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ABSTRACT   
 
Background: Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a common 

hereditary cause of end stage renal disease. Affected individuals have mutations in PKD1 or 

PKD2 genes, generating defective polycystin -1 (PC1) or polycystin -2 (PC2) protein, 

respectively. Transmembrane protein 2 (TMEM2) is a novel protein with extensive homology to 

fibrocystin, the product of the polycystic the polycystic kidney and hepatic disease (PKHD1) 

gene. Mutations in PKHD1 cause Autosomal Recessive Polycystic Kidney Disease. It has been 

shown that urinary exosomes from individuals with PKD1 mutations have decreased levels of 

PC1 and increased levels of TMEM2 when compared with individuals with no mutations in the 

PKD genes. We sought to determine the expression status of TMEM2 in ADPKD and whether 

TMEM2 interacts with PC1.  

Methods:  Immunohistochemistry (IHC): Sections from ADPKD human kidney tissues and 

normal human kidney (NHK) tissues were probed for presence of TMEM2 and PC1.  

Immunofluorescence: Cells from ADPKD and normal human kidneys were grown until 

confluent and probed with TMEM2 and tubulin.  

Immunoprecipitations (IP): HEK293T cells were co-transfected with full length V5 tagged 

TMEM2 construct, C terminus FLAG tagged PC1 construct and various FLAG tagged N 

terminus PC1 constructs. Co-IPs were performed on membrane preparations derived from the 

transfectants.  

Results: Increased TMEM2 expression was detected on the apical aspect of cyst epithelial cells 

in ADPKD kidneys when compared to normal human kidneys. There was an increase in cellular 

expression and colocalization of TMEM2 to ciliary structures in ADPKD cells compared to NHK 

cells. Co-IPs showed that there was an interaction between PC1 and TMEM2. The interaction 

was mapped to the N-terminal extra-cellular portion of PC1 but not the C terminus. TMEM2 

appeared to have high affinity for the PKD and REJ domains within N terminal portion of PC1. 
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Conclusion:  Increased TMEM2 expression in ADPKD kidneys and urinary exosomes 

combined with the interaction of TMEM2 with PC1 suggests that TMEM2 is a novel protein 

implicated in the pathogenesis of ADPKD. The exosomal PC1/TMEM2 ratio may have utility in 

the diagnosis of pre-cystic disease as well as in monitoring the disease progression and 

response to treatment. 
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INTRODUCTION 

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a common hereditary cause 

of end stage renal disease (ESRD). The prevalence of the disease is 1:400 to in 1:1000 causing 

5-7% of ESRD in North America1,2. The disease is characterized by progressive cyst growth in 

the kidney causing compression of surrounding tissue and an inflammatory response. Slowly 

the cyst and the secondary response to the cyst will destroy all of the normal renal parenchyma. 

77% of patients with APDKD will reach end stage renal disease or death by the age of 701.   

While the mutations are identified, the exact mechanism for cystogenesis is unknown.  

Affected individuals have mutations in PKD1 or PKD2 genes, generating defective polycystin -1 

(PC1) or polycystin -2 (PC2) protein3. Mutations in PKD1/PC1 are more common and 

accounting for 85% of patients with ADPKD.  Mutations in PKD2/PC2 cause a milder form of the 

disease than mutations in PKD1/PC13. It is thought that PC1 and PC2 form a complex with 

calcium channel activity1.  Though most mutations and implicated proteins are known in 

ADPKD, there is still a significant knowledge gap about mechanism and progression of the 

disease.   

 Recent data has shown that the protein Transmembrane Protein 2 (TMEM-2) may play 

a role in ADPKD. TMEM2 is increased on urinary exosomes from individuals with PKD1 

mutations when compared with individuals who had no mutations in the PKD14. TMEM2 has 

extensive homology to fibrocystin’s extracellular domain. Fibrocystin, the product of the 

polycystic kidney and hepatic disease (PKHD1) gene, is found to cause Autosomal Recessive 

Polycystic Kidney Disease (ARPKD) when mutated; a rare but severe form of neonatal 

polycystic kidney disease5. Mutations in the G8 domain in PKHD1 will cause ARPKD. The G8 

domain is a parallel β helix region, which TMEM2 and fibrocystin happen to share6.  

TMEM2 is a novel membrane protein comprised of 1383 amino acid (154.4 kDa) in size7. 

It has a large extracellular C-terminal domain (1280 amino acids) and small N-terminal 

intracellular domain (82 amino acids), a type II membrane protein (Figure 1). TMEM2 is 
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necessary for cardiac development. Mutations in the zebrafish TMEM2 gene can cause ‘frozen 

ventricle’ or ‘wickham’ phenotypes where there is malformation of the AV cords8. In humans a 

single nucleotide polymorphism (SNP) in TMEM2 p.Ser1254Asn increases a person’s chance to 

develop chronic hepatitis B (CHB) in the Chinese population9. This association was investigated 

further using cell lines and liver tissue, and researchers found that CHB liver tissue and 

hepatitis-infected cell lines had reduced expression of TMEM2 when compared to uninfected 

controls9.  

As a little studied protein, the role of TMEM2 and its role in polycystic kidney disease is 

not known. We sought to determine the expression status of TMEM2 in ADPKD as well as 

evaluate whether TMEM2 interacts with PC1.  

	

Figure 1. Diagram of TMEM2  
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METHODS  

Immunohistochemistry  

 Immunohistochemistry was performed on paraffin-embedded tissue from normal and 

ADPKD human kidneys obtained from the PKD repository at University of Kansas Medical 

Center. Antigen retrieval was done after de-paraffinization. The slides were steamed in citrate 

buffer (10mM sodium citrate, 0.05% tween 20, pH: 6.0) and cooled to room temperature. 3% 

hydrogen peroxide was added to the tissues for 30 minutes then washed 2 times in phosphate 

buffered solution (PBS) to avoid endogenous peroxidase. The slides were blocked with 10% 

serum from the species that the secondary antibody was made in for one hour at room 

temperature and then probed with a polyclonal rabbit anti-human TMEM2 antibody (Sigma) at a 

dilution ranging from 1:25-1:100 dilution at 40 C overnight. Slides were washed three times in 

PBS for 5 minutes each followed by a one hour incubation in biotinylated anti rabbit antibody 

(1:400 dilution). Slides were again washed and ABC substrate (25lA+25lB in 1.25ml PBS) 

from Vector Labs was added on to the tissues for 30 minutes. The slides were next washed 

again and then developed by using DAB (3,3’-Diaminobenzidine) (Sigma). Slides were 

coverslipped with paramount after dehydrating for 2 min each with increasing concentrations of 

ethanol followed by 2 xylene steps (30%, 60%, 80%, 95%,100%, Xylene). Negative controls 

were done using phosphate buffered saline (PBS) replacing the first antibody preparation. Lieca 

microscope was used to take pictures under 20X magnification. 

Immunofluorescence 

 Normal human kidney (NHK) cells and ADPKD cells from the PKD repository at 

University of Kansas Medical Center that is run by Dr. Darren Wallace were grown to confluency 

on slides. The cells were fixed in 4% paraformaldehyde (made in PBS) for fifteen minutes, 

washed in 100mM ammonium chloride for five minutes twice, and then permeabilized in 0.05% 

Triton in PBS for five minutes. The slides were blocked with for one hour with 10% serum from 

the species that the secondary was made in. Slides were incubated overnight at 40 C in primary 
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antibody (Anti-TMEM2 1:50 (Sigma) and anti-acetylated tubulin 1:3000 (Sigma)). The slides 

were then washed three times in PBS. Secondary Alexa Flour© (Life Technologies) antibodies 

were used at 1:400 dilution and incubated for one hour at room temperature and then washed 

three times with PBS for five minutes each. The mounting was done with Vectashield reagent 

with DAPI (Vector Labs.). Confocal microscopy (Leica) was used to view cells.  

Cell lysates  

 Normal human kidney cells and ADPKD cells from the PKD repository at University of 

Kansas Medical Center were grown until visibly confluent. The cells were washed with PBS 

three times. The cells were then scraped off the plates and pelleted by centrifuging at 1500xg 

for fifteen minutes. Cell lysis was done using RIPA buffer (50 mM Tris HCl pH7.5, 137  mM 

NaCl, 1% IGEPAL, 2mM EDTA, and Complete Protease Inhibitor) and samples were analyzed 

on a Western blot.    

Transfections 

 HEK293T cells were grown until 70% confluent. The media was replaced with serum 

free media for at least two hours prior to transfection. Constructs were transfected using 

Polyethylenimine (PEI) and the 2:15 ratio of DNA: PEI (8μg of TMEM2-V5 and 16μg of FLAG 

tag PC1 construct per 15 cm plate of cells). DNA and PEI were diluted with OPTIMEM media 

resulting in a final volume of 1mL per each 15 cm plate of cells. The mixture incubated at room 

temperature for 15 minutes then was added to the cells.       

Membrane preparation  

Transfected cells were washed three times using pre-chilled PBS eighteen hours after 

transfection. The cells were then scraped off the plates and pelleted by centrifuging at 1500xg 

for fifteen minutes. The pellet was taken up in a cocktail of 10 mM Tris-HCl pH 7.5, 0.5 mM 

MgCl2, and protease inhibitor. The suspension was frozen at -80oC overnight, thawed on ice, 

and then homogenized with forty strokes of a dounce homogenizer. Sample was centrifuged at 

5000xg for 10 minutes. The supernatant from that sample was again centrifuged at 18,000xG 
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for one hour. The membrane pellet was taken up in IP buffer composed of 50 mM Tris HCl 

pH7.5, 137 mM NaCl, 1% IGEPAL, 2mM EDTA, and protease inhibitor.     

Co-immunoprecipitation  

 Membrane preparation, as described above, was used for the CO-IP. Each sample 

constituted lysate from 15 cm plate. Samples were pre-cleared by adding 2 μg IgG1 isotype 

(Thermo Scientific) for two hours on ice. Pierce Protein A/G Agarose Resin (Thermo Scientific) 

followed; 25 μl of resin slurry added to each sample and rocked at 4oC for thirty minutes. The 

resin was quickly pelleted and supernatant divided into CO-IP and negative controls. 2μg 

monoclonal antibody was used (V5 (IgG2a Isotype)(Bio-Rad),FLAG M2 (IgG1a isotype) (Sigma) 

IgG1 isotype control (Thermo Scientific), and IgG2a Isotype Control (Sigma). The sample was 

incubated at 4oC overnight while rocking. A/G resin were washed with 1ml IP buffer (50 mM Tris 

HCl pH7.5, 137 mM NaCl , 1% IGEPAL, 2mM EDTA, and Protease Inhibitor) three times. Then 

60 μl slurry/IP was then added to the sample and rocked at 4oC for two hours. The sample was 

washed three times with wash buffer (50 mM Tris HCl pH 7.5, 500 mM NaCl , 1% IGEPAL, 2 

mM EDTA, Protease inhibitor, and 0.2% SDS). After the last wash all of the supernatant was 

removed and samples were prepared for Western blotting.   

Western Blotting  

 Samples from CO-IP were mixed with 4x NuPage (Novex) sample buffer (containing 

25% tris(2-carboxyethyl) phosphine (TCEP)) heated to 650C for ten minutes and loaded on a 

denaturing 4-12% MOPS gel (Invitrogen). The gel was allowed to run at 200 V for 50 minutes. 

The blots were transferred at 4oC using thirty volts for seven hours on Immobilon-P 

polyvinylidene difluoride (PVDF) 0.45 mm pore size (EMD Millipore) membrane. The blots were 

blocked in TBST (20 mM TRIS, pH 7.4,150 mM NaCl, and 0.05% Tween 20) with 5% milk for 

one hour. Blots were probed with primary antibody at 1:2000 dilution in TBST with 2.5% milk 

overnight. A monoclonal mouse anti-human PC1 mAb (7e12 IgG1k) was used for PC1, V5 

tagged antibody directly conjugated with horseradish peroxidase (HRP) antibody (BioRad), and 



	 6

FLAG tagged antibody directly conjugated with HRP antibodies were used (Sigma). The blots 

were washed with TBST three times a minimum of 5 minutes each. Secondary antibody, if used, 

was diluted (1:5000) human absorbed anti-mouse IgG1-HRP (Southern Biotech) for one hour at 

room temperature. The blot was imaged on GE Life Science AI600 Imager using West Femto 

Maximum Sensitivity Substrate (Thermo Scientific).   
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RESULTS 

Localization of TMEM2  
 
 Since TMEM2 was shown to be increased in urinary exosomes from ADPKD patients in 

mass spectrometry studies we first determined the tissue localization of TMEM24. 

Immunohistochemistry (IHC) was done on at least three different normal human kidney (NHK) 

and ADPKD tissues. IHC results showed an increased amount of TMEM2 in ADPKD (Figure 2).  

Western blot analysis of cell lysates confirmed higher expression of TMEM2 from NHK and 

ADPKD cells. The lysates show noticeable increase in TMEM2 in the ADPKD cells compared to 

the NHK cells (Figure 3). Light microscopy of cystic areas showed that there was locally 

enhanced expression in the cystic epithelial cells in the ADPKD kidney tissues (Figure 4). To 

further confirm the increase TMEM2 in ADPKD, we performed immunofluorescence on isolated 

cells from NHK and cystic cells from kidneys from patients with ADPKD. These cells were 

allowed to grow to confluency in culture to so that they formed a monolayer before fixing them 

for labeling. Immunofluorescence showed increased expression of TMEM2 in ADPKD cells 

compared to NHK cells. Most of the staining was cytoplasmic in distribution in both cell types. 

NHK cells had two distinct distribution of TMEM2; most cells having minimal staining for TMEM2 

but there were rare clusters of cells with increased signal (Figure 5). Cells were also stained for 

tubulin and TMEM2 to evaluate if TMEM2 localized to the primary cilium, the primary location of 

PC1. In NHK cells there was sporadic localization of TMEM2 to the cilia with most cilia not 

having any detectable TMEM2 on them. The ADPKD cells had significant localization of TMEM2 

to the cilia (Figure 6).   



	 8

 

Figure 2.  TMEM2 by immunohistochemistry showing increased diffuse staining of TMEM2 in 
the ADPKD kidney tissue compared to the NHK kidney tissues 

	

Figure 3. Western blot analysis of cell lysates from 3 normal (N) and 3 ADPKD (A) human 
kidneys showing that TMEM2 levels are higher in ADPKD than NHK. 
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Figure 4. Immunohistochemistry done on ADPKD human kidney tissue showing locally 
enhanced staining seen in the cyst lining; demarcated by the arrow.  

	 	 	
Figure 5. Immunocytochemistry on NHK and ADPKD cells shows an increase in TMEM2 in the 
ADPKD cells. There were two distinct staining patterns of TMEM2 in the NHK cells. The top 
image shows the pattern seen majority of the time. The bottom image shows the rare cluster of 
cell that had increased TMEM2 staining 
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Figure 6. Immunocytochemistry and staining for tubulin and TMEM2 showed that there is 
sporadic TMEM2 and tubulin colocalization in NHK cells but significant TMEM2 and tubulin 
colocalization in ADPKD. 
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TMEM2 and PC1 interaction 

 The colocalization of PC1 and TMEM2 on the primary cilium led us to hypothesize that 

the two proteins may physically interact10. Transient expression of the V5:TMEM2 construct in 

HEK293T cells shows that TMEM2 was capable of interacting with endogenous Polycystin -1 

(PC1), as shown by IP (Figure 7). To further narrow down the regions of PC1 that interacted 

with PC1, we made two FLAG tagged constructs of PC1, the NTF (extracellular) domain and the 

CTF (intracellular) domain (Figure 8). Each of these constructs was transiently co-transfected 

with TMEM2, again in HEK293T cells. The COIP showed that TMEM2 was interacting 

exclusively with the NTF region and not the CTF region (Figure 9). Short constructs were then 

made of the entire NTF region and FLAG tagged to further map out the interaction region, refer 

to Figure 10 to see which constructs where transfected and Figure 8 for the location of the 

construct on PC1. Interactions were found with PKD 2-3, 5-7, 7-8, 14-15, 15-17, and the 

REJ:GAIN domain. There was no interaction seen with LDL repeat or the N-terminal to the C-

type lectin (Figure 10). This in vitro evidence shows that TMEM2 interacts with the PKD repeats 

and the REJ: GAIN domain. This multi-level interaction needs to be further investigated. 

 

 

Figure 7. CO-IP done of transiently expressed V5:TMEM2 indicates an interaction with 
endogenous PC1.  
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Figure 8.  Diagram of Polycystin 1 separated in to two segments the NTF or extracellular and 
the CTF the intracellular segment.     

	
 

 

Figure 9. CO-IP of membranes from HEK293T cells transiently transfected with FLAG tagged 
PCI-1 construct and V5-TMEM2 that shows TMEM2 is interacting with the NTF segment of PC1 
and not the CTF segment.  
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Figure 10. CO-IP from PC1:FLAG tag constructs and V5:TMEM2 transiently transfected 
HEK293T cell membranes that show TMEM2 is interacting with the PKD repeats.  * Demarcates 
the predicted band from the input that the construct should be.   
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DISCUSSION 

 TMEM2 is increased on the urinary exosomes of patients with ADPKD when compared 

to non-disease controls 4. Our experiments presented here support that patients with ADPKD 

have increased TMEM2. TMEM2 is more abundant in ADPKD cells compared to normal human 

kidney cells. The distribution also changes in ADPKD cells with TMEM2 localizing to the cilia at 

a higher frequency than in normal human kidney cells. In patient tissue samples, TMEM2 is 

detectable in the cystic lining. The mechanism for the observed increase in TMEM2 abundance 

in APDKD is obscure. It is possible that the increase occurs as a protective physiological 

response to lower levels of PC1 protein and that TMEM2 can complement decreases in PC1 

levels. Alternatively PC1 and TMEM2 may reciprocally model each other’s function by direct 

interaction. For example, PC1 could target TMEM2 for degradation, therefore a lack of PC1 

allows for a deleterious rise in TMEM2 activity.   

 There is limited knowledge about the whole polycystin complex and the role it plays in 

ADPKD is even less understood. It is known that PC1 and PC2 interact and form a calcium 

channel that plays a role in mechanosensing10, and while other functions of the proteins have 

been proposed, nothing is agreed upon in the field. Other proteins have been found to be part of 

this Polycystin complex, these include E-Cadherin, catenins11, and importantly, fibrocystin. 

Wang et al showed that fibrocystin is a part of this large protein complex and interacts with 

PC112. There is homology between the extracellular domain of TMEM2 and fibrocystin5. This 

indicates that TMEM2 is most likely a protein component to the larger polycystin complex.   

TMEM2 interacts with the PKD repeats of PC1. 17 copies of the PKD repeats are found 

in the NTF region of PC1, and these repeats are 80 amino acids long β sheets13. Not much is 

known about the function of the PKD repeats in the NTF segment of PC1. It has been shown 

that the PKD repeats can interact with themselves, but no other interaction has been 

demonstrated in the literature14. There appears to be multiple points of interaction between 

TMEM2 and PC1; the PKD and REJ:GAIN domain. Multiple interaction sites for the proteins 
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have been seen in other protein complexes; the senilin complex is one well-known example of 

this. γ-Secretase and Pen-2 two proteins in that complex have 2 different points of interaction15. 

PC1 and TMEM2 were found to be on the same exosome fraction, implying that they are on the 

same exosomes, which further supports that there is an interaction occurring between these 

proteins4. Further work will be required to see the sites on TMEM2 that are necessary ad 

sufficient to bind PC1. 

 The localization of TMEM2 changes between ADPKD and NHK. There is not only 

increased expression in ADPKD, but also an increase in localization TMEM2 to primary cilium. 

Primary cilia are thought to play an essential role in the development of ADPKD, as loss of cilia 

result in cystogenesis and many proteins of interest in PKD localize to the primary cilia. It is 

unclear if TMEM2 is being retained in the cilia or if there is increase trafficking of TMEM2 to the 

cilia. Though PC1 is a widely distributed protein, it is prominently expressed on the primary 

cilium10. Thus cilia seem a likely candidate for the location of the TMEM2 and PC1 interaction.   

 Overall we conclude that TMEM2 is increased in ADPKD and is interacting with the PKD 

repeats in PC1 and the REJ:GAIN domain. Further studies are required to know the function of 

TMEM2 and what possible role it may play in ADPKD disease progression and treatment.  
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