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Abstract

Given the high complexity and increasing traffic load of the Internet, geo-correlated chal-

lenges caused by large-scale disasters or malicious attacks pose a significant threat to

dependable network communications. To understand its characteristics, we propose a

critical-region identification mechanism and incorporate its result into a new graph re-

silience metric, compensated Total Geographical Graph Diversity. Our metric is capable

of characterizing and differentiating resiliency levels for different physical topologies. We

further analyze the mechanisms attackers could exploit to maximize the damage and

demonstrate the effectiveness of a network restoration plan. Based on the geodiversity

in topologies, we present the path geodiverse problem and two heuristics to solve it more

efficiently compared to the optimal algorithm. We propose the flow geodiverse problem

and two optimization formulations to study the tradeoff among cost, end-to-end delay,

and path skew with multipath forwarding. We further integrate the solution to above

models into our cross-layer resilient protocol stack, ResTP–GeoDivRP. Our protocol

stack is prototyped and implemented in the network simulator ns-3 and emulated in our

KanREN testbed. By providing multiple GeoPaths, our protocol stack provides better

path restoration performance than Multipath TCP.
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Chapter 1

Introduction and Motivation

The demands for Internet resilience have been increasing tremendously and it is impor-

tant to analyze their resilience to various faults and challenges [3]. Networks are gen-

erally studied as pure graphs without considering the geographical properties of nodes

and links [4]. Random link/node and non-correlated failures are widely studied for IP

networks [5–7]. Multiple Routing Configurations (MRC) in IP networks [8] have been

proposed to guarantee the recovery of a single link failure and have been shown to be

effective and scalable. For dual-link failures, a fast recovery mechanism has been pro-

posed [9]. However, most of these works focus on random challenges using either random

synthetic or IP-layer topologies. Mechanisms have been proposed to identify link- and

PoP-disjoint paths for the same node pair in Internet service providers (ISPs) networks

to improve network resilience [10]. Several attack techniques based on random failures

are presented for the IP networks [5, 6], and an IP-level restoration [11] mechanism has

been shown to be effective.

Network components in the physical adjacency may fail together during a natural dis-

aster such as an electrical blackout or an earthquake, or malicious attacks; these are

the geo-correlated challenges and can result in significant damage to dependable network

communications [3]. The impact on the Internet from geo-correlated challenges is still an
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open issue. When the same intensity of challenges occur at different physical locations,

the damage to the network connectivity varies greatly. Detection of the vulnerable areas

or critical regions has several practical applications, fibers in these regions can be either

protected by shielding, strengthening, or closely monitoring for resilient network com-

munication. Local graph metrics such as centrality metrics have been used in network

vulnerability analysis [12,13]. We employ centrality metrics to guide the selection among

the failed nodes for prioritized protection in the face of regional challenges. We present

the performance improvement from the prioritized protection through graph analysis and

further verify our graph analysis using network simulations. As far as we know, this is

the first work to use centrality metrics in prioritizing the restoration of network services

during regional challenges.

Since the regional challenge effect is frequently long-term [14], a set of backup paths is

required for survivable routing. The single-location challenge scenario has been analyzed

and a polynomial algorithm has been formulated [15]. Correlated and simultaneous

challenges have been discussed [16], and different circular-shaped vulnerability points

have been identified [17]. The vulnerability analysis result can not only guide the network

design, but also help design resilient network architecture to consider geodiverse paths.

However, none of this work has focused on a reliable cross-layer network architecture to

cope with large-scale regional challenges.

An Internet Service Provider (ISP) network is an entity that manages a set of nodes

and links to provide Internet services. Each ISP has the full control of which intradomain

routing protocol to run and it can be redesigned to consider multiple alternative paths.

Traditional intradomain routing protocols, such as Open Shortest Path First (OSPF)

and Intermediate System to Intermediate System (IS-IS), are designed to form a single

shortest path for each node pair. Although this ensures simple loop-less routing opera-

tion, alternate path needs to be calculated if the primary one fails. This reconvergence
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process is usually fairly slow due to the protocol’s hold down timers [18].

In order to quickly bypass the failed region, a resilient protocol is required to quickly

find a single or multiple alternative paths for the communicating node pairs. Some may

argue that in order to increase network resilience to regional failures, it should be con-

sidered during the network planning phase; however, this is not always the case for the

following reasons. First, network planning with over-provisioning is a long term process;

the high cost and policy limitation of deploying new fibers have hindered the improve-

ment of resilience through new physical-level diversity. From a network protocol level,

if several geodiverse paths can be quickly calculated after the challenge, the resilience of

the current network can be improved tremendously without new network components.

Second, although sophisticated network planning mechanisms can help reduce the im-

pact to network traffic during area-based challenges, resilient routing is still needed to get

around challenged areas quickly and be adaptive to traffic and congestion in the network.

This is the one of the main motivations behind this work.

We study the path geodiverse problem (PGD) and the flow geodiverse problem (FGD)

in this work. The motivation is that most networked devices have access to multiple

partial or complete physical-layer paths between endpoints, and many of these paths

have a certain degree of geographic diversity. However, we are currently unable to benefit

from it since design decisions in the current Internet protocol stack assume unipath and

shortest path routing. This dramatically decreases the ability to provide resilience under

either targeted attacks or large-scale disasters. We can achieve improved performance

and increased resilience with multiple geodiverse paths.
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1.1 Thesis Statement

To understand the resilience of physical networks under geo-correlated challenges, crit-

ical regions are required to be identified before further design decisions can be made.

Moreover, a graph metric is required to quantify the relative resilience of different phys-

ical networks with the identified critical regions. Finally, routing and transport protocol

redesign is required to improve the end-to-end resilience under large-scale disasters or

malicious attacks.

Therefore, our thesis statement is:

Network resilience against regional disasters requires analysis and fully un-

derstanding its characteristics. A critical region identification mechanism can

help network operators to concentrate monitoring and protection of resources

in these areas. Geodiverse routing protocol design can improve overall network

resilience under regional challenges.

1.2 Proposed Solution

We propose a critical-region identification mechanism using a moving-circle challenge

model [19]. Other models, such as scaling-circle and polygon challenges [3, 20] are simi-

larly applicable and we plan to include such analysis in our future work. This mechanism

captures the essence of physical challenges while maintaining simplicity and effective-

ness. Based on the identified critical regions, we extend the path-diversification metric

to consider the geographic separation of nodes and links for resiliency analysis. This is an

extension to our previous mechanism [21,22] in order to represent graph resilience to geo-

correlated challenges, as opposed to only individual node or link outages. We present our

GeoPath diversity metric: minimum distance d between any two nodes on alternate paths.
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Based on the geodiversity of different node pairs, we present path geodiversitification – a

new mechanism (proposed in [21,22]) to quantify the graph GeoPath diversity by selecting

multiple geodiverse paths between a given node pair to achieve high network survivability.

We apply this mechanism in several Internet service providers (ISPs) optical-fiber net-

works to compare their relative robustness against regional challenges. This mechanism

allows future internetworking architectures to exploit naturally rich physical topologies

to a far greater extent than is possible with only shortest-path routing or equal-cost load

balancing.

Furthermore, we formulate the path geodiverse problem (PGD) and propose heuris-

tics to efficiently solve it. The solution is incorporated in the GeoPath Diverse Routing

Protocol (GeoDivRP), which provides multiple geodiverse paths to circumvent regional

failures given a threat model. We integrate GeoDivRP into our ResTP–GeoDivRP pro-

tocol stack for resilient network communications. Knobs and dials are used between

GeoDivRP and ResTP for cross-layer communication. We apply our multipath algo-

rithm in several real-world ISPs networks to analyze the diversity gain and improvement

in packet delivery ratio (PDR) as well as average throughput.

To better allocate traffic for ResTP–GeoDivRP protocol stack, we formulate an op-

timization problem to minimize the delay and skew product among the multiple paths

calculated for each node pair. The solution provides better link traffic utilization and

throughput compared to Open Shortest Path First (OSPF). With the calculated bounded-

skew geodiverse paths using the iWPSP heuristic for GeoDivRP [23], our protocol in-

creases the throughput compared to OSPF under regional challenges. Past work has

studied the bounded buffer problem but have assumed a maximum path-length con-

straint. Our heuristic does not restrict the maximum path length since it may lead to no

usable skew-bounded paths. We argue that for physical topologies, it is not necessary to

set an upper bound for path length as the network diameter (longest shortest path for
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all node pairs) is small for a mesh-like topology [24]. With the optimized diverse paths,

ResTP–GeoDivRP presents a better performance compared to the well-known Multipath

TCP (MPTCP) protocol [25,26].

We further incorporate our cross-layer design in the software-defined networking (SDN)

domain. By taking advantage of the failure detection model implemented in SDN, Geo-

DivRP responds to network failures much faster. Coupled with the optimization model,

it realizes the minimized delay-skew product when decoupling traffic onto multiple paths.

We evaluate our framework using our resilient transport protocol as well as MPTCP in

the face of geo-correlated challenges. We further demonstrate our Web framework to

automate the OpenFlow experiments by programmatically importing network topologies

and perform failure experiments using the user-provided challenge regions.

It is rarely feasible to conduct network experiments on a production ISP network, es-

pecially at a national scale. Network researchers resort to simulations or emulations to

study their ideas and proposals. In this work, we use ns-3 [27] simulation software and

Mininet [28] to prototype and analyze our protocol. ns-3 is a popular network simulator

to analyze network protocols while Mininet is a network emulator that using Linux Ker-

nel code to emulate network applications. Testbed experiments from our KanREN [29]

network have been included as well. As for traffic optimization, we use the OpenOpt op-

timization framework [30] for solving the two optimization problems and use real-world

network topologies from KU TopView [31,32].

1.3 Contributions

The main contributions of this dissertation are as follows:

1. A critical-region identification mechanism using a moving circle challenge model.
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This enables one to analyze a topology’s geographic resilience for a given region.

2. A graph metric for quantifying regional challenges in physical networks. This en-

ables one to compare the relative resilience among different topology.

3. Analyze the effectiveness of a network protection plan. With the plan in place, a

network presents better resilience against challenges.

4. Implementation of our GeoPath Diverse Routing Protocol (GeoDivRP) routing

algorithm in ns-3 network simulator with the integration with ResTP to form a

resilient network protocol stack, ResTP–GeoDivRP. This enables either alternative

path for fail-over or multipath diverse paths for improved throughput. In the

performance comparison against MPTCP, our protocol stack performs better.

5. Development of GeoDivRP in software-defined networking (SDN) domain and use

an OpenFlow controller to control the routing and optimization mechanism.

6. Emulation in Mininet as well as experiments using physical OpenFlow switches

deployed in the KanREN [29] testbed.

1.4 List of Related Publications

1.4.1 Journal Papers

1. Yufei Cheng, Deep Medhi, and James Sterbenz. Geodiverse Routing with Path

Delay and Skew Requirement under Area-based Challenges Networks journal (Wi-

ley), Volume 66, Issue 4, pp. 335–346, Dec. 2015.

2. Yufei Cheng, M. Todd Gardner, Junyan Li, Rebecca May, Deep Medhi, and James
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1.5 Organization

In this chapter, we provide an overview and motivation for this dissertation. The remain-

der of this work is organized as follows: Chapter 2 presents the background and related

work. Chapter 3 describes the geo-correlated challenges and introduce our critical region

identification mechanism; we further analyze malicious attacks and provide restoration

suggestions. Chapter 4 presents the path geodiverse problem (PGD) and our resilient

routing protocol GeoDivRP to solve the problem. We further our discussion by providing

an overview of the ResTP–GeoDivRP framework. In Chapter 5, we present two opti-

mization formulations for the flow geodiverse problem (FGD). The controlled path delay
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and skew product optimization for GeoDivRP has been proposed; we further introduce

the implementation of ResTP–GeoDivRP in ns-3, and provide the performance evalu-

ation using either single-path and multipath forwarding. Chapter 6 presents our work

using software-defined networking (SDN). Using our Web framework, we present initial

experiment results comparing GeoDivRP to OSPF in the face of regional failures.
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Chapter 2

Background and Related Work

In this chapter, we present the background and related work of this dissertation. First,

we introduce geo-correlated challenges and its significant threat to network resilient in

Section 2.1. An overview of diversity in network topology and definition of geographic

diversity are presented in Section 2.2. Existing geodiverse protocols are discussed in

Section 2.3. An overview of network optimization is presented in Section 2.4. Finally,

Section 2.5 discusses the software-defined networking.

2.1 Geo-Correlated Challenge

A geo-correlated challenge is defined as a failure or malicious attack that affects a set

of nodes and links in a geographic vicinity. It has been observed that geo-correlated

challenges can cause a large number of failures in a geographic region and give rise to

significant damage to network communications [33,34]. Computer networks are suscepti-

ble to this type of challenge from natural disasters such as: earthquakes, tornados, solar

flares, floods, and malicious attacks [35–38]. Natural disasters such as earthquakes can

cause catastrophic damage to network communications. For example, the 2015 Nepal

Earthquake affected Kathmandu, 80 km (50 mi) from the epicenter as shown in Fig-
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ure 2.1. Another example is the two severe power blackouts affected most of northern

and eastern India on 30 and 31 July 2012. As shown in Figure 2.2, darker red color shows

the states that were down for two days and the lighter red down for one day.

Figure 2.1: 2015 Nepal earthquake USGS shakeMap [1]
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Figure 2.2: 2012 Indian blackout affected states [2]

2.1.1 Malicious Attacks and Centrality Metrics

Malicious attacks are caused by attackers targeted at the networks with malevolent in-

tention [39]. For example, a denial-of-service (DoS) attack is an attempt to make network

resources unavailable to legitimate users by crowding it with a large amount of traffic.

An electromagnetic pulse (EMP) attack can disrupt electronic devices in a large range.

If targeted at a vulnerable region, the damage is even more significant.
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Centrality metrics have been used to study the performance of networks against ma-

licious attacks [19, 40–42]. In network science and graph theory, centrality measures

indicate the importance of a node in a graph and more damage occurs with its removal.

Centrality-balanced improvement mechanism has been proposed to guide the network

design using centrality metrics [43,44]. From the attackers’ perspective, they may study

the network characteristics with a malicious intent to maximize the attack damage. An

attack module [41] starts by sorting the different centrality measures from the highest to

the lowest, and the node with the highest is failed from the graph in each iteration.

To study how attackers may exploit centrality measures to aid their malicious attack,

we include degree, betweenness, closeness, eigenvector, and load centrality [45,46] metrics

in our study. Degree centrality was the first and simplest centrality measure; it is the

number of links affiliated to a node and is usually viewed as the relative importance of a

node [47]. There are usually two degree centralities, indegree and outdegree. The indegree

is the number of links connecting to this node while the outdegree is the number of links

going out. Betweenness centrality is defined as the number of the shortest paths that

pass through a node. It signifies a node’s importance in the network communication [48]

by qualifying the number of times a node acts as the bridge to other nodes. Closeness

is the inverse of the sum of the shortest paths from a node to every other node and

indicates the efficiency for spreading a packet in a network [47]. Therefore, based on

closeness centrality, the more central a node is, the closer it is to all the other nodes.

Eigenvector centrality is a another centrality measure [49] and a score is assigned to all

nodes assuming that links to high-score nodes contribute more than links to low-score

ones. The load centrality of a node is the fraction of load through that node compared

to all the load in the network [48]. Each node sends a unit flow along the shortest path

to every other node and the total amount of flow for each node is defined as the load.
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2.1.2 Real-World Topology Data

For accurate analysis of the network resilience, it is important to use real-world topologies

or structurally similar ones. Several projects have dedicated to network topology data

storage, representation, and analysis. Rocketfuel [50] is a tool to collect, measure, and

analyze IP-level topologies. Past work [51] has analyzed the characteristics and implica-

tions of the infrastructure sharing in the US longhaul fiber-optic network. SNDlib [52]

is a library for the survivable telecommunication network design and several physical

networks with link traffic capacities are provided. Furthermore, the project provides

the benchmark result for several traffic optimization problems and offers guidance for

the telecommunication network design. The Internet Topology Zoo [53] is an ongoing

project to collect network topologies globally and they have both IP and Internet service

providers (ISPs) fiber topologies. In this work, we study the topologies for Europe and

South America in Chapter 3.

Most of the topologies used in this work are from the KU-TopView network topology

viewer [31,54] implemented by our ResiliNets [55] group for easier network graph visual-

ization and storage. It is developed using the Google Map API and JavaScript to visually

present the topological maps. It also provides multiple topology manipulation functions,

such as merging different topologies into one and outputing its adjacency matrix. Fur-

thermore, it can generate different synthetic topologies such as Gabriel graph [56,57] and

Waxman graph [58].

2.2 Diversity in Network Topology

In this section, we discuss the past work exploring the path diversity and the geographic

diversity. Most networked devices have access to multiple partial or complete physical-
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layer paths between endpoints, and many of these paths have a certain degree of diversity.

However, we are currently unable to benefit from it since design decisions in the current

Internet protocol stack assume unipath and the shortest path routing. This dramatically

decreases the ability for the network to provide resilience under either large-scale natural

disasters or malicious attacks.

2.2.1 Path Diversity

Path diversity has been studied from a topological perspective [59–61], in terms of multi-

path in routing layer [62–69], as well as multipath in transport layer [22,70]. The mecha-

nisms to take advantage of a network’s path diversity is a major research topic [21,22,63]

and a path diversity mechanism for qualifying the network resilience has been pro-

posed [22]. Before giving the definition of the path diversity, we start with the definition

of a Path.

A network is represented by a connected directed graph G(V,E), where V is the set

of nodes (vertices) and E is the set of links (edges).

Path is defined as a vector that contains all links (edges) E and intermediate nodes (ver-

tices) V from a source node to a destination node

p = V ∪ E (2.1)

We represent a path as the sequence of nodes p = (v0, v1, ...vh), such that, for 0 ≤ n ≤

h− 1, (vn, vn+1) ∈ E. Each path p has an associated cost c(p) which denotes its cost per

unit flow. Each link is associated with a capacity ue that denotes the maximum amount

of flow it can carry and a lower bound le that denotes the minimum amount. For most

of the cases, the lower bound is zero.
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For the shortest path p0, the path diversity D(pk) for any other path pk between the

same source and destination is shown in Equation 2.2 [22,63].

D(pk) = 1− |pk ∩ p0|
|p0|

(2.2)

As shown in Figure 2.3, assuming node 0 is the source and node 2 the destination, there

are four potential paths: p0 = [0, 1, 2], p1 = [0, 3, 2], p2 = [0, 1, 3, 2], and p3 = [0, 3, 1, 2].

For the shortest path p0, the path elements set is {(0, 1), 1, (1, 2)}. The tuples (0, 1)

and (1, 2) represent the links and the element 1 is the node 1 in the path with the

source and destination nodes excluded. The path elements set for p1 is {(0, 3), 3, (3, 2)}.

Using Equation 2.2, the path diversity D(p1) = 1 − 0
3

= 1. Using the same equation,

D(p2) = 1− 2
3

= 1
3

and D(p3) = 1− 2
3

= 1
3
.

3 

1 2 0 

Figure 2.3: Path definition example

Path set denotes a set of paths between a node pair. For example, the path set for

node 0 and 2 is P0,2 = {p0, p1, p2, p3}.

Path stretch is defined as the hop counts of Hpa a given path pa divided by the hop

counts Hps of the shortest path ps

h = Hpa/Hps , (2.3)
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where we use the same definition from [63]. Note that in the protocol design presented

in Chapter 4, we use path delay to represent path stretch.

Path skew is defined as the delay difference among multiple paths for a given node pair.

Given the definition of path diversity, a Shared Risk Link Group (SRLG) is defined

as a set of links that share a common physical resource, such as cables or conducts,

and can be affected simultaneously by a single failure or attack. SRLG-disjoint path is

useful for dedicated path protection [71] and for addressing single or multiple physical

challenges [72]. Physically Disjoint Paths (PDP) problem has been analyzed [73], and

there are several studies [74–76] analyzing multiple failures in the context of SRLG.

The survivable routing problem is shown to be NP-complete [77, 78] and an Integer

Linear Programming (ILP) formulation has been proposed. Logical rings are used for

protection against link failures and bound of number of links has been studied to improve

the resilience for a given topology [79]. Path protection has been proposed to provide

two SRLG-disjoint paths using graph transformation techniques [80]. Furthermore, a

mechanism has been proposed for probabilistic correlated failure in SRLG [68].

2.2.2 Geographic Diversity

Geographic diversity [81] is proposed to represent how geographic separation the net-

work components are, and it directly affects how a given network’s resilience level is

under geo-correlated challenges. It has been observed that the more dense a network

is, the more vulnerable it is to regional challenges [82]. Geo-correlated challenges in the

IP network have been considered and simulated [20, 83]. Since the challenge effect is

frequently long-term [14], a set of backup paths are required for survivable routing. The

single-location physical challenge scenario has been analyzed [84,85], as well as correlated
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and simultaneous challenges [16]. Past work has studied the geographic vulnerabilities

for several topologies [17]; based on the vulnerable areas identified, optimization mecha-

nisms to alleviate these impacts have been proposed [86]. A random line-cut mechanism

has been used to assess the vulnerability to regional-based challenges [15]. Region-based

connectivity (RBC) has been proposed to analyze single and multiple failure region mod-

els [87, 88]. Wireless mesh network (WMN) survivability for regional failures has been

analyzed [89] and a p-fractile region survivability function have been proposed. Both

correlated failures and targeted attacks with simulation results have been presented [19].

2.2.3 Critical Region Identification

Critical node in a graph is a subset of nodes that with the removal, maximal dam-

age is caused to the connectivity. A model to identify the critical infrastructures has

been proposed [90]. The α-critical-distances mechanism has formulated a critical node

identification mechanism with polynomial time complexity [33]. Several performance

metrics such as the giant component size [91], average two terminal reliability [92] and

network efficiency [93] are used. A probabilistic geo-correlated failure model has been

analyzed [94] and the Strauss point process [95] has been used for either inhibition or

clustering effects. Multiple attacks critical locations have been identified using compu-

tational geometry [15, 16]. Past work has proposed optimization mechanisms to reduce

the searching complexity geographic vulnerabilities [17,96].

A related notion to the critical node identification in the regionally correlated failure

domain is the identification of critical regions. Several works have studied the geometric

property of the network under regional challenges [97]. The smallest-enclosing circle

problem [98] is used for critical region identification. Network vulnerability analysis has

been done for multiple probabilistic physical attacks, and an approximation algorithm has

been proposed to find the most vulnerable location [16,99]. Critical region identification
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models have been proposed for several failure shapes including circular, polygon, and

ellipse [100].

Several events have demonstrated that geo-correlated challenges can be modeled as a

moving circle with a given challenge radius. For example, an earthquake or hurricane

normally has a failure radius from tens to hundreds of km [14, 39]. Other models, such

as scaling-circle and polygon challenges [3, 20] are similarly applicable.

2.3 Geodiverse Protocols

Traditional intradomain routing protocols are designed to form a single shortest path for

each source–destination pair due to its simplicity and efficiency. However, this comes

with the cost of not having the option to choose an alternate path when the current one

is unavailable due to failures or attacks. In order to quickly bypass the failed region, a

resilient protocol is required to quickly find a single or multiple alternative paths for the

communicating node pairs.

2.3.1 Current Intradomain Routing Protocol

Intradomain routing protocols run within an Internet Service Provider (ISP) network, and

most ISPs run a link-state routing protocol based on configurable link weight. The link

weights are tuned by network operators, such as for load balancing, failure avoidance,

or security. The two primary intradomain routing protocols are Open Shortest Path

First (OSPF) and Intermediate System to Intermediate System (IS-IS); we focus on

OSPF in this work. Each router running OSPF has a static link weight configured for

its outgoing link and the shortest path is calculated by Dijkstra’s algorithm [101] based

on the link-state advertisements (LSA) flooded throughout the network. Each router

constructs its forwarding table based on the calculated shortest path. OSPF has several
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advantages. First, routing is very simple since it is based on a single metric, the link

weight. Second, by flooding the information in the network using the LSA packet, each

router has a consistent view of the topology and routing loops are easily avoided. Finally,

it is scalable using a hierarchy and reliable to single node failure due to its distributed

nature.

However, there are some drawbacks due to its simple operation. First, the path is

calculated only based on link weight, some other information, such as end-to-end delay,

congestion level, cannot be considered during path calculation. Second, alternative paths

are not provisioned and the path restoration process is slow. Although an end system or

edge network has access to multiple paths, routers are not able to use the path diversity or

the geodiversity the network topology has to offer [102, 103]. To control route flapping,

OSPF introduces several timeout values, which slows the protocol convergence. Since

OSPF needs to reconverge whenever the topology changes due to network failure, the

process becomes even slower with geo-correlated challenges.

Several mechanisms have been proposed to address the above mentioned drawbacks.

First, constrained shortest path first (CSPF) protocol is an extension to calculate the

paths fulfilling a set of constraints, with different classes of traffic forwarded to different

paths. However, the constraints cannot be dynamic demands such as path delay or jitter.

In this work, we introduce our optimization engine to consider dynamic traffic informa-

tion for optimal traffic distribution. Second, equal-cost multipath (ECMP) is commonly

deployed where routers keep track of several shortest paths and then evenly split the flow

among them [104]. Another mechanism for fast restoration is Fast-IP rerouting [105].

Instead of calculating one shortest path in the network restoration process, an alternative

path is calculated to provide protection for the primary one.

21



2.3.2 Multipath Routing

Multiple shortest paths enable the network operators to balance load and provide better

resilience by splitting traffic into multiple paths. Since each router has an updated view

of the topology though LSAs, a k-shortest path algorithm can be used with k being the

number of paths for each node pair. However, this is not realistic in practice due to its

high computational cost. For example, for a single node pair, Yen’s algorithm [106] has

a complexity of O(k|V |(m + |V | log |V |)) on a graph with |V | nodes and |E| links for a

dense network. Furthermore, the forwarding table size will be k times larger. To reduce

the complexity, path splicing [63] proposes a new routing mechanism that uses multiple

instances of the link-state routing protocol; each link has a vector of link weights with

each one tuned for different traffic class. For example, one can tune for high bandwidth

use while another for low delay.

Several multipath architectures have been proposed for resilient traffic communication.

A distributed traffic engineering heuristic, TeXCP, has been proposed that uses four

paths for each demand [107], however, it may have potentially been misguided by a

near-optimal solution. The cross-layer routing paths problem has been proposed by

maximizing the objective function for users implementing multipath routing [108]. When

regional failures occur, the rerouting traffic has the tendency to share common links

in the vicinity of the threat zone and increase the congestion possibility. Multipath

mechanisms can minimize the after-challenge traffic impact on the hot links as well as

the whole network. Furthermore, splitting traffic onto different paths strategically may

potentially provide more throughput. Multipath routing has been widely studied as

an effective mechanism to reduce congestion in hot spots by deviating traffic to unused

network resources [104, 109, 110]. Several methods for load balancing using multipath

routing without survivability measures have been researched. For example, optimization
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has been done to maximize the flow on each path in the ECMP routing algorithm [111].

Another optimization problem has been formulated by a weighted multipath routing

based on ECMP; its objective function is to minimize the maximum link utilization [112].

Resilient Overlay Networks [113, 114] has been studied to improve the robustness and

availability of current Internet paths. However, from a traffic engineering perspective,

multipath routing is advantageous for small networks only for the all-commodity traffic

scenario, yet the multipath gain diminishes as the network becomes large [115].

When multiple next-hop addresses are installed in the routers’ forwarding table, schedul-

ing mechanisms have to be redesigned. Multi-Topology Routing (MTR) constructs mul-

tiple topologies with different link weight configurations and enables separate forwarding

mechanism on a per-topology basis. It is a simple mechanism to perform and each packet

can switch among topologies [63, 116]. A source routing deflection mechanism uses tags

to apply path diversity for multipath routing [64]. Another approach is to forward traffic

on all paths that make forwarding progress towards the destination [117] with one set

of link weights. Each router makes local forwarding decisions using a shorter-hop path

towards the destination and therefore, loop-free paths are guaranteed.

From the flow-level’s perspective for multiple path forwarding, three major forwarding

mechanisms [62], round robin, hashing, flow caching can be used. Round robin mecha-

nism forwards traffic among several paths in a round robin manner. A weighted round

robin can prioritize different class of traffic. Little overhead is introduced to the current

intradomain protocol when using this mechanism. However, there is no guarantee for

packets to be mapped to the same flow which can cause packet reordering, and it slows

down the transport protocol. The second mechanism is hashing. Different paths are di-

vided into several hash ranges and packets are hashed based on their header information.

This mechanism ensures in-order packet delivery since packets from the same flow has

similar hash value and in turn been mapped to the same outgoing path [118]. However,
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fine-grained flow distribution is not possible since the flows are not distinguished among

each other. For example, elephant and mice flow can cause unbalanced load among paths.

Flow caching is a widely adopted approach for multipath forwarding by combining the

benefits of round robin and hashing. Packets from a previous cached flow are forwarded

to the same path while packets from a new flow can be forwarded on any previous path to

achieve fine-grained flow distribution. An extension to flow caching is flowlet cache [119],

which defines that if the time between two successive packets is larger than the maxi-

mum delay difference between the paths, it can be safely forwarded on any available path

without causing reordering.

2.3.3 Resilient Multipath Architecture

Most of the traffic allocation and multipath routing studies assume normal network

connectivity or single link failure [109, 120]. This is widely studied and considered as

an effective resilient multipath routing mechanism for a single link failure [121, 122].

Few have considered geo-correlated challenges, in which the traffic allocation follows

the widest paths disjoint with respect to the bottleneck links. The bottleneck links

from multiple paths are mutually disjoint to increase resilience [123]. An optimization

problem has been formulated to model the issues in a multi-source-destination routing

environment, and it leads to a pseudo-polynomial algorithm based on linear programming

with a bounded buffer size and skew constraint [124]. For path skew analysis in the

multipath routing context, past work calculates a number of shortest paths and selects

the ones that meet the skew requirement. The returned paths are then used to solve the

optimization problem [124]. A multipath flow optimization problem has been formulated

with two objectives, total link utilization and bandwidth fairness, and has been solved

with a nonlinear programming solver [125]. However, with the increasing importance

of network resilience under large-scale failures or attacks, it is imperative to analyze
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multipath routing efficiency and understand the traffic allocation requirements under

these challenges.

Several resilient transport protocols have been proposed. mTCP [126] can aggregate

the bandwidth of several paths concurrently and improve resilience using the redun-

dant path. Multipath transfer (CMT) can distribute data across multiple end-to-end

paths in a multi-homed devices to achieve efficient parallel data transfer [127]. Multi-

Path TCP (MPTCP) [25, 26] enables simultaneous use of several network interfaces to

establish multiple subflows for a host pair. It provides better throughput and surviv-

ability to failures while preserves the regular TCP interface to applications. However,

there is no control over how the multiple paths for different subflows are calculated.

ResTP [22,128,129] is a resilient general-purpose transport layer protocol. By employing

a set of reliability mechanisms that are composable and tunable, it is flexible in efficiently

supporting various application classes operating across different network environments

with distinct characteristics. It establishes multiple transport flows for its data transmis-

sion by taking advantage of the geodiverse path set and the traffic allocation information

provided by the GeoPath Diverse Routing Protocol GeoDivRP; ResTP can either actively

spread the data over all available paths to survive a single path failure with no disrup-

tion or transmit the data on one path while leaving another as a hot-standby for rapid

failover. This dissertation considers only the multipath mode in which all paths trans-

port traffic. In addition to multipath spreading capability, ResTP also provides other

transport-layer services to the application layer, including multiplexing/demultiplexing,

adaptive flow/subflow management, flexibly composable error control, and flow control

and congestion control. As noted above, with the goal of supporting a variety of applica-

tion types, each of these services is comprised of multiple composable mechanisms [130].

It chooses among its various reliability mechanisms to satisfy the specific application it

is servicing according to the particular mission requirements.
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2.4 Network Optimization

Network optimization is a popular research topic for modeling and designing of computer

networks. Numerous research has been done for better link utilization, load balancing,

and network resilience. For example, in intradomain traffic engineering, a common ap-

proach is to minimize the maximum link utilization [131]. There are other approaches,

such as MPLS networks [132], and WDM networks with optical cross-connects [133]. De-

lay minimization is widely studied for network communication [120,134–136]. Jitter and

delay minimization optimization has been proposed [137] for multimedia applications.

The M/M/1 queuing model is widely used for network delay [137,138].

Resilient routing can benefit from the network optimization. Diverse path routing has

been proposed to guarantee multiple correlated failures and to form two paths with the

smallest joint failure ratio through an optimization formulation [68]. The network flow

inhibition problem has been proposed with the objective to minimize the maximum flow

in the graph with a given attack budget [139–142]. Most communication networks with

optimization constraints use multi-commodity flow-problem formulation due to the fact

that multiple node pairs are communicating at the same time.

2.4.1 Multi-Commodity Flow Problem

The multi-commodity flow (MCF) problem is to achieve a certain objective when mul-

tiple flow demands exist among several source–destination node pairs or commodities.

Communicating over the shortest paths for each commodity can achieve minimum de-

lay or transmission cost in the network communication with no bandwidth constraints.

However, the constraint exists in all real-world topologies. This problem arises from the

fact that there are multiple demands to be fulfilled in the network simultaneously and

they compete for the limited network resources. The multi comes from the requirement
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of multiple commodities required to communicate at the same time. We can mathemati-

cally represent an MCF problem in terms of the flow variables xwe defined as the amount

of flow for the commodity w transmitting over the network link (e).

Assume there are W commodities defined by Ww = (sw, tw,mw), where sw and tw are

the source and destination of the commodity w, and mw is the traffic demand. We use the

link-path formulation [138,143] of the problem and further present a linear and a nonlinear

programming formulation to solve both of the optimization problems, respectively. We

are not using the other popular link-node formulation [138, 143] since GeoDivRP needs

to dictate the distance between different paths, and the Link-Node formulation would

introduce extra complexity for calculating paths.

2.5 Software-Defined Networking

Software-Defined Networking (SDN) [144] is a concept of using programmable compo-

nents to control network behaviors. Resilience services require constant monitoring and

remediation tasks; SDN can potentially support these resilience services. By dividing the

network control and data functions, network services are abstracted from the underlying

infrastructure. This enables rapid innovation as new versions of network software can

be easily deployed. OpenFlow [145] is the first open standard southbound interface for

realizing SDN. It achieves flexible and programmable data transmission through defined

actions for each flow entry; the actions include packet forwarding, packet drop, and traffic

shaping. OpenFlow has a tiered architecture in which the southbound interface directly

controls the network devices, and the northbound interface presents abstraction to the ap-

plication for easier development. Network experiments using physical OpenFlow-enabled

switches are usually difficult to carry out. Mininet [28] is used for network emulation and

proof-of-concept design precede real-world deployment. A Mininet configuration frame-
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work has been proposed to accelerate the experiments cycle with the ability to test with

real-world topologies [146]. A systematic design using OpenFlow framework to build

disaster-resilient network has been proposed [147].

2.6 Summary

From the literature review, we conclude that geo-correlated challenge poses great threat

to dependable network communications. Mechanisms have been proposed to improve

network resilience. However, a framework to fully understand the challenges’ charac-

teristics and a full-stack protocol to improve traffic transmission resilience are required;

these two areas are this dissertation’s main focus.
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Chapter 3

Topology Vulnerability Analysis

In this chapter, we present a systematic analysis of the topology vulnerability to geo-

correlated challenges. We define the geodiversity and propose a graph metric for evalu-

ating the resilience of a given topology against geo-correlated challenges in Section 3.1.

We design our critical-region identification mechanism and employ multiple fiber-level

network topologies in different continents to verify its effectiveness in Section 3.2. In

Section 3.3, we study the implication of malicious attacks using centrality metrics and

provide performance analysis when a restoration mechanism is in place.

3.1 Geodiversity Definition

This section presents a formal definition of the geodiversity metric and its aggregate prop-

erties when applied to each node pair as well as to the complete network graph. It is an

extension from link/node-disjoint diversity by considering geographic diversity between

different paths. We evaluate geodiversity based on its ability to reflect the underlying

graph’s connectivity, and propose a graph metric for differentiating the geodiversity of

different physical topologies.

Geographic diversity D(pa) such that D ≥ d is defined as the minimum distance
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Figure 3.1: Geographic diversity: distance d

between any node members of path vector pa and that of the shortest path. Based on

the shortest path ps with a given distance-separation criteria d, the qualified path pa

is defined as a GeoPath. The set of distance d-separated paths for a given node pair

is the GeoPaths. Consider Figure 3.1 in which node 0 is the source and node 2 is the

destination node and there are three paths in total. The red dotted line shows the

shortest path ps consists of nodes 0–1–2. The green dashed line shows path p1 and its

geodiversity D(p1) (with respect to ps) equals d. The blue solid line shows path p2 and

its geodiversity D(p2) is d′ since the minimum distance is d′ between node 1 and node 3.

Based on the geographic diversity, we start the Effective Geographical Path Diver-

sity (EGPD) metric calculation by taking weighted additional diversity from added

GeoPaths based on previous path diversity work that didn’t consider geographic di-

versity [22]:

EGPD = 1− e−λkvsvd (3.1)

where λ is an experimentally determined constant that scales the impact of kvsvd based

on the utility of this added diversity, while vs is the source node and vd the destination
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node. kvsvd is the sum of all non-zero diversity paths defined as:

kvsvd =
m∑
i=1

D(pi), (3.2)

The range of EGPD is between [0, 1] where 0 means that there is no diversity in the graph

as there is no alternative path connecting any pair of nodes. When EGPD approaches

1, geographic diversity increases; the value 1 means that for any node pair in the graph,

there exist at least two GeoPaths based on the given distance-separation criteria d.

The Total Graph Geographic Diversity (TGGD) is simply the average of the EPGD

value for all node pairs within that graph similar to the past work [21, 22]. Therefore,

this metric is an important factor for resilience of the network topology in face of geo-

correlated challenges. Based on the TGGD calculated, we obtain the compensated TGGD

value as follows1:

cTGGD = eTGGD−1 × (
‖GM‖
‖G‖

)−ρ. (3.3)

Here, ‖G‖ is the total number of links in topology G, and ‖GM‖ is the total number of

links for the largest network topology in consideration (in this case 244 links for AT&T).

We weight the graph diversity based on the ratio of ‖G‖ and ‖GM‖. The purpose of the

weight is two fold. First is to eliminate the penalty to a dense network as it has less

geographic diversity for any node pair within a given region; this is because the links are

not able to be as separated geographically as a sparse network. Second, it is normalized

by the number of links of the largest topology in the comparison set; therefore, cTGGD

indicates the relative resilience level of topologies against the largest topology. The tuning

parameter ρ is experimentally chosen as 0.05.

cTGGD represents the resilience level of a certain topology through the incrementally

added GeoPath. We present the metric comparison results in the next section and show

1Based on past work [21,22] with modification to incorporate geodiversity
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cTGGD to be a good indicator for the network resilience in face of geo-correlated chal-

lenges. With carefully selected ρ value, cTGGD efficiently distinguish the geodiversity

among topologies.

The complexity of cTGGD depends on the algorithm used to calculate GeoPaths. If

the iterative WayPoint Shortest Path (iWPSP) heuristic introduced in Chapter 4 is used,

each path for a node pair has a best-case complexity of O(|V | log |V |). With most of the

physical topologies having an average degree below a constant number four [24], the

best-case complexity for cTGGD is O(|V | log |V |) and the worst case is O(|V |2 log |V |).

3.1.1 Flow Robustness

Before explaining the identification mechanism in detail, we introduce the network perfor-

mance metric used in this chapter, flow robustness [22,148]. A flow is considered reliable

if at least one path remains connected during the failure. We compute flow robustness

to be the number of reliable flows divided by the number of total flows that exist in the

network [21]. Link and node removal based on a fixed probability of failure have been

analyzed [22]. We consider regional challenges, where a challenge fails nodes covered by

the region, along with links connected to the failed nodes. The algorithmic complexity

depends on the time to find the number of components in a given graph, which makes

the complexity as O(|V | + |E|). We use flow robustness in this work for two reasons;

first it matches the packet delivery ratio (PDR) result in network simulations for all node

pairs communicating with constant bit rate (CBR) traffic, for example, the PDR result

in Chapter 4 using CBR traffic is related to flow robustness in the simulation context.

Second it is effective and efficient in terms of evaluating the network connectivity.

A related metric, all-terminal reliability [149], calculates the probability that a given

node pair can communicate with each other for a given period of time. However, flow
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robustness considers the connectivity of a given node pair at any instance of time; it is ef-

ficient in the scenario of this work since we are concerned with instantaneous connectivity.

Furthermore, all-terminal reliability requires a connected graph.

3.2 Critical Region Identification

Given the definition of geodiversity, the ability to pinpoint critical regions against geo-

correlated challenges becomes important for an efficient network restoration mechanism.

We propose a critical-region identification mechanism to identify vulnerable areas in a

topology and suggest some counter-measures to prepare the current Internet for either

failures or attacks. We further incorporate the identified critical regions into a mechanism

to analyze the relative resilience among different topologies and compare it with cTGGD.

3.2.1 Identification Mechanism

We propose a critical-region identification mechanism using the minimum-covering circle

algorithm [150] and verify its effectiveness in recognizing vulnerable areas. We find

the critical region by assuming a circular failure with a given epicenter and a radius.

This is one endeavor to help analyze the design and maintenance of the normal network

communication in face of challenges.

With the network defined as G = (V,E). A circular region f is defined as the circular

area with the failure center c and the radius r:

f = (c, r) (3.4)

We further define sc,vi as the distance from node vi to the failure center c. The challenge
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Figure 3.2: Smallest-enclosing circle problem

node set of a given failure f is the node set V that qualifies the following condition:

V |sc,vi ≤ r (3.5)

In other words, the challenged node set is the set of nodes that can be covered by the

failure f . Any node within the circle will be disrupted and removed from the connectivity

calculation, along with its connected links, of course.

The objective of the identification model is to find the smallest circle that covers the

challenged node set; with whose removal can the flow robustness drop below a target. The

evaluating graph metric can be any other global measures such as the network efficiency

or the giant component size.

The smallest-circle problem originates in the fact that the minimum-covering circle of

a node set can be determined by at most three points and they have to lie on the rim of

the circle [150]. The points considered in the smallest-circle problem can be considered

as network nodes and the covering circle the challenge area. As shown in Figure 3.2, the

minimum circle to cover a given node set is either determined by two nodes that form

the diameter of the circle, or three nodes on the rim of the circle.
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By considering all the circles enclosed by two nodes and three nodes, the model ob-

tains a list of candidate failure regions with their corresponding challenged node set

covered (challenged) by the circle (failure region). By calculating the flow robustness of

the topology after removing each challenged node set sequentially, we can find the mini-

mum enclosing circle which can drop the flow robustness below a given flow robustness

target.

The algorithm’s complexity can be divided into two parts. The first one is the identifi-

cation of every possible failed region, which is O(|V |3) with |V | representing the number

of nodes. It is the complexity of finding candidate failure circles using three nodes. The

second part that calculates the flow robustness after each circular challenge is O(|V |+|E|)

with |E| representing the number of links. Since |E| is generally in the same magnitude

of |V | for fiber-level networks, the complexity is reduced to O(|V |). Therefore, the overall

complexity of the identification model is O(|V |4). Since the identification is deterministic

for the fiber-level networks, given the slow deployment of new fibers, it can be easily cal-

culated for most of the considered topologies with the number of nodes |V | in the scale

of hundreds [42].

By averaging the list of flow robustness results obtained from the identification mech-

anism, we can evaluate the relative resilience of different network topologies. We define

aggregated remaining flow (ARF) for a given topology and its value is in the range [0, 1).

Aggregated Remaining Flow is defined as the average flow robustness after each

challenged node set is removed

ARF =

∑n
i=1(FRi)

|V |
(3.6)

where FRi is the flow robustness target for a given challenge i, |V | is the number of

challenged node set identified in a given topology. The larger the ARF is, the more
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robust a certain topology is against area-based challenges. We further propose normalized

aggregated remaining flow (nARF) as follows.

Normalized Aggregated Remaining Flow is defined as the remaining flow robust-

ness after a list of nodes are failed, normalized by the total number of links.

nARF = eARF−1 × (
‖GM‖
‖G‖

)−ρ (3.7)

‖G‖ is the total number of links in topology G, and ‖GM‖ is the total number of links

for the largest network topology in consideration (in this case 244 links for AT&T). The

minimum-covering circle model produces a limited number of challenged node sets. Since

both ARF and nARF are calculated after removing each challenged node set sequentially,

they are time-bounded.

3.2.2 Numerical Results

We analyze the fiber-level topologies from different continents. We include Level 3 [151]

and Sprint [152] networks for the US, and the Bestel network [153] for Mexico. For

European topologies, we include Oteglobe [154], LambdaNet [155], and NORDUnet [156].

Oteglobe is based in Europe and serves as one intracontinental network.

For the critical distance comparison, we further include US topologies such as AT&T [157],

Internet2 [158], TeliaSonera [159], and CORONET [160] networks. CORONET is a syn-

thetic fiber network to represent Internet service provider topology. SUNET (Swedish

University Computer Network) [161] is included as an European research topology.

North American Topologies

We start by presenting the critical region result for the Level 3 network in Figure 3.3.

The flow robustness target is shown in different color shades to represent the varying
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vulnerable levels. The circles shown are the minimum failure regions to reduce the flow

robustness of a given topology below the given target. The darker color shade represents

a larger flow robustness target, and the better the network performs. All the critical

regions are in the northeast corner of the topology. The critical regions for the larger

flow robustness target concentrate around New York City and gradually shift in the

southwest direction as the it becomes smaller. For example, when flow robustness target

is 0.9, the critical region centers at New York, NY, and shifts to Butler, PA as it becomes

0.6. This is because for the larger flow robustness target, the most effective location is

around New York City as it has a more dense network component concentration; and

for the smaller flow robustness target, the failure regions center around Pennsylvania

and can efficiently disrupt the connection between the east and the west coast as it is a

narrow corridor for the US topology.

Figure 3.3: Level 3 unweighted network critical region analysis

However, when we introduce population-based weighted topologies, the critical region

shifts to more populated areas. As shown in Figure 3.4, with a larger flow robustness

target, the critical region shifts from the northeast corner of the topology for the un-

weighted graph to around Chicago. For example, the failure region for the unweighted

graph centers at Butler, PA when flow robustness target is 0.6, yet it moves toward Van
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Figure 3.4: Level 3 weighted network critical region analysis

Wert, OH for the weighted one. This is because the Chicago node contributes more

weight to its adjacent links due to its large population.

Figure 3.5: Sprint unweighted network critical region analysis

We further present results for the unweighted Sprint network in Figure 3.5. It presents

a similar result to Level 3. To achieve the same flow robustness target, the Sprint network

has a comparatively smaller circular region due to its more concentrated network nodes

and links than Level 3.

For the weighted graph as shown in Figure 3.6, the degree of shifting towards Chicago
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Figure 3.6: Sprint weighted network critical region analysis

node for Sprint is smaller than Level 3. This is because the Sprint network has some

highly-populated nodes around West Virginia, Virginia, and Kentucky which Level 3

lack.

We carry out similar analysis for the the Bestel [153] network, one of the largest

telecommunication networks in Mexico. As shown in Figure 3.7, the critical regions for

different flow robustness target values are spread out. For the larger flow robustness

target, the failure radius is fairly small and it affects only a single node on the edge of

the topology. As the flow robustness target decreases, the failure region grows larger and

most of the critical regions center around Mexico City.

European Topologies

Similar analysis is carried out on European topologies. We begin with Oteglobe [154], an

international carrier which is strong in the southeast Europe. As shown in Figure 3.8, the

critical regions focus around Greece as it is the network headquarter with a higher degree.

The network is more resilient to regional failures since the network spans across a wider

geographic region and the topology is relatively sparse compared to the US carriers.
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Figure 3.7: Bestel network critical region analysis

Figure 3.8: Oteglobe network critical region analysis
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Figure 3.9: LambdaNet network critical region analysis

LambdaNet is a network topology owned by euNetworks [155] and it lies mostly in

Germany. Contrary to other large-scale networks, it is a regional and relatively smaller

network. As shown in Figure 3.9, the failure regions focus around the geographical center

of Germany.

Critical Distance Comparison

We present the critical distance results for the US networks in Figure 3.10. As the flow

robustness target increases, the failure radius decreases. Surprisingly, we observe that all

the topologies have similar critical distances; this means that to achieve a similar damage

to the considered US networks, a similar scale of challenge is required. It implies that all

the US networks present similar properties in the face of geo-correlated challenges, even

though the networks have different characteristics, such as different number of nodes and

links. This is mainly because that most fibers are deployed along the US motorways [13],
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and have a similar resilience against a similar level of geo-correlated challenge. This

also means that for a given threat model, the protocol design is the same for all the US

topologies. We introduce the detailed protocol design in Chapter 4 and 5.

The weighted graphs result is shown in Figure 3.11. Contrary to the unweighted ones,

the weighted graphs require smaller failure radii to reduce the network connectivity to a

similar level. This is because the most populated nodes are located in the east coast and

the critical regions are mostly there already for the unweighted topologies. The same

failure region causes more damage since the nodes and links have greater weights. Similar

to the previous figure, the weighted graphs present similar failure radius for the same

flow robustness target. This further verifies our previous claim that different physical

graphs in US have a much larger similarity than we have expected.

Overall, we list the critical failure distances for different continents in Figure 3.12. To

reduce the flow robustness to 0.1, the failure radius is 600 km for Oteglobe while 170 km

for LambdaNet. This is because the Oteglobe network spans across multiple countries

and covers a wider geographical area.

We further include the detailed vulnerable locations for the flow robustness target of

0.6 in Table 3.1. The locations are centered around Virginia and Pennsylvania; this is

because if the challenges occurred in these locations, most of the northeast US will be

disconnected from the rest of the network. Note that the center of the failure is not

necessarily at a particular node in the topology.

Furthermore, we present our suggestion for prioritized protection nodes to increase the

overall resilience level against geo-correlated challenges for various US topologies. As

shown in Table 3.2, for different flow robustness (FR) targets, the critical region has

a number of enclosed nodes (cities), and we choose the node (city) with the highest

degree centrality as the prioritized protection node for that region; the reason for using
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Figure 3.10: Challenge distances for unweighted US graph

fa
ilu

re
 r

ad
iu

s 
[k

m
]

flow robustness

ATT
Internet2

TeliaSonera
CORONET
Sprint
Level 3

0E+00

1E+02

2E+02

3E+02

4E+02

5E+02

6E+02

7E+02

8E+02

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 3.11: Challenge distances for weighted US graph

43



fa
ilu

re
 ra

di
us

 [k
m

]

flow robustness

Oteglobe
RedBestel
LambdaNet

Sunet

0E+00

1E+02

2E+02

3E+02

4E+02

5E+02

6E+02

7E+02

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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the degree centrality [45, 46] as the selection measure is that the high degree centrality

node (city) serves an important role during geo-correlated challenges, which we present

in the following section.

We apply this mechanism to verify and present a comparison of our graph metrics

in Table 3.3. As shown in this table, the difference among topologies in terms of both

TGGD and ARF is minimal. This is because all the topologies are designed with nodes

and links separated; which provides survivability against area-based challenges. However,

the topologies have different number of links and his analysis has a penalty against dense

networks. Both the cTGGD and nARF metrics eliminate this effect after normalization

based on the number of links. cTGGD and nARF have shown comparable results by

successfully distinguishing geographic diversity levels in topologies. The numbers in

bold are the two topologies with the largest cTGGD and nARF values. nARF has a

higher computational complexity since the critical-region identification mechanism has
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a complexity of O(|V |4). The cTGGD metric effectively indicates the resilience level

while at the same time having a substantially lower complexity compared to nARF. The

best-case complexity for cTGGD is O(|V | log |V |), while the worst-case complexity is still

only O(|V |2 log |V |).

3.3 Malicious Attacks

In addition to understanding the challenges from large-scale disasters, we further explore

how targeted malicious attacks can affect physical layer networks in this section. An

example of such attacks could be an electromagnetic pulse (EMP) weapon. From the

standpoint of the attackers, we analyze the mechanisms they could exploit to increase

the damage using a given attack budget. We assume the cost to increase the attack area

is proportional to the budget, which means that the radius of the attack corresponds to

the square root of the budget. We use cost b to represent the cost to fail an area with a

radius r in the physical topologies, while the number of attack locations a corresponds

to the number of challenges that share the total attack budget.

Cost Radius Relation is defined as the radius of each attack location, given the attack

budget (b) and the number of attack locations (a)

r =

√
b

πa
(3.8)

We apply different centrality-based attacks on several network regions to study which

metric generates the worst damage to a given topology. We employ several best-known

centrality metrics: betweenness, closeness, eigenvector, load, and degree centrality [45,46]

to analyze different physical networks. Our model provides a list of nodes sorted according

to their different centrality values from high to low. The definition of these centrality
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metrics are provide in Chapter 2. These centrality metrics have been used to study the

performance of networks against targeted malicious attacks [19, 41].

The attack starts with a challenge area defined by the cost radius relation (CRR)

centered at the highest centrality node identified from the previous step. Given a fixed

budget b and the attack can occur in one location or divided into multiple locations

each with a smaller radius r. For simplicity of the analysis, we assume that the malicious

attacks in different locations are divided equally in terms of area. For example, if the total

challenge area is ten and the number of challenge locations is two, then each challenge

location has an area of five. We present how the number of attack locations affects the

overall flow robustness for the AT&T physical network in Figure 3.13. As the number of

challenge location increases, the flow robustness value decreases. For example, the degree

centrality attack drops the flow robustness to below 40% when the number of locations

is 16. Furthermore, after the challenge locations increase beyond four, the value of flow

robustness stabilizes. As it would be more complicated and susceptible to detection for

the attackers to increase the number of attack locations, we conclude that by dividing

the attacks into four locations and deploying them based on the higher degree centrality

maximizes the attack damage in the AT&T network.

Figure 3.14 shows similar results when the attacks occur in the Sprint network. Similar

to the AT&T network, degree centrality has the greatest impact to the flow robustness.

However, the significant drop in flow robustness occurs around eight challenge locations.

This is partly due to the evenly distributed network nodes and links in the Sprint network.

However, when the number of locations increases beyond eight, the flow robustness drops

significantly, which is because the network is partitioned after the higher centrality nodes

have been removed.

Figure 3.15 presents the Level 3 physical network under attacks. It shows faster and
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Figure 3.14: Sprint network under regional challenges
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more significant damage than the previous cases. When the number of challenge location

increases to eight, the flow robustness drops below 20%. This attack result demonstrates

that with a certain amount of knowledge of the network topology and expertise to analyze

it, attackers can cause a substantial amount of damage even with a small budget.

Figure 3.15: Level 3 network under regional challenges

Similar analysis is performed in several other topologies and shown in Appendix A.

3.3.1 Restoration Mechanism

Network restoration time can vary from a few hundred seconds to days [162]. In this

section, we analyze the effectiveness of network restoration schemes and provide network

improvement suggestions. We present flow robustness results when the network has a

restoration plan and demonstrate its improvement when the plan is in place. This is one

endeavor to better understand the challenge characteristics and suggest network design

guidelines.
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The result from the critical-region identification mechanism in the previous section re-

veals vulnerable network locations and can guide the improvement of the overall network

resilience. For example, adding physical protection for existing components in the vul-

nerable locations can mitigate the impact of attacks or failures. Compared to analyzing

the overall resilience and global optimization of networks, this is the local optimization

based on the vulnerability level of each individual region.

We present the flow robustness improvement when a certain percentage of the failed

nodes have remained connected due to a particular restoration or protection plan.2 The

challenge locations come from the critical region we have identified in Table 3.1. Due to

the size of different networks, the number of challenged nodes in each location varies. As

we notice from Figure 3.16, by protecting three nodes, all the physical networks increase

to above 60% flow robustness. Protection can be done by shielding existing nodes or

providing hot-standby nodes. The 20% flow robustness improvement is valuable for

dependable network communications.

2Note that a specific restoration plan is not studied in this work.
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Figure 3.16: Protection plan improvement on different networks
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Table 3.1: Physical topology vulnerable locations (FR=0.6)
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Table 3.2: Prioritized protection node list
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Table 3.3: Network characteristics

Network TGD cTGD TGGD cTGGD ARF nARF

AT&T 0.90 0.06 0.99 0.96 0.86 0.87
CORONET 0.93 0.16 0.99 0.89 0.90 0.84

Internet2 0.88 0.26 0.94 0.81 0.88 0.80
Level 3 0.89 0.10 0.97 0.90 0.87 0.82
Sprint 0.91 0.08 0.98 0.92 0.87 0.86

TeliaSonera 0.75 0.15 0.87 0.75 0.87 0.75
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Chapter 4

Path Geodiverse Problem

In this chapter, we consider the path geodiverse problem (PGD) and provide two efficient

heuristics to provide solutions. In Section 4.1, we introduce GeoPath Diverse Routing

Protocol (GeoDivRP) to solve the PGD problem and present its implementation detail.

We further present the simulation results using UDP traffic in Section 4.2.

4.1 GeoDivRP Implementation

We begin our discussion by introducing an optimal algorithm for the path geodiverse

problem (PGD) and propose two heuristics for solving it more efficiently. PGD is defined

as finding a number of GeoPaths in a given network topology. We further incorporate

the heuristics in GeoDivRP and provides extensive simulation results to verify its per-

formance.

4.1.1 GeoResLSR–Optimal Algorithm for PGD

We first formulate the path geodiverse problem (PGD) for calculating k GeoPaths and

provide a two-step optimal algorithm for solving it. GeoPath is defined as the quali-

fied distance d-separated path. Specifically, we consider PGD that involves obtaining a
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set of distance d-separated paths from each and every node pair in the network. This

algorithm begins with the Suurballe’s algorithm [59, 60] in which the shortest-path al-

gorithm (SPA) is iteratively applied. After each iteration of the SPA, the link weights

from the constructed path is penalized by adding a factor. Once the algorithm has iden-

tified n paths, it selects the path with distance d-separated by iteratively comparing the

distance between each and every node pair from all the candidate paths. Based on this

algorithm, we have designed the Geodiverse Resilient Link-State Routing (GeoResLSR)

protocol. This mechanism guarantees in choosing the best d-separated paths assuming

a large number of candidate paths is provided. However, as SPA is applied n times for

generating the candidate paths before selecting the qualified ones, its time complexity is

O(n|V |(|E| + |V | log |V |)) [163] and the computation is slow with a large n. To reduce

the complexity of this algorithm, we propose two heuristics for efficiently calculating

the GeoPaths. The proposed heuristics return a set of (vs, vd) paths from the graph

G = (V,E), where V is the node (vertex) set, E is the link (edge) set. Dijkstra(G, n) is

the standard Dijkstra’s algorithm we use to provide the shortest path. We list the graph

notations used in this section in Table 4.1.

Table 4.1: Notations for GeoDivRP

Description

G(V,E) input graph ‖G‖ with a set of nodes V and links E
vs source node
vd destination node
vsk neighbor node chosen by source node
vdk neighbor node chosen by destination node
k number of requested geodiverse paths
d distance separation between each and every node in different disjoint paths
δ delta distance safety margin when selecting waypoint node

buffer distance buffer to increase link weight
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4.1.2 GeoDivRP – Two Routing Heuristics

In consideration of decreasing the complexity of the GeoPaths calculation, we pro-

pose two heuristics: iterative WayPoint Shortest Path (iWPSP) and Modified Link

Weight (MLW) [23, 116] 1. As shown in Figure 4.1, for the case when k = 3, iWPSP

first selects neighbor nodes vs1 and vd1that are d distance separated from source node vs

and destination node vd, respectively. For simplicity, we assume that such nodes exist

in this work; otherwise, the nodes with the greatest distance will be chosen, iterating

until nodes d apart are located. Assuming the straight segment connecting vs and vd is

S, iWPSP selects waypoint nodes m′ and m′′ in the opposite direction that are distance

d + δ apart from the middle node m in the shortest path, where the segment m′mm′′

interleaves with the shortest path. Dijkstra’s algorithm is performed for the two branches

vs1m
′ and vd1m

′. By connecting the shortest path returned from the two branches, the

heuristic obtains the first GeoPath p1. The same mechanism repeats for waypoint node

m′′ for the second GeoPath. The variable d is a user-chosen parameter based on a threat

model, and δ is experimentally chosen for different network topologies to increase the

probability of successfully returning a qualified path. Furthermore, δ prevents the links

from different paths from interleaving and creating routing loops. By adjusting the value

of δ, this heuristic selects a nearby waypoint node if the previous one fails running the

Dijkstra’s algorithm. The pseudo code for iWPSP is shown in Algorithm 1.

We use a 5 × 5 grid network to demonstrate the GeoPaths calculated by iWPSP. As

shown in Figure 4.2, we highlight the calculation of two GeoPaths from the source node

21 to destination node 3. The d value is set as less than the length of the link in the grid.

Once the size of the failure region increases, a corresponding larger d value is provided to

iWPSP, and the calculated paths are further apart geographically as shown in Figure 4.3.

1MLW is a joint work lead by Deep Medhi from UMKC
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Functions:
Calculate k paths from vs to vd separated by distance d
begin

segment S connecting vs and vd, with its middle point m;
choose neighbor node vsk , vdk that is at least d distance from vsk−1

, vdk−1
,

respectively;
if k is odd number then

choose two nodes m1 and m2 that are separated by d+ δ on each direction of
S, where m1mm2 is perpendicular bisector of S;
p1 = SourceTreevdvs ← Dijkstra(vd, vs);
k− = 3;

else
choose two nodes m1 and m2 that are separated by d/2 + δ on each direction
of L, where m1mm2 is perpendicular bisector of S;
k− = 2;

end
pm1vs1

= SourceTreevs1m1 ← Dijkstra(m1, vs1);

pm2vs2
= SourceTreevs2m2 ← Dijkstra(m2, vs2);

pm1vd1
= SourceTreevd1m1 ← Dijkstra(m1, vd1);

pm2vd2
= SourceTreevd2m2 ← Dijkstra(m2, vd2);

while k > 0 do
segment S = newest established path;
choose one node mk that is separated by distance d+ δ from S on the farther
direction from the absolute shortest path;
pmkvsk

= SourceTreemkvsk
← Dijkstra(mk, vsk);

pmkvdk
= SourceTreemkVdk

← Dijkstra(mk, vdk);

k− = 1;

end
if k is odd number then

p2 = pm1vs1
+ pm1vd1

;

p3 = pm2vs2
+ pm2vd2

;
...
pk = pmk−1vsk−1

+ pmk−1Vdk−1
;

else
p1 = pm1vs1

+ pm1vd1
;

p2 = pm2vs2
+ pm2vd2

;
...
pk = pmkvsk

+ pmkvdk
;

end
return (P1, P2, ..., Pk)

end
Algorithm 1: Iterative waypoint shortest path heuristic
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Figure 4.1: Iterative waypoint shortest path heuristic
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Figure 4.2: iWPSP heuristic in grid network

The second heuristic MLW is proposed and lead by UMKC [164]. MLW statistically

modifies the link weights and performs Dijkstra’s algorithm to calculate the GeoPaths

using the modified link weights. The heuristic begins by increasing, linearly or squarely,

the weight in one direction based on the perpendicular distance to the segment S con-
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Figure 4.3: iWPSP heuristic in grid network with wider failure

necting source node vs and destination node vd. The weight-increment ratio is inversely

proportional to the distance from the segment S. Dijkstra’s algorithm is applied on the

graph using the modified link weights. The heuristic repeats the process for the other

perpendicular direction to S. This way the heuristic generates two GeoPaths in different

directions from the shortest path.

A similar 5× 5 grid network is used to demonstrate GeoPaths calculated by the MLW

heuristic. As shown in Figure 4.4, MLW calculates two GeoPaths that are separated by

distance d by statistically modifying link weights. Similarly, node 21 is the traffic source

and node 3 is the destination. The d value is set at twice the length of the link in the grid.

The weight shown in different colors is used for calculating paths in its representative

color. For example, when MLW is calculating the path shown in blue-solid links (the first

of the two weights before the slash), the link weight is decreasing towards the top right
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corner of the grid network. The other path shown is the red-dashed links, corresponding

to the second of the two weights after the slash. The detailed heuristic is proposed

by UMKC and presented in Algorithm 2 for easy reference. Their simulation result is

presented in [164] and we implement their heuristic in ns-3 for performance comparison.

Figure 4.4: MLW heuristic in grid network

Both of the heuristics have incorporated improvement mechanisms. When the cal-

culated paths fail to qualify the distance d-separation criteria, iWPSP chooses another

waypoint with a slightly larger δ; while MLW increases the link weight around the avoid-

ance segment. After that, both of the heuristics initialize another iteration of Dijkstra’s

algorithm. If the result still does not qualify the criteria, both heuristics fall back to

the two-step optimal algorithm, which ensures that GeoPaths are acquired for each node

pair. Another major component of the heuristics is loop detection. For example, the

iWPSP heuristic can create routing loops when calculating paths for corner nodes in the

topology. We use a loop detection algorithm so that if a node is visited in the calculation
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Functions:
k number of GeoPaths d
begin

straight line S connecting source vs and destination vd
if k is odd number then

p1 = SourceTreevdvs ← Dijkstra(vd, vs);
modify link weight linearly or squarely on one direction perpendicular to line
S until distance d;
p2 = SourceTreevdvs ← Dijkstra(vd, vs);
repeat the process for the other direction;
buffer = d;
k− = 3;

else
modify link weight linearly or squarely on one direction perpendicular to line
S until distance d/2;
p1 = SourceTreevdvs ← Dijkstra(vd, vs);
repeat the process for the other direction;
buffer = d/2;
k− = 2;

end
while k > 0 do

buffer += d;
modify link weight linearly decreasing on one direction perpendicular to line
S until buffer;
links beyond distance buffer, link weight = 1;
pk−1 = SourceTreevdvs ← Dijkstra(vd, vs);
repeat the process in the other direction;
pk = SourceTreevdvs ← Dijkstra(vd, vs);
k− = 1;

end
return (p1, p2, ..., pk)

end
Algorithm 2: Modified link weight shortest path heuristic lead by UMKC
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for the same path, our heuristic detects a loop and deletes the duplicate part.

We implement both of our heuristics in ns-3 [27] and incorporate them in our resilient

routing protocol, GeoPath Diverse Routing Protocol (GeoDivRP). We base our imple-

mentation on a link-state routing protocol methodology; link-state advertisements (LSAs)

are flooded throughout the network and all nodes compute their paths based on the up-

dated topology map. GeoDivRP calculates and selects a single or multiple GeoPaths to

meet the requirements from upper network layers.

4.1.3 Complexity Analysis and Evaluation

We analyze the complexity of the heuristics compared to the two-step optimal algorithm,

GeoResLSR. For simplicity, we examine the complexity for obtaining two GeoPaths be-

sides the shortest path. Since the Dijkstra’s algorithm is applied n times for generating

the candidate paths before selecting the qualified ones, its time complexity for generat-

ing n link-disjoint paths is O(n|V |(|E| + |V | log |V |)) [163]. Furthermore, The optimal

algorithm demands a choice of paths that qualify the distance-separation criteria. This

process requires |V |2 time, which means the total complexity for the optimal algorithm

is |E| + |V | log |V | + n|V |2, or O(n|V |2). The number of link-disjoint paths n is usually

large to guarantee the quality of the paths calculated. For most application scenarios,

n is chosen to be 1000 [165]. Therefore, for a network with nodes less than 1000, the

complexity of the optimal algorithm goes up to O(|V |3).

iWPSP has a complexity of 2s2|V |2 log |V |, where s is the average number of neighbors

for nodes; the complexity for choosing the waypoint node is O(|V |), where |V | represents

the number of nodes; and 2|V | log |V | is for Dijkstra’s algorithm to calculate two shortest

paths. Therefore, the worst-case scenario is O(n2 log n). Most of the physical topologies

have an average degree below four [24]. This means that s in our complexity analysis is a
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small constant. This reduces the best-case time complexity for iWPSP to O(|V | log |V |).

The complexity of MLW is O(2|V | log |V |), which is the complexity for invoking the

Dijkstra’s algorithm twice. The complexity for both of our heuristics is much better than

that of the optimal algorithm, which is O(|V |3).

4.2 Real-World Network Results

In this section, we present the GeoDivRP simulation performance in ns-3 [27] using real-

world networks. We evaluate our proposed heuristics and compare their performance with

the optimal algorithm when carrying UDP traffic. At the beginning of the simulation, by

obtaining node locations from the link-state update messages, our protocol calculates the

GeoPaths. When the simulation begins, our protocol starts sending data traffic using

the shortest path. When a challenge occurs in the network, GeoDivRP responds to

the failure faster than Open Shortest Path First (OSPF) [166] and use the pre-calculated

paths according to the challenge estimation. We have incorporated a fallback mechanism;

when the generated GeoPaths do not satisfy the application requirement, OSPF is used

for further routing decisions. Before introducing the simulation result in the Internet

Service Providers (ISPs) network, we provide verification results for the heuristics.

4.2.1 Routing Heuristic Verification

We present the GeoPaths calculated by our heuristics using the Nobel-EU (Pan-European

Reference Network) with 28 nodes and 40 links [52]. We assume a challenge along the

line from Amsterdam to Rome with a radius of 50 km. Nodes Strasbourg and Frank-

furt are in the challenge circle. The result of iWPSP is shown in Figure 4.5 with the

challenge region shown in a red circle. We show the paths calculated for all the node

pairs in solid lines. And the two paths provided to the node pair of Amsterdam – Rome
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are Amsterdam–Hamburg–Berlin–Munich–Vienna–Zagreb–Rome for the first path, and

Amsterdam–Brussels–Paris–Lyon–Zurich–Millan–Rome for the second one.
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Figure 4.5: iWPSP heuristic in Nobel-EU network

The result of MLW using the same challenge radius is shown in Figure 4.6 with its two

paths from Amsterdam to Rome. The first path shown in red-dashed link is Amsterdam–

Hamburg–Berlin–Munich–Vienna–Zagreb–Rome, and the second path shown in blue solid

link is Amsterdam–Brussels–Paris–Lyon–Rome. The first path is exactly the same with

iWPSP, while the second one for MLW avoids the Lyon–Zurich link. We present a large

radius challenge case when using MLW in Figure 4.7. The two paths shown in red and

blue are further apart to bypass the challenge.

We present the execution time of the heuristics to demonstrate their effectiveness com-

pared to the optimal algorithm in the case of calculating two GeoPaths. The evaluation

is performed on a Linux machine with 3.16GHz Core 2 Duo CPU with 4GB memory.

We use an increasing dimension of grid networks to analyze the time complexity. The
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Figure 4.6: MLW heuristic by UMKC in Nobel-EU network

Figure 4.7: MLW heuristic by UMCK in Nobel-EU network with large radius
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grid dimension ranges from 3×3 to 11×11; meaning that the number of nodes varies

from 9 to 121. We present the time to calculate GeoPaths for all the node pairs in the

topology. Note that when calculating only one node pair that happens more often in

real-world scenarios, the time is exponentially less. As shown in Figure 4.8, the x-axis

is the grid dimension and the y-axis is the log-level algorithm execution time in seconds.

Both MLW and iWPSP algorithms show better execution time compared to the two-step

optimal algorithm. For example, when calculating all the paths in 11×11 grid, MLW and

iWPSP take 20 s and 65 s respectively, while the optimal algorithm takes greater than

3000 s. Furthermore, we observe that iWPSP has a greater execution time compared to

that of MLW. This is because of the one extra iteration of the Dijkstra’s algorithm and

the selection of qualifying waypoint nodes. However, we observe that when calculating

GeoPaths in real-world topologies, iWPSP is more efficient in calculating the paths for

node pair around the topology boundary. This is because by selecting waypoints based on

a distance and a delta value, iWPSP has more control over the distance separated from

the two paths. A better algorithm might be combining the two heuristics in calculating

a single topology, and this is planned in future work.

4.2.2 Routing Performance

We now present simulation results using physical topologies including Sprint [24], Level

3 [151], Internet2 [158], and TeliaSonera [159]. We use constant bit rate (CBR) UDP

traffic, sending from each node to all the others at a data rate of 1 packet/s, with a 1000

byte packet size. The link bandwidth is 10 Mb/s and the delay is 2 ms. We carry out the

simulation once for each topology since there is no randomness because of the CBR traffic.

There are three deterministic geo-correlated challenges we have simulated. From 20 to

40 s, the challenge occurs around Los Angeles, from 60 to 80 s in Kansas City, and the

last challenge occurs in New York City from 100 to 120 s. The challenge locations come
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Figure 4.8: Heuristics complexity analysis and comparison

from the flow robustness analysis in the previous chapter, and our challenge duration

time is set as 20 s. We choose these different challenge areas so that the most vulnerable

area is around Kansas City, due to its high betweenness as a major fiber exchange point

in the US. The next damage area is around New York City. While it does not have

many high-betweenness nodes, the network is dense and more nodes are challenged in a

given radius. The least vulnerable area is around Los Angeles. The radii of the three

challenge areas are 300 km. By assuming the correct estimation of the challenge radius

and position, we compare our protocol’s performance with standard OSPF in terms of

the packet delivery ratio (PDR) as well as delay. PDR is the ratio of packets delivered

divided by total packets sent, while delay is the time it takes for the data packet to travel

end-to-end. We use the same challenge areas throughout all the topologies in this chapter

for ease of comparison. The iWPSP heuristic is used in GeoDivRP for calculating the

GeoPaths. MLW 2 achieves the same PDR and delay result as iWPSP when the links

2Proposed and lead by UMKC
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are carefully modified to guarantee the distance-separation criteria. Since ns-3 is an

event-driven network simulator and the algorithm execution time is not included in the

simulation time, the delay in ns-3 for both the iWPSP and MLW is the same.

Figure 4.9: Sprint topology under regional challenges

The Sprint physical network contains 77 nodes and 114 links and the GeoPaths calcu-

lated by GeoDivRP to bypass the challenge is shown in Figure 4.9. The red circle shown

in this figure is the challenge area at Kansas City. The PDR result for the Sprint network

is shown in Figure 4.10. We compare the performance of our GeoDivRP with standard

OSPF. The second challenge at Kansas City area occurs at 60 s and GeoDivRP shows

substantial performance improvement compared to OSPF. The PDR of OSPF drops to

75% and it takes 10 s to converge while the time for GeoDivRP is within 1 s and the

PDR only drops by 2%. The last challenge occurs from 100 s to 120 s and the difference

in PDR between OSPF and GeoDivRP is small, only about 1%. This is because the

challenge at New York City has little effect on the connectivity of the overall topology.

The PDR for OSPF drops by about 1% and it takes 10 s to recover, and there is no

noticeable PDR drop for our protocol. The first challenge happens at 20 s to 40 s and

there is no noticeable PDR drop for both of the protocols. This is due to the same reason

as in New York City but the loss of PDR for both GeoDivRP and OSPF is even less.

The delay analysis for Sprint network is shown in Figure 4.11. The reason that OSPF
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shows lower delay is because most of the data packets during the challenge have been

dropped and the lost packets are not counted as delay. This is also the reason that there

is a delay drop for OSPF before converging. Consider the first challenge in Figure 4.11,

the delay for OSPF drops from 20 – 30 s due to the packet losses, while GeoDivRP

converges and calculates geodiverse paths during that period of time and shows 1 s

higher in delay. However, the extra delay is caused by extra path stretch due to routing

packets around the failed region. We also notice a delay bump for OSPF right after the

challenge is finished. For example, in Figure 4.11, from 40 – 50 s, there is an increase in

delay for OSPF. The same occurs at 80 – 90 s, and 120 – 130 s. This is because OSPF

needs to reconverge after the topology has recovered from the challenge. In contrast, for

our protocol, the extra convergence time is still 1 s and no noticeable delay increase is

recorded.

Figure 4.12: Level 3 topology under regional challenges

The Level 3 physical network contains 99 nodes and 132 links. As shown in Figure 4.12,

the similar challenge location as from the Sprint network has caused more nodes and links

to fail. The PDR for the Level 3 network is shown in Figure 4.13. Since Level 3 shares

geographical similarities with the Sprint network; we observe a similar PDR result. The

challenge in the Kansas City area reduces the PDR for OSPF significantly; it is even

greater than for Sprint. This is because the Level 3 network lacks some of the nodes and
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links from Seattle to Chicago and the challenge around the Kansas City area causes more

damage to the overall connectivity. The delay case for the Level 3 network is similar to

the Sprint network as shown in Figure 4.14.

The Internet2 physical network is a smaller research network with only 16 nodes and 24

links. The PDR for the Internet2 network is shown in Figure 4.15. The challenged PDR

and delay show a similar trend as previous topologies. The first challenge does damage

to the network connectivity and GeoDivRP converges within 1 s. The second challenge

in Kansas City area causes OSPF to drop around 10% in the PDR and takes 10 s to

converge and return the PDR to normal. The Los Angeles challenge has small impact

on the network similar to the Sprint case. The delay analysis for the Internet2 network

is shown in Figure 4.16. For the same reason, OSPF shows a smaller delay compared to

that of the GeoDivRP during challenges from 20 – 30 s, 60 – 70 s, and 100 – 110 s.

The TeliaSonera physical network contains 18 nodes and 21 links. The PDR for Telia-

Sonera is shown in Figure 4.17. The second challenge at Kansas City area drops the

PDR for OSPF to around 50%. This significant drop is caused by two reasons. First, the

Kansas City node connects multiple nodes between the east and west coast. Second, the

TeliaSonera network is very sparse so the damage from the Kansas City node is greater

than that for the other networks. However, GeoDivRP recovers from the damage in only

1 s and limits the PDR drop within 1%. The PDR case for both the first and the third

challenge are similar. At the same time, OSPF drops about 1% of the total packets and

recovers only after 10 s. The delay analysis is shown in Figure 4.18. OSPF shows a

smaller delay during challenges since the dropped packets are not counted for delay anal-

ysis. We notice that the delay increases after the challenge for OSPF at 80–90 s is larger

than other challenge locations as well as the same challenge location in other topologies.

This is because OSPF is using a path with more path stretch before convergence.
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Figure 4.13: Level 3 PDR under regional challenges
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Figure 4.14: Level 3 network delay under regional challenges
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Figure 4.15: Internet2 PDR under regional challenges
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Figure 4.16: Internet2 delay under regional challenges
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Figure 4.17: TeliaSonera PDR under regional challenges
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Figure 4.18: TeliaSonera delay under regional challenges
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We argue that GeoDivRP performs well in the face of geo-correlated challenges. First,

the iWPSP routing heuristic returns GeoPaths with controlled algorithm and time com-

plexity. Second, it presents improved packet delivery ratio (PDR) and small delay in-

crease when compared to OSPF.

4.2.3 Disaster Mitigation

Based on the critical regions identified using the mechanism introduce in Chapter 3,

various protection mechanisms can be applied using GeoDivRP. We perform a disaster

mitigation analysis for the flow robustness target equals 0.6 from Table 4.2. The same

table has been shown in Chapter 3, it is shown here again for easier reference. By

restoring failed nodes one by one beginning with the highest betweenness centrality, the

flow robustness improvement is significant. The reason for adding nodes with higher

betweenness centrality is that betweenness defines the number of shortest path passing

through a node and can offer better restoration results with traffic considered. As shown

in Figure 4.19, with only two protected nodes, the flow robustness for all the topologies

increases from below 50% to around 80%.

Network Challenge Simulation

We further carry out network simulation to evaluate the mitigation results and demon-

strate the performance of GeoDivRP. ns-3 [27] is used with the link bandwidth as 10 Mb/s

and the delay as 2 ms, similar to the previous simulation setup. The total simulation

time is 100 s and two challenges are introduced; the first challenge starts from 20 to 40 s.

The second challenge occurs from 60 to 80 s with the protected nodes. The protected

nodes come from the challenged node set identified for the flow robustness target equals

0.6 as shown in Table 4.2. The total protected nodes are three out of the six failed ones,
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Figure 4.19: Flow robustness improvement for unweighted graph

Figure 4.20: Level 3 network challenge location with protected nodes

which means three of the highest betweenness nodes are added to the failed topology

during the second challenge.

We present the improvement result for the Level 3 network. As shown in Figure 4.20,

the challenge location is for the flow robustness target equals 0.6. Nodes in the range

of the circle are disrupted, along with the links connecting to them as shown in black
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dotted lines. The three protected nodes and the adjacent links are shown in blue dashed

lines.

As shown in Figure 4.21, for the first unprotected challenge, the PDR drops to around

60%, which closely matches the flow robustness result. OSPF needs 10 s to converge after

the challenge, which is shown as the PDR decreases from 20 to 30 s. On the other hand,

it takes only 1 s for GeoDivRP to reconverge and provide paths bypassing the challenge.

The second challenge with the protected nodes has a PDR above 90%. For the same

reason, it takes OSPF 10 s to converge and the PDR decrease is larger compared to the

previous challenge; with the protected nodes, some previously disconnected nodes are

connected during this challenge and OSPF cannot provide shortest path for the newly

connected node pairs until reconvergence.

As shown in Figure 4.22, the end-to-end delay for OSPF drops during the challenge

before reconvergence because OSPF has around 5% to 10% (first and second challenge

respectively) more packet drops compared to GeoDivRP and the dropped packets are

not counted in the delay result. After the convergence, from 30 to 40 s and 70 to 80 s,

there is 1 s extra delay for GeoDivRP compared to OSPF. This is because GeoDivRP

calculates paths with greater path stretch provided by the routing heuristic. However,

1 s extra delay is justified by the 5% to 10% PDR improvement.
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Table 4.2: Physical topology vulnerable locations (FR=0.6)
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Chapter 5

Flow Geodiverse Problem

When multiple paths are provided to each network device, how the traffic is distributed

among them requires comprehensive study. In this chapter, we propose the flow geodi-

verse problem (FGD) and two optimization formulations to solve it. We begin our discus-

sion by proposing a novel cross-layer protocol stack, ResTP–GeoDivRP, in Section 5.1.

The protocol stack benefits from the cross-layer communication and provides multiple

GeoPaths to network devices for resilient data transmission. In Section 5.2, we present

the flow-geodiverse optimization design for GeoDivRP to satisfy either the minimum-cost

or the path delay-skew requirement passed from ResTP, our resilient transport protocol.

We extend our GeoDivRP routing algorithm to provide the optimal traffic allocation in-

formation on multiple paths for different node pairs or commodities1. Finally, we present

the performance of our flow-geodiverse optimization engine and our ResTP–GeoDivRP

protocol stack when using the multipath forwarding mechanism in Section 5.3.

5.1 ResTP–GeoDivRP Network Stack

We propose a ResTP–GeoDivRP resilient network stack for dependable network com-

munication through the cross-layer information. Using the GeoPaths provided by Geo-

1We use node pair and commodity interchangeably
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DivRP, ResTP establishes multiple subflows for each node pair to achieve better perfor-

mance and resilience.

5.1.1 Cross-Layer Protocol Integration

Our cross-layer network stack integrates GeoDivRP with ResTP [128, 129, 167], our re-

silient transport protocol 2. GeoDivRP and ResTP fit in the protocol stack as shown

in Figure 5.1. Knobs K are used by higher layers to influence the lower layer operation

while dials D are the mechanisms for lower layers to provide instrumentation to the layers

above. The application passes a service specification (ss) and a threat model (tm) down

to ResTP. Upon receiving these parameters, ResTP determines the type of transport

service needed (including error control and multipath characteristics) and requests that

GeoDivRP calculates GeoPaths that meet the requirement tuple (k, d, [h, t]). k is the

total number of GeoPaths requested, d is the distance-separation criteria, in which any

two nodes on disjoint paths are separated by a distance greater than d, [h, t] are the

desired constraints on path stretch h (number of additional hops for diverse paths) and

the temporal skew (delay difference) across paths, t. Throughout this work, k is chosen

as three for two main reasons. First, the node degree for the physical topologies used

in this work is below four. Second, a common spread used in erasure coding is three,

which masks a single path failure. Note that GeoDivRP interprets path stretch h as path

delay (latency) l. Based on the configuration and network statistics ([l, f ]) collected from

the network monitoring engine and the requirement tuple from ResTP, GeoDivRP cal-

culates the geodiverse path set Pk = p0...pk−1. The statistic f represents the node and

link failure information. It passes the configuration (Pk, l, t) to the optimization engine

as shown in Figure 5.2. Based on the latency (l) and skew (t) requirement, the optimiza-

tion engine returns the path set Pk along with its traffic allocation information Xk to

2The design and analysis of ResTP is not part of this dissertation
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GeoDivRP, which are then passed up to ResTP for establishing subflows. Upon receiving

the GeoPaths, ResTP establishes multiflow with error control needed to meet the service

specification, including the per-subflow error control (ARQ, hybrid ARQ, FEC, or none)

and flow bundle (e.g., 2-of-3 erasure code for real-time critical service or 1+1 redun-

dancy with a hot-standby for delay and loss tolerant service). The multipath forwarding

is applied in the context of several real-world service provider networks to analyze the

diversity gain and improvement in terms of throughput.

Figure 5.1: Block diagram of the GeoDivRP and ResTP

ResTP is still under active development and not complete; for this dissertation, we

are only using the cross-layering feature of ResTP to take advantage of the geodiverse

paths returned by GeoDivRP. Since the congestion control mechanism for ResTP is not

yet implemented, in the multipath forwarding simulation, we use a scenario that the link
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Figure 5.2: GeoDivRP and optimization engine

bandwidth is over-provisioned to avoid network congestion.

5.2 Flow Geodiverse Optimization

We design our optimization engine to provide optimized traffic information to GeoDi-

vRP when calculating the GeoPaths. We formulate a minimum-cost routing problem

using a linear programming (LP) model and a delay-skew minimization problem using a

nonlinear programming (NLP) model. The paths for both of the problems are provided

by a modified iWPSP routing heuristic. When the network is under geo-correlated chal-

lenges, the rerouted traffic has a limited number of backup paths to select from, which

raises the potential danger for the network to get congested. The congestion will further

cause higher end-to-end delay. We consider the problem of establishing multiple bounded

delay-skew GeoPaths with a given demand matrix when the challenge occurs. Our model

assumes weighted links and we calculate the maximum throughput that multipath rout-
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ing can achieve. We have formulated both of our problems as multi-commodity flow

problems.

Similar to GeoDivRP without an optimization requirement, we consider the link-state

routing environment, in which each node maintains a map of the network link inter-

connection. We use the link-congestion factor to understand how a routing protocol

utilizes network resources, which has shown to be a good indicator for network conges-

tions [120, 168]. Link flow xe (when e ∈ E) is defined as the total flow that has been

assigned on the link e after optimization, with E representing the link (edge) set. The

value xe/ue is the link-congestion factor and a link is overloaded if the utilization exceeds

100%. ue is the flow upper bound on link e. The value maxe∈E(xe/ue) is the network-

congestion factor; it is the maximum link utilization value over all links in the network.

In this work, we allow the link-congestion factor to have values larger than 100%. The

reason is that the simulation model is not using buffers for intermediate nodes, and all

the extra data packets assigned to an overloaded link would be dropped. This assumption

facilitates the representation of overloaded links for OSPF with shortest path routing.

5.2.1 Minimum-Cost Optimization

We start our discussion with the minimum-cost optimization problem. It targets at mini-

mizing the overall transmission cost for all commodities without overflowing any network

link. The formulation is based the link-path approach [138, 143] for multi-commodity

flows. It incorporates the GeoPaths provided by GeoDivRP for each commodity.

For a commodity w, let Pw denotes the collection of all GeoPaths from the source node

vws to the destination node vwd . We use variable xwp as the flow on path p for commodity w.

The link-path indicator variable is defined as ηwe (p); it is one if link(e) is contained in the

path p, and is zero otherwise. We list the important variables used in the optimization
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models in Table 5.1.

Table 5.1: Notation for optimization problem formulations

Description

Pw candidate number of paths to be considered for commodity w
cwp cost per unit flow on path p for commodity w

xwp traffic flow on path p for commodity w (variable)

ue flow upper bound on link e
qw demand for commodity w

ηwe (p) =1 if link e belongs to path p (p ∈ pw); 0, otherwise
kw number of GeoPaths requested for commodity w
L total packet delay in the network
T overall path skew for all commodities
γ weight parameter tuning delay and skew

The GeoDivRP linear optimization problem can now be stated as follows:

min
∑
w∈W

∑
p∈Pw

cwp x
w
p (5.1)

subject to

∑
p∈Pw

xwp = qw, w ∈ W (5.2)

∑
w∈W

∑
p∈Pw

ηwe (p)xwp ≤ ue, e ∈ E (5.3)

xwp > qw/kw, p ∈ Pw, w ∈ W. (5.4)

The objective function shown in Equation 5.1 minimizes the overall cost of flows over

different paths for all the commodities. Equation 5.2 is the flow conservation constraint

over all paths p ∈ Pw of traffic demand qw for each commodity w. Equation 5.3 is the

link capacity constraint for each link e requiring that the sum of the path flows passing

through that link is at most its capacity upper bound ue. Equation 5.4 requires all path
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flow variables to be greater than or equal to a minimum path flow for traffic diversity,

captured by the total traffic demand divided by the minimum number of geodiverse

paths kw to be considered for each commodity w. Note that kw ≤ #(Pw) and typically,

kw < #(Pw) (otherwise, the flow will be equally distributed along all the paths for a

commodity). Clearly, Equation 5.4 forces multipath flow, an important requirement for

our GeoDivRP approach.

All the candidate paths provided to the optimization problems are geodiverse and

they are provided by our modified iWPSP routing heuristic shown in Algorithm 3. The

paths returned from iWPSP are all simple paths, with δ controlling the skew result for

different geodiverse paths. The skew constraint t is passed down along with the other

parameters from ResTP. This heuristic naturally controls the skew for different paths in

different commodities using the distance-separation criteria δ. By slightly increasing or

decreasing the δ value along each direction during the path calculation, we can indirectly

alter the skew value of the returned GeoPaths. If the returned path set is not bounded

by the provided skew requirement, iWPSP uses a different δ value to obtain another set.

5.2.2 Delay-Skew Optimization

For different applications, the requirement for the path delay or skew varies. For example,

data traffic is more sensitive to delay while multimedia traffic is more so to skew. The

minimum-cost optimization provides the optimal traffic allocation ratio on the GeoPaths

while minimizing the overall network cost. However, it does not have a direct control over

the path delay or skew and merit the requirement passed from ResTP. Thus, we propose

another formulation that considers both path delay and skew as an weighted objective.

It provides a flexible way to manage the emphasis on either delay or skew depending

on the application scenario. GeoDivRP calculates the GeoPaths that satisfies the delay-

skew requirement using the non-linear optimization algorithm if permitted. Otherwise,
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Functions:
Calculate k number of d-distance separated skew-bounded paths
begin

segment S connecting source vs and destination vd, with its middle point m;
choose neighbor node vsk , vdk at least d distance from vsk−1

, vdk−1
, respectively;

if k is odd then
choose two nodes m1 and m2 that are separated by d+ δ on each direction of
S, where m1mm2 is perpendicular bisector of S;
p1 = SourceTreevdvs ← Dijkstra(vd, vs);
k− = 3;

else
choose two nodes m1 and m2 that are separated by d/2 + δ on each direction
of S, where m1mm2 is perpendicular bisector of S;
k− = 2;

end
pm1vs1

= SourceTreevs1m1 ← Dijkstra(m1, vs1);

pm2vs2
= SourceTreevs2m2 ← Dijkstra(m2, vs2);

pm1vd1
= SourceTreevd1m1 ← Dijkstra(m1, vd1);

pm2vd2
= SourceTreevd2m2 ← Dijkstra(m2, vd2);

while k > 0 do
segment S = newest established path;
choose one node mk that is separated by distance d+ δ from S on the farther
direction from the absolute shortest path;
pmkvsk

= SourceTreemkvsk
← Dijkstra(mk, vsk);

pmkvdk
= SourceTreemkvdk

← Dijkstra(mk, vdk);

k− = 1;

end
if k is odd then

p2 = pm1vs1
+ pm1vd1

;

p3 = pm2vs2
+ pm2vd2

;
...
pk = pmk−1vsk−1

+ pmk−1vdk−1
;

remove path that fails the skew requirement.;

else
p1 = pm1vs1

+ pm1vd1
;

p2 = pm2vs2
+ pm2vd2

;
...
pk = pmkvsk

+ pmkvdk
;

remove path that fails the skew requirement.;

end
return (p1, p2, ..., pk)

end
Algorithm 3: Modified iWPSP heuristic for flow optimization
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GeoDivRP provides the best possible path sets returned by the optimization process.

Given the capacity bound ue on link e, we use the M/M/1 queuing model [169] that

states the average packet delay on link e as

le =
1

ue − ye
(5.5)

where ye =
∑

w∈W
∑

p∈Pw ηwe (p)xp is the link flow on link e, Then, the average queueing

delay lwp for path p in commodity w is the sum of the average queueing delay on each

link given by

lpw =
∑
e∈E

ηwe (p)le (5.6)

Therefore, the average end-to-end delay for a commodity w is given by:

lw =
1

qw

∑
p∈Pw

∑
e∈E

xwp η
w
e (p)le (5.7)

Based on the delay for each path for commodity w, we formulate the path skew tw as:

tw =
∑
i∈I

|lpws − lpwi | (5.8)

where pws is the shortest path for a commodity w, and pi is the path set I that excludes

pws . The overall path skew T for all commodities is then given by

T =
∑
w∈W

tw (5.9)

On the other hand, the total packet delay in the network [169] is given by

L =
∑
e∈E

ye
ue − ye

(5.10)

Based on the delay and skew, we formulate the optimization problem as follows:

min [(1− γ)L+ γT ] (5.11)
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subject to

∑
p∈Pw

xwp = qw, w ∈ W (5.12)

∑
w∈W

∑
p∈Pw

ηwe (p)xwp ≤ ue, e ∈ E (5.13)

xwp ≥ qw/kw, p ∈ Pw, w ∈ W. (5.14)

The objective function in (5.11) targets at minimizing the delay-skew with a tuning

parameter γ (0 ≤ γ ≤ 1), which controls the weight on either the delay or skew in the

optimization process. The constraints are the same as the ones used in the minimum-cost

optimization discussed earlier.

5.2.3 Complexity Analysis

We use the ralg solver that comes with the OpenOpt optimization framework [30]. The

complexity for solving the flow-geodiverse linear optimization problem is polynomial.

Therefore, the complexity of the GeoDivRP routing with minimum-cost optimization

is dominated by the complexity of the GeoPath calculation. On the other hand, the

delay-skew optimization problem is a nonlinear problem that is typically solved using an

iterative process, and thus cannot be directly analyzed from a complexity point of view.

We can, however, comment on the cost of solving such a problem. The total number of

variables for the delay-skew optimization problem is the number of commodities plus the

number of links for each topology; it is represented as nVariables = W +E. The current

implementation of ralg stores a matrix of size nVariables2 in memory, and each iteration

consumes 5 × nVariables2 multiplication operations. For example, when optimizing a

network with 100 commodities and 100 links, the matrix size is 200 × 200 = 40, 000.

Each iteration of the optimization has 5 × 2002 = 200, 000 multiplication operations.

We set the max-iteration of the solver as 1000, which means the worst-case complexity

90



is 0.2 × 109 multiplication operations in total; this is too complex for large real-world

networks. A possible improvement can be instead of waiting for the optimization to finish,

the GeoPaths are returned to ResTP immediately after calculation, and the optimization

is running in parallel. The necessary adjustment for traffic allocation is sent to ResTP

after the optimization is done. Another possible improvement is a distributed algorithm

for each commodity. We leave the detailed implementation of the two improvement

mechanisms for future work.

5.3 Real-World Network Results

In this section, we present the simulation results for ResTP–GeoDivRP when using our

optimization modules. We select the failure regions identified from Chapter 3. After

solving the path geodiverse problem (PGD), the GeoPaths are sent to the optimization

engine as input, the paths along with their flow allocation information are returned to

ResTP for multiple subflow setup. These optimized paths are used for data transmission

to meet the traffic demand of all the commodities. This mechanism ensures that the

GeoPaths can achieve the optimal link utilization with a focus either on minimum-cost

or controlled delay-skew.

In this work, we apply an area-based challenge in several physical topologies to study

the link utilization and delay-skew result of GeoDivRP with the optimization engine.

We also study the performance of multipath forwarding when the cascading challenge

profile occurs. The steps for the routing algorithm to calculate the GeoPaths is shown

as follows:

• Obtain the geodiverse paths using the modified iWPSP routing heuristic for each

node pair that satisfies the skew constraint and d-distance separation criteria.
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• Solve the multi-commodity flow optimization using the linear programming for-

mulation (LP) or nonlinear programming formulation (NLP) for the flow-diverse

minimum-cost or delay-skew optimization, respectively.

• Use the optimized GeoPaths in ns-3 network simulations.

5.3.1 Optimization Results

We now present the flow optimization result for both of the minimum-cost and delay-

skew case. The topologies considered are the structural physical graphs [24] with their

properties shown in Table 5.2. We include CORONET [160], Internet2 [158], Level

3 [151], Sprint [24], and TeliaSonera [158] fiber-level networks. CORONET is a synthetic

fiber network to represent Internet service provider topology. The number of nodes and

links for the considered topologies are in the same range, and the average node degree

for all the topologies are about three. The capacity for all the links is set to 5 Gb/s,

and we use constant bit rate (CBR) traffic, sent from each node to all the others at a

data rate of 10 Mb/s as the traffic demand. We use the challenged area at Kansas City

identified in our critical-region identification mechanism presented in Chapter 3 with a

300 km radius.

Table 5.2: Physical topology analysis

Network Nodes Links Degree Diameter Radius Path Length

CORONET 39 63 3.23 9 5 4.08
Internet2 16 24 3.00 6 3 2.63

Level 3 63 94 2.98 14 7 5.68
Sprint 77 114 2.96 16 9 6.47

TeliaSonera 18 21 2.33 7 5 3.58
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Minimum-cost optimization

We record the solving time of the optimization problem for different topologies. As shown

in Table 5.3, the maximum time for the optimization is about 7 s for the Sprint network,

while most of the others take less than 1 s. The evaluation is carried on a Linux machine

with a 3.16 GHz Core 2 Duo CPU and 4 GB memory.

Table 5.3: Execution time for optimization algorithm

Network
Number of Number of Number of Optimization

Nodes Links Failed Nodes Time (s)

CORONET 39 63 2 0.62
Internet2 16 24 1 0.04

Level 3 63 94 4 2.06
Sprint 77 114 3 6.96

TeliaSonera 18 21 1 0.02

We further compare GeoDivRP to OSPF in terms of the overall link-congestion factor.

Recall that the link-congestion factor is defined as the percentage of the bandwidth that

has been used by the network flows. Our minimum-cost optimization formulation is not

specifically minimizing the link-congestion factor; therefore, some links are still using

up to 100% link capacity. However, since we specify the capacity upper bound on path

flows, GeoDivRP uses the network resources efficiently and does not congest any network

link. For OSPF, on the other hand, the model always selects the shortest path without

considering the remaining network resources, which causes congestion by overloading

some network links. In the network simulation context, the extra traffic assigned to

network links will either be dropped or queued if router buffers are used; traffic loss or

increased delay will occur, respectively.

In Figure 5.3, we present the link-congestion factor for the Level 3 network when

the demand is 10 Mb/s for each node pair. GeoDivRP does not overload any link by
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Figure 5.3: Link utilization in Level 3 network

distributing the traffic load among multiple paths. However, OSPF has utilized some

links up to 140%, which means that for each of the overloaded link, 40% of the data

traffic will be dropped. As the link capacity is 5 Gb/s, 2 Gb of traffic is dropped each

second on these overloaded links. This causes significant traffic loss to the network

communication, and it is especially damaging when the network is under large-scale

challenges. The dropped traffic could have been buffered but the end-to-end delay would

increase exponentially. Our delay-skew optimization targets at minimizing the path delay

and skew and we present its result in the next subsection. The network-congestion factor

for GeoDivRP is 100% while that for OSPF is 140%.

This link-congestion analysis has demonstrated that GeoDivRP with flow-geodiverse

minimum-cost optimization can allocate traffic to multiple paths efficiently and avoid

overloading any network link; while OSPF over-utilizes links and causes the data packets

to either be dropped or buffered with increased end-to-end delay.
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Delay-skew optimization

For the delay-skew optimization scenario, we set the link capacity at 500 Mb/s, with

demand at 10 Mb/s. The total number of commodities is 9. We choose the source nodes

in the west coast sending to destination nodes in the east coast. This way the paths

calculated represent the highest delay scenario. The GeoPaths provided by iWPSP are

the paths calculated based on the current network topology with area-based challenges.

The challenge region is the same as that for the minimum-cost optimization at Kansas

City. For each commodity, we calculate three geodiverse paths for optimization.

Similarly, we record the time for solving the delay-skew optimization problem in differ-

ent physical topologies, as shown in Table 5.4. The evaluation is performed on a Linux

machine with a 3.16 GHz Core 2 Duo CPU and 4 GB memory, same as the minimum-cost

optimization case. All the physical topologies have a reasonable optimization time for

both the single pair and nine node pairs cases. For the nine-node-pairs case, it takes

five seconds to solve the problem for Sprint, which is the maximum time among all the

topologies as it is the largest one considered. The time for a single traffic pair is below

1 s for all the topologies. This means that a distributed algorithm for the delay-skew op-

timization is durable for the real-world network communication. It is planned for future

work.

Table 5.4: Time for delay-skew optimization algorithm

Network
# of # of # of # of Single Pair Nine Pair

Nodes Links Failed Nodes Commodity Time (s) Time (s)

CORONET 39 63 2 9 0.87 4.13
Internet2 16 24 1 9 0.51 3.62

Level 3 63 94 4 9 0.53 8.30
Sprint 77 114 3 9 0.81 5.04

TeliaSonera 18 21 1 9 0.52 3.63
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We further carry out simulations with a varying traffic demand and study the largest

demand that GeoDivRP supports in a given physical topology. We present the variation

of delay and skew when the demand increases for the five topologies. We do not include

the delay and skew result for OSPF; the network becomes congested with low demand

and the delay becomes too large to present in the same plot with GeoDivRP; γ is set as

zero for the delay optimization. As shown in Figure 5.4, the demand curves for all the

topologies begin with a low value around 15 ms and increases slowly when the demand

increases. However, when the demand increases beyond the demand collapse point, the

delay starts increasing exponentially until the optimization cannot provide solutions. For

example, if we consider the delay curve for the CORONET network, when the demand

increases from 180 Mb/s to 190 Mb/s, the delay increases from 35 ms to over 200 ms,

and the network becomes too congested to provide normal service beyond the demand

collapse point, which is 190 Mb/s in this case. With the different demand collapse points

for the topologies provided to ResTP, better flow allocation decisions can be made and

the application can use network resources more efficiently. However, the implementation

of ResTP is beyond the scope of this work.

In Figure 5.5, we present the skew minimization result using the same set of topolo-

gies; γ is set as one to focus on the skew optimization. For the demand below 100 Mb/s,

the skew decreases as the traffic load increases; each link has a low delay and the num-

ber of hops for each path in one commodity contributes more to the end-to-end delay.

However, when the demand increases beyond 100 Mb/s, the link delay for the topologies

except CORONET begins increasing exponentially. Therefore, the path skew increases

exponentially as well.

We continue our simulation with the link-congestion analysis in the five topologies.

The topologies and the challenge scenario are the same ones used for the previous exper-

iment. The link capacity is set as 500 Mb/s, and the demand is 50 Mb/s; the number
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of commodities is 100. The reason for the demand and number of commodity choice is

to have a reasonable amount of traffic going through the network to better demonstrate

the effectiveness of GeoDivRP.

As shown in Figure 5.6, the x-axis presents the link utilization in percentage, and the

y-axis shows the number of links with that utilization level. Take 100% link utilization

as an example, OSPF has five links, while the number for GeoDivRP is six. We have

added a temporary queue to each node to keep count of the packets that are overloading

any links adjacent to the node. We can obtain the number of overloaded links through

the queue.

Figure 5.6: Sprint network link utilization

GeoDivRP guarantees that the link utilization for any link is not over 100% and keeps

lower link usage whenever possible, which is specified by the objective function in the

formulation. On the other hand, OSPF simply distributes network traffic among the

calculated paths and can easily congest the network when the demand becomes larger. As
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shown in Figure 5.6, OSPF congests 6 links; although this may not be a large percentage

out of the 114 total links, they cause 85% of the commodities and 59% of the paths

congested. On the other hand, GeoDivRP guarantees the optimized traffic allocation on

all the commodities and presents great performance improvement.

As shown in Figure 5.7, GeoDivRP guarantees the link utilization is not over 100%,

yet the usage for OSPF goes to 160% and therefore greatly congests the network; there

are 15 congested links out of 94. Similarly, although not a large percentage, these links

cause 91% of commodities and over 71% of the paths congested. On the other hand,

GeoDivRP avoids congestion by optimizing the traffic allocation on multiple paths of

each commodity.

Figure 5.7: Level 3 network link utilization

The other three topologies present similar results and are shown in Appendix A.

The objective function for the delay-skew formulation balances the delay and skew
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using the tuning parameter γ. In Figure 5.8, we present the average delay and skew

change for a single path with the varying γ value using the CORONET network. The

results for the other networks present a similar trend and are not shown. The points on

the plot are the γ values ranging from 0 to 1 with 0.1 step increment. The traffic demand

and link capacity are 50 Mb/s and 500 Mb/s respectively. As we observe from the figure,

when γ increases, the average delay for each commodity increases while the average skew

decreases. This means that delay and skew work against each other in this optimization

formulation. Based on different application scenarios, our model could select different γ

for better network communications. The selection of delay-skew combination is part of

the ResTP design and beyond the scope of this work.
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Figure 5.8: Delay and skew with varying γ for CORONET

5.3.2 Multipath Performance Comparison

We further present a comprehensive performance analysis of our ResTP–GeoDivRP pro-

tocol stack against MPTCP [26, 170] using multiple node-disjoint paths. The ns-3 sim-

100



ulator is again used to demonstrate our protocol stack’s performance compared to an

implementation of MPTCP [170]. All the nodes in the topology are ResTP–GeoDivRP

enabled, and path protection using multiple geodiverse paths is provided by GeoDivRP.

Three GeoPaths are used in all the considered topologies for survivable routing. ResTP

is still under active development; we include only the cross-layer path function with no

congestion control mechanism.

Challenge profiles

A set of challenge profiles is used to systematically study their impact on the network

connectivity and how our protocol stack performs in the face of these challenges.

• The Midwest challenge profile shown in green circles represents a super-tornado

sweeping trajectory

• The coastline challenge profile along the East Coast shown in blue circles represents

a hurricane trajectory

• The cascading challenge profile such as power blackout affects a region growing in

size as shown in red circles

As shown in Figure 5.9, the Sprint physical network [31] is presented with several

challenge profiles. The movement for the Midwest profile is from the southwest to the

northeast direction representing a super-tornado, while the coastline profile moves in a

similar direction but on the east coast representing a hurricane. It also has a larger

challenge radius compared to the Midwest profile. The profiles provide a better under-

standing of how different challenge locations and trajectories affect the protocol stack

performance. For example, the cascading challenge profile shown in Figure 5.9 as red cir-

cles concentrates on the infrastructure with most shortest path occurrences. It renders
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the network more difficult to maintain normal network connectivity since the affected

nodes are forming a large percentage of shortest paths connecting the west and the east

coast. In this work, we apply a cascading challenge profile in the Sprint [31] and Level 3

networks [151], and also study how the Midwest profile affects our KanREN [29] testbed

in Chapter 6.

Figure 5.9: Sprint network topology challenge profile

The cascading challenge profile is applied in the Sprint network shown in Figure 5.10.

In this profile, three challenge scenarios are included. The challenge begins at 20 s and

grows larger in radius with each challenge lasting for 20 s. It originates around Nashville

and grows larger in range; the challenge in green circle occurs at 20 – 40 s, the yellow

circle challenges at 60 – 80 s, and the red one at 100 – 120 s. The traffic originates from

Oklahoma City to Washington D.C. and the bandwidth on each link is 100 Mb/s. The

dashed line represents the paths calculated for MPTCP. These are node-disjoint paths

calculated using Suurballe’s algorithm [59,60], and it cannot guarantee all the paths are

geographically disjoint. In this experiment, MPTCP uses St. Louis, Kansas City, and

Atlanta as its next-hops for the three paths. The second challenge shown in yellow circle
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Figure 5.10: Sprint network topology under cascading challenge

fails two of MTCP’s paths and the third challenge fails all three of them.

On the other hand, GeoDivRP guarantees the paths are geographically disjoint, and

therefore with all the subflows created by ResTP geodiverse, the protocol stack can

provide higher throughput and better resilience to cascading challenges. As shown in

Figure 5.10, GeoDivRP uses Omaha, Nashville, and Houston as its next-hops. This

guarantees that for any regional challenges with a radius no larger than the distance-

separation criteria d, at least 1/3 paths will survive the regional challenge, and most of

the time 2/3 of the paths. The traffic still originates from Oklahoma City to D.C. with

the solid line representing the paths calculated for ResTP. The paths are provided by

GeoDivRP using iWPSP heuristic [103] with the d-distance separation guaranteed.

Figure 5.11 plots the average throughput in terms of Mb/s across the three paths

against the simulation time. The throughput starts from zero and approaches 70 Mb/s

at the beginning of the simulation until the first challenge occurring at 20 s. MPTCP does

not guarantee the distance separation among the multiple paths used in the simulation;

therefore, with circular radius d challenge, each circular failure can take down two or all

paths at the same time if occurs at the right location. From 20 – 40 s, with the shortest
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Figure 5.11: Sprint network ResTP throughput compared to MPTCP

path failed, both ResTP and MPTCP reduce in throughput. From 60 – 80 s, ResTP

obtains 2/3 of the full average throughput while 1/3 for MPTCP since two of its paths

are failed. The worst performance for MTCP occurs from 100 – 120 s as all three of

its paths are failed. Overall, ResTP presents around 30% to 40% performance increase

compared to MPTCP in face of regional challenges.

A similar challenge profile is applied in the Level 3 network [151] as shown in Fig-

ure 5.12. The failure region is shown in the KU TopView page [31, 54] to better present

the overall topology and how the challenge affects nodes and links. Similar to the pre-

vious experiment, the failures in color-coded circles represent the cascading challenge

growing in size. Two red dots represent the source node at Denver, CO and destination

node at Indianapolis, IN. The outbound red arrow from Denver shows the shortest path,

while the two green arrows represent the two alternative paths calculated by GeoDivRP.

As shown in Figure 5.13, when the first challenge is introduced at 20 s, both ResTP and
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Figure 5.12: Level 3 cascading challenge scenario

MPTCP see a drop in throughput. At 60 s, ResTP is able to restore 2/3 the throughput

by using the geodiverse path provided by GeoDivRP. On the other hand, the throughput

for MPTCP further reduces as it lost another path. The worst performance for MPTCP

occurs at 100 – 120 s since all its three paths are failed during this period, while ResTP

with cross-layer path information can still achieve 30 Mb/s throughput. After 120 s with

all the challenges elapsed, both of the protocols restore back to normal operation.
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Figure 5.13: Level 3 network ResTP throughput compared to MPTCP
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Chapter 6

SDN Resilience Experiments

In this chapter, we extend our work to the software-defined networking (SDN) domain to

further analyze the performance of our ResTP–GeoDivRP protocol stack in Section 6.1.

We extend an OpenFlow controller [145] to achieve the GeoDivRP routing mechanism by

utilizing the geodiversity in the network topology. We further analyze the performance

of ResTP–GeoDivRP in the real-world network topologies in Section 6.2 and Section 6.3

for our Mininet and testbed experiments, respectively.

6.1 Web Framework Design

We implement our Web framework in SDN with a fullstack design. The frontend repre-

sents network topologies on Google Map and a user-tunable polygon represents a failure

region. The backend OpenFlow module emulates network challenges using Mininet or

running experiments on our KanREN OpenFlow testbed. We have presented a demo for

the real-time operation of our framework at the 23rd and 24th GENI Engineering Con-

ference [171]. As shown in Figure 6.1, the frontend system reads the adjacency matrix

from KU-TopView [31, 54] and creates the topology automatically by overlaying it on

top of the Google Map. If the backend system is powered by Mininet, the topology is
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automatically created with realistic delay and bandwidth configurations as an Mininet

experiment. OpenFlow switches are used to represent network nodes using the nodes’

actual physical coordinates in the topology. The users interact with the system through

a drag-and-drop polygon representing the challenge region. The polygon can be modified

to any shape or size by the users, which causes the links and nodes to fail if covered

by the polygon (challenge). The challenge information is then passed to the backend

system which runs the OpenFlow experiments either on our testbed or Mininet. Physical

OpenFlow switches are deployed in our OpenFlow testbed, while Mininet-emulated [28]

topologies are running on our backend system for all the other network topologies. We

have implemented our frontend and backend system and present our website at [Open-

Flow Demo].

User 
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PDR 

Detection 
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Figure 6.1: Web framework for challenge emulation

In our testbed, we have deployed OpenFlow-enabled switches in Kansas Research and

Education Network (KanREN) [www.kanren.net], which is a logical ring throughout the

state of Kansas connecting institutions of higher education. Eight Brocade NetIron CES

2024C [172] OpenFlow switches have been deployed at these institutions, as shown in

Figure 6.2. A full-mesh topology is deployed as an OpenFlow overlay and any arbitrary

virtual topologies can be initialized through Multiprotocol Label Switching (MPLS) [173]
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tunnels. A ring topology is used in our experiment. Floodlight [174] is an OpenFlow

controller based on Java, and it works with both physical- and virtual-switches. Our

resilience routing framework controls the switches through Floodlight.

Figure 6.2: KanREN OpenFlow switches deployment

The Mininet emulator is running in our backend system to emulate large-scale network

topologies that beyond the capacity of our testbed. To experiment Sprint network topol-

ogy for example, after the user select it from our frontend system, the specified topology

will be deployed automatically in our backend servers using Mininet and correspond-

ing performance metrics are provided in our frontend system, such as the throughput

for TCP or packet delivery ration (PDR) for UDP. Along with our physical testbed, it

consists a real-time challenge-analysis system to provide quick performance analysis for

researchers or students in class.
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6.1.1 Backend Model Implementation

Our protocol stack acts as the backend system and powers the resilient experiments. Geo-

DivRP is implemented as an extension to the OpenFlow controller; with the centralized

view of the topology from the SDN environment, the failed node and link information is

used to notify GeoDivRP about the current network condition. Based on the real-time

information, GeoDivRP is able to provide multiple GeoPaths for dependable communi-

cation.

The major change to our protocol stack in SDN is the monitor module. As shown

in Figure 6.3, link failure monitor module collects network statistics and provides the

link information l and the failure information f to GeoDivRP. GeoDivRP acts on this

information and makes routing decisions such as which GeoPath to choose. Network

statistics are acquired using the OpenFlow discovery protocol (OFDP). The network

devices advertise their link capacity and the controller constructs a centralized layer-2

network topology.

6.2 Mininet Experiment

In this section, we present the emulation results using Mininet. The experiment begins

with reading the adjacency matrix for different physical topologies and creating Mininet

experiments programmatically with realistic delay and bandwidth configurations. The

bandwidth used for this experiment is a uniform 100 Mb/s1 across all links and realistic

delay parameters are chosen based on the physical distance between the respective hosts.

OpenFlow switches are used to represent network nodes in the physical topologies.

The Sprint physical topology is used in this experiment with nodes shown in blue

1Bandwidth can be realistic values if provided
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Figure 6.3: GeoDivRP and optimization engine

dots and links in green straight lines in Figure 6.4 and 6.5. The red polygon represents

the challenge region tunable by the users. Internet Control Message Protocol (ICMP)

messages are used to evaluate the performance, with its packet delivery ratio (PDR)

displayed on our website in real-time when the experiment is running. The traffic is sent

from Seattle, WA to New York City, NY and Los Angeles, CA to Miami, FL for each of

our scenarios. When the regional challenge occurs at Chicago and later at Dallas, the

traffic is rerouted around the challenge and a new path is calculated by the controller.

The end-to-end delay for the above experiment is shown in Figure 6.6. The initial delay

spike is caused by path discovery in both of the cases. The delay for both scenarios is in

the range of 50–60 ms for the next 24 packets when the network is unchallenged. The

challenge is applied at the 26th packet and the new path discovery causes the delay spike

shown in the middle of the graph. Once the challenge is applied, due to rerouting, the

delay for the next set of packets is higher than the unchallenged ones.
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Figure 6.4: Sprint network failure scenario one

Figure 6.5: Sprint network failure scenario two

6.2.1 MPTCP Experiments

We then study the switch topologies under challenges with Multipath TCP (MPTCP) [25]-

enabled routers and a single sender and receiver. We use a kernel version of MPTCP [26].

All the links’ bandwidth are 10 Mb/s. The topology for the experiment is presented in
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Figure 6.6: Sprint OpenFlow switches delay

Figure 6.7 where multiple paths exist between Lawrence and Wichita. A challenge profile

in the Midwest is applied over the topology starting from Pittsburg and moving towards

Topeka. The initial challenge takes effect at 30 s bringing down the Pittsburg switch.

The next challenge occurs at Emporia starting at 60 s with the Pittsburg switch brought

up. For the final challenge, the challenge circle encompasses Topeka at 90 s with the

Emporia switch brought up again. Finally, the challenge circle moves away from the

topology with all switches up at that time.

Results from the above challenge profile is shown in Figure 6.8. The traffic is generated

using iPerf [175], a network framework for evaluating the network’s maximum bandwidth.

For the first 30 s, the throughput for different cities are close to 10 Mb/s, the link capacity.

Starting at 30 s, the throughput of Pittsburg drops as the challenge is over Pittsburg.

At the end of 60 s, Emporia drops off the network while Pittsburg is brought up, which

explains the rise in throughput for Pittsburg. After another 30 s, the challenge moves
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Figure 6.7: KanREN OpenFlow network regional challenges

away from Emporia shown by the rise in throughput at 90 s and Topeka is challenged.

After 30 s, the challenge moves away from Topeka shown by the rise in throughput at

120 s.
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Figure 6.8: KanREN MPTCP throughput result
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6.3 KanREN Testbed Experiments

The KanREN testbed experiments represent how our protocol stack works in real-world

OpenFlow switches. Through testbed experiments, we can study geo-correlated challenge

characteristics and analyze how our protocol stack performs. As shown in Figure 6.9

and 6.10, the blue dots represent the Brocade OpenFlow switches and green solid lines

the links. The traffic is sent from Lawrence, KS to Kansas City, KS in our first sce-

nario and Wichita, KS to Pittsburg, KS in the second. When the challenge takes down

Wichita–Pittsburg and Lawrence–KC link for each of our aforementioned scenarios, the

traffic reroutes around the failure regions and the average rerouting delay is presented

in Figure 6.11. The trend for the end-to-end delay is similar when comparing both chal-

lenge scenarios. We observe an early high delay for the initial sample which is due to the

initial packet trying to find the path to the destination. The next 24 packets have an

average delay of 1 ms for Lawrence–KC and 4 ms for Wichita–Pittsburg. The challenge

is applied at the 26th packet and is clearly shown by the middle delay spike in both of the

challenge scenarios. Rerouting by the controller occurs and packets are routed through

an alternate path with higher hops and higher delay than the unchallenged case in both

of our scenarios.

6.3.1 ResTP-GeoDivRP Results

We study our protocol stack’s performance at our KanREN physical testbed using two

failure scenarios as presented in Figure 6.12 and Figure 6.13. The traffic originates from

Lawrence to Wichita with all the links’ bandwidth at 100 Mb/s and there are multiple

paths exist. A Midwest challenge profile is applied over the topology starting from

Pittsburg and moving towards Topeka shown as the blue arrow.

For the smaller failure case as shown in Figure 6.12, the initial failure f1 takes effect
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Figure 6.9: KanREN OpenFlow testbed failure scenario one

Figure 6.10: KanREN OpenFlow testbed failure scenario two

at 20 s bringing down the Pittsburg switch and lasts for 20 s. The next failures f2 and

f3 occur at the Emporia switch starting at 60 s lasts for 20 s as well. The last failure

circle f4 encompasses Topeka at 100 s for 20 s. Finally, the failure moves away from

the topology with all switches up after 140 s. Throughout the challenge, only one path

is failed at any given time. We are using multiple TCP connections to emulate ResTP

abilities in our testbed.
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Figure 6.11: KanREN OpenFlow switches delay
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Figure 6.12: KanREN small failure radius

For the larger failure radius shown in Figure 6.13. The challenge begins at Pittsburg

and follows the same trajectory as the previous case. Each challenge lasts for 20 s as
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Figure 6.13: KanREN large failure radius

well. But with the larger radius, each failure can take down two paths at the same time.

For example, failure f2 fails both Emporia and Pittsburg and failure f3 fails both Topeka

and Emporia. GeoDivRP maintains at least one working path during each failure and

the worst case performance for our protocol is at 30 Mb/s.
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Chapter 7

Conclusions and Future Work

In this chapter, we conclude this dissertation and propose future work. In Chapter 3, we

define geodiversity and propose a global graph resilience metric, cTGGD, to represent

and compare the geodiversity among different network topologies. A critical-region iden-

tification mechanism is proposed and verified in identifying critical regions in different

topologies; the critical regions further guide the design of resilient protocols. We also

analyze how attackers could maximize their attack impact using a fixed budget with a

proper knowledge of the network structure; the result helps the design of restoration

plans.

In Chapter 4, we further propose two geodiversity heuristics to efficiently solve the path

geodiverse problem (PGD): iterative WayPoint Shortest Path (iWPSP) and Modified

Link Weight (MLW). We incorporate both of the heuristics in GeoDivRP and demon-

strate their effectiveness in calculating and choosing single or multiple GeoPaths to meet

the requirements from ResTP and different application scenarios.

Furthermore, in Chapter 5, we incorporate the minimum-cost and the delay-skew re-

quirement in GeoDivRP to solve the flow geodiverse problem (FGD). We generate a

linear programming (LP) and a non-linear programming (NLP) formulation to efficiently

solve FGD. GeoDivRP chooses either of the formulation and improves the overall link
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utilization or delay-skew requirement.

Our ResTP–GeoDivRP protocol stack incorporates the cross-layer information for re-

silient traffic transmission. We demonstrate our protocol stack’s efficiency in bypassing

the failure region and its improvement in packet delivery ratio compared to OSPF using

UDP, or throughput to MPTCP. When multipath forwarding is considered, our protocol

stack performs about 30 – 40% better than MPTCP.

Lastly, we evaluate our cross-layer protocol in the software-defined networking envi-

ronment in Chapter 6. Our protocol stack takes advantage of the link-layer notification

and efficiently responds to network failures by establishing multiple subflows using a set

of GeoPaths.

7.1 Future Work

We plan to explore the tradeoff between the multipath and single path routing to un-

derstand which one works better in a specific application scenario. For some scenarios,

multipath routing can be beneficial in both wired network [70,110,112,123,135,176,177]

and wireless network [178–180]. However, recent research has shown that multipath

routing is not always beneficial [115]. Furthermore, we plan to examine different load

balancing mechanisms to achieve the best routing results under geo-correlated challenges.

Our two routing heuristics have different suitable scenarios, a better heuristic is planned

to combine the two heuristics into one for calculating GeoPaths.

We plan to incorporate improvement plans for our protocol stack’s optimization engine.

One possible plan is to provide the GeoPaths to ResTP immediately after calculation and

adjust the traffic allocation for ResTP after optimization. Another possible improvement

is a distributed algorithm for the delay-skew optimization.
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[19] Egemen K. Çetinkaya, Dan Broyles, Amit Dandekar, Sripriya Srinivasan, and

James P. G. Sterbenz. Modelling Communication Network Challenges for Future

Internet Resilience, Survivability, and Disruption Tolerance: A Simulation-Based

Approach. Telecommunication Systems, 52(2):751–766, 2013.
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Appendix A

Plots for Additional Scenarios
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Figure A.1: CORONET network link utilization

Figure A.2: Internet2 network link utilization
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Figure A.3: TeliaSonera network link utilization
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Figure A.4: Nobel optical network under regional challenges
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Figure A.5: CORONET optical network under regional challenges
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Figure A.6: Internet2 optical network under regional challenges
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Figure A.7: TeliaSonera optical network under regional challenges
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