any of the pocket, but do not clash with the protein. The remainder of the deep pocket 

volume was then filled in using carbon atoms, placing these such that they were completely contained in 

the pocket with minimal overlap, and requiring no less than 1.5 Å between the centers of atom pairs. 

For virtual screening, we sought to use several representative exemplars from the ensemble of 

“pocket-optimized” output structures. To select these representatives, we used Tanimoto scores computed 

with the ROCS software (163, 167) as a measure of exemplar similarity (161), and computed the pairwise 

similarity of all the exemplars. We then grouped together similar exemplars using hierarchical clustering, 

and excluded from consideration any clusters with less than 10 members (in cases for which there were 

fewer than 200 exemplars being clustered, we relaxed this criterion to require only 5 members). From 

each cluster, we advanced two representative exemplars: the cluster centroid, and the exemplar from the 

lowest-energy conformation in the cluster. 

Building small-molecule libraries for screening 

In the benchmark experiments described here, we compiled collections of active and decoy 

compounds (as described in the Results section). We then used the OMEGA software (168, 169) (with 

default parameters) to generate up to 100 low-energy three-dimensional conformations for each 

compound. The active compounds were identified using the TIMBAL database (170, 171) when available 

and the CHEMBL database (172) when the target was not present in TIMBAL. In the cases where the 

targets were not present in TIMBAL nor CHEMBL, the identity of the crystallographic ligand was used 

(but not the crystallographic conformation). 

Active compounds were retained only if they had Ki or Kd less than 10 µM, and molecular weight 

between 200 and 800 Da. In the cases where these criteria were met by multiple members of a chemical 

series (2D Fingerprint Tanimoto similarity > 0.7), only the most potent compound was retained. In order 
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to make use of compounds for which only IC50 values were reported (instead of Ki or Kd), these values 

were scaled by a factor of 0.5 so that they could be compared on equal footing with Ki or Kd values (173). 

Exemplar screening 

Starting from an exemplar, FastROCS (162, 163) was used to rapidly overlay each compound in 

the library onto the exemplar. To generate full receiver-operating characteristic curves, the top-scoring 

conformer overlay of each compound was then rescored (without optimization) using ROCS (163, 164). 

For the large-scale virtual screening application presented later, only the top 0.75% scoring compounds 

for a particular exemplar were rescored using ROCS: in a virtual screen, often one re-ranks only the top-

scoring compounds from the initial ranking. 

Using ROCS, we computed the Tversky score for each overlay: this asymmetric comparison 

evaluates the extent to which the ligand subsumes/matches the exemplar features (shape and hydrogen 

bond donors/acceptors) without penalizing the ligand for including “extra” features (for example, if the 

ligand volume extends outside that of the exemplar, or if the ligand includes additional hydrogen bond 

donors/acceptors not matched to any in the exemplar) (174). We note that Tversky scores depend on 

properties of the exemplar; for this reason, one cannot simply compare raw Tversky scores for ligands 

overlaid with different exemplars. When screening with multiple exemplars, therefore, we expressed each 

ligand overlay as a Z-score for the exemplar used (i.e. normalized to the mean and standard deviation of 

the scores from all compounds overlaid to this exemplar). Each compound was assigned a final score 

corresponding to the best Z-score drawn from any of the exemplars in the set. 
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3.4 Results 

Exemplars map the binding pocket of known ligands 

In this study, we use an “exemplar” to describe the shape and chemical composition of a protein 

surface pocket. The exemplar is a collection of atoms that captures the ideal shape and chemical 

properties that a ligand would exhibit if it were to perfectly complement the pocket: thus, we expect that 

exemplars may naturally serve as templates for pharmacophore screening. 

The exemplars we will use here employ the same three atom types defined in our original 

conception (161): an atom type to define locations at which hydrogen bond donors should be placed, an 

atom type to define locations at which hydrogen bond acceptors should be placed, and a non-polar atom 

type used to fill the remainder of the pocket volume. By construction, then, the exemplar maps out the 

shape of the pocket and also indicates the key locations for moieties that will participate in hydrogen 

bonding interactions. 

As a starting point, we used the crystal structure of Bcl-xL bound to ABT-737, a compound that 

inhibits binding of BH3 peptides at this site. In this protein-inhibitor complex, ABT-737 occupies a long, 

deep channel along the protein surface (Figure 2a). We removed the ligand from this structure, and used 

the protein structure to generate its corresponding exemplar; indeed, we find that the corresponding 

exemplar has similar size and shape as the inhibitor itself (Figure 2b). We reiterate that the exemplar is 

built from the protein structure alone, without direct knowledge of the ligand: here, the size and shape of 

the exemplar matches that of the ligand, because this ligand is a natural match for the size and shape of 

the protein surface pocket. We note that the exemplar includes both a hydrogen bond acceptor and a 

hydrogen bond donor in close proximity, in the region occupied by the inhibitor’s sulfonamide group; this 

arises from the fact that Bcl-xL includes a tyrosine hydroxyl group at this location on the protein surface, 

allowing complementary ligands to present either a donor or an acceptor. 
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To examine whether this exemplar indeed unambiguously encodes the location and orientation of 

this inhibitor, we built a series of 200 low-energy conformations of ABT-737, and “hid” the 

crystallographic conformation among these. We then overlaid each conformation with our exemplar, and 

evaluated the extent to which the ligand filled the exemplar volume and matched the locations of 

hydrogen bonding groups (see Computational Approach). The top-scoring model from this “pose 

prediction” experiment makes use of the crystallographic ligand conformation, and places the ligand in 

essentially the same position and orientation as in the crystal structure (Figure 2c). 

We turned next to the crystal structure of XIAP bound to a bicyclic peptidomimetic compound 

that disrupts binding of the Smac peptide (Figure 2d). We find that the exemplar built from this protein 

structure is much smaller (Figure 2e), consistent with the fact that the XIAP inhibitor is much smaller 

than ABT-737, and binds at a much shallower surface pocket. We further note that the exemplar is 

expected only to capture features that interact with the protein: thus, the exemplar excludes the solvent-

facing aromatic ring and carbonyl group found in this inhibitor. 

Once again we built a series of 200 low-energy conformations for this inhibitor, and included 

among these the crystallographic conformation. Upon overlaying each of these with the exemplar derived 

from the XIAP, we find that the top-scoring conformation does not precisely match the crystal structure 

(Figure 2f). The left side of the molecule includes two hydrogen bonds to the protein; the exemplar 

successfully includes these features, and indeed this part of the molecule is faithfully recapitulated in the 

predicted pose. The right side of the molecule includes a pair of aromatic rings, and one of these faces 

solvent. Here, the exemplar includes a secondary pocket (at the top left) that is not filled by the inhibitor. 

Because of this, the top-scoring pose instead uses an alternate ligand conformation that allows this 

secondary pocket to be accessed. The lack of agreement between the crystallographic pose and the 

predicted pose, then, derives not from how the overlaid structures are scored, but rather from the fact that 

the exemplar included features of the protein surface that are not used in binding this particular ligand. 
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Encouraged by these results, we next proceeded to explore the utility of this exemplar-based 

method for virtual screening. 

 

Figure 2: Defining exemplars. (A) Bcl-xL (grey surface) is shown in complex with small-

molecule inhibitor ABT-737 (spheres). (B) This conformation of Bcl-xL was used to construct an 

exemplar comprised of hydrogen bond donors (yellow), hydrogen bond acceptors (magenta), and 

non-polar atoms that fill the remainder of the pocket volume (cyan). The exemplar is in essence a map of 

the ligand that would perfectly complement the pocket. (C) Upon alignment to the exemplar, the 

predicted pose of ABT-737 (cyan) very closely matches the pose observed in the crystal structure (green) 

(ligand RMSD 0.93 Å). (D) XIAP (grey surface) is shown in complex with a small-molecule inhibitor 

(spheres). (E) This conformation of XIAP was used to construct an exemplar. (F) Upon alignment to the 

exemplar, the predicted pose of this inhibitor (cyan) recapitulates many interactions from the pose 

observed in the crystal structure (green), including specific hydrogen bonds (ligand RMSD 2.61 Å). 

Virtual screening using a ligand-bound protein structure 

The goal of a virtual screen is to distinguish the active compounds in a chemical library (true 

positives) from among the inactive compounds in the library. Previously we compiled a virtual screening 

benchmark for small-molecule inhibitors of Bcl-xL and XIAP (175); the benchmark evaluates the ability 

of various methods to distinguish known inhibitors of these protein interactions from “decoy” compounds 



 72 

that are presumed to be inactive. Compounds active against either of these proteins were drawn from the 

TIMBAL database (170, 171). To prevent bias from inclusion of many members of a chemical series, we 

removed any compound with 2D Fingerprint Tanimoto similarity (176) closer than 0.70 to any other 

compound in the dataset. This led to a total of 27 compounds active against Bcl-xL, and 14 compounds 

active against XIAP. To generate physicochemically-matched decoy compounds, we drew all compounds 

included in the TIMBAL database described as inhibitors of other protein-protein interactions. We 

removed all decoy compounds with 2D Fingerprint Tanimoto similarity closer than 0.70 to any active 

compound, or to any other decoy compound. This led to a total of 328 decoy compounds for Bcl-xL, and 

425 decoy compounds for XIAP. While the decoy compounds are not explicitly known to be inactive 

against these protein targets, we rely on their lack of similarity to known targets to minimize the 

likelihood of inadvertently including in the decoy set any compounds that are active. 

We started from the crystal structures of Bcl-xL and XIAP each bound to a known inhibitor; to 

avoid biasing our benchmark, we excluded this particular inhibitor from among the active compounds in 

our library. We then used the exemplars generated from these two protein structures (Figure 2) to overlay 

and rank each compound in the corresponding compound library: the compounds that most closely match 

the exemplar are inferred to be the active compounds in the set. We also used three other docking tools to 

rank these compounds: DARC (175), DOCK 6 (177, 178), and AutoDock4 (179). Parameters used to run 

each of these three programs are described fully in our previous work (175). Finally, in addition to these 

docking methods we used a ligand-based method, ROCS (149, 163, 167), to evaluate the three-

dimensional similarity of each compound to the conformation of the known inhibitor in the crystal 

structure. 

From the rank order of each compound, we generated Receiver Operator Characteristic (ROC) 

curves for each of these methods, for both Bcl-xL and for XIAP (Figure 3). For a given method, each 

point on the plot corresponds to a different ranking at which compounds are be considered active/inactive 

(i.e. what fraction of the library will be classified as active). For a given cutoff, the y-axis defines the 
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percentage of active compounds that have been (correctly) classified as active (true positives) and the 

x-axis defines the percentage of inactive compounds that have been (incorrectly) classified as active (false 

positives). For a purely random classifier, the percentage of both active and inactive compounds will rise 

at an equal rate (grey curve). 

We found that all five of these methods outperformed the random classifier, in both the Bcl-xL 

benchmark and the XIAP benchmark. The performance of ROCS in the XIAP benchmark was 

particularly impressive: we expect that this arises because many of the active compounds in the XIAP set 

are peptidomimetics, and thus can be recognized by virtue of the pattern of hydrogen bonds that is shared 

with the template ligand. Meanwhile, the performance of ROCS when applied to Bcl-xL is not quite as 

impressive, since this set of inhibitors uses a more diverse range of interactions. 

Overall, we find that the exemplar screening method performed at a similar level in these 

benchmarks as the three other receptor-based methods to which we compared it. 
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Figure 3: Exemplar screening using a ligand-bound protein structure. This receiver operating 

characteristic (ROC) plot compares the performance of exemplar screening to three structure-based 

docking methods (DARC, DOCK 6, and AutoDock4), along with a ligand-based method (ROCS). Data 

are presented on a semi-log plot, to emphasize “early” performance of each method; the grey curve 

indicates performance of a random predictor. This benchmark experiment involves distinguishing (A) 27 

compounds active against Bcl-xL from among 328 decoy compounds, and (B) 14 compounds active 

against XIAP from among 425 decoy compounds. In both cases, decoy compounds were drawn from the 

TIMBAL database (170, 171). 
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Virtual screening using a “pocket-optimized” unbound structure 

Though one was provided for each of the previous benchmarks, at the outset of many real virtual 

screening scenarios there is no available inhibitor-bound crystal structure from which to draw the protein 

conformation. While screening against an unbound conformation leads to diminished performance for 

most target classes (180), this is a particularly acute problem when seeking inhibitors of protein-protein 

interactions since these protein surfaces are particularly likely to require conformational changes (relative 

to the unbound protein) in order to bind the inhibitor (8). As noted earlier, we have developed a “pocket 

optimization” method that – starting from the unbound protein structure – uses biased sampling to 

efficiently explore low-energy conformations that contain surface pockets suitable for small molecule 

binding (76, 161). We therefore sought to extend this virtual screening benchmark to a regime in which 

no inhibitor-bound protein conformation is available, and one must instead screen using a “pocket-

optimized” conformation of the target protein. 

From “pocket optimization” simulations of Bcl-xL and XIAP, we therefore extracted the lowest-

energy pocket-containing conformations (832 conformations for Bcl-xL and 354 conformations for 

XIAP), and used these to carry out the same screening experiment described earlier. We omitted ROCS 

from this comparison: given that we approach this experiment with no presumed knowledge of any other 

inhibitors, one would not have a template for use with a ligand-based screening method. Among the four 

receptor-based methods, we find that both exemplar screening and DARC exhibit similar performance as 

in the previous experiment (Figure 4). In contrast, both DOCK 6 and AutoDock4 show dramatically 

diminished performance in this experiment. 
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Figure 4: Exemplar screening using a “pocket-optimized” unbound structure. This benchmark 

experiment entails discrimination of the same active versus “decoy” compounds as in Figure 3. This 

time, however, the protein conformation used for screening was taken from “pocket optimization” 

simulations. Data are again presented on a semi-log plot, to emphasize “early” performance of each 

method; the grey curve indicates performance of a random predictor. This benchmark experiment is again 

applied to (A) Bcl-xL and (B) XIAP. 

Previously, we found that “pocket-optimized” conformations often include small structural 

differences relative to the corresponding ligand-bound conformations, but nonetheless often capture 

features of the binding pocket with high fidelity (161): this, in turn, may explain the performance 

observed in this benchmark. At high resolution, the pocket-optimized conformations do not fit the active 
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compounds quite as well, because the detailed positioning of certain protein groups is not optimal since 

the simulations were performed without knowledge of any particular inhibitor: this presents a problem for 

methods such as DOCK 6 and AutoDock4, which evaluate the complementarity between individual 

intermolecular contacts. In contrast, the faithful recapitulation of the crude features of the binding pocket 

allows methods that focus instead on identifying ligands that match overall shape and chemical 

complementary of the pocket itself (DARC and exemplar screening) to perform just as well in this 

regime. 

Virtual screening using an ensemble of “pocket-optimized” unbound structures 

An important advantage of the exemplar screening method presented here is that the underlying 

ligand/exemplar overlays (using ROCS) prove much faster than any of the explicit docking approaches 

included in our study. In fact, OpenEye recently developed a newer implementation (“FastROCS”) that 

takes advantage of multiple CPU and GPU cores, and is even faster than ROCS (163, 181). Using this 

new implementation, we find that screening 6 million compounds against a single exemplar, depending 

on the number of hit compounds written to disk, can be completed in as few as 15 minutes on a single 16-

core, dual-GPU computer. 

Given the speed of this approach, it now becomes feasible to screen a large compound library 

against every exemplar derived from an ensemble of pocket-optimized protein conformations, not just the 

exemplar from the lowest-energy conformation. Nonetheless, for computational efficiency we instead 

elected to identify a representative subset of exemplars for screening. To this end we used the same 

overlay approach (in ROCS) to evaluate the pairwise similarity of the exemplars, and then used this 

measure as the basis for hierarchical clustering. For Bcl-xL, we used 10 distinct exemplar clusters, and for 

XIAP we used 6 distinct exemplar clusters. From each cluster we then extracted the exemplar from the 

lowest-energy conformation, and the exemplar corresponding to the cluster centroid. This led to a 

collection of 15 representative exemplars for Bcl-xL, and 9 representative exemplars for XIAP. 
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Figure 5: Exemplar screening using an ensemble of “pocket-optimized” unbound structures. 

Screens were carried out using the same benchmark sets as Figures 3 and 4, for both (A) Bcl-xL and (B) 

XIAP. Here we compare performance when screening using exemplars generated from the unbound 

protein structure, from a single pocket-optimized conformation, from an ensemble of pocket-optimized 

conformations, or from an inhibitor-bound protein structure. The grey curve indicates performance of a 

random predictor. 

We then used each of these exemplars to once again screen our benchmark libraries for Bcl-xL 

and XIAP. For a given exemplar, we computed the mean and standard deviation of the scores from all 

overlaid ligands, and used this to express the ligand/exemplar overlap as a Z-score. We then searched 

over all the exemplars to find the best Z-score for each compound, and used these as the basis for ranking 
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the compounds. Overall, we find that this “ensemble” exemplar approach yields similar performance in 

this experiment as using an exemplar from the unbound structure, or using an exemplar from the single 

lowest-energy pocket-optimized protein conformation (Figure 5). 

Ultra-high-throughput virtual screening using an ensemble of “pocket-optimized” unbound structures 

As noted above, a key advantage of the exemplar screening method is its speed. This is important, 

because it allows one to carry out screens using multiple receptor conformations, and/or screen against 

very large compound libraries. As a demonstration of this capability, we compiled from the ZINC 

database (182) a collection of ~8.33 million drug-like compounds to use as “decoys” for a large screening 

experiment. Once again, we hid among these decoy compounds either the 24 compounds active against 

Bcl-xL, or the 14 compounds active against XIAP. 

We screened the compound library using each of the 15 representative exemplars from pocket-

optimized conformations of Bcl-xL, or the 9 representative exemplars from pocket-optimized 

conformations of XIAP. The scale of this screening experiment would make it extremely time-consuming 

using any of the other three receptor-based (docking) methods included in our previous benchmark 

experiments. Using exemplar screening, however, screening more than 8 million compounds against each 

of these two protein targets – with multiple receptor conformations for each – required a wall time (total 

execution time) of only 7 hours on a single (dual GPU) computer. 

Results from this large-scale screen are compiled into Figure 6. In both cases, exemplar docking 

against an ensemble of protein conformations identifies active compounds far more effectively than a 

random predictor (Figure 6a), with the area under the curve of each ROC plot (AUC) at  0.793 and 0.848 

for Bcl-xL and XIAP, respectively. Screening against the Bcl-xL ensemble identified 50% of the 

(chemically distinct) active compounds within the top 1% of the library, while screening against the XIAP 

ensemble identified 29% of the active compounds within the top 1% of the library. The early enrichment 

– a key measure for virtual screening because only a small fraction of the total library is expected to 
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actually be tested experimentally – is also impressive: in both cases the top-ranking 0.01% of the library 

has more than 750-fold enrichment of active compounds relative to the complete library (Figure 6b). This 

exciting result suggests that – with very modest computational expense – much of this large screening 

database can be eliminated from further consideration, leaving a much smaller library that is considerably 

enriched with active compounds. Notably, performance in this screen is worse when the exemplar from 

the single lowest-energy pocket-containing conformation is utilized in this screen, instead of exemplars 

from a small ensemble of low-energy conformations (Figure 6a): this observation highlights the benefit 

of screening against multiple receptor conformations, which in turn is enabled by the very fast exemplar 

screening approach. 

Examination of the top-ranking complexes involving compounds known to be active reveal 

compelling binding modes for these compounds (Figure 6c), the structures of which have not (to date) 

been solved in complex with their protein partners. Meanwhile, the top-ranking complexes involving 

decoy compounds also exhibit compelling binding modes (Figure 6d); as expected from their match to 

the underlying exemplars, each of these combine exquisite shape complementarity with multiple 

intermolecular hydrogen bonds. It is useful to recall that the decoy compounds in this experiment are 

merely presumed inactive, and have not been explicitly tested against Bcl-xL or XIAP: it is quite possible 

that the top-ranking compounds from this experiment may indeed exhibit activity their respective protein 

targets. 
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Figure 6: Ultra-high-throughput screening using an ensemble of “pocket-optimized” unbound 

structures. The same 27 compounds active against Bcl-xL and 14 compounds active against XIAP were 

now hidden among a library of 8.33 million drug-like compounds. This collection was screened using 

exemplars generated from an ensemble of pocket-optimized conformations. (A) This receiver operating 

characteristic (ROC) plot compares the performance of exemplar screening when using an ensemble of 

“pocket optimized” conformations (red) or the single lowest energy, “pocket optimized” conformation 

(orange). The grey curve indicates performance of a random predictor. The BEDROC metric with 

α=20 (183), a key measure designed specifically to assess performance for “early recognition”, is 0.559 

for Bcl-xL when screening against an ensemble of conformations, but drops to 0.249 when screening 

against the single lowest-energy conformation. Similarly for XIAP, the BEDROC value drops from 0.419 

to 0.058 when screening against a single conformation instead of an ensemble. (B) The enrichment factor 

indicates the extent to which active compounds are over-represented in “sub-libraries” generated by 

extracting the top-scoring compounds from the original compound library, when screening against an 

ensemble of “pocket optimized” conformations (red). Because this value corresponds to enrichment over 

the fraction of active compounds in the original compound library, a random predictor would have a value 

of 1 for all “sub-libraries”. (C) Representative models of top-scoring complexes involving compounds 

known to be active against each of these protein targets, for which no structural information is currently 

available. (D) Representative models of top-scoring complexes involving “decoy” (presumed inactive) 

compounds. To date, these compounds have not been explicitly tested for activity against the 

corresponding protein targets. 

Ultra-high-throughput virtual screening for a variety of protein-protein interaction targets 

Previously we compiled a set of 18 complexes, each corresponding to a crystal structure of a 

small-molecule inhibitor bound at a protein interaction site (184); in 11 of these cases the binding site is 

only composed of the biological unit (i.e. the stoichiometry of binding is clearly 1:1), and a structure of 

the unbound protein is also available. None of the proteins in the set are homologs of one another; for 
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proteins in which more than one inhibitor-bound structure was available, we retained only the structure 

involving the most potent inhibitor. These 11 complexes comprise the majority of available non-

redundant structures of small-molecule inhibitors of protein-protein inhibitors, and are presented in 

Table S1. For each of the inhibitor-bound structures, we removed the ligand and generated an exemplar 

from the inhibitor-bound conformation. For each of the unbound protein structures, we built an ensemble 

of pocket-optimized conformations; upon clustering, we retained between 9 and 27 distinct conformations 

for each (depending on the number of high-population clusters that were identified), and used these 

exemplars for our subsequent screening benchmark. As described above, we collected a non-redundant 

and diverse set of inhibitors for each target protein, drawing from the TIMBAL (170, 171) and CHEMBL 

(172) databases in addition to the PDB. These known inhibitors were added to the collection of ~8.33 

million drug-like compounds from the ZINC database (182), which served as “decoy” compounds in this 

experiment. 

Exemplar screens were carried out using either a crystallographic inhibitor-bound conformation, 

the single lowest-energy pocket-optimized conformation, or the ensemble of distinct pocket-optimized 

conformations after clustering. The rank of each active compound, relative to the set of decoy 

compounds, was then determined for each case: a summary of these data are presented in Table 1, 

Table S2, and Table S3. 

Focusing first on the results from screening against an ensemble of pocket-optimized 

conformations (Table 1), the enrichment of active compounds is evident. Remarkably, for 4 of the 11 

protein target, a known active compound is ranked in the top 10 (of more than 8 million compounds). 

Further, known active compounds are included in the top 1% of scored compounds for 9 of the 11 protein 

targets. It is once again worth noting that not all of the decoy compounds that score more favorably than 

these active compounds are necessarily inactive: they are simply presumed inactive for the purposes of 

this experiment, since they have typically not yet been tested for activity against these protein targets. 



 84 

Protein name 
Best rank of 

known active 

Number of known 

actives in top 100 

Fraction of known 

actives in top 1% 

HIV-1 integrase (87) 2 4 0.16 

Mdm2 (34) 175 0 0.24 

Bcl-xL (25) 10 1 0.08 

BRD4 (20) 208209 0 0.00 

XIAP-BIR3 (12) 45043 0 0.08 

Grb2-SH2 (9) 3 3 0.78 

Interleukin-2 (6) 1573 0 0.17 

HPV E2 (4) 20111 0 0.50 

Menin (3) 1 1 0.33 

WDR5 (3) 613564 0 0.00 

VHL (1) 25376 0 1.00 

 

Table 1: Ultra-high-throughput virtual screening for a variety of protein-protein interaction 

targets, using an ensemble of pocket-optimized conformations. A collection of diverse known 

inhibitors for each protein target were hidden amongst a set of 8.33 million drug-like “decoy” compounds 

(the number of active compounds for each protein target is in parentheses). The compound library was 

then screened using multiple exemplars, corresponding to an ensemble of pocket-optimization simulations 

started from the unbound protein structure in each case. Corresponding data are also presented for screens 

carried out using an inhibitor-bound protein structure (Table S2), or using only the single top-scoring 

pocket-optimized conformation (Table S3). 
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It must also be pointed out that screening against the ensemble of conformations was necessary, 

in most cases, to achieve this level of performance. While screening against an inhibitor-bound 

conformation did yield a top-ranked active compound in 3 cases, this approach did not identify a known 

active compound in the top 1% for any of the other 8 protein targets (Table S2). Meanwhile, the use of a 

single pocket-optimized conformation found known active compounds in the top 1% for 4 of the 11 

protein targets, but these were typically not ranked as highly as those obtained by screening using the 

other approaches (Table S3). 

3.5 Discussion 

Identifying small-molecule inhibitors of protein-protein interactions remains a challenging task. 

Because these protein surfaces are typically not evolved to bind small molecules, they often lack the deep 

binding pockets to bind small molecules with high affinity (8, 185). In the structurally-characterized 

examples to date, some small-molecule inhibitors are found to bind using pre-existing pockets whereas 

others take advantage of transient pockets that are not observed in crystal structures of the unbound 

protein. This presents a natural problem for structure-based virtual screening approaches, since they 

require knowledge of the inhibitor-bound protein conformation (or at least something close to it): at 

protein interaction sites the unbound protein conformation may not bear sufficient resemblance to the 

inhibitor-bound conformation – in terms of available surface pockets – to allow successful virtual 

screening. Ligand-based methods for virtual screening are even less applicable, if very few known 

inhibitors are available. 

In this study, we use biased simulations to predict low-energy pocket-containing conformations, 

starting from the unbound protein structures. We then use “exemplars” derived from these conformations 

as templates for rapidly screening very large compound libraries. By targeting protein conformations that 

would not otherwise be available without prior ligand-bound crystal structures, we enable discovery of 

potential inhibitors that would not be identified using other methodologies. 
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Comparison to traditional docking 

For small-molecule inhibitors of protein interactions, the exemplar-based screening approach 

presented here offers two primary advantages over traditional, docking-based methods. The first 

advantage is accuracy: this is a notably challenging regime for traditional docking methods (185). The 

screening benchmark we use in this study is intentionally difficult, since the TIMBAL dataset is 

composed entirely of compounds that inhibit various protein-protein interactions and is thus devoid of 

decoy compounds that can be easily ruled out as unsuitable. When screening against a ligand-bound 

protein structure we find that exemplar screening performed with similar accuracy as DOCK 6 and 

AutoDock4. However, screening against a “pocket optimized” conformation revealed the sensitivity of 

these methods to details of the protein structure, which in turn led to diminished performance. In contrast 

to this, overlaying ligands with exemplars strongly favors matching of the overall shape and chemical 

features, which in turn provides robustness to slight variations in the protein structure. 

The second advantage, more dramatic than the first, is the fact that the exemplar-based screening 

approach is orders of magnitude faster than docking. Because large-scale virtual screens that involve 

docking are often constrained by computational requirements, compound libraries are typically filtered to 

remove redundancy while at the same time maximizing the diversity within the dataset (186, 187). 

However, small changes to a compound can have profound effects on binding affinity (188, 189); as such, 

screening a complete library may yield hits from chemical series that may otherwise have been excluded 

based on the score of a single representative member included in the non-redundant set. 

The speed advantage of exemplar-based screening approach relative to traditional docking 

approaches, moreover, also enables screening against multiple receptor conformations; this would not 

necessarily be feasible for a large compound library using traditional docking, given the computational 

expense of screening against even a single receptor conformation. 
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Comparison to sidechain mimicry 

An emerging approach for designing of inhibitors of protein-protein interactions without docking 

entails mimicry of certain functional groups presented by the partner protein (or peptide). This approach 

has recently been demonstrated by Koes and colleagues: their approach identifies “anchor residues” 

important for a protein-protein interaction, then combines these into pharmacophores to search for 

compounds that mimic the three-dimensional geometry of these residues’ sidechains (30). Given the over-

abundance of certain sidechains as “anchor residues” (phenylalanine, tyrosine, tryptophan, valine, and 

leucine), this approach lends itself naturally to construction of custom screening libraries (accessible 

through multi-component reaction chemistry) containing compounds mimicking these sidechains (31). 

Others have also used similar methods to extract specific sidechains – or smaller functional groups – from 

protein complexes, and defined pharmacophores based on these as templates for virtual screening (32-37). 

Because their overlay with the protein’s natural binding partner is evident, the use of mimicry 

produces highly intuitive hit compounds. An important limitation, however, is that these hits represent a 

very limited subset of potentially active compounds. The interactions of the protein partner may not be 

optimal (given constraints of the protein geometry and/or lack of evolutionary pressure for tight binding), 

and this approach cannot be extended to conformations of the target protein other than that observed in 

the protein-protein complex. As noted earlier, many high affinity inhibitors acting at protein interaction 

sites take advantage of precisely these alternate conformations, because they contain surface pockets more 

suitable for small-molecule binding (8). 

The exemplar-based screening we describe here is notably different from these approaches, in 

that it does not rely on mimicry of the protein partner, but instead builds a pharmacophore entirely from 

the structure of the target protein. Accordingly, it is not subject to the limitations described above: the 

resulting hits can fill the exemplar without carrying forward artifacts from the protein partner, and can be 

applied equally well to other conformations of the target protein beyond simply the one used for protein-

binding. 
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Comparison to other receptor-based pharmacophore methods 

In the absence of small-molecule inhibitors (or natural substrates), others have also used features 

of the receptor to build pharmacophores (91, 92, 135, 136, 190-193); like these, the “exemplars” we 

describe here are essentially receptor-based pharmacophores. In general there are two types of approaches 

for building receptor-based pharmacophores: either by using the geometry of the receptor to generate the 

pharmacophore directly (135, 136) (as we have done in this study), or else by docking a series of “probe” 

compounds against the receptor to identify potential interaction sites at which these probes accumulate 

(91, 92, 190-193). For the most part, however, the use of receptor-based pharmacophores has thus far 

been confined to “traditional” drug target classes, and not extended to protein interaction sites. 

With the exception of the studies presented here, there has been – to our knowledge – only one 

other application of receptor-based pharmacophores for targeting a protein interaction site. In order to 

identify compounds inhibiting assembly of the heterodimeric HIV reverse transcriptase active complex, 

Grohmann and colleagues developed such an approach (193). To account for receptor flexibility this 

group carried out a short molecular dynamics simulation, selected six snapshots, and then docked probe 

molecules against these conformations in order to identify potential interactions; this led to three unique 

pharmacophores. They then used these pharmacophores to carry out a virtual screen, and used the 

compounds that overlaid with their pharmacophores as a starting point for docking. The top-scoring 

compounds in these docking studies were advanced into a suite of biochemical assays, in which one of 

these compounds was found to exhibit (weak) activity (193). 

The computational pipeline we describe here (Figure 1) differs from that of Grohmann and 

colleagues in several key respects. First, applying pocket optimization to generate a collection of receptor 

structures provides an efficient and effective means for sampling diverse low-energy conformations (76, 

161); in contrast, others have shown through molecular dynamics simulations of the same protein 

interaction sites that up to half of the corresponding pockets – which may be required for small-molecule 

binding – are very seldom sampled through (unbiased) molecular dynamics simulations (40). The pocket 
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optimization simulations have the additional advantage of requiring relatively modest computational 

resources, and they scale in a trivially parallel manner to yield a linear speedup with the number of 

available processors. 

The second important difference results from the approach to building and applying the 

pharmacophore model. The computational pipeline described here does not include docking at any stage: 

the pharmacophore is built solely from the geometry of the receptor (without docking probes), and then 

models of the bound complexes are generated directly from the overlays to the pharmacophore (without 

docking the hit compounds). By avoiding explicitly protein-ligand docking at every stage, we enable 

rapid screening of large ensembles of receptor conformations, against very large compound libraries. 

The approach of Grohmann and colleagues was immediately applied to HIV reverse 

transcriptase (193), without examining the performance of this approach through any benchmarking 

studies. Moving forward, it will be interesting and exciting to parse the relative merits of each step in 

these computational pipelines, and carefully determine the most effective method for identifying 

compounds that are potent and selective inhibitors of many other targets. 

Ensemble docking 

Already others have noted that docking against multiple receptor conformations (“ensemble 

docking”) can enhance performance relative to docking against a single static conformation (152-160). 

Indeed, our “ensemble docking” benchmark confirmed that using a collection of distinct conformations 

generated from an unbound structure, we obtained similar performance to that observed when using a 

protein structure solved in complex with an inhibitor (Figure 5). Further, when performing virtual screens 

across a diverse series of targets, screening against an ensemble of structures outperformed the analogous 

screens against an individual protein conformation, allowing discovery of more diverse active compounds 

(Figure 6, Table 1, Tables S2 and S3). 
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Prior studies have sought to incorporate multiple conformations when using sidechain mimicry 

(34-36) or pharmacophores built from docking probe compounds (191-193). Typically, these approaches 

then consolidate pharmacophores into a small number of consensus templates for virtual screening. A 

potential risk inherent to this step is that the average location of a feature across several conformations 

may correspond to a position that is not explicitly compatible with any of the individual conformations 

that contribute to this average. By instead creating and screening with multiple exemplars explicitly, we 

aim to identify complexes in which the ligand is truly optimal for a particular protein structure – rather 

than for an averaged protein conformation that may not be reflective of the individual members of the 

underlying ensemble. 

Advantages of pocket optimization 

These studies also provide another demonstration of the utility of pocket optimization to guide 

ligand discovery. Previously we showed that pocket optimization can be used to evaluate the druggability 

of a given protein surface though its propensity for forming pockets (76). We also showed that the shapes 

of these pockets dictate the space of “allowed” ligands that can interact with a given surface, and thus can 

dictate inhibitor selectivity (161). This is further underscored through the results presented here, in which 

we demonstrate directly that features of these pockets can be used to identify complementary ligands, 

even in the absence of a ligand-bound structure to use as a starting point. 

Putting these pieces together, we envision a unified pipeline for ligand discovery. Starting from 

the unbound protein structure, one could use pocket optimization to gauge druggability of the target 

surface. To ensure selectivity of the resulting inhibitors, one would then select only those pockets that are 

sampled by the desired protein target(s), and not by other members of this protein family. Exemplars built 

from these pockets would serve as templates for virtual screening, to identify inhibitors that recognize 

pockets unique to the protein target(s). Collectively, this approach offers the prospect of not only 

identifying compounds that bind to the protein target, but that do so with the desired selectivity. 
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Finally, we note that this approach may also enable “cryptic” allosteric sites to be addressed 

through novel ligands. In the absence of a binding partner at this site mimicry would not be possible, and 

the lack of a pre-formed binding pocket would render traditional docking unsuitable. In light of the 

multitude of such sites that potentially exist (194), the exemplar screening method presented here may 

enable identification of new allosteric inhibitors that would be exceedingly challenging to discover using 

other existing methods. 
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CONCLUSIONS 

Protein-protein interfaces continue to be a challenging class of drug targets. Not having been 

evolved to bind small molecules, they often lack the deep binding pockets needed to bind small molecules 

with high affinity (8, 185). Inspired by examples such as interleukin-2, where the ligand occupies a 

hydrophobic groove that is absent in the unbound and protein bound conformations (75), we sought to 

enable the task of computationally identifying inhibitors of protein-protein interactions by identifying low 

energy conformations that contain surface pockets that are more suitable for binding small molecules. 

To this end we introduced a grid-based “pocket optimization” protocol to sample pocket 

containing conformations. Pocket optimization quickly creates ensembles of conformations that contain 

larger pockets than unbiased simulations, while having energies that overlap with those unbiased 

simulations, as shown in both Chapters 1 and 2. Using the resulting ensembles of “pocket optimized” 

conformations, we sought to address several key issues regarding targeting protein-protein interfaces: 

whether a particular protein interface is druggable, predicting the selectivity of a compound across a 

protein family, and identifyingof novel inhibitors of protein-protein interactions. 

Druggability of protein-protein interaction sites 

In Chapter 1 we implemented and improved upon the LIGSITECS pocket detection algorithm (50) 

to discriminate between pockets observed in unbound conformations and pockets observed in ligand 

bound conformations at protein-protein interaction sites. With this pocket detection algorithm in place, we 

introduced the “pocket optimization” protocol. Using the change in pocket volume at a specified location 

on the protein surface as a proxy for the binding free energy of some (unspecified) small molecule partner 

at that location, we sample low energy, pocket-containing conformations. 

Having compiled a set of seven protein-protein interaction sites with structures solved for 

unbound, small-molecule bound, and protein bound conformations, we sought to identify what makes 
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those surfaces druggable. Applying the pocket optimization protocol to target locations at the druggable 

interfaces of protein-protein interactions as well as random locations on the protein surfaces, we observed 

that pockets could only form at the druggable interfaces. Indeed, the only way to sample pockets away 

from the druggable interfaces was through over-weighting the biasing potential, and thus sampling non-

physical conformations. That led us to the conclusion that the lack of a surface pocket, and not the 

chemical composition, is what causes certain protein surface sites to be undruggable. 

In the set above, we noted that some pockets are large and pre-formed (HPV E2, FKBP12, and 

ZipA) with sidechain reorganization driving formation of the small molecule binding pocket. However, 

other cases (XIAP, MDM2, Bcl-XL, and IL-2) lack a pre-formed pocket, and formation of the small-

molecule binding pocket requires concerted motions that couple backbone conformational changes to 

sidechain reorganization. Looking at the ensemble of pocket-optimized conformations versus the 

unbiased ensemble, we observed that, for both cases above, the pocket optimized ensemble sampled more 

conformations closer in interface RMSD to the known small-molecule bound conformations.  

This observation suggests that intrinsic structural and dynamic features of the protein encode the 

low-resolution inhibitor shapes found in the low-energy ensemble that protein may sample. As one of 

these preferred shapes is displayed, a complementary small-molecule ligand may be accommodated, 

followed by a smaller inducement of conformational changes to match the high-resolution steric and 

chemical details of the ligand. In such a model, the low resolution shape of the pocket may give insight 

into the low resolution shapes of complementary ligands.  

Selectivity of protein-protein inhibitors 

Selectivity of an inhibitor towards its target(s) is an important property that is optimized through 

the drug discovery process. When a small molecule has unintended interactions with unrelated proteins or 

family members of the target protein, there arises the potential for adverse effects (toxicity) (17). We 
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drew inspiration from ABT-263 (navitoclax), a Bcl-2 inhibitor whose effective dose was limited due to 

toxicity (thrombocytopenia) from its interaction with Bcl-xL (18, 19), to try to predict these potential off-

target interactions between closely related family members.  

Drawing from our conclusions from Chapter 1 that low-resolution inhibitor shapes are encoded 

on the protein surface and sampled via low-energy fluctuations, we sought to address selectivity by the 

presence or absence of the low resolution shape in the ensemble of low-energy, pocket containing 

conformations. We introduced the concept of “exemplars”: non-physical “molecules” that define the 

shape and chemical features of a pocket. We found that comparing the shape and chemical overlap of 

exemplars derived from small-molecule bound conformations could be used as a proxy to comparing the 

3-dimensional ligand conformations themselves, thus allowing protein-sequence independent comparison 

of pocket shapes. 

Because of its clinical significance, we chose the Bcl-2 family as our model system. Using the 

pocket optimization protocol described in Chapter 1, we generated ensembles of pocket optimized 

conformations of all Bcl-2 family members with available unbound structures. From that ensemble, we 

created a set of exemplars to represent the binding pocket from each conformation. We observed that the 

known small-molecule binding pockets were spanned by the pocket optimized ensemble, adding further 

evidence towards the conformation selection model described in Chapter 1. Indeed, the presence or 

absence of a known binding site in a protein’s ensemble was shown to be an excellent predictor for 

activity/inactivity.  

Extending this analysis to all Bcl-2 family members, we observed that certain shapes are 

available to all family members. An inhibitor matching such shapes would be expected to show broad 

specificity across the family. Indeed, most known inhibitors lay in regions of “pocket space” sampled by 

more than one family member and have been found to be active against more than one family member. 

However, we also observed that many Bcl-2 family members sampled pockets that were not accessible to 

the other family members. Such “distinct” pockets offer a new strategy for drug design: building 
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selectivity into the low resolution details of the chemical scaffold, to more robustly maintain the desired 

selectivity during medicinal chemistry optimization of bioavailability, pharmacokinetics and 

pharmacology. 

Discovery of novel small-molecule inhibitors 

As mentioned above, some small-molecule inhibitors bind pre-existing pockets, while others bind 

transient pockets that are not observed in the absence of the ligand. This poses a problem for traditional 

structure-based screening approaches, as they require a conformation bearing resemblance to an inhibitor-

bound protein conformation. Without suitable pockets on the protein surface, structure-based virtual 

screening has a much lower chance of success. In the absence of known inhibitors, of course, ligand-

based screening methods are even less useful.  

To address these challenges, we sought to screen against members of the ensemble of pocket-

containing conformations. By using the exemplars from these conformations as a template for screening, 

we used GPU computing to rapidly compare multiple conformations against very large compounds 

libraries. Targeting previously inaccessible conformations may allow discovery of inhibitors that would 

otherwise not be identified by other methodologies. 

This exemplar-based approach has two advantages over traditional, docking-based approaches. 

The first advantage is accuracy. When screening against the TIMBAL dataset composed of various 

inhibitors of protein interactions, a difficult dataset devoid of decoy compounds easily ruled out, we 

observed that exemplar screening performed with similar accuracy to DOCK 6 and AutoDock4 when 

screening against a known inhibitor bound structure. However, those docking approaches suffered from 

diminished performance when docking to a low energy, pocket optimized conformation that started from 

an unbound structure. In contrast, exemplar screening was robust to slight variations in the protein 

structure, by matching the overall shape and chemical features. 
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The second advantage over docking-based approaches is speed — exemplar screening is several 

orders of magnitude faster than docking. In order to accommodate computational limitations, compound 

libraries are typically filtered to remove redundancy while maximizing diversity, to use in large-scale 

virtual screens that involve docking (186, 187). However, profound effects on binding affinity have been 

observed from small changes to a compound (188, 189). It is not unreasonable to conclude that screening 

a complete library can identify hits that may otherwise be excluded based on the score of a single 

representative member of the chemical series in a non-redundant set.   

Because of the fast speed of the exemplar screen, it is possible to screen more than one receptor 

conformation.  It has previously been observed that performance can be enhanced by docking against 

multiple receptor conformations (“ensemble docking”) as opposed to docking against a single static 

conformation (152-160). This observation was, indeed, confirmed by our ensemble docking benchmark. 

When screening against an ensemble of conformations generated using pocket optimization starting with 

an unbound structure, in the absence of any information of a ligand, we obtained similar performance to a 

screen that used a ligand-bound protein structure. This exciting observation lends evidence that an 

exemplar screen can be used to find novel inhibitors truly de novo. 

Future work 

There are several different ways in which this research can be expanded upon in the future. First, 

the exemplar screening protocol can be combined with the selectivity analysis to screen an ensemble of 

“unique” conformations for the de novo design of selective inhibitors. Indeed, the results of Chapter 2 

showed that there are protein-exclusive pocket shapes within the low energy ensemble of pocket-

containing conformations. The speed of exemplar screening enables its use with very large compound 

libraries, increasing the chances of finding an inhibitor to fit a specific pocket shape. 
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Second, pocket optimization could be performed at a known allosteric site to sample the shapes 

that surface pockets may adopt at a known allosteric site. Because exemplar screening is not tied to a 

known ligand or natural protein partner, this screening methodology might then be applied to identify 

novel allosteric inhibitors. Similarly, this approach can be applied at other druggable sites on the protein 

surface to explore variations in pocket shapes to identify novel small molecule binders. 

Next, because many protein-protein interactions are cancer targets, drug resistance inevitably 

becomes a concern. Certain mutations can directly change the shape of the binding site (195) while others 

can shift the population of pocket shapes within the ensemble (196), decreasing the binding affinity and, 

hence, the potency of a small molecule. For a given protein target, ensembles can be generated for the 

commonly observed mutants in addition to the wild type protein. Performing a similar selectivity analysis 

could be used to identify likely conformations that may lead to resistance mutations, and identification of 

new compounds that do not allow for resistance. Likewise, selectivity analysis between wild type and 

mutation states could be used to identify pocket shapes not sampled by the wild type protein, to better 

target diseased states. 

Finally, this work can be used to enhance the RNA hotspot mimicry protocol introduced by Ragul 

Gowthaman and Yan Xia (197). In RNA hotspot mimicry, the rings from the base pairs and nearby 

hydrogen bonds are used as a pharmacophore to screen against large databases, much like exemplars. 

First, exemplars can be used during the hotspot pharmacophore generation to enrich the set of hydrogen 

bond donors and acceptors to take advantage of donors and acceptors on the protein surface that a small 

molecule may interact with. Increasing the number of hydrogen bonds interactions that a ligand makes 

with the receptor will increase its binding affinity. Second, RNA hotspot mimicry was used with a single, 

static structure. When NMR models of protein-RNA interactions exist, then a screen can be performed on 

the entire NMR ensemble. Indeed, this can be worked into the exemplar screening pipeline to potentially 

identify more potent compounds that would otherwise have been missed. Finally, the concept of assessing 

selectivity using ensembles can be expanded to the protein-RNA model by modeling the fluctuations that 
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may be overserved with a protein-RNA complex. Identifying other, low-energy RNA-bound states that 

are not observed by x-ray crystallography in other complexres could be used to gain more confidence in 

the selectivity of a given RNA inhibitor, and also help identify unique pharmacophores from an 

ensembles.  
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APPENDIX A: Supporting Informations 

 

A.1 Supporting Information for Chapter 2 

A1.1 Supplementary Methods 

Implementation in Rosetta 

Computational methods are implemented in the Rosetta software suite (56). Calculations were 

carried out using svn revision 48537 of the developer trunk source code. Rosetta is freely available for 

academic use (www.rosettacommons.org), with the new features described here included in the 3.5 

release. 

Identifying Pockets on Protein Surfaces 

A three-dimensional grid of size 20 Å x 20 Å x 20 Å and grid spacing 0.5 Å is centered at the 

center of mass of the “target” residue (a residue at the center of the known protein interaction site). Grid 

points occluded by the protein are identified using the center of mass and van der Waals radius of each 

heavy (non-hydrogen) atom in the protein. The protein surface is then mapped using an expanded radius 

that includes a 1.0 Å buffer region, and surface points in direct contact with the target residue are marked 

as such. Grid points not occluded by the protein (including “surface” points) are labeled “solvent”. 

For each “surface” point on the grid, a ray is traced in each direction of the six principle axes and 

four diagonals (corresponding to half the faces and half the corners of a cube centered at this grid point). 

Solvent points are marked as “pocket” when a ray contains a surface point followed by at least 3 Å, but 

no more than 12 Å, of consecutive solvent points followed by another surface point (Figure S1). 
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Though appropriately identifying known inhibitor binding sites, this algorithm proved susceptible 

to defining certain classes of spurious pockets not suitable for interacting with small-molecules. The most 

common were surface (saddle-shaped) “channels,” in which the pocket is bounded on only two sides. To 

eliminate these, our algorithm carries out a second search along the same 10 directions. Any grid points 

marked as “pocket” that are bounded on both sides by only solvent are reverted to solvent themselves 

(Figure S1). 

Adjacent grid points defined as “pocket” are used to determine the volume of the largest 

contiguous single pocket in contact with the “target” residue. The pocket volume is taken to be the 

number of pocket points that are not within 2.5 Å of a solvent grid point, multiplied by 0.125 Å3 (the 

volume associated with each point based on the 0.5 Å grid spacing). To eliminate effects of the precise 

grid orientation with respect to the protein, the grid is randomly rotated and the pocket identification is 

repeated. The final pocket volume is taken to be the pocket volume averaged over 100 rotations of the 

grid. 

The Rosetta command line used to determine the pocket volume as described above is as follows 

(for target residue number 108): 

pocket_measure.linuxgccrelease -s input_pdb -num_angles 100 -pocket_max_spacing 12 -pocket_psp 

false -pocket_sps -central_relax_pdb_num 108 

Selection of random surface residues 

Random surfaces were selected using the following criterion: secondary structure in the unbound 

structure matches those of the target residues, the residue must be at least 12 Å from the protein 

interaction site, and the residue must be at least 12 Å from all other residues selected so far. The selection 

process was carried out iteratively until no additional residues met these criteria. Only those with pocket 

size (evaluated by Q-SiteFinder (41)) matching the protein interaction site (Figure S3) were included in 

Figures 2 and 3). 
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Simulation protocol 

Simulations were carried out using the now-default “fast-relax” variation of the relax protocol 

(71) in Rosetta, with an additional biasing term proportional to the volume of the target pocket (in Å3) 

included in the standard Rosetta energy function. The energetic contribution of this term was capped 

when the pocket volume reached 300 Å3. In order to reduce simulation time, we computed pocket volume 

using only two random grid orientations (as opposed to averaging over 100 rotations of the grid as 

above). The fast-relax protocol used in these studies was comprised of five cycles (Monte Carlo steps) per 

trajectory, where each cycle entailed repacking of the side chains with the repulsive part of the van der 

Waals term incrementally ramped up in weight, followed by a gradient-based energy minimization. The 

last of these, the gradient-based energy minimization, formally requires derivatives of the pocket volume 

with respect to the protein atomic coordinates that are not solvable analytically. For this reason we set the 

derivatives of the “pocket” contribution to zero, meaning that this minimization step is carried out without 

regard to the pocket size. Despite this, application of the Metropolis criterion using energies that include 

this “pocket” contribution nonetheless serves to bias the resulting trajectory towards pocket-containing 

conformations. 

The Rosetta command line to carry out the unbiased simulation described above is as follows: 

relax.linuxgccrelease -relax:fast -s input.pdb -nstruct 1000 

The equivalent biased simulations were carried out by adding the command-line flags: 

-pocket_zero_derivatives -pocket_max_spacing 12 -pocket_psp false -pocket_sps -pocket_num_angles 

2 -score:weights score12 -score:patch pocket.wts.patch -cst_fa_file constraints.txt 

The pocket.wts.patch file contains the single line “pocket_constraint = 1.0” and the constraints.txt 

file contains a single line of the form “pocket_weight target_residue” where the pocket weight has units 

REU per Å3 and target_residue can have formats such as 108 or A:108. 
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Unbiased energetic evaluation of conformations 

The pocket-opened structures were minimized with Rosetta (56) using the standard Rosetta 

energy function to remove any clashes, and the final (unbiased) energy was reported again using the 

standard energy function. 

This minimization step was carried out using the Rosetta command line: 

minimize.linuxgccrelease -in:file:fullatom -s input.pdb 

iRMSD calculations 

Interface residues were defined as residues that have either an attractive or repulsive van der 

Waals (as implemented in Rosetta) interaction with the inhibitor of absolute magnitude greater than 0.01 

REUs. All protein C atoms were used for alignment, then iRMSD was computed over all non-hydrogen 

atoms of the interface residues. 

PDB structures used in calculations 

Results were described for seven proteins comprising our test set: Bcl-XL, IL-2, FKBP12, HPV 

E2, ZipA, MDM2, and the BIR3 domain of XIAP. 

All unbound calculations (and starting points for simulations) used structures with the following 

PDB IDs: 1R2D (Bcl-XL), 1M47 (IL-2), 2PPN (FKBP12), 1R6K (HPV E2), 1F46 (ZipA), 1Z1M 

(MDM2), and 1F9X (BIR3 domain of XIAP). For NMR structures (1Z1M and 1F9X), we used the first 

model in the NMR ensemble as a starting point. 

The pocket volumes shown in Figure 1B were calculated from bound structures with the 

following PDB IDs: 2YXJ (Bcl-XL), 1M48 (IL-2), 1BKF (FKBP12), 1R6N (HPV E2), 1S1J (ZipA), 

1RV1 (MDM2), 2JK7 (BIR3 domain of XIAP). 

The iRMSD calculations to the bound conformations in Figure 5 used the following bound 

structures with PDB IDs.  Bcl-XL: 1YSG, 1YSI, 1YSN, 2O22, 2O2M, 2O2N, and 2YXJ. IL-2: 1M48, 

1M49, 1M4A, 1M4B, 1PW6, 1PY2, and 1QVN. FKBP12: 1A7X, 1BKF, 1BL4, 1F40, 1FKB, 1FKD, 
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1FKF, 1FKG, 1FKH, 1FKI, 1FKJ, 1J4H, 1J4I, 1J4R, 1QPF, 1QPL, 2DG3, 2DG4, 2DG9, and 2FKE. 

HPV E2: 1R6N.  ZipA: 1S1J, 1S1S, 1Y2F, and 1Y2G. MDM2: 1RV1, 1T4E, and 1TTV. BIR3 domain of 

XIAP: 1TFQ, 1TFT, 2JK7, 2OPY, 3CLX, 3CM2, 3CM7, and 3EYL. 

Calculations described in Figure 6 were started from the unbound survivin structure, PDB ID 

1E31. 

 

Description of pocket-opened conformations 

The pocket-opening of Bcl-XL is described in the main text. 

IL-2 (Figure S7A) is similar to Bcl-xL in that a large clash is found when superimposing the 

ligand onto the unbound structure.  Several of the helical regions align well, but there are differences in 

the alignment of the helix located behind the left side of the small molecule. This allows a side chain to 

move and resolve the clash while at the same time allowing narrowing the left side of the pocket, 

allowing more interaction with the inhibitor. 

FKBP12 (Figure S7B), HPV E2 Figure S7C), and ZipA (Figure S7D) are each cases where the 

pockets are largely pre-formed. The backbones of the bound, unbound, and pocket-opened structure of 

FKBP12 all are in very close alignment with the exception of some movement of a loop region to make a 

more favorable interaction with the ligand in the bound structure. This movement is partially recapitulated 

in the opened structure.  Likewise, superimposing the small molecule onto the unbound structure yields 

no clashes.  This is consistent with the distribution of pocket sizes (Figure 2C) where two of the target 

residues had only a small increase in the pocket size when the biasing potential was applied.  HPV E2 is 

also largely pre-formed, though there is a clash at the deepest part of the small molecule pocket. The 

backbones differ little, though the clash is resolved in the bound structure by the slight translation of the 

helix containing the target residue and the rotation of a histidine side chain.  ZipA is also lacking in 

clashes and the backbone largely aligns around the interface.  When larger pockets were identified 
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through biased simulations, the expansion was largely confined to the area adjacent to the binding site on 

the left side of the figures. 

MDM2 (Figure S7E) has several significant clashes when the small molecule is superimposed 

onto the binding site. There are essentially two motions going on that open the pocket.  The helix to the 

right wobbles to the right relieving two clashes with the small molecule while the helix below the small 

molecule tilts away, relieving the other clash. These motions were recapitulated in the biased simulation 

and yield visually impressive results. 

The interface of the BIR3 domain of XIAP (Figure S7F) is somewhat disordered and has a large 

clash on one side when the small molecule is superimposed onto the unbound structure, and a pre-formed 

pocket on the other side. The pocket is opened by a loop moving out of the way, along with some 

compensatory wobble motion with a helix that the loop attaches to. 
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A1.2 Supplementary Figures 

 

 

Figure S1: Identifying pockets on protein surfaces (complements Figure 1). A grid is centered at the 

residue of interest on the protein surface (only partial grid is shown here). Grid points are classified as 

either “protein” (grey background) or “solvent” (white background). Linear searches (red lines) are used 

to identify and mark “protein-surface-protein” events (green gridpoints). These are further classified 

based on degree of buried (light vs dark green) and adjoining grid points are clustered to yield discrete 

“pockets”. Only a surface pocket in contact with the surface of the “target” residue (orange) contributes 

to the biasing potential. 
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Figure S2: Deep pocket volumes compared to Q-SiteFinder pocket volumes (complements Figure 1). 

Deep pocket volumes of surface pockets at protein interaction sites harboring a bound inhibitor (red 

circles) and pockets found elsewhere on the protein surface (black x’s) are plotted against the 

corresponding pocket volumes identified by Q-SiteFinder, for each of the sites used in Figure 1B. While 

the two are correlated, Q-SiteFinder volumes are typically larger than the corresponding deep pocket 

volumes. 
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Figure S3: Matching of random surface sites to protein interaction sites (complements Figure 2). The 

distribution of pocket volumes identified by Q-SiteFinder for the complete set of random surface sites 

matched to the protein interaction sites on the basis of burial and secondary structure is shown (black); the 

corresponding pocket volumes for the protein interaction sites are also shown (red arrows). In order to 

create a matched set, only random sites with Q-SiteFinder pocket volumes greater than 100 Å3 were 

considered for Figures 2 and 3. 
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Figure S4: Surface pockets emerge only at druggable sites, upon inclusion of additional random surface 

sites (complements Figure 2). Pocket opening is not observed at random surface sites upon inclusion of 

additional sites that were previously excluded on the basis of Q-SiteFinder pocket volumes less than 100 

Å3 (dashed black lines). Symbols are as defined in Figure 2. (A) Bcl-XL. (B) IL-2. (C) FKBP12. (D) HPV 

E2. (E) ZipA. (F) MDM2. (G) BIR3 domain of XIAP. 
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Figure S5: Surface pockets emerge at druggable sites, when starting from protein-bound conformations 

(complements Figure 2). Simulations were carried out only applying the biasing potential to the protein 

interaction site (red). With the exception of XIAP, results are in agreement with simulations started from 

the unbound protein structures (Figure 2). (A) Bcl-XL. (B) IL-2. (C) FKBP12. (D) HPV E2. (E) ZipA. (F) 

MDM2. (G) BIR3 domain of XIAP. 

 

 

Figure S6: Energetic analysis of pocket opening for the other members of our test set (complements 

Figure 3). (A) Conformations generated using the biasing potential typically have a distribution of 

energies that overlaps those generated with the biasing potential, suggesting that these conformations 

represent low-energy states accessible to the unbound protein. (B) As with Bcl-xL, low-energy 

conformations containing large pockets are not observed for the other members of our test set unless the 

biasing potential is applied to the protein interaction site. Symbols are as defined in Figure 3. 
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Figure S7: Representative conformations generated using the biasing potential (complements Figure 4). 

An unbound crystal structure (pink), an inhibitor-bound crystal structure (green, with inhibitor shown in 

sticks), and a low-energy conformation generated from the unbound crystal structure using the biasing 
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potential (cyan, with target residue in red) are shown for each of the proteins comprising our test set 

(except Bcl-XL, shown in Figure 4). (A) IL-2. (B) FKBP12. (C) HPV E2. (D) ZipA. (E) MDM2. (F) BIR3 

domain of XIAP. 

 

 

Figure S8: Opening pockets shifts the protein backbone towards inhibitor-bound structures (complements 

Figure 5). Distributions of backbone RMSD over interface residues to the closest inhibitor-bound crystal 

structure for conformations generated with (red lines) or without (black lines) the biasing potential. The 

backbone RMSD over interface residues from the unbound structure to the most and least similar 

inhibitor-bound crystal structures are also indicated (dashed brown vertical lines). 
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Figure S9: Hydrophobicity of pockets generated using the biasing potential are similar to the 

corresponding inhibitor-bound pockets (complements Figure 5). Distributions of percentage hydrophobic 

solvent accessible surface area (%hSASA) over interface atoms for conformations generated with the 

biasing potential (red lines). The lowest and highest %hSASAs from amongst all available inhibitor-

bound crystal structures are indicated (dashed green vertical lines). (A) Bcl-XL. (B) IL-2. (C) FKBP12. 

(D) HPV E2. (E) ZipA. (F) MDM2. (G) BIR3 domain of XIAP. 
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A.2 Supporting Information for Chapter 2 

A2.1 Supplementary Methods 

Rosetta software 

Computational methods are implemented in the Rosetta software suite [18]. Calculations were 

carried out using git revision a27ab8d2408fb4a2 of the developer trunk source code. 

A sample Rosetta command line used to identify target residues on chain A of an input.pdb using 

the Robetta ΔΔG calculations pasted into ddg.txt is as follows: 

pocket_suggest_target_residues_by_ddg.linuxgccrelease -s input_pdb 

–ddg_list ddg.txt –target_chain_list A 

A sample Rosetta command line used to generate an exemplar is as follows: 

make_exemplar.linuxgccrelease -s input_pdb -pocket_grid_size 12 

-pocket_filter_by_exemplar –pocket_static_grid -central_relax_pdb_num 108 

 

Dataset of Bcl-2 family complexes 

Structures that met any of the following criterion were excluded from the set of known Bcl-2 

family inhibitors: fragments below m.w. 250 Da, structures with multiple ligands in the binding site, 

structures that have the binding site defined by a (non-biologically relevant) homodimer, structures in 

which there was multiple occupancy of the inhibitor in the binding site, and fusion inhibitors that 

extended well out of the binding pocket. The complete list of complexes is presented as Table S1. 

PDB structures used in calculations 

Unbound structures used as a starting point for “pocket opening” simulations were from the 

following PDB IDs: 1R2D (Bcl-xL), 1G5M (Bcl-2), 1WSX (Mcl-1), 1MK3 (Bcl-w), 1F16 (Bax), 
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2BID (Bid), and 1OHU (Ced9). Peptide-bound structures used as a starting point for “pocket opening” 

simulations were from the following PDB IDs: 1BXL (Bcl-xL), 2XA0 (Bcl-2), 2NL9 (Mcl-1), and 3MK8 

(Mcl-1). In the case of NMR structures with multiple models, the first model was used. 

Results for Figure 8 were described for fifteen bromodomains comprising our test set: 2OSS 

(first bromodomain of BRD4), 2OO1 (second bromodomain of BRD3), 3HMH (first bromodomain of 

BRD3), 2OUO (second bromodomain of BRD4), 2RFJ (first bromodomain of BRDT), 3HMH (second 

bromodomain of TAF1L), 2YYN (TIF1), 3DAI (ATAD2), 2GRC (SMARCA4), 3G0L (BAZ2B, 2F6N 

(FALZ), 3GG3 (PCAF), 3IU5 (first bromodomain of PB1), 2RO1 (TRIM28), and 3G0J (fifth 

bromodomain of PB1). Comparisons were to 3MXF (the inhibitor-bound structure of the first 

bromodomain of BRD4). Data were collected for 5,000 independent simulations for each Bromodomain 

at the homologous target residues for the BRD4-JQ1 bound structure (residues 94 and 146 in 3MXF). 

Building ensembles of pocket-containing conformations 

Ensembles of conformations were generated using the “relax” protocol in Rosetta with the pocket 

biasing potential as follows: 

relax.linuxgccrelease -s input_pdb -relax:fast -pocket_max_spacing 12 

-pocket_zero_derivatives -pocket_psp false -pocket_sps -pocket_num_angles 2 

-ex1 -ex1aro -ex2 -score:patch pocket.wts.patch -nstruct 1 

-cst_fa_file constraints 

 

The file pocket.wts.patch simply contains the text “pocket_constraint 1.0”, while the file 

constraints contains “Pocket 0.25 123:A,129:A”, where the target residues are defined as residues 123 and 

129 in chain A of the PDB file. 

Output structures were then subjected to a local energy minimization in the absence of the pocket 

biasing potential: 

minimize.linuxgccrelease -s input_pdb  
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Conformations with very small pockets led to exemplars with a small number of atoms: 

exemplars with fewer than ten atoms were also removed from consideration. We also removed from 

consideration any conformations with energy more than 15 Rosetta Energy Units from those sampled in 

an analogous set of unbiased simulations. 

Generating “exemplars” to represent pockets 

Exemplar generation occurs in the “pocket” protocol within Rosetta, and begins by defining the 

“deep pocket” volume as described previously [14]. 

The ideal locations of hydrogen bond acceptors (per the Rosetta energy function) are then 

identified. This is accomplished by identifying all solvent exposed hydrogen bond donors, then 

calculating the location of an ideal hydrogen bond acceptor for each: an ideal acceptor lies 2.75 Å from 

the donor atom, on the vector that passes through the donor “base” atom and the hydrogen atom. Acceptor 

locations that touch the target pocket and do not clash with the protein are included in the exemplar. 

Ideal hydrogen bond donors are then identified by iterating over all solvent exposed hydrogen 

bond acceptors: an ideal donor lies 2.75 Å from the acceptor atom, though its location also depends on the 

bond angles, Φ and Θ, of the local coordinate system defined by the acceptor atom (origin), its base atom 

(setting the direction of the X axis) and the hybridization of the accepting group [S1]. For each accepting 

group, potential donor locations are tested in search of one that touches the target pocket and does not 

clash with the protein; if found, this donor location is added to the exemplar. 

Next, the deep pocket points are scanned to identify points whose 26 neighboring pocket grid 

points and three next-nearest neighbors in the positive X, Y, and Z directions are all deep pocket points 

not yet included in the exemplar. When such a point is found, that point is included in the exemplar as a 

carbon atom, and 26 neighboring grid points are excluded from further searching. 

Exemplar atoms within 3.5 Å of one another are then clustered together; any clusters that are not 

in direct contact with the “target” residue used to define the deep pocket are removed. 

Finally, the exemplar is printed to a file using PDB format. 
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Treatment of donors/acceptors in ROCS 

The ROCS software is built to use “real” compounds as input, rather than exemplars. 

Accordingly, ROCS assigns hydrogen bond donors/acceptors upon reading in the template molecule. 

Oxygen and nitrogen atoms are identified by ROCS as either acceptors or donors (or both) based on their 

connectivity. 

Since our exemplars lack this connectivity, it was necessary to define new atom types that are 

forced to serve as a pre-determined donor/acceptor regardless of context. To do this, we edited the 

beryllium and neon element types in ROCS such that these served as obligate hydrogen bond donors and 

acceptors, respectively. We then doubled the scale of the radius to allow for near optimal hydrogen 

bonding. Beryllium and neon were chosen because of their comparable size to nitrogen and oxygen, as 

well as their paucity in drug-like compounds. 

When comparing exemplars, we used the modified chemical force field and included chemical 

complementarity only in the final scoring phase (i.e. only shape considerations were included in the 

optimization phase). 

Comparison of chemical structures 

Chemical structures were performed by OpenBabel [S2,S3] using FP2 fingerprints. FP2 

fingerprints index the small molecule by identifying linear segments of one to seven atoms that are then 

indexed in a 1024 bit vector [S2,S3]. Comparisons are scored using the Tanimoto coefficient (Jaccard 

index): the ratio of number of chemical moieties common to both molecules to the total number of 

chemical moieties used. 

Numerical analysis 

Spearman rank correlation coefficients and their significance (Figure 2) were also computed in 

the R statistical computing environment [S4]. Multidimensional scaling analysis was also carried out in 
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R [S4], using the cmdscale function. The reported statistical significance for the ROC plot (Figure 7b) 

was calculated using a one-tailed P-value with null hypothesis that the area under the curve is 0.5 [S5]. 
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A2.2 Supplementary Tables 

 

Complex PDB ID Protein Inhibitor 
Inhibitor common 

name 

1 3zln Bcl-xL 

 

 

2 3zlo Bcl-xL 

 

 

3 3zlr Bcl-xL 

 

WEHI-539 

4 4ehr Bcl-xL 

 

 

5 4c52 Bcl-xL 

 

 

6 4c5d Bcl-xL 
 

 

7 1ysi Bcl-xL 
 

 

8 a 1ysn Bcl-xL 

 

 

9 b 2o2m Bcl-xL 
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10 2o2n Bcl-xL 
 

 

11 2yxj Bcl-xL 

 

ABT-737 

12 3inq Bcl-xL 
 

W1191542 

13 3qkd Bcl-xL 
 

 

14 3sp7 Bcl-xL 

 

BM-903 

15 4ieh Bcl-2 

 

 

16 4lvt Bcl-2 

 

ABT-263 (navitoclax) 

17 4man Bcl-2 

 

ABT-199 

18 4lxd Bcl-2 

 

 

19 b 2o2f Bcl-2 
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20 a 1ysw Bcl-2 

 

 

21 2o22 Bcl-2 

 

 

22 4aq3 Bcl-2 

 

 

23 2w3l Bcl-2 

 

 

24 4hw2 Mcl-1 
 

 

25 4hw3 Mcl-1 
 

 

26 3wix Mcl-1 

 

 

27 4oq5 Mcl-1 

 

 

28 4oq6 Mcl-1 
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Table S1: Structures of complexes used in this study. At this time of writing, this table represents a 

comprehensive collection of all structures in the PDB containing a Bcl-2 family member in complex with 

a small-molecule inhibitor bound at the protein interaction site. Fragments (compounds with molecular 

weight less than 250 Da), molecules whose structure contains interactions with multiple chains that are 

not part of a biological unit, and molecules with multiple occupancies were excluded from this list. 

Numbering of compounds in this list corresponds to the order of rows in Figure 2 and Figure 7, and the 

numbering of compounds in Figure 4 and Figure 5a. Superscripted letters in the leftmost column denote 

cases in which the same compound has been solved in complex with different protein partners.
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 Table S2: 2D Tanimoto similarity of Bcl-2 family inhibitors. This table shows the raw data from 

which the heatmap in Figure 2a was created. 
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Table S3: 3D Tanimoto (shape) similarity of Bcl-2 family inhibitors. This table shows the raw data from 

which the heatmap in Figure 2b was created. 
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Table S4: Exemplar similarity of Bcl-2 family inhibitor bound structures. This table shows the raw data 

from which the heatmap in Figure 2c was created.
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Complex Bcl-xL Bcl-2 Mcl-1 Bcl-w Bax  Bid Ced-9 

1 0.58 0.55 0.49 0.45 0.55 0.48 0.51 

2 0.75 0.74 0.52 0.51 0.58 0.55 0.59 

3 0.65 0.64 0.52 0.41 0.51 0.55 0.57 

4 0.67 0.72 0.51 0.42 0.53 0.52 0.60 

5 0.88 0.68 0.75 0.56 0.66 0.71 0.79 

6 0.85 0.70 0.51 0.45 0.49 0.56 0.54 

7 0.67 0.64 0.54 0.61 0.71 0.67 0.51 

8 0.65 0.59 0.54 0.49 0.58 0.56 0.63 

9 0.61 0.60 0.47 0.50 0.63 0.58 0.54 

10 0.67 0.69 0.43 0.55 0.58 0.57 0.46 

11 0.71 0.72 0.44 0.57 0.62 0.61 0.45 

12 0.81 0.73 0.53 0.54 0.61 0.62 0.66 

13 0.69 0.72 0.43 0.56 0.66 0.59 0.44 

14 0.70 0.60 0.48 0.55 0.61 0.61 0.52 

15 0.74 0.74 0.47 0.57 0.68 0.68 0.48 

16 0.70 0.65 0.57 0.58 0.62 0.59 0.54 

17 0.87 0.73 0.54 0.59 0.71 0.70 0.51 

18 0.78 0.74 0.57 0.59 0.70 0.65 0.50 

19 0.76 0.78 0.52 0.66 0.74 0.71 0.56 

20 0.58 0.63 0.46 0.54 0.63 0.63 0.54 

21 0.59 0.59 0.49 0.51 0.57 0.57 0.49 

22 0.61 0.53 0.57 0.42 0.59 0.59 0.56 

23 0.67 0.77 0.66 0.64 0.64 0.64 0.77 

24 0.47 0.63 0.62 0.58 0.59 0.61 0.64 

25 0.48 0.63 0.78 0.61 0.69 0.66 0.61 

26 0.50 0.71 0.83 0.61 0.79 0.75 0.68 

27 0.74 0.90 0.98 0.91 1.11 1.04 0.93 

28 0.61 0.76 0.84 0.71 1.12 0.87 0.81 

 

 

Table S5: Exemplar similarity of top (closest) pocket optimized structures to inhibitor-bound structures. 

This table shows the raw data from which Figure 7 and Figure S8 were created. 
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Complex Bcl-xL Bcl-2 Mcl-1 Bcl-w Bax  Bid Ced-9 

1 0.65 0.65 0.69 0.51 0.67 0.65 0.60 

2 0.68 0.52 0.50 0.47 0.56 0.64 0.54 

3 0.60 0.54 0.47 0.47 0.54 0.62 0.53 

4 0.52 0.46 0.46 0.48 0.49 0.52 0.40 

5 0.65 0.63 0.51 0.52 0.56 0.61 0.63 

6 0.60 0.52 0.50 0.51 0.53 0.57 0.51 

7 0.64 0.53 0.52 0.50 0.54 0.57 0.49 

8 0.54 0.49 0.43 0.48 0.51 0.50 0.45 

9 0.59 0.56 0.45 0.51 0.53 0.54 0.45 

10 0.53 0.52 0.43 0.51 0.50 0.56 0.40 

11 0.52 0.45 0.42 0.47 0.44 0.50 0.38 

12 0.52 0.45 0.42 0.44 0.46 0.49 0.40 

13 0.51 0.46 0.41 0.49 0.45 0.48 0.37 

14 0.49 0.46 0.41 0.46 0.43 0.46 0.32 

15 0.52 0.44 0.42 0.49 0.45 0.49 0.37 

16 0.48 0.43 0.43 0.48 0.39 0.46 0.37 

17 0.52 0.50 0.44 0.53 0.44 0.48 0.39 

18 0.52 0.51 0.44 0.47 0.45 0.47 0.41 

19 0.61 0.58 0.47 0.53 0.54 0.55 0.45 

20 0.53 0.49 0.41 0.50 0.47 0.51 0.42 

21 0.64 0.61 0.50 0.55 0.59 0.58 0.52 

22 0.58 0.52 0.45 0.54 0.52 0.57 0.48 

23 0.46 0.52 0.46 0.46 0.59 0.60 0.43 

24 0.60 0.65 0.69 0.65 0.66 0.67 0.55 

25 0.57 0.63 0.68 0.66 0.66 0.66 0.58 

26 0.54 0.58 0.62 0.58 0.59 0.58 0.43 

27 0.52 0.57 0.57 0.50 0.62 0.57 0.40 

28 0.62 0.87 0.82 0.78 0.83 0.85 0.79 

 

Table S6: Exemplar similarity of top (closest) pocket optimized structures to native inhibitor conformer. 

This table shows the raw data from which Figure S9 was created. 
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Compound Bcl-xL Bcl-2 Mcl-1 Bcl-w Bax Bid Ced-9 

1 A A A A    

2 A       

3 A A A A    

4 B B      

5 C C C C    

6 C C C C    

7 D D      

8        

9        

10        

11 D D D D    

12 E E E E    

13 F F F F S   

14 G G G     

15  H      

16 I I I I    

17 I I I I    

18 I I      

19        

20        

21 J J      

22 K K      

23 L L      

24 M M M     

25 M M M     

26 N  N     

27        

28        

 

Table S7: Citations for experimental data for ligand selectivity. This table points to the sources of 

experimental data from which Figures 7, S8, and S9 were created. Citations are as follows: 

A: Lessene G, Czabotar PE, Sleebs BE, Zobel K, Lowes KN, et al. (2013) Structure-guided design of a 

selective BCL-X(L) inhibitor. Nat Chem Biol 9: 390-397. 
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B: Schroeder GM, Wei D, Banfi P, Cai ZW, Lippy J, et al. (2012) Pyrazole and pyrimidine 

phenylacylsulfonamides as dual Bcl-2/Bcl-xL antagonists. Bioorg Med Chem Lett 22: 3951-3956. 

C: Brady RM, Vom A, Roy MJ, Toovey N, Smith BJ, et al. (2014) De-novo designed library of 

benzoylureas as inhibitors of BCL-XL: synthesis, structural and biochemical characterization. 

J Med Chem 57: 1323-1343. 

D: Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, et al. (2005) An inhibitor of 

Bcl-2 family proteins induces regression of solid tumours. Nature 435: 677-681. 

E: Lee EF, Czabotar PE, Yang H, Sleebs BE, Lessene G, et al. (2009) Conformational changes in Bcl-2 

pro-survival proteins determine their capacity to bind ligands. J Biol Chem 284: 30508-30517. 

F: Sleebs BE, Czabotar PE, Fairbrother WJ, Fairlie WD, Flygare JA, et al. (2011) Quinazoline 

sulfonamides as dual binders of the proteins B-cell lymphoma 2 and B-cell lymphoma extra long with 

potent proapoptotic cell-based activity. J Med Chem 54: 1914-1926. 

G: Zhou H, Aguilar A, Chen J, Bai L, Liu L, et al. (2012) Structure-based design of potent Bcl-2/Bcl-xL 

inhibitors with strong in vivo antitumor activity. J Med Chem 55: 6149-6161. 

H: Touré BB, Miller-Moslin K, Yusuff N, Perez L, Doré M, et al. (2013) The Role of the Acidity of N-

Heteroaryl Sulfonamides as Inhibitors of Bcl-2 Family Protein–Protein Interactions. ACS Med Chem Lett 

4: 186-190. 

I: Petros AM, Dinges J, Augeri DJ, Baumeister SA, Betebenner DA, et al. (2006) Discovery of a potent 

inhibitor of the antiapoptotic protein Bcl-xL from NMR and parallel synthesis. J Med Chem 49: 656-663. 

J: Bruncko M, Oost TK, Belli BA, Ding H, Joseph MK, et al. (2007) Studies leading to potent, dual 

inhibitors of Bcl-2 and Bcl-xL. J Med Chem 50: 641-662. 

K: Perez HL, Banfi P, Bertrand J, Cai ZW, Grebinski JW, et al. (2012) Identification of a 

phenylacylsulfonamide series of dual Bcl-2/Bcl-xL antagonists. Bioorg Med Chem Lett 22: 3946-3950. 

L: Porter J, Payne A, de Candole B, Ford D, Hutchinson B, et al. (2009) Tetrahydroisoquinoline amide 

substituted phenyl pyrazoles as selective Bcl-2 inhibitors. Bioorg Med Chem Lett 19: 230-233. 



 135 

M: Friberg A, Vigil D, Zhao B, Daniels RN, Burke JP, et al. (2013) Discovery of potent myeloid cell 

leukemia 1 (Mcl-1) inhibitors using fragment-based methods and structure-based design. J Med Chem 56: 

15-30. 

N: Tanaka Y, Aikawa K, Nishida G, Homma M, Sogabe S, et al. (2013) Discovery of potent Mcl-1/Bcl-

xL dual inhibitors by using a hybridization strategy based on structural analysis of target proteins. J Med 

Chem 56: 9635-9645. 
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Table S8: Exemplar similarity of top (closest) pocket optimized structures to (+)-JQ1-BRD4(1) 

bound structure. This table shows the raw data from which the heatmap in Figure 8 was created. 
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BRDT(1) 0.65

TAF1L(2) 0.57

TIF1 0.64

ATAD2 0.56
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FALZ 0.50

PCAF 0.55

PB1(1) 0.52

TRIM28 0.48

PB1(5) 0.48
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A2.3 Supplementary Figures 

 

Figure S1: Effect of orientation on exemplar comparison. Bcl-xL bound to ABT-737 (PDB ID 2yxj), a 

compound similar to ABT-737 (PDB ID 3qkd), an unrelated Bcl-xL inhibitor (PDB ID 3zln), and Mcl-1 

bound to an Mcl-1 inhibitor (PDB ID 4hw2) were rotated for 100 random orientations, and an all-vs-all 

comparison of the ensemble of ABT-737 bound exemplars to those generated for each orientation was 

performed. Histograms of the 3D Tanimoto scores of the ABT-737 exemplars compared to themselves 

(black), a closely-related compound (green), an unrelated compound (orange), and an Mcl-1 pocket (red) 

demonstrate overlap between similar and dissimilar pockets. 
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Figure S2: Bcl-2 family members recognize different inhibitors using distinct surface pockets. In all 

cases color gradient indicates similarity between experimentally-derived structures, expressed as Z-scores 

(green are most similar, red are most dissimilar). Numbering in all cases corresponds to complexes in 

Table S1. (A) Chemical similarity of the inhibitors. (B) Three-dimensional similarity of the inhibitors’ 

active conformation. (C) Similarity of protein surface pockets, quantified through exemplar similarity. 

There is a statistically significant correlation between each pair of panels, as described in the text. The 

underlying raw data used to generate these plots are included in Tables S2, S3, and S4. 
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Figure S3: Steric clashes with ground state conformations demonstrate the need to explore 

ensembles of pocket-containing conformations to understand ligand binding. Unbound structures of 

(A) Bcl-xL, (B) Bcl-2, and (C) Mcl-1 are represented in spheres with overlaid inhibitors shown in sticks. 

 

 

Figure S4: Location of target residues. A superposition of representative inhibitor-bound structures of 

Bcl-xL (light green cartoon, inhibitor in dark green sticks) and Mcl-1 (cyan cartoon, inhibitor in dark 

blue sticks) is shown. The target residues for pocket opening generated from the corresponding peptide-

bound structures differed for Bcl-xL (Ala93 and Arg143) and for Mcl-1 (Arg263 and Phe270) (sidechains 

shown using spacefill), reflecting different energetic contributions to the protein-protein interaction from 

each protein surface. 
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Figure S5: Energetic analysis of conformations generated starting from a peptide bound structure. 

For each peptide-bound complex used in this analysis, the histograms of energies of conformations 

generated without the use of a biasing potential (black line) overlap with the range of energies of the 

conformations used in all subsequent analyses generated by using a biasing potential at the Bcl-xL protein 

interaction site (magenta line) and the Mcl-1 protein interaction site (red line); this suggests that many of 

these conformations are energetically accessible to these proteins under physiological conditions. All 

energies shown here were evaluated in the absence of the biasing potential, for fair comparison. 
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Figure S6: Comparison of pocket space for human and mouse Mcl-1. Constructs of Mcl-1 were made 

from peptide-bound (2nl9 and 3mk8) and unbound (1wsx) structures of Mcl-1 with human (red) and 

mouse (green) sequences. Individual conformations are represented as points on a two-dimensional 

projection that best reflects the pairwise distances between their exemplars. 

 

 

Figure S7: “Distinctness” of pockets in ensembles generated by simulation of Bcl-2 family 

members. The “distinctness” of a pocket is defined as the exemplar distance of the difference in 

exemplar distances of the closest conformation from a different family member, and the closest 

conformation from the ensemble of this family member. 
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Figure S8: Pocket shape similarity explains ligand selectivity across the Bcl-2 family. For each inhibitor-

bound pocket, the exemplar distance to the most similar pocket is indicated by color gradient expressed as 

Z-scores (green are most similar, red are most dissimilar; the range of colors for each row is normalized 

across that row). Markings inside the cells denote experimental measurements of binding for this protein-

ligand pair (Kd or Ki where available, otherwise IC50): ✔✔✔ indicates < 0.1 μM, ✔✔ indicates 

0.1-1 μM, ✔ indicates binding weaker than 1 μM, and ✗ indicates that binding was not 

detectable/quantifiable. Cells that do not include markings correspond to protein-ligand pairs for which 

binding data has not been reported. Numbering corresponds to complexes as in Table S1. The underlying 

raw data are included in Table S5 (exemplar distances) and Table S7 (citations to binding data). 
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Figure S9: Pocket shape versus ligand shape similarity explains ligand selectivity across the Bcl-2 

family. As opposed to Figure S8, in which we compared conformations from simulation to exemplars 

from inhibitor-bound pockets, here we compare conformations from simulation directly to the structures 

of the inhibitors. As previously, the exemplar distance to the most similar pocket is indicated by color 

gradient expressed as Z-scores (green are most similar, red are most dissimilar; the range of colors for 

each row is normalized across that row). Markings inside the cells denote experimental measurements of 

binding for this protein-ligand pair (Kd or Ki where available, otherwise IC50): ✔✔✔ indicates < 0.1 μM, 

✔✔ indicates 0.1-1 μM,, ✔ indicates binding weaker than 1 μM, and ✗ indicates that binding was not 

detectable/quantifiable. Cells that do not include markings correspond to protein-ligand pairs for which 

binding data has not been reported. Numbering corresponds to complexes as in Table S1. The underlying 

raw data are included in Table S6 (exemplar distances) and Table S7 (citations to binding data). 
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A3 Supporting Information for Chapter 3 

A3.1 Supplementary Methods 

Rosetta command-lines 

All Rosetta calculations were carried out using the developer trunk source code, git revision 

fe2036f5f991f7c48221ee8916e38da6b28fc949. 

 

Ensembles of conformations were generated using the “relax” protocol in Rosetta, with the 

pocket-biasing potential, as follows: 

relax.linuxgccrelease -s input_pdb -relax:fast -nstruct 1 -pocket_max_spacing 12 

-pocket_zero_derivatives -pocket_psp false -pocket_sps -pocket_num_angles 2 

-ex1 -ex1aro -ex2 -score:patch pocket.wts.patch -cst_fa_file constraints 

 

The file “pocket.wts.patch” simply contains the text “pocket_constraint 1.0”. The file “constraints” contains 

the text “Pocket 0.25 123:A,129:A” (to indicate target residues 123 and 129 of chain A in the input PDB). It 

takes about 5 minutes on a single core to generate each conformation; jobs are trivially parallel. 

 

Output structures were then subjected to a local energy minimization in the absence of the pocket 

biasing term: 

minimize.linuxgccrelease -s input_pdb  
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In order to limit the conformations to physiologically relevant pocket containing conformations, 

we only analyzed pockets from conformations within 15 Rosetta energy units from the highest energy 

output structure in the unbiased ensemble. 

 

The Rosetta command to generate an exemplar is as follows: 

make_exemplar.linuxgccrelease -s input_pdb -pocket_grid_size 12 

-pocket_filter_by_exemplar –pocket_static_grid -central_relax_pdb_num 108 

Scoring in ROCS / FastROCS 

Because the ROCS software is designed to read “real” compounds as input (rather than 

exemplars), ROCS automatically assigns hydrogen bond donors/acceptors based on the connectivity 

within the template molecule. Since our exemplars lack connectivity between atoms, we therefore needed 

to explicitly define hydrogen bond donors/acceptors, regardless of context. 

To do so, we edited the “color force field” used by ROCS, re-defining the beryllium and neon 

element types to map to hydrogen bond donors and acceptors, respectively. We also doubled the scale of 

the radius to accommodate near optimal hydrogen bonding. Beryllium and neon were selected due to their 

comparable van der Waals radii with nitrogen and oxygen, as well as their infrequent occurrence in drug-

like compounds. 

When comparing exemplars to small molecules, we used this modified chemical force field, and 

considered only shape in the optimization (overlay) phase. We then included the complete force field 

(i.e. including chemical complementarity) in the final scoring phase. 

A patch file to create the exemplar color force field (exemplar.cff) from ImplicitMillsDean.cff 

(included with ROCS) is pasted below. We recommended copying ImplicitMillsDean.cff into a separate 
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directory, renaming it to exemplar.cff, and then applying this patch (to avoid overwriting the original 

file). 

 

--- ImplicitMillsDean.cff 2015-09-13 19:53:25.324724972 -0500 

+++ exemplar.cff 2015-09-13 19:54:12.418808086 -0500 

@@ -51,6 +51,7 @@ 

 # 

 # acceptors 

 # 

+DEFINE AcceptorAt [Ne] 

 DEFINE ACamine [N;!$(N*=[!#6]);!$(N~[!#6;!#1]);!$(Na);!$(N#*);!$(N=*)] 

 DEFINE ACphosphate [O;$hd1;$(O~P(~O)~O)] 

 DEFINE ACcarboxylate [O;$hd1;$(O[C;!$(*N)]=O),$(O=[C;!$(*N)][O;$hd1])] 

@@ -79,7 +80,7 @@ 

 DEFINE AChet5O [o;X2;$(o1cccc1),$(o1ccccc1);!$(*[#6]=O)] 

 DEFINE ACsulphone [O;$(O=[S;$(S(~O)(~O)([#6,#7])[#6])])] 

 # strong acceptors 

-DEFINE strongAcceptor [$ACphosphate,$ACcarboxylate,$ACwater,$AChet6N,$ACphosphinyl] 

+DEFINE strongAcceptor [$AcceptorAt,$ACphosphate,$ACcarboxylate,$ACwater,$AChet6N,$ACphosphinyl] 

 # moderate acceptors 

 #DEFINE moderateAcceptor 

[$ACsulphoxide,$ACprimaryAmine,$AChet5N,$ACthiocarbonyl,$AChydroxyl,$ACsulphate,$ACtertiaryAmine,$ACami

de,$ACcarbamate,$ACurea] 



 148 

 DEFINE moderateAcceptor 

[$ACsulphoxide,$AChet5N,$ACthiocarbonyl,$AChydroxyl,$ACsulphate,$ACamide,$ACcarbamate,$ACurea] 

@@ -89,6 +90,7 @@ 

 # 

 # donors 

 # 

+DEFINE DonorAt [Be] 

 DEFINE Damine [N;!$(N*=[!#6]);!$(N~[!#6;!#1]);!$(Na);!$(N#*);!$(N=*)] 

 DEFINE Dhet5NH [nH;$(n1aaaa1),$(n1aaaaa1)] 

 DEFINE DNpH [NH,H2,H3;+] 

@@ -107,7 +109,7 @@ 

 DEFINE DsecondaryAmine [$Damine;$hd2] 

 # strong donors 

 #DEFINE strongDonor [$Dhet5NH,$DNpH,$DacidOH,$Dhydroxyl] 

-DEFINE strongDonor [$Dhet5NH,$DNpH,$Dhydroxyl] 

+DEFINE strongDonor [$DonorAt,$Dhet5NH,$DNpH,$Dhydroxyl] 

 # moderate donors 

 DEFINE moderateDonor [$Dwater,$DprimaryAmide,$DanilineNH,$DamidineNH,$DsecondaryAmide,$DanilineNH2] 

 # weak donors 

@@ -184,12 +186,12 @@ 

 ######################################### 

 #       Interaction Definitions         # 
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 ######################################### 

-INTERACTION donor donor attractive gaussian weight=1.0 radius=1.0 

-INTERACTION acceptor acceptor attractive gaussian weight=1.0 radius=1.0 

+INTERACTION donor donor attractive gaussian weight=1.0 radius=2.0 

+INTERACTION acceptor acceptor attractive gaussian weight=1.0 radius=2.0 

 INTERACTION rings rings attractive gaussian weight=1.0 radius=1.0 

 INTERACTION cation cation attractive gaussian weight=1.0 radius=1.0 

 INTERACTION anion anion attractive gaussian weight=1.0 radius=1.0 

-INTERACTION hydrophobe hydrophobe attractive gaussian weight=1.0 radius=1.0 

+INTERACTION hydrophobe hydrophobe attractive gaussian weight=1.0 radius=2.0 

 ######################################### 

 #           Unused Types                # 

 ######################################### 

 

Rapid overlays using FastROCS 

FastROCS is composed of two Python scripts. One script, ShapeDatabaseServer.py, reads in the 

database, performs the overlay, and outputs the top overlays. The other script, ShapeDatabaseClient.py, 

reads in the query compounds (in our case, the exemplars), and sends them to the ShapeDatabaseServer. 

Because the command line interface is very limited, we modified the ShapeDatabaseServer.py script in 

order to use the modified chemical force field described above, and to return more than just the highest 

scoring conformer when returning the hits. 

A patch file to create the ShapeDatabaseExemplarServer.py from the ShapeDatabaseServer.py 

that is included with FastROCS is pasted below. The location to exemplar.cff needs to be changed to 
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match the location of the patched exemplar.cff file, as created in the section above. We recommended 

copying ShapeDatabaseServer.py to ShapeDatabaseExemplarServer.py, and then applying this patch (to 

avoid overwriting the original file). 

 

--- ShapeDatabaseServer.py 2015-09-13 19:37:12.160003637 -0500 

+++ ShapeDatabaseExemplarServer.py 2015-09-13 19:43:54.344715620 -0500 

@@ -87,6 +87,10 @@ 

         self.options = OEShapeDatabaseOptions() 

         self.options.SetTracer(self.tracer) 

         self.options.SetLimit(nhits) 

+        self.cff = OEColorForceField() 

+        self.cff.Init("/home/labs/karanicolaslab/exemplar.cff") 

+        self.options.SetColorForceField(self.cff) 

+        self.options.SetMaxConfs(10) 

         self.lock = Lock() 

  

     def run(self): 

 

The commands to run FastROCS are as follows: 

ShapeDatabaseExemplarServer.py /path/to/db/dbfile1.oeb.gz 

ShapeDatabaseClient.py localhost:8080 /path/to/exemplar.pdb overlays.sdf 2000 
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Such a command would load one dbfile1 from a database, and the Client would read in the send 

the exemplar, specify the output file to be named overlays.sdf, and request the top 2000 hits. In order to 

limit the time spent writing data for the lower ranking compounds to disk, FastROCS does not output a 

score file, and the scores included in the output SDF file do not include the Tversky scores. 

In order to re-rank by Tversky scores, we performed a secondary call to standard ROCS with the 

“-dbase” flag, which quickly recalculates the scores: 

rocs -dbase overlays.sdf -query /path/to/exemplar.pdb –report one –scoreonly 

-nostructs -stats all -chemff /path/to/exemplar.cff -prefix rescore 

PDB structures used in calculations 

Unbound structures (including those used as starting points for “pocket optimization” 

simulations) in Figures 3-6 were from PDB IDs: 1R2D (Bcl-xL) and 1F9X (XIAP). Small-molecule 

bound structures used in Figures 2, 3, and 5 were from PDB IDs 2YXJ (Bcl-xL) and 2JK7 (XIAP). 

Unbound structures used for “pocket optimization” simulations in Table 1 and Table S3 were 

from the following PDB IDs: 1M47 (IL-2), 1R6K (HPV E2), 1F9X (XIAP), 1R2D (Bcl-xL), 2OSS 

(BRD4), 1GHU (Grb2-SH2), 2GNQ (WDR5), 3ZRF (VHL), 1BIS (HIV Integrase), 1Z1M (Mdm2), and 

3U84 (Menin). Small-molecule bound structures used in Table S2 were from the following PDB IDs: 

1PW6 (IL-2), 1R6N (HPV E2), 1TFT (XIAP), 1YSI (Bcl-xL), 2YEL (BRD4), 3IN7 (Grb2-SH2), 

(WDR5). 3ZRC (VHL), 4E1N (HIV Integrase), 4ERF (Mdm2), and 4GQ4 (Menin). 

In the case of NMR structures, the first model was used. HET atoms were removed from all PDB 

files, and only one biological unit was retained. 
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Generating Exemplars for 1R2D and 1F9X 

Because the unbound structures contain no small molecule binding pocket, extra flags were used 

to generate a suitable exemplar for screening. The flag “-pocket_surface_dist” indicates how much of the 

top layer of pocket residues to remove when finding the “deep volume” (the default value is 2.5 Å). 

1R2D: -pocket_surface_dist 1.0 

1F9X: -pocket_surface_dist 1.5 

  

Generating Exemplars for 1TFT, 1Y2F, 2JK7, 3IN7, 3VKX, 3ZRC, AND 4GQ4 

Because the small molecule binding pocket in these structures were small, extra flags were used 

to generate a suitable exemplar for screening. The flag “-pocket_surface_dist” indicates how much of the 

top layer of pocket residues to remove when finding the “deep volume” (the default value is 2.5 Å). The 

flag “-pocket_grid_size” indicates how far (in Å) in the X,Y,Z dimensions to extend the grid from the target 

residue(s) (the default value is 12 Å). Lower values, together with lower values of pocket_surface_dist, 

allow for better descriptions of small, shallow pockets. 

1TFT: -pocket_surface_dist 0.5 -pocket_grid_size 10 

1Y2F: -pocket_surface_dist 1.0 -pocket_grid_size 6 

2JK7: -pocket_surface_dist 0.5 -pocket_grid_size 10 

3IN7: -pocket_surface_dist 1.5 -pocket_grid_size 6 

3VKX: -pocket_surface_dist 1.0 -pocket_grid_size 6 

3ZRC: -pocket_surface_dist 1.0 -pocket_grid_size 6 

4GQ4: -pocket_surface_dist 1.5 -pocket_grid_size 6 
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A3.2 Supplementary Tables 

 

Protein target 
Unique 

inhibitors 

Unbound 

PDB ID 

Inhibitor-

bound PDB 

ID 

Protein-

bound PDB 

ID 

Target 

Residue(s) 

(Resi:Chain) 

HIV-1 integrase 87 1BIS 4E1N 3WNE 169:A,124:B 

Mdm2 34 1Z1M 4ERF 1YCR 54:A,62:A 

Bcl-xL 25 1R2D 1YSI 1BXL 93:A,143:A 

BRD4 20 2OSS 2YEL 2MJV 385:B,439:B 

XIAP-BIR3 12 1F9X 1TFT 1G73 306:D,308:D 

Grb-SH2 9 3IN7 3WA4 1GHU 67:A,109:A 

Interleukin-2 6 1M47 1PW6 1Z92 42:A 

HPV E2 4 1R6K 1R6N 1TUE 40:A 

Menin 3 3U84 4GQ4 4I80 319:A 

WDR5 3 2GNQ 3UR4 4CY2 88:A,133:A 

VHL 1 3ZRF 3ZRC 4AJY 98:V,112:V 

 

Table S1: Protein targets used in the large-scale screening benchmark (Table 1, Tables S2 and S3). 

We note that the active compounds for Bcl-xL and XIAP differ slightly here relative to our previous 

benchmark (used in Figures 3-6), because we updated these at the same time as collecting inhibitors for 

each of the other target proteins in our set. The target residues’ chain and residue numbers refer to the 

numbering scheme in the protein complex, and were then adjusted accordingly for the inhibitor-bound 

and unbound protein structures. These target residues were used for “pocket optimization” simulations, 

and also for identifying pockets to generate exemplars. 
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Protein name 
Best rank of 

known active 

Number of 

known actives 

in top 100 

Fraction of 

known actives 

in top 1% 

HIV-1 integrase (87) 1 1 0.01 

Mdm2 (34) 1 3 0.09 

Bcl-xL (25) 1 7 0.28 

BRD4 (20) NR 0 0.00 

XIAP-BIR3 (12) NR 0 0.00 

Grb2-SH2 (9) NR 0 0.00 

Interleukin-2 (6) NR 0 0.00 

HPV E2 (4) NR 0 0.00 

Menin (3) NR 0 0.00 

WDR5 (3) NR 0 0.00 

VHL (1) NR 0 0.00 

 

Table S2: Virtual screening for a variety of protein-protein interaction targets, using an inhibitor-

bound protein conformation. This screen is analogous to that presented in Table 1. NR indicates that no 

active compounds were in the top 0.75% from the initial FastROCS ranking, and therefore no active 

compounds were included when re-ranking with ROCS. 
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Protein name 
Best rank of 

known active 

Number of 

known actives 

in top 100 

Fraction of 

known actives 

in top 1% 

HIV-1 integrase (87) 1 2 0.03 

Mdm2 (34) NR 0 0.00 

Bcl-xL (25) NR 0 0.00 

BRD4 (20) NR 0 0.00 

XIAP-BIR3 (12) NR 0 0.00 

Grb2-SH2 (9) 4420 0 0.11 

Interleukin-2 (6) NR 0 0.00 

HPV E2 (4) 6534 0 0.25 

Menin (3) 132 0 0.33 

WDR5 (3) NR 0 0.00 

VHL (1) NR 0 0.00 

 

Table S3: Virtual screening for a variety of protein-protein interaction targets, using the single 

top-scoring pocket-optimized conformation. NR indicates that no active compounds were in the top 

0.75% from the initial FastROCS ranking, and therefore no active compounds were included when 

re-ranking with ROCS. 
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