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Abstract 

The concept of hypersonic flight has been around for many years.  In recent years, emerging 

technologies and market forces have renewed latent interest in this challenging field.  With many 

private and government institutions driving new innovations, these concepts are becoming reality.  

New research is needed to facilitate future innovation and deployment.   The complex dynamic 

behaviors within the hypersonic flight envelope must be studied for designers to either mitigate or 

compensate for their effects on future vehicles.  Control techniques must be adapted to suit the 

unstable and highly nonlinear dynamics of such systems.  This work has two goals: to explore the 

dynamic characteristics of hypersonic flight and to control such a vehicle in the face of non-linearly 

changing dynamics.  A nonlinear, 6 degree of freedom dynamic model of a Generic Hypersonic 

Vehicle is developed.  The model integrates changing mass, moments of inertia, and center of 

gravity as a function of fuel burn.  A bank of spline interpolation tables generates aerodynamic 

coefficients dependent on speed, angle of attack, and control surface deflections for the entire flight 

envelope.  The nonlinear model of the full flight envelope is then reduced to a series of linear 

models to represent the aircraft trimmed under straight and level flight conditions over the range 

of Mach numbers, Mach 2 to 23.  The changing Longitudinal and Lateral dynamics of the 

linearized system are analyzed as a function of Mach number using standard linear techniques to 

show the changing vehicle characteristics.  A spline-based gain-scheduled, H-infinity controller is 

also designed for a subset of the linear systems.  The controller stabilizes the system between Mach 

4.9 and 7.1, with aircraft weight ranging from 160,000 to 230,000 pounds and from 68,000 to 

92,000 feet altitude.  The controller maintains system stability while commanded to change both 

Mach number and altitude within the gain-scheduled envelope.  Additionally, the controller’s 

performance is assessed in the presence of low frequency disturbances.  
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 Introduction and Technical Background 

The concept of the space plane has been around for many years.  In the 1980’s, The United 

States, Europe, and Russia invested considerable financial resources to develop their own 

airplane-like vehicles to reach space.  In the late 1980’s and into early 2000’s there was a 

renewed push for reusable, single-stage-to-orbit aircraft capable of reaching beyond the earth’s 

atmosphere.  Due in part to technical and economic challenges, many of these projects were 

abandoned, favoring more traditional rocket assisted launches[1].  Recently, however, new 

technologies and market forces have made the concept of a space plane once again viable. The 

Defense Advanced Research Projects Agency (DARPA) contracted industry partners to begin 

developing the next generation of reusable launch vehicles and has recently announced funding 

for the second round of development during which companies will test their prototype vehicles 

[2]. 

Developing a new class of aircraft requires overcoming many new challenges.  Of foremost 

consideration are the complex dynamic behaviors of aircraft flying at high Mach numbers, 

nonlinear and coupled aerodynamics, high temperatures associated with the shock waves and 

scramjet engines, and trajectory optimization associated with hypersonic flights. At these speeds 

(Mach 5 or greater), the dynamics of the system become partially unstable, making the control 

tasks more challenging with little to no margin for error.  For this reason, more advanced, fully 

automated, and robust controllers become mandatory.  This work presents one development path 

for such a controller.  
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1.1 Hypersonic Aircraft Flight 

Since the beginning of the space race in the 1950’s, scientists and engineers have worked to 

develop effective ways of entering and returning from space.  To this day, the only viable means 

of traveling to and from space is through a modification of the original design of rocket-

propelled launch and pod-style reentry vehicles.   

In the 1980’s Europe, Russia, and the United States explored the idea of a reusable space plane, 

though only the US’s Space Shuttle program became fully operational.  Similar to the original 

launch vehicles, the Space Shuttle used a series of rockets to launch the vehicle into a low earth 

orbit.  To return to earth from its orbit, the Shuttle used reaction-based control until there was 

sufficient atmosphere to make use of its control surfaces.  The vehicle descended at a high angle 

of attack to dissipate the energy of reentry on its blunt underside, decelerating from a maximum 

speed of roughly Mach 25 to land like conventional aircraft, making it the first truly hypersonic 

winged aircraft.  By the time the program ended, six shuttles were produced, four of which still 

exist and are on display throughout the United States (Figure 1) [1], [3]. 

In the 1980’s, NASA began considering a different launch method than the traditional rocket 

propelled exit vehicle.  The conceptual single-stage-to-orbit vehicle would launch horizontally 

like a conventional aircraft.  From there, it would transition out of the atmosphere under its own 

power using a scramjet engine, after which, it would transition to rocket propulsion as the 

atmosphere diminished.  This solution was all but abandoned due to poor market conditions and 

lack of mature technology in the 1990’s [1]. 
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Figure 1: Space Shuttle Endeavour on Display in Los Angeles, CA.  Photograph courtesy of Alec Bowman 

Despite the canceled single-stage-to-orbit program, hypersonic aircraft research continued.  The 

X-43A unmanned hypersonic aircraft was a 3.7 meter long, 1300 kg testbed for scramjet 

propulsion (Figure 2).  In 2004, the system was successfully tested, reaching its record speed of 

12,144 km/h, or Mach 9.8, during which its scramjet engine operated for 10 seconds [1]. 

 

Figure 2: X-43A Hypersonic vehicle conceptual model.  Illustration from the NASA Dryden Flight Research Center photo 

collection [4] 
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While not a direct continuation of the X-43A project, the X-51A provided an additional platform 

for hypersonic research (Figure 3).  Four single use vehicles were developed and tested.  The 

final test took place on May 1, 2013.  It reached a top speed of Mach 5.1 in its six minute long 

successful flight, four minutes of which were under its own scramjet propulsion, at which point, 

its fuel supply was exhausted [5]. 

 

Figure 3: X-51A Hypersonic vehicle being prepared for first flight.  Image courtesy of Air Force Flight Test Center Public 

Affairs[6] 

The vast majority of the work done in the development of hypersonic aircraft is not available in 

open literature and remains proprietary.  There are, however, a few models available for review 

with varying degrees of complexity.  One of the first openly available hypersonic aircraft models 

was developed by Dr. Frank Chavez and Dr. David Schmidt.  This system is comprised of a 

scramjet engine using a one dimensional flow assumption coupled with a two dimensional, 

Newtonian-based aerodynamic model.  A second, nonlinear model for the Longitudinal 

dynamics was developed by the Air Force Research Laboratory in 2005 [7]–[9].  This three 

degree of freedom model included propulsion, structural, and aerodynamic coupling.  
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The model chosen for this work was developed by NASA Langley Research Center using the 

Aerodynamic Preliminary Analysis System (APAS), a CFD software which produces 

aerodynamic coefficients from a user defined aircraft model [10],[11].  This model was chosen 

not for its perfect representation of hypersonic aircraft dynamics, but for its extensive 

aerodynamic coefficients and its changing mass properties.  This model provides a significant 

amount of aerodynamic detail from which a highly nuanced, nonlinear system may be built.  

This provides a significant challenge and opportunity to demonstrate advanced control 

techniques.   

1.2 Robust Control 

The area of robust control theory is based on the understanding that a control designer never has 

a perfect mathematical representation of the system to be controlled.  It assumes from its outset 

that there are modeled dynamics within the system that must be tolerated by the controller in 

order for it to be effective.  Additionally, the controller must be able to account for added 

dynamics due to environmental disturbances or noise present in real world systems.  Prior to 

1963, designing a controller to tolerate uncertainty and disturbances directly throughout the 

controller development was not considered.  Instead, at the beginning of the design, a designer 

assumed that the model was “sufficiently accurate” [12]. 

In 1963, Isaac Horowitz introduced the concept of robust control (though never calling it such) in 

his book “Synthesis of Feedback Systems”.  He presented a method for designing uncertainty-

tolerant feedback control for single input, single output systems using the classical root locus 

approach.  Unfortunately, his work went largely disregarded until the mid-70’s [12], [13]. 
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By 1970, significant work in optimal control had been done and was beginning to be applied to 

complex, real world designs. Linear Quadratic Gaussian (LQG) controllers (a control synthesis 

approached based on the combination of an optimal Linear Quadratic Regulator and a Kalman 

Filter) started having applications beyond theory.  This was not always successful, however.  The 

lack of robustness caused significant drawbacks.  One such application was the controller of a 

naval submarine.  When the submarine was simulated in turbulent seas (an off nominal case for 

the controller) the system unexpectedly surfaced.  A second study done for an F-8C Crusader 

aircraft had distinctly negative results [12].  It was concluded that there needed to be a “common 

sense pragmatic (technique) to modify the design based on ‘pure’ theory” [12]. 

By 1975, robust control theory was beginning to emerge, including new analysis techniques and 

design approaches that allowed control designers to tolerate uncertain systems.  In 1982, a new 

approach to the LQG controller was being explored.  The classic problem was recast into the 

frequency domain where the weights used to define the LQG were modeled throughout the 

system.  Instead of applying the typical weighting matrices used in the standard LQG approach, 

they were replaced with frequency dependent weighting functions, providing resilience against 

noise in the system.  This eventually became known as an 𝐻2 controller [12]. 

In 1981, another approach was taken to modify the standard LQG framework.  Instead of 

minimizing the 2-norm of the system as is done by the LQG formulation, the ∞-norm (the 

largest singular value) of the system was minimized. This was done for a single input, single 

output system.  This new formulation was called H-infinity control, hereafter denoted as 𝐻∞.  In 

1989, Doyle published the 𝐻∞ control problem in a state space format [14].  This extended the 

control formulation to include Multi-Input Multi-Output (MIMO) systems.  With the new 
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formulation, the 𝐻∞ controller surpassed the 𝐻2 controller as the more robust recasting of the 

LQG controller [12]. 

1.3 Hypersonic Aircraft Control 

Hypersonic flow is a very challenging regime in which to fly an aircraft.  Hypersonic aircraft 

designs typically require an integrated scramjet propulsion system within the airframe.  

Consequently, the fuselage must create a bow shock wave to generate the pressures needed for 

the engine to function properly.  The resulting pressure distribution causes a nose up tendency. 

Changing pressure distributions due to the thrust at the aircraft’s tail-end add additional 

dynamics.  This has a nonlinear impact on the overall lift, drag, and pitching moments of the 

final system [9], [10].  Designs having centers of gravity aft of their aerodynamic center adds 

instabilities into the system. Further complexity is added because hypersonic flight is inherently 

challenging to model and study as numerous dynamic uncertainties are introduced by the nature 

of hypersonic flight itself [15].  As a result, hypersonic systems are inherently challenging to 

control. 

In response to the challenge, many control designers have tackled this problem from multiple 

angles, employing a wide variety of methods.  Many variants of 𝐻∞ control have been applied to 

hypersonic control including pure 𝐻∞, mixed 𝐻∞/𝐻2, and 𝐻∞ combined with 𝜇-synthesis control 

techniques.[16]–[19].  In addition, neural network, nonlinear sum-of-squares, sliding mode, and 

many others control techniques have been successfully employed in simulation [16], [20]–[24].   

These models are all generally based on the model presented in Reference [8] or on a model 

derived therefrom.  That specific model only considers Longitudinal aircraft dynamics.  In 

addition, many models only consider a small region within the Longitudinal flight envelope, 
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typically speed around Mach 15 with minimal commanded velocity or altitude changes [19]–

[23], [25], [26].  As a result, much of the actual flight envelope remains unexplored.  

This presented work aims to expand the studied flight envelope.  Both Longitudinal and Lateral-

Directional aircraft dynamic are presented and analyzed.  The dynamics of the aircraft are 

studied from Mach 2 to 23, well beyond previously published work.  Additionally, a gain-

scheduled 𝐻∞ controller is designed to operate on a wide range of Mach numbers and altitudes, 

beyond what exists today in the open literature.  
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 Hypersonic Simulation Model 

The hypersonic model used is based on the Generic Hypersonic Vehicle (GHV) model 

developed by NASA Langley Research Center [10].  This model was developed as a method to 

investigate trajectory optimization, guidance, navigation, stability augmentation, and handling 

qualities of a single-stage-to-orbit aircraft. 

2.1 Vehicle Description 

The GHV is a symmetric, winged cone vehicle with a wingspan of 60 feet and length of 200 feet.  

The wings and vertical tail are in line with the center axis of the aircraft.  There are four control 

inputs to the system: left elevon (𝛿𝑙𝑒), right elevon (𝛿𝑟𝑒), rudder (𝛿𝑟), and equivalence ratio 

(𝛿𝐸𝑅), or fuel to air ratio.  Note that an equivalence ratio of 1 yields the most fuel to air ratio.  

Values above or below that burn a disproportionate amount of fuel [10].  

The elevon deflections are defined in degrees from the hinge line with positive deflection defined 

as trailing edge up.  Note that this is different than the definition defined by Roskam in 

Reference [27]. The rudder, also measured in degrees from hinge line, is defined as positive 

deflected to the right.  In addition to the four primary control surfaces, there is a canard wing 

which is deployed at subsonic speeds to assist in Longitudinal stability.  Subsonic speeds are not 

considered in this model so this additional input to the system is not included in the 

development.  A rendering of the vehicle can be seen in Figure 4.  The full specifications can be 

seen in Table 1.  
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Figure 4: 3D CAD Model of the Generic Hypersonic Vehicle 

The center of gravity (CG) of the aircraft is defined with respect to the moment reference center 

(MRC), the point on the aircraft about which moments are summed.  This distance is denoted as 

Δ𝑥𝑐𝑔.  These locations are marked in Figure 5.  While the MRC is fixed, the CG changes with 

fuel burn.  Additionally, the Moments of Inertia (𝐼𝑥𝑥, 𝐼𝑦𝑦, and 𝐼𝑧𝑧) and weight of the aircraft are 

functions of fuel burn, which, itself, is a function of throttle position (𝛿𝐸𝑅).  The initial gross 

weight of the aircraft is 300,000 lbs.  Note that fuel slosh is not modeled in the simulation.  Off 

axis products of inertia (𝐼𝑥𝑦,𝐼𝑦𝑥, 𝐼𝑥𝑧, 𝐼𝑧𝑥, 𝐼𝑦𝑧, and 𝐼𝑧𝑦) are assumed negligible [7], [10]. 

Note that the CG always remains aft of the MRC.  This is counterproductive from a stability 

sense.  Whenever positive moments are summed about the MRC, it causes a nose up condition.  

As the center of gravity is aft of the MRC, it adds additional positive moment. The result is a 

system that, without any other inputs, will tend to nose up on its own.  In order to account for 

this, additional control forces are needed to keep the system stable.   
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Table 1: Geometric configuration of the generic hypersonic vehicle 

Wings: 

Reference area 3603 ft² 

Aspect ratio 1.00 -- 

Span 60.0 ft 

Leading edge sweep angle 75.97 degs 

Trailing edge sweep angle 0.0 degs 

Mean aerodynamic chord 80.0 ft 

Airfoil section diamond -- 

Airfoil thickness to chord ratio 4.0 % 

Incidence angle 0.0 degs 

Dihedral angle 0.0 degs 

Wing Flaps: 

Area each 92.3 ft² 

Chord  7.22 ft 

Inboard section span location 15.0 ft 

Outboard section span location 27.28 ft 

Vertical Tail: 

Exposed area 645.7 ft² 

Theoretical area 1248.8  ft² 

Span 32.48 ft 

Leading edge sweep angle 70.0 degs 

Trailing edge sweep angle 38.17 degs 

Airfoil section diamond -- 

Airfoil thickness to chord ratio 4.0 % 

Rudder: 

Area 161.4 ft² 

Span 22.8 ft 

Chord to vertical tail chord ratio 25.0 % 

Axisymmetric Fuselage: 

Theoretical length 200.0 ft 

Cone half angle 5.0 degs 

Cylinder radius (maximum) 12.87 ft 

Cylinder length 12.88 ft 

Boattail half angle 9.0 degs 

Boattail length 40.0 ft 

Moment reference center (from tip of cone) 124.01 ft 
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Figure 5: Top and side view of the GHV 

2.2 Equations of Motion 

This section presents the dynamic relationships used to simulate the GHV.  The equations 

presented herein are derived from basic physical principles in the manner shown in Reference 

[28].  

Coordinate System 

Three primary coordinate systems are used in the model.  The first is the inertial or flat earth 

coordinate system denoted with a subscript E.  This right hand coordinate system is defined with 

positive being North, East, and Down as X, Y, and Z respectively.  The second coordinate 

system is the body coordinate system denoted with a subscript B.  This coordinate system is 

affixed to the aircraft with its origin at the center of gravity.  X is defined as out the nose of the 

aircraft parallel to its center line, Y, through the right wing, and Z, down, perpendicular to the 
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centerline (Figure 6).  The inertial and body coordinate systems are related by a series of angles  

Φ, Θ, and Ψ (roll, a rotation about 𝑥𝐼, pitch, rotation about 𝑦𝐼, and yaw, rotation about 𝑧𝐼 

respectively).  Note that all sign conventions are with respect to the right hand rule. 

 

Figure 6: Body and inertial frames 

 

Figure 7: Body and stability frames 

The final coordinate reference frame is the stability axis system, denoted with a subscript S.  This 

system is defined as a rotation of the body coordinate system such that the X direction is in line 

with the velocity vector of the aircraft (Figure 7).  These coordinate systems are related by angle 
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of attack, 𝛼, and sideslip angle, 𝛽. 𝛼 is defined as a rotation about 𝑦𝐵 and 𝛽 is defined as rotation 

about 𝑧𝐵.  Rotation about the 𝑥𝐵 axis is assumed negligible.  Once again, positive deflection is 

with respect to the right hand rule [28]. 

The principle equations needed to define the equations of motion of the aircraft are defined in the 

inertial axes, however forces and moments on the aircraft are defined in the body coordinate 

system.  To facilitate this, a transformation matrix is defined to transition between coordinate 

systems (2-2). 

[𝐻]𝐼
𝐵 = [𝐻(𝜙)]2

𝐼 [𝐻(𝜃)]1
2[𝐻(𝜓)]𝐼

1 (2-1) 

[𝐻]𝐼
𝐵 = [

cos (𝜓)cos (𝜃) sin(𝜓) cos (𝜃) −sin (𝜃)

cos(𝜓) sin(𝜃) sin(𝜙) − sin (𝜓)cos (𝜙) sin(𝜓) sin(𝜃) sin(𝜙) + cos(𝜓) cos (𝜙) cos(𝜃) sin (𝜙)

cos(𝜓) sin(𝜃) cos (𝜙) − sin (𝜓)sin (𝜙) cos(𝜓) sin(𝜃) cos (𝜙) − cos (𝜓)sin (𝜙) cos (𝜃)cos (𝜙)

] (2-2) 

 

The forces exerted on the aircraft (lift, drag, and side forces) are represented in the stability axes.  

A transformation (shown in (2-3)) is used to convert these values into the more convenient body 

axis system.  

[𝐻]𝐵
𝑆 = [

cos (𝛼)cos (𝛽) − cos(α) sin (𝛽) −sin (𝛼)
sin (𝛽) cos (𝛽) 0

cos(𝛽) sin(𝛼) −sin (𝛼)sin (𝛽) cos (α)

] (2-3) 

Translational Equations 

To analyze the motion of the aircraft, first consider Newton’s First Law of Motion which states 

that the sum of all forces is equal to the change in momentum of a system when examined form 

an external reference frame: 
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[
𝑑𝒫

𝑑𝑡
]
𝐼
= [∑𝐹]𝐼 (2-4) 

 This can be rewritten with respect to the body reference frame, resulting in Equation (2-5) and 

the Cross-Product-Equivalent Matrix, Equation (2-6).  See [7] for the full derivation.   

[
𝑑𝒫

𝑑𝑡
]
𝐵
= [∑𝐹]𝐵 − 𝜔̃𝐵𝒫𝐵 (2-5) 

𝜔̃𝐵 = [
0 −𝑅 𝑄
𝑅 0 𝑃
−𝑄 𝑃 0

] (2-6) 

Substituting the definition of momentum, 𝒫 = 𝑚𝑉, into (2-5),  

[
𝑑(𝑚𝑉)

𝑑𝑡
]
𝐵

= [∑𝐹]𝐵 − 𝜔̃𝐵𝑚𝑉𝐵 

[
𝑑𝑚

𝑑𝑡
]
𝐵
𝑉 + 𝑚 [

𝑑𝑉

𝑑𝑡
]
𝐵
= [∑𝐹]𝐵 − 𝜔̃𝐵𝑚𝑉𝐵 

(2-7) 

𝑚̇𝐵 [
𝑈
𝑉
𝑊
] + 𝑚

[
 
 
 
 
 
𝑑𝑈

𝑑𝑡
𝑑𝑉

𝑑𝑡
𝑑𝑊

𝑑𝑡 ]
 
 
 
 
 

= [

𝐹𝑥𝐴+𝑃+𝐺
𝐹𝑦𝐴+𝐺
𝐹𝑧𝐴+𝐺

]

𝐵

−𝑚 [
0 −𝑅 𝑄
𝑅 0 𝑃
−𝑄 𝑃 0

] [
𝑈
𝑉
𝑊
] (2-8) 

For many aircraft models, it is safe to assume that the change in mass of the aircraft as it burns 

fuel is negligible.  This is not true in the case of the GHV which burns through a significant 

portion of its fuel over relatively short flight duration.  As a result, the 𝑚̇𝐵 term cannot be 

removed from the equations of motion. 

The forces acting on the system can be decomposed into their component parts, which are a 

summation of the forces acting on the body itself.  These forces are aerodynamic (A), propulsive, 

(P), and inertial gravity (G) forces.  Note that this simulation applies propulsive force in only the 

X-body direction.  

Equation (2-8) can be further modified by separating each of the forces acting upon the body: 
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𝑚̇𝐵 [
𝑈
𝑉
𝑊
] + 𝑚

[
 
 
 
 
 
𝑑𝑈

𝑑𝑡
𝑑𝑉

𝑑𝑡
𝑑𝑊

𝑑𝑡 ]
 
 
 
 
 

= [

𝐹𝑥𝐴
𝐹𝑦𝐴
𝐹𝑧𝐴

]

𝐵

+ [
𝐹𝑥𝑃
0
0

]

𝐵

+ [

𝐹𝑥𝐺
𝐹𝑦𝐺
𝐹𝑧𝐺

]

𝐵

−𝑚 [
0 −𝑅 𝑄
𝑅 0 𝑃
−𝑄 𝑃 0

] [
𝑈
𝑉
𝑊
] (2-9) 

𝑚̇𝐵 [
𝑈
𝑉
𝑊
] + 𝑚

[
 
 
 
 
 
𝑑𝑈

𝑑𝑡
𝑑𝑉

𝑑𝑡
𝑑𝑊

𝑑𝑡 ]
 
 
 
 
 

= [

𝐹𝑥𝐴
𝐹𝑦𝐴
𝐹𝑧𝐴

]

𝐵

+ [
𝐹𝑥𝑃
0
0

]

𝐵

+𝑚𝑔 [

−sin (Θ)

cos(Θ) sin (Φ)

cos(Θ) cos (Φ)

] − 𝑚 [
0 −𝑅 𝑄
𝑅 0 𝑃
−𝑄 𝑃 0

] [
𝑈
𝑉
𝑊
] (2-10) 

Converting to the standard notation presented in [10], the final equation implemented in the 

simulation is given in Equation (2-11). 

𝑚̇𝐵 [
𝑈
𝑉
𝑊
] + 𝑚

[
 
 
 
 
 
𝑑𝑈

𝑑𝑡
𝑑𝑉

𝑑𝑡
𝑑𝑊

𝑑𝑡 ]
 
 
 
 
 

= [

𝑋𝐴
𝑌𝐴
𝑍𝐴

]

𝐵

+ [
𝑋𝑃
0
0
]

𝐵

+𝑚𝑔 [

−sin (Θ)

cos(Θ) sin (Φ)

cos(Θ) cos (Φ)

] − 𝑚 [
0 −𝑅 𝑄
𝑅 0 𝑃
−𝑄 𝑃 0

] [
𝑈
𝑉
𝑊
] (2-11) 

Rotational Equations 

Now consider Euler’s equation for rigid body rotation as viewed from the Inertial Frame: 

[
𝑑ℒ

𝑑𝑡
]
𝐼
= [∑ℳ]𝐼 (2-12) 

 This can be rewritten with respect to the body reference frame centered at the CG: 

[
𝑑ℒ

𝑑𝑡
]
𝐵
= [∑ℳ]𝐵 − 𝜔̃𝐵ℒ𝐵 (2-13) 

Substituting the definition of momentum, ℒ = 𝐼𝜔, into (2-13),  

[
𝑑(𝐼𝜔)
𝑑𝑡

]
𝐵

= [∑ℳ]𝐵 − 𝜔̃𝐵𝐼𝐵𝜔𝐵 

[
𝑑𝐼

𝑑𝑡
]
𝐵
𝜔𝐵 + 𝐼𝐵 [

𝑑𝜔

𝑑𝑡
]
𝐵
= [∑ℳ]𝐵 − 𝜔̃𝐵𝐼𝐵𝜔𝐵 

(2-14) 
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𝐼𝐵̇ [
𝑃
𝑄
𝑅
] + 𝐼𝐵

[
 
 
 
 
 
𝑑𝑃

𝑑𝑡
𝑑𝑄

𝑑𝑡
𝑑𝑅

𝑑𝑡 ]
 
 
 
 
 

= [

ℳ𝑥𝐴

ℳ𝑦𝐴

ℳ𝑧𝐴

]

𝐵

− [
0 −𝑅 𝑄
𝑅 0 𝑃
−𝑄 𝑃 0

] 𝐼𝐵 [
𝑃
𝑄
𝑅
] (2-15) 

Note again that this simulation assumes the propulsive force is along only the X-axis of the 

aircraft.  Consequently, there is no induced moment due to propulsive force on any axis and all 

moments are due to aerodynamic effects. 

Converting to standard notation of [10], the final equation implemented in the simulation is 

given in Equation (2-16). 

𝐼𝐵̇ [
𝑃
𝑄
𝑅
] + 𝐼𝐵

[
 
 
 
 
 
𝑑𝑃

𝑑𝑡
𝑑𝑄

𝑑𝑡
𝑑𝑅

𝑑𝑡 ]
 
 
 
 
 

= [

𝐿𝐴
𝑀𝐴
𝑁𝐴

]

𝐵

− [
0 −𝑅 𝑄
𝑅 0 𝑃
−𝑄 𝑃 0

] 𝐼𝐵 [
𝑃
𝑄
𝑅
] (2-16) 

One final transformation is needed to complete the rotational equations—specifically, the 

relationship between the angular rates in the body frame and those on the inertial frame. That 

relationship is given in Equation (2-17). 

[
𝑃
𝑄
𝑅
] = [

1 0 −sin (Θ)
0 cos (Φ) sin (Φ)cos (Θ)

0 −sin (Φ) cos (Φ)cos (Θ)
] [
Φ̇
Θ̇
Ψ̇

] (2-17) 

2.3 Additional Relationships 

In addition to the primary equations of motion of the aircraft, additional relationships are needed 

to account for atmospheric conditions and a conversion to a standard aircraft model.  
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Altitude Dependencies 

One of the primary outputs of the dynamic model is Mach number.  For this calculation, the 

atmospheric temperature is needed, a parameter dependent on altitude (ℎ). Reference [29] 

presents the following relationship between temperature and altitude: 

ℎ < 36,089 𝑓𝑡, 𝑇 = 𝑇0(1 − 6.875 × 10
−6 ℎ)  

where   𝑇0 = 518.7 °𝑅 

 

ℎ ≥ 36,089 𝑓𝑡, 𝑇 = 389.99 °𝑅 

(2-18) 

As altitude changes, so too does the air density.  Reference [29] gives a relationship between 

altitude and density: 

ℎ < 36,089 𝑓𝑡, 𝜌 = 𝜌0(1 − 6.875 × 10
−6 ℎ)4.2561  

where   𝜌0 = 2.377 × 10
−3  𝑠𝑙𝑢𝑔 𝑓𝑡3⁄  

 

ℎ ≥ 36,089 𝑓𝑡, 𝜌 = 0.2971𝜌0𝑒
−(
ℎ−36,089
20,806.7

)
 

where   𝜌0 = 2.377 × 10
−3  𝑠𝑙𝑢𝑔 𝑓𝑡3⁄  

 

(2-19) 

 

Aileron/Elevator conversion to Elevon 

The standard development for an aircraft controller uses aileron, elevator, rudder, and throttle.  

The GHV, however, is controlled via left and right elevon, rudder, and equivalence ratio.  In 

order to reconcile these differences and to simplify the controller generation, a conversion must 

be made.  No conversion is needed on either the rudder or the equivalence ratio as the rudder is a 

standard control surface and the equivalence ratio is a direct analog to throttle.  The left and right 

elevon, however, must be mixed into aileron and elevator. Equation (2-20) shows this procedure. 

[
𝛿𝑙𝑒
𝛿𝑟𝑒
] = [

1 1
−1 1

] [
𝛿𝑎
𝛿𝑒
] (2-20) 
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 Aerodynamic Coefficients 

The dynamic model for the GHV is generated using the Aerodynamic Preliminary Analysis 

System (APAS) code developed by NASA Langley and Rockwell International Inc. [10].  Force 

and moment coefficients are estimated based on angle of attack, Mach number, and, when 

applicable, control deflection.  These values provide the substance of the nonlinear model of the 

GHV.  Reference [10] gives all equations and parameters presented in this chapter.  Note that the 

equations shown are taken direction from Reference [10] with only variable names updated for 

consistency.  They represent the hypersonic model as developed within that report.  As such, 

there are some deviations from equations shown in other works such as Reference [27]. 

3.1 Model Specific Equations   

The lift, drag, and side force coefficients are given as follows: 

𝐶𝐷 = 𝐶𝐷𝛼 + 𝐶𝐷𝛿𝑙𝑒
+ 𝐶𝐷𝛿𝑟𝑒 + 𝐶𝐷𝛿𝑟  

𝐶𝑌 = 𝐶𝑌𝛽𝛽 + 𝐶𝑌𝛿𝑙𝑒
+ 𝐶𝑌𝛿𝑟𝑒 + 𝐶𝑌𝛿𝑟  

𝐶𝐿 = 𝐶𝐿𝛼 + 𝐶𝐿𝛿𝑙𝑒
+ 𝐶𝐿𝛿𝑟𝑒  

(3-1) 

The individual components that make up the lift, drag, and side force are known for any given 

combination of angle of attack, Mach number, and control surface deflection within the flight 

envelope.  Once these coefficients have been calculated, the total forces on the aircraft as 

represented in the stability axis system can be calculated: 

𝐷 = 𝑞̅𝑆𝑟𝑒𝑓𝐶𝐷 

𝑌 = 𝑞̅𝑆𝑟𝑒𝑓𝐶𝑌 

𝐿 = 𝑞̅𝑆𝑟𝑒𝑓𝐶𝐿 

(3-2) 

𝑞̅ is the dynamic pressure and 𝑆𝑟𝑒𝑓 is the applicable reference surface area of the aircraft, given 

in Table 1.  To calculate total forces in the body axis, the drag, side force, and lift are 

transformed to be represented in the body coordinate system: 
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[

𝑋𝐴
𝑌𝐴
𝑍𝐴

]

𝐵

= [𝐻]𝐵
𝑆 [
−𝐷
𝑌
−𝐿
] = [

cos(𝛼) cos(𝛽) − cos(α) sin(𝛽) − sin(𝛼)

sin(𝛽) cos(𝛽) 0

cos(𝛽) sin(𝛼) − sin(𝛼) sin(𝛽) cos(α)
] [
−𝐷
𝑌
−𝐿
] (3-3) 

The total moments on the aircraft due to aerodynamic effects are calculated similarly to the 

forces above: 

𝐶𝑙 = 𝐶𝑙𝛽𝛽 + 𝐶𝑙𝛿𝑙𝑒
+ 𝐶𝑙𝛿𝑟𝑒 + 𝐶𝑙𝛿𝑟 + 𝐶𝑙𝑃 (

𝑃 𝑏

2 𝑉
) + 𝐶𝑙𝑅 (

𝑅 𝑏

2 𝑉
) 

𝐶𝑚 = 𝐶𝑚𝛼 + 𝐶𝑚𝛿𝑙𝑒
+ 𝐶𝑚𝛿𝑟𝑒 + 𝐶𝑚𝛿𝑟 + 𝐶𝑚𝑄 (

𝑄 𝑐

2 𝑉
) 

𝐶𝑛 = 𝐶𝑛𝛽𝛽 + 𝐶𝑛𝛿𝑙𝑒
+ 𝐶𝑛𝛿𝑟𝑒 + 𝐶𝑛𝛿𝑟 + 𝐶𝑛𝑃 (

𝑃 𝑏

2 𝑉
) + 𝐶𝑛𝑅 (

𝑅 𝑏

2 𝑉
) 

 

(3-4) 

The terms (
𝑃 𝑏

2 𝑉
), (

𝑄 𝑐

2 𝑉
), and (

𝑅 𝑏

2 𝑉
) are the computed non-dimensional roll, pitch, and yaw rate, 

respectively.  The total moments about a fixed reference point, the MRC shown in Figure 5, are 

then calculated: 

𝐿𝑚𝑟𝑐 = 𝑞̅𝑏𝑆𝑟𝑒𝑓𝐶𝑙 

𝑀𝑚𝑟𝑐 = 𝑞̅𝑐𝑆𝑟𝑒𝑓𝐶𝑚 

𝑁𝑚𝑟𝑐 = 𝑞̅𝑏𝑆𝑟𝑒𝑓𝐶𝑛 

(3-5) 

𝑐 and 𝑏 are the reference lengths mean geometric chord and wingspan, respectively. Finally, the 

moments are transferred to the center of gravity: 

𝐿𝐴 = 𝐿𝑚𝑟𝑐 
𝑀𝐴 = 𝑀𝑚𝑟𝑐 − Δ𝑥𝑐𝑔𝑍𝐴 

𝑁𝐴 = 𝑁𝑚𝑟𝑐 + Δ𝑥𝑐𝑔𝑌𝐴 
(3-6) 

3.2 Parameter recovery 

The dynamic equations presented in the previous section rely on numerous coefficients which 

are presented in Reference [10].  However, a digital record of these parameters was not available.  

All data presented in the report was in the form of plots such as the one in Figure 8.  In order for 

this data to be used to generate the dynamic model of the aircraft, the data had to be extracted 
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from each plot.  Recovering these data points by hand would be prone to error as precise scaling 

is difficult to reproduce on paper. For this model, Siemens NX 7.5 CAD software was used.   

A digital version of each plot was imported into the CAD software and a coordinate system was 

placed on the axis.  A scaling factor corresponding to the y-axis of the plot was applied to the 

coordinate system.  This then allowed each individual point to be read directly and copied into a 

database.  This was done for all relevant plots. 

To demonstrate the results of this conversion, Figure 9 shows the reproduction of the coefficients 

shown in Figure 8 using a spline interpolation table.  The two data sets match very well.  Another 

option for verifying the conversion process would be to collect the data numerous times using 

the same technique.  Once done, an average value may be taken between all collected data sets 

and a statistical level of confidence for the conversion may be determined.  Potential errors in the 

conversion may cause slightly different dynamic characteristics.  This type of analysis was not 

performed for this work.  

 

Figure 8: Example original data set, coefficient of lift due to right elevon deflection [10] 
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Figure 9: Example spline interpolation, coefficient of lift due to right elevon deflection 

3.3 Model Integration 

To generate the dynamic model of the aircraft, MATLAB Simulink® R2013a technical 

computing software was used.  As well as being a non-sequential equation solver, the primary 

benefit of this approach is the ability to use multidimensional lookup tables within the model.  

Previous implementations of this version of the GHV model have primarily used closed form, 

nonlinear fit equations to represent the aerodynamic coefficients [7], [25], [26].  This method 

demands less computational power than the model presented in this work.  However, the 

consequence of using such techniques is that any derived model is only valid for the small region 

about which the fit equation is applicable.  Model fidelity degrades beyond these points.  As a 

result, only a small portion of the flight envelope may be examined. 

For this model, all coefficient data was stored in cubic spline lookup tables.  Many of these 

tables are three dimensional, i.e., they depend on three parameters: Mach, angle of attack, and 

control surface deflection angle. Each of the 34 lookup tables driving the dynamic model use a 

multidimensional third order interpolation algorithm to interpolate between the various known 
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points collected as described in Section 3.2.  More detail on cubic spline interpolation can be 

seen in Chapter 6. 

Each of the equations given in the sections above were converted into a block diagram 

representation.  These blocks were then strung together to form the cohesive nonlinear system 

model.  An example of the converted block diagram can be seen in Figure 10.  This is the 

Simulink® representation of Equations (3-4), (3-5), and (3-6).   

Figure 11 illustrates the need for the lookup tables used in this work.  The figure shows one of 

the 34 parameters represented by the spline interpolation.  This particular value, 𝐶𝑚𝛼
, only varies 

with Mach number and 𝛼. Other parameters, such as 𝐶𝑚𝛿𝑟  (shown in Figure 10) are even more 

difficult to represent as they have an additional input variable.  It would be challenging, if not 

impossible, to represent the surface shown with a single, closed form function.  The spline 

interpolation tables, while more computationally expensive, allow for a wider study of the 

aircraft’s performance throughout its entire flight envelope. Additional aerodynamic coefficient 

plots may be found in Appendix 1. 
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Figure 10: Simulink® block diagram example with cubic spline lookup tables 

C
m

d
r 



41 

 

  

 

Figure 11: Example aerodynamic coefficient as generated by spline lookup table 

More coefficients may be found in Appendix 1 
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 Linear Time Invariant Model of GHV Over a Broad Range of 

Mach Numbers 

The GHV is a highly nonlinear dynamical system.  While there are several sine and cosine terms 

embedded within the dynamic equations, this is not the most significant source of nonlinearity.  

As can be seen in Figure 11 and Appendix 1, the aerodynamic coefficients vary substantially 

throughout the possible flight envelope.  These variations are made even more significant by the 

large mass flow rates seen in hypersonic flight.  

In order to analyze and control the GHV, a Linear Time Invariant (LTI) model must first be 

developed for a trim point.  Due to the highly nonlinear nature of the GHV, the system must be 

linearized about multiple trim points in order for the model to be controlled over even a small 

range within the entire flight envelope. 

4.1 State Space Linear Models 

While many advances have been made in the development of nonlinear system analysis and 

control, the majority of techniques available are for linear systems.  The GHV, however, has 

been developed as a nonlinear system.  To bridge this divide, the nonlinear system must be 

placed into the LTI state space formulation given in Equation (4-1).  The process for this 

conversion is given in Section 4.2. 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)
𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)

 (4-1) 

The state space formulation is the standard representation for modern control theory.  It consists 

of two parts—the state equation and the output equation.  The state equation is a first order 

differential matrix equation consisting of states in the state vector 𝑥(𝑡).  In the case of the GHV, 
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there are 13 state variables (Equation (4-2)).  The derivatives of the states are equal to a linear 

combination of the states plus a linear combination of inputs, 𝑢(𝑡), to the system, shown in 

Equation (4-3).   

𝑥(𝑡) =  [𝑁𝑜𝑟𝑡ℎ, 𝐸𝑎𝑠𝑡, ℎ⏟        
𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛

, 𝑢, 𝑣, 𝑤⏟  
𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦

, 𝜙, 𝜃, 𝜓⏟  
𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛
𝐴𝑛𝑔𝑙𝑒𝑠

,  𝑝, 𝑞, 𝑟⏟  
𝐴𝑛𝑔𝑢𝑙𝑎𝑟
𝑅𝑎𝑡𝑒𝑠

,𝑊𝑒𝑖𝑔ℎ𝑡]𝑇 
(4-2) 

𝑢(𝑡) = [𝛿𝑎, 𝛿𝑒 , 𝛿𝑟 , 𝛿𝑒𝑟]
𝑇 (4-3) 

The output equation, 𝑦, is a linear combination of the states plus a linear combination of the 

system inputs.  𝑦(𝑡) typically represents the physically measureable quantities in the system and 

are, therefore, the only signals available to the control designer when designing a controller. 

To analyze the characteristics of any system, the A, B, C, and D matrices are manipulated and 

examined.  These matrices are real value matrices representing the dynamics of the system and 

the sensors measuring that system.  

4.2 Linearization Method 

In order to take advantage of many of the tools used to analyze and control a system, a nonlinear 

system must be reduced to a linear system.  Consider the nonlinear system shown in Equation 

(4-4).  This is a generic, nonlinear dynamic system with states vector 𝑥(𝑡), system inputs vector 

𝑢(𝑡), and outputs vector 𝑦(𝑡) as well as a time variable 𝑡.  The functions 𝑓 and 𝑔 are nonlinear 

combinations of the states, inputs, and time variable.  

𝑥̇(𝑡) = 𝑓[𝑥(𝑡), 𝑢(𝑡), 𝑡]

𝑦(𝑡) = 𝑔[𝑥(𝑡), 𝑢(𝑡), 𝑡]
 (4-4) 

Both the states and system inputs may be expressed as the sum of a nominal value and a 

perturbed value, as shown in (4-5).  Substitute these values into (4-4) to get (4-6).  
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𝑥(𝑡) = 𝑥0(𝑡) + Δ𝑥(𝑡)

𝑦(𝑡) = 𝑢0(𝑡) + Δ𝑢(𝑡)

𝑦(𝑡) = 𝑦0(𝑡) + Δ𝑦(𝑡)

 (4-5) 

𝑥̇0(𝑡) + Δ𝑥̇(𝑡) = 𝑓[𝑥0(𝑡) + Δ𝑥(𝑡), 𝑢0(𝑡) + Δ𝑢(𝑡), 𝑡]

𝑦0(𝑡) + Δ𝑦(𝑡) = 𝑔[𝑥0(𝑡) + Δ𝑥(𝑡), 𝑢0(𝑡) + Δ𝑢(𝑡), 𝑡]
 (4-6) 

Equation (4-6) is then linearized by taking a first order Taylor Series expansion of the right hand 

side of the equation about nominal values as defined in Equation (4-5), the result of which is 

shown in Equation (4-7) with four partial derivative matrices or Jacobians.   

𝑥̇0(𝑡) + Δ𝑥̇(𝑡) ≈ 𝑓[𝑥0(𝑡), 𝑢0(𝑡), 𝑡] +
𝜕𝑓

𝜕𝑥
|
𝑥=𝑥0(𝑡)

𝑢=𝑢0(𝑡)

Δ𝑥(𝑡) +
𝜕𝑓

𝜕𝑢
|
𝑥=𝑥0(𝑡)

𝑢=𝑢0(𝑡)

Δ𝑢(𝑡)

𝑦0(𝑡) + Δ𝑦(𝑡) ≈ 𝑔[𝑥0(𝑡), 𝑢0(𝑡), 𝑡] +
𝜕𝑔

𝜕𝑥
|
𝑥=𝑥0(𝑡)

𝑢=𝑢0(𝑡)

Δ𝑥(𝑡) +
𝜕𝑔

𝜕𝑢
|
𝑥=𝑥0(𝑡)

𝑢=𝑢0(𝑡)

Δ𝑢(𝑡)

 (4-7) 

In general, the terms 𝑥0(𝑡), 𝑢0(𝑡), and 𝑦0(𝑡) and the time variable 𝑡 may be nonlinear and time 

varying.  However, when these nominal values are chosen carefully such that they describe a 

system in steady state, they may be assumed constant (i.e. 𝑥0(𝑡) = 𝑥0, 𝑢0(𝑡) = 𝑢0, and 𝑦0(𝑡) =

𝑦0).  Additionally, if all time varying parameters are accounted for by the state variables for a 

given nominal value, the time term, 𝑡 vanishes. This results in the Jacobian matrices becoming 

constant values. For notational simplicity, define each matrix as in Equation (4-8).  By equating 

like terms in Equation (4-7) and making the variable substitutions, Equations (4-9) and (4-10) are 

formed [28]. 

𝜕𝑓

𝜕𝑥
|𝑥=𝑥0
𝑢=𝑢0

≡ 𝐴,
𝜕𝑓

𝜕𝑢
|𝑥=𝑥0
𝑢=𝑢0

≡ 𝐵

𝜕𝑔

𝜕𝑥
|𝑥=𝑥0
𝑢=𝑢0

≡ 𝐶,
𝜕𝑔

𝜕𝑢
|𝑥=𝑥0
𝑢=𝑢0

≡ 𝐷  

 (4-8) 
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𝑥̇0 = 𝑓(𝑥0, 𝑢0)
𝑦0 = 𝑔(𝑥0, 𝑢0)

 (4-9) 

Δ𝑥̇(𝑡) = 𝐴Δ𝑥(𝑡) + 𝐵Δ𝑢(𝑡)

Δ𝑦(𝑡) = 𝐶Δ𝑥(𝑡) + 𝐷Δ𝑢(𝑡)
 (4-10) 

Equation (4-10) is known as the linear state space model of the system.  For notational 

simplicity, the Δ’s are omitted from the equations resulting in the form shown in Equation (4-1).  

Note that when referring to a specific state variable, a capital letter refers to the total value while 

a lowercase refers to the perturbed state (for example, Φ(𝑡) =  𝜙0 + 𝜙(𝑡)).  In order to recover 

the total values from the perturbed state, the initial trimmed condition must be added into the 

states, Equation (4-2), and control deflection, Equation (4-3).   

The task of simplifying a system into a linear representation thus consists of two tasks: finding a 

nominal or trim value about which to linearize the system, and calculate the Jacobians of the 

system at that trim point (i.e., the 𝐴, 𝐵, 𝐶, and 𝐷 matrices).   There are several methods to 

accomplish this task.  The one chosen for this analysis uses the functionality built into the 

Simulink® Control Design Toolbox to produce a linearized model of the system.  

First, a trim point must be chosen.  Aircraft models are typically linearized about an equilibrium 

point where body accelerations and angular rates are constant.  For this analysis, only straight 

and level flight conditions were considered.  Under this assumption, angular rates and body 

accelerations are held at zero, while angles and velocities are held constant.  Note that in order to 

have straight, coordinated flight, 𝛽 is held at zero in the absence of external disturbances.  

Additional trim conditions (such as constant rate turn) may also be considered with this model, 

however, they are beyond the scope of this work.  
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In addition to the requirement for straight and level flight, the GHV has three variables which 

also drive the aircraft’s specific trim condition—namely Mach, weight, and altitude.  By 

specifying each of these three parameters, the remaining initial conditions and trimmed inputs to 

the system can be found numerically.  

To determine initial conditions of each state and the value of the trimmed inputs, a numerical 

optimizer built into Simulink’s® linearization tool was used, referred to as the 

“graddescent_elim” or Gradient Descent with Elimination [30].  The optimizer uses a gradient 

decent method to find the operating point which yields a steady state condition in the model.  To 

do this, the algorithm sets all the known states, inputs, and outputs (such as the known altitude, 

weight, and Mach number) as constants then applies the gradient descent technique to find what 

set of inputs will produce states with derivatives of zeros.  It is not desired to have zero 

derivatives in some states, such as the mass of the aircraft or position, as this would not be 

representative of reality.  In these cases, the quantities are known, but the derivative is allowed to 

be non-zero [30]. 

The gradient descent method referenced above consists of numerically calculating the gradient of 

the system at some initial guess point, taking a step in the direction the steepest negative 

gradient, then recalculating the gradient at the new point.  The algorithm repeats in this manner 

until a local minimum is found.  The details of the specific algorithm employed within the 

MATLAB tool are well beyond the scope of this work, but may be found in the software 

documentation, Reference [30], [31]. 

Once the trim condition has been identified, the second step is to linearize the system.  Simulink® 

uses a block-by-block linearization technique to calculate its linear models.  The advantage of 
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this technique is that most of the prebuilt Simulink® blocks have an exact linearized 

representation already coded.  For blocks which do not have a predefined linearization, such as a 

lookup table, a perturbation linearization technique is used to calculate the Jacobian matrices for 

the block numerically.  Each state and input to the block is perturbed independently by 

10−5(1 + |𝒳|) where 𝒳 is the input or state being perturbed.  The result is then recorded as 

shown in Equation (4-11) where 𝑖 indicates the state or input being perturbed, 𝑥 is a system state, 

𝑢 is a control input, 𝑦 is a system output, and subscript 𝑝 indicates the perturbed value.  Once all 

blocks have been linearized about the specified trim condition, they are then combined to 

produce a single linear system to represent the model [32]. 

𝐴(: , 𝑖) =
𝑥̇|𝑥𝑝,𝑖 − 𝑥̇0

𝑥𝑝,𝑖 − 𝑥0
, 𝐵(: , 𝑖) =

𝑥̇|𝑢𝑝,𝑖 − 𝑥̇0

𝑢𝑝,𝑖 − 𝑢0

𝐶(: , 𝑖) =
𝑦|𝑥𝑝,𝑖 − 𝑦0

𝑥𝑝,𝑖 − 𝑥0
, 𝐷(: , 𝑖) =

𝑦|𝑢𝑝,𝑖 − 𝑦0

𝑢𝑝,𝑖 − 𝑢0
 

 (4-11) 

4.3 Model Verification 

Before the dynamic model could be considered complete and accurate, the entire system 

implementation must first be validated.  Reference [25] and [26] present a Longitudinal dynamic 

model derived from the same data set used to generate this presented model for the hypersonic 

aircraft.  This provides a point against which to verify the developed GHV model. 

The model used in [25] and [26] (hereafter referred to as The Stengel Model) are generated using 

polynomial fit equations for each of the relevant stability and control derivatives.  This works 

well around a specific trim condition.  Beyond the trim points, however, the fidelity of the 

equations degrades.  The model is trimmed at 𝑀 = 15, ℎ = 110,000 𝑓𝑡, 𝛼 =

0.0315 𝑟𝑎𝑑 (1.80∘), 𝛿𝐸𝑅 = 0.183, and 𝛿𝑒 = −0.0066 𝑟𝑎𝑑 (0.378
∘).  At this trim state, the 
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model has a lightly damped Phugoid mode of −0.0001 ± 0.0263𝑗, a real Short Period mode pair 

at −0.8 and 0.687, and a slightly unstable altitude mode at 0.0008.  These five modes are 

detailed in Table 2 and plotted in red in Figure 12.  These values will be referred to as the 

Validation Modes. 

To verify the GHV model developed in Simulink®, the fit equations described in the Stengel 

Model are substituted in place of the lookup table coefficients.  If the dynamic models are 

identical, the Longitudinal modes produced by the Simulink® model with the aerodynamic 

coefficient equations from the Stengel Model when linearized about the same trim point should 

be identical to those of the Validation Modes.  These modes are shown in green in Figure 12 

with additional detail given in Table 3.  

 

Figure 12: Longitudinal mode comparison 
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Table 2: Validation mode characteristics 

Validation Modes 

Mode Pole Value 
Time 

Constant 

Damping 

Ratio 

Natural 

Frequency 

Damped Natural 

Frequency 

Phugoid 1×10-4 ± 0.0263𝑗 10.00×103 0.0038 0.0263 0.0263 

Real Short Period -0.8 1.25 1 0.800 0 

Real Short Period 0.687 -1.46 -1 0.687 0 

Altitude 0.8×10-3 -1250 -1 0.800×10-3 0 

 

Table 3: Stengel Model mode characteristics 

Stengel Model Modes 

Mode Pole Value 
Time 

Constant 

Damping 

Ratio 

Natural 

Frequency 

Damped Natural 

Frequency 

Phugoid 3×10-4 ± 0.0229𝑗 3.00×103 0.0146 0.0229 0.0229 

Real Short Period -0.801 1.25 1 0.801 0 

Real Short Period 0.687 -1.46 -1 0.687 0 

Altitude 1.60×10-3 -620. -1 1.60×10-3 0 

 

The Validation Modes and the Stengel Model Modes are very well correlated.  The real Short 

Period modes are identical.  The Phugoid mode and the Altitude modes, however, show slight 

variation.  This can be attributed to two subtle variations.  First, the Validation model used a non-

uniform gravity within its development, while the presented model used a constant gravity 

assumption.  References [33] and [34] show that this variation will affect the location of the 

Phugoid Mode poles. A second source for the variation is in potential lack of precision in the 

functions describing the aerodynamic coefficients presented in [26].  The primary difference 

between the two sets of modes lie in their real component, both of which are very small relative 

to the other poles.  This portion governs the time constant of each mode.  Due to their proximity 

to the origin, very small deviations will appear as large deviations in time constants as the time 

constant is inversely proportional to the dynamics within the system.  As a consequence, very 

small changes within the system will result in relatively large changes in the final pole location 

when near the imaginary axis.  
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From a validation perspective, the near identical linearized models verify that the equations of 

motions represented in the simulation are equivalent.  Note that this verification is only 

performed on the Longitudinal equations of motion.  Unfortunately, no model can be found 

which reproduces independently the Lateral-Directional behavior of the aircraft, and therefore, 

there is no reference for comparison.  Note, however that the equations of motion implemented 

in the full simulation are the full development of the dynamic equations, and not just the 

Longitudinal axis subset.  It stands to reason that, if the development of the Longitudinal 

equations of motions is correct, the Lateral-Directional equations should be similarly accurately 

reproduced.   

An additional simplifying assumption made in the Validation Model was how the aircraft model 

handles weight.  This model uses a constant CG collocated at the MRC of the aircraft.  The 

Simulink® model presented in this document, on the other hand, uses a changing center of 

gravity with a constantly decreasing weight dependent on the throttle position.  In order to 

compare the Stengel Model and the Validation Model, these added complexities were disabled.  

As further comparison, the linear model of the system with all the lookup tables incorporated 

was calculated. The model was trimmed about the same equilibrium point as the Validation 

Model. The C.G. = MRC assumption was also retained.  The resulting Longitudinal modes were 

markedly different than The Stengel Model.  The results of this linearization can be seen in Table 

4. 
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Table 4: Lookup Table Model mode characteristics 

Lookup Table Model Modes 

Mode Pole Value 
Time 

Constant 

Damping 

Ratio 

Natural 

Frequency 

Damped Natural 

Frequency 

Phugoid 0.0036 ± 0.0036𝑗 0.277×103 0.707 0.0051 0.0036 

Real Short Period 1.84 0.544 1 1.84 0 

Real Short Period 1.76 -0.568 -1 1.76 0 

Altitude 8.40×10-3 -119. -1 8.40×10-3 0 

 

These variations are understandable, however.  It was found that the modes are highly dependent 

on the specific trimming values within the system.  Unlike in the previous comparison where the 

trim values are identical between the models, this model required a completely different set of 

trimmed values.  The two models have subtle differences which cause a large impact on the 

system as a whole.  The differences arise from how the aerodynamic coefficients have been 

recovered.  The process employed to recover the points used to generate the fit equations in [25] 

and [26] is not expressly stated, however.  As discussed in Section 3.2, this process is prone to 

errors.  As a result, the values used to generate the disparate linear models will be slightly 

different, resulting in different trimmed state values.  This difference is amplified by the 

implementation equations (shown in Section 3.1).  At a trimming Mach number of 15, the mass 

flow rate over the wings is substantial.  As can be seen in Equation (3-4), this amplifies the 

effects of small variations in aerodynamic coefficients on the overall system model.  

Despite these differences, there are some similarities between the models.  Both models show a 

complex Phugoid pair and two real Short Period modes as well as an altitude mode near zero.  

This shows that, while the magnitude of the responses is different between the models, the 

dynamic trends are similar. 
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4.4 Mode Analysis 

To analyze the characteristics and stability of an aircraft, it is typical to examine the linearized 

system’s eigenvalues and their associated eigenvectors.  The highly nonlinear GHV model was 

linearized at multiple trim points, resulting in numerous, distinct linear models.  As was 

mentioned in Section 4.2, the trim conditions of the GHV vary independently with Mach, weight, 

and altitude.  After examining the three independent variables, it was found that the greatest 

deviations in the system are due to changes in Mach number. For this reason, only the linear 

models relating to changing Mach number are discussed in detail in this document.  Altitude and 

weight are held constant at 70,000 𝑓𝑡 and 225,000 𝑙𝑏𝑠 respectively.  The effects of the 

remaining two independent variables are shown in Appendix 2. 

To identify the characteristics of each mode of the GHV, the linear models were divided into the 

Lateral-Directional and Longitudinal components.  The modes were then plotted on a single 

complex plane to see their changing behavior over the range of Mach numbers.  The resulting 

shapes are analogues to the root locus of a feedback system where the point along the root locus 

is dictated by the Mach number of the point about which the system is linearized. 

Unlike many common aircraft, the GHV’s modes are not easily categorized into the 

characteristic aircraft modes such as Phugoid and Short Period for the Longitudinal systems and 

Roll, Spiral, and Dutch-Roll for Lateral-Directional axes.  Instead, a more detailed analysis of 

each mode’s unit eigenvectors is required.  Each entry of the complex eigenvectors is 

represented in its polar form, 𝐴𝑛𝑒
𝑗𝜔𝑛, where 𝐴𝑛 is the relative contribution state 𝑛 has on the 

mode and 𝜔𝑛 is the phase shift due to state 𝑛.  By examining the relative magnitudes of 𝐴𝑛 from 

each state, each mode may be classified.  Phase angle does not help to directly classify the mode, 

but can be used to determine if a state “leads” or “lags” another state for a given mode [28].  As 
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the goal of this section is to classify the modes of the system, only relative eigenvector 

magnitudes will be studied. 

From the eigenvector analysis, each mode of the system is classified.  As the linear systems vary 

as Mach number changes, so too does the magnitude of each eigenvector.  The changing values 

are plotted as a function of Mach number in Figure 14 and Figure 19.  It should be noted that the 

classification applied to a mode at one particular Mach may not be the same as the classification 

of that same mode at another Mach number.  For this reason, only the modes which remain 

distinct over the entire span of Mach numbers are named in the plot legend.   

Also included in the mode analysis is the Altitude mode.  This mode is a consequence of 

including altitude, ℎ, in the states of the system.  This mode should be near the origin as it is an 

integral of the aircraft’s vertical velocity in the inertial coordinate system.  This mode will not be 

directly on the origin due to altitude dependent air density, however.  

The reader is cautioned that, while this section names each mode present according to the 

standard aircraft model, this convention may not be wholly applicable to the GHV.  Hypersonic 

flight has significantly different handling qualities than those demonstrated in conventional 

aircraft.  At high speeds, the system has very little resemblance to a typical aircraft.  This 

stretches the applicability of standard naming conventions, particularly in the Lateral-Directional 

case.  For this reason, the author recommends that, in subsequent publications studying 

hypersonic flight modes, new naming conventions be selected which are more applicable to the 

hypersonic flight regime. 
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Lateral-Directional Modes 

There have been numerous studies published analyzing the Longitudinal dynamics of hypersonic 

aircraft.  There have been considerably fewer which focus on the Lateral-Directional dynamics 

of similar systems.  What does exist shows that the Lateral-Directional dynamics exhibit some 

non-standard characteristics.  The predominant phenomenon discussed is the presence of a 

second order Roll/Spiral mode [7], [35], [36].  Note that the dissimilarities between the Lateral-

Directional modes of the GHV vs. a more conventional aircraft are not due to the equations of 

motion, but rather the non-standard aerodynamic coefficients associated with the GHV.   

The second order Roll/Spiral mode is referred to as a “Lateral Phugoid” mode.  While unrelated 

to the Longitudinal Phugoid mode, it exhibits the same slow, lightly damped behavior as the 

Longitudinal analogy.  It is typically associated with high angle of attack, low subsonic flight.  

The result is a coupling between the Roll and Spiral motion [28]. 

Figure 13 presents the Lateral-Directional modes of the system as they vary with Mach number.  

At low Mach, all modes of the system are complex. As the Mach number increases, the 

frequency of each pair increases slightly prior to decreasing to independent real poles.  This 

initial increase and subsequent decrease correlate to a similar rise in the Lateral-Directional 

aerodynamic coefficients (see Appendix 1).  These coefficients each peak at a speed between 

Mach 2 and 5, as does the frequency of the complex modes, then taper out to more constant 

values as Mach number increases.     
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Figure 13: Lateral-Directional modes 

The modes shown in Figure 13 can be readily classified below Mach 4.5 due to their relative 

position in the complex plane.  Modes 3 and 4 are recognizable as a Lateral Phugoid mode due to 

their low damping and frequency.  Consequently, modes 1 and 2 are the Dutch-Roll mode.  

Above Mach 4.5, however, the distinction becomes less apparent.  The eigenvectors of the 

system provide additional insight.  Figure 14 gives the normalized, Mach-dependent contribution 

magnitude from each state to a given mode. The transition point from a complex pair to real 

mode is also indicated.  Each of the relevant Mach ranges are discussed separately.   
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Figure 14: Lateral-Directional mode eigenvectors 

First, consider the range of Mach numbers between 2 to 4.5.  From examining the location of 

each mode in Figure 13 above, modes 1 and 2 were identified as Dutch-Roll while 3 and 4 are 

the Lateral Phugoid.  These conclusions are reinforced with the eigenvector plotted in Figure 14.  

Modes 1 and 2 have a comparatively high contribution from 𝑣 𝑈0⁄ ≈ 𝛽, while 3 and 4 are 

dominated by 𝑝 and 𝜙 as is expected from these modes. 

As was mentioned earlier, the Lateral Phugoid mode is not typical in aircraft. Reference [7] ties 

this to a large yawing moment caused by roll rate (𝐶𝑛𝑃).  This is indeed the case with the GHV.  
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𝐶𝑛𝑃 is large in the region the Lateral Phugoid mode is present (Figure 15).  Reference [36] also 

shows a connection between 𝐶𝑙𝑃 and 𝐶𝑛𝑅 (Figure 16 and Figure 17).  A Lateral Phugoid mode is 

expected when both of these quantities have large negative magnitudes.  Once again, this is the 

case with the GHV.  

 

Figure 15: 𝑪𝒏,𝑷 interpolation surface 

 

Figure 16: 𝑪𝒍,𝑷 interpolation surface 
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Figure 17: 𝑪𝒏,𝑹 interpolation surface 

 

Next, consider the Mach numbers ranging from about Mach 6 to 23. From Figure 14, mode 4 is 

dominated entirely by 𝜙.  This indicates it clearly as the Spiral mode.  Modes 2 and 3 have very 

similar eigenvectors implying that they are a dynamically coupled mode.  (Note that these are not 

complex conjugates as both mode 2 and 3 are real.  Slight variations in the plotted eigenvectors 

can be observed in these modes.) Compared to the other two modes, mode 2 and 3 have a high 

contribution from 𝑣 𝑈0⁄ ≈ 𝛽.  These two factors show that modes 2 and 3 form a real Dutch-Roll 

mode. Mode 1 is has a comparatively high contribution from 𝑝 characteristic of the Roll mode. 

The region between Mach 4.5 and 6 is harder to classify.  While there is the classic complex pair 

with two real modes of a conventional aircraft between 4.5 and 5.4, their eigenvectors undergo 

significant changes in this region.  In this region, modes 1 and 2 transition from a complex 

Dutch-Roll mode to two distinctly separate modes (a Roll and a Dutch-Roll mode respectively).  

Additionally, Modes 3 and 4 transition such that mode 3 joins mode 2 to become a real Dutch-

Roll pair, and 4 loses its Roll mode contribution and becomes a pure Spiral mode.   
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The above conclusions are summarized in Table 5. 

Table 5: Lateral-Directional mode classification 

Mach Range Mode 1 Mode 2 Mode 3 Mode 4 

2-4.5 Dutch-Roll Pair Lateral Phugoid 

4.5-5.4 Dutch-Roll Pair Roll to Dutch-Roll Spiral 

5.4-6 Dutch-Roll to Roll Dutch-Roll Pair Spiral 

6-23 Roll Dutch-Roll Pair Spiral 

 

The Lateral-Directional dynamic characteristics can be inferred from these classifications.  A 

real Dutch-Roll pair indicates that, when excited, the aircraft will have a first order unstable 

response.  In other words, the system will not oscillate as it becomes unstable.  Rather, it will 

begin to diverge immediately.  The Lateral Phugoid mode will result in an oscillatory rolling 

effect.  The most significant implication of this study, however, is that the region between Mach 

4.5 and 6 is the most dynamically nonlinear region of the system.  Within this region, the linear 

models change rapidly and the GHV is, therefore, more challenging to control using linear 

control techniques. 

Due in part to the lack of hypersonic Lateral-Directional studies, previously published models 

have not identified the transient nature of the poles through a broad spectrum of Mach numbers. 

It is unique to see modes transition from one well defined state to a different new state such as 

mode 1 transitioning from Dutch-Roll to Roll and mode 3’s transition from Lateral Phugoid to a 

real Dutch-Roll pair.  Additionally, it is unusual to see a real Dutch-Roll characteristic in a 

system.  Both of these phenomenon warrant additional study beyond the scope of this work.  

This reinforces the idea stated in the opening of this section that standard aircraft mode 

definitions may not be wholly applicable to aircraft at these speeds.   
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It should be noted that the Mach ranges presented in this section are only applicable to this 

particular trim weight and altitude.  Reference [36] found the Lateral Phugoid mode at Mach 6.5 

for a similar hypersonic aircraft while the presented analysis shows this phenomenon dies out at 

Mach 4.5.  However, this transition Mach number will change as the system is trimmed at 

different weights and altitudes.  Under specific altitude and weight conditions, the GHV has 

Lateral Phugoid mode at Mach 5 (see Appendix 2).  Once again, this shows the GHV’s nonlinear 

response to changing conditions. 

Longitudinal Modes 

Unlike the Lateral-Directional modes of the system, the Longitudinal modes are much easier to 

classify using the standard mode definitions.  They show predominantly similar characteristics 

over the entire range of Mach numbers and can, therefore, be classified for the entire range. 

Figure 18 shows the eigenvalues plotted on the complex plane and Figure 19 gives the 

magnitude of the unit eigenvectors associated with each mode.  
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Figure 18: Longitudinal modes 

The Short Period mode is classically dominated by 𝑞, 𝑤 𝑈0⁄ ≈ 𝛼, and to a lesser extent 𝜃 as can 

be seen in Figure 19. One notable aspect of this mode is that it comprises two real modes.  This 

implies that, when the Short Period mode of the system is excited, it will go unstable in a first 

order sense and not oscillatory as is typical with a Short Period instability. This same 

phenomenon was identified in the GHV’s dynamics by Stengel as described earlier in this 

chapter [25], [26].  The primary reason for these two real modes is that the CG is aft of the MRC.  

In the absence of any other stabilizing characteristics, the aircraft Longitudinal dynamics will not 

oscillate when becoming unstable.  Instead, it will become unstable in a first order manner—in 

this case as an exponentially increasing pitch up.   
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Figure 19: Longitudinal mode eigenvectors 

The defining characteristic of a Phugoid mode is that it should be dominated by 𝜃 and total 

velocity, here approximated by 𝑢/𝑈0. These trends are clearly seen in the eigenvectors in Figure 

19. Figure 18 shows what would be expected of a Phugoid mode in that it has a low frequency 

and high time constant.  Unlike many of the other modes of the system, the Phugoid mode stays 

nearly constant throughout the entire speed range.  This result is expected.  Unlike the Phugoid 

mode of conventional aircraft which depends on velocity, hypersonic aircrafts’ Phugoid mode 

depends almost entirely on air density gradient through the atmosphere, though even those 

2 4 6 8 10 12 14 16 18 20 22
0

0.5

1

S
h

o
rt

 P
e
ri

o
d

Longitudinal Eigenvector Component Magnitudes

 

 

2 4 6 8 10 12 14 16 18 20 22
0

0.5

1

S
h

o
rt

 P
e
ri

o
d

2 4 6 8 10 12 14 16 18 20 22
0

0.5

1

P
h

u
g

o
id

2 4 6 8 10 12 14 16 18 20 22
0

0.5

1

P
h

u
g

o
id

2 4 6 8 10 12 14 16 18 20 22
0

0.5

1

A
lt

it
u

d
e

Mach Number

u/U
0

w/U
0 q  Altitude



63 

 

variations are minimal.  Moreover, it is expected that the Phugoid mode has a frequency of about 

0.04 and damping ratio near 0 [34].  This is clearly the case with the GHV’s Phugoid mode. 

This is promising from a linear controls standpoint because there is less need for more complex 

stabilization to compensate for changing dynamics.  This also indicates, however, that the 

Phugoid mode of this system is more resilient than other modes to changes in the system.  It will 

be challenging to generate a controller which significantly affects this aspect of the system.  The 

final closed loop system is likely to have residual effect from this stationary mode.  

Similar to the Lateral-Directional modes, the classification of the Longitudinal modes is distinct 

above Mach 6, but is less distinct below that speed. Below Mach 6, the eigenvectors change 

drastically, once again indicating the higher degree of nonlinearity at these speeds.  As with the 

Lateral-Directional case, these variations may be attributed to the large variation in aerodynamic 

coefficients below Mach 6.  

It should be noted that the altitude mode of the system remains near zero for the entire range of 

speeds.  This indicates that this mode is very slow and approximately neutrally stable.  This is 

expected as the altitude mode is inversely proportional to the lift-to-drag ratio.  As a result, the 

mode tends to be small [34].   

Another aspect of the altitude mode is its erratic eigenvector magnitude.  This behavior is due to 

the fact that the eigenvalue itself is very small. If we consider the eigenvalue equation, 𝐴𝑿 = 𝜆𝑿 

where 𝑿 is an eigenvector of 𝜆 and 𝜆 is the eigenvalue of 𝐴, it can be seen that, if 𝜆 is small, any 

small change in 𝐴 will result in large changes in 𝑿.   
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Cross Axis Effects 

In order to separate the system into its Lateral-Directional and Longitudinal components, the 

cross axis effects of the linear systems are lost.  While these effects are not explicitly modeled in 

the system using cross axis effect coefficients, there is a residual impact due to the nonlinear 

model implementation.  For instance, altitude is considered a Longitudinal parameter.  However, 

as altitude changes, the density of air changes.  Air density affects both Longitudinal and Lateral-

Directional quantities and therefore has the potential for cross coupling the dynamics.  For this 

reason, a brief examination of the magnitude of the cross coupling effects is performed. 

To perform the analysis, The A matrix of the dynamic system was separated into three 

components—the Lateral-Directional A matrix, the Longitudinal A matrix, and the cross axis A 

matrix, which is what remains when the other two matrices are removed.  The Frobenius Norm is 

then calculated for each matrix, the equation for which is given in (4-12).  The resulting Mach 

varying norm is given in Figure 20.  

||𝐴||
𝐹
= √∑∑|𝑎𝑖𝑗|

2
𝑛

𝑗=1

𝑚

𝑖=1

, 𝐴 ∈ ℝ𝑚𝑥𝑛  (4-12) 
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Figure 20: Component matrix contributions 

From the above figure, it is evident that the cross axis contributions to the system are minimal.  

This implies that the approximations made to separate the Lateral-Directional and Longitudinal 

components are reasonable.   
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 𝑯∞ Controller Design 

Environmental disturbances, such as wind, vary greatly throughout the entire flight envelope of 

the GHV.  These dynamics are un-modeled within the system, however.  Despite this, a system 

which is to be implemented beyond theory must take these disturbances into account as they 

have significant impact on the overall performance of the aircraft and controller [37].  

Compounding this problem is the GHV’s inherent nonlinear behavior.  Take, for instance, angle 

of attack and side slip angle.  Both of these quantities are influenced by external aircraft 

disturbances.  These values also drive the aerodynamic coefficients of the system. As a result, 

external disturbances will cause nonlinear changes to the system. 

Logically, the best way to account for these disturbances is to minimize the impact external 

disturbances have on the system—essentially, decouple external disturbances from the dynamic 

model.  This can be done by including the disturbances into the system model and then designing 

a controller such that the disturbances are accounted for directly by the controller.  In reality, 

however, this is impractical.  Disturbance dynamics are challenging to represent, have limited 

regions of validity, and can significantly complicate the model [37]. 

The second alternative to decouple disturbance dynamics is to design a robust controller.  The 

benefit of such an architecture is that it does not require extensive knowledge of the disturbances 

to be counteracted.  Instead, only a limited understanding of their frequency domain spectral 

content is needed. 

To achieve this decoupling in the GHV, an 𝐻∞ control architecture was chosen.  The 𝐻∞ 

controller is a Multi-Input Multi-Output (MIMO), robust controller.  The goal of its architecture 

is to minimize the maximum impact disturbances have on a set of defined outputs.  Compared to 
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another robust control architecture based on similar mathematics, the 𝐻2 controller, the 𝐻∞ is 

more robust.  The 𝐻2 controller minimizes the average impact disturbances have on defined 

outputs.  This implies that some disturbances will have above average impact on the outputs. As 

a result, the 𝐻2 controller is less robust than the 𝐻∞ [38].  The consequence of this added 

robustness is that performance is degraded.  This translates to a less maneuverable, potentially 

slower responding aircraft.   

𝐻∞ control has been successfully implemented to control the Longitudinal dynamics of 

hypersonic aircraft in the past. Gao used an 𝐻∞ style observer to produce full state feedback 

from the system given limited sensor input.  From there, a fault tolerant controller was designed 

to expressly handle system failures [16].  Huang took a mixed 𝐻2/𝐻∞ approach.  This type of 

controller gives robustness benefits of the 𝐻∞ controller, but only on specific inputs.  An 𝐻2 

handles more performance based criteria of the controller.  The overall combination forms a 

controller that is less robust overall, but has improved performance characteristics [17], [39].  

Gregory a used pure 𝐻∞ controller with the addition of 𝜇-synthesis techniques to directly 

account for modeling uncertainties [18]. Cifdaloz applies a similar 𝐻∞ approach to that which is 

presented in this work.  It will serve as a reasonable comparison for the final controlled system in 

Chapter 7 as it shows a related hypersonic aircraft in similar flight conditions [19]. 

The drawback of all the controllers developed above is that they are only applicable to the 

Longitudinal dynamics of the system.  As a result, the full effects of the hypersonic system 

cannot be studied. As was explored in Section 4.4, the Lateral-Directional effects are non-

standard and by no means trivial. This work aims to resolve this issue.   
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In order to generate commands for the four independent system inputs (𝛿𝑎, 𝛿𝑒, 𝛿𝑟, and 𝛿𝐸𝑅), four 

quantities were chosen as feedback from the system into the controller.  𝜙, 𝜃, 𝛽, and 𝑀 were 

selected as they form a set of preferred parameters for outer loop guidance algorithms [40].     

5.1 𝑯∞ Control Methodology 

The 𝐻∞ is an optimal, robust control formulation which can be designed to control a system with 

both system modeling errors and noise from both external physical disturbances and sensor 

feedback noise.  This work will focus on the disturbance and noise rejecting capability of the 𝐻∞ 

controller. 

First, consider the standard negative feedback loop shown in Figure 21.  Included in this 

representation is a system model, 𝐺(𝑠), and a controller, 𝐾(𝑠).  Additionally, it includes time 

varying physical disturbances to the system, 𝑑(𝑡), sensor noise in the feedback path, 𝑛(𝑡), and a 

commanded reference signal, 𝑟(𝑡).  The sensible output of the system in the real world is 

denoted as 𝓎(𝑡).   

 

Figure 21: Standard model of a disturbed and noisy feedback system 

Figure 21 may be rearranged to the form shown in Figure 22.  The combination of the reference, 

disturbance, and noise have been joined together into a single signal, 𝑤(𝑡).  For the purposes of 

this derivation, the signals entering the controller, 𝑦(𝑡), the signals being commanded from the 
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controller to the system model, 𝑢(𝑡), and the output signals from the system model, 𝑦𝐺(𝑡), have 

been named.  The output to the physical world is omitted from the block diagram for the 

remainder of this derivation, though it can be represented by 𝓎(𝑡) = 𝑑(𝑡) + 𝑦𝐺(𝑡) and will be 

used in Section 7.3 

 

Figure 22: Rearranged disturbed system 

Thus far, a standard system model has been manipulated without loss of generality as it relates to 

any form of control.  At this point, the 𝐻∞ structure to the system begins to take shape.  In 

general, the 𝐻∞ problem finds some controller 𝐾(𝑠) such that it stabilizes some plant (or system 

model), 𝑃(𝑠), while minimizing the maximum impact external inputs, 𝑤(𝑡), have on an arbitrary 

set of outputs, 𝑧(𝑡).  This framework is shown in Figure 23.  The outputs from the system 𝑧(𝑡) 

are constructed entirely by the designer.  Moreover, there is no definitive way in which these 

outputs must be defined.  The designer has free reign over their development.  These outputs 

may even be defined prior to system linearization, enabling the designer to directly manipulate 

signals within the system [41]. 
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Figure 23: General 𝑯∞ control framework 

For this work, the Mixed Sensitivity approach was taken to define signals 𝑧(𝑡).  This approach 

generates 𝑧(𝑡) such that it weights the Sensitivity and Complimentary Sensitivity (Co-

Sensitivity) of the system as opposed to specific signals within the plant itself [42].  The reason 

behind weighting these specific parameters will be explored in more detail in Section 5.2.  The 

benefit of this approach is that it uses a predefined linear model.  With such a formulation, the 

same weighting matrices may be used for all linear models characterizing the GHV.  This lends 

itself well to the gain-scheduling approach implemented in this work. 

Figure 24 shows the augmented system used in the Mixed Sensitivity 𝐻∞ structure.  The block 

diagram has been manipulated from that shown in Figure 22 with the additions shown in red.  It 

has been augmented to produce the new weighted system output 𝑧(𝑡).  Note that this block 

diagram now takes the form shown in Figure 23.  
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Figure 24: Augmented feedback system with weighting parameters 

The new outputs are formed by applying weighting transfer functions which filter various signals 

to amplify or attenuate specific relevant frequencies of the weighted signals.  𝑊1(𝑠) weights the 

inputs to the controller, 𝑊2(𝑠) weights the controller command signals, and 𝑊3(𝑠) weights the 

output of the system being controlled.  The combination of the new output signals create the 

artificial construct 𝑧(𝑡) which is only used for the development of the controller and is not used 

in the implementation of the system in the real world.  It should be noted that the three weights 

on the system are typically frequency dependent transfer functions.  The selection of these 

weighting matrices is examined in more detail in Sections 5.2 and 5.3.  For this derivation, it is 

assumed that 𝑊1 and 𝑊3 are transfer functions while 𝑊2 is a constant.  

Now the system 𝑃(𝑠) may be formed.  As shown in Figure 24, there are two inputs (inputs from 

the controller, 𝑢(𝑡), and external commands, disturbances, and noise, 𝑤(𝑡)) and two outputs 

(augmented states, 𝑧(𝑡), and outputs to the controller, 𝑦(𝑡)). Note that the 𝑧(𝑡) comprises three 
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signals, [𝑧1(𝑡), 𝑧2(𝑡), 𝑧3(𝑡)]
𝑇.  The goal of forming 𝑃(𝑠) is to generate a relationship between 

the two inputs and the two outputs. 

To do this, each of the transfer functions 𝐺(𝑠), 𝑊1(𝑠), 𝑊2(𝑠), and 𝑊3(𝑠) are converted into their 

state space representations,  given in (5-1) through (5-4).  

𝐺(𝑠) = {
𝑥̇𝐺(𝑡) = 𝐴𝐺𝑥𝐺(𝑡) + 𝐵𝐺𝑢(𝑡)

𝑦𝐺(𝑡) = 𝐶𝐺𝑥𝐺(𝑡) + 𝐷𝐺𝑢(𝑡)
 (5-1) 

𝑊1(𝑠) = {
𝑥̇𝑊1(𝑡) = 𝐴𝑊1𝑥𝑊1(𝑡) + 𝐵𝑊1𝑦(𝑡)

𝑧1(𝑡) = 𝐶𝑊1𝑥𝑊1(𝑡) + 𝐷𝑊1𝑦(𝑡)
 (5-2) 

𝑊2(𝑠) = {𝑧2(𝑡) = 𝐷𝑊2𝑢(𝑡) (5-3) 

𝑊3(𝑠) = {
𝑥̇𝑊3(𝑡) = 𝐴𝑊3𝑥𝑊3(𝑡) + 𝐵𝑊3𝑦𝐺(𝑡)

𝑧3(𝑡) = 𝐶𝑊3𝑥𝑊3(𝑡) + 𝐷𝑊3𝑦𝐺(𝑡)
 (5-4) 

Define the state vector of 𝑃(𝑡) as a combination of the states in Equations (5-1) through (5-4).  

This gives 𝑥(𝑡) = [𝑥𝐺(𝑡), 𝑥𝑊1(𝑡), 𝑥𝑊3(𝑡)]
𝑇
.  Note that there is no state added from 𝑊2 as this is a 

scalar gain and the input is mapped directly to the output. 

The final relationship needed to fully define the system 𝑃(𝑠) in state space format is to define 

𝑦(𝑡) = 𝑤(𝑡) − 𝑦𝐺(𝑡).  By substituting this definition into Equation (5-2), Equations (5-1) 

through (5-4) can be easily formatted to form 𝑃(𝑠) with the states as defined above.  This is 

shown in Equation (5-5).  For notational convenience, we write Equation (5-6) by defining the 

quantities as shown in red in Equation (5-5).  
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𝑃(𝑠) =

{
 
 
 
 
 
 

 
 
 
 
 
 
[

𝑥̇𝐺(𝑡)

𝑥̇𝑊1(𝑡)

𝑥̇𝑊3(𝑡)
]

⏟    
𝑥̇(𝑡)

= [

𝐴𝐺 0 0
−𝐵𝑊1𝐶𝐺 𝐴𝑊1 0

𝐵𝑊3𝐶𝐺 0 𝐴𝑊3

]

⏟              
𝐴

 [

𝑥𝐺(𝑡)
𝑥𝑊1(𝑡)

𝑥𝑊3(𝑡)
]

⏟    
𝑥(𝑡)

+ [
0
𝐵𝑊1
0

]
⏟  
𝐵1

𝑤(𝑡) + [

𝐵𝐺
−𝐵𝑊1𝐷𝐺
𝐵𝑊3𝐷𝐺

]

⏟      
𝐵2

𝑢(𝑡)

[

𝑧1(𝑡)
𝑧2(𝑡)
𝑧3(𝑡)

]

⏟    
𝑧(𝑡)

= [

−𝐷𝑊1𝐶𝐺 𝐶𝑊1 0

0 0 0
𝐷𝑊3𝐶𝐺 0 𝐶𝑊3

]

⏟              
𝐶1

[

𝑥𝐺(𝑡)

𝑥𝑊1(𝑡)

𝑥𝑊3(𝑡)
]

⏟    
𝑥(𝑡)

+ [
𝐷𝑊1
0
0

]
⏟  
𝐷11

𝑤(𝑡) + [

−𝐷𝑊1𝐷𝐺
𝐷𝑊2
𝐷𝑊3𝐷𝐺

]

⏟      
𝐷12

𝑢(𝑡)

𝑦(𝑡) = [−𝐶𝐺 0 0]⏟        
𝐷21

[

𝑥𝐺(𝑡)

𝑥𝑊1(𝑡)

𝑥𝑊3(𝑡)
]

⏟    
𝑥(𝑡)

+ [𝐼]⏟
𝐷21

𝑤(𝑡) + [−𝐷𝐺]⏟  
𝐷22

𝑢(𝑡)

 

 

(5-5) 

𝑃(𝑠) =  {

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵1𝑤(𝑡) + 𝐵2𝑢(𝑡)

𝑧(𝑡) = 𝐶1𝑥(𝑡) + 𝐷11𝑤(𝑡) + 𝐷12𝑢(𝑡)

𝑦(𝑡) = 𝐶2𝑥(𝑡) + 𝐷21𝑤(𝑡) + 𝐷22𝑢(𝑡)
 (5-6) 

Next, convert the state space representation of 𝑃 to its transfer function representation using the 

standard relationship 
𝑂𝑢𝑡𝑝𝑢𝑡

𝐼𝑛𝑝𝑢𝑡
= 𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷 ≡ 𝐻(𝑠), the result of which can be seen in 

Equation (5-7).  This is written in more compact notation in Equation (5-8).  

𝑍(𝑠)

𝑊(𝑠)
= 𝐶1(𝑠𝐼 − 𝐴)

−1𝐵1 + 𝐷11 ≡ 𝑃11(𝑠)

𝑍(𝑠)

𝑈(𝑠)
= 𝐶1(𝑠𝐼 − 𝐴)

−1𝐵2 + 𝐷12 ≡ 𝑃12(𝑠)

𝑌(𝑠)

𝑊(𝑠)
= 𝐶2(𝑠𝐼 − 𝐴)

−1𝐵1 + 𝐷21 ≡ 𝑃21(𝑠)

𝑌(𝑠)

𝑈(𝑠)
= 𝐶2(𝑠𝐼 − 𝐴)

−1𝐵2 + 𝐷22 ≡ 𝑃22(𝑠)

 (5-7) 

[
𝑍(𝑠)
𝑌(𝑠)

] = [
𝑃11(𝑠) 𝑃12(𝑠)
𝑃21(𝑠) 𝑃22(𝑠)

] [
𝑊(𝑠)
𝑈(𝑠)

] (5-8) 
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Through these transformations, the block diagram shown in Figure 24 becomes Figure 25, the 

two block representation of the augmented system.  

 

 

Figure 25: Two block representation of the augmented system 

Next the controller 𝐾(𝑠) must be accounted for in the representation, the goal of which is to have 

this be a function of only 𝑤(𝑡) with output 𝑧(𝑡).  From Equation (5-8) and Figure 25, we get 

Equations (5-9) - (5-11). 

𝑍(𝑠) = 𝑃11(𝑠)𝑊(𝑠) + 𝑃12(𝑠)𝑈(𝑠) (5-9) 

𝑌(𝑠) = 𝑃21(𝑠)𝑊(𝑠) + 𝑃22(𝑠)𝑈(𝑠) (5-10) 

𝑈(𝑠) = 𝐾(𝑠)𝑌(𝑠) (5-11) 

By rearranging variables, the transfer function 𝑇𝑍𝑊(𝑠) is built (shown in Equations (5-12)-

(5-15)).  Note that the frequency variable, 𝑠, has been omitted for clarity. 

𝑌 = 𝑃21𝑊 +𝑃22𝐾𝑌 ⇒ 𝑌 = (𝐼 − 𝑃22𝐾)
−1𝑃21𝑊 (5-12) 

𝑈 = 𝐾(𝐼 − 𝑃22𝐾)
−1𝑃21𝑊 (5-13) 

𝑍 = 𝑃11𝑊 + 𝑃12𝐾(𝐼 − 𝑃22𝐾)
−1𝑃21𝑊 (5-14) 

𝑍𝑊−1 = 𝑃11 + 𝑃12𝐾(𝐼 − 𝑃22𝐾)
−1𝑃21 ≡ 𝑇𝑍𝑊 (5-15) 
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The multivariable transfer function,  𝑇𝑍𝑊(𝑠), is the transfer function of 𝑊(𝑠) to 𝑍(𝑠) for the 

closed loop system shown in Figure 25.   

One final piece of theory remains to define the 𝐻∞ control problem—that of defining the infinity 

norm of a system.  Consider a generic LTI system, 𝐻.  The infinity norm of 𝐻, denoted ‖𝐻‖∞, is 

defined as the supremum, or the least upper bound, of the largest singular values of its transfer 

function for all values along the imaginary axis, 𝑗𝜔.  This is written in compact notation in 

Equation (5-16) [41].  What this means practically is that ‖𝐻‖∞ is a measure of the maximum 

effect any given input to 𝐻 has on its output for all input to output combinations over all 

frequencies.  

𝐻(𝑠) = {
𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)
⇒ 𝐻(𝑠) = 𝐷 + 𝐶(𝑠𝐼 − 𝐴)−1𝐵 

 

‖𝐻‖∞ = sup
𝜔∈ℝ

𝜎max[𝐻(𝑗𝜔)]   

(5-16) 

Finally, the 𝐻∞ control problem can be stated: design a controller 𝐾(𝑠) which stabilizes the 

closed loop system and minimizes the maximum effect the combination of command signals, 

external disturbances, and feedback noise (𝑤(𝑡)) has on a set of defined outputs, 𝑧(𝑡).  In other 

words, design a stabilizing controller, 𝐾(𝑠), such that ‖𝑇𝑍𝑊‖∞ is minimized.  

Numerically, this is a very challenging problem.  In practice, this value is not minimized. 

Instead, it is customary to modify the problem statement to a sub-optimal result, namely, find 

𝐾(𝑠) such that ‖𝑇𝑍𝑊‖∞ < 𝛾 where 𝛾 > 0.  Numerically, this problem is far more conducive to 

solution by computers [43]. 

The procedure for numerically calculating 𝐾(𝑠) consists of the following: first choose a large 

value for 𝛾.  Next, calculate 𝐾(𝑠) for that given value.   If a controller is found, choose a new, 
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smaller 𝛾 and repeat by calculating a new 𝐾(𝑠).  This process is repeated until no smaller 𝛾 can 

be found which produces a controller. The details for this procedure can be found in Reference 

[43]. 

5.2 Mixed Sensitivity Weighting Matrix Selection Theory 

(Note that the derivation presented in this section has been adapted for the 𝐻∞ Mixed Sensitivity 

problem from a more general discussion of Sensitivity and Co-Sensitivity  in Chapter 9.2 of 

Reference [38]) 

To design an 𝐻∞ controller using the mixed sensitivity framework, The designer need only select 

appropriate weighting matrices for 𝑊1(𝑠), 𝑊2(𝑠), and 𝑊3(𝑠) (shown in Figure 24).  By doing 

so, a set of outputs from the system are artificially constructed, denoted as 𝑧(𝑡).  As the ultimate 

goal of the 𝐻∞ synthesis process is to minimize the impact 𝑤(𝑡) has on 𝑧(𝑡), it is worthwhile to 

consider the makeup of 𝑤(𝑡).  First, recast each of the signals shown in Figure 21 by taking the 

Laplace Transform of each (Equation (5-17)).  Also, define the error in the system as the 

difference between the real world output, 𝓎(𝑡) and the reference signal, 𝑟(𝑡).  This is shown in 

Equation (5-18).  Note that 𝑟(𝑡) is not shown in Figure 21 through Figure 23.  This is because all 

the signals shown in these figures are corrupted with noise and disturbance.  

ℒ{𝑟(𝑡)} = 𝑅(𝑠), ℒ{𝑑(𝑡)} = 𝐷(𝑠), ℒ{𝑛(𝑡)} = 𝑁(𝑠) 
 

  ℒ{𝑦(𝑡)} = 𝑌(𝑠), ℒ{𝑦𝐺(𝑡)} = 𝑌𝐺(𝑠), ℒ{𝓎(𝑡)} = 𝒴(𝑠) 
 

  ℒ{𝑤(𝑡)} = 𝑊(𝑠) 

(5-17) 

𝑒(𝑡) = 𝓎(𝑡) − 𝑟(𝑡)    ⇒    𝐸(𝑠) =  𝒴(𝑠) − 𝑅(𝑠) (5-18) 

Next, define the transfer function from the Laplace transform of the combined system inputs, 

𝑊(𝑠), to the controller input, 𝑌(𝑠), (Equation (5-19)).  Similarly define the transfer function 
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from the combined system inputs to the idealized plant model output, 𝑌𝐺(𝑠), (Equation (5-20)).  

The two resulting transfer functions, 𝑆(𝑠) and 𝑇(𝑠),  are called the Sensitivity and 

Complementary Sensitivity (Co-Sensitivity) respectively. Note from Figure 24, 𝑊1(𝑠) weights 

the Sensitivity function, while 𝑊3(𝑠) weights the Co-Sensitivity of the closed loop system.  

𝑊(𝑠)−1𝑌(𝑠) = [𝐼 + 𝐾(𝑠)𝐺(𝑠)]−1 ≡ 𝑆(𝑠) (5-19) 

𝑊(𝑠)−1𝑌𝐺(𝑠) = 𝐾(𝑠)𝐺(𝑠)[𝐼 + 𝐾(𝑠)𝐺(𝑠)]
−1 ≡ 𝑇(𝑠) (5-20) 

The expressions for 𝑌(𝑠) and 𝑌𝐺(𝑠) may be rewritten as in Equation (5-21) and (5-22).   

𝑌(𝑠) = 𝑊(𝑠)𝑆(𝑠) (5-21) 

𝑌𝐺(𝑠) = 𝑊(𝑠)𝑇(𝑠) (5-22) 

 

Recall that 𝑤(𝑡) = 𝑟(𝑡) − 𝑑(𝑡) − 𝑛(𝑡), the Laplace transform of which is 𝑊(𝑠) = 𝑅(𝑠) −

𝐷(𝑠) − 𝑁(𝑠).  Substitute this expression into Equations (5-22) to get Equations (5-23). 

𝑌𝐺(𝑠) = 𝑅(𝑠)𝑇(𝑠) − 𝐷(𝑠)𝑇(𝑠) − 𝑁(𝑠)𝑇(𝑠) (5-23) 

From Figure 21, 𝓎(𝑡) = 𝑑(𝑡) + 𝑦𝐺(𝑡).  Taking the Laplace transform of this, we get Equation 

(5-24).  Substitute Equation (5-23) into (5-24) and group like terms to get Equation (5-25).  

𝒴(𝑠) = 𝑌𝐺(𝑠) + 𝐷(𝑠) (5-24) 

𝒴(𝑠) = [𝑅(𝑠) − 𝑁(𝑠)]𝑇(𝑠) + 𝐷(𝑠)[𝐼 − 𝑇(𝑠)] (5-25) 

Next, substitute Equation (5-25) into the Laplace domain representation of system error, 

Equation (5-18). Rearrange terms to get Equation (5-26).  

 𝐸(𝑠) =  𝑁(𝑠)𝑇(𝑠) + 𝐷(𝑠)[𝐼 − 𝑇(𝑠)] − 𝑅(𝑠)[𝐼 − 𝑇(𝑠)] (5-26) 
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Consider the sum of the Sensitivity and the Co-Sensitivity functions.  Equation (5-27) shows that 

they sum to identity. 

𝑆(𝑠) + 𝑇(𝑠) = [𝐼 + 𝐾(𝑠)𝐺(𝑠)]−1 + 𝐾(𝑠)𝐺(𝑠)[𝐼 + 𝐾(𝑠)𝐺(𝑠)]−1

𝑆(𝑠) + 𝑇(𝑠) = [𝐼 + 𝐾(𝑠)𝐺(𝑠)][𝐼 + 𝐾(𝑠)𝐺(𝑠)]−1

𝑆(𝑠) + 𝑇(𝑠) = 𝐼

 (5-27) 

 

Equation (5-27) implies that 𝐼 + 𝑇(𝑠) = 𝑆(𝑠).  Substituting this relationship into Equations 

(5-25) and (5-26) to get Equations (5-28) and (5-29) respectively. 

𝒴(𝑠) = [𝑅(𝑠) − 𝑁(𝑠)]𝑇(𝑠) + 𝐷(𝑠)𝑆(𝑠) (5-28) 

 𝐸(𝑠) =  𝑁(𝑠)𝑇(𝑠) + [𝐷(𝑠) − 𝑅(𝑠)]𝑆(𝑠) (5-29) 

As the goal of the controller is to have the output equal the reference input, the Sensitivity and 

Co-Sensitivity should be shaped to attenuate 𝐷(𝑠) and 𝑁(𝑠) while conducting 𝑅(𝑠) through to 

the system output.  Additionally, an ideal controller will have zero error, meaning the Sensitivity 

and Co-Sensitivity attenuate all signals to the greatest extent possible.  However, simultaneously 

achieving all of these characteristics cannot be achieved with constant magnitude Sensitivity and 

Co-Sensitivity over all frequencies.  Instead, their Bode plots must be shaped.  

Consider the desired characteristics of each of the signals in Equation (5-28) and (5-29).  For 

many control problems, the reference signal is constant or very slowly changing, implying that 

they tend to have large magnitude at low frequencies and low magnitude at high frequencies.  A 

typical Bode plot of 𝐷(𝑠) is shown in Figure 26a and one for 𝑁(𝑠) in Figure 26b.   
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Figure 26: Typical Bode plots of disturbance magnitude (a) and measurement noise (b) [38] 

Combining this knowledge with Equation (5-28), for optimal tracking performance, 𝑇(𝑠) should 

have low attenuation at low frequencies to preserve 𝑅(𝑠) and high attenuation at high 

frequencies to degrade 𝑁(𝑠).  This implies T(s) should take the form of a low pass filter.  As a 

consequence of 𝑆(𝑠) + 𝑇(𝑠) = 𝐼, 𝑆(𝑠) should take the form of a high pass filter. This is 

beneficial as, in order to remove the low frequency disturbance from the tracking signal, 𝑆(𝑠) 

should have large attenuation at low frequencies, where 𝐷(𝑠) is large.  

These properties of 𝑇(𝑠) and 𝑆(𝑠) are reinforced by the tracking error equation.  In order to have 

low error in the system, all signals in Equation (5-29) should be attenuated.  As 𝑆(𝑠) filters out 

low frequency signals (which includes both the disturbance and reference signal) and 𝑇(𝑠) filters 

out the high frequencies (noise) , 𝐸(𝑠) should be attenuated over all relevant frequencies.  

This lends guidance to how the weighting functions 𝑊1 and 𝑊3 should be shaped. As a 

consequence of Equation (5-21),  𝑊1 operates directly on 𝑆(𝑠).  This implies 𝑊1 should have 

high penalties on low frequency signals, and lower penalties on high frequency signals, forcing 

𝑆(𝑠) to take the form of a high pass filter.  Similarly, because of Equation (5-22), 𝑊3 penalizes 
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𝑇(𝑠).  This means 𝑊3(𝑠) should have a high penalty on high frequencies and low penalty on low 

frequencies, making 𝑇(𝑠) a low pass filter.  By shaping the weighting functions, and thus the 

controller in conjunction with the system in this manner, a system which has good noise and 

disturbance rejection and good tracking performance can be achieved. 

The process of selecting 𝑊2 is more straightforward. It penalizes the relative use of each control 

actuator.  Typically, this is chosen as a diagonal matrix with scalar values on its diagonals.  If, 

however, it is found that the controller drives the actuators at undesired frequencies, a more 

careful examination of 𝑊2 can be made.   

The reader should be cautioned that this is not the only way in which the three Mixed Sensitivity 

weighting matrices may be defined.  The method presented above provides good tracking and 

disturbance/noise rejection for a broad range of systems.  However, if a designer has a known 

signal which must be attenuated, a more restrictive set of weighting matrices may be designed.  

An example of such a design may be found in Reference [44]. 

5.3 Weighing Matrix Selection for the GHV 

Designing an 𝐻∞ controller for a system using the Mixed Sensitivity framework is a study in 

finding the best weighting functions which result in the desired closed loop performance of the 

system.  For many designs, the designer assumes a given structure to the weighting matrices 

(such as 𝑊1 as a first order low pass filter or 𝑊3 as a high pass filter).  The specific values 

defining the structure are then iterated upon until the desired performance criteria are met [45].  

Such design practices are demonstrated in Reference [46]–[49]. 
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Reference [45] presents a method by which the specific shape of each weighting matrix may be 

selected.  However, this method requires that the 𝐻∞ problem may be solved for the resulting 

weighting matrixes.  This was not the case with the GHV.  

Owing to the complex nature of the hypersonic dynamic system, the 𝐻∞ synthesis algorithm is 

highly sensitive to the three sets of frequency weighting functions.  Many candidate matrices do 

not allow the synthesis algorithm to converge.  Even if a solution is produced, there is no 

guarantee that the solution will be stable for any significant input when the closed loop system is 

formed.  To get around this, a Monte Carlo search was conducted to find a reasonable set of 

weighting parameters which produced the desirable performance.  Figure 27 diagrams the 

procedure taken to determine the controller. 

 

Figure 27: Weighting matrix selection 

As the system consisted of four inputs and four outputs, there had to be four frequency 

dependent entries in each one of the three weighting functions.  For simplicity, the weighting 

matrices associated with the control inputs (𝑊2) are fixed as constant over all frequencies, 

resulting in a static gain.  Similarly, all entries of 𝑊1 took the form of a low pass filter, while all 

entries of 𝑊3 were shaped as high pass filters.  This reduced the number of random parameters to 
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be selected to seven—pole locations for 𝑊1 and 𝑊3, zero locations for 𝑊1 and 𝑊3, and static 

gains for 𝑊1, 𝑊2 and 𝑊3.  A candidate weighting matrix was composed of four sets of these 

randomly selected values, one each for every input/output of the system.  

To reduce the scope of the possibilities, a search region was defined.  Figure 28 shows the 

selected regions for each weighting matrix and a set of potential candidate weighting matrix 

entries.  All possible weighting functions explored by the Monte Carlo search fall within the 

shaded regions.  The cutoff frequencies shown were chosen such that the system would attenuate 

noise and disturbances seen by physical systems in the real world (such as those shown in Figure 

26). 

 

Figure 28: Candidate weighting matrices 
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With the Monte Carlo search space defined, the 𝐻∞ synthesis algorithm could be run.  Only one 

of the 4,485 linear models of the system could be used to generate the 𝐻∞.  In order to have the 

broadest applicability to all the linear models beyond the one chosen for this exploration, a linear 

model known to be challenging to control was selected.  Each candidate matrix was tested 

following the procedure given in Figure 27. 

First a candidate set of weighting matrices was generated. The 𝐻∞ synthesis algorithm within 

MATLAB® was executed.  If the controller could be found, it was tested by checking the closed 

loop performance in the presence of a step input.  If the step input did not destabilize the 

controller, its performance was analyzed. If it did not stabilize the system, it was rejected and a 

new set of weighting functions was generated. 

To analyze the successfully stabilizing controller, a cost function, Equation (5-30), was 

synthesized.  The cost function looks at the time history of each output from the system when a 

step input is injected to each of the controller’s inputs separately.  Ideally, a controller would 

completely decouple the dynamics of the system such that a command sent through the controller 

would only affect that same output in the system.  This is not practical in reality, however.  As a 

result, there will always be some amount of off-axis effects.  The cost equation takes this into 

account by comparing the average of the time history for each signal (𝑦̅𝑖𝑗) against the ideal, 𝑦̅𝑖𝑗
∗ .  

Note that 𝑦̅𝑖𝑗
∗ = 1 for all 𝑖 = 𝑗 and 𝑦̅𝑖𝑗

∗ = 0 elsewhere. The absolute value of each one of these 

quantities is weighted by a scalar cost, 𝑐𝑦𝑖𝑗, and summed. 

The time needed to stabilize the system is also weighted by 𝑐𝑡.  It weights the magnitude of the 

difference between the time needed to stabilize the system, max (𝑡), and the ideal time it should 

take to stabilize the system, 𝑡∗.  
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𝒞 = [∑∑|𝑦̅𝑖𝑗 − 𝑦̅𝑖𝑗
∗ |𝑐𝑦𝑖𝑗

𝑚

𝑗=1

𝑛

𝑖=1

] + |𝑚𝑎𝑥(𝑡) − 𝑡∗|𝑐𝑡 (5-30) 

The cost function parameters were manipulated until the resulting relative magnitude of the costs 

for each candidate controller matched the objective design parameters.  

While it may have been possible to attempt to minimize the cost equation using an algorithm 

capable of handling discontinuous search spaces, that approach was deemed too onerous.  

Instead, a threshold was set for an acceptable cost.  The Monte Carlo search was terminated after 

a set number of controllers were found with acceptable costs.   

The candidate controllers were then tested on the full range of linear system models.  The 

performance of the controllers capable of stabilizing all the system models were then objectively 

assessed and the final controller was chosen.  As with any control system design, the final closed 

loop system must be assessed by a human.  In this case, the final controller is chosen such that it 

was the candidate controller with the least overshoot, fastest rise time, least amount of 

oscillation, and smallest overall stead state error. The final weighting functions used to 

synthesize the controller can be seen in Figure 29.  
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Figure 29: Weighting functions used to develop the 𝑯∞ controller 
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 Controller Implementation 

It is common in aircraft control problems for the designer to opt for a two loop solution to 

control an autonomous system [50].  Typically, the inner loop controller will handle aircraft 

stability and robustness compensation, while the outer loop controller adds guidance logic, such 

as in Reference [51], [52].  The outer loop controller may be as simple or complex as the 

designer wishes. 

For the outer loop controllers to work effectively, the inner loop controller must stabilize the 

aircraft throughout the entire flight envelope in which the outer loop controller commands.  Due 

to the nonlinearity of the GHV (see Section 4.4) one single inner loop controller will not suffice 

to control the system over the entire envelope.  It is common practice to alleviate this problem by 

designing multiple inner loop controllers, each designed for a separate LTI model of the system, 

then link these controllers together using some means of interpolation.  This approach is called 

gain-scheduling [53]. 

For this work, one gain-scheduled, MIMO, inner loop controller and three outer loop controllers 

were used.  Two of these outer loop controllers are Single-Input Single-Output (SISO), while the 

third is MIMO.  The inner loop controller serves to stabilize the system while the outer loop 

controllers provide commands to the inner loop control to effect speed and trajectory.   

6.1 𝑯∞ Controller Gain-Scheduling 

Gain-Scheduling Architecture  

Once the controllers have been designed, the next task is to implement that controller into the 

system.  Note that because the controller was designed using only a LTI model of the aircraft, 

that controller is only valid while aircraft perturbations are in the proximity of the trim points.  In 
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the case of the GHV, these regions are very small, particularly in the lower Mach ranges.  This 

implies many different controllers must be designed, each using a different linear model.  To 

cover a broad range of Mach numbers, the aircraft must be trimmed at several points and a series 

of controllers must be designed to make the transition smooth.  This is the standard gain-

scheduling problem.  This method transitions between controllers at different trim points based 

on a gain-scheduling parameter.  The simplest application of this method is to schedule based on 

only one parameter.  Equation (6-1) shows such an implementation.  Here, 𝒦0 and 𝒦1 are 

distinct controllers and 𝑓(𝜎) is a function on the range 𝜎0 < 𝜎 < 𝜎1.  𝐾 is the gain-scheduled 

controller and 𝜎 is the gain-scheduling parameter [54]. 

𝐾 = 𝒦0𝑓(𝜎) + 𝒦1(1 − 𝑓(𝜎)) 

0 ≤ 𝑓(𝜎) ≤ 1    ∀    𝜎0 < 𝜎 < 𝜎1 
(6-1) 

Note that 𝜎 → 𝜎0 ⇒ 𝐾 → 𝒦0.  Similarly, 𝜎 → 𝜎1 ⇒ 𝐾 → 𝒦1.  While the controllers 𝒦0 and 𝒦1 

are capable of controlling the aircraft in trim points 0 and 1 respectively, there is no guarantee 

that gain  𝐾 can control the aircraft at either point.  As 𝜎 changes, the intermediate controllers 

may not produce a controller capable of stabilizing the system.  Proper selection of the function, 

𝑓, and sufficiently closely selected 𝒦0, 𝒦1, 𝒦2, … along the scheduling parameter 𝜎 will reduce 

the risk of instability [54]. 

For application to the GHV, a cubic spline function was chosen as the scheduling function, 𝑓.  A 

cubic spline, in this paper referred to simply as a spline, is a piecewise function where each piece 

is a third order polynomial.  For a two dimensional case, let 𝑔(𝑥) be a generic function defined 

over the range [𝑎, 𝑏].  The cubic spline, 𝑆(𝑥) is defined such that: 

1. 𝑆(𝑥) interpolates 𝑔(𝑥) at points 𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛 
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2. 𝑆(𝑥) is continuous on [𝑎, 𝑏] 

3. The first derivative of 𝑆(𝑥), 𝑆̇(𝑥), is continuous on [𝑎, 𝑏] 

4. The second derivative of 𝑆(𝑥), 𝑆̈(𝑥), is continuous on [𝑎, 𝑏] 

All cubic splines in this work have Not-A-Knot end conditions, implying that the third derivative 

of 𝑆(𝑥) is continuous at points 𝑥 = 𝑥1 and 𝑥 = 𝑥𝑛−1.  For such end conditions, the maximum 

error of the interpolation is shown in Equation (6-2) [55]–[57]. 

max
𝑥∈[𝑥𝑖−1,𝑥𝑖]

|𝑔(𝑥) − 𝑆(𝑥)| ≤
Δx
4

4!
max
𝑥∈[𝑎,𝑏]

|𝑔(4)(𝑥)|  

 

Δx = max
𝑖
|𝑥𝑖 − 𝑥𝑖−1| 

(6-2) 

 

Another benefit of using spline interpolation is that it is easily extendable to allow gain-

scheduling over multiple scheduling parameters [58].  The GHV must be scheduled along three 

different scheduling parameters: Mach, weight, and altitude.   

Gain-Scheduling Implementation  

In the case of the 𝐻∞ controller, each individual 𝒦𝑖 is its own state space model.   

𝒦𝑖 = {
𝑥̇ = 𝒜𝑖𝑥 + ℬ𝑖𝑢
𝑦 = 𝒞𝑖𝑥 + 𝒟𝑖𝑢

= {
𝑥̇ = 𝒜𝑖𝑥 + ℬ𝑖𝑢
𝑦 = 𝒞𝑖𝑥

  (6-3) 

Note that in the case of the 𝐻∞ controller for the GHV, 𝒟𝑖 = 0. 

The GHV has three primary states that, when changing, cause the system to change 

nonlinearly—namely speed (Mach number), altitude, and aircraft weight.  This means that 

controllers for each different Mach number, altitude, and weight must be calculated.  To 

facilitate gain-scheduling off of these three parameters, define a set of controllers: 
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𝓚 = {𝒦|𝒜 ∈ 𝓐,ℬ ∈ 𝓑, 𝒞 ∈ 𝓒} 
𝓐 ∈ ℝ17 ×ℝ17 × ℝ𝑙 × ℝ𝑛 ×ℝ𝑚  

𝓑 ∈ ℝ17 ×ℝ4 × ℝ𝑙 × ℝ𝑛 ×ℝ𝑚 

𝓒 ∈ ℝ4 ×ℝ17 × ℝ𝑙 ×ℝ𝑛 × ℝ𝑚 

(6-4) 

with 𝑙, 𝑚, and 𝑛 being the discrete number of Mach, altitude, and weights under consideration in 

the flight envelope and 𝒦 defined in Equation (6-5).   

The individual elements of 𝓚 are called the nodes of 𝓚, namely 𝒦[𝑖, 𝑗, 𝑘]: 

𝒦[𝑖, 𝑗, 𝑘] = {
𝑥̇ = 𝒜[𝑖, 𝑗, 𝑘]𝑥 + ℬ[𝑖, 𝑗, 𝑘]𝑢

𝑦 = 𝒞[𝑖, 𝑗, 𝑘]𝑥
 

𝒜[𝑖, 𝑗, 𝑘] ∈ ℝ17 ×ℝ17  

ℬ[𝑖, 𝑗, 𝑘] ∈ ℝ17 ×ℝ4 

𝒞[𝑖, 𝑗, 𝑘] ∈ ℝ4 × ℝ17 

(6-5) 

where 𝑖, 𝑗, and 𝑘 are the index values of Mach, altitude, and weight, respectively.  The controller, 

𝐾, can then be found by interpolating between the nodes of 𝓚 using the multidimensional spline 

interpolation gain-scheduling.  This is done element by element where each entry of the matrix 

𝒜,ℬ, and 𝒞 have a separate interpolation function, resulting in 425 separate gain-scheduling 

spline functions.   The Simulink® implementation of the 𝒜[𝑖, 𝑗, 𝑘] is shown in Figure 30.  

Note that controllers between each element of 𝒦 are not necessarily true 𝐻∞ controllers for the 

system.  However, as a consequence of Equation (6-2), the greater the number of controllers 

represented within 𝒦 (i.e., the larger the values of 𝑙, 𝑚, and 𝑛 in 𝓚) the closer the values of the 

resulting controller are to a true 𝐻∞ controller. 
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Figure 30: Interpolation table array for 𝓐[𝒊, 𝒋, 𝒌] 
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Control Region 

While the GHV was linearized for speed ranging from Mach 2 to 23, the controller was only 

developed for a portion of that region.  To demonstrate gain-scheduling’s resilience to changing 

dynamics, the controller was developed to stabilize the system between Mach 5 to 7.  As can be 

seen in Section 4.4 and Appendix 1, this region of straight and level flight has dramatically 

changing dynamics.  The control methodology developed for such a region may be readily 

extended beyond what is presented without difficulty. 

23 Mach numbers, 15 weights, and 13 altitudes were selected to develop the nodes of the gain-

scheduled controller, resulting in 4,485 nodes within 𝓚. The specific spacing is shown in Table 

6.  These values were chosen as they result in a gain-scheduled controller which demonstrated 

smooth transitions when simulating the closed loop system.  

Table 6: Gain-scheduling node parameters 

Scheduling Parameter Range Increment  

Mach Number Mach 4.9 to 7.1 Mach 0.1 

Weight 160,000 to 230,000 lbs 5000 lbs 

Altitude 68,000 to 92,000 ft 2000 ft 

 

6.2 Outer Loop Control Design and Implementation 

The purpose of the inner loop controller is to stabilize the unstable aircraft model.  This, in turn, 

allows an outer loop controller to serve as a guidance control to the system.  As was mentioned 

in the opening to this chapter, many different forms of guidance logic may be used, depending on 

the desired application of the system.  The outer loop controller may be a human piloting the 

system, or a sophisticated collision avoidance system, such as the one shown in Reference [52].  

The outer loop controller designed for the GHV serves to command Mach, altitude, sideslip 
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angle, and yaw angle (𝑀, ℎ, 𝛽, and 𝜓)  in order to maneuver within the flight envelope.  These 

outer loop controllers also serve to drive zero steady state error on key terms within the system, 

an attribute not designed into the inner loop controller.   

With the inner loop controller fully stabilizing the aircraft, a less advanced, easier to tune 

controller may be chosen for simple outer loop guidance.  A combination of PI 

(proportion/integrator) and PID (proportional/integrator/derivative) is selected for outer loop 

control.  Note that the outer loop controllers presented in this section are not intended as a final 

navigation solution for the aircraft.  Rather, it is intended to exercise the inner loop controller 

within simulation.  To this end, the automated PID tuning tools within MATLAB® are used to 

simplify development.   

Figure 31 illustrates the arrangements of the controllers incorporated into the system, along with 

the naming convention of each signal.  Note that 𝐺 is the GHV dynamic model, 𝐾∞ is the 𝐻∞ 

controller and 𝐾1, 𝐾2, and 𝐾3 are the PI and PID controllers.  

 

Figure 31: Inner and outer loop control implementation 

𝑲𝟏 and 𝑲𝟐 

As shown in Figure 31, 𝐾1 generates the inner loop side slip command, 𝛽∞𝑟𝑒𝑓 .  This is a PID 

controller which results in zero steady state error, something not guaranteed by the inner 
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loop controller.  This loop closure was chosen to exercise the GHV’s performance in 

directionally steady flight, as will be demonstrated in Chapter 7.   

𝐾2 commands roll angle, 𝜙, based on a commanded yaw angle, 𝜓.  While a PID controller 

was tested on this loop closure, a PI controller showed better performance.  𝜓 was selected 

for command to, once again, enforce directionally steady flight.   

The control equation for 𝐾1 and 𝐾2 are given in Equation (6-6).  This is the general formulation 

for a PID controller where 𝐾𝑃, 𝐾𝐼, and 𝐾𝐷 are the weighting associated with the proportional, 

integrator, and derivative, respectively.  𝐾𝑁 is the filter coefficient.  

𝐾𝑃 + 𝐾𝐼
1

𝑠
+ 𝐾𝐷

𝐾𝑁

1 + 𝐾𝑁
1
𝑠

 (6-6) 

To select the appropriate values for the gain, Simulink’s® “PID” block was used.  This block 

incorporates a linearization algorithm similar to that used to generate the linear models for the 

entire dynamic system (see Section 4.2).  The algorithm linearizes about the trip point used to 

initialize the entire dynamic model, reducing the system down to a single input and single 

output—namely the input and output to the block.  The user then chooses the response 

characteristic by selecting the response time and the transient characteristics of the newly created 

linear system’s response to a step input.  The end results are the four parameters needed to fully 

define the PID controller.  Note that the user never explicitly interacts with the system model, but 

rather tune based on the response to the internally generated linear system [59]. 

Once the controller has gone through its initial automated tuning, the entire nonlinear model is 

run with the resulting characteristics. The individual parameters are then tuned either by another 
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iteration using the automated tuning process described above or manually.  This process is 

repeated until a reasonable controller is found. 

𝑲𝟑  

As shown in Figure 31, 𝐾3 is a MIMO controller. This was done because, in order to reach the 

desired altitude, both Mach number and 𝜃 must be commanded simultaneously.  To accomplish 

this, a PI controller is placed on the direct signals (𝑀𝑒 to 𝑀∞𝑟𝑒𝑓 and ℎ𝑒 to 𝜃∞𝑟𝑒𝑓) and the cross 

axis signals (𝑀𝑒 to 𝜃∞𝑟𝑒𝑓   and ℎ𝑒 to 𝑀∞𝑟𝑒𝑓).  The implementation equation is shown in Equation 

(6-7).  

[
𝑀∞𝑟𝑒𝑓

𝜃∞𝑟𝑒𝑓 
] = [

𝑃11 + 𝐼11
1

𝑠
𝑃12 + 𝐼12

1

𝑠

𝑃21 + 𝐼21
1

𝑠
𝑃22 + 𝐼22

1

𝑠

] [
𝑀𝑒

ℎ𝑒 
] (6-7) 

Unlike 𝐾1 and 𝐾2, automatic tuning was not possible.  Instead, this controller was tuned 

manually by selecting appropriate coefficients using dimensional analysis and iterative 

modification based on the nonlinear simulation system response.  This process does not 

explicitly require calculating a plant model.  As a consequence, however, many controller 

iterations are needed to arrive at a satisfactory controller.  The resulting controller yields a Mach 

and 𝜃 trajectory which the inner controller can follow that will result in the desired commanded 

Mach and altitude. 
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 Results  

With the fully designed controller implemented in the nonlinear model, the resulting simulation 

shows a stable system under nominal conditions.  For this simulation, the GHV was commanded 

to transition from Mach 5 to 7 while changing altitude from 70,000 to 90,000 feet beginning at 

10 seconds into the simulation.  All other inputs of the system are held at zero.  This range was 

chosen to test the controller ability to transition through a region with dramatically changing 

dynamics.   

The controller in use is smoothly transitioning between numerous designed controllers, varying 

as Mach number, altitude, and weight changes.  The weight of the system is constantly changing 

as a result of changing throttle position.  Moments of Inertia and center of gravity are also 

changing as fuel is burnt.  The controller gain-schedules to account for the shifting dynamics.  

Note that the system is commanded using a gradual transition as opposed to an abrupt step input.  

This more realistically represents typical speed increases in the aircraft.  This also allows the 

controller to account for the nonlinearly changing dynamics being driven by the speed increase. 

7.1 Controller Responses 

Due to the presence of both an inner and outer loop controller, it is reasonable to look at their 

inputs related to output of the system separately.  

Inner Loop Controller 

The inner loop controller consists of the outputs from the outer loop controllers as they feed into 

the 𝐻∞  controller.  The commanded signals (denoted with subscript ∞, 𝑟𝑒𝑓) are generated by 

the PI and PID controllers of the outer loop controller.  As the formulation of the inner loop 
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controller did not have an integrator added to its development, it is expected that there will be a 

steady state error between the commanded values and the system’s outputs.  The steady state 

error can be seen clearly in Figure 32.  Note that the commanded roll angle, 𝜙𝑐𝑚𝑑, is 

significantly different than the system’s roll angle.  This is due to the closed loop system’s 

insensitivity to roll angle commands. The predominant modes which are influenced by 𝜙 are the 

Spiral modes (Mode 4 in Figure 13).  At this Mach range, this mode is near the origin and is, 

therefore, harder to influence.  The outer loop controller compensates for this by applying greater 

command values to affect small changes. 

 

Figure 32:  Inner loop controller commands to outputs 
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Outer Loop Controller  

The outer loop feeds inputs into the inner loop 𝐻∞ controller through three different PI or PID 

controllers.  The inputs are Mach number, Ψ, 𝛽, and altitude (ℎ).  These can be seen in  Figure 

33.  Due to the presence of the integrator on each system, there should be no steady state error 

from input to output.  As the intent of the GHV is as a single-stage-to-orbit vehicle, the 

commanded real world trajectory would increase speed and altitude simultaneously.  For this 

simulation, Mach is commanded from 5 to 7 while altitude is commanded from 70,000 to 90,000 

feet.  𝛽 and Ψ are held at zero to preserve coordinated flight and trajectory.  

Some oscillation is observed in altitude.  Figure 34 examines this more closely by extending the 

simulation to 2500 seconds.  Oscillations such as these are typically associated with an excited 

Phugoid mode.  This is not the case here, however.  A Phugoid mode oscillation would have a 

period of about 20 seconds [34].  In this case, the system oscillates with a 150 second period, 

indicating it has a different source.  The oscillations shown are a consequence of the outer loop 

controller.  Recall that the controller governing this state is a MIMO PI controller, and is 

therefore, more challenging to tune due to the greater number of tunable parameters.  Additional 

tuning may reduce the amount of oscillation, however, it is not necessary.  The oscillations seen 

are only 1.5% of the commanded altitude change while the overshoot is only 1%.  Note that a 

system with optimal damping (𝜁 = 0.707), has overshoot of 4.33% [60].  While this is only true 

for SISO systems, the same standard for overshoot tolerance is applicable.  The 1% seen here is 

well within acceptable limits for control systems.   

Looking at the control surface deflections, it can be seen that they remain reasonably small.  All 

deflections are within reasonable physical limits and saturation is never seen.  It should be noted 

that the elevator continues to drift as the simulation progresses.  This is due to the fact that the 
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aircraft has changing mass.  As fuel is burnt, the elevator must continually change in order to 

keep the aircraft within trim. 

One alarming characteristic of the GHV is seen in the elevator deflection (see Figure 35).  Even 

at high speeds, the deflection remains large.  This is a consequence of the aft CG position of the 

GHV.  Note again that elevator deflection is defined as positive when trailing edge is up.  In 

order for the aircraft to remain in trim, the system must exert enough control force to counteract 

the CG position.  A negative deflection is required to counteract the pitch up tendency.  This 

same phenomenon was observed in Reference [19].  That model showed deflections of between 

9 and 10 degrees at Mach 8 while at 85,000 feet altitude.   
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Figure 33: Outer loop controller commands to outputs 

 

Figure 34: Commanded vs. demonstrated altitude showing marginal stability 

0 50 100 150 200 250 300 350 400 450 500
4

6

8

Mach

 

 

Mach

Mach
cmd

0 50 100 150 200 250 300 350 400 450 500
-5

0

5

d
e
g

s



 

 

0 50 100 150 200 250 300 350 400 450 500
-5

0

5

d
e
g

s



 

 

0 50 100 150 200 250 300 350 400 450 500
70,000

80,000

90,000

Time (s)

F
e
e
t

h

 

 

h

h
cmd




cmd




cmd

500 1000 1500 2000 2500
89,600

89,800

90,000

90,200

90,400

90,600

Time (s)

F
e
e
t

h

 

 

h

h
cmd



100 

 

 

Figure 35: Control surface commanded values 
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the Longitudinal dynamics.  This is significant because this effect has been largely disregarded in 

the open literature.  

Below are plotted additional system states.  Figure 36 shows the changing body axis angles.  

Once again, coupled Longitudinal and Lateral-Directional dynamics are seen with small 

deviations in Φ.  For a closer view of this parameter, see Figure 38.  Small deviations in Ψ are a 

consequence of changing Φ.  As the magnitude of these changes are very small, the system 

shows good Ψ tracking.  The small oscillation observed in Θ is caused by the MIMO PI outer 

loop controller as discussed above.  

 

Figure 36: Body axis angles 
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Figure 37: Stability axis angles 

 

Figure 38: Closer view of angles 
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the change in air density, resulting in a higher trim magnitude.  𝛾 follows a smooth trajectory 

which is indicative of a smooth transition between altitudes.  As altitude reaches its commanded 

value, 𝛾 returns to zero.  𝛽, shown more closely in Figure 38, once again demonstrates the 

coupled dynamics within the system. 

The angular rate magnitudes, shown in Figure 39 and Figure 40, are very small, with the 

maximum change less than 0.1 degrees per second.  Additionally, the changes that are evident 

are slow.  For instance, the relatively large oscillation observed in 𝑝 starting around 25 seconds 

has a period of roughly 25 seconds.  If a human were present on the system, such a small change 

(± 0.08 deg/s) over such a large period would not even be noticed.  

 

Figure 39: Angular rates 
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Figure 40: Close view of angular rates 

 

Figure 41: Body velocities 
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changing altitude and speed.  Once this transient is damped out, the change is smooth.  𝑤 also 

decreases slightly as time progresses.  This is due to the shifting CG position within the aircraft.  

The side velocity, 𝑣, is negligibly small relative to the overall velocity of the GHV.  

 

Figure 42: GHV Position within the inertial coordinate system 
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Figure 43: Changing mass parameters 

 

Figure 44: Gain-scheduling throughout the simulation 
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As shown in Section 6.1, 425 separate parameters of the controller are changing in response to 

the changing Mach, altitude, and weight.  Figure 44 indicates where each of the node controllers, 

𝒦, fall within the presented simulation.  At each time step, the controller is slightly different than 

the previous time step as it has been interpolated from between each of the nodes shown.  

Beyond 150 seconds, the controllers do not change as dramatically.  However, due to the 

constantly changing weight, it must still be updated to account for the changing mass, center of 

gravity, and moments of inertia.    

With the gain-scheduling algorithm disabled, changes in any of these three parameters result in 

the system becoming instantly unstable.  The fact that the system remains stable due to 

commanded changes to Mach and altitude shows that the gain-scheduling is performing as 

expected.  Overall, the system tracks very well in nominal conditions.  It is able to handle the 

transition between multiple linear models through the use of gain-scheduling.  The system 

remains stable despite the instability of the system and the nonlinearities of the model.     

Previous works have shown that the 𝐻∞ controller is effective at stabilizing the complex 

dynamics of hypersonic flight [16]–[19]. As with those works, this system shows that a properly 

designed 𝐻∞ controller will stabilize the system.  This work adds to that result by controlling the 

system beyond what has already been accomplished—extending the controlled flight envelope to 

include the cross-coupled Lateral-Directional dynamics as well as increasing the controllable 

Mach number range.   

7.3 Effects of Disturbances on the System 

To test the controller’s resilience to external disturbances, a low frequency random signal was 

injected into the closed loop system as a disturbance as shown in Figure 22.  Note that only 
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frequency domain representations of the signals are shown in this section.  The time domain 

signals show that the system remains stable, but noise dynamics are not particularly noticeable.  

As a result, time domain signals are of limited utility for analyzing the system’s performance.  

Consequently, these plots have been relegated to Appendix 3. 

The below figures show the frequency domain spectral content of each of the commanded 

signals within the inner loop controller. Both Mach and 𝜃 remain almost completely unaffected 

by the disturbances.  The signals that show the greatest deviation are 𝜙 and 𝛽. 

The 𝛽 and 𝜙 channels show considerable sensitivity to low frequency disturbances.  This can be 

attributed to the relationship between the weighting functions 𝑊1and 𝑊3.  As compared to Mach, 

these two weighting matrices are fairly far apart at lower frequencies.  This means that, 

according to the 𝐻∞ formulation, more low frequencies will be passed through by 𝑊1 without the 

attenuating effects of 𝑊3 taking effect.  As higher frequencies are considered, the 𝑊3 attenuates 

to a greater level and the system output of the noisy system begin to resemble the nominal 

system again. 

It should be noted that the weighting functions associated with 𝜃 are also considerably different 

at the shown frequencies, though the noise effects on the system are less dramatic than those of 𝛽 

or 𝜙.  This can be attributed to the natural filtering effects of the GHV dynamics.  This shows the 

system is less susceptible to pitching disturbances.  
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Figure 45: Spectral density of system with disturbances 

 

Figure 46: Spectral density of the nominal system 
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Another important aspect of the noisy system to consider is the control surface spectral content.  

Note that aileron and equivalence ratio show a greater susceptibility to noise than do the rudder 

and elevator.  This is due to several factors.   

The equivalence ratio is penalized to the highest extent among the system inputs by 𝑊2.  The 

result of this penalty is seen in Figure 47 as a lower magnitude signal.  This makes changes in the 

magnitude more noticeable.  The frequency band where the greatest increase occurs is between 

0.2 and 4 Hz (Figure 48).  This band corresponds to a similar, albeit less pronounced rise in 

Figure 47.  This region is highlighted in both figures.  The equivalence ratio has a relatively large 

increase in this region.  This indicates that the throttle control in the system is susceptible to 

these frequencies.  The consequence of this is that external noise will be conducted into the 

engine.  As this is a disturbance range typically seen in aircraft system, this trait is undesirable 

overall.  

The rise in aileron magnitude can be attributed to the increase in 𝜙 magnitude seen in Figure 45.  

The frequencies below 1 Hz are the most significantly affected in 𝜙, corresponding to a similar 

rise in 𝛿𝑎 in Figure 48.  As aileron is the principal control surface affecting 𝜙, it is expected that 

more aileron will be used to counteract it. 
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Figure 47: Spectral density of nominal system's control surfaces 

 

Figure 48: Spectral density of disturbed system's control surfaces 
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controls equally over all frequencies.  Thus, in the controller synthesis, no filtering effect was 

imparted into the input signal dynamics.  

Note that the model development does not include actuator dynamics.  If present, they would 

serve to filter out higher frequency content in the control surfaces.  In a real system, these 

dynamics should be measured and incorporated in the model.  If not accounted for, these un-

modeled dynamics may destabilize the closed loop system. 

In general, the controller performs as expected as it maintains system stability in the presence of 

external disturbances.  Some noise is conducted into each signal, though it is primarily seen in 

the control surfaces.  This may be mitigated to a certain extent in a real system by actuator 

dynamics, however additional steps should be taken to mitigate noisy commanded values.  As 

the weighting matrices associated with system inputs (𝑊2) do not penalize these signals based on 

frequency, noisy commanded signals are to be expected.  Some amount of noise (particularly at 

low frequencies) in the system is acceptable, however.  Without it, external disturbances would 

destabilize the system.  It is recommended that future iterations of the controller be constructed 

to penalize control surfaces at high frequencies. 

This section shows a preliminary study of the effects of disturbances in the system.  It is by no 

means exhaustive.  The noise injected into the system may not truly characterize what would be 

seen by physical hypersonic aircraft.  Additionally, there is no objective noise threshold which 

the system must remain within.  Further study into hypersonic flight is needed to determine what 

disturbances act on the system and to what level they may be tolerated.   
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 Summary and Conclusion  

This work presents a model of the Generic Hypersonic Vehicle, taking advantage of modern 

software for advanced implementation and simulation.  It incorporates multiple cubic spline 

lookup tables to create a nonlinear dynamic model across a broad range of Mach numbers.  The 

presented model includes both the Lateral-Directional and Longitudinal dynamics in order to 

fully simulate the system as well as provide a means of generating one unified, stabilizing 

controller as opposed to two axis-separated controllers.  In addition, the effects of changing 

altitude and fuel burn are added into the model.   

The nonlinear model is also linearized about straight and level flight over the broad range of 

Mach numbers.  An analysis of the changing linearized dynamic characteristics of the system as 

a function of Mach number is presented along with a comparison to previously implemented 

version of the same system using alternative techniques.   

This work also shows a design approach for developing a gain-scheduled 𝐻∞ controller.  The 

synthesis takes advantage of available computer processing power to perform a 28-degree of 

freedom Monte Carlo search to find an stabilizing 𝐻∞ synthesis using a defined cost function.  

The control synthesis is expanded beyond the single linear system designs previously seen in 

other works, to a broader range of linear models within a portion of the linearized flight 

envelope.  The result is a 3 dimensional, spline interpolated, gain-scheduled controller, 

dependent on Mach, altitude, and weight.  The resulting system is further augmented with the use 

of PI and PID controllers for managing trajectory.  The final closed loop system shows complete 

stability when commanded throughout the flight envelope.  The system performance partially 

degrades when disturbances are introduced, though it still maintains stability despite the added 

dynamics.  
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The model has been generated in such a way that it can be used by others with the appropriate 

files to develop alternative design solutions to the chosen 𝐻∞ controller. This makes it possible 

for the GHV to be implemented as a teaching tool to give students an opportunity to test different 

controllers on a system known to be nonlinear and highly challenging to control.  

The principle impacts or this work are as follows:  

1. Previous works have focused primarily on studying the Longitudinal dynamics of 

hypersonic flight.  This work reinforces their findings while extending the analysis to a 

six degree of freedom model valid over a broad range of Mach numbers.  This expands 

the studied dynamics of the system, revealing non-standard Lateral dynamic 

characteristics previously not reported in the open literature.  In addition, the model 

demonstrates that the Lateral and Longitudinal dynamics are coupled.  This implies that 

future controllers developed for hypersonic flight need to be developed from more than a 

planar representation of the system. 

2. Other controllers developed for hypersonic flight in the open literature primarily focus on 

controlling the three degree of freedom Longitudinal dynamics of the aircraft around a 

single trimmed Mach number with constant mass.  This work expands the area under 

control considerably.  Here, the controller is developed for a six degree of freedom model 

with axis cross-coupling.  This work also expands considerably the region for which the 

system may be commanded.  No previously published work commands a change to either 

Mach or altitude to the magnitude shown here.  Additionally, the complexity of the parent 

nonlinear model allows for the study and design of controllers capable of handling 

changing mass properties including, center of gravity, mass, and moment of inertia.  
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3. The high fidelity of the model over a broad range of Mach numbers allows for a 

controller to be designed for the most dynamically changing region.  By selecting the 

most difficult region to control, the spline gain-scheduling method demonstrates its 

ability to stabilized dramatically changing dynamics.  Subsequent extensions of the 

envelope will prove less challenging.   
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 Future work 

While the gain-scheduled 𝐻∞ control approach successfully stabilizes the GHV and, when 

coupled with external controllers, can command trajectory, many improvements could be made. 

Four additional areas have been identified which could expand upon the work undertaken in this 

document.  The four options for additional study range from the most easily implemented, 

through to the most technically challenging.  

9.1 Weighting Matrix Tuning 

The art of designing an 𝐻∞ controller is all about designing the weighting matrices.  Ideally, the 

designer should have complete knowledge of how the system is affected by the real world in 

order to design the controller to withstand those environments.  With this knowledge, the 

designer may adjust the weighting matrices to coax the desired performance from the system. 

The first improvement that can be made to the presented controller is to continue to fine tune the 

weighting matrices.  While the noise present in the system is tolerable, there is still room for 

improvement. Before any changes are made, however, a few design criteria must be considered.  

First, what noise and disturbance is likely to be seen by the system and how strong is that noise?  

What is meant by a disturbance?  To what level are wind gusts going to affect the system? How 

powerful is the sensor feedback noise?  What is a reasonable amount of allowable noise in the 

system?  Is it enough that the system maintains trajectory control and stability, or should noise 

and disturbances be attenuated to the greatest extent possible?  These and many other questions 

must be identified and addressed to make any modification to the system. 

Once these criteria have been identified, the weighting functions may be shaped.  These weights 

should leverage answers to the above questions.  For instance, if the sensor feedback noise 
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profile is known for a given type of sensor, it should be incorporated into the weighting function.  

The standard shapes of the 𝑊1 and 𝑊3 matrices are only guidelines.  There may be a different, 

higher order transfer function that better represents the disturbances or noise in the system.  As 

long as an understanding of how these weighting matrices relate to the Sensitivity and Co-

Sensitivity Functions, and in turn, the noise, disturbances, and reference signals are maintained, 

these weights can be manipulated.   

Additionally, it may even be necessary to modify the shape of the 𝑊2 weighting function to 

something more than just a constant value.  For instance, in the current version of the controller 

when noise is injected into the system, a 0.2-4Hz signal is propagated to the control surfaces.  

While it does stabilize the system, this may cause other problems to the aircraft structure.  This 

problem may have been mitigated if 𝑊2 penalized higher frequency signals more heavily than it 

does lower frequencies.  

For a complicated system such as the GHV, it may be necessary to break away from the mixed 

sensitivity formation of the 𝐻∞ controller altogether.  A more complicated, but potentially more 

beneficial, version may be possible which would weight pertinent signals directly within the 

nonlinear model. This may improve overall performance and robustness.  

9.2 Eliminate Outer Loop Controllers 

While the 𝐻∞ controller fully stabilizes the system, it does not fully control all the desired states.  

Additional outer loop controllers had to be added to augment the inner loop to achieve practical 

performance.  While functional, this strategy is not ideal.  The presence of the additional 

controller, in essence, adds additional dynamics to the system which were not present when the 

linear models for the GHV were derived.  This means that the inner loop controller was not 
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developed for the system as it is implemented, but, instead for a reduced form of the system.  

Using this two loop technique, there is no guarantee that the resulting system is stable for all 

given inputs.  Though the possibility is remote, under a certain set of inputs, the two sets of 

controllers could act against each other and cause instability.  

To get around this unintended dynamic coupling of multiple controllers, a new, single controller 

may be developed which would include the effects of both sets of controllers of the presented 

design.  This is achieved with two primary modifications to the system. 

One of the reasons for the outer loop controller was to drive the system to zero steady state error 

by including an integrator in the feedback path.  It is common for this task to be handled within 

the inner loop controller. There is no reason that the 𝐻∞ controller could not have this built in 

inherently.  There are two ways of accomplishing this: feed back and command rates or modify 

the weighting matrices.  Feeding back and commanding the rate value of a signal adds an 

integrator into the feedback loop and thus causes zero steady state error in the signal. To get zero 

steady state error by modifying the weighting functions, 𝑊1 should be shaped such that it has a 

pole at the origin for all signals for which zero steady state error is desired.  As frequency of the 

signals 𝑦(𝑡) approaches DC, the penalty from 𝑊1 becomes infinite.  The only way the control 

synthesis algorithm has to compensate for this infinite penalty is for the DC offset to always be 

zero.  This translates to an inherent integrator in the controller [61].   

The second change that should be made to eliminate the outer loop controllers would be to add 

or change which quantities are fed into the control system.  For instance, instead of feeding back 

𝜃 which can then be used to command altitude, feedback altitude itself.  Similarly feeding back 

𝜓 instead of 𝜙 would result in a more easily commanded trajectory.  This creates new 
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challenges, however.  It is conceptually easier to develop a controller when the feed back signals 

correspond (without cross coupling) directly to the command inputs to the system.  Feeding back 

altitude would, as a result, require commanding both elevator and throttle.  While this was 

achieved by the final implementation of the presented control solution, a combined approach 

would be more difficult to troubleshoot.  It may also be found that replacing some feedback 

paths causes less ideal performance elsewhere.  There are also difficulties inherent with adding 

new feedback paths without removing others. As more channels are added in the feedback loop, 

it becomes more challenging to find the appropriate weighting matrices and, inevitably, more 

challenging to develop a single controller.  Additionally, the number of values being commanded 

is limited to the number of actuators within the system.  

A balance should be reached between number of states commanded or regulated and what is 

needed to attain satisfactory performance.  Multiple feedback paths should be explored to 

determine the optimal set of feedback states.  

9.3 Modeling Error and Parameter Uncertainty 

The 𝐻∞ controller has built into its architecture the ability of withstanding many types of 

disturbances.  This work has looked at two types of disturbances in detail already: noise and low 

frequency physical disturbances.  However, there is another type which has not been fully 

explored—system modeling error.  The 𝐻∞ architecture handles these uncertainties as unknown 

state variables in the system and can be designed around.  

There are two types of modeling errors to be considered—additive and multiplicative, 

represented in Figure 49 and Figure 50 respectively.  The Δ blocks in the system represent the 

amount of deviation seen on select variables as defined by the system 𝐺(𝑠).    
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Figure 49: Disturbed and noisy feedback system with additive model uncertainty 

 

 

Figure 50: Disturbed and noisy feedback system with multiplicative model uncertainty 

These structures can be reshaped into the three block representation of the system shown in 

Figure 51 similar to that described in Section 5.1.  The top two blocks can be combined so that 

the system takes the shape shown in Figure 25. The uncertain parameters can then be treated as 

new states of the system which the controller must tolerate [62]. 
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Figure 51: Three block representation 

The benefit of this approach is that the controller can now control a system with unknown 

parameters.  This could be leveraged in the GHV’s 𝐻∞ controller design.  Uncertainty may be 

applied to many of the parameters that vary with Mach, weight, or altitude.  By designing for 

these uncertainties, there would be less need for gain-scheduling as the controller would 

inherently be able to handle the changing system. 

There are tradeoffs to this approach, however.  By increasing the robustness of the controller, 

system performance is lost.  If too many uncertainties are designed into the system, there may 

not even exist a controller capable of stabilizing and controlling the augmented system.  The 

designer needs to take these tradeoffs into account as the controller architecture moves toward 

greater robustness.  
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9.4 Nonlinear Control  

The entire focus of this thesis has been on analyzing and controlling the nonlinear system 

through linear techniques.  This is not the only approach, however.  While the available 

nonlinear options for analysis and control are not as numerous as that of linear theory, purely 

nonlinear strategies exist.  If the possibilities enumerated above do not satisfy the ultimate 

performance, robustness, and implementability required for any final system, nonlinear options 

may be useful.  

There are several advantages of analyzing and controlling a nonlinear system through nonlinear 

means.  To analyze the stability of a nonlinear system in a linear framework, the system must 

first be linearized.  This gives only a snapshot at a given time.  While accurate for that 

instantaneous moment, the linear analysis will not tell the full story over the entire range of the 

system.  Nonlinear techniques such as Lyapunov stability can be applied to a nonlinear system to 

prove ultimate stability. 

Nonlinear controllers can also be designed to take full advantage of the nonlinear dynamics 

available in the model.  Numerical techniques for generating predictive controllers based on a 

model in real time can have significant performance improvements over static controllers.  

The drawbacks to these techniques may be substantial however.  The Lyapunov stability criteria 

requires finding a specific Lyapunov function specific to the system in order to prove stability.  

These tend to be challenging to find at the best of times. The nonlinear model predictive 

controller requires significant computing power to calculate the controller in real time. 

Several options exist for improving the control of the GHV.  This document presents a piece of 

this analysis and gives guidance on further measures that can be made to improve the system in 
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the future.  As with any design, there are many tradeoffs that must be considered.  Each of the 

presented options could solve known problems while simultaneously introducing new ones.  

Ultimately, the best design is the one that can successfully be implemented and satisfy the design 

criteria.  

  



124 

 

References 

[1] A. G. Panaras, Aerodynamic principles of flight vehicles. Reston, VA: American Institute of 

Aeronautics and Astronautics, 2012. 

[2] Z. Rosenberg, “DARPA’s Spaceplane of the Future,” Air & Space Magazine, 28-Apr-2016. 

[3] Center for History and New Media, “Zotero Quick Start Guide.” [Online]. Available: 

http://zotero.org/support/quick_start_guide. 

[4] NASA Dryden Flight Research Center Photo Collection, X-43A Hypersonic Experimental 

Vehicle - Artist Concept in Flight. 1999. 

[5] M. Wall, “Air Force’s X-51A Hypersonic Scramjet Makes Record-Breaking Final Flight,” 

Space.com, 03-May-2013. 

[6] Edwards Air Foirce Base, Air Force Flight Test Center Public Affairs, X-51 WaveRider. 

2010. 

[7] S. Keshmiri, “Modeling and Simulation of a Generic Hypersonic Vehicle,” University of 

Kansas, 2007. 

[8] M. Bolender and D. Doman, “A Non-Linear Model for the Longitudinal Dynamics of a 

Hypersonic Air-breathing Vehicle,” 2005. 

[9] M. A. Bolender and D. B. Doman, “Nonlinear Longitudinal Dynamical Model of an Air-

Breathing Hypersonic Vehicle,” J. Spacecr. Rockets, vol. 44, no. 2, pp. 374–387, Mar. 

2007. 

[10] J. D. Shaughnessy, S. Z. Pinckney, J. D. McMinn, C. I. Cruz, and M. Kelley, “Hypersonic 

vehicle simulation model winged-cone configuration,” National Aeronautics and Space 

Administration, Langley Research Center ; National Technical Information Service, 

distributor, Hampton, Va.; Springfield, Va., 1990. 

[11] G. Sova, P. Divan, and L. Spacht, “Aerodynamic preliminary analysis system 2. Part 2: 

User’s manual,” NASA, Rockwell International Corp., NASA-CR-182077, Apr. 1991. 

[12] M. G. Safonov, “Origins of robust control: Early history and future speculations,” Annu. 

Rev. Control, vol. 36, no. 2, pp. 173–181, Dec. 2012. 

[13] IsaaC.M. Horowitz, Synthesis of Feedback Systems. New York, New York: Academic Press 

Inc, 1963. 

[14] J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, “State-space solutions to 

standard H2 and H ∞ control problems,” IEEE Trans. Autom. Control, vol. 34, no. 8, pp. 

831–847, Aug. 1989. 

[15] B. R. Cobleigh, Development of the X-33 Aerodynamic Uncertainty Model. 1998. 

[16] Z. Gao, B. Jiang, P. Shi, J. Liu, and Y. Xu, “Passive Fault-Tolerant Control Design for 

Near-Space Hypersonic Vehicle Dynamical System,” Circuits Syst. Signal Process., vol. 

31, no. 2, pp. 565–581, Apr. 2012. 

[17] Huang Huang and Yong Wang, “Mixed H2/H∞ robust adaptive control of hypersonic 

vehicles based on the characteristic model,” presented at the Control Conference (CCC), 

2012 31st Chinese, Hefei, China, 2012, pp. 2883–2888. 

[18] Irene M. Gregory, Rajiv S. Chowdhry, John D. McMinn, and John D. Shaughnessy, 

“Hypersonic vehicle model and control law development using H-infinity and mu-

synthesis,” NASA Langley Research Center, NASA-TM-4562, Oct. 1994. 

[19] O. Cifdaloz, A. A. Rodriguez, and J. M. Anderies, “Control of distributed parameter 

systems subject to convex constraints: Applications to irrigation systems and Hypersonic 

Vehicles,” 2008, pp. 865–870. 



125 

 

[20] B. Xu, D. Gao, and S. Wang, “Adaptive neural control based on HGO for hypersonic flight 

vehicles,” Sci. China Inf. Sci., vol. 54, no. 3, pp. 511–520, Mar. 2011. 

[21] X. Li, B. Xian, C. Diao, Y. Yu, K. Yang, and Y. Zhang, “Output feedback control of 

hypersonic vehicles based on neural network and high gain observer,” Sci. China Inf. Sci., 

vol. 54, no. 3, pp. 429–447, Mar. 2011. 

[22] A. Ataei and Q. Wang, “Non-linear control of an uncertain hypersonic aircraft model using 

robust sum-of-squares method,” IET Control Theory Appl., vol. 6, no. 2, pp. 203–215, 

2012. 

[23] H. Liu, Q. Zong, B. Tian, and J. Wang, “Hypersonic Vehicle control based on integral 

sliding mode method,” 2012, pp. 1762–1766. 

[24] H. Duan and P. Li, “Progress in control approaches for hypersonic vehicle,” Sci. China 

Technol. Sci., vol. 55, no. 10, pp. 2965–2970, Oct. 2012. 

[25] C. I. Marrison and R. F. Stengel, “Design of Robust Control Systems for a Hypersonic 

Aircraft,” J. Guid. Control Dyn., vol. 21, no. 1, pp. 58–63, Jan. 1998. 

[26] Q. Wang and R. F. Stengel, “Robust Nonlinear Control of a Hypersonic Aircraft,” J. Guid. 

Control Dyn., vol. 23, no. 4, pp. 577–585, Jul. 2000. 

[27] J. Roskam, Airplane flight dynamics and automatic flight controls. Lawrence, Kan: 

DARcorporation, 2011. 

[28] R. F. Stengel, Flight dynamics. Princeton, NJ: Princeton University Press, 2004. 

[29] J. Roskam and C. T. Lan, Airplane Aerodynamics and Performance, Revised edition. 

Lawrence, Kan.: Darcorporation, 2000. 

[30] findopOptions. MathWorks, Simulink R2013a Software Documentation. 

[31] fmincon. MathWorks,  R2016a Software Documentation, 2016. 

[32] Exact Linearization Algorithm. MathWorks, Simulink R2013a Software Documentation. 

[33] N. Markopoulos, Mease, Kenneth D., and Vinh, Nguyen X., “Thrust law effects on the 

long-period modes of aerospace craft,” presented at the AIAA Atmospheric Flight 

Mechanics Conference, Boston, MA, 1989. 

[34] G. Sachs, “Longitudinal Long-Term Modes in Super- and Hypersonic Flight,” J. Guid. 

Control Dyn., vol. 28, no. 3, pp. 539–541, 2005. 

[35] R. Colgren, S. Keshmiri, and M. Mirmirani, “Nonlinear Ten-Degree-of-Freedom Dynamics 

Model of a Generic Hypersonic Vehicle,” J. Aircr., vol. 46, no. 3, pp. 800–813, May 2009. 

[36] Christian Breitsamter, Tomislav Cvrlje, Boris Laschka, Matthias Heller, and Gottfried 

Sachs, “Lateral-Directional Coupling and Unsteady Aerodynamic Effects of Hypersonic 

Vehicles,” J. Spacecr. Rockets, vol. 38, no. 2, pp. 159–167, 2001. 

[37] William Vaughan, Dale Johnson, and L. Ehernberger, “An overview of the atomospheric 

modeling for aeronautical and aerospace vehicles simulation applications,” 1999. 

[38] F. Lewis, D. Vrabie, and V. Syrmos, Optimal Control, 3rd Edition. US: John Wiley & 

Sons, 2012. 

[39] Carsten Scherer, “Mixed H2/H∞ Control,” in Trends in Control, Springer London, 1995, 

pp. 173–216. 

[40] Gonzalo A. Garcia-Garreton, “Decentralized Robust Nonlinear Model Predictive Controller 

for Unmanned Aerial Systems,” Ph.D. Dissertation, University of Kansas, Lawrence, Kan, 

2013. 

[41] Alexandre Megretski, “6.245 Multivariable Control Systems,” Massachusetts Institute of 

Technology, MIT OpenCourseWare, Spring 2004. 



126 

 

[42] S. Skogestad and I. Postlethwaite, Multivariable feedback control: analysis and design, 2nd 

ed. Hoboken, NJ: John Wiley, 2005. 

[43] G. Ray, “Optimal Control,” presented at the National Programme on Technology Enhanced 

Learning, 2012. 

[44] A. D. de Corcuera, A. Pujana-Arrese, J. M. Ezquerra, E. Segurola, and J. Landaluze, “H∞ 

Based Control for Load Mitigation in Wind Turbines,” Energies, vol. 5, no. 12, pp. 938–

967, Apr. 2012. 

[45] M. G. Ortega and F. R. Rubio, “Systematic design of weighting matrices for the H∞ mixed 

sensitivity problem,” J. Process Control, vol. 14, no. 1, pp. 89–98, Feb. 2004. 

[46] V. V. Athani and S. Agarwal, “Design of a robust controller for a supersonic aircraft using 

H∞ approach,” Control Eng. Pract., vol. 2, no. 6, pp. 1051–1061, Dec. 1994. 

[47] J.-S. Yee, J. L. Wang, and N. Sundararajan, “Robust sampled-data H∞-flight-controller 

design for high α stability-axis roll maneuver,” Control Eng. Pract., vol. 8, no. 7, pp. 735–

747, Jul. 2000. 

[48] P. V. N. Gade and D. J. Inman, “Two-Dimensional Active Wing/Store Flutter Suppression 

Using H-Infinity Theory,” J. Guid. Control Dyn., vol. 20, no. 5, pp. 949–955, Sep. 1997. 

[49] G. Garcia, S. Keshmiri, and R. Colgren, “Advanced H-Infinity Trainer Autopilot,” 2010. 

[50] C. Tournes and C. D. Johnson, “Application of linear subspace stabilization and linear 

adaptive techniques to aircraft flight control problems. II. The outer loop,” 1998, pp. 151–

155. 

[51] Gonzalo A. Garcia and Shahriar Keshmiri, “Nonlinear Model Predictive Controller for 

Navigation, Guidance and Control of a Fixed-Wing UAV,” presented at the AIAA 

Guidance, Navigation, and Control Conference, Portland, Oregon, 2011. 

[52] T. J. Stastny, G. Garcia, and S. Keshmiri, “Robust Three-Dimensional Collision Avoidance 

for Fixed-Wing Unmanned Aerial Systems,” 2015. 

[53] A. Marcos, “A gain scheduled H-infinity controller for a re-entry benchmark,” 2010. 

[54] G. A. Garcia, S. Keshmiri, and R. D. Colgren, “H-Infinity gain scheduling design for the 

meridian UAS for a broader range of operation and for fault tolerant applications,” 2011, 

pp. 1174–1180. 

[55] Brian Bradie, A Friendly Introduction to Numerical Analysis. Upper Sandy River, New 

Jersey: Pearson Prentice Hall, 2006. 

[56] n-D Lookup Table. MathWorks, Simulink R2013a Software Documentation, 2016. 

[57] interpn. MathWorks, Simulink R2013a Software Documentation, 2016. 

[58] C. Habermann and F. Kindermann, “Multidimensional Spline Interpolation: Theory and 

Applications,” Comput. Econ., vol. 30, no. 2, pp. 153–169, Aug. 2007. 

[59] PID Controller, Discrete PID Controller. MathWorks, Simulink R2013a Software 

Documentation, 2016. 

[60] Katsuhiko Ogata, Modern Control Engineering, 3rd ed. Upper Sandy River, New Jersey: 

Prentice-Hall, Inc. 

[61] M. F. Miranda, R. H. C. Takahashi, and F. G. Jota, “On H∞ Controllers with integral 

action: An experimental evaluation,” Proc. Inst. Mech. Eng. Part J. Syst. Control Eng., vol. 

224, no. 1, pp. 21–29, Feb. 2010. 

[62] L. Huo, G. Song, H. Li, and K. Grigoriadis, “H∞ robust control design of active structural 

vibration suppression using an active mass damper,” Smart Mater. Struct., vol. 17, no. 1, p. 

15021, Feb. 2008. 



127 

 

 Selected Aerodynamic Coefficients 

Longitudinal Coefficients 

 

 



128 

 

 

 

  



129 

 

Lateral-Directional Coefficients 

 

 

 



130 

 

 

 



131 

 

 

 



132 

 

 

 

 

 

 

 

 

 

 

  



133 

 

  Additional Trim Dependent Mode Analysis 

Longitudinal Modes Changing with Altitude 
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Lateral-Directional Modes Changing with Altitude 
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Longitudinal Modes Changing with Weight 
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Lateral-Directional Modes Changing with Weight 
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 Noisy Simulation Time History 
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