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ABSTRACT 

Ewing’s sarcoma is the second most common malignant bone cancer found in 

adolescents, and the genetic hallmark of this disease is the presence of the aberrant chimeric 

fusion protein EWS/FLI1. This fusion is induced by the t(11; 22) chromosomal translocation of 

EWS and FLI1, and is the most prominent and common characteristic of Ewing sarcoma tumors 

found in approximately 85-90% of reported cases. EWS/FLI1 has been shown to directly bind to 

and inhibit the function of endogenous EWS in a dominant manner. In this study, we seek to 

increase our understanding of the role of endogenous EWS during development and 

skeletogenesis to gain insight into the pathogenesis of the disease. Previously, we demonstrated 

the role of a zebrafish EWS homolog Ewsa by analyzing the phenotype of a maternal zygotic 

homozygous ewsa/ewsa mutant line (MZ ewsa/ewsa) of zebrafish null for Ewsa protein.  

Prehypertrophic chondrocytes of Meckel’s cartilage in 4dpf MZ ewsa/ewsa mutants fail to 

completely differentiate into hypertrophic chondrocytes, followed by structural defects in 

craniofacial bones (dentary and basihyal bones) at the adult stage. Based on these results, we 

sought to understand EWS’s involvement in skeletogenesis by asking if Ewsa regulates activity 

of critical transcription factors involved in chondrocyte development. We have previously shown 

that Ewsa directs chondrocyte differentiation through modulation of chondrogenesis master 

transcription factor Sox9. Runx2 is also known to play a critical role in differentiation of both 

chondrocytes and osteoblasts, so we have addressed whether and how Ewsa regulates Runx2 

expression and transcriptional activity. We discovered that Runx2 protein expression dramatically 

increases in craniofacial chondrocytes of 4-6dpf MZ ewsa/ewsa compared to wt/wt embryos. We 

have also observed premature mineralization in MZ ewsa/ewsa embryos at 6dpf and 10dpf. MZ 

ewsa/ewsa fish also display a decrease in expression of collagen10a1, a hypertrophic-specific 

Runx2 target gene. These data together suggests that Ewsa regulates Runx2 expression and 

transcriptional activity during chondrogenesis and regulates mineralization of these domains. 

Additionally, our lab has previously discovered that adult MZ ewsa/ewsa fish display aberrant 
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curved spines. Based on these results we asked how Ewsa is involved in the formation of the 

axial skeleton. Since Collagen2a1 is a critical component of notochord development as both a 

precursor to intervertebral disc (IVD) formation and as a component of notochord sheath 

extracellular matrix (ECM) we have previously asked if Ewsa regulates the collagen2a1a gene. 

Ewsa interacts with the col2a1a gene and col2a1 is upregulated in the notochord MZ ewsa/ewsa 

fish which suggests that the notochord sheath ECM is misregulated in mutant fish. Additionally, 

our analysis also revealed that notochord cells have failed to intercalate 5-10dpf and remain in a 

single layer. Based on our previous data and the data in this report, we hypothesize that Ewsa 

regulates axis development through regulation of collagen2a1 expression, which in turn allows 

for normal notochord sheath ECM distribution, which in turn allows for notochord cell intercalation 

and later IVD and vertebral body formation. This is the first in vivo evidence for regulation of 

RUNX2 by EWS during chondrogenesis and axial skeleton development. 
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INTRODUCTION 

 EWS (EWSR1, Ewing sarcoma breakpoint region 1) is a gene that was originally 

discovered in Ewing sarcoma (ES), the second most common bone cancer found in children and 

young adults. The hallmark of this disease is the presence of an aberrant fusion gene encoding 

the N-terminal transcriptional activation domain of EWS and the C-terminal domain of an ETS 

transcription factor, formed by a chromosomal translocation [1]. The most common fusion gene 

reported, EWS/FLI1, is known to drive aberrant transcription of target genes compared to cells 

not expressing EWS/FLI1 [2-4] and induces altered splicing events [5, 6].  EWS/FLI1 has also 

been shown to interact directly with EWS to inhibit its endogenous function in a dominant negative 

manner [7], and human cells with depleted EWS display mitotic defects, a phenotype similar to 

what is seen in cells expressing EWS/FLI1 [8]. This raises the possibility that EWS function may 

be inhibited in ES skeletal tumors due to the dominant activity of EWS/FLI1 on EWS. Therefore, 

elucidating the endogenous role of EWS in skeletal development is essential to understanding 

the pathogenesis of ES. 

 Evidence for a role of EWS in skeletal development was first demonstrated using EWS 

knockout mice, which display smaller size compared to wild-type littermates and decreased 

density of long bones and 90% postnatal lethality [9]. This study demonstrated that EWS plays a 

critical role during development, but the exact mechanism of EWS during skeletogenesis and long 

bone formation is not explained. The formation of long bones, the site of ES, develops through 

endochondral ossification (Fig. 1). The other processes of bone formation is intramembranous 

ossification, which occurs by direct ossification of mesenchymal precursors giving rise to bone. 

Endochondral ossification begins with the condensation of mesenchymal precursor cells. These 

condensations are first driven to the cartilage lineage and differentiate into proliferating 

chondrocytes via SOX9 (SRY, (Sex Determining Region Y) - box 9) activity [10].  Proliferating 

chondrocytes then undergo tightly controlled changes in gene expression and morphology to 

promote progression into intermediate prehypertrophic cells before differentiating into 
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hypertrophic cells, followed by mineralization of the extracellular matrix. The hypertrophic 

chondrocytes then secrete factors to induce angiogenesis which brings in osteoblasts and then 

undergo cell death before being replaced by bone deposited by osteoblasts.  

To increase our understanding of the in vivo role of EWS, we utilized zebrafish as a model. 

The two zebrafish orthologues of human EWS were first described as ewsr1a (ewsa) and ewsr1b 

(ewsb) [11]. Depletion of ewsa and ewsb via morpholino injection at the one-cell stage contributed 

to mitotic defects induced via multipolar and abnormal spindles, and embryos depleted of ewsa 

and ewsb also displayed a reduced number of proneural cells due to p53-mediated apoptosis in 

the central nervous system and embryonic lethality by 5dpf [11]. These initial results describe the 

essential role of ewsa and ewsb during development. To study the role of EWS during 

skeletogenesis, we obtained a maternal zygotic (MZ) ewsa/ewsa zebrafish line null for Ewsa. 

Zebrafish depleted of ewsb did not survive to adulthood. We have found that MZ ewsa/ewsa 

mutant fish display defects in cartilage structures including impaired differentiation of 

chondrocytes and aberrant angle of Meckel’s cartilage and palatoquadrate structures, 

emphasizing the role of EWS in skeletogenesis [12]. To explain this mechanism, in this same 

report [12], we demonstrated a role for EWS in chondrocyte development to regulate SOX9. 

The other essential transcription factor required for chondrogenesis is the skeletogenesis 

master transcription factor RUNX2 (Runt-related transcription factor 2). SOX9 is essential for 

driving cells into the chondrocyte lineage and preventing hypertrophy, but maturation of 

chondrocytes to hypertrophic chondrocytes is driven by RUNX2 and inhibited by SOX9 through 

direct inhibition of RUNX2 by SOX9 [13-15]. For the correct gene expression changes that take 

place during chondrocyte differentiation to occur, SOX9 activity must be inhibited and RUNX2 

activity must be promoted. In RUNX2-deficient mice, the skeletal structures consist of only resting 

and proliferating cartilage [16-18]. These mice also display postnatal lethality due to a complete 

lack of ossification due to the absence of mature osteoblasts [19] providing further evidence for 

the importance of RUNX2 during both chondrogenesis and skeletogenesis. Since Ewing sarcoma 
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occurs in skeletal tissue, we need to increase our understanding of the molecular mechanisms 

by which EWS directs chondrocyte maturation. Loss of Ewsa in fish contributes to defects in 

cartilage structures, and since Runx2 is required to drive cartilage differentiation, we seek to 

determine if regulation of RUNX2 occurs in zebrafish null for Ewsa. We then ask specifically how 

Ewsa regulates Runx2 and if this is done by controlling Runx2 mRNA transcription, Runx2 protein 

translation, and/or transcriptional activity of Runx2. We investigate how Ewsa regulates Runx2 

during chondrogenesis, and how this regulation influences the transcriptional profile of 

chondrocytes during differentiation. 

 During this study we also aimed to elucidate the function of Ewsa in axial skeletal 

formation. The axial skeleton is derived from the notochord, a critical structural component and 

signaling center in zebrafish. Preceding axis formation, the notochord must undergo vacuolization 

followed by secretion of extracellular matrix (ECM) proteins, notably type II collagen, to form the 

sheath surrounding the notochord. [20-22]. Also, the formation of the ECM is critical for proper 

development of the notochord and spine because notochord cells provide pressure on the sheath 

for support and provide the notochord with its structural properties [23]. The sheath itself is 

composed of both condensed and non-condensed areas. The condensed areas form the nucleus 

pulposus cells and the non-condensed areas give rise to sclerotome cells, the precursor of 

vertebral bodies [24]. Notochord cells located in vertebral bodies are then removed and relocate 

to intervertebral regions where they form the nucleus pulposus cells which then give rise to the 

intervertebral discs (IVD) [25, 26]. Sclerotome cells migrate around the notochord and undergo 

endochondral ossification to form the vertebrae [27]. Adult MZ ewsa/ewsa fish in our lab display 

aberrant curved spines likely due to a defect in IVD formation, impaired differentiation of nucleus 

pulposus cells, and overexpression of type II collagen in the notochord and ECM. These mutants 

also display premature vertebrae formation compared to wild-type. In Collagen II-deficient mice, 

the notochord persists as a rod-like structure in vertebral bodies until birth [28] providing evidence 

of the critical importance of Collagen II during axis formation. Our previous data suggest that 
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Ewsa is critical for formation of the axial skeleton possibly through regulation of type II collagen. 

It is unknown, however, how Ewsa-dependent regulation of the notochord sheath and ECM 

contributes to the development of the notochord. In this study we aim to elucidate the first steps 

of the mechanism underlying how the formation of the notochord is regulated by Ewsa to 

ultimately form the skeletal axis. Together, in this report we investigate how Ewsa regulates 

chondrogenesis through regulation of Runx2 expression as well as its role in axial skeletogenesis. 

 

MATERIALS & METHODS 

Zebrafish maintenance  

Zebrafish were bred and maintained at 28.5˚C using an automatic filtration system from Aquatic 

Eco-Systems Inc, and embryos were staged as previously described [29]. The wild type line used 

was the Oregon AB* line. The ewsa/ewsa line was generated by insertional mutagenesis in a 

wild-type Ekkwill (EK) background by Znomics Inc, and is maintained as a Maternal Zygotic (MZ) 

line in our system. 

 

Alizarin red staining  

Zebrafish were stained with alizarin red to stain skeletal structures as previously described [30]. 

Fish were anesthetized with 0.04% Tricaine Methanesulfonate (MS222) and fixed overnight at 

4˚C in 4% paraformaldehyde. Pigment was ablated by treatment with 3% H2O2 in 1% KOH. 

Cleared specimens were stained with 0.05% alizarin red dissolved in 1% KOH, destained with 

successive washes of glycerol/0.25% KOH, and stored in glycerol. Images were taken with a 

Leica DFC320 camera mounted on a Leica MZ FLIII dissecting microscope. 

 

Immunohistochemistry  

Embryos were visualized as previously described [11]. Fixed embryos were permeabilized with 

methanol at -20˚C overnight, digested with 0.01% trypsin, and then blocked with blocking solution 
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(5% fetal bovine serum, 0.1% tween-20, in PBS (phosphate buffered saline)). Primary antibodies 

were applied overnight at 4˚C; embryos were washed thoroughly in wash solution (0.1% tween-

20 in PBS); and secondary antibodies were applied overnight at 4˚C. Embryos were then washed 

thoroughly again. We used a rabbit polyclonal primary antibody (LS-C47340 from LS-Bio) diluted 

1:100 and anti-rabbit Alexa 488 diluted 1:250 to visualize Runx2. We used an anti-rabbit 

polyclonal anti-Collagen X primary antibody (ab58632, abcam) diluted 1:100 and anti-rabbit Alexa 

488 diluted 1:250 to visualize Collagen X. We used a solution of WGA (wheat germ agglutinin) 

Alexa 594 or Alexa 488 diluted 5 µg/mL to visualize cartilage and DAPI diluted 0.5 mg/mL to 

visualize DNA. Images were taken with an Exi Aqua camera (Q Imaging) mounted on an Eclipse 

Ti microscope (Nikon). 

 

In situ hybridization 

In situ hybridization was performed as previously described (Azuma et al, 2006). Fixed embryos 

were permeabilized in methanol at -20˚C overnight then washed in PBS. Embryos were then 

equilibrated in hybridization (HYB) buffer at 60˚C for 3 hours. Embryos were then hybridized 

overnight at 60˚C with antisense RNA generated with T7 RNA polymerase and DIG-labeled 

dUTP. Embryos were then treated with anti-DIG antibodies conjugated with alkaline phosphatase 

(AP) overnight at 4˚C. After equilibration with AP buffer, signal was developed with BM Purple to 

detect presence of runx2bP2 mRNA, and then embryos were fixed again in 4% paraformaldehyde 

at room temperature for 10 minutes. Statistical analysis was performed scoring the embryo as 

either normal or overexpressed using the Chi-square test with one degree of freedom (wt/wt, 

n=13; MZ ewsa/ewsa, n=18). 
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RESULTS 

Runx2 protein expression is upregulated in craniofacial cartilage structures in MZ 

ewsa/ewsa mutant fish 3-6dpf. In Ewing sarcoma, pathogenesis of the disease occurs in bone 

and soft tissue and as a result of the dominant negative function of EWS/FLI1 over EWS [7]. As 

a result, understanding the role for Ewing sarcoma protein EWS in the regulation of 

skeletogenesis is of interest. We have shown previously that Ewsa regulates chondrogenesis 

through control of chondrogenesis master transcription factor Sox9 and regulates expression of 

its target genes [12]. The other major transcription factor involved in this process is RUNX2 (Runt-

related transcription factor 2), the master transcription factor of skeletogenesis and 

osteoblastogenesis. During the initial stages of chondrogenesis, SOX9 drives mesenchymal 

condensations to the chondrocyte lineage and to proliferate [31, 32] and RUNX2 drives 

chondrocytes to differentiate from prehypertrophy to hypertrophy [16, 17]. We wanted then to 

understand how expression of Runx2 protein is regulated by Ewsa during zebrafish chondrocyte 

maturation. In zebrafish, due to a genome duplication event, runx2 exists as two orthologues, 

runx2a and runx2b [33, 34]. Earlier in situ hybridization studies have shown that runx2a is 

expressed in zebrafish by the 70% epiboly stage and runx2b mRNA is expressed as early as the 

one-cell stage [33]. Even though both runx2a and runx2b are detected in early stages, the role of 

Ewsa in regulation of Runx2 protein expression in later stages during chondrocyte maturation 

remains unknown. To understand how the dynamics of Runx2 protein expression is regulated by 

Ewsa during the period of chondrocyte maturation we utilized a commercially available RUNX2 

antibody (LSBio LS-C47340). The CBFA1/RUNX2 antibody used in this study was raised in rabbit 

against a peptide that corresponds to amino acids 262-279 of human RUNX2. BLAST analysis of 

the immunogen sequence confirms 88% identify with zebrafish Runx2a and Runx2b. Therefore, 

it is possible the signal seen in embryos using this antibody is both Runx2a and Runx2b. This 

antibody recognizes the C-terminus of Runx2 to avoid cross-reactivity with the RUNX1 and 

RUNX3, the other two members of the RUNX gene family which all contain the homologous Runt 
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DNA-binding domain. Wild-type (wt/wt) and MZ ewsa/ewsa mutant embryos at 3dpf were 

subjected to immunohistochemistry using a 1:100 dilution of anti-RUNX2 antibody (Fig. 2). Wild-

type embryos at this stage did not express detectable levels of Runx2 protein in the Meckel’s 

cartilage, a structure that undergoes endochondral ossification. At this same stage, MZ 

ewsa/ewsa mutant embryos expressed Runx2 in a greater number of chondrocytes in the 

Meckel’s cartilage compared to wild-type embryos. This trend was also seen in another 

endochondral cartilage domain, the ceratohyal, at this stage (Fig. 18). To further investigate the 

dynamics of Runx2 expression in later stages of chondrocyte maturation, wild-type and MZ 

ewsa/ewsa embryos were subject to immunohistochemistry with Runx2 antibody from 4-6dpf. In 

the MZ ewsa/ewsa embryos, the pattern of Runx2 overexpression was continued in the Meckel’s 

cartilages compared to the wild-type (Fig. 3). During these same stages, other craniofacial 

cartilage domains in MZ ewsa/ewsa embryos also displayed an increase of Runx2 expression 

including the ceratohyal (Fig. 19), palatoquadrate (Fig. 20), hyomandibular (Fig. 21), and ethmoid 

plate (Fig. 4, Fig. 5). This data suggests that Ewsa plays a role in inhibiting either the transcription 

of runx2 or Runx2 translation during these stages of chondrocyte development. 

 

Ewsa does not regulate transcription of runx2 mRNA in all craniofacial domains. To validate 

expression of Runx2 protein, in situ hybridization using antisense RNA probes specific to 

runx2aP2 isoform was performed using 4dpf wt/wt and MZ ewsa/ewsa embryos (Fig. 6). 

Expression of runx2b has been described previously using in situ hybridization [35], and 

expression of runx2b using our probe matches the results described in the literature in the ethmoid 

plate. Interestingly, over-expression of runx2bP2 only occurred in the ethmoid plate and not the 

Meckel’s cartilage of MZ ewsa/ewsa embryos suggesting a domain-specific regulation of 

runx2bP2 transcription by Ewsa. There is no change in expression of runx2bP2 mRNA transcript 

in the Meckel’s cartilage, ceratohyal, or other craniofacial cartilage domains at this time even 

though Runx2 protein expression was previously shown to be increased in these domains at 4dpf. 
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Expression of Collagen X is misregulated in craniofacial structures in MZ ewsa/ewsa fish. 

Ewing sarcoma is a disease characterized as small round blue cells, which is indicative of an 

undifferentiated phenotype. To further understand how Ewsa plays a role in differentiation of 

chondrocytes, the differentiation profile of chondrocytes was examined in wt/wt and MZ 

ewsa/ewsa fish. The protein expression profile of structural protein collagen, type X, α1 (Col10a1) 

a late hypertrophic chondrocyte marker, was studied in wt/wt and MZ ewsa/ewsa fish from at 5dpf. 

We have also previously shown that expression of Col10a1 protein, a known Runx2 target gene 

[36], is downregulated in MZ ewsa/ewsa fish at 5dpf [12]. These previous data provide further 

evidence that differentiation of chondrocytes is inhibited at these early stages of development in 

MZ ewsa/ewsa mutants.  

Runx2 has been shown to be one of the main drivers of differentiation of 

prehyperchondrocyte differentiation into hypertrophic chondrocytes and endochondral 

ossification [17, 37]. Since Runx2 has roles in both chondrocyte and osteoblast differentiation, 

Runx2 is an attractive target for Ewsa regulation. To understand if Ewsa regulates one of the 

hypertrophic chondrocyte-specific downstream target genes of Runx2, Collagen X, embryos were 

subjected to immunohistochemistry from 5dpf using Collagen X antibodies. At 5dpf, MZ 

ewsa/ewsa embryos do not display detectable levels of Collagen X signal in Meckel’s cartilage 

(Fig. 10), as well as another cartilage domain, ceratohyal (Fig. 22). This is indicated by a decrease 

in signal intensity within these structures compared to wt/wt, which shows Collagen X signal within 

chondrocytes. Interestingly, the hyomandibular cartilage at this stage displays an increase in 

Collagen X signal at 5dpf (Fig. 23) which may suggest domain-specific regulation of Runx2 

transcriptional activity occurs. These data suggest that one of the possible mechanisms by which 

Ewsa drives chondrocyte differentiation is through regulation of expression of Collagen X, 

possibly through modulation of Runx2 transcriptional activity.  
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Mineralization of craniofacial structures is increased in MZ ewsa/ewsa mutant fish. We 

examined if the final stages of skeletogenesis, deposition of mineralized matrix, is regulated by 

Ewsa. wt/wt and MZ ewsa/ewsa embryos were subjected to alizarin red staining to detect 

mineralization in craniofacial domains in 6dpf and 10dpf embryos. At 6dpf, MZ ewsa/ewsa 

embryos show increased intensity of Alizarin red stain compared to wt/wt in the parasphenoid (ps) 

region (Fig. 7). At this stage, mineralization has not yet begun of the endochondral structures, 

such as Meckel’s cartilage and ceratohyal. At 10dpf MZ ewsa/ewsa shows greater mineralization 

in the ps, dentary (d), ceratohyal (ch), and vertebrae (Fig. 8, Table 1). This data matches the 

results seen in chondrocytes overexpressing Runx2. The dentary, which forms around the 

Meckel’s cartilage, shows an increased expression of mineralization compared to wt/wt. The 

ceratohyal, also displays premature endochondral ossification as does the parasphenoid, a 

domain near where Runx2 is overexpressed in the ethmoid plate. Premature vertebrae formation, 

which arise from endochondral ossification, also occurs in MZ ewsa/ewsa mutants. A possible 

explanation for this is that premature overexpression of Runx2 in these domains is inducing 

premature mineralization. A similar phenotype has been reported in which mice with chondrocyte-

specific overexpression of Cbfa1/Runx2 under the control of the type II collagen gene promoter 

have shown premature chondrocyte maturation and endochondral ossification [38]. This is slightly 

different than what occurs in our MZ ewsa/ewsa fish. Our results suggest that mutants show 

delayed chondrocyte differentiation in the endochondral structure Meckel’s cartilage but show an 

increase of mineralization in the parasphenoid structure and the dentary, ceratohyal, and 

vertebrae. There could be several reasons for this difference. First, Runx2 was only 

overexpressed in cartilage cells in mice whereas in MZ ewsa/ewsa fish, there is a loss of Ewsa in 

the entire organism which may misregulate the function of the osteoblast that deposit mineralized 

matrix. Also, in mutant fish we have shown an increase of Indian Hedgehog (Ihh) expression in 

the chondrocytes of the Meckel’s cartilage, and Ihh has been shown to prevent chondrocyte 
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hypertrophy [39]. The overexpression of Ihh may be contributing to delayed differentiation while 

osteoblast function may be misregulated, leading to premature mineralization.  

 

Notochord cells fail to intercalate and expression of Runx2 is misregulated in the body of 

MZ ewsa/ewsa embryos. Ewing sarcoma development occurs in skeletal elements such as the 

spine, so we aimed to elucidate the role of Ewsa in axial development. In vertebrates, the 

notochord gives rise to the nucleus pulposus cells and intervertebral discs in the axial skeleton. 

MZ ewsa/ewsa adult fish show curved spines compared to wt/wt. To understand the mechanism 

behind this phenotype, notochord cells were visualized in live embryos from 5, 6, 8 and 10dpf 

using brightfield microscopy. The notochord cells of wt/wt embryos at 5dpf (data not shown) and 

at 6dpf intercalate whereas notochord cells of MZ ewsa/ewsa mutant zebrafish are more narrow 

and stacked in a single row (Fig. 11). This trend continued throughout 8dpf and 10dpf (Fig. 24). 

The cell margins of the notochord cells also appear thicker in MZ ewsa/ewsa embryos compared 

to wt/wt. These data suggest that Ewsa plays a critical role in the organization of notochord cells. 

We have shown previously that MZ ewsa/ewsa mutant zebrafish have curved spines, 

which may suggest a misregulation of skeletogenesis in this process. We have already seen that 

Ewsa regulates the expression of Runx2 in craniofacial cartilage, so next we wanted to investigate 

the possible role of Ewsa-dependent regulation of Runx2 in notochord development. Embryos at 

3dpf were subjected to immunohistochemistry using anti-Runx2 antibodies at a 1:100 dilution. At 

3dpf, interestingly, Runx2 expression is decreased in the posterior region of the tail inside the 

notochord of MZ ewsa/ewsa mutants compared to wt/wt embryos (Fig. 12, Fig. 13). By 5dpf (Fig. 

14, Fig. 15) and 6dpf (Fig. 16, Fig. 17) Runx2 protein expression in wt/wt embryos extends 

anteriorly while Runx2 expression in MZ ewsa/ewsa mutants remains more posteriorly localized. 

These data suggest that Ewsa is required for promoting the temporal expression and localization 

of Runx2 in the notochord. This leads us to speculate that Ewsa’s regulation of the localization of 

Runx2 may also affect the localization and expression of Runx2’s downstream target genes, such 
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as col10a1, in these domains. Future study will focus on elucidating how expression of Runx2 

target genes are regulated by Ewsa in this domain, since formation of vertebral bodies occurs 

through an endochondral process, of which Runx2 is an essential component. Col10a1 has 

already been shown to be expressed premature to vertebral body formation [26] so misregulation 

of Runx2 expression in these domains may contribute to aberrant Col10a1 expression. 

Misregulation of this process may lead to aberrant vertebral skeletogenesis and the development 

of curved spines in MZ ewsa/ewsa embryos. 

 

DISCUSSION 

Ewsa regulates craniofacial skeletogenesis through regulation of Runx2 

To understand the role of Ewsa during skeletogenesis, we investigated the effect of Ewsa 

on the master regulator of skeletogenesis, Runx2. Our results indicate that Ewsa plays a critical 

role in controlling expression of Runx2 protein and its target gene col10a1 and regulating 

mineralization of craniofacial domains. Together we propose that Ewsa regulates chondrogenesis 

through regulation of Runx2 expression and transcriptional activity (Fig. 9).  

Previous work in this lab has shown that Ewsa plays a critical role in regulating 

chondrocyte maturation through modulation of the chondrogenesis master transcription factor 

Sox9 and its transcriptional targets in association with skeletal defects [12]. The other critical 

transcription factor that drives cartilage differentiation is RUNX2. Tightly regulated control of 

RUNX2 activity is required to ensure that premature differentiation of chondrocytes and 

subsequent mineralization does not occur resulting in severe bone defects. This regulation is 

done partly through SOX9, which has a dominant role on RUNX2 during chondrogenesis [14]. 

Therefore, controlling the timing of SOX9 and RUNX2 activity is critical for proper cartilage and 

skeletal development. Since we have shown that EWS directly interacts with SOX9 [12], it is 

possible that EWS inhibits regulation of RUNX2 through SOX9. Currently, the role of EWS in 
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RUNX2 regulation has only been described in vitro [40]. Elucidating the role of EWS in regulation 

of RUNX2 in vivo is of critical importance. 

This report is the first in vivo study of EWS-dependent regulation of RUNX2. We first 

investigated if Runx2 protein levels were affected during chondrocyte differentiation. Here we 

report that Runx2 protein expression is highly increased in craniofacial chondrocytes of MZ 

ewsa/ewsa fish. These data suggest that Ewsa is essential for controlling the timing of Runx2 

protein expression in these domains by inhibiting expression of Runx2. Since in situ hybridization 

only showed an increase of runx2 mRNA expression in the ethmoid plate domain and not at the 

Meckel’s cartilage or other endochondral structures, these data may suggest that Ewsa does not 

inhibit Runx2 through transcriptional inhibition in the Meckel’s cartilage but through another 

mechanism. One possible explanation is that Runx2 may be inhibited by Sox9 in these domains. 

SOX9 has been shown to inhibit RUNX2 function [14] as well as direct it to the lysosome for 

degradation [15]. It is possible that since Ewsa regulates Sox9 function, Ewsa may be working 

through Sox9 to inhibit Runx2 protein expression in prehypertrophic chondrocytes to prevent 

premature differentiation. Previous data in our lab has shown that Sox9a protein is expressed in 

cartilage structures and this expression is unchanged in both wt/wt and MZ ewsa/ewsa from 3-

6dpf [41], whereas Runx2 is inhibited in wt/wt during this period and upregulated in MZ ewsa/ewsa 

mutants. This suggests that Sox9a is unable to inhibit Runx2 expression in these domains in the 

absence of Ewsa. To understand if Ewsa is required for Sox9-dependent Runx2 inhibition, it will 

be interesting to study further if loss of Ewsa also contributes to a decrease in lysosomal activity 

in chondrocytes, since SOX9 directs RUNX2 towards lysosomal degradation. Alternatively, Ewsa 

may be required to bind to runx2 mRNA to prevent premature translation [33, 34]. Consistent to 

the upregulation of Runx2, we also discovered that mineralization of craniofacial structures of MZ 

ewsa/ewsa fish is increased compared to wt/wt. These data suggest that Ewsa may work through 

Sox9 to inhibit Runx2 protein to regulate the timing of mineralization. In the absence of Ewsa, 

overexpression of Runx2 in cartilage domains may contribute to the phenotype of premature 
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mineralization, possibly by no longer inhibiting Runx2 expression through Sox9. This is notable 

because in previous reports, tissue-specific overexpression of Runx2 in mice prehypertrophic 

chondrocytes led to premature and increased mineralization of long bones and stunted growth 

[38]. In future studies it will be interesting to identify key signaling molecules in the 

microenvironment of cartilage structures that may be overexpressed in response to 

overexpression of Runx2 in chondrocytes, such as Bone morphogenic protein (BMP) and 

Parathyroid-related peptide (PTHrP). Another possibility is that the premature mineralization 

phenotype is due to the overexpression of another signaling molecule not directly related to Runx2 

overexpression, but another molecule overexpressed due to loss of Ewsa. In MZ ewsa/ewsa 

mutants, we have previously shown that expression of Ctgf is increased in craniofacial domains 

compared to wt/wt. Ctgf is also a known driver for mineralization [42], so Ctgf overexpression may 

work in parallel with Runx2 overexpression to drive premature mineralization. To test this 

hypothesis, in future studies we will knock out both ctgf and runx2 in zebrafish chondrocytes and 

observe whether this loss will rescue the mineralization phenotype.  

 

Ewsa regulates collagen10a1 expression through modulation of Runx2 transcriptional 

activity 

We discovered that col10a1 (colX) is decreased both at the mRNA and protein level in MZ 

ewsa/ewsa mutant compared to wt/wt embryos. The decrease was originally discovered in the 

Meckel’s cartilage.  In this study, we further discovered that there are also decreases in colX 

mRNA and protein in other craniofacial domains. Together, these results suggest that Ewsa is 

required for expression of ColX through regulation of Runx2’s transcriptional activity. Runx2 

overexpression has been shown to correlate with increased expression of colX [38]. Since Runx2 

overexpression in MZ ewsa/ewsa fish did not correlate with an increase in ColX expression, this 

suggests that Ewsa is also required for proper Runx2 transcriptional activity. Since ColX is also a 

marker for hypertrophic chondrocytes, this decrease in expression of ColX indicates that 
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differentiation of chondrocytes is impaired. For prehypertrophic chondrocytes to differentiate into 

hypertrophic chondrocytes, expression of colX by Runx2 is critical [36]. Since 

immunohistochemistry analysis only provides information of protein expression and localization, 

it is still uncertain how Ewsa can specifically be associated with Runx2 to drive transcription of its 

target genes. Previously, it’s been reported that EWS is associated with transcriptional coactivator 

p300/CBP to regulate transcription and chromatin remodeling [43, 44]. Runx2 has also been 

shown to interact with p300/CBP to drive expression of its target genes [45]. These reports 

combined indicate that it is possible that Runx2, EWS, and p300/CBP may form a complex for 

Runx2 to drive transcription of colX. For future studies, it will be interesting to understand if Ewsa 

forms a complex with p300/CBP and Runx2 to drive target gene expression in chondrocytes. 

Quantifying gene expression changes using quantitative RT-PCR and RNA-sequencing from 

cDNA generated using chondrocyte mRNA from wt/wt and MZ ewsa/ewsa mutants will also 

provide insight into changes of the transcriptional profile of Runx2 with and without Ewsa. 

Additionally, in a previous report and data not shown we have demonstrated that Ewsa binds to 

ctgf and col2a1 loci, and this binding suggests a possible mechanism for transcriptional regulation 

through chromatin remodeling. It will also be interesting to explore how Ewsa is required in 

chromatin remodeling for controlling expression of runx2 and its target gene loci, possibly through 

recruitment of transcriptional coactivators p300/CBP.   

 

Ewsa is required for proper formation of the notochord and vertebrae formation 

In addition to craniofacial structures, we looked at how Ewsa regulates formation of the 

axial skeleton, because Ewing sarcoma develops in skeletal elements. Previous data from our 

lab have shown that adult MZ ewsa/ewsa fish have curved spines, indicative of defects in the 

development of their axial skeleton. In zebrafish, a Notch-dependent event occurs that 

differentiates notochord cells into two distinct cell populations by 16.5 hours post-fertilization (hpf), 

and at this time the early notochord cells differentiate to form an outer sheath layer and an inner 
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layer composed of vacuolated cells [22]. The developing notochord depends upon both the rigidity 

of the extracellular matrix of the notochord sheath as well as the osmotic pressure the vacuolated 

cells exert on the sheath for structural support [46]. Previous data (not shown) from our lab have 

shown that Ewsa drives expression of type II collagen in the notochord, and in MZ ewsa/ewsa 

mutants type II collagen expression is upregulated compared to wt/wt.  We have previously shown 

via ChIP assay that Ewsa regulates Collagen II expression by interacting with the col2a1a locus. 

Collagen II is a critical component of axial skeleton formation; previous studies utilizing Col2a1-

null mice have shown that the notochord persists and IVD formation is inhibited [28]. In this study 

we found that at 5-6dpf and at 8dpf and 10dpf vacuolated notochord cells display defects in 

intercalation, evidenced by the single line stacking of vacuolated cells in notochords of MZ 

ewsa/ewsa. One possible explanation for this failure to intercalate is the evidence that increased 

expression of type II collagen in the sheath may be increasing the rigidity of the ECM. Thus, this 

rigidity may prevent the vacuolated cells from properly intercalating. Since the notochord cells 

serve as the foundation for nucleus pulposus cells that later form the IVDs, this phenotype may 

contribute to the downstream phenotype of adult MZ ewsa/ewsa fish displaying curved spines.  

As the notochord develops, it undergoes a process very similar to endochondral 

ossification. The notochord becomes segmented and in regions of vertebrae, expresses type X 

Collagen, which is eventually replaced by bone, while intervertebral discs are formed from 

notochord cells [26]. However, the overall development of this process is not well understood. 

Consistent with results from the cranial skeleton, we discovered that the mineralization of 

vertebrae occurs prematurely in MZ ewsa/ewsa embryos.  The result suggests the importance of 

Ewsa in the mineralization of the axial skeleton. One possible explanation for this result is that 

overexpression of Runx2 in this region is driving premature mineralization of the axis as well. 

Since expression of Runx2 target gene osteocalcin (osc) occurs in the sheath before 

mineralization [21], overexpression of Runx2 may be contributing to overexpression of 

Osteocalcin, driving premature mineralization. As a result, it is possible that Ewsa contributes to 
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mineralization by tightly regulating the formation of both the notochord sheath and expression of 

genes involved in mineralization. It is currently unknown how the organization of the ECM 

environment contributes to vertebrae formation. In future studies we will explore how the 

notochord ECM is misregulated in MZ ewsa/ewsa using electron microscopy. A misregulated 

ECM structure may contribute to the accumulation of several signaling molecules, such as Indian 

hedgehog (IHH) [47, 48], Bone morphogenic protein (BMP) [48] or other unidentified molecules, 

contributing to premature mineralization of vertebrae. To test this hypothesis, future work will 

elucidate the expression profile of these signaling models in the notochord and perform 

phenocopy experiments either over-expressing or down-regulating expression of signaling 

molecules contributing to premature vertebral mineralization. 

Among the domains in which Runx2 expression is dependent upon Ewsa regulation, it is 

of utmost importance to identify the exact mechanism behind which Ewsa inhibits Runx2 

expression, and how Ewsa regulates the expression of Runx2 target genes, particularly those 

involved in differentiation such as col10a1. Here we provide novel in vivo evidence of Ewsa-

dependent regulation of Runx2 in endochondral ossification. Since Ewing sarcoma is classified 

as an undifferentiated small round blue cell tumor, understanding the role of endogenous EWS in 

differentiate of skeletal tissue, the tissue in which Ewing sarcoma arises, will increase our 

understanding of the pathogenesis of the disease when EWS function is inhibited. Since RUNX2 

is critical for differentiation of chondrocytes, expanding our knowledge of the specific role EWS 

has on the function and expression of RUNX2 will increase our understanding of the pathogenesis 

of Ewing sarcoma and skeletogenesis, since defects in differentiation of this tissue type is 

associated with the disease. 
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FIGURES 

  

Figure 1. Endochondral ossification. Endochondral ossification is the 
developmental process of the formation of long bones that relies on a cartilaginous 
intermediate. Mesenchymal precursors differentiate into proliferating chondrocytes, 
which then differentiate into prehypertrophic chondrocytes and later hypertrophic 
chondrocytes. Hypertrophic chondrocytes then construct ECM and die and become 
invaded by blood vessels that deposit osteoblasts, which then deposit bone on the 
remaining ECM. 
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Figure 2. Runx2 is expressed in Meckel’s cartilage of 3dpf MZ ewsa/ewsa embryos but 

not wt/wt. Immunohistochemistry of wild-type (wt/wt) and maternal zygotic (MZ) ewsa/ewsa 

Meckel’s cartilage at 3dpf with RUNX2 antibody. Runx2 protein is not expressed at detectable 

levels in wt/wt embryos but is expressed in a higher number of chondrocytes in MZ ewsa/ewsa 

mutants at 3dpf. Antibody dilution 1:100. wt/wt n=8; MZ ewsa/ewsa n=10 (p<0.001, Chi-square 

test with one degree of freedom). 
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Figure 3: Runx2 expression in wild-type and MZ ewsa/ewsa Meckel’s cartilage from 4-
6dpf.  Immunohistochemistry of wild-type (wt/wt) and maternal zygotic (MZ) ewsa/ewsa mutant 
embryos with RUNX2 antibody shows that expression of Runx2 protein is present in the 
Meckel’s cartilage at 4-6dpf. Structures were scored as either ‘overexpression’ or ‘low 
expression’ of Runx2. At 4dpf, 2/27 (7%) wt/wt embryos (n=27) display overexpression and 
40/41 (98%) of MZ ewsa/ewsa zebrafish display overexpression of Runx2 (p<0.005). At 5dpf, 
1/10 (10%) wt/wt embryos showed strong expression and 11/11 (100%) MZ ewsa/ewsa 
embryos showed high expression of Runx2 (p<0.001). At 6dpf 0/8 (0%) wt/wt embryos (n=8) 
display overexpression and 8/8 (100%) of MZ ewsa/ewsa embryos (n=8) display 
overexpression. Statistical analysis performed using Chi-square test with one degree of 
freedom. Antibody dilution 1:100. 
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Figure 4. Runx2 expression in wild-type and MZ ewsa/ewsa craniofacial cartilage from 

4dpf.  Immunohistochemistry of wild-type (wt/wt) and maternal zygotic (MZ) ewsa/ewsa 

mutant embryos with RUNX2 antibody shows that expression of Runx2 protein is present in a 

higher number of chondrocytes of ethmoid plate at 4pf in MZ ewsa/ewsa zebrafish compared 

to wt/wt embryos. Antibody dilution 1:100. 
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Figure 5: Runx2 expression in wild-type and MZ ewsa/ewsa ethmoid plate from 5dpf.  

Immunohistochemistry of wild-type (wt/wt) and maternal zygotic (MZ) ewsa/ewsa mutant 

embryos with RUNX2 antibody shows that expression of Runx2 protein is present in a higher 

number of chondrocytes of the ethmoid plate at 5-6dpf in MZ ewsa/ewsa zebrafish compared 

to wt/wt embryos. Antibody dilution 1:100. 
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  Figure 6. Expression of runx2bP2 transcripts increased in MZ ewsa/ewsa mutants. In 
situ hybridization using an anti-sense runx2bP2 isoform probe shows increased expression in 
the ep region but not in Meckel’s cartilage. wt/wt n=13; MZ ewsa/ewsa, n=18. 56% (10/18) MZ 
ewsa/ewsa embryos showed increased expression in ep compared to wt/wt (p<0.001, Chi-
square test with one degree of freedom). Abbreviations: ep=ethmoid plate; m=Meckel’s 
cartilage. 
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Figure 7. Mineralization is increased in MZ ewsa/ewsa embryos compared to wt/wt at 
6dpf. Alizarin red staining shows an increase of mineralization in the MZ ewsa/ewsa embryos. 
Embryos were scored as having either a high or low amount of mineralization indicated by 
more intense signal and extended anteriorly. 0/8 (0%) of wt/wt embryos (n=8) displayed high 
mineralization and 9/9 (100%) MZ ewsa/ewsa embryos (n=9) displayed high degrees of 
mineralization (p<0.001). Statistical analysis performed using Chi-square test with one degree 
of freedom. Abbreviation: ps, parasphenoid. 
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Table 1: % of craniofacial structures displaying high mineralization at 10dpf 

 d ps ch v n= 

wt/wt 0/8 (0%) 0/8 (0%) 0/8 (0%) 0/8 (0%) 8 

MZ ewsa/ewsa 9/9 (100%)* 9/9 (100%)* 9/9 (100%)* 9/9 (100%)** 9 

*p<0.001, **p<0.05 

Figure 8. Mineralization is increased in MZ ewsa/ewsa embryos compared to wt/wt at 
10dpf. Alizarin red staining shows an increase of mineralization in the MZ ewsa/ewsa 
embryos. wt/wt, n=8; MZ ewsa/ewsa, n=9. 4/9 MZ ewsa/ewsa displayed vertebrae. 
Abbreviations: ps, parasphenoid; ch, ceratohyal; d, dentary. Black triangles indicate vertebrae. 
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Figure 9. Model of Ewsa-Runx2 modulation in skeletogenesis. In early proliferating and 
prehypertrophic chondrocytes, Sox9 is the dominant transcription factor, and heterodimerizes 
with Ewsa to regulate transcription of its target genes. In these early chondrocytes, Sox9 has 
a dominant negative function on Runx2 and directs its degradation toward the lysozome. Sox9 
protein expression levels are the same from 3-6dpf in both wt/wt and MZ ewsa/ewsa (data not 
shown). In wt/wt, this corresponds with a decrease in Runx2 expression at this time. In MZ 
ewsa/ewsa chondrocytes Runx2 expression remains increased, suggesting that Sox9 
depends on Ewsa to direct Runx2 degradation. 
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Figure 10. Collagen10a1 expression is decreased in Meckel’s cartilage of MZ ewsa/ewsa 

mutant embryos compared to wt/wt at 5dpf. Ventral views of Meckel’s cartilage of 5dpf 

wt/wt and MZ ewsa/ewsa mutant embryos (anterior to left) visualized by 

immunohistochemistry using anti-Collagen10a1 antibodies (green) and cartilage stain WGA 

(red). Meckel’s cartilages were scored as either ‘expressing’ ColX or ‘not expressing’ ColX. 

4/4 (100%) of wt/wt embryos (n=4) expressed ColX and 0/6 (0%) of MZ ewsa/ewsa embryos 

(n=6) expressed ColX (p<0.005). Statistical analysis performed using the Chi-square test and 

one degree of freedom. 1:100 antibody dilution. 
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Figure 11. Notochord cells fail to intercalate in MZ ewsa/ewsa mutants compared to 
wt/wt. Brightfield analysis of the notochord cells of 6dpf embryos. MZ ewsa/ewsa mutants 
show thicker notochord boundaries and fewer intercalated cells. Magnification 200x. 0% of 
wt/wt (n=5) nc cells failed to intercalate. 100% MZ ewsa/ewsa (n=5) nc cells failed to 
intercalate. 
 



33 
 

  Figure 12. Runx is expressed in the posterior tail at 3dpf. Runx2 is expressed inside the 
notochord in the posterior portion of the tail. Posterior to right, ventral below. Antibody 
concentration 1:100. 
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Figure 13. Runx2 expression is decreased in the posterior tail of 3dpf MZ ewsa/ewsa 
mutants compared to wt/wt. Runx2 is expressed inside the notochord in the posterior portion 
of the tail in MZ ewsa/ewsa mutants, but at a decreased intensity compared to wt/wt. Posterior 
to right, ventral below. Antibody concentration 1:100. 
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Figure 14. Runx2 expression extends more anterior at 5dpf. Runx2 is expressed inside 
the notochord in the posterior portion of the tail and expression begins extending anteriorly at 
5dpf. Posterior to right, ventral below. Antibody concentration 1:100. 
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Figure 15. Runx2 expression in the MZ ewsa/ewsa mutants remains decreased in the 
posterior portion of the tail by 5pdf compared to wt/wt. Runx2 is expressed inside the 
notochord in the posterior portion of the tail and expression remains decreased compared to 
wt/wt 5dpf. Posterior to right, ventral below. Antibody concentration 1:100. 
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Figure 16. Runx2 expression extends more anterior at 6dpf. Runx2 is expressed inside 
the notochord in the posterior portion of the tail and expression continues extending anteriorly 
at 6dpf. Posterior to right, ventral below. Antibody concentration 1:100. 
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Figure 17. Runx2 expression extends more anterior at 6dpf. Runx2 is expressed inside 
the notochord in the posterior portion of the tail and expression begins extending anteriorly at 
6dpf, but expression is decreased compared to wt/wt. Posterior to right, ventral below. Antibody 
concentration 1:100. 
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Figure 18. Runx2 is expressed in ceratohyal cartilage of 3dpf MZ ewsa/ewsa embryos 

but not wt/wt. Immunohistochemistry of wild-type (wt/wt) and maternal zygotic (MZ) 

ewsa/ewsa ceratohyal cartilage at 3dpf with RUNX2 antibody. Runx2 protein is not expressed 

at detectable levels in wt/wt embryos but is expressed in a higher number of chondrocytes in 

MZ ewsa/ewsa mutants at 3dpf. Antibody dilution 1:100. 
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Figure 19: Runx2 expression in wild-type and MZ ewsa/ewsa ceratohyal from 4-6dpf.  

Immunohistochemistry of wild-type (wt/wt) and maternal zygotic (MZ) ewsa/ewsa mutant 

embryos with RUNX2 antibody shows that expression of Runx2 protein is present in the 

ceratohyal of 4dpf MZ ewsa/ewsa zebrafish but not wt/wt embryos.  Expression of Runx2 

persists through 6dpf, with a greater number of chondrocytes expressing Runx2 in MZ 

ewsa/ewsa compared to wt/wt embryos at all stages. Antibody dilution 1:100. 
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Figure 20: Runx2 expression in wild-type and MZ ewsa/ewsa craniofacial cartilage from 

5-6dpf.  Immunohistochemistry of wild-type (wt/wt) and maternal zygotic (MZ) ewsa/ewsa 

mutant embryos with RUNX2 antibody shows that expression of Runx2 protein is present in a 

higher number of chondrocytes of the palatoquadrate cartilage at 5-6dpf in MZ ewsa/ewsa 

zebrafish compared to wt/wt embryos. Antibody dilution 1:100. 
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Figure 21: Runx2 expression in wild-type and MZ ewsa/ewsa craniofacial cartilage from 

5dpf.  Immunohistochemistry of wild-type (wt/wt) and maternal zygotic (MZ) ewsa/ewsa 

mutant embryos with RUNX2 antibody shows that expression of Runx2 protein is present in a 

higher number of chondrocytes of the hyomandibular cartilage at 5-6dpf in MZ ewsa/ewsa 

zebrafish compared to wt/wt embryos. Antibody dilution 1:100. 
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Figure 22. Collagen10a1 expression is decreased in ceratohyal of MZ ewsa/ewsa 
mutant embryos compared to wt/wt at 5dpf. Ventral views of ceratohyal of 5dpf wt/wt and 
MZ ewsa/ewsa mutant embryos (anterior to left) visualized by immunohistochemistry using 
anti-Collagen10a1 antibodies (green) and cartilage stain WGA (red). 1:100 antibody dilution. 
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Figure 23. Collagen10a1 expression is similar in hyomandibular of MZ ewsa/ewsa 
mutant embryos compared to wt/wt at 5dpf. Ventral views of ceratohyal of 5dpf wt/wt and 
MZ ewsa/ewsa mutant embryos (anterior to left) visualized by immunohistochemistry using 
anti-Collagen10a1 antibodies (green) and cartilage stain WGA (red). 1:100 antibody dilution. 
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Figure 24. Notochord cells fail to intercalate in MZ ewsa/ewsa mutants compared to 
wt/wt. Brightfield analysis of the notochord cells of 8dpf and10dpf embryos. MZ ewsa/ewsa 
mutants show thicker notochord boundaries and fewer intercalated cells. Magnification 200x. 


