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Abstract 

The geographic distribution of infectious diseases has received considerable attention after 

several dramatic emergence events around the world. Here, I took the full advantages of several 

approaches available in a single toolbox to examine geographic distribution and spread of several 

neglected and zoonotic diseases across the world. These approaches included geographic 

information system, remote sensing, ecological niche modeling, and phylogeography of disease 

outbreaks. The results assessed and evaluated several diseases based on their public health 

importance, data availability, and geographic dimension. These diseases included major 

neglected tropical diseases of potential public health worldwide (e.g. mycetoma, and 

leishmaniasis), zoonosis (e.g. Rift Valley Fever), and livestock diseases (e.g. Bluetongue). In 

2013, the World Health Organization (WHO) recognized mycetoma as one of the neglected 

tropical conditions due to the efforts of the mycetoma consortium. This same consortium 

formulated knowledge gaps that require further research. One of these gaps was that very few 

data are available on the epidemiology and transmission cycle of the causative agents. Previous 

work suggested a soil-borne or Acacia thorn-prick-mediated origin of mycetoma infections, but 

no studies have investigated effects of soil type and Acacia geographic distribution on mycetoma 

case distributions. In chapter 1, the study mapped risk of mycetoma infection across Sudan and 

South Sudan using ecological niche modeling (ENM). I developed ENMs based on case 

occurrences, and digital GIS data layers summarizing soil characteristics, land-surface 

temperature, and greenness indices to provide a rich picture of environmental variation across 

Sudan and South Sudan. ENMs were calibrated in known endemic districts and transferred 

countrywide; model results suggested that risk is greatest in an east-west belt across central 

Sudan. Visualizing ENMs in environmental dimensions, mycetoma occurs under diverse 
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environmental conditions. The study also compared niches of mycetoma and Acacia trees, and 

could not reject the null hypothesis of niche similarity. This study revealed contributions of 

different environmental factors to mycetoma infection risk, identified suitable environments and 

regions for transmission, signaled a potential mycetoma-Acacia association, and provided steps 

towards a robust risk map for the disease. 

  

In chapter 2, I studied another neglected tropical disease in Libya where political 

instability prevent active surveillance of cutaneous leishmaniasis (CL). CL ranks among the 

tropical diseases least known and most neglected in Libya. World Health Organization reports 

recognized associations of Phlebotomus papatasi, Psammomys obesus, and Meriones spp., with 

transmission of zoonotic cutaneous leishmaniasis (ZCL; caused by Leishmania major) across 

Libya. Here, the study map risk of ZCL infection based on occurrence records of L. major, P. 

papatasi, and four potential animal reservoirs (Meriones libycus, Meriones shawi, Psammomys 

obesus, and Gerbillus gerbillus).  Ecological niche models identified limited risk areas for ZCL 

across the northern coast of the country; most species associated with ZCL transmission were 

confined to this same region, but some had ranges extending to central Libya. All ENM 

predictions were significant based on partial ROC tests. As a further evaluation of L. major ENM 

predictions, the study compared predictions with 98 additional independent records provided by 

the Libyan National Centre for Disease Control (NCDC); all of these records fell inside the belt 

predicted as suitable for ZCL. The study tested ecological niche similarity among vector, 

parasite, and reservoir species and could not reject any null hypotheses of niche similarity. 

Finally, I tested among possible combinations of vector and reservoir that could predict all recent 

human ZCL cases reported by NCDC; only three combinations could anticipate the distribution 

of human cases across the country.   
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Further in chapter 3, I developed a comprehensive occurrence data set to map the current 

distribution, estimate the ecological niche, and explore the future potential distribution of BTV 

globally using ecological niche modeling and based on diverse future climate scenarios from 

general circulation models (GCMs) for four representative concentration pathways (RCPs). The 

broad ecological niche and potential geographic distribution of BTV under present-day 

conditions reflected the disease’s current distribution across the world in tropical, subtropical, 

and temperate regions. All model predictions were significantly better than random expectations. 

As a further evaluation of model robustness, I compared our model predictions to 331 

independent records from most recent outbreaks from the Food and Agriculture Organization 

Emergency Prevention System for Transboundary Animal and Plant Pests and Diseases 

Information System (EMPRES-i); all were successfully anticipated by the BTV model. Finally, I 

tested ecological niche similarity among possible vectors and BTV, and could not reject 

hypotheses of niche similarity. Under future-climate conditions, the potential distribution of 

BTV was predicted to broaden, especially in central Africa, United States, and western Russia.     

Finally, in chapter 4, I used phylogenetic analyses to understand the demographic history 

of RVFV populations, using sequence data from the three minigenomic segments of the virus. I 

used phylogeographic approaches to infer RVFV historical movement patterns across its 

geographic range, and to reconstruct transitions among host species. Results revealed broad 

circulation of the virus in East Africa, with many lineages originating in Kenya. Arrival of 

RVFV in Madagascar resulted from three major waves of virus introduction: the first from 

Zimbabwe, and the second and third from Kenya.  The two major outbreaks in Egypt since 1977 

possibly resulted from a long-distance introduction from Zimbabwe during the 1970s, and a 

single introduction took RVFV from Kenya to Saudi Arabia. Movement of the virus between 
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Kenya and Sudan, and CAR and Zimbabwe was in both directions. Viral populations in West 

Africa appear to have resulted from a single introduction from Central African Republic. Finally, 

host transition analysis identified both humans and livestock as natural hosts of RVFV. The 

overall picture of RVFV history is thus one of considerable mobility, and dynamic evolution and 

biogeography, emphasizing its invasive potential, potentially more broadly than its current 

distributional limits.      

The results raised by all these analyses offered the potential capacity of ecological 

modeling and phylogeographic approaches to understand the potential distribution and spread of 

different disease systems and open the possibilities for their applications in understanding 

disease epidemiology for surveillance and control efforts of several other disease systems 

emerged recently across the world.   
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Introduction 

Infectious diseases are one of the leading causes of death globally, following cardiovascular 

disease [1]; however, the mechanisms underlying their emergence are still not fully understood 

[2]. Recently, several diseases have emerged with no details known for their ecology, and even 

their primary reservoirs are still debated 5 years post-emergence (e.g. coronavirus; [3]). 

Regardless, the transmission dynamics of pathogens, host and vector distributions are highly 

sensitive to environmental factors and particularly to dynamics of climate and land use (see, e.g. 

[4]; [5]), and their emergence can be anticipated in light of certain environmental trends (e.g. 

land use changes, global climate change; [6]. On the other hand, pathogenic and parasitic 

organisms become a common and integral part of ecosystems, and also influence the abundance 

of wild host populations, and thus can cause shift in host ranges, diminished ranges or even 

extinctions of their hosts, and serve as drivers of disease evolution [7].  

Studies of disease ecology require interdisciplinary efforts to explain the temporal shifts 

in the underlying environmental or demographic state. For example, a Rift Valley Fever (RVF) 

outbreak was first identified near Lake Naivasha in the Rift Valley area of Kenya in 1931 [8] and 

then in Egypt in 1977 before the major outbreaks of RVF in 1997-1998, and 2000 again in 

Kenya, Somalia, and Tanzania, and Saudi Arabia [9]. The geographic distribution of RVF was 

known only in Africa till the first outbreak identified outside Africa in Saudi Arabia [10]. RVF 

patterns suggest that importation of infected animals to the new outbreak sites raises the most 

significant risk for future spread of RVF outside Africa. It is therefore reasonable to estimate the 

possibility that RVF introductions to Americas can arise from the increasing of demographic and 

economic activities between US and the other countries of RVF epidemics [11]. Two important 
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risk factors can be tested for a successful introduction of RVF to US: 1) presence versus absence 

of disease vectors, possibility of introducing infected hosts, or vectors to America, and 2) the 

environment affecting disease dynamics. Unfortunately, a single or small population of infected 

vector can secure the transmission cycle if successfully passed to local animal hosts and 

competent domestic vectors [12].  

Globally, several diseases were transmitted via vectors. These diseases caused historical 

epidemics across the world, for example, RVF, leishmanisis, plague, malaria, and arboviruses 

[13]. For example, there was a concern for the diverse arboviral zoonoses in which Aedes 

albopictus might participate in its new environments in America [14]. However, these 

mechanisms can occur and explain the dynamics of disease systems in only one side of their 

transmission cycle (i.e. vector), but, ecologists and epidemiologists should be interested to 

investigate all organisms involved in the disease transmission cycle, the objective that we are 

interested to explore at one of our analyses. On the other hand, the transmission cycle may be 

interrupted due to the absence of the primary host for either conservation reasons (i.e. range 

shifts in response to climate, endangered species, went extinct). For example, a study revealed 

that the acute epidemic of Ebola virus (EBOV) in an extensive and complex ecosystem such as 

Central African forest may quickly run out of susceptible primates and duikers [15]; [16]). A 

compelling circumstantial evidence was identified that the massive chimpanzee-population 

decline attributed to EBOV in the Congo-Gabon region [16]; [17]). However, EBOV may threat 

the chimpanzee population from the conservation mind but also give signals for the changes in 

the primary host and raises the concerns from being a spillover to EBOV from epidemiology 

view. This spillover is also reported for the emergence of a filovirus in a swine as a new 

mammalian host [18].  
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Here, I developed some ecological hypotheses for different diseases of interest to the 

public. These hypotheses considered important approaches to a single toolbox; geographic 

information system, remote sensing, ecological niche modeling, and phylogeography of 

outbreaks. Previous phylogeographic approaches explained the historical dispersal patterns of 

viruses based on model-free heuristic approaches that provide little insight into the temporal 

setting of the spatial dynamics [19]. Several studies enabled the reconstruction of temporal 

dispersal patterns in disease dynamics: avian influenza [19], foot and mouth disease [20], and 

rabies [21]. Here, I took the full advantages of these integrated tools to test several ecological, 

and phylogeographic questions associated with the disease transmission system. In this study, I 

assessed and evaluated several disease models based on public health importance, data 

availability, and geographic dimension.  

This dissertation has a series of goals, all centered on the idea of understanding the 

ecology, geography, and phylogeography of several disease transmission models across the 

world, with special interest in the African continent. This offer full four chapters that cover 

different aspects of disease ecology and dynamics using the available toolbox and disease 

mapping tools.  

In chapter 1, I investigated risk factors associated with mycetoma infections in Sudan 

using ecological niche modeling (ENM), integrating mycetoma case records, Acacia records, and 

geospatial data summarizing soil, land-surface temperature, and greenness. ENMs calibrated in 

endemic districts were transferred across Sudan, and suggested that greatest risk was in a belt 

across central Sudan. Mycetoma infections occur under diverse environmental conditions; I 

found significant niche similarity between Acacia and mycetoma. Model predictions were amply 
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corroborated by a preliminary assessment of a much larger mycetoma case-occurrence data base. 

Our results revealed contributions of different environmental factors to mycetoma risk, raised 

hypotheses of a causal mycetoma-Acacia association, and provide steps towards a robust 

predictive risk map for the disease in Sudan. 

In chapter 2, I used ecological niche model as a tool for risk-mapping of both ZCL cases 

and distributions of associated species. This model offer a challenge to ecological niche 

modeling considering the very complex transmission system of leishmaniasis. Our models were 

able to anticipate areas of highest risk with statistical significance, lending confidence that they 

were successful in identifying areas of transmission risk. Zoonotic cutaneous leishmaniasis 

(ZCL) represents a major public health problem in North Africa where Leishmania major is the 

potential etiological agent associated with all ZCL cases. In many countries across North Africa, 

L. major is transmitted by the sand fly Phlebotomus papatasi, with rodents as likely reservoir 

hosts. In Libya, ZCL cases are underestimated for lack of reporting, insufficient information 

about the distribution of ZCL, and interactions between local environmental conditions and 

different disease components. This situation worsened with recent political and socio-economic 

changes in the country, with expansion and rapid increases in numbers of cases across the 

country. For management and planning of leishmaniasis control, predicting the potential 

geographic distribution of risk of infection with the disease is important to guide such programs. 

In chapter 3, I developed a comprehensive occurrence data set to map the current 

distribution, estimate the ecological niche, and explore the future potential distribution of BTV 

globally using ecological niche modeling and based on diverse future climate scenarios from 

general circulation models (GCMs) for four representative concentration pathways (RCPs). The 
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broad ecological niche and potential geographic distribution of BTV under present-day 

conditions reflected the disease’s current distribution across the world in tropical, subtropical, 

and temperate regions. All model predictions were significantly better than random expectations. 

As a further evaluation of model robustness, I compared our model predictions to 331 

independent records from most recent outbreaks from the Food and Agriculture Organization 

Emergency Prevention System for Transboundary Animal and Plant Pests and Diseases 

Information System (EMPRES-i); all were successfully anticipated by the BTV model. Finally, I 

tested ecological niche similarity among possible vectors and BTV, and could not reject 

hypotheses of niche similarity. Under future-climate conditions, the potential distribution of 

BTV was predicted to broaden, especially in central Africa, United States, and western Russia. 

In chapter 4, I applied phylogographic approaches to understand the demographic history 

of RVFV populations, using sequence data from the three minigenomic segments of the 

virus. These analyses enabled understanding the overall picture of virus mobility and host 

transition across the virus geographic range.      

Ecological and geographic spread of these diseases became one of priorities to 

understand emergence of disease outbreaks and identify research priorities for surveillance and 

control in endemic areas across the world. I focused our study on these disease systems in terms 

of the international demand to understand the ecological and geographic dimensions of their 

spread. The overall study was translated into actions in several control programs across the 

world, for example, our mapping efforts to mycetoma are now used by the international 

mycetoma consortium. I also identified priorities of sampling of CL in East Libya which had 

never considered as a target for surveillance and control programs across the country. These 
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analyses revealed also the importance of considering sampling from other organisms in the cycle 

to better guide the control program across the country. The study also make the global map of 

bluetongue virus available to identify the areas of risk across the world and inferred possible 

future shifts for the disease transmission using different emission scenarios available from the 

most recent future climate data. Finally, the phylogeographic analyses of RVFV assisted to 

understand the dynamics and possible spread of the virus across Africa and the Arabian 

Peninsula. It identified also the possible host transitions of RVFV.      
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Chapter 1: Mapping the potential risk of mycetoma 

infection in Sudan and South Sudan using ecological 

niche modeling1 

 

 

 

 

 

 

 

                                                 
1 Samy AM, van de Sande WW, Fahal AH, Peterson AT (2014). Mapping the potential risk of mycetoma infection 

in Sudan and South Sudan using ecological niche modeling. PLoS Negl Trop Dis. 8(10):e3250. doi: 

10.1371/journal.pntd.0003250 
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Abstract 

 In 2013, the World Health Organization (WHO) recognized mycetoma as one of the neglected 

tropical conditions due to the efforts of the mycetoma consortium. This same consortium 

formulated knowledge gaps that require further research. One of these gaps was that very few 

data are available on the epidemiology and transmission cycle of the causative agents. Previous 

work suggested a soil-borne or Acacia thorn-prick-mediated origin of mycetoma infections, but 

no studies have investigated effects of soil type and Acacia geographic distribution on mycetoma 

case distributions. Here, we map risk of mycetoma infection across Sudan and South Sudan 

using ecological niche modeling (ENM). For this study, records of mycetoma cases were 

obtained from the scientific literature and GIDEON; Acacia records were obtained from the 

Global Biodiversity Information Facility. We developed ENMs based on digital GIS data layers 

summarizing soil characteristics, land-surface temperature, and greenness indices to provide a 

rich picture of environmental variation across Sudan and South Sudan. ENMs were calibrated in 

known endemic districts and transferred countrywide; model results suggested that risk is 

greatest in an east-west belt across central Sudan. Visualizing ENMs in environmental 

dimensions, mycetoma occurs under diverse environmental conditions. We compared niches of 

mycetoma and Acacia trees, and could not reject the null hypothesis of niche similarity. This 

study revealed contributions of different environmental factors to mycetoma infection risk, 

identified suitable environments and regions for transmission, signaled a potential mycetoma-

Acacia association, and provided steps towards a robust risk map for the disease. 
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Introduction 

Mycetoma is a chronic, devastating, inflammatory disease of the subcutaneous tissues that spread 

to involve the skin, deep structures and bones, and is characterized by deformity, destruction and 

disability especially in late stages [1-3]. Etiological agents are identified by culturing their 

characteristic compact mycelial grains [4,5]. The infection most often affects the lower 

extremities of individuals living in developing tropical and subtropical countries [6]. Two forms 

of mycetoma have been identified [3,7]: actinomycetoma caused by a group of filamentous 

bacteria, and eumycetoma caused by any of 30-50 species of hyaline and pigmented fungi [4,8-

11].  

The organisms causing mycetoma are geographically distributed worldwide, but are 

particularly common in tropical and subtropical areas, in the so-called ‘mycetoma belt,’ which 

includes Mexico, Venezuela, Mauritania, Senegal, Chad, Ethiopia, Sudan, Somalia, Yemen, and 

India [11]. The incidence and geographic distribution of mycetoma are underestimated, as the 

disease is usually painless and slowly progressive, such that it is presented to health centers only 

in late disease stages by most of patients; it is not a reportable disease [12-14]. Mycetoma is a 

socioeconomically biased disease, and typically appears in low-income communities with poor 

hygiene; for example, agricultural laborers and herdsmen appear worst affected [15,16]. Studies 

revealed that minor traumas can allow pathogens to enter the skin from the soil [7], or through 

Acacia thorns, to the point that Acacia thorns have been found embedded in mycetoma lesions 

during surgery [4,17]. Fungal infections responsible for eumycetoma in Sudan are predominantly 

caused by Madurella mycetomatis [4].  
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Studies to date suggest a soil-borne or thorn-prick-mediated origin of mycetoma infections [4], 

having demonstrated M. mycetomatis DNA on Acacia thorns and in soil samples [4]. Although 

prevailing thought is that the soil is the ultimate reservoir for mycetoma infections, attempts to 

culture the fungus from soil samples have failed [4,14]. A more recent study suggested that cattle 

dung may play a significant role in the ecology of Madurella, based on the observation that M. 

mycetomatis is phylogentically closely related to dung-inhabiting fungi [18].  

Mycetoma ranks among the most neglected diseases worldwide, to the point that it was 

omitted even by major neglected tropical disease (NTD) initiatives across the globe [19-21]. 

Recently, mycetoma was added to the WHO’s list of NTD priorities [11]. The known geographic 

distribution of mycetoma etiological agents shows intriguing variation with respect to 

environmental factors [22]: they occur in arid areas with a short rainy season, and extreme 

conditions have been suggested as a prerequisite for survival of the causative organisms [22]. 

Still, the geographic distribution of the disease remains in large part uncharacterized. In this 

paper, we report explorations using ecological niche modeling to (1) estimate the current niche 

and potential distribution of mycetoma in an important endemic region (Sudan), (2) investigate 

risk factors associated with mycetoma infections in Sudan and South Sudan as reflected in 

distributional associations with environmental features, and (3) test Acacia-mycetoma 

associations based on overlap of the ecological niche of mycetoma infections with that of trees of 

the genus Acacia.  
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Materials and Methods 

Occurrence records for mycetoma cases were obtained from published scientific literature via the 

PubMed database (www.ncbi.nlm.nih.gov/); we also used mycetoma data deposited in the 

GIDEON database (http://www.gideononline.com/). Studies were selected if they described 

positive mycetoma cases, and were referred to specific geographic locations that could be 

georeferenced precisely. When geographic references were textual in nature, latitude-longitude 

coordinates were assigned via reference to electronic gazetteers (e.g., 

http://www.fallingrain.com; [23]), and Google Earth (www.earth.google.com/); 11 records were 

obtained by georectification and georeferencing of Figure 1 from Ahmed et al. 2002 [4,17,24] . 

We eliminated duplicate records and records presenting obvious errors of identification prior to 

any further analysis.  

Occurrence records were obtained for Acacia from the Global Biodiversity Information 

Facility (www.gbif.org) to test contributions of the trees to a robust mycetoma model for Sudan 

and South Sudan [4,17,24]. We filtered Acacia occurrences to include only Sudan and South 

Sudan. All duplicate records and records lacking georeferences were excluded from analysis.  

To characterize environmental variation across Sudan and South Sudan, 8-day composite 

Land Surface Temperature and monthly Normalized Difference Vegetation Index (NDVI) data 

were drawn from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery at 

1 km spatial resolution. We also used 10 variables from the World Soil Information site 

(http://www.isric.org) to summarize chemical and physical soil characteristics (S1 File). Soil 

data were obtained for each of 2 depths for each variable: 0-5 cm and 5-15 cm. Soil variables 

represented a collection of updatable soil property and class maps of the world at 1 km resolution 

http://www.ncbi.nlm.nih.gov/
http://www.gideononline.com/
http://www.fallingrain.com/
http://www.earth.google.com/
http://www.gbif.org/
http://www.isric.org/
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produced using model-based statistical methods, including 3D regressions with splines for 

continuous properties and multinomial logistic regression for classes [25]. 

LST and NDVI data were downloaded for 2005-2011 from the Land Processes 

Distributed Active Archive Center data holdings, using the NASA Reverb Echo data portal 

(https://reverb.echo.nasa.gov/reverb/) as described in greater detail elsewhere [26]. The LST 

product has been validated via several ground-truth and validation efforts over widely distributed 

locations and time periods [27]. The NDVI product has been used broadly for monitoring 

vegetation conditions and land cover change [28]. We calculated grids for the minimum, 

maximum, median, and ranges of values for LST and NDVI across the entire time sequence for 

all of Sudan and South Sudan to provide a rich characterization of environments across the 

country. 

The Grinnellian fundamental ecological niche is defined by the set of coarse-grained, 

non-interactive environmental conditions under which a species is able to maintain populations 

without immigrational subsidy [29]. ENM attempts to estimate these niches from incomplete 

information by relating known occurrence locations and the environmental values that they 

present to the broader environmental landscape. This approach was used to relate known 

mycetoma occurrences to raster environmental data in an evolutionary-computing environment; 

in this case, a maximum entropy algorithm (MaxEnt v.3.3 [30]) was used to estimate ecological 

niches both for Acacia spp. collectively and for mycetoma. Niche model outputs for Acacia were 

in turn used as input in calibrating models for mycetoma; in the end, we developed models based 

on LST/NDVI and all combinations of soil and Acacia information, and the Acacia models were 

calibrated with and without soil information. Accessible areas (M) for mycetoma and Acacia 

were assumed to include all of Sudan and South Sudan, based on their wide geographic 

https://reverb.echo.nasa.gov/reverb/
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distributions. We calibrated ENMs across a subset of the study region corresponding to known 

endemic districts; models were then transferred across all of Sudan and South Sudan for 

interpretation; for comparison, we also calibrated models across all of Sudan and South Sudan 

(i.e., not just known endemic districts), although the model transfer approach should be more 

rigorous [31]. ENMs outputs were converted to binary maps using a least training presence 

thresholding approach adjusted to admit 5% (E = 5%) error rates [32].  

To test the ability of the ENM algorithm to predict occurrences accurately across 

unsampled areas of Sudan and South Sudan, we used a partial receiver operating characteristic 

(ROC) approach [32]. This approach evaluates models only over a range of relevant predictions, 

and potentially allows differential weighting of omission and commission errors, and therefore is 

preferable to traditional ROC approaches [32]. Models were evaluated by calibrating models 

with a random 50% of occurrences, and comparing the threshold-independent area under the 

curve (AUC) to null expectations. To compare partial ROC AUC ratios of each model with null 

expectations, the dataset was bootstrapped, and probabilities obtained by direct count, with AUC 

ratios calculated using a Visual Basic script developed by N. Barve (University of Kansas), 

based on 100 iterations and an E = 5% omission threshold.  

As a further, and more rigorous, test of model predictivity, we derived a preliminary view 

of mycetoma case data archived in the Mycetoma Research Center, in Sudan, based on cases 

from 1991-2014. In view of the large scale of this data resource, we selected and georeferenced 

~10% of the overall data archive at random; we eliminated cases lacking geographic references 

and removed records from duplicate localities, which left 158 localities for this preliminary 

analysis. We assessed the relationship of these data to the best of our model predictions via a 

one-tailed cumulative binomial probability calculation that assessed the probability of obtaining 
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the observed level of correct  prediction by chance alone, given the background expectation of 

correct prediction based on the proportional coverage of the region by the prediction [29]..  

Background similarity tests [33] were used to assess similarity between models of niches 

of Acacia and mycetoma. We first reassessed the accessible area (M) for both species [34]: 

mycetoma is limited approximately to the belt between the latitudes of 150 S and 300N [7,20], 

and Acacia is widely distributed and grows in a wide range of habitats [35], so we can set M as 

all of Sudan and South Sudan, or alternatively as only the known mycetoma-endemic districts 

(Fig 1). To test the null hypothesis of niche similarity between mycetoma and Acacia against the 

backgrounds of their respective M hypotheses [34] as described above, we used D-statistics and 

Hellinger's I implemented in ENMTools [33]. We tested niche similarity with respect to two 

environmental data sets: (1) LST and NDVI; and (2) LST, NDVI, and soil characteristics. The 

background similarity test is based on models of random points from across the accessible area 

in numbers equal to numbers of real occurrence data available for each species in the study, with 

100 replicate samples. The null hypothesis of niche similarity was rejected if the observed D or I 

values fell below the 5th percentile in the random-replicate distribution for comparison of the 

ENMs for the pair of species in question [33].  

 

Results 

We assembled a total of 44 records of mycetoma cases from sites across Sudan (Fig 1). Cases 

were from North Darfur (14), Gezira (8), North Kordufan (6), South Darfur (4), Sennar (3), and 

White Nile (3), Khartoum (2), River Nile (2), Kassala (1), and Northern (1) states. Sampling for 

mycetoma was focused in these regions, which can be considered as endemic districts for 

mycetoma. Mycetoma cases concentrated in a belt between 12°S and 19°N latitude, with only a 
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few cases outside this area in Sudan. Records for Acacia trees were obtained from 59 localities 

across Sudan and South Sudan (Fig 1). Acacia records were not limited to any particular sub-

region, but rather were distributed across much of the country. The geographic distributions of 

Acacia trees and mycetoma cases appeared to overlap only in central Sudan. However, Acacia is 

also present in South Sudan, where no records were available for mycetoma. 

 

 

Fig 1: Geographic distribution of mycetoma cases and Acacia trees across Sudan and South Sudan (crosses and dotted 

circles, respectively). Some areas across the region (in white) were not included in some analyses for lack of data on 

soil characteristics. 
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Fig 2: Potential mycetoma distribution based on occurrences in endemic districts. Potential distributions of mycetoma 

were based on different environmental variables; models were calibrated in mycetoma-endemic districts, and 

transferred across all of Sudan and South Sudan. White areas have no soils data, and therefore have no model 

predictions. 

 

We developed models of mycetoma cases based on (1) ENMs calibrated in endemic 

districts, then transferred to all of Sudan and South Sudan (Fig 2), and (2) ENMs calibrated 

directly across all of Sudan and South Sudan; these latter models are not depicted in this chapter, 

but are presented in the supplementary materials (S2 File). ENMs for mycetoma based on 

different environmental scenarios were all statistically robust (all AUC ratios uniformly above 

1.0 so all P < 0.01; see Table 1). The model based on all environmental data (LST, NDVI, soils, 

and Acacia distribution) had the highest partial AUC ratios, and thus appeared to perform best. 
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Mycetoma ENM predictions indicated a band of highest environmental suitability in central 

Sudan between 11°S and 17°N latitude (Figure 2). However, distinct areas were predicted as 

suitable for mycetoma occurrence elsewhere in Sudan and South Sudan: ENMs based on LST, 

NDVI, and soil identified a more southerly version of the “mycetoma belt.” High-risk states 

identified by the ENMs included Kassala, Gedarif, Gezira, Khartoum, Sennar, White Nile, North 

Kordufan, West Kordufan, South Darfur, North Darfur, and West Darfur. To visualize ecological 

niches for mycetoma, we linked ENM predictions to characteristic of the environmental 

landscape (Fig 3): mycetoma occurs on diverse landscapes under wide ranges of environmental 

conditions, which is to say that no clear and distinctive environmental correlates could be 

discerned.  

 

 

Environmental variables  AUC ratio 

LST + NDVI 1.2923 (1.2917 – 1.8373) 

LST + NDVI + soil 1.6864 (1.5179 – 1.9600) 

LST + NDVI + Acacia (based on LST and NDVI) 1.3878 (1.3203 – 1.9011) 

LST + NDVI + Acacia (based on LST, NDVI, and soil) 1.6518 (1.5767 – 1.8618) 

LST + NDVI + soil + Acacia (based on LST and NDVI) 1.8402 (1.7683 – 1.9924) 

LST + NDVI + soil + Acacia (based on LST, NDVI, and soil) 1.6365 (1.6012 – 1.8077) 

 

Table 1: Partial AUC ratios of mycetoma ecological niche models based on different environmental data sets, 

showing median. 
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Fig 3:  Visualization of mycetoma ecological niches (i.e., the set of environmental values under which the species 

can potentially maintain populations) in two-dimensional environmental spaces based on different environmental 

variables. The diagram shows the entire environmental availability across Sudan and South Sudan (light gray color), 

and conditions identified as suitable across Sudan and South Sudan (black color) and across endemic districts (pink). 
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Neither of the tests comparing niches of mycetoma and Acacia was able to reject the null 

hypothesis of niche similarity (P > 0.05 in both cases; Fig 4) which is to say that models for 

mycetoma and Acacia were not more different from one another than either was from models 

based on the background (i.e., across M) of the other species. Acacia is distributed broadly 

across Sudan and South Sudan, whereas mycetoma infections were found only in central Sudan, 

but these results suggest that range difference does not reflect niche differentiation between the 

two (sampling, diagnostic, and reporting biases may affect the mycetoma data).  

 

Fig 4: Background similarity test of similarity between mycetoma and Acacia ecological niches across Sudan and 

South Sudan. Niche overlap values were based on Hellinger's I, and Schoener's D metrics of similarity. Observed 

values are shown as black line with a blue arrow; null distribution is shown as a histogram. 
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The coincidence between model predictions and the independent additional case data 

from the Mycetoma Research Center was impressive (Fig 5), such that 149 of 158 of those 

additional occurrence points were successfully predicted by the model. Model success in 

anticipating these independent data was statistically significantly much better than random 

expectations (one-tailed cumulative binomial test; P << 0.05).  

 

Fig 5: Coincidence between ecological niche model predictions based on LST, NDVI, soils, and Acacia (the latter 

based on LST and NDVI only) with the independent additional case data from the Mycetoma Research Center. 
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Discussion 

Known since the 1600s [36] and described more formally in 1842, mycetoma was initially called 

Madura foot [37]. Mycetoma was subsequently reported in countries presenting diverse 

environments: Mexico, Venezuela, Mauritania, Senegal, Chad, Ethiopia, Sudan, Somalia, 

Yemen, and India [11,14]. Although thousands of cases have been recognized annually, risk 

factors remain poorly characterized [14], and the mode of transmission remains unknown [14]. 

Research on mycetoma leaves several hypotheses untested; improved understanding in each 

respect could reduce numbers of case, improve case outcomes, and offer possibilities for better 

disease control. Here, we used a new approach, termed ecological niche modeling, which relates 

case occurrences to environmental characteristics across a relevant region to create a model of 

the environmental ‘envelope’ (analogous to a coarse-grained definition of the ecological niche) 

for the species; this niche model allows, in turn, identification of potentially suitable areas for the 

species to be distributed. Ecological niche modeling has been used previously to understand 

geographic dimensions of a number of neglected tropical diseases [26,38,39], including fungal 

pathogens [40,41].   

We used ENM to identify suitable sites for mycetoma infections based on environmental 

predictors, including dimensions thought to be associated with mycetoma cases in previous 

studies in Sudan [4,20]. All ENMs indicated high suitability across central Sudan, which appears 

consistent with cases reported subsequently [17,42,43]. It is worth noting that numerous cases 

reported by the Mycetoma Research Center (MRC) [4] came from the same belt identified by 

ENMs developed here, and yet had no involvement in our model calibration, providing important 

corroboration of the model predictions. 
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Several recent studies have attempted to understand modes of entry and transmission of 

mycetoma [4,44,45], but how people become infected with the causative agents remains unclear 

[14]. These studies have proposed that the primary reservoir of the causative agents is soil or 

Acacia thorns [4], and that transmission occurs by contact with the causative agent [4,15], based 

on observations that mycetoma infections occurred under poor conditions, in agriculturalists and 

villagers in endemic districts [46,47]. Our ENMs used soil data, but the causative agent has been 

identified from areas signaled unsuitable in the soil-based ENMs [4]. Incorporating Acacia 

distributions in models improved predictions, indicating possible relevance of an Acacia-

mycetoma association.  

Acacia may thus prove to play some role as a determinant of mycetoma distributional 

patterns across Sudan and South Sudan, although our results are correlational only and do not 

provide a direct test of this association. Our background similarity tests between ENMs for 

Acacia and mycetoma could not reject the hypothesis of similarity of the niches of the two 

species, thus at least not providing evidence against an association, and our models had greatest 

predictive power regarding mycetoma cases when Acacia distributions were included as 

environmental predictors. The important question remaining, however, is how the causative 

agent contacts humans, penetrates the skin, and initiates infections.  

Previous studies confirmed presence of Madurella mycetomatis DNA in 17 of 74 soil 

samples and in one of 22 thorn samples [4]. Interestingly, attempts at culturing the fungi from 

these samples failed [4]. Hence, that the study found DNA of M. mycetomatis in both soil and 

thorn samples is of unclear importance, although perhaps culture methods are relatively 

insensitive or ineffective. In sum, then, our results revealed contributions of different 

environmental factors to mycetoma risk, identified areas suitable for mycetoma emergence, 
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farther raised the possibility of a mycetoma-Acacia association, and provided steps towards a 

robust predictive risk map for the disease. 

 

 

Acknowledgments  

The authors would like to thank the ENM Working Group in the Biodiversity Institute of the 

University of Kansas for their support and assistance during this work. Special thanks to the 

Department of Entomology and the Research and Training Center on Vectors of Diseases of Ain 

Shams University, Egypt. We also thank the staff of the Mycetoma Research Centre in Sudan.  

 

 

References 

1. Davis JD, Stone PA, McGarry JJ (1999) Recurrent mycetoma of the foot. J Foot Ankle Surg 

38 (1): 55-60. 

2. Pilsczek FH, Augenbraun M (2007) Mycetoma fungal infection: multiple organisms as 

colonizers or pathogens? Rev Soc Bras Med Trop 40 (4): 463-465. 

3. Alam K, Maheshwari V, Bhargava S, Jain A, Fatima U, et al. (2009) Histological diagnosis 

of madura foot (mycetoma): a must for definitive treatment. J Glob Infect Dis 1 (1): 64-67. 

4. Ahmed A, Adelmann D, Fahal A, Verbrugh H, van Belkum A, de Hoog S (2002) 

Environmental occurrence of Madurella mycetomatis, the major agent of human eumycetoma in 

Sudan. J Clin Microbiol 40 (3): 1031-1036. 

 



26 
 

5. Faqir F, Rahman Au (2004) Mycetoma: a local experience. J Postgrad Med Inst 18 (2): 172-

175 

6. Sahariah S, Sharma AK, Mittal VK, Yadav RV. (1978) Mycetoma of lower extremity. J 

Postgrad Med 24 (2): 113-116. 

7. Lichon V, Khachemoune A (2006) Mycetoma: a review. Am J Clin Dermatol 7 (5):315-321. 

8. Magana M (1984) Mycetoma. Int J Dermatol 23 (4): 221-236. 

9. Brownell I, Pomeranz M, Ma L (2005) Eumycetoma. Dermatol Online J 11 (4): 10. 

10. Negroni R, Lopez Daneri G, Arechavala A, Bianchi MH, Robles AM (2006) Clinical and 

microbiological study of mycetomas at the Muñiz Hospital of Buenos Aires between 1989 and 

2004. Rev Argent Microbiol 38 (1): 13-18. 

11. WHO (2013) The 17 neglected tropical diseases. Geneva: World Health Organization. 

Available: http://www.who.int/neglected_diseases/diseases/en/. Accessed 10 July 2014.   

12. de Hoog GS, van Diepeningen AD, Mahgoub e-S, van de Sande WW (2012) New species of 

Madurella, causative agents of black-grain mycetoma. J Clin Microbiol 50: 988-994. 

13. van de Sande WWJ (2013) Global burden of human mycetoma: a systematic review and 

meta-analysis. PLoS Negl Trop Dis 7: e2550. 

14. van de Sande WWJ, Maghoub ES, Fahal AH, Goodfellow M, Welsh O, et al. (2014) The 

mycetoma knowledge gap: identification of research priorities. PLoS Negl Trop Dis 8: e2667. 

15. Ezaldeen EA, Fahal AH, Osman A (2013) Mycetoma herbal treatment: the Mycetoma 

Research Centre, Sudan experience. PLoS Negl Trop Dis 7: e2400. 

16. Fahal AH (2013) The Mycetoma Research Center, University of Khortum, Sudan: a success 

story that need support. Int J Sudan Res 3: 1-13. 

 



27 
 

17. Abd El-Bagi ME, Fahal AH (2009) Mycetoma revisited: incidence of various radiographic 

signs. Saudi Med J 30: 529-533. 

18. de Hoog GS, Ahmed SA, Najafzadeh MJ, Sutton DA, Keisari MS, et al. (2013) 

Phylogenetic findings suggest possible new habitat and routes of infection of human 

eumyctoma. PLoS Negl Trop Dis 7: e2229. 

19. Fahal AH, Hassan MA (1992) Mycetoma. Br J Surg 79 (11): 1138-1141. 

20. Fahal AH (2004) Mycetoma: a thorn in the flesh. Trans R Soc Trop Med Hyg 98: 3-11. 

21. van Belkum A, Fahal A, van de Sande WW (2013) Mycetoma caused by Madurella 

mycetomatis: a completely neglected medico-social dilemma. Adv Exp Med Biol 764: 179-189. 

22. Ahmed AOA, van Leeuwen W, Fahal A, van de Sande W, Verbrugh H, et al. (2004) 

Mycetoma caused by Madurella mycetomatis: a neglected infectious burden. Lancet Infect Dis 

4 (9): 566-574. 

23. Wieczorek J, Guo Q, Hijmans R (2004) The point-radius method for georeferencing locality 

descriptions and calculating associated uncertainty. Int J Geogr Inf Syst 18: 745-767. 

24. Fahal A (2011) Mycetoma. Khartoum Med J 41: 514-523. 

25. ISRIC-World Soil Information IWS (2013) Soil property maps of Africa at 1 km. Available 

for download at www.isric.org. 

26. Samy AM, Campbell LP, Peterson AT (2014) Leishmaniasis transmission: distribution and 

coarse-resolution ecology of two vectors and two parasites in Egypt. Rev Soc Bras Med Trop 

47: 57-62. 

27. Coll C, Wan Z, Galve JM (2009) Temperature-based and radiance-based validations of the 

V5 MODIS land surface temperature product. J Geophys Res-Oc ATM 114: D20102. 

 

http://www.isric.org/


28 
 

28. Lyapustin AI, Wang Y, Laszlo I, Hilker T, G.Hall F, et al. (2012) Multi-angle 

implementation of atmospheric correction for MODIS (MAIAC): 3. Atmospheric correction. 

Remote Sens Environ 127: 385-393. 

29. Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, et al. (2011) 

Ecological Niches and Geographic Distributions. Princeton: Princeton University Press. 

30. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species 

geographic distributions. Ecol Model 190: 231-259. 

31. Owens HL, Campbell LP, Dornak LL, Saupe EE, Barve N, et al. (2013) Constraints on 

interpretation of ecological niche models by limited environmental ranges on calibration areas. 

Ecol Model 263: 10-18. 

32. Peterson AT, Papeş M, Soberón J (2008) Rethinking receiver operating characteristic 

analysis applications in ecological niche modeling. Ecol Model 213: 63-72. 

33. Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus 

conservatism: quantitative approaches to niche evolution. Evolution 62: 2868-2883. 

34. Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, et al. (2011) The 

crucial role of the accessible area in ecological niche modeling and species distribution 

modeling. Ecol Model 222: 1810-1819. 

35. Aref IM, Atta H, Shahrani T, Mohamed A (2011) Effects of seed pretreatment and seed 

source on germination of five Acacia spp. Afr J Biotechnol 10: 15901-15910. 

36. Kaempfer E (1694) Disputatio physica medica inauguralis exhibens decadem observationem 

exoticarum [phD thesis]. Netherlands: Univeristy of Leiden. 

37. Gokhale BB (1981) Epidemiology of mycetoma. Hindustan Antibiot Bull 23: 18-24. 

 



29 
 

38. Peterson AT, Pereira RS, Neves VF (2004) Using epidemiological survey data to infer 

geographic distributions of leishmaniasis vector species. Rev Soc Bras Med Trop 37: 10-14. 

39. Escobar LE, Peterson AT, Favi M, Yung V, Pons DJ, et al. (2013) Ecology and geography 

of transmission of two bat-borne rabies lineages in Chile. PLoS Negl Trop Dis 7: e2577. 

40. Mak S, Klinkenberg B, Bartlett K, Fyfe M (2010) Ecological niche modeling of 

Cryptococcus gattii in British Columbia, Canada. Environ Health Persp 118: 653-658. 

41. Reed KD, Meece JK, Archer JR, Peterson AT (2008) Ecologic niche modeling of 

Blastomyces dermatitidis in Wisconsin. PLoS ONE 3: e2034. 

42. Ahmed AO, Desplaces N, Leonard P, Goldstein F, De Hoog S, et al. (2003) Molecular 

detection and identification of agents of eumycetoma: detailed report of two cases. J Clin 

Microbiol 41: 5813-5816. 

43. Abd El-Bagi ME, Abdul Wahab O, Al-Thagafi MA, El-Sheikh H, Al-Salman K, Taifoor 

MK, Osman FM (2004) Mycetoma of the hand. Saudi Med J 25: 352-354. 

44. Ahmed AO, van Vianen W, ten Kate MT, van de Sande WW, van Belkum A, et al. (2003) 

A murine model of Madurella mycetomatis eumycetoma. FEMS Immunol Med Microbiol 37 

(1): 29-36. 

45. Maiti PK, Bandyopadhyay D, Dey JB, Majumdar M (2003) Mycetoma caused by a new red 

grain mycetoma agent in two members of a family. J Postgrad Med 49: 322-324. 

46. Chufal SS TN, Gupta MK (2012) An approach to histology-based diagnosis and treatment 

of Madura foot. J Infect Dev Ctries 6 (9): 684-688. 

47. Maiti PK, Ray A, Bandyopadhyay S (2002) Epidemiological aspects of mycetoma from a 

retrospective study of 264 cases in West Bengal. Trop Med Int Health 7 (9): 788-792. 

 



30 
 

Supporting information 

 

 

S1 File: The variables of the soil characteristics used in model calibration for mycetoma and 

Acacia spp. in Sudan. Data downloaded from the World Soil Information (http://www.isric.org). 

Each variable is available in 2 depths (0-5 cm and 5-15 cm).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Soil organic carbon in permilles (g/kg) = ORCDRC 

predicted mean value for the first standard depth (0-5 cm) 

predicted mean value for the first standard depth (5-15 cm) 

pH in H2O 1:5 = PHIHO5 

predicted mean value for the first standard depth (0-5 cm) 

predicted mean value for the first standard depth (5-15 cm) 

Sand content (50-2000 μm) in % = SNDPPT 

predicted mean value for the first standard depth (0-5 cm) 

predicted mean value for the first standard depth (5-15 cm) 

Silt content (2-50 μm) in % = SLTPPT 

predicted mean value for the first standard depth (0-5 cm) 

predicted mean value for the first standard depth (5-15 cm) 

Clay content (<2 μm) in % = CLYPPT 

predicted mean value for the first standard depth (0-5 cm) 

predicted mean value for the first standard depth (5-15 cm) 

http://www.isric.org/
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S2 File: Potential mycetoma distribution based on occurrences across all of Sudan. These models 

were calibrated across all of Sudan directly based on all records collected from scientific 

literature and environmental variables for all of Sudan.   
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Chapter 2: Coarse-resolution ecology of etiological 

agent, vector, and reservoirs of zoonotic cutaneous 

leishmaniasis in Libya2 

 

 

 

 

 

 

 

  

                                                 
2 Samy AM, Annajar BB, Dokhan MR, Boussaa S, Peterson AT. (2016). Coarse-resolution Ecology of Etiological 

Agent, Vector, and Reservoirs of Zoonotic Cutaneous Leishmaniasis in Libya. PLoS Negl Trop Dis. 

10(2):e0004381. doi: 10.1371/journal.pntd.0004381 
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Abstract 

Cutaneous leishmaniasis ranks among the tropical diseases least known and most neglected in 

Libya. World Health Organization reports recognized associations of Phlebotomus papatasi, 

Psammomys obesus, and Meriones spp., with transmission of zoonotic cutaneous leishmaniasis 

(ZCL; caused by Leishmania major) across Libya. Here, we map risk of ZCL infection based on 

occurrence records of L. major, P. papatasi, and four potential animal reservoirs (Meriones 

libycus, Meriones shawi, Psammomys obesus, and Gerbillus gerbillus).  Ecological niche models 

identified limited risk areas for ZCL across the northern coast of the country; most species 

associated with ZCL transmission were confined to this same region, but some had ranges 

extending to central Libya. All ENM predictions were significant based on partial ROC tests. As 

a further evaluation of L. major ENM predictions, we compared predictions with 98 additional 

independent records provided by the Libyan National Centre for Disease Control (NCDC); all of 

these records fell inside the belt predicted as suitable for ZCL.  We tested ecological niche 

similarity among vector, parasite, and reservoir species and could not reject any null hypotheses 

of niche similarity. Finally, we tested among possible combinations of vector and reservoir that 

could predict all recent human ZCL cases reported by NCDC; only three combinations could 

anticipate the distribution of human cases across the country.   
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Introduction 

Leishmaniasis remains one of the major public health problems in the Mediterranean 

Basin. In Libya, two forms of leishmaniasis occur: visceral leishmaniasis (VL), and cutaneous 

leishmaniasis (CL).  VL has been reported in the country since 1904; however, little information 

is available on leishmaniasis epidemiology as regards the insect vector species and vertebrate 

reservoirs involved in transmission [1-3]. VL was identified from northeastern Libya and 

southern Saharan and sub-Saharan areas [1,4,5]. CL is most prevalent in the northwestern part of 

the country [2,6,7]. CL is caused by two species of Leishmania: Leishmania major Yakimoff & 

Schokhor, 1914 and L. tropica Wright, 1903 (Kinetoplastida: Trypanosomatidae). Leishmania 

major is the etiological agent of zoonotic CL (ZCL), where the parasite is thought to circulate in 

small-mammal reservoirs (Meriones libycus Lichtenstein, 1823 (Rodentia: Muridae), Gerbillus 

gerbillus Olivier, 1801 (Rodentia: Muridae), Psammomys obesus Cretzschmar, 1828 (Rodentia: 

Muridae), M. shawi Duvernoy, 1842 (Rodentia: Muridae)) and is transmitted by the sand fly 

Phlebotomus papatasi (Scopoli), 1786 (Diptera: Psychodidae) [2,7,8]. Leishmania tropica is the 

causative organism for anthroponotic CL (ACL); zoonotic foci have also been reported from 

rock hyrax in Kenya, and Israel [9,10], and gerbil in Egypt [11], where the disease is transmitted 

by the sand fly P. sergenti Parrot, 1917 (Diptera: Psychodidae) [10,11].  

In Libya, seasonal wadis provide potential suitable conditions of climate and vegetation 

for vertebrate populations to maintain transmission [12]. The sand fly P. papatasi has a wide 

geographic distribution, from northern Africa to India [13]; it is considered as a proven vector of 

ZCL in North Africa [11]. In most field surveys in the country, P. papatasi and P. sergenti were 

the most abundant species [7,14,15]; however, P. papatasi was most frequent in the northern part 

of the country. 

http://www.gbif.org/species/5219725
http://www.gbif.org/species/2437787
http://www.gbif.org/species/5219747
http://www.gbif.org/species/5219720
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Recently, the World Health Organization identified four possible transmission systems of 

ZCL, based on associated mammal reservoirs: Ps. obesus, Meriones spp., Rhombomys opimus 

Lichtenstein, 1823 (Rodentia: Muridae), and Mastomys spp. Thomas, 1915 (Rodentia: Muridae) 

[16]. Limited epidemiological studies have been carried out in the country to characterize the roles 

of several species of reservoir hosts in maintaining CL in Libya. Leishmania major was identified 

from Meriones libycus [12], and M. shawi [16] in endemic areas of the northwestern part of the 

country.  Early studies revealed Ps. obesus as the potential natural reservoir host of L. major in 

many North African countries including Libya [12,17]; Ps. obesus was most prevalent along wadi 

edges from Sahara to the Middle East, where high density of this species is associated with 

abundant vegetation and halophilic plants [17]. Meriones spp. are thought to play an important 

role in ZCL outbreaks by maintaining the parasite in nature in the long term. Meriones shawi and 

M. libycus have been found repeatedly to be naturally infected with L. major in Libya [12], Tunisia 

[18-20], Morocco [21], and Algeria [22].  

Most ZCL outbreaks in North African countries have been tied to epidemiological 

modifications and environmental changes [23,24], highlighting the importance of understanding 

the epidemiology of ZCL in this region. This study represents a first effort to understand the 

ecology and geography of ZCL using remote-sensing data across Libya to predict ZCL risk 

areas. We used ecological niche modeling approaches to identify the distribution of sand fly 

vector species, mammal reservoirs, and the pathogens to test their patterns of overlap in 

environmental space, which illuminate details of the local ZCL cycle in Libya where these 

species coexist. 

 

  

http://www.gbif.org/species/2437935
http://www.gbif.org/species/2438904
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Materials and Methods 

Study area 

Libya is situated in North Africa on the Mediterranean coast between Egypt and Tunisia.  The 

country lies between 18 and 33° N latitude and 8 and 25° E longitude. Dominant climate 

conditions include hot-summer Mediterranean and hot desert climates [25]: coastal lowlands 

have very hot summers and mild winters, while the desert interior has long, hot summers and 

high diurnal temperature ranges, with very dry conditions. Precipitation declines rapidly to the 

interior with distance from the coast.  Libya lacks large rivers and streams, and extended 

droughts are frequent; however, the government has constructed a network of dams for water 

management [26].  

 

Input data 

Based on the leishmaniasis surveys in Libya, ZCL is endemic in the northwestern regions of the 

country. We collected records for all organisms involved in the ZCL transmission cycle 

including the pathogen (L. major), vector (P. papatasi), and potential mammal reservoirs (Ps. 

obesus, M. libycus, M. shawi, G. gerbillus). We retrieved vector and pathogen data from our own 

surveillance, and the PubMed database using keywords of species’ names and Libya. When L. 

major was identified at the coarser district level (e.g. [2]), NCDC provided details for the exact 

locations of these cases for the purpose of this study. Leishmania major records based on clinical 

features only were excluded from analysis to avoid possible diagnostic errors in species 

identification; we included all records identified rigorously by either zymodeme analysis (i.e. 

MON-25) of 16 enzymatic loci [27] or restriction fragment length polymorphisms of the 

ribosomal internal transcribed spacer 1 (ITS1) region [2]. Host and vector species included in the 
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study were identified by reference to previously published morphological keys [28-30]. Data 

were included if a geographic reference was linked to any of the six species (geographic 

coordinates or textual descriptions). Other records of Ps. obesus, M. libycus, M. shawi, and G. 

gerbillus were obtained from the Global Biodiversity Information Facility (www.gbif.org), 

VertNet (http://www.vertnet.org/), and our own field surveillances across the country. When 

geographic references were textual in nature, we assigned longitude-latitude coordinates via 

reference to Google Earth (https://www.google.com/earth/). All occurrence data were filtered to 

eliminate duplicate records and longitude-latitude coordinates falling from outside Libya.  

Environmental data sets by which to characterize environmental landscapes across Libya 

were obtained from three sources. (1) Advanced Very High Resolution Radiometer (NOAA-

AVHRR) satellite imagery was obtained from the European Distributed Institute of Taxonomy 

(EDIT; http://bit.ly/1TDsUQM). These data comprise monthly mean Normalized Difference 

Vegetation Index (NDVI) coverage from 1982 to 2000, rescaled to a range of 1 to 255; we 

calculated mean, maximum, minimum, median, and range across the 12 monthly NDVI layers.  

(2) Climatic data layers representing 35 variables were obtained from global climatologies in 

CliMond (https://www.climond.org/; S1 File). (3) Digital elevation model were obtained from 

the Shuttle Radar Topography Mission (SRTM; http://srtm.usgs.gov/) at 1 km spatial resolution. 

All variables were resampled in ArcGIS 10.2 (Environmental Systems Resource Institute, 

Redlands, California) to a spatial resolution of 10 x 10' (≈20 x 20 km).   

The particular environmental variables were chosen for modeling in light of their likely 

importance in shaping the geographic distributions of the species of interest in this study [25,31].  

We selected historical NDVI and climatic data to cover the same time interval as when most 

records were obtained for the species. NDVI has been identified in previous epidemiological 

http://www.gbif.org/
http://www.vertnet.org/
https://www.google.com/earth/
http://bit.ly/1TDsUQM
https://www.climond.org/
http://srtm.usgs.gov/
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studies as an important variable by which to convey seasonality resulting from changing 

temperature or moisture availability, and to understand broad-scale patterns of land use and land 

cover and their effects on pathogen populations and transmission [32]. NDVI is significantly 

correlated also with details of soil conditions, including type of soil, water content, and soil 

moisture [33-36]. Principal components analysis (PCA) was applied to the environmental 

variables to reduce multicollinearity and dimensionality. We used the first 10 principal 

components, which summarized more than 95% of the overall variance, to summarize 

environmental variation across Libya.  

 

Ecological niche modeling 

The MaxEnt algorithm [37] was used to estimate the fundamental ecological niche of the six 

species in this study. The fundamental ecological niche is defined as the set of environmental 

conditions under which a species is able to maintain populations without immigrational subsidy 

[38]. Correlational ecological niche models (ENMs) estimate niches by relating known 

occurrences to environmental values to identify conditions associated with the species presence.  

We calibrated ENMs within the districts where sampling was most detailed, and then transferred 

the model across all of Libya. MaxEnt was specified to conduct 100 bootstrapping replicates for 

each species. We used medians across the replicates as a final niche estimate for each species. 

All ENMs were converted to binary maps using a least training presence (i.e. lowest probability 

value of the occurrence points used in calibration of the models) thresholding approach adjusted 

to permit 5% omission in light of some probably erroneous records likely remaining in our data 

set [39].  
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Model Evaluation 

To test the robustness of the ENMs in predicting the occurrences of the species accurately across 

unsampled areas of Libya, a partial receiver operating characteristic (ROC) approach was used 

[39]. This approach potentially allows differential weighting of omission (i.e., false negatives, 

leaving out actual distributional area) and commission errors (i.e., false positives, including 

unsuitable areas in prediction) and concentrates attention on parts of error space most relevant to 

niche modeling [39]. We selected 50% of the occurrence points of each species at random to test 

the ENMs by comparing the reduced threshold-independent area under the curve to null 

expectations: the dataset was bootstrapped, and probabilities obtained by direct count. AUC 

ratios were calculated via a software partial ROC available as a visual basic application at 

http://bit.ly/1JusDwz, based on 100 iterations and an E = 5% omission threshold.  

An additional independent 98 records from the Libyan National Centre for Disease 

Control (NCDC) were used to test the model’s ability to predict the distribution of new ZCL 

cases across Libya. These samples were identified in the NCDC laboratory based on PCR 

protocols from previous studies (e.g. [2,11]). We checked these records to remove any 

occurrences matching these used in calibrating ENMs, but none coincided with those used in 

model calibration. We used a one-tailed cumulative binomial probability distribution that 

assessed the probability of obtaining the observed level of correct prediction by a chance alone 

given the background expectation of correct predictions and based on the proportional coverage 

of the region by the thresholded model prediction.  

Niche breadth and overlap 

Niche breadth was estimated for each species based on the inverse concentration measure in 

ENMTools (http://enmtools.blogspot.com/). For successful ZCL transmission, pathogen, vector, 

http://bit.ly/1JusDwz
http://enmtools.blogspot.com/
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and host species should overlap spatially and ecologically [31,40]. Here, ZCL transmission 

requires presence of L. major, P. papatasi, and at least one of the mammal reservoir species. We 

used background similarity tests [41] to assess similarity between pairs of estimated niches. We 

first estimated the accessible area (M) for each species in the study [42]; the accessible area for 

L. major was identified based on the distribution of that species across the country, where the 

species occurs only in the northwestern part. M estimates for the other species included all or at 

least a subset of the northern parts of the country depending on the species’ current distributions.  

To test the null hypothesis of niche similarity between each pair of niches, we used D-statistics 

and Hellinger's I implemented in ENMTools [41]. Niche similarity was tested with respect to all 

environmental variables used to develop the ENM for each species. The background similarity 

test is based on generating random points from across the accessible area of one species in 

numbers equal to the numbers of real occurrence data available for that species in the study, with 

100 replicate samples, and comparing an ENM based on these “background” points to the ENM 

of the other species. The null hypothesis of niche similarity was rejected if the D or I values fell 

below the 5th percentile in the random-replicate distribution of similarity values [41]. 

We assumed that areas could be considered as at risk of ZCL transmission when all 

necessary elements for transmission co-occur [40]. We used the ENMs for P. papatasi and the 

four candidate ZCL reservoirs to identify areas of overlap between the vector and each of the 

possible hosts.  These grids were obtained by multiplying the binary ENM of P. papatasi with 

the binary grid for the host species. We used a one-tailed cumulative binomial test to assess the 

relationship between the areas of vector-reservoir overlap and independent leishmaniasis human 

case records from the NCDC.  
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Results 

We collected a total of 348 occurrences for P. papatasi, L. major, and four candidate 

reservoir species across Libya. Occurrence records are fully and openly available via Figshare 

repository (https://dx.doi.org/10.6084/m9.figshare.1613478). These data were concentrated along 

the northern coast of Libya (Fig 1).  Phlebotomus papatasi was recorded from 84 localities, 

whereas L. major was characterized by 50 localities. Meriones libycus was the most commonly 

recorded mammal reservoir (104 sites) followed by Ps. obesus (48), G. gerbillus (32), and M. 

shawi (30).  ENMs developed for these six species are illustrated in Fig 1; ENMs calibrated 

across the country (for comparison) are presented in the supplementary materials (S2 File).  

 

Fig 1: Thresholded potential distribution maps for Leishmania major, Phlebotomus papatasi, and four candidate 

mammal reservoir species potentially associated with the zoonotic transmission of cutaneous leishmaniasis. Models 

were calibrated across sampled area (S), and transferred across all Libya. Blue points are occurrences, pink areas are 

modeled suitable conditions, and gray areas are unsuitable conditions. 
 

 

https://dx.doi.org/10.6084/m9.figshare.1613478
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ENMs predicted most of the species to range across the northern coast of Libya; 

however, three species had broader potential distributions extending south to central Libya (M. 

libycus, M. shawi, Ps. obesus). The ENM for L. major predicted highest suitability in a belt 

between 30-33° N. These areas included many western provinces (e.g., Nalut, Yafran, Nuqat Al 

Khams, Al Jifarah, Sabratah, Misrata, Al Marqab, Gharyan, Babratah, Az Zawiya, Tajura, 

Tarhunati, Bani Walid, and Sirte), but also some eastern provinces (e.g., Al Jabal Al Akhdar, Al 

Qubbah, Al Hizam Al Akhdar, and Ajdabiya). The potential distribution of P. papatasi extended 

across the northern coast of Libya, but also in a disjunct area in central east Libya. All ENMs 

calibrated for these species were significantly robust based on partial ROC tests, with AUC 

ratios uniformly above 1 (P < 0.001; Table 1).  

 

Species  Mean Minimum Maximum 

Leishmania major 1.92 1.91 1.95 

Phlebotomus papatasi 1.94 1.93 1.98 

Gerbillus gerbillus 1.57 1.50 1.88 

Meriones libycus  1.56 1.35 1.89 

Psammomys obesus 1.71 1.64 1.96 

Meriones shawi 1.78 1.72 1.94 

 

Table 1: Results of partial ROC analysis to test statistical significance of ecological niche model predictions. A 

value of 1.0 is equivalent to the performance of a random classifier. These results were based on 100 bootstrap 

replicates, and statistical significance was assessed via bootstrapping and comparison with a random classifier ratio 

of 1.0.   
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In the most recent CL outbreaks across Libya, NCDC identified L. major in cases from 

98 sites. The L. major ENM predicted 98 out of 98 of these additional independent data, which is 

statistically better than random expectations (P < 0.001). These additional independent data thus 

corroborated the L. major ENM, and the ability of that model to anticipate all recent cases of 

ZCL identified (Fig 2).  

 

 

Fig 2: Relationship of ecological niche modeling predictions to the distribution of 98 sites with L. major cases reported by the 

Libyan National Centre for Disease Control in recent outbreaks across Libya. The blue dotted circle represented localities where 

these independent data were collected, and pink represent the belt predicted suitable for the Leishmania major. 

 

Niche breadth was least in L. major and P. papatasi, and greater in the mammal species; 

indeed only G. gerbillus had niche breadth similar to L. major (S3 File).   We visualized the 

environmental conditions where these species occur: L. major and P. papatasi were at low 

elevations, and mostly under a maximum temperature of 25 °C – 37 °C (Fig 3).  The other 

species had similar responses to environmental conditions; however, they tend to be distributed 

along a broader environmental range (except G. gerbillus; S4 File).   
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Fig 3: Visualization of Leishmania major, and Phlebotomus papatasi ecological niches in example dimensions. Overall set of 

environments available across Libya in gray; modeled suitable conditions for the species occurrences in pink. Similar 

visualizations of ecological niches for the potential mammal reservoir species are in the Supporting Information (S4 

File). 
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The background similarity tests comparing the ENMs of parasite, vector, and possible 

reservoirs were uniformly unable to reject the null hypothesis of niche similarity between these 

species (P > 0.05; Fig 4 & S5 File). This result indicates the niche estimate for L. major could 

not be distinguished from those of the vector or the four potential reservoirs. We used NicheA to 

visualize overall overlap between the species based on three dimensions of PCAs (Fig 5), which 

revealed broad overlap in environmental conditions used by six species.  

 

Fig 4: Example background similarity tests showing overall niche overlap between ecological niche models for pairs 

of species: (A) Leishmania major—Phlebotomus papatasi and (B) Leishmania major –Meriones libycus. The 

vertical purple line shows observed niche overlap, and the histograms show the distribution of the background 

similarity values among 100 random replicates, for the I and D similarity metrics. On the maps, red and blue shading 

indicates the modeled suitable areas for the two species; purple shading shows areas of overlap between the two 

species. Results for other species are given in the Supporting Information (S5 File). 
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Fig 5: Visualization of ecological niches of Leishmania major, Phlebotomus papatasi, and animal reservoir in three 

environmental dimensions (PC1, PC2, and PC3). Niches are represented as minimum volume ellipsoids to illustrate 

the limits under which the species has been sampled. Gray shading represents environmental background, green 

ellipsoid represents the potential mammal reservoir, yellow is the vector Phlebotomus papatasi, and purple 

represents Leishmania major. 
 

Finally, we combined the modeled distribution of the vector P. papatasi with those of 

each of the potential reservoirs as hypotheses of system that could support zoonotic transmission 

of CL across Libya (Fig 6). Results revealed that P. papatasi-M. libycus,  P. papatasi-M. shawi, 

and P. papatasi-Ps. obesus systems predicted recent ZCL well (P < 0.01); the first two predicted 

100% of the cases reported to the NCDC, but Ps. obesus identified only 85.7% of these cases (84 
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out of 98). The P. papatasi-G. gerbillus map was able to predict only 29 of 98 records, not better 

than null expectations (P > 0.05).   

 

 

Fig 6: Relationship of additional independent human case records to the areas where pairs of vector Phlebotomus 

papatasi and mammal reservoir species can occur. Green areas are areas of overlap between P. papatasi and each of 

the potential mammal reservoirs; white dotted circle represent localities where human cases were predicted 

successfully; blue dotted circles indicate case records not predicted successfully by the model combination. 
  

Discussion 

Numerous recent studies have attempted to map potential distributions of key species 

involved in leishmaniasis transmission in several countries in Europe and the Americas [43,44]. 

Africa, however, has seen only a few efforts to map vector populations [31,45-47]. Libya sees 

many CL cases [3]; for example, 6284 cases were identified there in 2006 alone (S6 File). CL 

case rates are still underestimated owing to inefficient infrastructure for early notifications of 

cases, and lack of public awareness among doctors and patients [3]. For the national control 

program to be successful, all organisms associated with leishmaniasis transmission should be 

identified and understood in detail (i.e. vectors, reservoirs, and pathogens).  
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We developed this mapping exercise across Libya for several reasons. (1) Most 

prominently, we wished to map the potential distribution of ZCL cases across the country. (2) 

We strove to map the potential distribution of 5 other organisms potentially associated with the 

disease’s dynamics in Libya. (3) We wished to test niche similarity among the set of species 

involved. Finally, (4) we tested the possible reservoir-vector combinations that could allow better 

prediction of ZCL cases. All of these analyses will help to understand the disease risk areas 

across the country and guide possible control programs.  

Our models identified risk areas across both the western and eastern portions of the north 

coast of the country. Although all previous studies in Libya had found CL cases only in the 

western provinces, some recent reports have provided evidence of CL occurrence in eastern sites 

as well (e.g. Ajdabiya, and Al Jabal Al Akhdar; [48]). Although this report [48] is the only one to 

place CL at these sites, most CL surveillance has concentrated in western Libya [2,6,7], so this 

results is perhaps expected. Our ENMs found suitability of both regions for ZCL transmission, 

benefitting from higher-resolution environmental data, and consideration of areas that were 

sampled and accessible to each species [42,49].  

The risk of ZCL transmission in North Africa appears to be determined by the joint 

dynamics of vectors and mammal reservoir populations [16]. When we visualized the 

environmental conditions suitable for the species examined in this study, they were most prevalent 

in a maximum temperature range of 25 °C – 37 °C, similar to other recent reports across North 

Africa and Middle East [50-52]. These latter studies reported that P. papatasi was abundant in 

semi-arid and arid steppe zones, and that low and high temperatures are key in limiting its 

distribution and activity [50-52]. For example, P. papatasi in Morocco was less active at 

temperatures of 11–20 °C and 37–40 °C [52]. The distributional patterns of L. major and P. 
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papatasi estimated in this study concords with these latter reports [51,52]. Northern coastal regions 

of Libya are characterized by a Mediterranean climate, whereas the rest of the country has hot, dry 

desert climates that are unfavorable for these species, with maximum summer temperatures over 

40 °C apparently. Previous studies have shown that water is a major limiting factor for sand flies 

and for leismaniasis abundance and spread, respectively [53]. Phlebotomus papatasi cannot 

tolerate the extreme conditions of temperature and low humidity associated with the rare rainfall 

in the south, although the species is well established in other deserts where conditions are more 

mesic (e.g., Negev Desert [53]). Our study identified an interesting prediction of the presence of 

suitable environmental conditions in central Libya, associated with construction of new water 

resources [26] and raised concerns for changes in the eco-epidemiology of leishmaniasis across 

the country as water resources (S7 File) and agricultural activities are established in southern parts 

of the country. These important anthropogenic changes will be key factors in affecting 

distributions of vectors and reservoir hosts of ZCL across Libya; for example, in other studies in 

the region, soil moisture was an important variable in determining vector and reservoir abundance 

[54,55]; anthropogenic disturbance was also identified as favoring conditions for vector and larger 

host populations in Israel [56]. The effects of these two factors may be reflected among some of 

environmental variables included in our study, but their absence in explicit terms still marks a 

limitation to our study; a more detailed picture of ZCL transmission risk in the region will need to 

consider their possible effects on long-term sand fly and rodent abundances.        

Most recent ZCL cases occurred at relatively low elevations; the areas near Al Jabal Al 

Gharbi alone accounted for most cases (S7 File) [2,57]. Similar observations were reported for L. 

major, P. papatasi, and wild mammals in Morocco [58]. Elevation and temperature are not the 

only factors influencing the distribution of ZCL cases: precipitation has also been shown to play 
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a role [45]. Low-elevation northern areas, where L. major and P. papatasi species occur in high 

densities, are characterized by the highest precipitation in the country [45].  

Although testing niche similarity among species was unable to distinguish among 

hypotheses of ZCL hosts, as was possible in our previous analyses in Egypt [31], our analyses of 

possible species combinations excluded G. gerbillus as a main reservoir across Libya. In our 

previous analysis in Egypt, however, we found marked niche similarity between P. papatasi and 

L. major, but none between L. major and P. sergenti in terms of geographic distribution and 

ecological niche [31], supporting the idea that carefully constructed ENMs are able to predict 

disease risk based on models of vectors and reservoir hosts in a complex transmission system 

like leishmaniasis. In this study, 85.7% of cases were predicted successfully, focusing on areas 

where Ps. obesus co-occurred with the vector. WHO had reported that Ps. obesus was likely the 

main reservoir of ZCL in Libya [16]; however, our results more strongly supported the two 

Meriones spp. – P. papatasi system, which were able to anticipate all recent human cases. 

Evidence for this association has also been found in the form of high infection rates with L. 

major in Meriones tristrami in the most recent ZCL foci documented in Israel [59]; these 

observations provide mounting evidence that jird play a major role in disease transmission across 

the region. This study took Libya as a target population for illuminating the identity and 

distribution of reservoir hosts in the complex ZCL cycle. Indeed, simply the definition of 

“reservoir host” remains unresolved [60-62]; early studies defined reservoir host as the 

“ecological system in which the infection agent survives indefinitely” [60], but later studies 

focused on definition in reference to a specific target population [61]. Certainly, some confusions 

in reservoir definition still exist; the specification of particular target populations emphasizes the 

importance of geographic and ecological associations in defining reservoir hosts, which 
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underlines the approach in this study. As a result, we urge development of similar studies 

regarding other target populations to examine spatial and temporal relationships of these hosts, 

and characterize differences in ZCL dynamics among regions.  

The study of the association among these organisms in both spatial and temporal 

dimensions is of great added values to map the ZCL risk areas across Libya, guide the control 

program across the country, and provide the first detailed maps for the potential distributions of 

organisms associated with the zoonotic transmission cycle across Libya. An early study shed 

light on disease ecology and possible host-pathogen associations [63], discussing criteria of host 

geographic distribution, pathogen range within the host range, regional distributions of 

organisms in different biomes and habitats, relative prevalence of the pathogen among host 

subpopulations, temporal and fine-scale spatial pattern of host-pathogen dynamics, and 

integrative time- and place-specific predictive models. These criteria were discussed as major 

steps to promote understanding of pathogen-host associations in complex transmission cycles. 

This study applied most of these criteria to the complex ZCL cycle in Libya but we note 

knowledge gaps in Libya regarding the prevalence of L. major among different host 

subpopulations, and the dynamics and potential distribution of host and parasite at finer scales 

across the country. Filling these gaps as regards the disease system in Libya will promote a more 

detailed picture both for its ecology and for control programs.    

Leishmaniasis control programs should consider our findings by applying integrated 

approaches to combating ZCL by considering the environmental risk factors that we have 

explored. That is, if a particular combination of host and vector species is necessary for 

leishmaniasis transmission, then strategies by which to interrupt that transmission can focus on 

removing the pathogen, the vector, or key hosts from the system. Such measures may be 



52 
 

implemented via educational programs in risk areas, mass drug administration in infected 

communities, and host or vector control programs. Our future work will focus on possible 

hotspots in the less-well-known areas of the country via intensive disease surveillance and 

sampling of all relevant organisms. More deeply, we plan to consider socioeconomic variables in 

tandem with the physical environmental variables for a more universal model that links physical, 

biological, and human factors in this complex disease system.  
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Supporting information 

S1 File: Detailed description of the CliMond variables used in the model. Details on these 

variables are also available via https://www.climond.org/.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Number Variable 

Bio01 Annual mean temperature (°C) 

Bio02 Mean diurnal temperature range (mean(period max-min)) (°C) 

Bio03 Isothermality (Bio02 ÷ Bio07) 

Bio04 Temperature seasonality (C of V) 

Bio05 Max temperature of warmest week (°C) 

Bio06 Min temperature of coldest week (°C) 

Bio07 Temperature annual range (Bio05-Bio06) (°C) 

Bio08 Mean temperature of wettest quarter (°C) 

Bio09 Mean temperature of driest quarter (°C) 

Bio10 Mean temperature of warmest quarter (°C) 

Bio11 Mean temperature of coldest quarter (°C) 

Bio12 Annual precipitation (mm) 

Bio13 Precipitation of wettest week (mm) 

Bio14 Precipitation of driest week (mm) 

Bio15 Precipitation seasonality (C of V) 

Bio16 Precipitation of wettest quarter (mm) 

Bio17 Precipitation of driest quarter (mm) 

Bio18 Precipitation of warmest quarter (mm) 

Bio19 Precipitation of coldest quarter (mm) 

Bio20 Annual mean radiation (W m-2) 

Bio21 Highest weekly radiation (W m-2) 

Bio22 Lowest weekly radiation (W m-2 

Bio23 Radiation seasonality (C of V) 

Bio24 Radiation of wettest quarter (W m-2) 

Bio25 Radiation of driest quarter (W m-2) 

Bio26 Radiation of warmest quarter (W m-2) 

Bio27 Radiation of coldest quarter (W m-2) 

Bio28 Annual mean moisture index 

Bio29 Highest weekly moisture index 

Bio30 Lowest weekly moisture index 

Bio31 Moisture index seasonality (C of V) 

Bio32 Mean moisture index of wettest quarter 

Bio33 Mean moisture index of driest quarter 

Bio34 Mean moisture index of warmest quarter 

Bio35 Mean moisture index of coldest quarter 

https://www.climond.org/
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S2 File: Thresholded potential distribution maps for Leishmania major, Phlebotomus papatasi, 

and four candidate mammal reservoir species potentially associated with the zoonotic 

transmission of cutaneous leishmaniasis. Models were calibrated directly across Libya. The pink 

areas represent modeled suitable conditions, and gray areas were modeled as unsuitable for the 

species.   

  
 

 

 

 

 

 

 



62 
 

S3 File: Values of niche breadth for Leishmania major, Phlebotomus papatasi, and the four 

potential mammal reservoirs.  

  

Species   Niche breadth  

Leishmania major  0.097  

Phlebotomus papatasi  0.165  

Meriones libycus  0.283  

Gerbillus gerbillus  0.092  

Meriones shawi  0.246  

Psammomys obesus  0.317  
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S4 File: Visualizations of ecological niches of four potential mammal reservoirs in two 

environmental dimensions. The diagram shows the overall environment available across 

Libya (gray), and the suitable conditions for species occurrences (pink).  
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S5 File: Background similarity tests of ecological niche overlap between species. The red 

vertical line represent the observed niche overlap between the two ENMs in the question. The 

results of the background similarity tests were based on Schoener’s D (left column) and 

Hellinger’s I (right column) similarity metrics.  
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S6 File: Total annual number of cases reported to the Libyan National Centre for Disease 

Control 2004-2013. These cases were reported by the local health units in each province and 

notified to the center for control measures based on the endemic status of each focus. These 

cases were identified by passive surveillance, and were not diagnosed to the species level.   
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S7 File: Localities with high zoonotic cutaneous leishmaniasis incidence and water 

resource management across Libya. Districts with high incidence are shown in blue, and 

localities within each district is presented as a dotted points. The map of Libya at the top 

shows the distribution of areas with water resource management initiatives as blue circles.   
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Chapter 3: Climate change influences on the global 

potential distribution of bluetongue virus3  

 

 

 

 

 

 

 

 

 

 

 

                                                 
3 Samy AM, Peterson AT (2016). Climate change influences on the global potential distribution of bluetongue virus. 

PLoS One. 11(3):e0150489. doi: 10.1371/journal.pone.0150489  
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Abstract  

The geographic distribution of arboviruses has received considerable attention after 

several dramatic emergence events around the world. Bluetongue virus (BTV) is classified 

among category “A” diseases notifiable to the World Organization of Animal Health (OIE), and 

is transmitted among ruminants by biting midges of the genus Culicoides. Here, we developed a 

comprehensive occurrence data set to map the current distribution, estimate the ecological niche, 

and explore the future potential distribution of BTV globally using ecological niche modeling 

and based on diverse future climate scenarios from general circulation models (GCMs) for four 

representative concentration pathways (RCPs). The broad ecological niche and potential 

geographic distribution of BTV under present-day conditions reflected the disease’s current 

distribution across the world in tropical, subtropical, and temperate regions. All model 

predictions were significantly better than random expectations. As a further evaluation of model 

robustness, we compared our model predictions to 331 independent records from most recent 

outbreaks from the Food and Agriculture Organization Emergency Prevention System for 

Transboundary Animal and Plant Pests and Diseases Information System (EMPRES-i); all were 

successfully anticipated by the BTV model. Finally, we tested ecological niche similarity among 

possible vectors and BTV, and could not reject hypotheses of niche similarity. Under future-

climate conditions, the potential distribution of BTV was predicted to broaden, especially in 

central Africa, United States, and western Russia.     
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Introduction  

The global distribution of arboviruses has received considerable attention from public 

health organizations after recent emergence events in several parts of the world [1,2]. Bluetongue 

virus (BTV) is an arboviral disease in ruminants [3], caused by a member of the genus Orivirus 

in the family Reoviridae. The disease is transmitted among ruminants by the bites of biting 

midges of the genus Culicoides [4].  

BTV has been responsible for massive sheep mortality; for example, outbreaks in the 

Mediterranean region since 1998 resulted in deaths of over 800,000 sheep [5]. A single strain of 

BTV in Belgium disrupted animal trade and killed animals with a market value of UK £180 

million during a 2006-2007 outbreak [6]. In the United States, BTV causes losses of US $125 

million yearly [7]. Previous reports have discussed early introduction of infected sheep into 

South Africa 125 years ago [8], but others identified South Africa as the origin of the infection 

[9].  

BTV geography was long limited to a range between 40°N and 35°S [1]. Recently, 

however, several BTV strains began to spread worldwide [1,10,11], including to more northern 

parts of Europe, in 1998 [4]. The expansion and the potential for susceptibility of new vector 

species to the virus raises concerns of broader BTV spread [4,12-14]. BTV is transmitted by 

several vector species: Culicoides imicola Kieffer, 1913 (Diptera: Ceratopogonidae) is the most 

significant vector in the Old World [15], but three other species serve as vectors in the United 

Sates alone [16]. The distribution and movement of hosts has also been identified as a limiting 

factor for BTV spread; although BTV is known to have infected several ruminants, cattle and 

sheep are identified as primary reservoirs in several endemic areas worldwide [1]. The 

http://www.gbif.org/species/1632059
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combination of climate, presence of susceptible host, and presence of competent vectors marks 

areas where BTV can circulate in the long term among livestock.       

Previous studies have mapped BTV risk based on occurrence data from single countries 

[17-19]; others included vector distributions in mapping efforts [5,18]. One study explored the 

global distribution and possible future shifts in the distribution of C. imicola across the world 

[15]. Ecological niche models provide a robust approach by which to assess and evaluate 

distribution of disease risk [20]: this approach has been used in mapping everything from fungal 

to arboviral diseases in several recent analyses [21,22].    

Here, we developed a comprehensive database of BTV case occurrences, and estimated 

the global potential distribution of BTV under both current and future climate conditions. The 

study used outputs from 62 general climate models (GCMs) and four representative 

concentration pathway (RCP) scenarios from the Fifth Assessment Report (AR5) of the 

Intergovernmental Panel on Climate Change (IPCC) to estimate the future potential distribution 

of the virus. Finally, we tested niche similarity between several vector species and BTV case 

distribution in different geographic areas to provide some level of assessment of the role of 

particular potential vector species in BTV transmission.  

 

Materials and Methods  

Input data  

Primary records of BTV occurrences (i.e. data reports of animal infections) were obtained 

from the PubMed database and Web of Knowledge using the search term “bluetongue virus,” as 

well as from OIE reports (www.oie.int), the ReoID database (www.reoviridae.org/), and the 

Food and Agriculture Organization Emergency Prevention System for Transboundary Animal 

http://www.oie.int/
http://www.reoviridae.org/
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and Plant Pests and Diseases Information System (EMPRES-i; http://empres-i.fao.org). Data 

regarding BTV occurrences through November 2014 were used in calibration, whereas 

occurrences from after that date (through September 2015) were used to provide a semi-

independent data set for model evaluation (see Discussion).  BTV records were drawn from 

diverse sources as we are seeking a global map of disease across the world; however, OIE and 

FAO data are limited to countries where BTV is notifiable, with most sampling in Europe and 

United States; data did not include the older BTV outbreaks in Africa and Asia. For niche 

comparisons with possible vectors, we collected vector occurrences from the Global Biodiversity 

Information Facility (GBIF; www.gbif.org) and literature in the PubMed and Web of Knowledge 

databases. The vector occurrences included records for six species: C. imicola, C. insignis Lutz, 

1913, C. variipennis Coquillett, 1901, C. sonorensis Wirth & Jones, 1957, C. occidentalis Wirth 

& Jones, 1957, and C. brevitarsis Kieffer, 1917.  When geographic references were textual, we 

assigned geographic coordinates based on consultation of online gazetteer data 

(www.gpsvisualizer.com). Data were filtered to eliminate duplicate records; we further reduced 

the data such that no pair of points was separated by <20 km   (i.e., a single pixel) to reduce 

biases in calibrating ENMs [23]. The final occurrence data set was divided in two equal portions: 

half to calibrate the model, and half for evaluating model predictions. 

To characterize current global climates, we used data available from the WorldClim 

archive (www.worldclim.org), which comprise19 bioclimatic variables derived from monthly 

temperature and rainfall values collected during 1950-2000 [24]. We used the 10ˈ spatial 

resolution in light of the global extent of our modeling efforts. For future conditions, we obtained 

data based on GCM outputs for 2050. These data comprised four RCPs spanning broadly 

different emissions scenarios into the future. Our future-climate projections thus summarized 62 

http://www.gbif.org/
http://www.gbif.org/species/1632282
http://www.gbif.org/species/1632282
http://www.gbif.org/species/1632294
http://www.gbif.org/species/1632294
http://www.gbif.org/species/1632352
http://www.gpsvisualizer.com/
http://www.worldclim.org/
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combinations (S1 File). We used bioclimatic variables derived from monthly temperature and 

precipitation values because they are known factors in BTV transmission risk [1,25,26].  

We omitted bioclimatic variables 8-9 and 18-19 from analysis, in light of known spatial 

artifacts in those four variables. The remaining of 15 variables were subjected to a principal 

components analysis (PCAs) to reduce the dimensionality of our models and avoid 

multicollinearity of variables (see summary of variable correlations in S2 File). The component 

loadings in the present-day data were used to transform future-climate data, using the 

ENMGadgets package [27] in R version 3.2.0 [28].  

 

Ecological niche modeling 

The maximum entropy algorithm implemented in Maxent version 3.3 [29] was used to 

estimate the ecological niche of BTV, roughly defined as the set of environmental conditions 

under which the species can maintain populations [20].  Our model was based on the first 6 

principal components described above. We estimated the accessible area (M) [30,31] considering 

the geographic distribution of recent BTV outbreaks, which have been very broad, covering 

much of the world. We used the bootstrap functionality in Maxent to produce 100 replicate 

analyses.  We used the median values across all models and replicates as a best estimate of the 

ecological niche of BTV. Finally, we calculated the median of the medians across all GCMs 

within each RCP scenario. Final models were thresholded based on a minimum allowable 

omission error rate of 5% (E=5%; [32]), assuming that a minimum of 5% of occurrences data 

may have errors in geolocation that  misrepresented environmental values. We used the range 

(maximum – minimum) as an index of uncertainty between diverse models within each RCP.     
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Model robustness 

Model robustness was evaluated using partial ROC statistics [20,32], which avoid many 

of the problems with traditional ROC approach [33]. We used  the partialROC function in the 

ENMGadgets package in R [27] and the 50% subset of available occurrence data described 

above. A further evaluation of our model was based on independent data from recent outbreaks 

reported to FAO EMPRES-i. These data represent outbreaks reported between December 2014 

and September 2015; that is, the evaluation data come from the year following the temporal span 

of the data used for model calibration. We used a one-tailed cumulative binomial probability 

distribution that assessed the probability of obtaining the observed level of correct prediction by 

a chance alone, given the background expectation of correct predictions based on the 

proportional coverage of the region by the thresholded model prediction.  

 

Niche overlap of bluetongue virus and its vectors  

We tested the niche similarity between each potential vector species and BTV using the 

background similarity test implemented in ENMTools version 1.4.4 [34]. We developed a 

specific M hypothesis [31] for each vector species as follows: C. imicola, a vector of BTV in the 

Old World [1,5,35], so we estimated a broad accessible area (M) that included all of Europe, 

Asia, and Africa for that species. Culicoides insignis is reported from North, Central, and South 

America [36], so its M was estimated to include all of the Americas. The M hypotheses for C. 

variipennis and C. sonorensis were estimated as all of North and Central America. Culicoides 

brevitarsis was restricted to East Asia and Australia, and C. occidentalis was limited to the 

southern United States and Central America. 
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The background similarity test assessed whether vector and BTV niches are less similar 

than expected given the “background” similarity manifested across the accessible areas of each 

[34]. We compared niche model similarity values based on actual occurrences of each species, 

with distributions of background similarity based on comparison of the niche of one species with 

“niche” models based on random points from across the M of the other species. We used numbers 

of random points equal to the number of actual occurrences for the other species. The null 

hypothesis of niche similarity was rejected if the observed D or I values for the BTV and vector 

species in question fell below the 5th percentile in the random-replicate distribution.   

 

 

Results 

We assembled a total of 1677 unique occurrences for BTV around the world for model 

calibration. These points were filtered down to 1260 records in individual pixels. The overall 

pattern of occurrences indicated a geographically broad distribution of BTV, with more intense 

sampling efforts in Europe, where the virus invaded recently (Fig 1). Sampling was much more 

sparse in Africa and South America. Most BTV records were outside the early geographic belt 

identified for BTV distribution [37] (Fig 1). We also assembled an overall total of 798 

occurrence records for six vector species: C. imicola (N = 408), C. sonorensis (N = 239), C. 

variipennis (N = 75), C. insignis (N = 33), C. brevitarsis (N = 23), and C. occidentalis (N = 20).  

These species have different ranges across the world (S3 File): C. imicola has a broader 

distribution extending from East Asia to western Africa; however, other species are limited in 

their ranges to East Asia and Australia (C. brevitarsis), North and Central America (C. 
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variipennis and C. sonorensis), southern United States and Central America (C. occidentalis), 

and North and South America (C. insignis).    

 

 

 

Fig 1: Summary of bluetongue virus occurrences (yellow points) available for model calibration worldwide. Dotted 

black shading represents the early belt of BTV occurrence. 

 

 
 

 

Fig 2: Current potential distribution map for bluetongue virus based on present-day climatic conditions. Blue shaded 

areas are modeled suitable conditions, and white areas are unsuitable conditions. 
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The potential distribution of BTV under present-day conditions showed high suitability 

across southern Europe, Australia, the Indian Subcontinent, and northern and southern Africa 

(Fig 2). BTV occurred in tropical, subtropical, and temperate climate zones. Suitable areas were 

also identified in West Africa, United States, and southern and western Canada. In all, the model 

outputs corresponded well to known areas of transmission around the world. Model predictions 

were significantly better than random expectations, in that partial ROC AUC ratios were 

uniformly higher than the random classifier with an AUC ratio of 1 (P < 0.01). The data set of 

331 independent records was used to evaluate the robustness of our models in anticipating the 

current outbreaks across southern Europe, North Africa, and the United States. The model was 

significantly able to anticipate all 331 points reported for the most recent outbreaks of BTV (Fig 

3; cumulative binomial test, P < 0.0001).   

 

 

Fig 3: Relationship of additional independent BTV records to areas predicted as suitable for bluetongue virus 

occurrences. Yellow points are independent BTV occurrence data from the Old World and North America. Blue 

areas are represented as suitable and white as unsuitable. 
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Fig 4: Predicted potential distribution maps for bluetongue virus under future climatic conditions. Models were 

calibrated across present-day conditions, and transferred to the future climate conditions. Each model is the median 

of all climate models across each representative concentration pathways (RCPs). Orange areas are modeled suitable 

conditions; white areas are unsuitable conditions for BTV occurrences. 
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BTV model transfers to future conditions indicated a pattern that was overall similar to 

that estimated for present-day conditions. However, the potential distribution of the virus under 

future conditions was broader, and included areas not identified as suitable under current 

conditions (Fig 4). This potential for expansion was particularly notable in central Africa, the 

United States, and western Russia. Under all future climate scenarios, the virus was seen to have 

a broader potential geographic distribution than at present (Fig 4). We noted few differences 

between GCMs within each climate scenario, such that model predictions were consistent over 

much of the world, with exceptions in western Russia, northern Europe, western South America, 

and Indonesia, where future projections were less stable (Fig 5).   

BTV range increased from RCP 2.6 to RCP 8.5 (potential distributional area increased by 

8.11% between present-day and RCP 2.6, and by 9.08% between present-day and RCP 8.5). 

Differences were also noted in the future potential BTV ranges of different models within each 

climate scenario (S4 File); the potential distributions under the different model conditions are 

summarized in the electronic supplementary materials as a GeoTIFF dataset 

(https://figshare.com/s/ac5383809b411c0f8779).  

Finally, we tested the similarity of estimated niches between BTV and vector species, 

taking into account the background similarity between the accessible areas of each [34]. We 

could not reject the null hypothesis of niche similarity between BTV and any of the vector 

species (P > 0.05) (S5 File). Hence, present-day environmental conditions occupied by BTV and 

its vectors were not demonstrably different, and we found no indication of unlinked transmission 

and vector occurrence. 

https://figshare.com/s/ac5383809b411c0f8779
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Fig 5: Summary of the modeled global distribution of bluetongue virus under both current and future climatic 

conditions to show the stability of predictions at present and into the future, and to illustrate differences among 

representative concentration pathways (RCPs). Dark blue represents model stability under both current and future 

conditions, light blue represents low agreement between current and future conditions, dark purple represents 

agreement among all climate models in anticipating potential distributional areas in the future, and light purple 

indicates low agreement between diverse climate models as regards distributional potential in the future.  
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Discussion  

This study built a comprehensive database of BTV occurrences from 1964 through 

November 2014. We used these data to map the potential distribution of BTV in the present-day, 

and also to identify future potential distributional shifts in view of the most recent future climate 

scenario model outputs. The availability of BTV data was poor until large-scale outbreaks across 

Europe began in the late 1990s; since then, the disease has caused serious impacts on 

international animal trade, and serious illness and high mortality rates among ruminants [38,39], 

and reporting has been more detailed.  

Climate has been suggested as a major driver of the distribution of BTV [1]; for example, 

the European outbreaks were thought to be a consequence of warming climates [1], and the virus 

expanded another ~800 north in 2005 [40,41].  Historically, the disease was found in a belt 

between 40ºN and 35ºS that included northern Australia, parts of the Indian Subcontinent, 

Middle East, Africa, Cyprus, and the Americas. Prior to that point, BTV was known only from 

South Africa and Cyprus [8, 42], The origin of the disease thus has three possible explanations: 

(1) BTV was present in both Africa and Europe but was not documented owing to 

misidentification or poor diagnostic tools; (2) BTV originated in South Africa and dispersed to 

Europe; (3) BTV originated in Europe and dispersed to South Africa. Phylogenetic analyses 

suggest that strains responsible for the new BTV outbreaks are similar to those that circulated for 

decades in early epidemic sites [1]. FAOSTAT data indicate results revealed continuous 

international trade between Europe and Africa [43], which could allow viral infections in animals 

to move between the two continents. This observation also suggests that the virus will be able to 

spread to new sites that become suitable as climatic conditions change in coming decades.      
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We modelled BTV occurrences using the most recent version of 62 future climate model 

outputs, and used four RCPs to summarize variations among possible greenhouse gas 

concentration trajectories. Our results indicated the possibility of range expansion to other 

regions where the virus is not presently endemic, in response to climate changes [1] . 

Previous studies predicted the distribution of BTV and its vectors; most of these studies 

were limited to Europe after BTV emergence in Europe [5,18,26], and assessed transmission risk 

based mostly on vector distribution and abundance [5,18]. However, a single study took the 

advantage of a mechanistic models to quantify R0 values of BTV across Europe based on 

different temporal scales of climate data. This latter study demonstrated BTV risk areas across 

most of Europe that coincide with our results. However, our prediction covers a much broader 

portion of Europe, extending across much of the continent, east to western Russia. A recent study 

of BTV potential in the United States predicted that further northwards expansion of C. 

sonorensis can be expected in the future [44]. Our current study anticipated both the northern 

United States, southwestern Canada, and Ontario as at risk, as long as both BTV and vector 

expand distributionally in tandem; however, it marked unsuitability of conditions to virus spread 

along the US Gulf Coast and in the eastern Rocky Mountains, where livestock and wild animals 

have been diagnosed as positive to BTV [10]. This discord may reflect limitations of our model; 

however, these same regions were identified as suitable in our future models, which may indicate 

that our present-day models cannot anticipate risk in these regions given ongoing climate 

reorganization.       

The models estimated in our study showed significant performance in two tests based on 

testing data that are ostensibly independent from the data used in model calibration. However, 

we see some room for concern about this level of independence because disease events are 
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dependent events on a number of levels—individual cases may be linked to one another via 

pathogen and vector population biology, on both micro and macro scales. Similarly, surveillance 

is often responsive, and gets concentrated in affected areas, which can create additional 

dependencies. For these reasons, our data set was selected to constitute different data sources that 

represent sampling across the world and not just notified data from EMPRES-i. Our evaluation 

tested the possibility of these models to predict the recent outbreaks across the world from 

December 2014 until the most recent outbreak in Ontario, Canada. These models could 

anticipate all of these current outbreaks.   

Different levels of uncertainty were associated with the mapping process (S6 File). These 

uncertainty estimates were based on variations in predicted distributions of BTV across different 

climate models rather than just an estimate of internal uncertainty for predictions under the same 

climate model [22,45].  

Finally, our models offered an interesting perspective on vector associations of BTV 

infections around the world.  The BTV transmission cycle includes hosting by ruminants and 

vectors that transmit virus between hosts. Major knowledge gaps include the broader host 

distribution of BTV in diverse livestock hosts, and the vanishingly few studies that have focused 

on vector competence of different species of Culicoides. This study characterized diversity in the 

species of vectors associated with BTV in different parts of the world: C. imicola in the Old 

World, C. sonorensis and C. variipennis in North America, C. insignis in North and South 

America, C. occidentalis in southern United States and Central America, and C. brevitarsis in 

Australia. We tested niche similarity between each vector and BTV distribution across the 

accessible region for the corresponding vector; we could not reject the null hypothesis in any 

case, so vector populations and BTV appear to share similar ecological niches. This observation 
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is important because (1) vector populations can assist in identifying the potential distribution of 

the BTV in countries where the disease is not reported dependably to authorities, and (2) vector 

populations may drive BTV response to climate change [46].   

The current study leaves important questions unanswered regarding the global 

distribution of BTV: one related to the relationship between vector population dynamics and 

changes in BTV transmission, host response to climate change, and responses of different BTV 

serotypes to climate and how much these responses are similar or different. Our future work will 

focus on exploring these questions to illuminate additional key details of BTV epidemiology and 

ecology around the world.     
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Supporting Information 

S1 File: A summary of four representative concentration pathways and 62 climate models used 

in BTV model projection in future climate conditions. 

 

RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5 

BCC-CSM1-1 ACCESS1-0 BCC-CSM1-1 ACCESS1-0 

CCSM4 BCC-CSM1-1 CCSM4 BCC-CSM1-1 

CNRM-CM5 CCSM4 GFDL-ESM2G CCSM4 

GFDL-ESM2G CESM1-CAM5-1-FV2 GISS-E2-R CNRM-CM5 

GFDL-CM3 CNRM-CM5 HadGEM2-AO GFDL-CM3 

GISS-E2-R GFDL-ESM2G HadGEM2-ES GISS-E2-R 

HadGEM2-AO GFDL-CM3 IPSL-CM5A-LR HadGEM2-AO 

HadGEM2-ES GISS-E2-R MIROC5 HadGEM2-ES 

IPSL-CM5A-LR HadGEM2-AO MRI-CGCM3 HadGEM2-CC 

MIROC5 HadGEM2-ES MIROC-ESM-CHEM INMCM4 

MRI-CGCM3 HadGEM2-CC MIROC-ESM IPSL-CM5A-LR 

MIROC-ESM-CHEM INMCM4 NorESM1-M MIROC5 

MPI-ESM-LR IPSL-CM5A-LR  MRI-CGCM3 

MIROC-ESM MIROC5  MIROC-ESM-CHEM 

NorESM1-M MRI-CGCM3  MPI-ESM-LR 

 MIROC-ESM-CHEM  MIROC-ESM 

 MPI-ESM-LR  NorESM1-M 

 MIROC-ESM   

 NorESM1-M   
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S2 File: Correlation matrix showing patterns of relationships among environmental variables 

used in model calibration.  
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S3 File: Summary of BTV vector occurrences available for testing niche similarity between 

BTV and vector niches and based on accessible area (M). 
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S4 File: Range of BTV expansion based on presence-absence matrix of each ecological niche 

model for corresponding climate model. 

 

 

Scenario Model Absent  Present Present/absent Percentage  

RCP2.6 BCC-CSM1-1 320366 264155 0.451917 45.1917 

RCP2.6 CCSM4 317897 266624 0.456141 45.6141 

RCP2.6 CNRM-CM5 325405 259116 0.443296 44.32963 

RCP2.6 GFDL-ESM2G 334625 249896 0.427523 42.75227 

RCP2.6 GFDL-CM3 304287 280234 0.479425 47.9425 

RCP2.6 GISS-E2-R 323892 260629 0.445885 44.58848 

RCP2.6 HadGEM2-AO 317299 267222 0.457164 45.71641 

RCP2.6 HadGEM2-ES 320712 263809 0.451325 45.13251 

RCP2.6 IPSL-CM5A-LR 318589 265932 0.454957 45.49571 

RCP2.6 MIROC5 325238 259283 0.443582 44.3582 

RCP2.6 MRI-CGCM3 329033 255488 0.43709 43.70895 

RCP2.6 MIROC-ESM-CHEM 306733 277788 0.47524 47.52404 

RCP2.6 MIROC-ESM 318977 265544 0.454293 45.42933 

RCP2.6 NorESM1-M 332937 251584 0.430411 43.04105 

RCP4.5 ACCESS1-0 314705 269816 0.461602 46.16019 

RCP4.5 BCC-CSM1-1 335384 249137 0.426224 42.62242 

RCP4.5 CCSM4 319042 265479 0.454182 45.41821 

RCP4.5 CESM1-CAM5-1-FV2 285782 298739 0.511083 51.10834 

RCP4.5 CNRM-CM5 313548 270973 0.463581 46.35813 

RCP4.5 GFDL-ESM2G 318243 266278 0.455549 45.55491 

RCP4.5 GFDL-CM3 298019 286502 0.490148 49.01483 

RCP4.5 GISS-E2-R 324498 260023 0.444848 44.4848 

RCP4.5 HadGEM2-AO 323918 260603 0.44584 44.58403 

RCP4.5 HadGEM2-ES 312547 271974 0.465294 46.52938 

RCP4.5 HadGEM2-CC 321261 263260 0.450386 45.03859 

RCP4.5 INMCM4 318094 266427 0.455804 45.5804 

RCP4.5 IPSL-CM5A-LR 300398 284123 0.486078 48.60783 

RCP4.5 MIROC5 326305 258216 0.441757 44.17566 

RCP4.5 MRI-CGCM3 338856 245665 0.420284 42.02843 

RCP4.5 MIROC-ESM-CHEM 301046 283475 0.48497 48.49697 

RCP4.5 MPI-ESM-LR 306650 277871 0.475382 47.53824 

RCP4.5 MIROC-ESM 299136 285385 0.488237 48.82374 

RCP4.5 NorESM1-M 330131 254390 0.435211 43.52111 

RCP6.0 BCC-CSM1-1 326029 258492 0.442229 44.22288 
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RCP6.0 CCSM4 320166 264355 0.452259 45.22592 

RCP6.0 GFDL-ESM2G 319455 265066 0.453476 45.34756 

RCP6.0 GISS-E2-R 326015 258506 0.442253 44.22527 

RCP6.0 HadGEM2-AO 309356 275165 0.470753 47.0753 

RCP6.0 HadGEM2-ES 314539 269982 0.461886 46.18859 

RCP6.0 IPSL-CM5A-LR 317246 267275 0.457255 45.72547 

RCP6.0 MIROC5 325827 258694 0.442574 44.25743 

RCP6.0 MRI-CGCM3 329559 254962 0.43619 43.61896 

RCP6.0 MIROC-ESM-CHEM 297690 286831 0.490711 49.07112 

RCP6.0 MIROC-ESM 315879 268642 0.459593 45.95934 

RCP6.0 NorESM1-M 335711 248810 0.425665 42.56648 

RCP8.5 ACCESS1-0 317911 266610 0.456117 45.61171 

RCP8.5 BCC-CSM1-1 318566 265955 0.454996 45.49965 

RCP8.5 CCSM4 316734 267787 0.458131 45.81307 

RCP8.5 CNRM-CM5 325759 258762 0.442691 44.26907 

RCP8.5 GFDL-CM3 282771 301750 0.516235 51.62347 

RCP8.5 GISS-E2-R 315907 268614 0.459546 45.95455 

RCP8.5 HadGEM2-AO 316666 267855 0.458247 45.8247 

RCP8.5 HadGEM2-ES 315562 268959 0.460136 46.01357 

RCP8.5 HadGEM2-CC 305062 279459 0.478099 47.80992 

RCP8.5 INMCM4 318449 266072 0.455197 45.51966 

RCP8.5 IPSL-CM5A-LR 296315 288206 0.493064 49.30636 

RCP8.5 MIROC5 326152 258369 0.442018 44.20183 

RCP8.5 MRI-CGCM3 318310 266211 0.455434 45.54344 

RCP8.5 MIROC-ESM-CHEM 308618 275903 0.472016 47.20155 

RCP8.5 MPI-ESM-LR 307478 277043 0.473966 47.39659 

RCP8.5 MIROC-ESM 308948 275573 0.471451 47.1451 

RCP8.5 NorESM1-M 324077 260444 0.445568 44.55683 
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S5 File: Results of background similarity tests assessing niche similarity between bluetongue 

virus and six vector species. The null hypothesis of niche similarity was rejected if the observed 

D or I values for the BTV and vector species in question fell below the 5th percentile in the 

random-replicate distribution (i.e. 5% in table). 

 

 

 

 

  

 Schoener’s D Hellinger’s I 

Species  Observed 5% 95% P value Observed 5% 95% P value 

Culicoides imicola 0.585 0.466 0.863 P > 0.05 0.847 0.677 0.926 P > 0.05 

Culicoides insignis 0.615 0.382 0.683 P > 0.05 0.873 0.514 0.944 P > 0.05 

Culicoides variipennis 0.618 0.419 0.804 P > 0.05 0.872 0.615 0.966 P > 0.05 

Culicoides sonorensis 0.696 0.429 0.717 P > 0.05 0.923 0.598 0.958 P > 0.05 

Culicoides  brevitarsis 0.708 0.322 0.942 P > 0.05 0.927 0.551 0.956 P > 0.05 

Culicoides occidentalis 0.505 0.233 0.739 P > 0.05 0.805 0.366 0.821 P > 0.05 
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S6 File: Uncertainty estimates associated with BTV mapping process in different climate models 

within each representative concentration pathway. 
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Abstract 

Rift Valley Fever is an acute zoonotic viral disease caused by Rift Valley Fever virus (RVFV) 

that affects ruminants and humans in Sub-Saharan Africa and the Arabian Peninsula. We used 

phylogenetic analyses to understand the demographic history of RVFV populations, using 

sequence data from the three minigenomic segments of the virus. We used phylogeographic 

approaches to infer RVFV historical movement patterns across its geographic range, and to 

reconstruct transitions among host species. Results revealed broad circulation of the virus in East 

Africa, with many lineages originating in Kenya. Arrival of RVFV in Madagascar resulted from 

three major waves of virus introduction: the first from Zimbabwe, and the second and third from 

Kenya. The two major outbreaks in Egypt since 1977 possibly resulted from a long-distance 

introduction from Zimbabwe during the 1970s, and a single introduction took RVFV from Kenya 

to Saudi Arabia. Movement of the virus between Kenya and Sudan, and Central African 

Republic and Zimbabwe, was in both directions. Viral populations in West Africa appear to have 

resulted from a single introduction from Central African Republic. Finally, host transition 

analysis identified both humans and livestock as natural hosts of RVFV. The overall picture of 

RVFV history is thus one of considerable mobility, and dynamic evolution and biogeography, 

emphasizing its invasive potential, potentially more broadly than its current distributional limits.    
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Introduction  

Rift Valley Fever is an acute zoonotic viral disease caused by Rift Valley Fever virus 

(RVFV; Phlebovirus, family Bunyaviridae) that affects both large mammals and humans, and 

that is transmitted by Aedes and Culex mosquitoes [1]. Rift Valley Fever causes high mortality 

and abortions in ruminants [2]; infections in humans are characterized by febrile illness, followed 

by hemorrhagic fever, encephalitis, and ocular disease, and can lead to death [2]. It is endemic in 

Sub-Saharan Africa, being first isolated in Kenya in 1930 [3]. Outbreaks were limited to that 

region until 1977-1978, when the virus spread to Egypt [4]; in 1993, southern Egypt suffered 

another outbreak, in which 600-1500 human infections were reported [5]. Periodic RVFV 

epizootics and epidemics have been associated with above-average rainfall and other 

environmental factors that result in dramatically increased mosquito populations [6,7].  

A recurrence of Rift Valley Fever in East Africa was reported in 1997-1998 [8]. In 1987, 

a first West African epidemic occurred in Senegal and Mauritania during flooding in the lower 

Senegal River area [9]. The first outbreaks outside Africa occurred in 2000, in Saudi Arabia and 

Yemen [10]. In 2000-2010, outbreaks were reported in Sudan, Kenya, Tanzania, Somalia, 

Senegal, Mauritania, and Swaziland, with incidence rates higher than in the 1978 Egyptian 

epidemic [11-14]. RVFV has not apparently become endemic outside Africa, but seropositive 

animals have been detected in Saudi Arabia [15]. Climate conditions are appropriate for 

incursions of RVFV elsewhere in the Middle East, Europe, and beyond [10,16].  

RVFV has been isolated from both livestock and mosquitoes [17,18]. The virus is 

maintained in mammal host species, including cattle, sheep, goats, and camels, in which 

infections have been reported [18,19]. RVFV is transmitted via several routes: mosquitoes serve 

as vectors in most cases, but direct transmission through aerosol and contact with abortion 
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products are other routes [20]. RVFV is also capable of persisting in the environment for long 

periods between epidemics [21], facilitated by vertical transmission among mosquitoes [22].    

The RVFV genome is organized in three negative-sense, single-stranded RNA segments 

termed large (L), medium (M), and small (S), with a total genome length of 11.9 kb. The large 

segment (∼6.4 kb) encodes the RNA-dependent RNA polymerase [23]; the M segment (∼3.2 kb) 

encodes envelope glycoproteins Gn and Gc, plus two accessory proteins, NSm and the 78-kDa 

protein [24]. The S ambisense segment (∼1.7 kb) encodes for nucleoprotein (NP; 27 kDa) and 

non-structural protein (NSs; 31-kDa). Previous studies have sequenced the three virus segments 

from diverse strains circulating in outbreaks across Africa and Saudi Arabia [25]. 

Historical movements of RVFV among countries raise concerns about possible 

appearance of RVFV in new regions [16]. Here, we aim to derive a detailed picture of RVFV 

phylogeny based on analysis of sequences of the three segments. We used phylogeographic 

approaches to examine mobility patterns of virus lineages across the virus’ geographic 

distribution and among hosts.  

 

Materials and Methods  

Data used in this analysis represent all RVFV strains deposited in GenBank (as of August 

2014; http://www.ncbi.nlm.nih.gov/nuccore), and include full sequences of the L, M, and S 

segments. If two or more records were available from the same isolate, we included the more 

recently sequenced version in analyses. Sequences for which the GenBank metadata listed no 

country of origin were excluded from those analyses; similarly, sequences lacking data on host 

were excluded from analyses of host associations. Sequences were aligned using the MUSCLE 

plugin [26] in the MEGA 6 software [27].  

http://www.ncbi.nlm.nih.gov/nuccore
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We used JModelTest [28] to identify the best-fitting nucleotide substitution model for 

each of the segments separately. A molecular clock-based phylogenetic analysis was performed 

for each segment separately in BEAST [29], using the best-fitting nucleotide substitution model 

for each segment, an uncorrelated lognormal relaxed molecular clock [30], and a GMRF 

Bayesian skyride tree prior [31]. Because variation among virus sampling dates (i.e., 1944-2010) 

is of meaningful amplitude relative to the time to most recent common ancestor of the clade in 

question [32,33], the temporal information associated with sampling each isolate had to be taken 

into consideration [30,34]. Sampling dates were used as prior information to calibrate the tree, 

estimate ages of different RVFV lineages, and infer evolutionary history of sampled strains [29]. 

An uncorrelated lognormal relaxed molecular clock was used in light of its high accuracy and 

precision to infer temporal information into molecular phylogeny [30]. Codon positions 1 and 2, 

and codon position 3, were treated as two separate partitions in the alignment. Multiple Monte 

Carlo Markov Chain (MCMC) runs of 108 states (the first 10% was discarded as burn-in) were 

combined to achieve estimated sample sizes of at least 250 for all numerical model parameters. 

The posterior set of trees from each of the three initial BEAST analyses was used as an 

empirical tree set for a discrete-trait phylogeography analysis [35]. We assumed an asymmetrical 

rate matrix. For each tree sampled from the MCMC, Markov Jumps procedure [36] was used to 

reconstruct a stochastic realization of the between-country diffusion process; results were 

summarized over the entire posterior distribution by calculating median numbers of transitions 

between each pair of countries and the posterior probability that at least one transition occurred. 

BEAST was re-run on data with host information, with the same configuration as before, 

to generate further empirical tree sets. Sequences were available from samples of human, bovine, 

mosquito, ovine, and caprine origins. We chose to include mosquito sequences in light of 
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evidence of persistence of viral lineages via vertical transmission; in this sense, mosquitoes can 

be regarded as potential hosts in their own right, rather than simply as transmission vectors  [22]. 

Markov Jumps was again used to reconstruct transitions between host species, as in the 

phylogeographic analysis, again assuming an asymmetric rate matrix.  

 

Fig 1: A map of countries with Rift Valley Fever outbreaks, with intensity of sequence sampling across Sub-Saharan 

Africa and the Arabian Peninsula. The bars on the map show numbers of sequences available for each minigenomic 

segment of RVFV.  Dates in each country represent the range of years of origin of sequences identified from each 

country.  
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Results 

Sequence data  

A total of 155 S, 99 M, and 97 L minigenomic segments of RVFV sequence data were 

available on Genbank (Fig 1). Sequences had lengths of 1689-1692 bp for S, 3871-3885 bp for 

M, and 6397-6404 bp for L. These sequences represented RVFV strains from 18 countries across 

Africa plus Saudi Arabia (Fig 1). Saudi Arabian strains were represented by sequences for two S 

segments, one M segment, and one L segment only. Full details of the sequence data are 

available via Figshare (DOI: 10.6084/m9.figshare.2198776), including information for sequence 

accession, sequence length, country of origin, and isolation host.       

 

Molecular clock and skyride analysis of RVFV strains  

The nucleotide substitution models with the lowest Akaike Information Criterion scores 

identified by JModelTest were TPM2uf+I+G for the S segment, and GTR+I+G for both M and 

L. The maximum clade credibility (MCC) tree for the M segment is presented in Fig 2; trees for 

the other two segments can be found in the supplementary materials (S1-2 File). Lineages 

previously identified and discussed by Bird et al. [32] are indicated on the trees.  

Estimated posterior mean nucleotide substitution rates were 3.6392 x 10-4, with 95% 

highest posterior density (HPD) intervals of 2.8114 × 10-4 to 4.5813 × 10-4 substitutions per site 

per year for the S segment, 3.7774 × 10-4 (2.7391 × 10-4 to 4.8902 × 10-4) for M, and 2.731 × 10-4 

(1.9289 × 10-4 to 3.6677 × 10-4) for L. The posterior mean time of the most recent common 

ancestor (TMRCA) of all isolates was 1929 (1920-1937) for S, 1914 (1897-1928) for M, and 

1909 (1888 -1927) for L.  
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Fig 2: Maximum Clade Credibility tree based on all sequences of the medium minigenomic segment (M) of RVFV 

isolates in the study. Accession number, country, and date of sampling are presented at the tree tips. Tree branches 

are colored and labelled alphabetically by lineage (A to K). Lineage nomenclature is from Bird et al. [32]. Red 

triangle identifies the relationship of RVFV from Saudi Arabia to that from Africa. Clades with posterior probability 

>0.9 are labelled with red circles.  
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Skyride plots reconstructing temporal variation in RVFV genetic diversity are presented 

in Fig 3 for all three segments. All three indicate a peak in diversity around the middle of the 

twentieth century, followed by a decline and levelling off, with a subsequent increase in the 

reconstruction for the S segment.   

 

Fig 3: Gaussian Markov Random Field (GMRF) Bayesian skyride plot, representing the relationship between 

effective population size and time in years. Blue lines show the boundaries of the 95% highest posterior density 

interval.  
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Phylogeography of RVFV strains 

Fig 4 presents the MCC phylogeny for the M segment, this time with branches colored by 

highest posterior probability of location; trees for the other two segments are in the 

supplementary materials (S 3-4 File). The tree shows that strains from Saudi Arabia belong to the 

same lineage (B) as those from Kenya in 1998 and Madagascar in 1991. Most strains from West 

Africa (Mauritania and Burkina Faso) are part of lineage D, but those from Guinea are in lineage 

C, which is otherwise recorded in the Central African Republic and Zimbabwe.  

The diffusion patterns for viral lineages reconstructed using Markov Jumps are presented 

in Fig 5 & S 5-6 File; The complete results of the Markov Jumps analysis for all countries are 

available via Figshare (DOI: 10.6084/m9.figshare.2198776). The reconstruction using all three 

segments revealed that the highest median number of jumps was from Kenya to other countries 

in East Africa; movements of RVFV lineages from Kenya to Tanzania are particularly well 

supported (posterior probability >0.9). Hence, arrival of the virus in Tanzania in 2007 was 

probably related to a single introduction event from Kenya. Introductions of RVFV to 

Madagascar came in three waves: the first from Zimbabwe, and the second and third from 

Kenya.   

The two major outbreaks in Egypt since 1977 originally may have been the result of a 

long-distance introduction from Zimbabwe, as they are closely related to strains from Zimbabwe 

in 1974. Markov Jumps revealed a possible transition from Kenya to Mayotte, with posterior 

probabilities ranging from 0.83 to 0.96 in different genomic segments. All sequences from Sudan 

came from a single outbreak in 2007-2010, and were closely related to isolates from outbreaks in 

other East African countries since 2007; Markov Jumps suggested direct movement of the virus 

from Kenya to Sudan (posterior probability >0.7).    
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Fig 4: Maximum Clade Credibility tree based on all sequences of the medium minigenomic segment (M) of RVFV 

isolates in the study. Country of origin is indicated by color of the tree branches and branch tips. 
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Fig 5: Connectedness of countries with Rift Valley Fever outbreaks based on Markov Jumps analysis of the medium 

minigenomic segment (M) of RVFV isolates in the study. The map shows only countries with non-zero transition 

frequencies. Connections between countries are presented as lines with arrows to refer to the direction of movement. 

Line thickness identifies the median number of jumps between each country pair. 

 

 

Markov Jumps analysis of M and L segments indicated virus introduction from 

Zimbabwe to the Central African Republic (posterior probabilities 0.51 and 0.64, respectively). 

Other movement patterns inferred included transitions from Zimbabwe to South Africa (posterior 

probabilities 0.59, 0.68, and 0.78 for S, M, and L, respectively). M and L segments revealed a 

single transition into West Africa, from the Central African Republic to Guinea.    
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The M and L segments suggested a single introduction from Kenya to Saudi Arabia, with 

a posterior probability >0.79 for both segments. Movement of the virus between Kenya and 

Sudan occurred in both directions, with posterior probabilities of >0.7. Similarly, transitions 

between Central African Republic and Zimbabwe were reconstructed in both directions 

(posterior probabilities 0.57, 0.79, and 0.69 for S, M, and L, respectively, for Central African 

Republic to Zimbabwe; posterior probabilities 0.62, 0.51, and 0.64 for Zimbabwe to Central 

African Republic, for S, M, and L, respectively). The S segment revealed information about 

movements involving countries for which it was the only segment available: from Kenya to 

Somalia (posterior probability 0.77), Burkina Faso to Mauritania (posterior probability 0.80), 

Burkina Faso to Senegal (posterior probability 0.78), Kenya to Central African Republic 

(posterior probability 0.91), and Kenya to South Africa (posterior probability 0.91) (S File 6).         

 

RVFV host transition analysis 

GenBank records for which host data were available numbered 153 for the S segment, 98 

for M, and 94 for L. The MCC tree for the M segment with branches colored by the highest 

posterior probability host species is shown in Fig 6; trees for other segments are in the 

supplementary materials (S 7-8 File). Humans and cattle were the most likely hosts of the most 

recent common ancestor (MRCA) of all isolates, with posterior probabilities of 0.377 and 0.350, 

respectively, as analysis suggested circulation of the virus in both humans and bovines since the 

1920s. The L segment had probabilities of 0.500 for humans and 0.233 for cattle. Finally, the S 

segment suggested that the host of the MRCA was a mosquito (posterior probability 0.796), but 

this outcome is most likely biased by the fact that three of the earliest five sequences were 

isolated from mosquitoes, which is not the case in the other two segments. 
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A summary of the Markov Jumps results for host associations is presented in Table 1. 

This analysis revealed ≥95% support for two types of host transitions: from human to bovine and 

bovine to human. The S and L segments also showed ≥95% support for a human to mosquito 

transition, and the S segment alone indicated a mosquito to human, with ≥95% support. No other 

transition type had strong support.   

 

 No. of jumps to destination 
Origin Human Bovine Ovine Caprine Mosquito Bat 
Human  13 (1.00) 

14 (1.00) 
15 (1.00) 

3 (0.94) 
3 (0.93) 
3 (0.93) 

3 (0.97) 
1 (0.50) 
1 (0.68) 

10 (1.00) 
8 (0.99) 
7 (0.99) 

0 (0.11) 
0 (0.10) 
1 (0.80) 

Bovine 6 (0.99) 
6 (0.99) 
5 (0.98) 

 1 (0.78) 
2 (0.88) 
1 (0.69) 

0 (0.30) 
1 (0.93) 
1 (0.63) 

2 (0.87) 
2 (0.87) 
1 (0.50) 

0 (0.07) 
0 (0.08) 
0 (0.13) 

Ovine 0 (0.18) 
0 (0.39) 
0 (0.27) 

0 (0.18) 
0 (0.30) 
0 (0.28) 

 0 (0.24) 
0 (0.02) 
0 (0.06) 

0 (0.16) 
0 (0.30) 
0 (0.32) 

0 (0.03) 
0 (0.04) 
0 (0.04) 

Caprine 0 (0.07) 
0 (0.03) 
0 (0.04) 

0 (0.04) 
0 (0.14) 
0 (0.08) 

1 (0.52) 
0 (0.03) 
0 (0.08) 

 0 (0.03) 
0 (0.04) 
0 (0.03) 

0 (0.01) 
0 (0.02) 
0 (0.02) 

Mosquito 5 (0.99) 
1 (0.76) 
1 (0.65) 

3 (0.85) 
1 (0.53) 
0 (0.31) 

2 (0.88) 
1 (0.67) 
1 (0.59) 

0 (0.12) 
0 (0.10) 
0 (0.15) 

 1 (0.81) 
1 (0.81) 
0 (0.07) 

Bat  0 (0.01) 
0 (0.01) 
0 (0.03) 

0 (0.02) 
0 (0.03) 
0 (0.03) 

0 (0.02) 
0 (0.02) 
0 (0.06) 

0 (0.00) 
0 (0.00) 
0 (0.00) 

0 (0.03) 
0 (0.05) 
0 (0.02) 

 

 

Table 1: Median numbers of reconstructed Markov jumps between host pairs in the host transition analyses, 

presented as median values across all trees in the posterior sample. Results from all segments are presented in each 

cell: S (top), M (middle), and L (bottom). Numbers in parenthesis are the posterior probability that at least one jump 

occurred since the time of the common ancestor of all sequences in each minigenomic segment.  
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Fig 6: Maximum Clade Credibility tree from all sequences of the medium minigenomic segment (M) of RVFV 

isolates in the study. The color of branches and branch tips identifies the host of each RVFV strain.  



112 
 

Discussion 

This study used novel phylogenetic approaches [35] to investigate the ancestry of RVFV strains 

across Africa and Saudi Arabia, and to study virus movements and host transitions. Sequences 

for the three segments of the RVFV genome were available for strains sampled over a span of 66 

years (1944-2010).  

Previous RVFV studies have revealed no evidence of recombination in RVFV [37,38], so 

it should not be a cause for concern in this analysis [37,38]. On the other hand, evidence exists 

for reassortment among RVFV segments [39]: Freire et al. [33]  identified seven reassortment 

events among segments. RVFV minigenomic segments showed differences in amounts of 

genetic change and time scale [33]. These minigenomic segments have previously been used to 

derive phylogenetic and ecological insights regarding RVFV circulation in Africa and the 

Arabian Peninsula [32,33]. These analyses used phylogenetic approaches similar to ours; 

however, our analysis takes advantage of a discrete-traits phylogenetic analysis using Markov 

Jumps to infer the history of between-country and between-host movements. 

The substitution rate estimates in our study were similar to those in previous studies 

[33,40] . Other studies have reported higher rates [32,41]: for example, estimates from Aradaib et 

al. [41] were 4.20 × 10-4, 5.06 × 10-4, and 4.29 × 10-4 substitutions per site per year for S, M, and 

L, respectively; the 95% HPD intervals reported in that paper overlap with ours. These 

differences might be a result of the different datasets used: our work should have better 

resolution because the dataset is larger and more diverse. The Aradaib et al. [41] study was also 

limited to only two lineages of the 11 in our analysis, and covered only strains from Kenya, 

Sudan, Madagascar, and Zimbabwe.    
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Previous studies reported earlier TMRCA estimates than ours. Bird et al. 2007 [32] 

estimated the mean TMRCA as 1891 for the S segment, 1882 for M, and 1887 for L. These 

differences could be a result of our larger dataset, and reflect higher estimates of substitution 

rates; again, their HPD estimates overlap with ours. As the HPD intervals for the TMRCAs of 

the three segments in our analysis all overlap, the difference in point estimates likely reflects 

statistical uncertainty only. Our TMRCA estimates for all segments agreed well with the first 

report of RVFV in 1930 in Kenya [3].         

The steady decline in RVFV genetic diversity since the 1970’s was previously reported 

[33], in an analysis that considered most of our samples. A possible explanation for the decline 

centers on the vaccination and control measures implemented on a large scale from 1969 to 1979 

[42]. In all, 35.2 million vaccines were provided to Zimbabwe, South Africa, Namibia, Israel, 

and Egypt in response to large RVF outbreaks [43].  

Discrete-traits phylogenetic approaches have some limitations [34]. In our case, these 

limitations are associated with the nature of virus sampling across its range, as sampling is 

generally unbalanced. This point suggests that some aspects of our results should be interpreted 

with caution. For example, in our host analyses, most samples came from cattle, sheep, goats, 

and humans; however, sampling of bats was limited to two isolates from Guinea, probably 

insufficient to conclude that bats are not historically associated with RVFV. Country was used as 

indication of location in our analyses, which is quite coarse for some of the spatial phenomena 

that we would like to reconstruct. As more sequence data become available, it should be possible 

to develop finer-resolution views.    

In Sub-Saharan Africa, RVFV appears to be spread by movement of viremic livestock 

between countries [44,45], or though introduction of infected mosquitoes to neighboring 
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countries [16,45]. We used Markov Jumps to infer possible introduction events and movement 

routes of RVFV. Two types of RVFV movements can be considered: short- and long-distance 

jumps [32,46,47]. Inferred movements between distant countries may omit the effects of 

unsampled lineages in countries on the route between them. For example, previous studies 

attributed the 1977-1978 epidemics in Egypt to viral introductions from Sudan [48,49], but our 

study saw strong support for Zimbabwe as a country of origin for Egyptian strains. This result 

suggests that, although Zimbabwe was the sampled origin for these lineages, they travelled north 

over Sudan to Egypt; all available Sudanese sequences came from more recent outbreaks in 

2007-2010, which presumably originated in Kenya, and are genetically distant from Egyptian 

strains in the outbreak of the 1970s [41]. With no earlier Sudanese sequences available [50,51], 

this analysis could not find an origin in Sudan, and hence tracked lineages back to Zimbabwe; 

this result should thus not be taken to indicate that the hypothesis of a Sudanese origin for 

Egyptian epidemics is incorrect.    

The RVFV strain identified from the Arabian Peninsula in 2000 was embedded in lineage 

B with strains from Kenya, suggesting that this virus originated from Kenyan epizootics in 1997-

1998. The outbreak was driven by floods and heavy rains along the Saudi Arabia-Yemen border 

in the Al Humayrha region, where the first cases were reported [52], and where it was 

maintained by Culex tritaeniorhynchus [53].   

RVFV strains from West Africa fell in two lineages (C & D): one included samples from 

Guinea and another that included samples from Burkina Faso, Mauritania, and Senegal. Our 

results suggest possible introduction of RVFV to Guinea from the Central African Republic, and 

that the outbreak in Mauritania in 1987 had its origin in the event in lineages that were in 

Burkina Faso in 1983. The route of introduction from East Africa to West Africa more 
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fundamentally is still unclear. Our analysis suggested interesting patterns for outbreaks in 

Mauritania and Egypt, in comparison to recent outbreaks in Kenya, with single viral 

introductions to Mauritania and Egypt, but multiple origins for the 2007-2010 outbreaks in 

Kenya.  

 The final analysis presented in this paper provides a coarse-resolution picture of major 

tendencies in host transitions. RVFV has been isolated from several livestock and wild mammal 

species, as well as humans [2]; bats and rodents have also been suspected as reservoirs of the 

virus [54]. Nevertheless, the role of wild animals in the persistence and emergence of RVFV 

remains obscure, with studies in Madagascar revealing absence in rodents [54], and no clear 

evidence for a role of bats in maintenance of RVFV populations [55]. RVFV has been isolated 

from livestock across Africa since its first isolation [3]; however, association of wild animals 

remain unclear and experimental infection has revealed low concentration of RVFV antigens 

[55]. Our results were consistent with major roles of bovines, humans, and mosquitoes in 

transmission across all outbreaks in Africa [2,56]; however, the results here should be interpreted 

with caution owing to the incomplete nature of the sampling.   

RVFV may circulate in a wider range of hosts that have not been investigated in previous 

studies, and hence have provided no sequence data. For example, birds have been found to be 

refractory for RVFV and may be possible host candidates; at present, however, no genetic data 

are available that would allow us to include them in an analysis of this sort. Also persistent 

vertical transmission of RVFV among mosquitoes makes them a possible long-term host species; 

however, the data in this study are obviously insufficient to capture every possible lineage that 

may have been present in a mosquito, and any transition we infer between mammalian species 

generally had mosquitoes as an intermediary. Several other studies have outlined the difficulties 
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in detecting the virus in mosquitoes, especially during inter-epidemic periods [56]. The 

unbalanced nature of the dataset with respect to host species marks a limitation for our analysis. 

Future studies should collect samples more systematically, and on a much finer scale with 

respect to location and host to give a more detailed picture of migratory patterns of RVFV across 

the continent.      
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Supporting information 

S1 File: Maximum Clade Credibility tree based on the small minigenomic segment (S) of 

RVFV isolates. Accession number, country, and date of sampling are presented at the tree 

tips. Tree branches are colored and labelled alphabetically by lineage (A to K). Lineage 

nomenclature is from Bird et al. [32]. Red triangle identifies the relationship of RVFV from 

Saudi Arabia to that from Africa. Clades with posterior probability >0.9 are labelled with red 

circles.  
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S2 File: Maximum Clade Credibility tree based on all sequences of the large minigenomic 

segments (L) of RVFV isolates in the study. Accession number, country, and date of 

sampling are presented at the tree tips. Tree branches are colored and labelled alphabetically 

by lineage (A to K). Lineage nomenclature is from Bird et al. [32]. Red triangle identifies the 

relationship of RVFV from Saudi Arabia to that from Africa. Clades with posterior probability 

>0.9 are labelled with red circles.  
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S3 File: Maximum Clade Credibility tree based on the small minigenomic segment (S) of 

RVFV. Country of origin is indicated by color on the tree branches and branch tips.  
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S4 File: Maximum Clade Credibility tree based on all sequences of the large minigenomic 

segment (L) of RVFV isolates in the study. Country of origin is indicated by color on tree 

branches and branch tips.  
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S5 File: Connectedness of countries with Rift Valley Fever outbreaks based on Markov Jumps 

analysis of the small minigenomic segment (S) of RVFV isolates in the study. The map shows 

only countries with non-zero transition frequencies. Connections between countries are 

presented as lines with arrows to refer to the direction of movement. Line thickness 

identifies the median number of jumps between each country pair.  
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S6 File: Connectedness of countries with Rift Valley Fever outbreaks based on Markov Jumps 

of the large minigenomic segment (L) of RVFV isolates in the study. The map shows only 

countries with non-zero transition frequencies. Connections between countries are 

presented as lines with arrows to refer to the direction of movement. Line thickness 

identifies the median number of jumps between each country pair.  
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S7 File: Maximum Clade Credibility tree based on the small minigenomic segment (S) of 

RVFV isolates in the study. The color of the tree branches and branch tips identifies the 

host of RVFV strains.  
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S8 File: Maximum Clade Credibility tree based on all sequences of the large minigenomic 

segment (L) of RVFV isolates in the study. The color of the branches and branch tips 

indicates the host of RVFV strains.  

 

 


