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Coherent population transfer between uncoupled
or weakly coupled states in ladder-type
superconducting qutrits
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H. Wang2, Yu-xi Liu4,5 & S.P. Zhao1,6

Stimulated Raman adiabatic passage offers significant advantages for coherent population

transfer between uncoupled or weakly coupled states and has the potential of realizing

efficient quantum gate, qubit entanglement and quantum information transfer. Here we report

on the realization of the process in the superconducting Xmon and phase qutrits—two

ladder-type three-level systems in which the ground state population is coherently

transferred to the second excited state via the dark state subspace. We demonstrate that the

population transfer efficiency is no less than 96% and 67% for the two devices, which agree

well with the numerical simulation of the master equation. Population transfer via stimulated

Raman adiabatic passage is significantly more robust against variations of the experimental

parameters compared with that via the conventional resonant p pulse method. Our work

opens up a new venue for exploring the process for quantum information processing using

the superconducting artificial atoms.
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S
timulated Raman adiabatic passage (STIRAP), which
combines the processes of stimulated Raman scattering
and dark state adiabatic passage, is a powerful tool used

for coherent population transfer (CPT) between uncoupled or
weakly coupled quantum states1–3. It has been recognized as an
important technique in quantum computing and circuit quantum
electrodynamics involving superconducting qubits4–13. For
example, qubit rotations can be realized via STIRAP with two
computational states plus an auxiliary state forming a three-level
L configuration4,5. A scheme for generating arbitrary rotation
and entanglement in the three-level L-type flux qutrits is also
proposed6, and the experimental feasibility of realizing quantum
information transfer and entanglement between qubits inside
microwave cavities has been discussed7,8. Unlike the conventional
resonant p pulse method STIRAP is known to be much more
robust against variations in experimental parameters, such as the
frequency, amplitude and interaction time of microwave fields
and the environmental noise5,6,11,12.

Recently, multi-level systems (qutrits or qudits) have found
important applications in speeding up quantum gates14, realizing
quantum algorithms15, simulating quantum systems consisting of
spins greater than one half16, implementing full quantum-state
tomography17–19, testing quantum contextuality20 and mapping
to multi-qubit systems21,22. Unlike the highly anharmonic L-type
flux qutrits the phase and transmon (or Xmon) qutrits have the
ladder-type (X-type) three-level configuration which is weakly
anharmonic. The dipole coupling between the ground state |0i
and the second excited state |2i in the phase qutrit is much
weaker than those between the first excited state |1i and the |0i
state or the |2i state. In the case of the transmon (or Xmon) qutrit
the dipole coupling is simply zero. This unique property makes it
difficult to transfer population from |0i to |2i directly using a
single p pulse tuned to their level spacing o20. The usual solution
is to use the high-power resonant two-photon process or to apply
two successive p pulses transferring the population first from |0i
to |1i and then from |1i to |2i (refs 18,19). These methods often

lead to a significant population in the middle level |1i resulting
in energy relaxation which degrades the transfer process. In
contrast, STIRAP transfers the qutrit population directly from |0i
to |2i via the dark state subspace without occupying the middle
level |1i.

In this work, we report on the realization of STIRAP in the
X-type superconducting Xmon23 and phase24 qutrits. We
demonstrate CPT from the ground state |0i to the second
excited state |2i via STIRAP in the Xmon and phase qutrits in
which population transfer efficiency no less than 96% and 67% is
achieved, respectively. The experimental results are well described
by the numerical simulation of the master equation.

Results
The STIRAP concept. For clarity, our results will be mainly
presented for the Xmon qutrit, which has longer coherence times
and thus better performance, while those for the phase qutrit will
be discussed as a comparison showing the effect of system
decoherence. As is shown schematically in Fig. 1a, the Xmon
qutrit has a shunt capacitance C and two Josephson junctions
each with critical current Ic to form a SQUID loop so the
potential and level spacing can be tuned via the flux bias. The
potential energy and quantized levels |0i, |1i and |2i of the qutrit
are illustrated in Fig. 1b in which the frequencies op,s of the pump
and Stokes fields and their strength Op,s (Rabi frequencies) are
also indicated. Since the matrix element between the |1i and |2i
states is a factor of l �

ffiffiffi
2
p

larger than that between the |0i and
|1i states for both the Xmon and phase qutrits with weak
anharmonicity25–27, applying the rotating-wave approximation in
the double-rotating frame the Hamiltonian can be written as26,27:

H ¼
0 gpþ gse� idt 0

gpþ gseidt Dp l gpeidt þ gs
� �

0 l gpe� idt þ gs
� �

DpþDs

2
4

3
5; ð1Þ

where the Planck constant : is set to unity, d¼op�os,
Dp¼o10�op and Ds¼o21�os are various detunings, gp,s are
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Figure 1 | Superconducting Xmon qutrit and measurement pulse sequences. (a) Schematic Xmon qutrit with Josephson critical current Ic and shunt

capacitance C. (b) Three bottom energy levels |0i, |1i and |2i of the qutrit with related symbols indicated. Subscripts p and s refer to the pump and Stokes

tones, respectively. (c) Counterintuitive pulse sequence with Os preceding Op for coherent population transfer from |0i to |2i without involving |1i.
(d) Conventional resonant p pulse sequence for successive |0i-|1i-|2i population transfers.
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the qutrit microwave couplings proportional to the amplitudes of
the pump and Stokes fields, respectively. In equation (1), the
matrix element between the |0i and |2i states is zero, which is
true for the Xmon and is a good approximation for the phase
qutrit27. Hence, the Hamiltonian can be used to describe both
devices. For d � Op;s the fast-oscillating terms in the equation
averages out to zero so the Hamiltonian becomes

H0 ¼
0 Op=2 0

Op=2 Dp Os=2
0 Os=2 DpþDs

2
4

3
5; ð2Þ

in which Op¼ 2gp and Os¼ 2lgs. Equation (2) is the well-known
rotating-wave approximation Raman Hamiltonian1,2. In particular,
when the system satisfies the pump and Stokes two-photon
resonant condition:

DpþDs ¼ 0; ð3Þ
it has an eigenstate |Di¼ cosY|0i� sinY|2i, called the dark
state, which corresponds to the eigenvalue of E¼0. Here
tanY(t)¼Op(t)/Os(t). CPT from the ground state |0i to the
second excited state |2i without populating the first excited state
|1i can therefore be realized via STIRAP by initializing the qutrit in
the ground state |0i (refs 27,28), and then slowly increasing the
ratio Op(t)/Os(t) to infinity as long as the following
conditions1,2,29,30

d � Op;s;
R1
�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2

p tð ÞþO2
s tð Þ

q
dt410p ð4Þ

are satisfied so that the qutrit will stay in the dark state subspace
spanned by {|0i, |2i}. The first condition is required to reduce
equation (1) to equation (2) leading to the existence of the dark
state solution, while the second ensures the adiabatic state following.

Sample parameters and measurements. The Xmon qutrit used in
this work is an aluminum-based device23, which is cooled down to
TE10 mK in the cryogen-free dilution refrigerator. A dispersive
readout scheme with additional gains from a parametric amplifier
is used to detect the qutrit states (see Methods). For the present
experiment, the lowest three levels used as the qutrit states have the
relevant transition frequencies of f10¼o10/2p¼ 6.101 GHz and
f21¼o21/2p¼ 5.874 GHz, and the relative anharmonicity is
a¼ (f10� f21)/f10E3.7%. The measured energy relaxation times
are T10

1 ¼1=G10¼11:9 ms and T21
1 ¼1=G21¼7:6 ms, respectively,

while the dephasing time determined from Ramsey
interference experiment is T10

j ¼5:0 ms. To realize STIRAP, a
pair of bell-shaped counterintuitive microwave pulses with the
Stokes pulse preceding the pump pulse, as illustrated in Fig. 1c,
are used. The pulses are defined by Os(t)¼O0F(t) cos[pZ(t)/2]
and Op(t)¼O0F(t)sin[pZ(t)/2] with F tð Þ¼e� t=2Tdð Þ6 and
Z tð Þ¼1= 1þ e� 4t=Td

� �
, respectively2,30.

Coherent population transfer. Figure 2a shows the two
microwave pulses defined by O0/2p¼ 30 MHz and Td¼ 100 ns. As
t increases, Os(t) and Op(t) start to increase and decrease, respec-
tively, across t¼ 0 at which they are equal. The experimentally
measured populations P0, P1, and P2 versus time produced by this
counterintuitive pulse sequence in the resonant case Dp¼Ds¼ 0
are plotted in Fig. 2b. We observe that as time evolves across t¼ 0
the population P2 (P0) increases (decreases) rapidly while P1

remains low, signifying the occurrence of STIRAP via the dark
state of the superconducting qutrit system. The experimentally
measured maximum P2 is about 85% for the present sample under
the resonant condition. The maximum value of P2 can be defined
as the transfer efficiency or fidelity of the STIRAP process. As
discussed in Supplementary Note 1, the experimentally measured

value is much limited by the state preparation and measurement
(SPAM) errors31 for the Xmon qutrit. In Fig. 2c, we show the
corrected experimental data (symbols) assuming that SPAM errors
are mostly due to the readout imperfection (see Methods section).
The transfer efficiency after correction reaches 97% and the results
match very well with the numerical simulations shown in the
figure as solid lines. To further check the influence of the state
preparation error ignored in the readout correction, we carry out a
series of rigorous calibrations using the standard randomized
benchmarking (Supplementary Fig. 1), sequential double p pulses
(Supplementary Figs 2 and 3), and sequential STIRAP double p
pulses (Supplementary Fig. 4) methods and demonstrate that the
transfer efficiency is no less than 96%, which is close to the value
after readout correction indicating that the influence of the state
preparation error is negligible. The calibrations are detailed in
Supplementary Note 1.

Notice that in the entire region of tA[� 300, 300] ns, all of the
characteristic features of the experimental data, in particular (i) P1

remaining significantly lower than P2, (ii) the slight decrease
(increase) of P2 (P0) after reaching the maximum (minimum) as
well as the slight rising of P1, are reproduced well by the
numerical simulations. The simulated temporal profiles of the
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Figure 2 | Coherent population transfer via STIRAP in the

superconducting Xmon qutrit. (a) Stokes and pump microwave pulses

Os(t) and Op(t) with the experimental parameters os/2p¼ f21¼ 5.874 GHz,

op/2p¼ f10¼6.101 GHz, O0/2p¼ 30 MHz and Td¼ 100 ns. (b) Measured

level populations P0, P1 and P2 versus time with a maximum value of

P2¼85% driven by the STIRAP pulse pair in a in the case of Dp¼Ds¼0.

(c) Experimental level populations with maximum P2 reaching 97%

(symbols) after correcting the readout imperfection as described in

Methods. The lines are the numerical results calculated using the master

equation considering the relaxation and dephasing processes, which agree

well with the experimental data after correction. The experimentally

determined parameters are used in the calculation: G10¼ 8.4� 104 s� 1,

G21¼ 1.3� 105 s� 1, and gj10 ¼ 2.0� 105 s� 1. Other parameters in the

master equation are taken as gj20E2gj10 and gj21� gj10.
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populations P0, P1, and P2 are obtained by solving the master
equation _r¼� i=‘ð Þ H; r½ � þ L rð Þ; using the measured qutrit
parameters, where L(r) is the Liouvillean containing the
relaxation and dephasing processes27 (see Methods section).
The numerical results also show that feature (ii) is due primarily
to energy relaxation, while the maximum P2 reachable
would mainly be limited by dephasing, which can be seen
more clearly for the phase qutrit (Supplementary Fig. 5) having
shorter coherence times as presented and discussed in
Supplementary Note 2.

In our experiment the conditions imposed by equation (4) are
satisfied: d/2p in the resonant case Dp¼Ds¼ 0 is f10� f21¼ 227
MHz, which is B7.5 times that of O0/2p, and it is easy to verify

that the integrated pulse area
R1
�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2

p tð ÞþO2
s tð Þ

q
dtE22p is

greater than 10p. We point out that in addition to the influence of
coherence times, the transfer efficiency of the demonstrated
STIRAP process can also be improved by increasing the relatively
small anharmonicity parameter aE3.7% of the present sample
up to, for example, 10% by optimizing device parameters of the
X-type phase32 and transmon (or Xmon)33 qutrits. According to
equation (4) larger anharmonicity allows the use of larger O0

which would proportionally reduce the duration of the pump and
Stokes pulses when the pulse area is kept unchanged to satisfy the
adiabatic condition. Shorter pulses also reduce the negative effect
of decoherence on the transfer efficiency3,13.

Bright and dark resonances. The STIRAP process is often
identified in either the time domain or the frequency domain1,2.
The latter is based on equation (3) which specifies the pump and
Stokes two-photon resonance condition. In Fig. 3a,b, we show the
corrected experimental level populations P2 and P1 under the
variations of the pump and Stokes detunings Dp and Ds,
respectively. The results are accompanied by the numerical
simulations via the master equation (Fig. 3c,d) with fair
agreement. Bright and dark resonances can be seen clearly in
Fig. 3a,c and Fig. 3b,d, respectively. The bright resonance
manifests itself as a stretched line with large P2 from the
top-left to bottom-right corners reflecting the resonance
condition equation (3), and with a much extended area near Ds,
DpB0. The dark resonance appears as small P1 in areas wherever
P2 is large. The other two highly populated areas can also be seen.
One is P2 excited by the two-photon process from the single

pump microwave tone, appearing as a thin vertical line on the
right side in Fig. 3a,c. A split of the line near Ds¼ 0 can be seen,
which could result from the Autler–Townes splitting of the |2i
level induced by the Stokes microwave tone. The other is
the vertical stripes near Dp¼ 0 in Fig. 3b,d originating from the
resonant excitation of P1 by the pump microwave tone. However,
the stripes are distorted near Ds¼ 0 due to the dark resonance
from the STIRAP process.

In Fig. 3e,f, we compare the populations of the bright (P2) and
dark (P1) states as a function of pump field detuning Dp when the
frequency of the Stokes field resonates with o21/2p (that is,
Ds¼ 0). While the agreement between the measured and
simulated P1 is pretty well those of P2 differ significantly in the
height of the right-side peak around Dp¼ 115 MHz that results
from the single pump tone two-photon process. At present, it is
not clear what is the cause for this discrepancy. However,
because the two-photon resonance is located far away from the
intended parameter region of STIRAP its effect on the
efficiency and robustness of the coherent population transfer
can be ignored.

Uniqueness and robustness. Similar results are obtained for the
phase qutrit (Supplementary Figs 6 and 7) with a relative
anharmonicity of a¼ 2.9% and shorter coherence times on the
order of a few hundred nanoseconds, in which a coherent
population transfer efficiency as high as 67% is achieved,
consistent with the numerical simulations using the experi-
mentally determined sample parameters listed in Supplementary
Table 1 (see discussions in Supplementary Note 2). All these
results demonstrate clearly CPT from the ground state |0i to
the second excited state |2i via STIRAP in the X-type
superconducting qutrits. We note that compared with the usual
high-power single-tone two-photon process or two non-over-
lapping successive resonant p pulse excitations shown in Fig. 1d,
which involve significant undesired population in the middle level
|1i and require precise single photon resonance and pulse
area11,18, CPT via STIRAP demonstrates simply the opposite.
First, in principle CPT between |0i and |2i can be accomplished
without occupying the lossy middle level |1i. More importantly,
the process is much more robust against variations in the
frequency, duration and shape of the driving pulses1,2. In fact, in
terms of equation (3) and equation (4), we see from Fig. 3a,c,e
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Figure 3 | Bright and dark resonances. Level populations P2 and P1 taken at t¼ 100 ns versus detunings Ds and Dp. (a,b) Experimental; (c,d) theoretical.

Bright and dark resonances can be seen clearly in a–d, respectively. The right-side peaks in a,c result from the two-photon process of the single pump

microwave tone. (e) Bright and (f) dark resonance data plotted with Ds¼0. Symbols and lines are, respectively, the experimental results and the results

calculated using the same parameters in Fig. 2.
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that the pump and Stokes tones resonance condition is greatly
relaxed due to a much wider peak width of the STIRAP process as
compared, for example, with the single-tone two-photon
excitation from |0i state to |2i state having a much narrow
peak. On the other hand, although Op,s are limited by the system
anharmonicity, their values, together with Td, still have much
room for variations while maintaining the transfer efficiency.
Our simulated results indicate that the transfer efficiency of
STIRAP is very insensitive to O0, which is limited by systems
anharmonicity, and to Td, which should be much smaller than the
coherence time. The allowed variations for the present Xmon
qutrit are about 20 MHz in O0 and 100 ns in Td for keeping
P2Z96%, which are in sharp contrast to, for example, the case of
simple p pulse excitations. The extreme robustness of the STIRAP
process is very advantageous and should be useful in various
applications such as realizing efficient qubit rotation,
entanglement and quantum information transfer in various
superconducting qubit and qutrit systems.

Discussion
We have experimentally demonstrated coherent population
transfer between two uncoupled or weakly coupled states, |0i
and |2i, of the superconducting Xmon and phase qutrits having
X-type ladder configuration via STIRAP. The qutrits had small
relative anharmonicity around 3% and moderate coherence times
ranging from a few hundred ns up to ten ms. We demonstrated
that by applying a pair of counterintuitive microwave pulses in
which the Stokes tone precedes the pump tone, coherent
population transfer from |0i to |2i with efficiency no less than
96% and 67% for the two devices can be achieved with a much
smaller population in the first excited state |1i. Using the
measured qutrit parameters, including coherence times, we
simulated the STIRAP process by numerically solving the master
equation. The results agreed well with the experimental data.

Coherent population transfer via STIRAP is much more robust
against variations of the experimental parameters, including the
amplitude, detuning and time duration of the microwave fields,
and the environmental noise over the conventional methods such
as using high-power single-tone two-photon excitation and two
resonant p pulses tuned to o10 and o21, respectively. Therefore
STIRAP is advantageous for achieving robust coherent
population transfer in the ladder-type superconducting artificial
atoms that play increasingly important roles in various fields
ranging from fundamental physics to quantum information
processing. With improved qutrit parameters of coherence times
up to 40ms, presently attainable in the Xmon23, transmon33,34

and flux35 type devices, nearly complete transfer above 99% from
level |0i to level |2i while keeping the level |1i population below
1% is expected. On the other hand, STIRAP in the L-type
systems3 such as superconducting flux qutrits, in which the initial
and target states locate in different potential wells representing
circulating currents in opposite directions, is important in
various applications and its experimental implementation
remains to be explored. Our work paves the way for further
progress in these directions.

Method
Dispersive readout of Xmon qutrit and SPAM errors. The Xmon qutrit is
capacitively coupled to an on-chip l/4 coplanar waveguide resonator which has a
fixed resonant frequency at or/2pE6.640 GHz. The qutrit-resonator coupling
strength is designed to be about 30 MHz if on-resonance, and the coplanar
waveguide resonator is loaded to external circuitry whose microwave response can
be probed in terms of its transmission coefficient S. As the Xmon qutrit is far
detuned from or, there is a dispersion-induced resonant frequency shift of the
resonator, that is, the resulting transmission coefficient S expressed by a complex
number Iþ iQ takes different values depending on the exact qutrit state. For
readout we input an 800-ns-long microwave pulse, which is B1 MHz detuned

from or/2p, and the output microwave pulse with the desired resonator
information encoded in (I, Q) is sequentially amplified at multiple stages using a
Josephson junction parametric amplifier36 and other low-noise amplifiers before
demodulated by room temperature electronics37.

In the perfect absence of noise we would obtain three signal points in the I–Q
plane for the qutrit’s three eigenstates |0i, |1i and |2i, respectively. However,
unavoidable noise in the measurement system gives rise to random scattering of the
signal points around the ideal values, resulting in effectively three circular clouds
corresponding to the three eigenstates. For a single measurement event in which a
point (I, Q) is demodulated from an 800-ns-long microwave pulse, we categorize
the qutrit state according to the minimum distance between this point (I, Q) and
the three cloud centres. We repeat the sequence several hundred or thousand times
for many points of (I, Q)s, from which the occupation probabilities for |0i, |1i and
|2i can be counted. Obviously, slight overlaps between clouds or unexpected
transitions between eigenstates during the preparation of the initial state and/or the
readout stage give errors and reduce the relevant fidelity values. These are SPAM
errors related to our specific measurement system38.

Assuming that SPAM errors are mostly related to the readout imperfection,
which can then be corrected, we perform a preliminary readout correction of the raw
data. We prepare the state in |ji (j¼ 0, 1 and 2), followed by an immediate qutrit
readout for recording the probability value of correctly measuring the state in |ji and
the other two probability values of incorrectly measuring the state in |ki (kaj). The
resulting 9 probability values can be used to construct the readout correction matrix.
We note that this method may not be accurate since the state preparation error,
though likely small, is ignored in constructing the correction matrix. However, the
corrected experimental data agree well with the estimation from the full calibration
of the STIRAP fidelity via concatenated pulses, as detailed in Supplementary Note 1,
and with the calculated results using the master equation.

Numerical simulations. We numerically calculate the level populations
P0(t)¼ r00(t), P1(t)¼r11(t), and P2(t)¼ r22(t) at any given time by solving the
master equation

_r ¼ � i
‘

H; r½ � þ L rð Þ; ð5Þ

where r is the system’s 3� 3 density matrix, H is the Hamiltonian given by
equation (1), and L(r) is the Liouvillean containing various relaxation and
dephasing processes. Considering the general situation that the pump and Stokes
microwaves are not correlated, we introduce a phase difference f between the two
microwaves in the actual calculations39. In this case, the double-rotating reference
frame is described by the operator U¼ 0j i 0h jþ 1j i 1h jeiop t þ 2j i 2h jei op tþost�fð Þ,
and the rotating-wave approximation leads to a Hamiltonian in the following form:

H ¼
0 gp þ gse� i dt�fð Þ 0

gpþ gsei dt�fð Þ Dp l gpei dt�fð Þ þ gs
� �

0 l gpe� i dt�fð Þ þ gs
� �

Dp þDs

2
64

3
75; ð6Þ

where the Liouvillean operator in equation (5) is given by27:

L rð Þ ¼ � 1
2

� 2G10r11 G10 þ gj10ð Þr01 G21 þ gj20ð Þr02
G10 þ gj10ð Þr10 2G10r11 � 2G21r22 G10 þG21 þ gj21ð Þr12
G21 þ gj20ð Þr20 G10 þG21 þ gj21ð Þr21 2G21r22

2
4

3
5:
ð7Þ

In our calculations r(t, f) is obtained by solving equation (5) using the fourth-
order Runge–Kutta method. When the phase difference f of the two microwaves
in our experiment is random, we average the result over f and finally arrive at:

r tð Þ ¼ 1
2p

Z2p

0

r t;fð Þdf: ð8Þ

For the Xmon qutrit we use the parameters G10¼ 8.4� 104 s� 1, G21¼ 1.3
� 105 s� 1, and gj10 ¼ 2.0� 105 s� 1 measured directly from experiment, and
we estimate gj20E2gj10 and gj21Egj10 as in the case of phase qutrit (Supplementary
Note 2).
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