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Abstract 

Shigellosis is an infectious gastrointestinal disease caused by Shigella spp. Approximately 165 

million cases of shigellosis occur every year around the world, the vast majority of them in 

developing countries. High levels of antibiotic resistance, an increase in multidrug-resistant 

Shigella isolates and the lack of a licensed vaccine are factors that situate shigellosis as a public 

health problem, especially among young children. Shigella is able to cause death of resident 

macrophages in the gut to avoid bacterial clearance early after infection. Shigella is then able to 

colonize the intestinal epithelium and induce inflammation, which ultimately gives rise to the 

symptoms of dysentery and bacterial shedding. The virulence of Shigella is intimately tied to its 

Type III Secretion System (T3SS) for which invasion plasmid antigen D (IpaD) is a structural 

element. Previous studies have established that IpaD is secreted at levels beyond what is needed 

for its role as the T3SS needle tip protein. Furthermore, IpaD was recently shown to induce 

apoptosis in B lymphocytes in conjunction with an additional unknown factor. The projects 

presented in this dissertation aim to identify the role of IpaD as a secreted effector in the 

pathogenesis of Shigella. We have studied the effect of IpaD in macrophages and epithelial cells 

through a multidisciplinary approach using cell biology, immunology and protein biochemistry. 

Our findings indicate that IpaD plays a role in the development of an apoptotic pathway in 

macrophages. In vitro, macrophages incubated with recombinant IpaD undergo activation of 

caspases, damage to mitochondria and decreased cellular integrity. Furthermore, Shigella infection 

of cultured macrophages showed that IpaD is responsible of a portion of the cell death caused by 

the bacterium. These findings allow us to conclude IpaD is responsible for a portion of the 

macrophage cell death during Shigella infection. 
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CHAPTER I: Historical Review 

Diarrheal disease burden 

Diarrheal diseases are caused by pathogenic bacteria, viruses or parasites entering through the 

gastrointestinal tract through water, food or objects contaminated with stools1. The global burden 

of diarrheal diseases has been calculated as 1.7 billion cases per year. In 2010, it was estimated 

that approximately 10% of deaths in children under the age of five were due to diarrhea, the second 

leading cause of death in that population2. Mortality caused by diarrhea is higher than all deaths 

caused by AIDS, malaria and measles combined3. Malnourished children, as well as HIV-infected 

individuals, are at an increased risk of dying from diarrheal disease4. 

Inadequate or nonexistent sanitation, poor hygiene and contaminated water sources are common 

causes of diarrheal disease in developing countries1,4,5. Children in these countries have, on 

average, three diarrheal episodes per year6. In industrialized countries, diarrheal disease outbreaks 

are usually self-limiting and are commonly the result of contamination of a food source7. 

Foodborne illnesses in the US are estimated at 48 million cases per year. Hospitalizations and 

deaths due to foodborne illness are primarily seen in infants, elderly or immunocompromised 

individuals8. 

Shigella epidemiology 

Shigellosis is a diarrheal disease caused by gram-negative bacteria in the Shigella genus. Shigella 

is transmitted through the oral-fecal route and causes symptoms that include abdominal cramps, 

tenesmus and diarrhea with blood and mucus. If not quickly treated, shigellosis can lead to death. 

The global burden of shigellosis has been estimated at 165 million cases with 600,000 deaths per 

year9. Recent reports indicate that shigellosis-related deaths are decreasing10. Nevertheless, 
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Shigella remains a public health problem in developing regions of the world where poor sanitation 

and reduced access to health care affects vulnerable populations and hinders child development. 

Children under five years of age are considered most-at-risk for shigellosis and this population 

carries the additional burden of malnutrition, seizures, and stunted growth caused by the 

infection11.  

Several approaches are being explored to control the global effects of shigellosis. For example, 

diarrheal disease is six times less likely in breast-fed infants, due to the antimicrobial factors found 

in breast milk and the exclusion of contaminated water intake12. Flies are known mechanical 

vectors for the spread of shigellosis, and have been found to carry the pathogen for up to 20 

days13,14, therefore, improved sanitation and domestic hygiene could decrease the incidence of 

shigellosis as well as other causes of childhood diarrhea15. However, behavior modification and 

proper infrastructure are needed for the success of these control measures12. Development of 

vaccines against shigellosis has been a main focus in the battle against this infection. Several 

vaccine candidates are in pre-clinical or clinical phases of development and comprise live-

attenuated, whole-killed and subunit vaccines16–20. 

Shigella sonnei is responsible of 72% of total cases of shigellosis in the US, with 30% of those 

traced to contaminated food21. Outbreaks of multidrug resistant bacteria are usually daycare center-

associated22. Other industrialized countries show similar trends23,24. As a nation undergoes 

industrialization and improves its economic development S. sonnei becomes the predominant 

cause of shigellosis25. Shigella flexneri is predominantly seen in the developing world. Shigellosis 

is endemic in some countries in Latin America, East Africa, the Indian subcontinent26–28. S. 

dysenteriae serotype 1 is associated with the highest severity of symptoms and is found 

intermittently in epidemics in Sub-Saharan Africa and South Asia29. An outbreak in Sierra Leone 
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had an overall case fatality rate of 3.1%, and of 6.1% in children under 530. Several outbreaks have 

been linked to refugee settlements31. 

Shigella biology 

Shigella is a genus of gram-negative bacteria that are non-motile, facultative anaerobic, rod-

shaped, non-sporulating, non-lactose-fermenting32. The Shigella genus comprises four different 

species: S. dysenteriae, S. flexneri, S. boydii and S. sonnei (also known as serogroups A through 

D). All species share approximately 80-85% of their genome33, and have been distinctly classified 

as a separate clade from Escherichia coli despite their phylogenetic closeness34. 

Variations in the O-antigen, a component of the cell envelope lipopolysaccharide (LPS), determine 

serotype classification in Shigella. There are at least 50 different serotypes (S. dysenteriae, 15; S. 

flexneri, 14; S. boydii, 20; and S. sonnei, 1). Serotype conversion occurs as a result of infection by 

bacteriophages that carry O-antigen modification genes35,36.  

Shigella is a human pathogen and can infect with doses as low as 10 to 200 organisms, likely due 

to a high acid tolerance that allows these bacteria to survive the gastric environment37. Some 

Shigella serotypes have been identified as the cause of dysentery outbreaks in captive primates in 

zoo and laboratory environments38,39. Shigella is typically identified by microbiological isolation 

and analysis of fecal samples. Identification is achieved through culture in selective media such as 

MacConkey agar, xylose lysine deoxycholate agar and Salmonella-Shigella agar. Serological 

testing is further performed for correct diagnosis40. 

Free-living amoeba have been studied as environmental hosts for Shigella. S. sonnei and S. 

dysenteriae were able to grow and persist inside Acanthamoeba castellanni41,42, whereas S. flexneri 

was found to kill the amoeba by necrosis43. These observations could explain the geographical 
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distribution of different Shigella species, although further studies are needed to better understand 

this association. 

Antibiotic resistance in Shigella is now a major cause of concern around the world. Recent reports 

indicate that multidrug resistant strains are more commonly isolated and several mechanisms of 

resistance have been identified such as mutations in DNA gyrases and topoisomerases, which are 

common antibiotic targets. Resistance has been identified for fluoroquinolones, cephalosporins, 

tetracycline, gentamicin, chloramphenicol and sulfonamides44,45. In a multi-state outbreak in 2014-

2015, the Centers for Disease Control and Prevention (CDC) issued a report stating that 90% of 

the clinical isolates linked to the outbreak were resistant to ciprofloxacin, the drug of choice against 

shigellosis in the US46. 

Complications of shigellosis 

Fatal complications of shigellosis include intestinal perforation, toxic megacolon, hemolytic-

uremic syndrome and septicemia47. Toxic megacolon is an acute severe colitis in which the colon 

is distended and paralyzed. It can lead to rupture of the colon and subsequent peritonitis. Toxic 

megacolon has also been documented in a case of sexual transmission of S. sonnei48. Bacteremia 

can be the result of an ulcerated colonic mucosa and is more commonly seen in malnourished or 

immunocompromised individuals49,50. Hemolytic-uremic syndrome (HUS) is a severe 

complication that can lead to acute renal failure with hyperkalemia, severe hemolytic anemia and 

thrombocytopenia. HUS is mainly caused by the Shiga toxin secreted by S. dysenteriae type 1, 

although LPS has also been found to cause it. It is the leading cause of death in S. dysenteriae type 

1 outbreaks, with a 36% case-fatality rate51. 
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Other non-fatal complications of shigellosis have also been identified. Reiter’s syndrome is a type 

of reactive arthritis (ReA) found after bacterial infections. It is unclear exactly how Shigella is 

causative of ReA but molecular mimicry, in which an epitope of the bacterium mimics that of a 

self-antigen, has been proposed52. Other investigators propose aberrant HLA interactions with 

Shigella peptides would cause ReA in individuals with other ongoing inflammatory processes53. 

Post-infectious irritable bowel syndrome can also be caused by shigellosis after the acute colitis 

caused by the disease54. Furthermore, individuals with Crohn’s disease are at an elevated risk of 

infection with Shigella55. 

Pathogenesis 

Shigella reaches the colon after ingestion of contaminated food or water by an individual. In the 

intestinal lumen, Shigellae organisms are unable to invade enterocytes through the apical side and 

are transcytosed by microfold cells (M cells) of the colonic epithelium56. M cells present the 

pathogen to resident macrophages as an initial immune response to the infection, however, Shigella 

prompts resident macrophages to die in order to avoid bacterial clearance by these phagocytes. 

Apoptotic cell death has been observed in macrophages at the lamina propria of mucosal biopsies57 

and apoptotic macrophages, T and B cells have been found in the lymphoid follicles of rabbits 

infected with Shigella58. Furthermore, several studies have shown evidence of different types of 

cell death occurring in these immune cells, namely oncosis and necrosis59–61. 

Pyroptosis of macrophages mediated by Shigella has also been studied62. Pyroptosis is a type of 

inflammatory cell death that is caused by the activation of caspase-1 or caspase-11 and the 

subsequent release of pro-inflammatory cytokines IL-1β and IL-1863. It has been proposed that 

endolysosomal potassium channels formed by IpaB are the necessary signal for activation of the 

canonical inflammasome IPAF (NLRC4) and subsequent activation of caspase-164. LPS of 
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intracellular Shigella sensed by the host has also been shown to trigger activation of a non-

canonical inflammasome containing caspase-11 and gasdermin D65. The Shigella proteins MxiI 

and MxiH have been identified as activators of other inflammasome pathways66,67.  

After Shigella kills the resident macrophage by any of the pathways proposed, it is now at the basal 

side of the colon. Shigella then colonizes the intestinal epithelium by a trigger mechanism, in 

which effector proteins injected into the host cell elicit cytoskeletal rearrangements that lead to 

bacterial uptake68. Bacteria engulfed by epithelial cells are trapped inside a vacuole, which they 

rapidly lyse. Using an actin-dependent mechanism, they move about the invaded epithelial cell 

and spread through lateral movement to neighboring enterocytes69. Bacterial shedding and 

diarrheal symptoms are due to Shigella-induced necrosis of invaded enterocytes and the ensuing 

inflammatory response of the host. 

Type III secretion system 

The infective cycle described for Shigella is dependent on a functional Type III Secretion System 

(T3SS). Type III Secretion Systems are macromolecular assemblies utilized by gram-negative 

bacteria to deliver proteins from their cytoplasm into the host cell or to the extracellular 

environment69. Shigella carries large virulence plasmids such as pINV A or pINV B70, which 

contain the genes encoding the T3SS of these organisms. Loss of the plasmid thus converts 

Shigella to an avirulent state71. The plasmid pINV is 220-260 kb in size and contains a highly 

conserved 31 kb region denominated ‘entry region’, which encodes proteins necessary for invasion 

of epithelial cells by Shigella72, as well as intracellular survival and intra- and intercellular spread. 

Among the proteins encoded by the entry region are invasion plasmid antigens (Ipa) B, C and D 

which form the translocon responsible for the delivery of effectors to the host cell cytoplasm.  
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The entry region of the virulence plasmid is divided into the ipa and mxi-spa loci, together these 

consist of 38 open reading frames (ORFs). The genes essential for assembly and functionality of 

the T3SS are the membrane expression of ipa (mxi) and the surface presentation of ipa (spa) genes. 

Expression of the structural components of the T3SS is activated at 37°C by a regulatory cascade 

between VirF, an AraC type transcriptional regulator73, and VirB, an intermediate regulator that 

derepresses the T3SS operons74. Therefore, expression of the T3SS occurs in Shigella once inside 

the human body75. 

The Type III Secretion Apparatus (T3SA) of Shigella is composed of a basal body, a C-ring 

compartment, and a needle that together span the inner membrane, periplasm and outer membrane 

(Fig. 1). At the basal body, MxiG polymerizes into a ring that docks the T3SA onto the inner 

membrane towards the periplasm76. MxiC has been shown to interact with Spa47 and avoid the 

premature secretion of effectors77. Spa33 is located at the C-ring of the T3SA and interacts with 

Spa47, a cytoplasmic ATPase that powers secretion by the T3SA78. MxiN and MxiK are also 

located in the bacterial cytoplasm and are required for the transit of MxiI and MxiH, structural 

components of the T3SA needle79,80. MxiI is the inner rod component of the needle, whereas MxiH 

is the structural component that polymerizes onto an extracellular needle or rod. At the tip of the 

needle, IpaD forms a pentameric ring that closes the T3SA81. Acting as a molecular plug, IpaD 

controls the recruitment of IpaB for full maturation of the needle upon or prior to host cell 

contact82. The full formation of the translocon occurs upon interaction of IpaB with sphingomyelin 

and cholesterol in the host cell membrane, triggering recruitment of IpaC83. The chaperone IpgC 

associates with IpaB and IpaC in the intracellular compartment of the bacteria, and is released as 

each protein is secreted for translocon assembly84. The cytoplasmic MxiE/IpgC complex then 

activates the transcription of late effectors85. 
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Fig. 1.  Shigella type III Secretion System Apparatus (T3SA). The T3SA is formed by the basal body 

and C-ring that span the inner and outer membrane of the bacteria. The ATPase Spa47 is localized in the 

cytoplasm of the bacteria. The extracellular needle rod is a polymer of the protein MxiH. The needle tip is 

formed of a pentameric assembly of IpaD. The regulatory factors VirF, VirB and MxiE are also shown.  

 

Invasion plasmid antigen D (IpaD) 

Regulation of secretion 

Invasion plasmid antigen D (IpaD) was first described as one of four antigens present in a Shigella 

virulent strain grown at 37°C. When serum from an infected monkey was used, the invasion 

plasmid antigens A through D were recognized through immunoblot in lysates from the virulent 

strain. The anti-serum failed to detect any proteins in lysates from avirulent strains32. IpaD is a 37 

kDa hydrophilic protein that is encoded along with IpaA, IpaB, IpaC and IpgC in the locus ipgC-

ipaABCD of the virulence plasmid. Proteins IpaB, IpaC and IpaD are stored in the cytoplasm in 

addition to their membrane-bound assemblies and released into the medium upon contact with 
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epithelial cells, or incubation in microtiter wells coated with certain extracellular matrix proteins86. 

Mutants with nonpolar disruptions of the ipaB, ipaC or ipaD genes are unable to invade. Moreover, 

mutation of IpaB or IpaD results in uncontrolled secretion in the absence of external stimuli87. 

Further investigation of the role of IpaD in T3SS function demonstrated that this protein is 

necessary for both protein secretion control and proper formation of the translocon88. Targeted 

mutations of certain regions in the ipaD gene established that the N-terminal portion of this protein 

is required for secretion control, but a central portion is necessary for invasion of host cells. 

Furthermore, it has been shown that IpaD itself is secreted upon proper stimulation 89,90. Other 

studies showed that IpaD is surface exposed and localizes at the tip of the T3SA needle, where it 

interacts directly with the external rod protein MxiH89,91. Bile salts including deoxycholate (DOC) 

are found in abundance in the colonic lumen. DOC binds to IpaD and induces a conformational 

change in this protein82. This is thought to prompt IpaD to recruit IpaB at the top of the needle as 

the first step in the formation of the translocon. 

Interaction with MxiC 

MxiC is a T3SS protein that is found in the basal compartment of the T3SA. In the context of T3SS 

secretion, MxiC is known to associate indirectly with Spa47, blocking secretion from the T3SA. 

This role was found to regulate the secretion of late effectors such as IpaA, IpgD and IpaH. MxiC, 

however, did not prevent the structural assembly of IpaD at the tip of the needle or formation of 

the translocon as secretion of both IpaB and IpaC are unaffected by mutation of MxiC. 

Association of IpaD with MxiC has been proposed. Mutants of IpaD denominated Class I mutants 

were found to display similar phenotypes of premature and non-responsive secretion as a MxiC 

mutant92. The authors elaborate on this finding as possible evidence of MxiC and IpaD interaction 
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in the bacterial cytoplasm and a regulatory role of IpaD independent of its role regulating the 

secretion of the translocon proteins IpaB and IpaC from the T3SA needle tip. 

Binding to IpaB 

Studies on the structure of IpaD indicate that this hydrophilic protein has a mainly α-helical 

structure with a dumbbell shape. It is comprised of a central coiled-coil, a distal domain and an N-

terminal domain. The C-terminus of IpaD is necessary for proper interaction with MxiH and 

localization to the tip of the T3SA needle93. The N-terminal domain has been proposed as a self-

chaperoning domain based on the fact that LcrV, the IpaD structural orthologue in Yersinia spp. 

lacks this domain and instead binds to chaperone LcrG in a similar way94. 

The IpaD distal domain has been implicated in the interaction of IpaD with IpaB, which is expected 

for proper T3SA tip assembly in preparation of the formation of the translocon upon recruitment 

of IpaC. The N-terminus of IpaB was shown to interact in vitro with the distal domain of IpaD, 

but only in the presence of DOC. IpaD undergoes a conformational change of its distal domain 

upon IpaB binding, which might resemble the events necessary for full T3SA maturation. Shigella 

mutants in the N-terminus of IpaB were defective in the localization of IpaB on the bacterial 

surface, rendering them deficient in contact hemolysis of erythrocytes and invasion of cultured 

cells95.  

Cell death 

Finally, the first evidence of an effector role of IpaD in host cells was obtained through the 

investigation of apoptosis of B lymphocytes upon Shigella infection. IpaD was shown to be a 

TLR2 agonist in B lymphocytes. Along with an unidentified factor, IpaD is able to cause apoptosis 
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of these cells in what has been described as a novel pathway for immune system subversion by 

Shigella96. 
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CHAPTER II: Materials and Methods 

Materials: All reagent-grade chemicals were purchased from Thermo-Fisher Scientific, Waltham, 

MA or Sigma-Aldrich, St. Louis, MO unless otherwise indicated. 

Cell lines HEK-293 (CRL-1573), HeLa (CCL-2), Henle I-407 (CCL-6), J774A.1 (TIB-67), 

RAW264.7 (TIB-71), U937 (CRL-1593.2) were from the American Type Culture Collection 

(ATCC), Manassas, VA. All cell culture media and supplements were from Mediatech, Manassas, 

VA. Glass-bottom plates were from MatTek, Ashland, MA. Accutase cell detachment solution and 

cytometer setup & tracking beads were from BD Biosciences, San Jose, CA. 

Anti-β-actin (C-2), anti-vimentin (V9), anti-tubulinα (B-5-1-2) mouse monoclonals and anti-

TOM20 (FL-145) rabbit polyclonal were from Santa Cruz Biotechnology, Santa Cruz, CA. 

Cleaved Caspase-3 Asp 175 (9661) antibody were from Cell Signaling Technology, Danvers, MA. 

IRDye 800CW Goat anti-Mouse IgG, IRDye 680RD Goat anti-Mouse IgG and Odyssey Blocking 

Buffer (TBS) were from LI-COR, Lincoln, NE. Trans-Blot Turbo RTA Mini Nitrocellulose 

Transfer Kit was from Bio-Rad, Hercules, CA. 

The plasmids pET9a, pET15b, Clonables 2x Ligation Premix, E. coli NovaBlue cells, Tuner (DE3) 

cells were from Novagen, Madison, WI. QIAprep Spin Miniprep, QIAquick PCR Purification, 

QIAquick Gel Extraction kits, and Ni-NTA magnetic beads were from QIAGEN, Valencia, CA. 

All restriction endonucleases and TransPass COS/293 transfection reagent were from New 

England Biolabs, Ipswich, MA. 

Alexa Fluor 488 goat anti-rabbit, Alexa Fluor 568 goat anti-mouse, Alexa Fluor 488 or 633 

Phalloidin stain, DAPI, FlAsH-EDT2, FITC Annexin V/Dead Cell Apoptosis Kit, Hoechst, 

SlowFade gold reagent, Alexa Fluor 568 NHS Ester and live cell imaging solution were from Life 
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Technologies, Grand Island, NY. Recombinant Syrian hamster vimentin was from Cytoskeleton 

Inc., Denver, CO. 

CytoTox 96 non-radioactive cytotoxicity assay kit and caspase luminescent substrates are from 

Promega, Madison, WI. Caspase inhibitors are from R&D Systems, Minneapolis, MN. Mouse 

Th1/Th2 9-plex ultra-sensitive kit was from Meso Scale Discovery, Rockville, MD. NucView 488 

Caspase-3 assay kit, staurosporine and JC-1 mitochondrial membrane potential detection kit were 

from Biotium, Hayward, CA.  

Shigella strains: Shigella flexneri serotype 2a strain 2457T was a gift from Anthony T. Maurelli, 

Uniformed Services University of Health Sciences, Bethesda, MD.  Philippe J. Sansonetti, Institut 

Pasteur, Paris, FR, provided SF620, SF621 and SF622 which contain nonpolar mutations in ipaB, 

ipaC and ipaD genes, respectively. 

Buffers and Media: See Appendix A for buffer compositions, media and other recipes.  

Bacterial strains and growth conditions: Antibiotic concentrations for both liquid and solid 

media growth were 100 µg/ml ampicillin (to select for pWPsf4 and pET-series constructs) and 34 

µg/ml chloramphenicol (to select for pACYC constructs). Growth of liquid cultures was at 37°C 

with shaking at 200 RPM for Shigella and Escherichia coli. Shigella were grown on trypticase soy 

agar (TSA) plates containing 0.025% Congo red with appropriate antibiotics for selection of the 

virulence and complementation plasmids. Congo red is used as an indicator dye because it is 

known to bind to cells with an active T3SS, and is thus used as an indicator of virulence plasmid 

retention. Red colonies were inoculated into trypticase soy broth (TSB) containing 50 μg/ml of 

kanamycin and 100 μg/ml of ampicillin as necessary. TSB cultures were grown at 37°C with 

shaking at 200 rpm. E. coli was grown on LB plates. All solid media were incubated at 37°C. 
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Cloning of ipaD for expression: Plasmid ipaD/pWPsf4 was used as a template for PCR reactions 

intended to clone the ipaD gene for overexpression in E. coli. The plasmid was digested with NdeI 

and BamHI for isolation of the ipaD gene and ligated into NdeI/BamHI digested pET9a. The 

resulting plasmid ipaD/pET9a was used for recombinant protein production. A humanized ipaD 

gene was purchased from Integrated DNA Technologies, Coralville, IA and cloned into pTandem-

1 immediately downstream of a Kozak sequence containing the NcoI restriction site. Correct 

orientation and codon frame were verified by DNA sequencing. The resulting plasmid Humanized-

ipaD/pTandem-1 was used for expression of IpaD in transfected epithelial cells. 

Growth and recombinant expression of proteins: ipaD/pET9a was transformed into Tuner 

(DE3) competent E. coli cells and grown on a Luria-Bertani (LB) plate containing kanamycin and 

incubated overnight. A single colony was grown in 10 ml LB containing kanamycin to generate a 

permanent stock (200 µl 50% glycerol plus 1 ml broth culture) which was stored at -80°C. This 

permanent stock was used to start an overnight 10 ml culture in LB media, and 1-2 ml of the 

overnight culture was used to inoculate each liter of auto-induction media (AI; see Appendix A). 

Cultures were grown overnight (~16 hr) at 37°C with shaking at 200 RPM. Protein expression was 

induced by the depletion of glucose in the media and the intake of lactose. The cells were harvested 

by centrifugation at 4°C. The cell pellet was resuspended in Q binding buffer (see Appendix A). 

The cells were sonicated and the solution clarified by centrifugation at 20,000g for 20 mins. IpaD 

was purified in its soluble form from the E. coli cytoplasm. After centrifugation the supernatant 

fraction was applied to an anion-exchange Hi-Trap Q FF column. The protein was eluted with Q 

elution buffer (see Appendix A). The fractions containing the protein of interest, as determined by 

separation on a 12% SDS-PAGE gel, were collected. Fractions containing recombinant protein 

were pooled and dialyzed into PBS, pH 7.4 (ÄKTA purification method in Appendix C). 
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Production of protein lysates: Epithelial or macrophage cell lines were incubated at 37°C in a 

5% CO2 controlled environment. After various different treatments, protein lysates were obtained 

by incubation of the cell monolayers with RIPA buffer with an appropriate protease inhibitor 

cocktail. Samples were boiled, run on a 12 or 15% SDS-PAGE gels and stained with Oriole 

fluorescent gel stain. Protein concentration was measured with a BCA assay. Protein determination 

buffer was prepared by adding 1 ml of Copper Sulfate Pentahydrate 4% solution to 49 ml of a 

Bicinchoninic Acid (BCA) solution. A standard curve was prepared from bovine serum albumin 

(BSA) dilutions into RIPA buffer. 50 µl of the standards or experimental samples were loaded 

onto a 96-well plate and 200 µl of protein determination buffer added. Plate was incubated for 30 

minutes at 37°C. Then, plate was allowed to cool to room temperature and absorbance at 562 nm 

was measured using a Spectramax plate reader from Molecular Devices, Sunnyvale, CA. Protein 

concentration was determined by linear regression using the standard values. 

Western blot analysis: Proteins were electrophoretically separated by standard acrylamide SDS-

PAGE gel. After that, the proteins were electrophoretically transferred from SDS-PAGE gels to 

PVDF or nitrocellulose membranes using a Trans-Blot SD Semi-Dry Transfer Cell for 45 min at 

a constant voltage of 15V. After transfer, the membrane was incubated in blocking buffer with 

shaking for at least 1 hour at room temperature. The blocked membrane was then incubated with 

a solution containing primary antibodies. The primary antibody solution was allowed to incubate 

with the membrane at room temperature for at least 1 hour with gentle shaking. Following this 

incubation step, the membrane was rinsed three times with PBS or TBS containing 0.1%Tween-

20 for 5 min. The membrane was incubated in the secondary antibody solution for 1 hour at room 

temperature with continuous shaking. The membrane was then rinsed three times with PBS or TBS 
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containing 0.1%Tween-20 for 5 min, and then rinsed. The blot was examined in an ODYSSEY 

Infrared Imaging System from LI-COR Biosciences. 

Gentamicin Protection Assay: Confluent HeLa cell layers were used to seed 24-well plates 24 

hours prior to inoculation with bacteria. Wild-type Shigella and ipaD mutant strains were streaked 

onto trypticase soy agar containing 0.025% Congo red (TSA-CR) and 100 µg/ml ampicillin one 

day prior to the assay. Five isolated colonies were inoculated into 10 ml of trypticase soy broth 

containing 100 µg/ml ampicillin and 50 µg/ml kanamycin. Cultures were grown to an A600 of 

~0.5. While the cultures are growing, the HeLa cells were washed with serum-free DMEM 

containing 0.45% glucose to remove antibiotics. Three µl of bacteria were added to the HeLa cells 

and the 24-well plate was centrifuged at room temperature at 2000 x g for 5 min. The centrifugation 

step facilitates contact between the HeLa cells and the bacteria. The bacteria were incubated with 

the HeLa cells for 30 min at 37°C. The media was aspirated and the cells washed 3x with DMEM 

containing 5% calf serum and 50 µg/ml gentamicin, and then incubated for 2 hours in the 

gentamicin-containing media. After the 2 hour incubation, the cells were washed with DMEM and 

then overlaid with 0.5% agar to lyse the cells, followed by an overlay with 2x LB agar. The 24-

well plates were incubated overnight at 37°C and colonies representing invasive bacteria were 

counted.  

Chloroquine resistance assay: A modified gentamicin protection assay was in J774 

macrophages. Cells were seeded at 2.5 × 105 per well in 24-well plates 24 hour prior to infection. 

Cells were then infected at an MOI of 10:1 with bacteria grown as above. Plate was centrifuged at 

room temperature at 250 x g for 4 min. The bacteria were incubated with the macrophages for 30 

min at 37°C. The media was aspirated and the cells washed 3x with DMEM containing 50 µg/ml 

gentamicin. Cells were incubated for 2 hours at 37°C in DMEM containing 50 µg/ml gentamicin, 
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with or without 400 μM chloroquine. After the 2 hour incubation, the cells were washed with PBS 

three times and lysed in a 0.9% NaCl, 0.2% Triton X-100 solution. Lysates were serially diluted 

and plated onto TSA-CR. Colony forming units (CFU) were counted after a 16 hour incubation at 

37°C. Percent cytosolic bacteria was quantified by (CFU in gentamicin plus chloroquine/CFUs in 

gentamicin) x 100. 

Contact-Mediated Hemolysis: ipaD mutants were grown overnight on TSA-CR and inoculated 

into 10 ml of trypticase soy broth containing 100 µg/ml ampicillin and 50 µg/ml kanamycin. The 

bacteria were grown to an A600 of 0.5, pelleted at 3000 x g, and resuspended with 200 µl 

phosphate-buffered saline (PBS). Three ml defibrinated sheep blood from Colorado Serum, CO 

was diluted with 40 ml PBS and centrifuged to collect the red blood cells (RBCs). RBCs were 

resuspended in 3 ml PBS and 50 µl/well distributed to a 96-well plate. A 50 µl aliquot of each 

mutant strain was added to each of three wells, and then the 96-well plate was centrifuged at 2200 

x g for 15 min at room temperature. The plate was incubated at 37°C for 1 hour. The bacteria were 

sheared from the RBCs by vigorously resuspending the pellet in each well with 100 µl of ice-cold 

PBS. The plate was again centrifuged at 2200 x g for 15 min at 10°C. 100 µl of the supernatant 

from each well was transferred to a fresh well and the released hemoglobin measured by the 

absorbance at 545 nm using a Spectramax plate reader. 

Overnight Secretion: A 10 ml culture of each ipaD mutant was grown as above, except the culture 

was incubated overnight. Bacteria were pelleted by centrifugation at 3000 x g and the supernatant 

was transferred to a 30 ml Corex centrifuge tube on ice. The bacterial pellet was resuspended in 1 

ml of water and frozen. One ml of 100% TCA was mixed into the bacterial supernatant, followed 

by a one hour incubation on ice. The samples were then centrifuged at 11,800 x g for 15 min. The 

samples were washed with ice-cold 5% TCA and centrifuged as above. Next, the samples were 
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washed twice with ice-cold acetone. After the final wash, the Corex tubes were inverted and the 

acetone completely evaporated. Once dry, the pellets were resuspended with 400 µl PBS plus 200 

µl 3x SDS-PAGE sample buffer plus 20 µl 1.5 M dithiothreitol (DTT). For quantitative purposes, 

the secreted proteins were analyzed by Western blot. 

Congo Red Induced Secretion: Bacterial cultures were grown as indicated above to mid-log 

phase, harvested, and resuspended in 1 ml PBS.  CR (10 mg/ml) was added to a final concentration 

of 1 mg/ml and incubated for 15 min at 37°C. The supernatants were clarified, the secreted proteins 

separated by SDS-PAGE and finally transferred to PVDF for Western blot analysis. 

Fluorescence Labeling of IpaD: To facilitate optimal labeling, IpaD was concentrated to at least 

2 mg/ml prior to labeling. Enough Alexa 568 NHS ester to provide at least a 10-fold molar excess 

to IpaD was dissolved in a minimal amount of dimethylformamide (DMF). At least 2 mg of IpaD 

was aliquoted to a small test tube, along with a 0.25 inch stir bar. The following steps were 

performed at room temperature while stirring. Alexa dye was added dropwise to IpaD and the test 

tube was purged with N2 for 10 min to remove molecular oxygen. The labeling reaction was then 

sealed with paraffin paper and incubated for 2 hours. Free dye was removed from IpaD by 

overnight dialysis onto PBS and a purification step in a Pierce dye removal column. 

Concentrations were determined for the Alexa-labeled protein using UV-Vis absorbance 

spectroscopy. The A280 must be corrected to account for the absorbance of light at 280 nm by the 

fluorescent probe. The A280 and A575 of Alexa-labeled protein were collected. The A280 was 

corrected using the following equation: 

A280 Observed – (CF * A575) = A280 Actual  



19 

Where CF (CF = 0.46) is the correction factor for Alexa 568, A280 Observed is the experimentally 

determined absorbance at 280 nm, A575 is the experimentally determined absorbance at 575 nm, 

and A280 Actual is the absorbance at 280 nm corrected for Alexa dye absorbance. A280 Actual 

was used to calculate the protein concentration using the Beer-Lambert Law:  

A = εcl 

where A represents the absorbance value, ε represents the molar extinction coefficient, c represents 

the molar concentration, and l is the path length of the cuvette (1 cm). ε for IpaD is 36,900 M-1 cm-

1. 

The degree of labeling (DOL) was calculated using the following equation: 

Alexa concentration (M) / Protein concentration (M) * 100 = DOL (%) 

Far-UV Circular Dichroism: Far-UV circular dichroism (CD) spectra were collected with a 

Jasco J815 spectropolarimeter equipped with a Peltier temperature controller from Jasco Inc, 

Easton, MA.  IpaD at a concentration of 0.3 mg/ml was loaded into a 0.1 cm path length cuvette 

and spectra were collected at 10°C. A resolution of 1.0 nm was employed with a scanning speed 

of 50nm/min and a 2 sec data integration time. 

Transient Transfections of HEK-293 cells: Humanized-ipaD/pTandem-1 was transiently 

transfected into HEK-293 cells using TransPass COS/293 transfection reagent in DMEM. Cells 

were plated one day before transfection in a 6-well plate so that cells would be 70% confluent at 

the time of transfection. TransPass reagent was prepared by diluting the appropriate amount in 1 

ml of serum-free DMEM (6 μl TransPass / 3 μg DNA). The DNA:transfection reagent mix was 

gently mixed and incubated for 30 min at room temperature to allow for complex formation. DNA-
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TransPass complexes were then added drop-wise to each well. The plate was then rocked for 10 

min at room temperature, and later incubated at 37°C, 5% CO2 for 6-48 hours. 

Immunofluorescence microscopy: Transfected HEK-293 cells, which had been grown in 

coverslips inside a 6-well plate well, were fixed with 4% paraformaldehyde in PBS for 30 min at 

room temperature. The fixed cells were then rinsed with 10 mM glycine, 10% BSA in PBS for 10 

min to neutralize the fixative. Cells were permeabilized with an incubation in 0.25% Triton X-100 

in PBS for 15 min, and blocked in 10% BSA in PBS for 1 hour at room temperature. After the 

blocking buffer was removed, a 1:1000 solution of primary antibody in 10% BSA in PBS was 

applied and allowed to incubate for 2 hours at room temperature. Coverslips were rinsed with PBS 

three times and a 1:1000 secondary antibody solution allowed to incubate for 1 hour at room 

temperature. F-actin was stained with Alexa-labeled phalloidin and nuclei were stained with DAPI. 

Finally, one drop of ProGold Anti-Fade was added to each well just before a cover slip was applied 

and sealed down with fingernail polish. The slides were allowed to dry and confocal sections were 

images with an Olympus IX81 microscope with a 100X oil objective using SlideBook software 

from Intelligent Imaging Innovations, Inc, Denver, CO. Alternatively, J774 macrophages grown 

in sterile glass-bottom 96-well plates were incubated for 15 min with Alexa-labeled recombinant 

IpaD. Wells were washed three times with sterile PBS. A live cell imaging solution was added and 

live images collected 1 hour post-treatment with an Olympus IX-83 motorized microscope with a 

20x objective using CellSense software from Olympus, Center Valley, PA. Phase contrast, 

differential interference contrast and appropriate excitation channels were collected. 

Introduction of Recombinant IpaD into macrophages: Cells were grown in 96- and 6-well 

plates or in T-25, -75 or -150 according to the downstream technique desired. Recombinant IpaD 

purified as described above was concentrated with Amicon Ultra centrifugal filter units to a protein 
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concentration of approximately 10 mg/ml. Then, at least 30 min before incubation with the cells, 

an appropriate amount of IpaD was incubated with LDAO to a concentration of 0.1%. Protein was 

then added to cells in a serum-free media (either DMEM or RPMI) so that the final concentration 

of the protein was in the μM range and the final concentration of LDAO was 0.001%. Final 

concentration of LDAO at 0.001% was maintained in each well/flask by addition of an appropriate 

amount of 0.1% LDAO in PBS. 

Cytotoxicity of macrophages: Cells were grown at a concentration of 2x104 cells/well in a 96-

well plate and treated with the appropriate amount of recombinant protein or at an MOI of 1:100 

for infections with Shigella. The 96-well plate is then centrifuged at 250 x g for 4 min at room 

temperature. 50 μl of the supernatant were transferred to a flat-bottom non-coated 96-well plate. 

The LDH working solution is prepared by mixing 12 ml of the assay buffer with one vial of 

substrate mix of a CytoTox 96 non-radioactive cytotoxicity assay kit. The LDH working solution 

measures released lactate dehydrogenase in culture supernatants, which results in the conversion 

of a tetrazolium salt into a red formazan product. The amount of red color is proportional to the 

number of lysed cells. 50 μl of the working solution are mixed with supernatants in the 96-well 

plate, and incubated in an orbital shaker for 30 min at room temperature. 50 μl of stop solution 

(10% acetic acid) are added to each well. Any air bubbles are popped with a 10 μl pipette tip and 

absorbance read at 490 nm with a Spectramax plate reader. The percent of cytotoxicity was 

calculated as: 100 × [(experimental release − background release)/(total release − spontaneous 

release)]. In this formula, the background release represents the amount of LDH present in the 

supernatant of a vehicle control (cells exposed to 0.25% DMSO in caspase-inhibitor assays or 

0.001% LDAO for purified protein experiments), the spontaneous release represents the amount 
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of LDH present in the supernatant of cells exposed to PBS and the total release is the amount of 

LDH by cell lysis with a Triton X-100 solution. 

Caspase activity determination: Cells grown in a 96-well plate were incubated with 2.4 μM 

recombinant IpaD for 30 min at 37°C, 5% CO2. The plate is then removed from the incubator and 

allowed to equilibrate to room temperature. Reconstituted Caspase-Glo reagents for caspases -2, -

3, -8 and -9 were used. 100 μl of Caspase-Glo reagent were added to each well and incubated for 

30 min. Luminescence was measured with a Spectramax plate reader, and corresponds to the 

activity of the caspase measured. 

Cell death inhibition: J774 macrophages were treated with recombinant protein or Shigella 

strains as indicated above. Prior to treatment, the cells in a 96-well plate were incubated for 1 hour 

at 37°C, 5% CO2 with 50 µM of the caspase inhibitors Z-VAD-FMK (pan-caspase), Z-WEHD-

FMK (caspase-1), Z-YVAD-FMK (caspase-1), Z-VDVAD-FMK (caspase-2), Z-DEVD-FMK 

(caspase-3), Z-IETD-FMK (caspase-8), and Z-LEHD-FMK (caspase-9 or -11). The effect of a 

caspase inhibitor on cytotoxicity was measured in relation to controls without it. 

Caspase-3 activation: Macrophages were seeded at a concentration of 6 x 105 in a 6-well plate 

and incubated overnight to allow for attachment to the plate. Cells were then exposed to IpaD at 

times 15, 30, 60, 90 and 120 min. as described above. The cell supernatants were collected, and a 

solution of Accutase was added to the cell monolayer for detachment. After 10 min. at 37°C, the 

cells were recovered as a single cell suspension. The well was washed with PBS. The cell 

suspension and the PBS from the wash were pooled with the cell supernatants. Then, cells were 

centrifuged at 400 x g for 5 min. at room temperature. The cell pellet was resuspended in 200 μl 

of PBS and 1 μl of a 1 mM NucView 488 caspase-3 enzyme substrate in DMSO was added and 

cells were gently mixed. The cells were incubated for 15 min. at room temperature and promptly 
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put on ice. 300 μl of PBS were added to each tube and whole preparation transferred to a flow 

cytometry tube. The fluorescence was measured with a blue laser and a detector at 488 nm. 

Baseline fluorescence was measured in cells without staining. 

Mitochondrial disruption: The mitochondrial membrane potential was measured with the cell-

permeable dye JC-1, which emits fluorescence at 488 nm when soluble in the cytoplasm and at 

568 nm when aggregated inside the mitochondrion. JC-1 working solution is made by adding 10 

μl of the 100X JC-1 dye in DMSO into 1 ml of assay buffer (saline solution provided by the 

manufacturer). Cells were treated and collected as described for caspase-3 activation above. The 

cell pellet was resuspended in 500 μl of the JC-1 working solution and incubated for 15 min. at 

37°C, 5% CO2. Cells were centrifuged at 400 x g for 5 min and washed twice with PBS. Finally, 

cells were resuspended in 500 μl of PBS, immediately put on ice and transferred to a flow 

cytometry tube. The fluorescence was measured with a blue laser and a detector at 488 nm, and 

with a green-yellow laser and a detector at 568 nm. Baseline fluorescence was measured in cells 

without staining. 

Annexin V/Propidium Iodide staining: Cells were treated and collected as described above. The 

cell pellet was washed with 1 ml of ice-cold PBS. Cells were resuspended in 100 μl of Annexin-

binding buffer. To this volume, 5 μl of FITC Annexin V dye and 1 μl of 100 μg/ml PI working 

solution were added. Cells were incubated for 15 min at room temperature. After incubation, 400 

μl of Annexin-binding buffer were added and cells were immediately placed on ice. Cell 

suspension was transferred to a flow cytometry tube and fluorescence measured with a blue laser 

and a detector at 488 nm, and a green-yellow laser and a detector at 568 nm. Baseline fluorescence 

was measured in cells without staining. 
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Flow cytometry: All flow cytometry was performed at the Kansas Vaccine Institute Immunology 

Core Laboratory (KVI-ICL). The instrument used for flow cytometry was a BD FACSAria Fusion 

setup with lasers at 405 (violet), 488 (blue), 561 (yellow-orange), and 640 (red) nm. These lasers 

are coupled to 11 different filters, which enables the use of several fluorophores in the same 

sample. BD FACSDiva Cytometer Setup and Tracking (CS&T) Research Beads are used for 

automated setup of the instrument. Voltages for each detector are setup using an unstained control, 

which represents the background fluorescence of the sample. All samples are gated for specific 

populations according to the manufacturers’ specifications for each kit.   
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CHAPTER III: Analysis of the Role of IpaD on Cell Death in Macrophages 

Introduction 

Shigella’s ability to cause disease depends on the presence of the virulence plasmid, as evidenced 

by early studies with Shigella strains that had lost the virulence plasmid97 or those with large 

deleted regions in the plasmid98. Further investigation demonstrated that one of the characteristics 

of Shigella losing its virulence plasmid is the inability to induce cell death. In a rabbit ligated ileal 

loop model, animals infected with wild-type Shigella had intestinal lymphoid follicles with 

apoptotic macrophages, T and B cells, whereas no apoptosis was detected for rabbits challenged 

with a plasmid-cured Shigella strain58. 

The normal state of a healthy cell is preserved through homeostatic cell processes including the 

balance between their proliferation and cell death depending on the requirements of the tissue in 

which they reside and the stimuli present in their environment. There are insults that a cell or 

population of cells can receive that trigger morphological, functional and biochemical changes that 

are irreversible and hamper cell viability. Cell death can occur as the result of numerous insults 

such as UV and ionizing radiation, toxins, microbial and viral infections, or nutrient withdrawal. 

Cell death can occur through several mechanisms that are either unregulated or regulated. 

Unregulated cell death is called necrosis, and is a passive catastrophic type of death that arises 

without energy (ATP) consumption. Necrotic cells swell and their plasma membrane ruptures, 

leaking their contents onto the extracellular environment. This results in a high degree of 

inflammation and further damage to neighboring cells99. Regulated types of cell death that have 

been described are apoptosis, necroptosis, pyroptosis, and autophagy100.  
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Apoptosis (a term meaning shedding of leaves in Greek) is a type of programmed cell death that 

aids in the healthy turnover of cells in tissue, but can also be the result of pathological stimuli101. 

If cells cannot repair the damage (for example, using anti-apoptotic cytokine IL-2 or DNA repair 

mechanisms), they reach a point of no return where they are now committed to die102. 

Morphological changes in apoptotic cells are well conserved independent of the triggering stimuli, 

and include cell shrinking, formation of membrane blebs, chromatin condensation 

(karyopyknosis), fragmentation of nuclei (karyorrhexis), and separation of cell fragments into 

apoptotic bodies101. The main feature of apoptosis is that it is a non-inflammatory pathway because 

the cellular contents are enclosed in an intact plasma membrane (apoptotic bodies), such that no 

damage is caused to neighboring cells. Commonly described as programmed cell death, it is a 

tightly regulated process orchestrated by caspases, a family of cysteine-dependent aspartate-

directed proteases103. Caspases cleave cellular targets as a cascade of cell degradation that results 

in the complete disassembly of chromatin and irreversible changes to organelles like mitochondria 

and the endoplasmic reticulum104,105. The role of mitochondria in apoptosis has been well studied. 

Pro-apoptotic proteins can disrupt the outer mitochondrial membrane, allowing the release of 

Cytochrome C into the cytoplasm. This is received by the cell as a point of no return signal. 

Therefore, the study of mitochondrial function in cell death analysis is necessary102,106,107. 

In 1992, Zychlinsky et al. described for the first time that Shigella could kill macrophages and that 

this phenomenon was tied to its virulence plasmid108. Additional studies described this type of 

death as a new mechanism different from apoptosis, in which high levels of IL-1β and IL-18 are 

elicited by activation of caspase-162. This inflammatory type of cell death is now called pyroptosis 

and has since been found to occur in infections by other pathogens harboring a T3SS63,109. 

Although the translocator protein IpaB is able to directly bind caspase-1 in vitro110, other reports 
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have found that this is not sufficient for pyroptosis. Experiments with methyl-beta-cyclodextrin, a 

cholesterol-sequestering compound, showed that if phagocytosis and phagosomal escape were 

allowed to progress normally, secretion of IpaB was not impaired by cholesterol sequestering but 

macrophage cell death was111. IpaB was also found to spontaneously form potassium channels, 

and it is this potassium flux that triggers caspase-1 activation, possibly through IPAF (NLRC4) 

inflammasome activation64. These studies show the association of IpaB with the host membrane 

and the vacuolar damage triggered are necessary for the induction of pyroptosis. Also, pyroptosis 

caused by the activation of caspase-11 non-canonical inflammasomes in response to intracellular 

LPS has been studied in several gram-negative pathogens including Shigella65,112. 

There is evidence of other types of macrophage cell death triggered by Shigella, however, these 

have been studied less extensively. The cell line U937 has been used to study the effect of Shigella 

in human cells. U937 is a human monocyte cell line that can be differentiated into macrophages in 

vitro by different stimuli113. Nonaka et al. used interferon gamma (IFN-γ) and retinoic acid (RA) 

and found that IFN-differentiated macrophages exhibited some of the classical signs of apoptosis 

such as DNA fragmentation and cleavage of a caspase substrate upon Shigella infection114. The 

RA differentiated macrophages in turn died by oncosis, another type of cell death that shows cell 

swelling, and some authors have concurred that this is a type of necrosis115,116. Necrotic cell death 

through an inflammasome pathway was studied later60. Furthermore, Hilbi et al. concluded that 

only caspase-1 was necessary for Shigella-mediated macrophage cell death, however, their 

experiments show that casp1 -/- macrophages still show a cytotoxic response of approximately 

25%110. No recent studies have been dedicated at discerning the mechanisms or contributing 

factors to the alternative types of cell death observed during Shigella infection. 
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The ability of Shigella to cause apoptosis was revisited when Nothelfer et al. studied the effect of 

Shigella infection of B lymphocytes. They found that B cell death could be elicited by Shigella in 

a T3SS-dependent manner. They further concluded that the virulence factor IpaD behaved like a 

TLR2 agonist and in this role could contribute to cell death. Their experiments show purified IpaD 

could be used as a contributing factor to apoptosis in B lymphocytes only when coupled with a 

T3SA- Shigella strain96. The lack of evidence of a particular factor causing apoptosis in 

macrophages, and the potential of IpaD to cause this type of cell death opened the possibility for 

the study of IpaD as an apoptotic factor in macrophages. 

Results 

The studies showing apoptosis could be caused by Shigella upon infection were limited but other 

studies provided information about Shigella killing through more than one pathway upon further 

examining their experimental sets59,110. In order to determine if apoptosis could indeed be elicited 

by a wild-type Shigella strain in an experimental model, we planned to infect cultured 

macrophages with S. flexneri serotype 2a strain 2457T, which we have used extensively in 

previous studies. First, we looked for an in vitro model that was robust and well-cited for the study 

of macrophage biology, especially in the setting of infection. The earliest account of macrophages 

dying due to Shigella infection is the 1987 study by Clerc, et al. in which they observed that a 

virulent S. flexneri strain was able to kill macrophages of the J774 cell line and that this correlated 

with the intracellular presence of the bacterium and a strain harboring a complete virulence 

plasmid117. In the following years, J774 cells were utilized to further study this phenomenon118–

122. In one study, the invasiveness of wild-type S. flexneri strain YSH6000 was evaluated in cell 

lines J774, RAW264.7 and THP-1, and the bacteria were found to be most efficient at invading 



29 

J774 cells123. This cell line has also been widely used as a model in several studies in other aspects 

of Shigella pathogenesis as well as that of other bacteria with a T3SS124–127. 

We infected macrophages of the J774 cell line with the wild-type S. flexneri strain, at a multiplicity 

of infection (MOI) of 1:100. The cell death caused in an in vitro setting can be measured by the 

release of LDH into the supernatant of cells grown in a cell culture plate well. S. flexneri was able 

to kill 78% of the total population (first bar, Fig. 2) after 2 hours of infection.  
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Fig. 2 Cytotoxicity elicited in J774 macrophages by a wild-type S. flexneri strain. Bacterial infection 

of macrophages in vitro shows that most of the cell population has died at 2 hours post-infection. The 

cytotoxicity in the presence of caspase inhibitors was also assessed (50 μM of pan-caspase inhibitor, Z-

VAD-FMK; casp-1 inhibitor W, Z-WEHD-FMK; casp-1 inhibitor Y, Z-YVAD-FMK. One-way ANOVA 

analysis (p<0.05). *treated vs WT, #caspase-1 vs pan-caspase inhibitor treatment.  

 

In order to investigate apoptotic responses triggered by Shigella infection, the cytotoxicity in the 

presence of caspase inhibitors was also assessed. The inhibitor Z-VAD-FMK is known to inhibit 

all caspases as it can bind irreversibly in their active site128. After pre-incubation with this pan-

caspase inhibitor, J774 macrophages were infected with the wild-type S. flexneri strain for 2 hours. 

Inhibition of caspases results in a decrease in cell death of 40% (Fig. 2). Since there is evidence 

that caspase-1 is an important factor in macrophage death by pyroptosis, we pre-incubated cells 
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with caspase-1 inhibitor Z-WEHD-FMK and subsequently infected the cells with wild-type 

bacteria. The caspase-1 inhibitor decreases killing by only 20%. A similar level of reduction was 

seen by pre-incubation with Z-YVAD-FMK, another caspase-1 inhibitor (Fig. 2). A reduction in 

cell death by a caspase-1 inhibitor is expected as per previous observations by other authors in 

which caspase-1 is necessary for macrophage cell death, that is, by a pyroptosis pathway, however, 

the fact that inhibition of caspase-1 is less efficient at reducing cell death than pan-caspase 

inhibition might indicate that macrophage death is, at least in part, caused by other caspases. 

To assess the role of IpaD in the cytotoxicity seen with wild-type Shigella infections, we used a 

model in which we can manipulate the presence or absence of functional IpaD in the bacterium. S. 

flexneri strains carrying null mutations have been widely used in the literature. An ipaD null strain 

(SF622)87 is able to grow in both solid and liquid media, however, due to the structural role of 

IpaD in the T3SA, it is avirulent but shows uncontrolled secretion. When complemented with a 

plasmid for expression of IpaD (IpaD+ strain), the defect is rescued and the strain behaves like the 

wild-type strain with regard to secretion control and virulence88,89. Indeed, we were able to emulate 

the cytotoxicity profile of the wild-type strain with the IpaD+ strain (Fig. 3). Pre-incubation with 

the pan-caspase inhibitor also reduced the cytotoxicity of the strain. As mentioned before, it has 

also been reported that caspase-11 is needed for pyroptosis by Shigella infection, due to 

intracellular LPS recognition within the macrophage65. In order to eliminate both sources of 

pyroptosis (caspases -1 and -11), we pre-incubated cells with both Z-YVAD-FMK and Z-LEHD-

FMK (an inhibitor of caspases -9 and -11). The IpaD+ strain showed reduced cytotoxicity in this 

sample, however, the difference was not significant. This might due to elevated levels of IpaD due 

to plasmid expression or an effect of two inhibitors, instead of one, present in the sample.  
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Macrophages were then infected with three strains encoding IpaD proteins with deletions within 

the N-terminal domain: IpaDΔ41-80, IpaDΔ81-120, and IpaDΔ111-120. These strains had previously been 

characterized by our group for invasion of epithelial cells and all retained 100% invasiveness when 

compared to the IpaD+ strain. S. flexneri strains IpaDΔ81-120 and IpaDΔ111-120 did not show a major 

defect in their killing potential, as their cytotoxicity did not differ significantly from that of IpaD+. 

Strain IpaDΔ41-80 is the only one to show a significant reduction in cell death when compared to 

IpaD+ (Fig. 3). As described above, when cells are pre-incubated with a pan-caspase inhibitor, 

infection with the IpaD+ strain results in diminished cytotoxicity vs. the cytotoxicity this strain 

causes with no inhibitor present. The same inhibitory effect is seen for the cytotoxicity caused by 

any of the mutant strains. However, only the cytotoxicity of the IpaDΔ41-80 strain is greatly reduced 

by pan-caspase inhibition (83% reduction). Pre-incubation of cells with caspases -1 and -11 

inhibitors also greatly reduced the cytotoxicity of IpaDΔ41-80 (79% reduction). The cytotoxicity 

caused by IpaDΔ41-80 was thus greatly reduced from that of IpaD+ in similar inhibitory conditions. 

These results indicate that by removing the effect of caspases driving pyroptosis (caspases -1 and 

-11), IpaDΔ41-80 is nearly unable to cause cytotoxicity (Fig. 3). 

The effect seen for IpaDΔ41-80 could be due to several factors. A structural defect caused by the 

loss of a large region (Fig. 4) could cause the protein to be unable to fully function as a part of the 

T3SA, however, this is unlikely as it the strain is able to invade epithelial cells correctly. Defects 

in the ability of the strain to pierce the membrane (i.e. form translocon pores) would render IpaD 

unable to reach the macrophage cytoplasm, where Shigella can modulate the cell survival. The 

ability to form translocons in the membrane can be assessed by a contact-mediated hemolysis 

assay. A Shigella strain is incubated with sheep’s blood for 1 hour, in which the outer membrane 

of the red blood cells is pierced by a functional translocon. Cells are then extruded with cold PBS 
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and hemoglobin released. The percent of hemoglobin in the supernatant is proportional to the 

hemolytic activity of the strain. Although IpaDΔ41-80 had been characterized before by our group88, 

it was assessed again to establish the phenotype was currently the same. The hemolytic activity of 

IpaDΔ41-80 is not significantly different to that of IpaD+ (Fig. 5). 

 

 

Fig. 3. Cytotoxicity profiles of S. flexneri strains with N-terminal deletions. Macrophages were 

infected at an MOI of 1:100 for 2 hours with ipaD null strains carrying a plasmid for expression of wild-

type IpaD (IpaD+), IpaD deleted in amino acids 41-80 (IpaDΔ41-80), IpaD deleted in amino acids 81-120 

(IpaDΔ81-120), and IpaD deleted in amino acids 111-120 (IpaDΔ111-120). All strains were then used in 

macrophages pre-treated with caspase inhibitors as described in Fig. 2. Data was normalized using IpaD+ 

as 100%. One-way ANOVA analysis (p<0.05). *vs IpaD+ with no inhibitors, #vs IpaDΔ41-80, фvs 

connected bar.  
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Fig. 4. 3D structure of IpaD (PDB 2J0O). The crystal structure of IpaD has been solved from amino 

acids 39-322. IpaD is a hydrophilic protein with a highly α-helical structure. It has a hairpin structure in 

its N-terminal domain, which spans amino acids 1-120 (shown here in red). The region depicted in green 

corresponds to amino acids 41-80, which were found to be important for cytotoxicity in a complemented 

strain. A) IpaDΔ41-80 would lack the aminoacids highlighted in green. B) Aminoacids highlighted are K72 

(orange), E76 (blue), and E77 (brown). 

 

Fig. 5. Hemolysis of S. flexneri strains. The ability of a strain to assemble a functional translocon is 

assessed through its ability to pierce the membrane of RBCs in contact-mediated hemolysis assays. The 

strains with a functional T3SA will exhibit the same degree of hemolytic activity than IpaD+. An IpaD- 

strain exhibits no hemolytic activity. A) Hemolytic activity of N-terminal deletion strains IpaDΔ41-80 and 

IpaDΔ81-120. B) Hemolytic activity of strains with point mutations in IpaD. No significant differences were 

found for the hemolysis caused by any of the mutant complemented strains. Data was normalized using 

IpaD+ as 100%. One-way ANOVA analysis (p<0.05). *vs IpaD+. 
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A reduced ability to escape the phagosome, independent of a strain’s ability to form functional 

translocons in the membrane, could also lead to reduced cytotoxicity as bacteria would be unable 

to access the cytosol. The phagosomal escape ability was assessed with a modified gentamicin 

assay in which chloroquine is introduced. Chloroquine is a DNA intercalator that accumulates in 

lysosomes and is a potent antimalarial drug. In our study, we used chloroquine with S. flexneri 

infected macrophages because the chloroquine should accumulate in the phagosome and kill all 

bacteria unable to escape into the cytoplasm. Cytoplasmic bacteria are quantified by the 

differential of bacteria from cells incubated with and without chloroquine. IpaDΔ41-80 is equally 

able to escape the phagosome as the IpaD+ strain since the number of cytoplasmic bacteria 

recovered from macrophages was comparable in each case (Fig. 6). 

Fig. 6. Phagosomal escape of S. flexneri strain IpaDΔ41-80. The ability of a strain to escape the 

phagosome after infection of a macrophage can be investigated with a modified gentamicin protection 

assay. Cells are incubated in the absence or the presence of chloroquine, a compound that kills bacteria 

trapped in the phagosome. The percent of cytosolic bacteria represents the amount of bacteria that are 

unaffected by the addition of chloroquine ((CFU in gentamicin plus chloroquine/CFU in gentamicin) x 

100). The values were not found to be significantly different. Significance was calculated with an 

unpaired t-test (p<0.05). 
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Thus, the ability of IpaDΔ41-80 to most efficiently kill the macrophage is impaired for reasons 

beyond the fitness of its T3SA. In an attempt to investigate the extent of what this region 

contributes to Shigella cytotoxicity, we performed cytotoxicity assays with mutants already 

available in our stocks. Three strains were identified, with point mutations in the corresponding 

region: E76A/E77A, K72A/E76A/E77A, and K63A/K72A/E76A/E77A. All these strains show a 

similar profile of overnight secretion relative to IpaD+, as analyzed by precipitation of culture 

supernatants (Fig. 7). Similarly, the induction of secretion by Congo red was unchanged, except 

for the mutant IpaDK63A/K72A/E76A/E77A which exhibits slightly higher IpaD secretion (Fig. 7). These 

profiles indicate that the mutations do not impair the function of IpaD in secretion control. The 

cytotoxicity caused to macrophages by these strains was measured using the LDH release assay. 

Only IpaDK72A/E76A/E77A showed a significant decrease in cytotoxicity when compared to IpaD+ 

(Fig. 8). Furthermore, none of these mutant strains have a defect in hemolytic activity (Fig. 5). 

The IpaD crystal structure highlighting the N-terminal region of amino acids 41-80 and the 

residues K72, E76 and E77 is depicted in Fig. 4. 

As can be seen in the 3D structure, the residues mutated in strain IpaDK72A/E76A/E77A are surface 

exposed and located at the top of the hairpin formed by the N-terminal domain of IpaD. It is 

interesting that the strain with the additional mutation in K63 is able to restore the IpaD 

cytotoxicity. We are unsure why this difference is observed but we plan to perform additional 

experiments in the future that may allow us to discern the difference in these mutants. A mutation 

in only K72 and a mutant in Q165, a residue in the coiled-coil region likely to interact with K72, 

should be considered as part of these future experiments. 
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Fig. 7. Secretion profiles of S. flexneri strains. The secretion profiles of strains with N-terminal point 

mutations were assessed for overnight secretion of ipa effectors as well as secretion upon stimuli. Strains 

are labeled as follows: D+ is IpaD+, D- is IpaD-, 2 is IpaDK72A/E76A/E77A, 10 is IpaDK63A/K72A/E76A/E77A, and A 

is IpaDE76A/E77A. A) Overnight secretion in a culture is evaluated by precipitating the supernatant with 

TCA, resuspension and immunoblotting. All complemented strains show comparable amounts of IpaB, 

IpaC and IpaD secreted onto the extracellular environment. B) Immunoblot of proteins secreted after 

addition of Congo red, an anionic dye used as an inducer of the T3SS. IpaD is secreted in similar amounts 

upon induction in complemented strains, except for IpaDK63A/K72A/E76A/E77A that was found to secrete higher 

levels of IpaD. 

 

Fig. 8. Cytotoxicity profiles of S. flexneri strains with point mutations. The LDH release of 

macrophages caused by infection with point mutant strains was measured at 2 hours post-infection. Strain 

IpaD- is unable to cause cytotoxicity. Mutants IpaDE76A/E77A and IpaDK63A/K72A/E76A/E77A show no significant 

difference in their cytotoxic profile, whereas mutant IpaDK72A/E76A/E77A shows reduced cytotoxicity. Data 

was normalized using IpaD+ as 100%. One-way ANOVA analysis (p<0.05). *vs IpaD+. 
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Cytokine cleavage and secretion by macrophages is one of the hallmark signs that the process of 

pyroptosis has started and this has been reported for macrophages infected with Shigella111. 

Therefore, we analyzed the cytokine secretion profiles of J774 macrophages infected with the 

mutant identified as defective in cytotoxic potential (IpaDΔ41-80). IL-1β secretion of cells infected 

with IpaD+ or IpaDΔ41-80 is comparable. IpaD- secreted minimal levels of IL-1β. When 

macrophages are pre-incubated with a pan-caspase inhibitor or with caspases -1 and -11 inhibitors, 

IL-1β secretion triggered by IpaD+ is reduced 4-fold. The same pattern is seen in infections with 

IpaDΔ41-80 (Fig. 9). Therefore, macrophages infected with IpaDΔ41-80 have no defect in IL-1β 

secretion. Furthermore, these results serve as evidence that the caspases -1 and -11 inhibitors used 

for the study are able to block a pyroptosis process. IL-18 secretion, which is an event downstream 

of IL-1β secretion, has previously been indicated to be another mediator of inflammation caused 

by Shigella infection129. The profiles of IL-18 secretion were all similar in the infection conditions 

used to monitor the differences in IL-1β secretion and there was no effect detected by caspase 

inhibition. Thus, the level of IL-18 secretion was the same as the basal level J774 macrophages 

incubated only with media showed (Fig. 9). 
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Fig. 9. Cytokine profiles for macrophages infected with S. flexneri strains. The inflammation seen 

with pyroptosis is a result of inflammatory cytokines that are released upon caspases -1 or -11 activation. 

The amount of cytokine secretion can be quantified from supernatants of macrophages infected with 

bacterial strains. A) The secretion profile for cytokine IL-1β upon infection of macrophages with IpaD+ or 

IpaDΔ41-80. Caspase inhibition is able to greatly reduce the amount of IL-1β secreted. B) Cytokine IL-18 

secretion levels were measured in supernatants of cells infected with IpaD+ or IpaDΔ41-80. IL-18 secreted 

by infected macrophages are all comparable. Significance was calculated with a one-way ANOVA 

analysis (p<0.05) *vs IpaD+, #vs deletion mutant, n.s. not significant. 

 

One of the main obstacles to working with mutant strains is having to maintain ideal conditions of 

inhibition by extraneous factors that are also contributing to macrophage cell death caused by 

Shigella. With purified protein, we were able to emulate the cell death caused by the infection 

using purified recombinant IpaD. In this way, we expected a robust model for the analysis of the 

mechanism behind the role of IpaD in macrophage cell death. Unfortunately, IpaD is highly 

hydrophilic and simply exposing a macrophage population to IpaD in vitro did not result in the 

internalization of the protein, and thus no effect was seen (Fig. 10). A report by Taylor and 

Fernandez-Patron showed that a mild detergent could be used to transduce proteins into cells, 

without affecting viability130. We examined the effect of LDAO, the zwitterionic detergent used 
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to maintain recombinant IpaB in a soluble state on IpaD entry into J774 cells. We found that the 

morphology of cells exposed to LDAO in small concentrations remains unchanged (Fig. 10). 

When macrophages were incubated with IpaD in the presence of LDAO, the protein was 

internalized within 15 minutes (the number of cells with internalized IpaD was 97.9% ± 2.3%). 

The morphology of the cells changes at 1 hour post-exposure, and cell shrinking, membrane 

blebbing and the presence of apoptotic bodies is seen (Fig. 10).   

Fig. 10. IpaD is internalized in the presence of LDAO. The introduction of IpaD into macrophages is 

necessary for a model that emulates the effect of IpaD by Shigella infection, as cytoplasmic bacteria will 

kill macrophages. By exposing macrophages to LDAO, Alexa-568 labeled IpaD in PBS or Alexa-568 

labeled IpaD with LDAO, we were able to analyze the effect of protein transduction with a mild 

detergent. Cells were incubated with treatment for 15 min and then washed extensively. Live cells were 

imaged 1 h after treatment. IpaD delivered in PBS was unable to enter cells as shown by a low 

intracellular signal. Cells exposed to IpaD with 0.001% LDAO show internalization of recombinant IpaD. 
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In this model, as implied by the changes in cell morphology, recombinant IpaD is able to cause 

cell death of a macrophage population in vitro. In ranges from 0.2 to 2.4 μM IpaD causes cell death 

in a dose-dependent manner (Fig. 11). Another macrophage cell line, RAW264.7 was killed in a 

similar way as the J774 macrophages. In primary cells such as bone marrow-derived macrophages, 

IpaD displays somewhat less cytotoxicity although the effect is still dose-dependent. In a human 

monocyte cell line, if this population is differentiated onto macrophages, IpaD is also cytotoxic. 

The effect seen is specific for recombinant IpaD since a negative control was assessed by 

introducing recombinant IpgC (with no effector function) in an equal amount of LDAO. This 

negative control showed no cytotoxicity (Fig. 11). The model developed is thus robust and can be 

used to emulate the death caused by IpaD. This model allowed us to examine the mechanistic 

events leading to the cell death. 

The N-terminal domain of IpaD (Fig. 4) is known to fold independent of the rest of the protein131. 

Thought to have a self-chaperoning effect, a conserved structure is found in SipD from Salmonella 

spp. and BipD from Burkholderia pseudomallei, however, the tip proteins LcrV from Yersinia spp. 

and PcrV from Pseudomonas aeruginosa do not contain this domain and in turn associate with an 

independent chaperone prior to their secretion94,132. Due to our observations with mutant strains, 

we hypothesized that a protein with this N-terminal domain may behave like IpaD in terms of 

cytotoxicity, and a protein lacking the domain would not be able to cause macrophage death. In 

line with this, SipD in LDAO was found to cause cytotoxicity in a dose-dependent manner. 

Meanwhile, LcrV in LDAO was unable to cause cell death (Fig. 11). This strengthened our 

hypothesis that the N-terminal domain of IpaD was involved in the process of macrophage death. 
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Fig. 11. Cytotoxicity profiles of recombinant proteins. The cytotoxicity in a model of recombinant 

IpaD was analyzed. The LDH release caused by incubation of different macrophage cell populations for 2 

hours indicates that IpaD is able to cause cell death in vitro. A) J774 cell line. B) RAW264.7 cell line. C) 

Bone-marrow derived macrophages (primary cells). D) Differentiated U937 cell line. The effect of the N-

terminal region of IpaD was compared to proteins with or without this domain. E) SipD in LDAO into 

J774 cells. F) LcrV in LDAO into J774 cells. G) A negative control with IpgC in LDAO into J774 cells. 

 

Our experiments with S. flexneri strains showed that cytotoxicity in macrophages was caused by 

alternative caspase(s) other than caspases -1 and -11. Also, the morphology observed following 

the introduction of IpaD to macrophages was consistent with phenotypes of apoptotic cells. With 

our observations that mutant strains in IpaD are defective in cell death, we assessed if recombinant 

IpaD could activate caspases commonly found in apoptotic pathways133. With the use of peptides 

coupled to luciferin, caspase activity was assessed. If a certain caspase is activated, it will cleave 

the peptide in a specific manner and luminescence is detected. After 30 minutes of incubation with 

2
.4

1
.6

0
.8

0
.4

0
.2

0

2 0

4 0

6 0

8 0

1 0 0

Ip a D  c o n c e n tra t io n  [M ]

%
 L

D
H

 r
e

le
a

s
e

(e
x

p
 -

 b
k

g
 /

 t
o

ta
l 

- 
s

p
n

t)

2
.4

1
.6

0
.8

0
.4

0
.2

0

2 0

4 0

6 0

8 0

1 0 0

Ip a D  c o n c e n tra t io n  [M ]

2
.4

1
.6

0
.8

0

2 0

4 0

6 0

8 0

1 0 0

Ip a D  c o n c e n tra t io n  [M ]

2
.4

0
.8

0
.2

0

2 0

4 0

6 0

8 0

1 0 0

S ip D  c o n c e n tra t io n  [M ]

%
 L

D
H

 r
e

le
a

s
e

(e
x

p
 -

 b
k

g
 /

 t
o

ta
l 

- 
s

p
n

t)

2
.4

0
.8

0
.4

0

2 0

4 0

6 0

8 0

1 0 0

L c rV  c o n c e n tra t io n  [M ]

2
.4

2
.4

0

2 0

4 0

6 0

8 0

1 0 0

Ip g C  co n c e n tra tio n  [M]

2
.4

1
.6

0
.8

0
.4

0
.2

0

2 0

4 0

6 0

8 0

1 0 0

Ip a D  co n c e n tra tio n  [M]

2
.4

0
.8

0
.2

0

2 0

4 0

6 0

8 0

1 0 0

S ip D  c o n c e n tra t io n  [M ]

%
 L

D
H

 r
e

le
a

s
e

(e
x

p
 -

 b
k

g
 /

 t
o

ta
l 

- 
s

p
n

t)

A
 

B
 

C
 

D
 

E
 

F
 

G
 



42 

either LDAO or IpaD in LDAO, activation of caspases was detected for caspases -2, -3, -8 and -9 

(Fig. 12). Caspases -2, -8 and -9 are initiator caspases, meaning that they are able to start the 

cascade of substrate cleavage seen in apoptosis. Caspase-3 activity was also found to be 

significantly different than its control, however, the fold-increase was lower than that of initiator 

caspases (Fig. 12). This result would be expected if at the time of analysis the apoptotic cascade 

was in its initial stages. When caspase activation is inhibited by pre-incubating the macrophage 

population in vitro with caspase inhibitors, we observe that the pan-caspase inhibitor is the most 

efficient at inhibiting cell death. The results seen in Fig. 12 correspond to macrophages pre-

incubated for 1 hour with a specific caspase inhibitor, followed by incubation with IpaD for 2 

hours. All caspase inhibitors were found to inhibit cell death to different extents. Strikingly, the 

caspase-3 inhibitor was able to inhibit cell death by 50%. An explanation of this result is that 

although the different initiator caspase and pan-caspase inhibitors were more efficient at inhibiting 

cell death, their effect was not total. Incubation of macrophages with IpaD for 2 hours gives enough 

time for the non-inhibited activity of initiator caspases to trigger activation of caspase-3. Then, a 

caspase-3 inhibitor would further inhibit whatever amount of cell death could be caused by 

caspase-3, resulting in a lower and perhaps inefficient inhibition of cell death. However, the 

observation that pre-incubation with these peptides is unable to totally inhibit cell death may 

indicate that an additional mechanism is responsible for the cell death caused by recombinant IpaD. 

None of our results point to what this additional cause would be, or if it actually exists. 
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 Fig. 12. Caspase activation after IpaD exposure and inhibition of death. The role of caspases in the 

macrophage death seen after exposure to IpaD was evaluated with caspase-specific peptides that can 

assess activity or, if modified, can inhibit them. A) Activity of apoptotic caspases was analyzed with 

luminescent substrates and luminescence captured as a measure of specific activity. B) The pre-incubation 

of J774 macrophages with pan-caspase inhibitor Z-VAD-FMK, caspase-specific inhibitors (caspase-2, Z-

VDVAD-FMK; caspase-3, Z-DEVD-FMK; caspase-8, Z-IETD-FMK; caspase-9, Z-LEHD-FMK) or 

DMSO as a vehicle control and subsequent incubation with 2.4 μM IpaD results in inhibited cell death. 

 

Following initiator caspase activation, the ensuing cascade within the cell committed to die would 

include cleavage and resulting activation of effector caspases. Of the initiator caspases seen as 

activated, all would be able to cleave and activate caspase-3. After 30 minutes of incubation with 

IpaD, a modest increase in caspase-3 activity was observed. As cell death progresses, caspase-3 

activity would increase at the later time points. We assessed the activity of caspase-3 at 5, 15, 30, 

60 and 120 minutes with a fluorescent substrate. The NucView dye is cell-permeable and 

accumulates inside the cytoplasm. If caspase-3 is active in the cytoplasm, it will cleave at the 

peptide region of the dye and release a DNA-binding dye that migrates to the nuclei where upon 

DNA binding will fluoresce. Our experiments indicate that caspase-3 is inactive up to 30 minutes, 

which is consistent with our luminescent substrate results (Fig. 13), however, at 1 hour after the 
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addition of IpaD, 40% of the macrophage population shows fluorescence, indicating increased 

activity of caspase-3. 

At 120 minutes after IpaD addition, however, the population seems to have lost the fluorescence 

and a double peak is seen in the negative portion (Fig. 13). This phenomenon could be due to some 

of the population localizing outside the gate used in the cytometer setup method, as cells would be 

expected to be smaller in size if they have shrunken due to apoptosis. Another explanation is that 

the cells with activated caspase-3 at 1 hour are now dead or lysed and the population seen at 2 

hours is enriched in the 60% of cells that did not have active caspase-3. Furthermore, this DNA-

binding dye could show reduced fluorescence upon karyolysis, although this has not been reported 

thus far in published studies that used NucView.  

 

Fig. 13. Activation of caspase-3 in macrophages upon exposure to IpaD. The activity of effector 

caspase-3 was assessed at different time points. A) A fluorescent dye was used to analyze the activity of 

caspase-3 by flow cytometry. Staurosporine, a known apoptotic stimulant, was used as a positive control 

of caspase-3 activity. B) Immunoblot of lysates collected at 1 hour of macrophage incubation with IpaD 

were probed with an active caspase-3 antibody. TOM20, a mitochondrial protein was used as a loading 

control. 
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The activation of caspase-3 after 1 hour incubation with IpaD was confirmed by immunoblot with 

an antibody that only recognizes the cleaved variant of the caspase (Fig. 13).  

The observation of active caspase-3 at 1 hour after the addition of IpaD to the macrophages would 

result in a certain cell population undergoing apoptosis. Annexin V is a fluorescent dye that 

attaches to the phosphatidylserine (PS) of the cell membrane. In healthy cells, PS is located toward 

the cytoplasm and Annexin V cannot bind to it as it is not cell-permeable. The externalization of 

PS is one of the events seen in apoptotic cells. Alternatively, if cells are undergoing necrosis, they 

will have lost cell membrane integrity totally and will be stained by propidium iodide (PI). Cells 

incubated with IpaD for 1 hour show a macrophage population that stains with Annexin V of 

approximately 16%, a value similar to that of staurosporine, a known apoptosis stimulant (Fig. 

14). IpgC is unable to cause this phenotype. The population of cells staining with PI is the same 

percentage as the control with only LDAO (Fig. 14). 

By using a purified protein model, we were able to assert that IpaD is able to cause cytotoxicity, 

initiator and effector caspase activation, mitochondrial disruption and Annexin V staining. When 

all these events are considered in a timeline, we can conclude that the macrophage cell death seen 

upon exposure to IpaD is occurring through an apoptotic cascade. 
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Fig. 14. Apoptosis profiles by exposure to purified proteins. Cells were incubated with LDAO, 2.4 μM 

IpaD, 2.4 μM IpgC or 1 μM of staurosporine for 1 hour. Annexin V staining indicates cell populations 

that are in mid-stage apoptosis. Those that have lost their membrane integrity will also exhibit PI staining. 

Cells that are necrotic only exhibit PI staining. 

 

The role of the mitochondrion in apoptosis is well-documented101,106,107,107,116,134. Mitochondrial 

outer membrane permeabilization is regulated by the Bcl-2 family of proteins, which contains both 

pro- and anti-apoptotic factors. Disruption of mitochondria results in the detachment and release 

of Cytochrome C to the cytoplasm, where it is able to activate caspase-9, and it can also activate 

caspase-2135,136. Caspase-2 can also act upstream of cytochrome C and disrupt the mitochondrial 

membrane directly137–139. Loss of mitochondrial membrane potential (ΔΨm) can be analyzed with 
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the fluorescent dye JC-1. This dye is cell-permeable and is able to accumulate both in the 

cytoplasm, where it exhibits fluorescence at 488 nm (green), and the mitochondria, where it 

aggregates and fluoresces at 535 nm (red). If the mitochondrion has loss of membrane potential, 

the red fluorescence will decrease while the cytoplasmic localization remains unchanged. We used 

JC-1 to investigate if IpaD was able to disrupt the mitochondria. Macrophages incubated with IpaD 

for 30 minutes, when caspase activation could be initiated according to our previous results show 

loss of mitochondrial membrane potential (Fig. 15). This indicates that IpaD is a factor acting upon 

the mitochondria resulting in their membrane permeabilization. Furthermore, infection of 

macrophages with IpaD+ for the same amount of time also show loss of mitochondrial membrane 

potential (approximately 18% of the population) (Fig. 16). The IpaDΔ41-80 strain shows a reduced 

ability to disrupt the mitochondria (approximately 9% of the population). Strain IpaD- does not 

induce any substantial mitochondrial disruption (Fig. 16). Thus, the effect of mitochondrial 

membrane potential loss can be triggered by infection with a strain that shows a complete ability 

to cause cell death. In turn, a strain mutated in IpaD that is defective in cytotoxicity causes less 

impact on ΔΨm. 
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Fig. 15. Mitochondrial damage caused by exposure to IpaD. The labeling of a macrophage population 

with the dye JC-1 was analyzed by flow cytometry. Red fluorescence indicates JC-1 aggregates that 

accumulate in the mitochondria. Green fluorescence indicates JC-1 monomers that are found in the 

cytoplasm. A population losing fluorescence in the red channel is the one losing its mitochondrial 

membrane potential (ΔΨm). IpaD causes loss of ΔΨm in approximately 24% of the cell population. 

LDAO (control) has no effect in mitochondria when compared to a PBS control. 
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Fig. 16. Mitochondrial damage caused by infection with S. flexneri strains. The IpaD+ strain causes 

loss of mitochondrial membrane potential (ΔΨm) in a discrete cell population at 30 minutes post-

infection. Cells infected with IpaDΔ41-80 show reduced ΔΨm loss. Cells infected with IpaD- do not lose 

ΔΨm when compared to the control (media only). 
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Conclusions 

Our experiments on S. flexneri infection of macrophages demonstrate that caspase-1 activity is not 

the only trigger of cell death in infected cells and confirm that other caspases are involved. IpaD 

was identified as a contributing factor to macrophage cell death. We found that IpaD-induced cell 

death is independent on caspase-1 and -11 and deletion of a region in the N-terminus of IpaD 

virtually eliminated all cell death not caused by caspase-1 and -11. A point mutant in the same 

region was also moderately impaired in cytotoxicity. Previous studies have established that IpaD is 

secreted when the T3SS is induced89,90. The effector protein solution released in the Shigella culture 

supernatants stimulated with Congo red indicate that this effect can be seen in vitro79. Our results 

seem to indicate that in vitro, IpaD is also acting as a molecular signal for macrophage killing. 

We performed preliminary in vitro studies that show that recombinant IpaD protein is able to 

elicit apoptosis in macrophages and that this could be used to determine the role of IpaD in the 

apoptotic death of macrophages, and to infer what could be happening to macrophages infected with 

Shigella. IpaD could be a factor contributing to macrophage cell death upon Shigella infection 

via a caspase-dependent mechanism. During the apoptotic process activated by IpaD, it appears 

that there is activation of several caspases and a loss of mitochondrial membrane potential (ΔΨm). 

Based on the findings presented here, we propose that IpaD is part of a mitochondrial damage 

cascade that results in macrophage death, and this event could occur in parallel with pyroptosis.  
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CHAPTER IV: Analysis of the Effect of IpaD on Cytoskeletal Elements of Epithelial Cells 

Introduction 

Following invasion of epithelial cells, Shigella moves about the cell using actin-based motility 

with the polarly-located protein IcsA. These bacteria are then able to spread laterally by forming 

protrusions into adjacent cells and lysing the resulting double membrane vacuoles, an event that is 

dependent on its T3SS69. Indications of a possible effector role for IpaD included the finding that 

Ipa proteins, including IpaD, are stored in the cytoplasm at levels beyond what is needed for their 

membrane-bound assemblies and they are released into the medium upon contact with host cells, 

thereby suggesting they could have effector roles in epithelial cells86,87,140. Certain T3SA 

components are necessary as both effectors and structural components for complete virulence and 

epithelial cell invasion. The T3SA protein IpaC mediates cytoskeletal rearrangements through an 

indirect activation of Cdc42/RAC141,142. The T3SA protein IpaB in turn acts upon macrophages 

causing ion channels that trigger death through pyroptosis64. IpaB, IpaC and IpaD are needed for 

intercellular spread of Shigella; and a spa32 null mutant strain was used to show that exposure of 

IpaB, IpaC and IpaD on the bacterial surface is not enough for an invasive phenotype, rather 

translocation of these factors is required for pathogenesis86.  

In this project, we were interested in the possible effect of IpaD on elements of the cytoskeleton 

that promote internalization and intercellular spread of Shigella. Since lack of expression of IpaD 

causes Shigella to be avirulent, mutational analyses are challenging and make it difficult for us to 

study the role of IpaD in invasion and pathogenesis beyond its structural role at the T3SA needle 

tip. Therefore, we transfected a humanized ipaD gene into two different human cell lines and 

analyzed its expression and effects on these cells through biochemical, microscopic and 

phenotypic analyses. Ectopically-expressed IpaD appears to co-localize with the cytoskeletal 
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component F-actin to induce morphological changes. Interaction with vimentin, another 

cytoskeletal component that functions as an intermediate filament structural protein, was also 

analyzed. The effect of these observations on phenotypic defects in invasiveness and cell-to-cell 

spread was also assessed. 

Results 

An analysis of the expression of IpaD in epithelial cells was performed following transfection with 

the ipaD gene. Transfection of a plasmid harboring the wild-type ipaD gene resulted in poor 

expression of IpaD. In turn, transfection of a humanized ipaD (hmn-ipaD) gene cloned into a 

mammalian expression vector allowed us to investigate the preferential localization IpaD could 

have inside a host epithelial cell. Confocal immunofluorescence of hmn-ipaD-transfected HEK-

293 cells showed that morphology was altered when compared to mock-transfected cells, starting 

at 8 hours post-transfection and up to four days later (Fig. 17). Changes observed included 

membrane ruffling and a marked increase in filopodia and lamellipodia. Transfection efficiency 

was estimated at 40-60%, thus we were able to qualitatively compare cells in the same preparation 

which were expressing IpaD versus those without apparent expression. Cells expressing IpaD were 

characteristically more ruffled and their membrane periphery had filamentous extensions of 1-5 

µm, whereas cells with no IpaD staining only showed their typical focal adhesions. IpaD appears 

to be cytosolic as it is found distributed throughout the cell cytoplasm. Additionally, IpaD appears 

to co-localize with F-actin. The filopodial extensions observed in IpaD-expressing cells are 

composed of F-actin, as phalloidin stains them across their length. Interestingly, IpaD appears to 

preferentially localize to the tips of these filaments (Fig. 17). In the experiments with cultured 

macrophages described in Chapter III, Alexa-labeled IpaD was not associated with the 

cytoskeleton and intracellular localization of the protein affected cell morphology only as a result 
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of the apoptotic pathway triggered. The contrast between the phenotypes exhibited by epithelial 

versus macrophage cells could be due to different roles of IpaD in the infective cycle of Shigella. 

Fig. 17. Immunofluorescence microscopy of hmn-ipaD-transfected HEK-293 cells. Morphological 

changes were observed in cells expressing IpaD vs. mock-transfected cells. Membrane ruffling, increase 

in filopodial extensions and lamellipodia were seen. In these confocal sections, IpaD (green) displays co-

localization with F-actin (red). A and B) Insets show cell projections zoomed in and contrast enhanced to 

show IpaD and F-actin staining (inset scale bars are 1 µm). IpaD appears to specifically localize to the 

tips of these filaments. Bottom panels show independent channel signals for A. C) Cells transfected with 

a mock show no IpaD expression. 

 

We immunoprecipitated IpaD from total protein lysates derived from hmn-ipaD-transfected or 

mock-transfected cells. By performing a cross-linked co-immunoprecipitation, we were able to 

image the proteins present in the eluates by SDS-PAGE and Oriole staining. Several bands were 

present in the experimental lysate, along with IpaD whereas no visible bands were found in lanes 

for immunoprecipitations ran with no antibody, no lysate, control lysate or control lysate spiked 

with recombinant 6xHis-IpaD (Fig. 18). Co-immunoprecipitated proteins were identified by mass 

spectrometry (LC-MS/MS) for samples equivalent to lanes 1 and 4. Some hits relevant to 

cytoskeletal rearrangement are presented in Table 1. 
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. 

Fig. 18. Co-immunoprecipitation of hmn-ipaD transfected total cell lysates. Co-immunoprecipitation 

was performed using a purified anti-IpaD polyclonal antibody as bait. A) Lanes 1 through 5 show total 

protein content eluted from preparations as follows: 1, antibody plus ipaD-transfected cell lysate; 2, no 

antibody plus ipaD-transfected cell lysate; 3, antibody only; 4, antibody plus mock-transfected cell lysate; 

5, antibody plus mock-transfected cell lysate and recombinant 6xHis-IpaD protein. Mass spectrometry by 

LC-MS/MS was performed on samples corresponding to lanes 1 and 4. B) Total protein lysates. SDS-

PAGE of protein lysates prior to use in Co-IP display similar total protein concentration in ipaD-

transfected cell lysate (EXP) or mock-transfected cell lysate (CTRL). 

 

 

Table 1. Hits for cytoskeletal components pulled down with IpaD.  
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To further investigate the morphological changes observed in cells expressing IpaD, we focused 

on potential interactions of IpaD with components of the cytoskeleton. IpaD co-

immunoprecipitated with several cytoskeletal proteins and three major structural components were 

identified: vimentin, a filamentous protein commonly observed as a tetramer that self-assembles 

into intermediate filaments; actin-2, an isoform of the core structural element of microfilaments; 

and tubulin-α, part of the heterodimer that forms microtubules (Table 1). Actin-binding proteins 

were also identified, tropomyosin α3 and cofilin-1. The guanine nucleotide-binding protein 

GNB2L1 interacts with and activates RhoA, a small GTPase that triggers the formation of actin 

stress fibers. 

Three of the binding partners identified (vimentin, actin and tubulin-α) were confirmed by western-

blot analysis of co-immunoprecipitates for IpaD. Furthermore, the specificity of these interactions 

was tested by performing reverse co-immunoprecipitation, in which the bait was aimed at the 

binding partner and the presence of IpaD probed. In these, IpaD was found as a strong co-eluate 

of immunoprecipitation against actin. A discrete portion was a co-eluate in immunoprecipitation 

against vimentin, but no co-elution was seen in the sample testing against tubulin-α (Fig. 19). 

Fig. 19. Co-immunoprecipitation of IpaD-expressing cell total protein lysates. A) Cross-linked co-IP 

was performed by baiting IpaD and eluates probed by western-blot against potential binding partners. 

Actin (42 and 53 kDa, second and third arrows), vimentin (57 kDa, first arrow) and tubulin-α (55 kDa, 

second arrow) were present as co-eluates with IpaD (37 kDa, fourth arrow). B) Reverse co-

immunoprecipitation. Cross-linked co-IP was performed by using monoclonal antibodies against the three 

possible binding partners. IpaD was found in the eluate of co-IPs against actin and vimentin; but not in a 

co-IP baiting tubulin. 
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Fig. 20. Actin sedimentation assay. Cell lysates from IpaD-expressing or mock-transfected cells were 

treated with 10 µM Cytochalasin D (Cyto-D) or left untreated for 1 hour, F-actin and G-actin levels were 

probed by western-blot. A and B) Densitometric values of the bands corresponding to actin (lower, 42 

kDa) and IpaD (37 kDa) were measured for three independent experiments. The band at 40 kDa is non-

specific, since it is also present in mock-transfected cells. 

 

In order to further our understanding of the IpaD-actin interaction, we analyzed whether IpaD 

would preferentially bind globular soluble actin (G-actin) or its filamentous form (F-actin). To 

achieve this, an actin sedimentation assay was performed, as described previously143. A 

cytoskeleton stabilization buffer and ultracentrifugation are used to isolate the soluble (i.e. 

cytosolic proteins) or insoluble (F-actin and other cytoskeletal proteins) portions of a cell. In 

experimental lysates, IpaD was found in both portions, however, treatment with Cytochalasin D 

(Cyto-D) prior to centrifugation decreases the amount of IpaD in the pellet at the same rate as F-

actin perhaps suggesting a preferential association of IpaD to filamentous actin (Fig. 20). 

Treatment with Cyto-D results in a significant difference in the amounts of both proteins, as 

determined by densitometry (IpaD, p=0.0056; actin, p=0.0010). 

Unfortunately, our attempts at establishing a particular phenotype of invasiveness and cell-to-cell 

spread efficiency of S. flexneri in transfected cells were unsuccessful. Furthermore, based on the 

data obtained thus far, no biologically relevant model could be developed to explain the 

observations described for this project.  
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CHAPTER V: Discussion 

The purpose of these studies was to expand upon our knowledge of the T3SA protein IpaD, which 

we found to be secreted following T3SS-induction at levels beyond what would be required for its 

function only as a needle tip protein. Ménard et al. observed that IpaD was secreted into culture 

supernatant87 and later found that this secretion could be activated by proximity to or contact with 

epithelial cells144. Other studies showed similar results with regard to the induced secretion of Ipa 

proteins, including IpaD86,145. Our hypothesis is that the secretion described should correspond 

with an effector role for IpaD. If secretion of IpaD occurs inside the host cell upon translocon 

insertion, the bacterium must benefit from injecting this protein in a soluble form into the 

cytoplasm of the host cell. Translocon partners IpaB and IpaC are also secreted in significant 

amounts upon T3SS induction (Fig. 7) and a distinct effector role has been described for each. 

IpaB is involved in macrophage death through an inflammatory pathway called pyroptosis, which 

is initiated by caspase -164,111. IpaC is able to indirectly activate Cdc42/RAC and trigger 

cytoskeletal rearrangements in epithelial cells141. 

Secretion of IpaD is more efficient when the bacteria are localized at the basolateral surface of 

polarized Caco-2 cells (an enterocyte cell line), as opposed to their apical side86. This observation 

complements evidence indicating Shigella is unable to invade colonic epithelial cells through their 

apical side146. This secretion phenotype would be consistent with the hypothesis that secreted IpaD 

plays a role in epithelial cell invasion or perhaps the fitness of Shigella inside this type of cell. The 

project described in Chapter IV was based on this hypothesis. The essential role of IpaD in the 

structure of the T3SA imposes difficulties on the analysis of its role as a secreted effector. Through 

the use of a transfection system we attempted to identify a role for intracellular IpaD, which would 
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enable us to study the localization of IpaD inside an epithelial cell and describe possible binding 

partners. 

Although our initial results were suggestive of cytoskeletal rearrangements caused by IpaD (Fig. 

17, Fig. 20), these findings did not correlate to any of the phenotypes assessed. It would be 

expected that if a particular Shigella effector is found in excess in the host cell cytoplasm, this 

would lead to an effect on bacterial fitness. Given that the changes we were observing with 

overexpression of IpaD were directed at the cytoskeleton, we hypothesized that these changes 

would be beneficial to Shigella invasiveness or intercellular spread. Unfortunately, assays that 

looked at invasion and plaque formation in transfected cells showed inconsistent results. 

We hypothesize that the high levels of IpaD secreted by Shigella in vitro would have to be the 

result of its active secretion as an effector. Much like IpaB and IpaC, secretion of a protein 

constitutes energy spent on a benefit to the bacterium. We started our study looking into epithelial 

cells, proposing that the role of IpaD in the pathogenesis of Shigella would be found in their late 

infective cycle. IpaD has since been shown to induce apoptosis in B lymphocytes, however, we 

saw no such cell death in cultured epithelial cell lines. The studies looking at secretion of IpaD 

upon epithelial cell contact did not eliminate the possibility that common components in eukaryotic 

cells could all trigger the same response, or that many different stimuli could signal the bacterium 

to unload IpaB, IpaC and IpaD from its cytoplasm. In fact, several types of stimuli have been 

shown to trigger their secretion, such as serum144,147, small dye compounds145, and several 

components of the extracellular matrix86. This opened up the possibility that IpaD might have an 

effector role in some types of cells, but perhaps not in others. 

In the project detailed in Chapter III we utilized murine cells as a model for the study of IpaD 

secretion in macrophages. Macrophages are cells of the innate immune system that can be found 
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in the mucosa-associated lymphoid tissue (MALT) of the gastrointestinal tract. It has been 

observed in both patient biopsies57 and experimental models58 that immune cells in the epithelial 

submucosal region die as a result of infection with Shigella. Our first findings showed that this cell 

death could be due to distinct types of cell death (Fig. 2) and that cell death by non-inflammatory 

caspases could be tied to the functionality of IpaD (Fig. 3). 

Inflammation is triggered to occur by Shigella at the very early stages of infection, when the M 

cells deliver the bacteria to macrophages in the lamina propria and these are rapidly killed by 

Shigella through pyroptosis. Pyroptosis allows the bacteria to be released onto the basolateral side, 

where they continue their infective cycle by invading epithelial cells148, however, ATP release by 

intestinal epithelial cells leads to further inflammatory signals in the gut. This mechanism is used 

by the host to expand the localized immune response, including augmented phagocytosis and 

migration. S. flexneri was described to use its effector IpgD to block this inflammatory signal in 

epithelial cells149, a sign that Shigella modulates the inflammatory processes to its advantage. The 

interaction between the epithelial layer and the immune cells in the lamina propria of the gut is 

fundamental to a homeostatic balance that allows this tissue to harbor commensal bacterial flora 

while defending against pathogenic bacteria150,151. One of the mechanisms that ensures proper 

homeostasis is the ability to balance inflammation150. 

Acute inflammation is necessary for initial Shigella dissemination in the colon, as it allows for 

pathogen escape from macrophages and, ultimately, the destruction of the epithelial barrier 

promotes bacterial shedding by the host organism152,153. This balance between tissue destruction 

and bacterial advantage was first identified with an in vitro system that showed polymorphonuclear 

leukocytes could migrate towards S. flexneri, disrupting a polarized cell monolayer and allowing 

the bacteria to further infiltrate the submucosa to invade the epithelium152. It has since been 
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described in detail how the symptoms of shigellosis are a result of this inflammatory process154. 

Furthermore, it is thought that Shigella is unable to cause an intestinal infection in mice because 

their acute inflammatory response is different than the human response155. Finding that we could 

uncouple two different types of signals, namely inflammatory and non-inflammatory caspases, 

prompted us to think that Shigella might be able to also modulate the type of cell death that it can 

cause to host macrophages, and with that, modulate the inflammatory response. 

By infecting cultured macrophages, we identified that the cytotoxicity of Shigella could be 

inhibited by small compounds that inhibited caspases, proteases implicated in programmed cell 

death mechanisms. The inflammatory caspases -1 and -11 had already been studied as components 

triggered upon Shigella infection65,148 that result in macrophage death by pyroptosis. However, we 

found that other non-inflammatory caspases could be activated by this infection, opening the 

possibility that Shigella could also kill macrophages through mechanisms yet unidentified. A 

complemented IpaD+ strain was able to activate all caspases, whereas a strain IpaDΔ41-80 was only 

able to activate the inflammatory caspases (Fig. 3) and was unable to cause mitochondrial 

disruption (Fig. 16) which is a key element of intrinsic apoptosis. This type of apoptosis occurs by 

intracellular insults, perhaps like internalized Shigella that has escaped from a phagosome. When 

deletion mutants were used to study the role of IpaD as a regulatory protein in the T3SA, strains 

with deletions in the N-terminal domain of IpaD had no major impairment in invasiveness or 

secretion control. Although this same study found that the N-terminal was important for a complete 

contact hemolysis phenotype, we found that, for IpaDΔ41-80 this did not affect its efficiency and 

survival during macrophage invasion (similar bacterial loads were found in cells infected with 

IpaD+ and IpaDΔ41-80, not shown) or phagosomal escape (Fig. 6). 
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An inflammatory type of cell death would be mostly beneficial to the host in promoting pathogen 

clearance. It might be necessary for Shigella to trigger macrophage apoptosis to limit the number 

of host defensive cells that infiltrate onto the lamina propria. It has been shown that in the inflamed 

gut, programmed cell death is a way to recover from acute inflammation and return to 

homeostasis156. We believe Shigella is controlling the host’s apoptosis pathways as a modulatory 

tactic. If acute inflammation is not resolved, a state of chronic inflammation is reached. Shigellosis 

can indeed lead to chronic inflammation, as exhibited by the development of Reactive Arthritis 

(ReA) in certain invididuals. However, this is seen in less than 1% of shigellosis cases, and it has 

been explained through the observations that those who develop ReA have an HLA-B27 

polymorphism157 and the strains able to cause this autoinflammatory process harbor the plasmid 

pHS2158. Therefore, we do not believe a sustainable state of infection used by Shigella is one where 

inflammation is constant. 

The findings described in this dissertation have broader implications for the field of gram-negative 

bacteria. Exploration of the mechanisms used by Shigella to avoid the immune system could 

potentially lead to new antimicrobials, as targeting conserved virulence targets such as the T3SS 

components has been proposed before159,160. For example, we have shown that IpaD and its 

structural homologue SipD trigger apoptosis in cultured (and primary, in the case of IpaD) 

macrophages whereas LcrV does not. These nuances could allow for specificity of the 

antimicrobials developed. Another avenue of exploration that remains is whether this effect is only 

seen in enteric pathogens, and the differences perceived depend on the niche to which these 

proteins have adapted to function in their corresponding bacteria. 

Also, further studies are warranted to fully understand the manner in which IpaD starts an apoptotic 

cascade. With our observations from the project described in Chapter IV, we can conclude that 
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IpaD does not kill epithelial cells, consistent with the infective cycle of Shigella which has been 

found to utilize mechanisms to actively suppress the death of its epithelial cell host161. Our results 

also indicate that IpaD can only trigger macrophage death when it is localized intracellularly, a 

factor that acts in this manner would likely trigger intrinsic apoptosis through mitochondrial 

destabilization. Indeed, our findings include the mitochondrial disruption characteristic of an 

apoptotic cell with both introduction of purified IpaD and infection with the strain IpaD+. There 

remains an additional direction to this work, to find if the effect of IpaD is through binding a 

cytoplasmic partner able to exert changes in the mitochondria such as the pro-apoptotic factors of 

the Bcl-2 family, or if IpaD itself is able to insert or bind to the mitochondrial membrane. This 

information would further illustrate for the first time how a T3SS tip protein can interact as an 

effector within a macrophage cell. 
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CHAPTER VII: Appendices 

Appendix A: Solutions 

Agarose gel for DNA electrophoresis 

25 ml 1X TAE 

15 µl 6 mM Ethidium bromide 

0.3 g agarose (electrophoresis grade) 

 

1X TAE (running buffer for agarose gel electrophoresis) 

4.84g Tris 

1.142ml Glacial acetic acid 

2ml 0.5 M EDTA 

Q.S. to 1 L 

 

Phosphate-Buffered Saline (PBS) 

130 mM NaCl 

10 mM Na2HPO4 

1.5 mM K2HPO4  

3 mM KCl 

 

Q binding buffer 

10 mM NaCl 

10 mM Na2HPO4 
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Q elution buffer 

1 M NaCl 

10 mM Na2HPO4 

 

12% SDS-PAGE Separating Gel (Sufficient for two gels) 

3.00 ml diH20 

2.50 ml 1.5 M Tris-HCl, pH 8.8 

100 μl 10% (w/v) SDS 

4.00 ml 29:1% (w/v) acrylamide:bisacrylamide 

0.15 ml 10% (w/v) ammonium persulfate (APS) 

10 μl N,N,N′,N′-Tetramethylethylenediamine (TEMED) 

 

15% SDS-PAGE Separating Gel (Sufficient for two gels) 

2.50 ml diH20 

2.50 ml 1.5 M Tris-HCl, pH 8.8 

100 μl 10% (w/v) SDS 

5.00 ml 29:1% (w/v) acrylamide:bisacrylamide 

0.15 ml 10% (w/v) APS 

10 μl TEMED 

 

5% SDS-PAGE Stacking Gel (Sufficient for two gels) 

2.85 ml diH2O 

1.25 ml 0.5 M Tris-HCl, pH 6.8 
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50.0 μl 10% (w/v) SDS 

1.00 ml 29:1% (w/v) acrylamide:bisacrylamide 

0.2ml 10% (w/v) APS 

15μl TEMED 

 

SDS-PAGE destain 

5% (v/v) methanol 

7.5% (v/v) glacial acetic acid 

 

SDS-PAGE running buffer 

2.42g Tris 

14.41g glycine 

1.0g SDS 

Q.S. to 1 L 

 

SDS-PAGE stain  

0.1% (w/v) Coomassie Brilliant Blue R-250 

5% (v/v) methanol 

7.5% (v/v) glacial acetic acid 
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Media: 

 

AI media 

 1 L of ZY media (10 g tryptone, 5 g yeast extract) 

 2 ml of 1 M MgSO4 

 20 ml of 50X 5052 

 50 ml of 20X NPS 

 

1 M MgSO4 

24.65 g MgSO4-7H2O 

87 ml H2O 

 

50X 5052 (100 ml) 

25 g glycerol (weigh in beaker) 

73 ml H2O 

  2.5 g glucose 

10 g α-lactose monohydrate 

  

20X NPS (1L): 

 (NPS = 100 mM PO4, 25 mM SO4, 50 mM NH4, 100 mM Na, 50 mM K) 

In a graduated cylinder, combine (in the below sequence) and stir until dissolved: 

800 ml nanopure H2O 

66 g (NH4)2SO4 
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136 g KH2PO4 

142 g Na2HPO4 

Q.S. to 1 L 

 

Congo Red agar 

37g Tryptic soy agar 

0.03% Congo Red 

Q.S. to 1 L 

 

Luria-Bertani (LB) Broth 

25.0 g LB broth (ready-made mix)  

Q.S. to 1 L 

 

LB Agar  

37.0 g LB agar (ready-made mix) 

Q.S. to 1 L 

 

Dulbecco’s Modified Eagle Medium (DMEM) 

9.53g DMEM 

2.2g NaHCO3 

Q.S. to 1 L and filter sterilize 
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Minimal Medium:  

 This bacterial growth medium provides a non-inducing, lactose-free environment and is 

excellent for starter (10 ml) cultures for protein expression.  

 

9.25 ml sterile H2O 

20 µl 1 M MgSO4 

125 µl 40% glucose 

100 µl 25% aspartate 

500 µl 20x NPS  

 

Tryptic Soy Agar (TSA) 

37g TSA (ready-made mix) 

Q.S. to 1 L 

 

Tryptic Soy Broth (TSB) 

25g TSB (ready-made mix) 

Q.S. to 1 L 
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Appendix B: Abbreviations 

A, Abs    Absorbance 

BCA    Bicinchoninic Acid  

MOI    Multiplicity of Infection 

CFU    Colony-Forming Units 

LDH    Lactate Dehydrogenase 

BCA    Bicinchoninic Acid 

BSA    Bovine Serum Albumin 

CD    Circular Dichroism 

CFU    Colony-Forming Units 

CR    Congo red 

Cyto-D    Cytochalasin D 

DAPI    4',6-diamidino-2-phenylindole 

DMEM   Dulbecco's Modified Eagle Medium  

DMF    Dimethylformamide 

DMSO    Dimethyl sulfoxide 

DTT    Dithiothreitol 

E. coli    Escherichia coli 
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EDTA    Disodium ethylenediamine tetraacetate 

FITC    Fluorescein-5-isothiocyanate 

IgG    Immunoglobulin G 

IL    Interleukin 

Ipa    Invasion plasmid antigen 

kb    Kilobase 

kDa    KiloDaltons 

LB    Luria-Bertani Broth 

LDAO    N,N-Dimethyldodecylamine N-oxide 

LDH    Lactate DeHydrogenase 

LPS    Lipopolysaccharide 

M    Molar 

min.    Minute 

MOI    Multiplicity of Infection 

MW    Molecular weight 

PBS    Phosphate-Buffered Saline 

PS    Phosphatidylserine 

PVDF    Polyvinylidene difluoride 
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RBC    Red blood cell 

RIPA    Radioimmunoprecipitation Assay Buffer 

RPMI    Roswell Park Memorial Institute media - 1640 

S. flexneri   Shigella flexneri  

SDS-PAGE   Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

spp.    Species 

T3SS    Type III Secretion System 

TAE    Tris Acetate EDTA buffer 

TBS    Tris-buffered saline 

TEMED   N,N,N,N,-tetra-methylethylenediamine 

TSA    Trypticase Soy Agar 

TSA-CR   Trypticase Soy Agar with 0.025% Congo red  

TSB    Trypticase Soy Broth 
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Appendix C: Purification method for IpaD without any tag 

Frozen stock 

IpaD no tag / pET9a  Stock #32D6 

 

Culture growth 

In 1L AI media 

Add 2 ml 1M MgSO4, 50 ml 20X NPS and 20 ml 50X 5052, 1 ml Kanamycin 50 mg/ml 

 

ÄKTA method 

Column   Hi-Trap Q FF 5 ml 

Buffer A   10mM Tris 10mM NaCl pH 7.5 

Buffer B (elution)   10mM Tris 1M NaCl pH 7.5 

 

Steps 

 Equilibrate column with 5 CV 

 Injection of SN is with sample pump 

 Wash with 10 CV 

Linear gradient for elution 28% in 21 CV 

 Elute in 5 ml fractions 

 Clean w 5 CV B 

 Reequilibrate with 5 CV A 

 

Repeat steps, loading FT over column until fractions are clean (5th run onwards) 

Faster cleanup if half of the culture SN loaded onto column 

 

Approximate yield 20-50 mg/L 

 

Calculate protein concentration 

MW = 36690 Da ε = 36900 
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