
A Survey of Metrics Employed to Assess
Software Security

Hadeel Alabandi

Submitted to the graduate degree program in Electrical
Engineering and Computer Science and the Graduate Faculty
of the University of Kansas School of Engineering in partial

fulfilment of the requirements for the degree of Master of Science.

Thesis Committee:

Dr. Prasad Kulkarni: Chairperson

Dr. Andy Gill

Dr. Heechul Yun

Date Defended:

5/9/2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KU ScholarWorks

https://core.ac.uk/display/213417662?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Thesis Committee for Hadeel Alabandi certifies

That this is the approved version of the following thesis:

A Survey of Metrics Employed to Assess Software Security

Committee:

Dr. Prasad Kulkarni: Chairperson

Dr. Andy Gill

Dr. Heechul Yun

Date Approved:

5/11/2016

i

Abstract

Measuring and assessing software security is a critical concern as it is unde-

sirable to develop risky and insecure software. Various measurement approaches

and metrics have been defined to assess software security. For researchers and

software developers, it is significant to have different metrics and measurement

models at one place either to evaluate the existing measurement approaches, to

compare between two or more metrics or to be able to find the proper metric to

measure the software security at a specific software development phase. There is

no existing survey of software security metrics that covers metrics available at all

the software development phases. In this paper, we present a survey of metrics

used to assess and measure software security, and we categorized them based on

software development phases. Our findings reveal a critical lack of automated

tools, and the necessity to possess detailed knowledge or experience of the mea-

sured software as the major hindrances in the use of existing software security

metrics.

ii

Contents

Abstract ii

Table of Contents iii

1 Introduction 1

2 Related Work 4

3 Software Development Phases and Security metrics 6

3.1 Design Phase Metrics . 6

3.1.1 Towards a Measuring Framework for Security Properties of

Software [31] . 7

3.1.2 Security Metrics for Object-Oriented Designs [4] 7

3.1.3 Security Estimation Framework: Design Phase Perspec-

tive [29] . 7

3.1.4 NIST 800-55 Security Metrics Guide for Information Tech-

nology Systems [35] . 8

3.1.5 Common Criteria or ISO/IEC 15408 [15] 8

3.1.6 An Efficient Measurement of Object Oriented Design Vul-

nerability [1] . 8

3.1.7 Design Phase Metrics Comparison 9

3.2 Implementation and Testing Phase Metrics 9

3.2.1 Security Metrics for Source Code Structures [9] 9

3.2.2 Prioritization of software security intangible attributes [11] 10

3.2.3 Side-channel vulnerability factor: a metric for measuring

information leakage [13] 10

iii

3.2.4 Deploying Suitable Countermeasures to Solve the Security

Problems within an E-learning Environment [27] 11

3.2.5 A Hierarchical Security Assessment Model for Object-

Oriented Programs [5] . 11

3.2.6 A New Security Sensitivity Measurement for Software Vari-

ables [8] . 12

3.2.7 Evaluating Security Controls Based on Key Performance

Indicators and Stakeholder Mission [32] 12

3.2.8 Is Complexity Really the Enemy of Software Security? [33] 12

3.2.9 Implementation and Testing Phase Metrics Comparison . . 13

3.3 Deployment Phase Metrics . 13

3.3.1 Analyses Of Two End-User Software Vulnerability Exposure

Metrics [43] . 14

3.3.2 How dangerous is your Android app?: an evaluation

methodology [6] . 14

3.3.3 Measuring the attack surfaces of two FTP daemons [20] . . 15

3.3.4 Ontology-based Security Assessment for Software Prod-

ucts [40] . 15

3.3.5 EVMAT: an OVAL and NVD based enterprise vulnerability

modeling and assessment tool [44] 16

3.3.6 A model for quantitative security measurement and priori-

tization of vulnerability mitigation [37] 16

3.3.7 Security Metrics for Software Systems [41] 16

3.3.8 Temporal metrics for software vulnerabilities [42] 17

3.3.9 An Approach to Measuring a System’s Attack Surface [17] 17

3.3.10 An Approach to Analyzing the Windows and Linux Security

Models [34] . 17

3.3.11 Experimenting with Quantitative Evaluation Tools for Mon-

itoring Operational Security [24] 18

3.3.12 SAVI: Static-Analysis Vulnerability Indicator [39] 18

3.3.13 Deployment Phase Metrics Comparison 18

3.4 Maintenance Phase Metrics . 19

3.4.1 Using Software Structure to Predict Vulnerability Exploita-

tion Potential [45] . 19

iv

3.4.2 Using Attack Surface Entry Points and Reachability Analy-

sis to Assess the Risk of Software Vulnerability Exploitabil-

ity [46] . 20

3.4.3 Enterprise Software Management Systems by Using Security

Metrics [7] . 20

3.4.4 Taxonomy of quality metrics for assessing assurance of se-

curity correctness [25] . 21

3.4.5 Comparing Vulnerability Severity and Exploits Using Case-

Control Studies [2] . 21

3.4.6 Estimating risk levels for vulnerability categories using

CVSS [36] . 21

3.4.7 Maintenance Phase Metrics Comparison 22

3.5 Multiple Phases Metrics . 22

3.5.1 Complexity, Coupling, and Cohesion Metrics be Used as

Early Indicators of Vulnerabilities? [10] 22

3.5.2 Automated software architecture security risk analysis using

formalized signatures: Metric to measure the security at

different architecture levels through the development cycle [3] 23

3.5.3 CWE (Common Weakness Enumeration) [21] 23

3.5.4 A tool for security metrics modeling and visualization [19] 23

3.5.5 An Analyzer-based Software Security Measurement Model

for Enhancing Software System Security [18] 24

4 Discussion 25

5 Conclusion 29

References 30

v

Chapter 1

Introduction

Security of software is a difficult property to measure. However, it is important

to know if a specific system is reliable and will work properly, even when it is

attacked [23]. Researchers have suggested different metrics to evaluate if and how

vulnerable a software is to external attacks. Such measurements give the level of

inherent security in each software development phase. These metrics depend on

specific software and developmental attributes and can be used to compute the

software’s security score. Since each kind of measurement evaluates security at

different level or for specific attributes and characteristics, making a decision to

choose the proper measurements depends on the type of system security evaluation

is needed.

Metrics developed to measure a software’s security and risk level have been

designed to be quantitative [41] or objective [30], and help assess a system’s vulner-

ability risk score. Security metrics are beneficial as they reveal the reliability and

development quality for the software system. In addition, metrics can also help to

minimize the impact of a software system attack, by creating awareness about the

system weaknesses, and improving its security scale. Software metrics have been

1

designed to be employed during different stages of the software life-cycle – design,

implementation and testing, deployment, and maintenance life-cycle stages. Met-

rics have been proposed to work at the abstract architectural level or the more

concrete software coding level. Examples of some popular metrics used for secu-

rity assessment include approaches like the Common Vulnerability Scoring System

(CVSS) [26] and Common Vulnerabilities and Exposures (CVE) [12].

As software and technology pervades all aspects of our day-to-day life, security

researchers are devising various metrics, approaches and techniques to measure

software security [22]. At the same time, researchers, IT experts and software

developers need to have the ability to assess various types of measurements tech-

niques; to be able to compare between different security metrics in the same

category or to find a suitable metric based on it’s category or the software phase

during which the measurement is to be taken. The main goal of this research is to

present a survey for various security metrics and measurement approaches, along

with a classification of the metrics based on the software development stages. This

research will support security researchers by describing and comparing several

mechanisms in a single document. Our work will also assist others by provid-

ing the knowledge about the impact and the benefits of each metric; and which

security characteristics could be measured using certain techniques.

This thesis compiles a survey about software security and quality metrics,

and mechanisms to measure a software’s security level. The security metrics

presented here have been collected from previous research papers in the same area.

The past research works summarized in this work include security measurement

approaches that present a specific value or score to indicate the software security

on a defined scale. The metrics are categorized based on software development

2

phases – including design, implementation, testing, deployment or maintenance

phase. There are also some metrics included in this survey that can be used in

multiple software phases.

3

Chapter 2

Related Work

In this section we present related surveys on software security metrics. Mellado

et al. present some metrics that measure software security level during the design

software development phase [22]. This evaluation defines the software properties

covered by each metric. This work also compares the various metrics based on

their security properties for the design stage.

Morrison et al. also conduct a study of software security metrics [23]. Their

classification is based on conventional metrics like dependency, effort and com-

plexity. For each category, the authors describe the related papers, the software

development phases covered along with their evaluation, where possible.

Chowdhury et al. present a survey of software security measurement ap-

proaches related to the source code defects and weakness [9].

Evesti et al. focus on ”Self-Adaptive” systems in their work [14]. Self-adaptive

systems can react against attacks and have the ability to detect vulnerabilities by

observing the whole system’s security activities. The authors discuss the ad-

vantages and the difficulties to measure such systems, and present the metric’s

requirements to measure them.

4

Verendel provides a survey for the quantitative approaches to measure secu-

rity [38]. This work aims to validate if software security can be measured, and if

the metric scores accurately represent the actual security risk.

Jonsson and Pirzadeh present a framework that defines metrics by dividing

them based on how the system behaves and it’s effect on the environment [16].

The authors section software characteristics into protective, behavioural and cor-

rectness features. They focus on the first and the second properties and describe

how to define metrics based on them.

Our work is different than [22] and [16] since it categorizes metrics based on

different software development phases. Morrison et al. used conventional metrics,

and mentioned phase classification, but they do not present details about metrics

and measurement approach for each phase as we do in this thesis [23]. While [14]

focuses only on security measurements for ”Self-Adaptive” systems, our survey

covers many different kinds of software systems. The survey presented by [38]

aims to validate quantitative measurements, while our work presents a detailed

survey to help researchers and software developers find different mechanisms and

approaches to evaluate the security risk of the software at different phases.

5

Chapter 3

Software Development Phases

and Security metrics

In this section we describe metrics and measurement approaches used to assess

the software security state and risk in each phase of software development process.

3.1 Design Phase Metrics

Design is a very important software phase as it is one of the earliest stages

of the software development process. Failures and weaknesses discovered at this

early stage significantly reduce the risk at the later development stages. In this

section we present some important research works that have been suggested to

measure and assess the security at the design phase. Some of these mechanisms

are standards used to assist security design evaluation process, while others define

design stage metrics that have been employed to evaluate the software security

using a design file that contains the specification of the system.

6

3.1.1 Towards a Measuring Framework for Security Properties of

Software [31]

This paper concentrates on determining the quantitative security properties

that can be assessed, and considers the entire software (not just some parts of

it). They use a principle and practices security list as a reference to select the

properties to assess the security properties at the design phase, such as a line of

defense, size of attack surface and complexity.

3.1.2 Security Metrics for Object-Oriented Designs [4]

The authors of this work define a set of design security metrics to measure

the security level for the flow of confidential information in multi-class programs,

especially object-oriented programs in the design phase. The metrics used in this

work are based on security quality properties for the program design, and include

the entire class design levels such as coupling, composition and design size. A note

of SPARK’s and UMLsec need be added to the design to be able to compute the

metrics using their UML tool. The result of the computation is a number between

0 and 1, with 1 being the worst. This metric can be used to evaluate more than

one design for the same program to find the most secure one.

3.1.3 Security Estimation Framework: Design Phase Perspective [29]

This work developed a framework that includes a procedure to assess security

at the design phase. The procedure includes 5 different stages that aim to find the

security factors and metrics, assess them, and finally rate the software security

level.

7

3.1.4 NIST 800-55 Security Metrics Guide for Information

Technology Systems [35]

This work produced a full-system measurement approach to assess the infor-

mation system by checking if its security controls are powerful and beneficial. This

work focused on the security control implementation of the system. The authors

evolved three measurement approaches to evaluate the implementation of security

policies, effectiveness of security services delivery, and impact of security failures.

This approach supports the design development stage, and helps to take decisions

regarding security controls needed in the system.

3.1.5 Common Criteria or ISO/IEC 15408 [15]

CC or common criteria defines the product’s security functional requirements

that will be assessed and verified in the evaluation process. The result of evaluating

the product shows the security confidence level, which indicates how much it meets

the requirement defined in the common criteria.

3.1.6 An Efficient Measurement of Object Oriented Design

Vulnerability [1]

In this work the authors present a metric, called the vulnerability propagation

factor (VPF), to measure the risk level of software. The assessment is based on

how the classes communicate, and the possibility of spreading the vulnerability

from one class to the other classes on the tree-like structure of the object-oriented

design. The result of VPF is based on the number of affected classes for each

vulnerable class; and lower VPF value, means lower risk level of the software

design.

8

3.1.7 Design Phase Metrics Comparison

According to the research papers we have discuss above, we will show a com-

parison between their metrics, measurement approaches and standards. We found

that The frameworks presented in [31] and [29], and the VPF metric in [1] can

be used to assess the security of the overall software. All of the design metrics

and standards show a result (i.e numrical, risk categories or levels) that can be

used to compare the security of various designs. While the frameworks in [31]

and [29], NIST 800-55, and CC (ISO/IEC 15408) can be used to assess any type

of software designs, the metrics presented in [4] and VPF in [1] can only assess

object-oriented designs.

3.2 Implementation and Testing Phase Metrics

There are several software defects that cannot be discovered early in the de-

sign phase. It is important and most cost efficient to detect such defects in the

implementation software development phase to minimize their risk to the later

phases. Researchers have developed several metrics to assess the security ap-

proaches employed to find vulnerabilities and assess the software risk during the

implementation stage. When the software is implemented, it’s significant to guar-

antee that it’s reliable and secure before it is deployed. In this section we describe

some of metrics to measure the level of security of the software source code during

he implementation and testing phases.

3.2.1 Security Metrics for Source Code Structures [9]

This work defines three metrics to assess the soundness of a system’s source

code structures. The assessed security level is based on finding source code defects

9

and weaknesses. Coupling corruption propagation is one of the metrics presented

to measure how defects and weakness in one part of the software affects other

methods in the source code. The other two metrics presented are stall ratio and

critical element ratio; the first one is about finding the statements that don’t let

the program make progress and they focus here on such statements in the loop.

The last metric finds possible paths an unauthorized input could take that will

lead to an attack on the code.

3.2.2 Prioritization of software security intangible attributes [11]

This approach proposes using code properties that can be measured to estimate

those that are more difficult to quantify, like software security. It works using

the Analytical Hierarchy Process (AHP) computation to assess the measurable

attributes scores, and the assessment of system stakeholders using two-dimensional

approach that uses an attributes’ hierarchy. The main attributes are the intangible

properties, then there are one or more levels of sub-attributes used to get the

security priority score for the main one.

3.2.3 Side-channel vulnerability factor: a metric for measuring

information leakage [13]

The authors of this work define Side-channel vulnerability factor (SVF) as

a security metric to measure the level of infiltration of the information which

attacker can gain. The SVF metric is based on the patterns the attacker might

use, and the execution patterns in the machine that could be attacked. This

metric computes the interconnection between the two kinds of patterns to get

the level of difficulty to attack the system and be able to exploit the information

10

leakage.

3.2.4 Deploying Suitable Countermeasures to Solve the Security

Problems within an E-learning Environment [27]

This work explores the security issues and their exposures for E-learning sys-

tems, including techniques to fix some of these security problems. The authors

present Mean Failure Cost (MFC) metric which depends on 4 elements: stakes, de-

pendability, impact and threat vector. They explore some security metrics trying

to minimize the effect of the stakes factor.

3.2.5 A Hierarchical Security Assessment Model for Object-Oriented

Programs [5]

This work propose a multi-level tree-like model to measure the security of

object oriented programs, especially the one written in Java. This security as-

sessment is based on the properties of the code structure; it also depends on the

static analysis where they evolve an automatic tool that works with Java bytecode

after compiling. The security level final score is based on the classified data, and

computed in different levels. The first level includes design properties obtained

by the static analysis, then use them to get the metrics to assess upper-level of

design properties in the next level. The third level uses the second level metrics

to measure design concepts. The metrics are combined to get the final result of

security evaluation of the system. This approach is for the developer, as it allows

to compare the security level of two versions of a specific program.

11

3.2.6 A New Security Sensitivity Measurement for Software

Variables [8]

The authors present a new metric to measure the full-system security level.

It is based on the possibility of violating security properties when the system get

attacked at the variable level. This metric uses model checking to verify for each

security property if it will be violated when an attack occur. The measurement

only uses the risky variables in the program code to assess the security level. This

metric helps to minimize the security weaknesses and defects in the later stages;

also it just focuses on the risky parts of the code, which is better than looking at

the whole code as that might take a long time.

3.2.7 Evaluating Security Controls Based on Key Performance

Indicators and Stakeholder Mission [32]

This work presents a Cyberspace Security Econometrics System (CSES) that

helps to improve the security when the system operates, and to develop a secure

system. CSES assesses the cost of possible violations of the system security for

each stakeholder when it gets attacked using the mean failure cost. Determining

the possible lose goes through computing stakeholder matrix, dependency matrix,

impact matrix and threat matrix. Having the knowledge of the potential loss for

each stakeholder in the system helps to manage and maintain the security risk.

3.2.8 Is Complexity Really the Enemy of Software Security? [33]

This paper investigates if the complexity of the source code impacts the vul-

nerability of software. The study in this paper is accomplished by assessing some

of complexity metrics (i.e nesting complexity, paths and other 7 metrics) statically

12

at code-level to verify if the complexity is a valid indicator to high security risk

of the system.

3.2.9 Implementation and Testing Phase Metrics Comparison

We discuss here a comparison between the security metrics that could be used

to assess security during implementation and testing phase based on the research

papers we have discussed above. We found that the metrics in [9], [11], [13], [5], [8]

and [33] don’t assess the security of the overall system. While measuring security

in [9], [5] and [33] based on some of the code structure properties, It’s depends on

some security properties in [11], [13] and [8]. The final score of all implementation

and testing phase metrics can be used to compare the security of different source

codes (i.e numrical score); however, metrics in [27] and [32] used to maintain

and monitor the systems. All measurement approaches can assess any type of

system except those in [27] and [32] which assess large systems (i.e systems that

has many users), and the measurement model in [5] which only evaluates object

oriented source code.

3.3 Deployment Phase Metrics

Independent of the assessment performed (or not) by the software developers,

it is also important for the software end-user to know if the software is secure, and

to be able to compare the security risk level of different software products that

provide similar levels of functionality so that they may choose the most secure one.

There are some tools and metrics that have been proposed to enable measuring

the level of software security by the end-user. In this section we present the most

prominent software security metrics that can be employed by the end-users of

13

software, as they do not rely on any design or development-time knowledge or

availability of source-code.

3.3.1 Analyses Of Two End-User Software Vulnerability Exposure

Metrics [43]

This work defines two vulnerability exposure metrics that could be used by the

end-user to assess the security exposure, and to be able to compare between two

similar software products. These metrics are based on the number of vulnerabili-

ties that have been detected and notified to the distributor, and the software life

duration (how fast are the vulnerabilities fixed since they were discovered). One

of the metrics is (AAV) average active vulnerabilities, which defines the average

number of vulnerabilities for specific software that has been reported to and fixed

by the software distributor; and the other one is (VFD) vulnerability free days

metric that defines the likelihood of not having any live vulnerabilities in a certain

day.

3.3.2 How dangerous is your Android app?: an evaluation

methodology [6]

This paper presents a new security risk analyser that could be used by the

end-user to assess software security for Android applications. This analyser uses

both static and dynamic analysis. It works by finding the authorizations needed

by the app, and then compares the authorizations with the tasks that the end-user

has called in the run-time. Finer-grained models are used to profile the discovered

risks based on it’s risk classifications; and fuzzy logic approach is used to assess

these risks. The final result of the analyser is a risk score, and the finer-grained

14

classification report.

3.3.3 Measuring the attack surfaces of two FTP daemons [20]

The authors of this paper use the attack surface measurement approach to

compare between different FTP server implementations. They choose ProfFTPD

and Wu-FTPD, the most popular and open source FTP servers for this work.

The comparison between the servers is based on the attack surface of the data,

the channels and the number of methods. The measurement result is verified by

looking at the co-relation between the number of vulnerabilities discovered in the

past for each server implementation, and the attack surface metric result for each

server.

3.3.4 Ontology-based Security Assessment for Software Products [40]

This work presents an evaluation of the trust of a software system by building

an ontology for maintaining vulnerabilities. The ontology helps by providing infor-

mation about the security-relevant functional and non-functional requirements of

the software. The ontology also shows the proof of confidence regarding whether

or not the software system is free of vulnerabilities. The approach depends on

different standards like CVSS and CWE. To support the ontology approach, a

self-controlled tool was also developed to assess the level of the software trustwor-

thiness.

15

3.3.5 EVMAT: an OVAL and NVD based enterprise vulnerability

modeling and assessment tool [44]

In this work, the authors implement a tool called EVMAT that automatically

computes the score of enterprise vulnerability. They use a topology for modelling

vulnerability by giving a weight to all of the company objectives, then use CVSS

to find the severity score for each objective. EVMAT uses OVAL to collect the

information about the software system features related to all resources, and NVD

to get information about each vulnerability.

3.3.6 A model for quantitative security measurement and

prioritization of vulnerability mitigation [37]

In this paper, the authors present a model for assessing the security risk quan-

titatively for each node in a network system. The measurement formula depends

on gathering the vulnerabilities of a specific node, assessing their risk scores, and

ordering them based on their roles and effects inside the network.

3.3.7 Security Metrics for Software Systems [41]

The authors in this work develop a tool to assess the trust level of software

systems. This approach depends on the flaws that lead to higher number of system

attacks, their risk scores and how frequent each vulnerability related to that flaw

will occur. The authors get the list of vulnerabilities for the software system from

the CVE database.

16

3.3.8 Temporal metrics for software vulnerabilities [42]

In this work, the authors try to adjust the metrics’ equations provided by

CVSS 2.0. They discuss that the CVSS 2.0 equations have an issue about the the

impact score; if the impact is high or low, the score will be the same. They adjust

f(impact) so it has multiple cases to represent integrity impact, confidentiality

impact and availability impact accurately in the base score equation. In this

paper, they focused more on adjusting temporal and environmental equations. A

tool with an interface was also developed to help the end-user calculate the score

automatically.

3.3.9 An Approach to Measuring a System’s Attack Surface [17]

The paper presents an approach that uses the system attack surface resources

as indicator to the security level for specific software. This technique provides

the ability for end-users and developers to compare between two software’s secu-

rity levels. The metric computation is based on the system data, methods and

channels.

3.3.10 An Approach to Analyzing the Windows and Linux Security

Models [34]

This work presents different metrics to assess an operating system’s risk level.

This measurement is based on the possibility of privilege violations caused by one

of the OS characteristics. Different formulae are presented for the various OS to

measure risk. However, using these metrics needs an expert user. The risk level

could be concluded from the final result of the specific formula for each specific

OS.

17

3.3.11 Experimenting with Quantitative Evaluation Tools for

Monitoring Operational Security [24]

The paper presents a tools to help the administrator monitors and maintains

the security level of the system. It shows the vulnerabilities in the system using a

privilege graph, which is a tree-like structure. The security metrics employed here

are computed using a Markovian approach, which is based on the potential paths

the attacker could use to attack the system using the privilege graph. The result

reflects the likelihood of attacking the system. The result is achieved using mean

effort to failure (METF) metric; the lower the value of the metric, the higher the

indicated risk level, and lower security level of the system.

3.3.12 SAVI: Static-Analysis Vulnerability Indicator [39]

The authors in this paper present a security measurement approach based

on analyzing the source code statically for open-source web applications. The

analysis inspects the potential vulnerabilities in the system, and then use them

to compute the security measure. They propose a static analysis vulnerability

indicator (SAVI) to compare between two or more applications based on their

source code, to find the one that is most secure. This approach can only be used

for open-source deployed software as it requires the source code.

3.3.13 Deployment Phase Metrics Comparison

We present a comparison between deployment phase security metrics and

measurement approaches discussed above. The measurement approaches used

in [6], [44], [37] [34], [24] and [39] can be used only to assess specific type of soft-

ware. In [6], only andorid application can be evaluated; and in [44] and [24] secu-

18

rity assessments for enterprise systems presented. In addition, the network nodes

risk level assessed (They didn’t compute the risk level of the overall network)

in [37]; and in [34] different metrics to assess the security of various operating

systems described. SAVI metric presented in [39] can only used to evaluate the

security of the deployed open source software as it requires the availability of the

source code. All of the presented metrics show a quantitative result which help

to either compare the security or risk level of different software that has the same

level of functionality, or to maintain and monitor the system security. Vulnera-

bility databases used to assist the software security evaluation in [40], [44], [37]

and [41]. The metrics used in [17] and [20] are based on assessing the security of

the attack surface; and the measurement model in [6] and the metric in [39] use

static analysis to measure the software security.

3.4 Maintenance Phase Metrics

Software developers also need to measure the software risk level in the main-

tenance stage. The evaluation during this stage is either to guarantee that the

software is still secure, to check it’s security level when it get attacked, or to check

it’s security after making some changes on the software. This section presents

some of the security metrics that have been devised for developers (rather than

end-users) to be used in the maintenance phase.

3.4.1 Using Software Structure to Predict Vulnerability Exploitation

Potential [45]

To improve the measurement results of evaluating the vulnerabilities risk, and

to minimize the need of user interference to supply the information needed to

19

measure the risk level, the authors presents a metric that depends on some of the

software characteristics like reachability, existence of risky call, and entry point.

The authors built a predictor that works using a machine learning approach and

SVMS to determine the vulnerabilities exposure and effect.

3.4.2 Using Attack Surface Entry Points and Reachability Analysis to

Assess the Risk of Software Vulnerability Exploitability [46]

Security metrics employing the CVSS metrics have a weakness since they don’t

examine the influence of the software characteristics during measuring the risk

level. This work defines a metric that focuses on the software characteristics

and design, while being based on vulnerability reachability. Whenever there is a

vulnerability that could be exploited through an entry point using a system call,

that entry point risk will be estimated by computing the ratio of the software’s

attribute privileges and types to the rights needed to attack it.

3.4.3 Enterprise Software Management Systems by Using Security

Metrics [7]

This paper presents a scheme for ordering vulnerability priorities based on

common vulnerability scoring system(CVSS). It describes base, temporal and en-

vironmental metrics used in CVSS. The authors also present number of operational

metrics that could assess systems of large business, and can be used by managers,

operational team, IT team and some other metrics.

20

3.4.4 Taxonomy of quality metrics for assessing assurance of security

correctness [25]

This work proposes a classification that aims to show the quality level of the

process of proving and validating the security accuracy. This process is a part

of security assurance, and the quality properties needed are represented in the

CC and ISO-IEC 15408, and the level accomplished is represented by SSE-CMM.

This technique gives a quantified result which helps to simplify maintaining the

operational phase’s security procedure.

3.4.5 Comparing Vulnerability Severity and Exploits Using

Case-Control Studies [2]

The authors propose to check the validation of vulnerabilities’ severity scores

as risk level indicators. A case-control approach is used to evaluate vulnerability

and the data that could be used to attack the system. In addition, they check the

validity of CVSS severity scores as risk level indicators, and they use a couple of

elements that affect the risk level to improve the CVSS risk indicator accuracy.

3.4.6 Estimating risk levels for vulnerability categories using

CVSS [36]

This work aims to improve the accuracy of measuring the security of a system.

It puts vulnerability under specific classification, and tries to assess the risk level

for each group of vulnerabilities. From the score of each group, it computes

the final risk level for the whole system. This approach also uses vulnerability

prioritization to determine what causes high risk in the system.

21

3.4.7 Maintenance Phase Metrics Comparison

We present a comparison of the metrics to assess security of the maintenance

phase. All of them can evaluate the security for any type of software except the

one in [7] which only measures the security of the enterprise system. While the

metrics in [45] and [46] are based on software characteristics (i.e like reachability,

existence of risky call, and entry point), those in [36], [2] and [7] are based on

CVSS. The final result includes the scores of all the known vulnerability only

in [25] and [36]. In addition, the final result of all metrics expect the one in [45]

can be used to to monitor and maintain the software security, or to compare

between two versions of the software; The metric in [45] don’t show a security or

risk score, it just shows if there is a vulnerabilities could lead to attack the system.

3.5 Multiple Phases Metrics

In this section, we discuss some of the metrics, approaches or tools that could

be used during more than one phase of software development.

Design , Testing and Implementation Phase

3.5.1 Complexity, Coupling, and Cohesion Metrics be Used as Early

Indicators of Vulnerabilities? [10]

As it is significant to increase the security level in the early stages of software

development, the authors examine complexity, coupling and cohesion (CCC) met-

rics to explore if having less cohesive systems with greater coupling and complexity

is a valid indicator to higher system risk. If the relation between CCC and the

higher risk is determined, then they explore which one of the CCC metrics could

22

be used to assess the system security.

3.5.2 Automated software architecture security risk analysis using

formalized signatures: Metric to measure the security at

different architecture levels through the development cycle [3]

The authors present a scheme for detecting the system weakness during design

and implementation phase, and a tool to analyse the system architecture of secu-

rity defects. This scheme is based on security metrics and scenarios, and object

constraint language (OCL). The formal OCL signature is used to find if there is a

match for it in the system or to assess the security. Detecting a match indicates

that system could be exposed to such an attack.

3.5.3 CWE (Common Weakness Enumeration) [21]

CWE helps to improve and manage the security level of software beside as-

sisting security tools. It shows the weakness that can be evaluated for specific

software in the implementation, operational and design phases.

Design and Deployment

3.5.4 A tool for security metrics modeling and visualization [19]

This work proposes MVS 2.0, which is a tool developed to assess and maintain

the security in the system during the design and deployment phases. It includes

various metrics ordered from the most comprehensive, which is located in the lower

level, and less details can be given as we move up to the higher levels. This tool

connects metrics with the system security details such as security requirements

and controls to make it easy for the user to monitor the system, and this data is

23

always updated when there is an update or change in the system while it runs.

Implementation and Maintenance

3.5.5 An Analyzer-based Software Security Measurement Model for

Enhancing Software System Security [18]

The paper presents an approach that uses the analysis to gather security met-

rics over software. It helps to detect security weaknesses so it can be maintained

to reduce software risk. Static analysis is used to collect the software security

metrics during implementation phase (i.e code-level metrics). In other side, they

use dynamic analysis to gather the maintenance phase metrics. In order to get

the software security level, both metrics from static and dynamic analysis are

integrated based on defined formulas.

24

Chapter 4

Discussion

In this thesis, we present a survey of security metrics and measurement ap-

proaches categorized by software development phases. In this section we describe

some of the main findings of this work.

We found that researchers have developed many different metrics to measure

the security level of software. While some metrics can only be used in one phase

of software development, there are others that can be used over multiple phases.

However, many current metrics don’t show the security level for the overall soft-

ware. Instead, several metrics represent a partial score that only covers some of

the security properties. Likewise, some metrics just represent the score of one

vulnerability in that software, which is less beneficial unless there is another way

to utilize such partial scores to get an overall (security) value.

We also found that many metrics use the comprehensive CVE, NVD or other

vulnerabilities databases to get a list of vulnerabilities and their details, which they

need and use for their formulae and computations. Most popular vulnerability

databases use a complex scoring system to compute the severity score of each

discovered/reported vulnerability. CVSS [26] is the most popular standard open

25

scoring system (used by NVD) that helps an organization estimates its system

vulnerability risks. The severity score in CVSS is based on base, temporal and

environmental metrics. The computation formula for each of these main metrics

is in turn based on a number of other sub-metrics that depend on the properties

of the discovered vulnerability. Environmental score is based on the temporal

score, which depends on the base score. The final CVSS score can be 10 or lower,

with the higher number indicating a higher risk level. Another scoring system

is CMSS [28] to assess the risk level of the misuse vulnerabilities that help in

attacking the system. The CMSS score derived from the CVSS and its scoring

formula based on the three metrics: base, environmental and temporal metrics.

We decided to focus our effort in this survey on automated tools that don’t

need human intervention. We discovered that there are only a few such tools.

One such automated tool was presented in [6], which is designed to analyse and

measure the risk level of Android applications. This tool can enable the end-user

to make a security decision either by giving the final risk score as a numerical

value and it’s corresponding category (i.e low, average, high and not acceptable).

It can also provide details about the operations that may cause risky behavior for

the application, as well as the risk category for each one. Such analysis is helpful

and significant to know, and can allow the user to make an installation decision

based on the application’s risk factor.

Another automated security measurement tool was proposed in [40]. This tool

uses an ontology to maintain and monitor the vulnerabilities. The final result of

the analysis shows the evidence of the trustworthiness (i.e the evidence that the

software doesn’t include any vulnerability) of the software. However, operating

this tool needs some manual information, such as the temporal exploitability and

26

report confidence scores from the user to start the analysis. While this tool is

compatible with all software binaries, the score given by this tool is based on the

reported vulnerabilities retrieved by the ontology from the NVD database. As a

result, its score may not be accurate as it doesn’t cover any undetected defects

and vulnerabilities.

EVMAT [44] is another automated tool developed to calculate the overall vul-

nerability score of an entire enterprise system. It can be used by system adminis-

trators as it requires some knowledge to specify accurate weights for the all of the

system resources. The vulnerability details and resources features are automati-

cally retrieved to be used in the final security score computation. This tool also

uses the NVD database to get vulnerabilities informations. As the tool mentioned

previously in [40], this tool also covers only the reported NVD vulnerabilities in

it’s computation.

Wang et al. also reveal a tool to calculate the adjusted CVSS metrics [42].

This tool is also not fully automated; however, the tool provides some information

regarding the properties of attributes it needs to calculate its score.

A predictor was developed in [45] with the aim of minimizing the knowledge

needed from the user. This approach uses machine learning and SVMS. It acquires

some knowledge of the software structure properties, so it can also be used by

developers. This tool does not measure the risk or security level of the system.

Instead, it just tries to conclude if vulnerabilities could be used to attack the

system or not.

Another tool, called MVS 2.0 [19], was developed to evaluate the system secu-

rity during the design and deployment development stages. It needs some knowl-

edge about MVS, how it works and it’s output. This tool can be used by expert

27

users and developers who have the knowledge and the experience of how to use it.

Based on our exploration, we conclude that there is a general lack of auto-

mated tools for end-users to conveniently score the security of deployed software.

This limitation is a serious issue only for measuring the software security in the

deployment stage. However, automation for all phases will result in more accurate

measurement than manual entry of the information, which might result in simple

data or enormous database entries. Some of the tools also need knowledge or ex-

perience that the end-user at the deployment stage may not possess. In addition,

tools that could be used by the end-user and don’t require any knowledge are

often restricted to specific kinds of applications or software, or it might be related

to specific OS such as Android.

28

Chapter 5

Conclusion

This thesis conducted a survey of security metrics, and categorized them based

on the software development stages. Our survey collects many important research

works for security metrics and tools that measure the security or risk level of

software. Our survey found a general lack of automated security measurement

tools, especially for use by end-users in the deployment stage. Tools that need

more user interference also necessitates more knowledge to use the tool. Some

automated tools can be used only for specific types of software. We expect that

this survey will help developers and researchers to understand the state of art

in security metrics approaches and tools to measure security. This knowledge

will help researchers develop better metrics and automated tools to advance the

measurement of software security.

29

References

[1] A. Agrawal, S. Chandra, and R. A. Khan. An efficient measurement of object

oriented design vulnerability. In Availability, Reliability and Security, 2009. ARES

’09. International Conference on, pages 618–623, March 2009.

[2] L. Allodi and F. Massacci. Comparing vulnerability severity and exploits using

case-control studies. ACM Trans. Inf. Syst. Secur., 17(1):1:1–1:20, Aug. 2014.

[3] M. Almorsy, J. Grundy, and A. S. Ibrahim. Automated software architecture

security risk analysis using formalized signatures. In Software Engineering (ICSE),

2013 35th International Conference on, pages 662–671, May 2013.

[4] B. Alshammari, C. Fidge, and D. Corney. Security metrics for object-oriented

designs. In Software Engineering Conference (ASWEC), 2010 21st Australian,

pages 55–64, April 2010.

[5] B. Alshammari, C. Fidge, and D. Corney. A hierarchical security assessment model

for object-oriented programs. In 2011 11th International Conference on Quality

Software, pages 218–227, July 2011.

[6] A. Atzeni, T. Su, M. Baltatu, R. D’Alessandro, and G. Pessiva. How dangerous is

your android app?: An evaluation methodology. In Proceedings of the 11th Interna-

tional Conference on Mobile and Ubiquitous Systems: Computing, Networking and

Services, MOBIQUITOUS ’14, pages 130–139, ICST, Brussels, Belgium, Belgium,

2014. ICST (Institute for Computer Sciences, Social-Informatics and Telecommu-

nications Engineering).

30

[7] A. N. P. Bhanudas S. Panchabhai. Enterprise software management systems by

using security metrics. International Journal of Science and Research, 2012. (Ac-

cessed on 03/21/2016).

[8] X. Cheng, N. He, and M. S. Hsiao. A new security sensitivity measurement for

software variables. In Technologies for Homeland Security, 2008 IEEE Conference

on, pages 593–598, May 2008.

[9] I. Chowdhury, B. Chan, and M. Zulkernine. Security metrics for source code

structures. In Proceedings of the Fourth International Workshop on Software En-

gineering for Secure Systems, SESS ’08, pages 57–64, New York, NY, USA, 2008.

ACM.

[10] I. Chowdhury and M. Zulkernine. Can complexity, coupling, and cohesion metrics

be used as early indicators of vulnerabilities? In Proceedings of the 2010 ACM

Symposium on Applied Computing, SAC ’10, pages 1963–1969, New York, NY,

USA, 2010. ACM.

[11] R. T. Colombo, M. S. Pessôa, A. C. Guerra, A. B. a. Filho, and C. C. Gomes.

Prioritization of software security intangible attributes. SIGSOFT Softw. Eng.

Notes, 37(6):1–7, Nov. 2012.

[12] CVE. Cve - common vulnerabilities and exposures. https://cve.mitre.org/about/,

2016.

[13] J. Demme, R. Martin, A. Waksman, and S. Sethumadhavan. Side-channel vulner-

ability factor: A metric for measuring information leakage. In Proceedings of the

39th Annual International Symposium on Computer Architecture, ISCA ’12, pages

106–117, Washington, DC, USA, 2012. IEEE Computer Society.

[14] A. Evesti, H. Abie, and R. Savola. Security measuring for self-adaptive security. In

Proceedings of the 2014 European Conference on Software Architecture Workshops,

ECSAW ’14, pages 5:1–5:7, New York, NY, USA, 2014. ACM.

31

[15] ISO/IEC. ISO/IEC 15408:2005 Information technology- Security techniques -

Evaluation criteria for IT security (Common Criteria v3.0), 2005.

[16] E. Jonsson and L. Pirzadeh. A framework for security metrics based on operational

system attributes. In Security Measurements and Metrics (Metrisec), 2011 Third

International Workshop on, pages 58–65, Sept 2011.

[17] P. K.Manadhata, K. M.C.Tan, R. A.Maxion, and J. M.Wing. An approach to

measuring a system’s attack surface. Technical Report ADA476805, School of

Computer Science, Carnegie Mellon University, Pittsburgh, PA, 2007.

[18] S. T. Lai. An analyzer-based software security measurement model for enhancing

software system security. In Software Engineering (WCSE), 2010 Second World

Congress on, volume 2, pages 93–96, Dec 2010.

[19] O.-M. Latvala, J. Toivonen, J. Kuusijärvi, and A. Evesti. A tool for security metrics

modeling and visualization. In Proceedings of the 2014 European Conference on

Software Architecture Workshops, ECSAW ’14, pages 3:1–3:7, New York, NY, USA,

2014. ACM.

[20] P. Manadhata, J. Wing, M. Flynn, and M. McQueen. Measuring the attack surfaces

of two ftp daemons. In Proceedings of the 2Nd ACM Workshop on Quality of

Protection, QoP ’06, pages 3–10, New York, NY, USA, 2006. ACM.

[21] R. Martin. Common weakness enumeration (cwe v1.8). Technical report, National

Cyber Security Division of the U.S. Department of Homeland Security, 2010.

[22] D. Mellado, E. Fernández-Medina, and M. Piattini. A comparison of software

design security metrics. In Proceedings of the Fourth European Conference on

Software Architecture: Companion Volume, ECSA ’10, pages 236–242, New York,

NY, USA, 2010. ACM.

[23] P. Morrison, D. Moye, and L. Williams. Mapping the field of software security

metrics. Technical Report I-CA2301, Department of Computer Science, North

Carolina State University, Raleigh, NC, 2014.

32

[24] R. Ortalo, Y. Deswarte, and M. Kaaniche. Experimenting with quantitative eval-

uation tools for monitoring operational security. IEEE Transactions on Software

Engineering, 25(5):633–650, Sep 1999.

[25] M. Ouedraogo, R. M. Savola, H. Mouratidis, D. Preston, D. Khadraoui, and

E. Dubois. Taxonomy of quality metrics for assessing assurance of security cor-

rectness. Software Quality Journal, 21(1):67–97, 2011.

[26] K. S. P. Mell and S. Romanosky. A complete guide to the common vulnerability

scoring system (cvss 2.0). Technical report, NIST and Carnegie Mellon University,

2007.

[27] N. Rjaibi and L. B. A. Rabai. Deploying suitable countermeasures to solve the

security problems within an e-learning environment. In Proceedings of the 7th

International Conference on Security of Information and Networks, SIN ’14, pages

33:33–33:38, New York, NY, USA, 2014. ACM.

[28] E. Ruitnbeek and K. Scarfone. The common misuse scoring system (cmss): Met-

rics for software feature misuse vulnerabilities. Technical Report 7517, National

Institute of Standards and Technology, NIST Interagency Report, Jul 2009.

[29] R. A. K. S. Chandra and A. Agrawal. Security estimation framework: Design phase

perspective. In 2009 Sixth International Conference on Information Technology:

New Generations, pages 254–259, April 2009.

[30] R. Savola. Towards a security metrics taxonomy for the information and commu-

nication technology industry. In Proceedings of the International Conference on

Software Engineering Advances, ICSEA ’07, pages 60–, Washington, DC, USA,

2007. IEEE Computer Society.

[31] R. Scandariato, B. De Win, and W. Joosen. Towards a measuring framework

for security properties of software. In Proceedings of the 2Nd ACM Workshop on

Quality of Protection, QoP ’06, pages 27–30, New York, NY, USA, 2006. ACM.

33

[32] F. T. Sheldon, R. K. Abercrombie, and A. Mili. Evaluating security controls based

on key performance indicators and stakeholder mission. In Proceedings of the 4th

Annual Workshop on Cyber Security and Information Intelligence Research: Devel-

oping Strategies to Meet the Cyber Security and Information Intelligence Challenges

Ahead, CSIIRW ’08, pages 41:1–41:11, New York, NY, USA, 2008. ACM.

[33] Y. Shin and L. Williams. Is complexity really the enemy of software security? In

Proceedings of the 4th ACM Workshop on Quality of Protection, QoP ’08, pages

47–50, New York, NY, USA, 2008. ACM.

[34] X. Song, M. Stinson, R. Lee, and P. Albee. An approach to analyzing the windows

and linux security models. In 5th IEEE/ACIS International Conference on Com-

puter and Information Science and 1st IEEE/ACIS International Workshop on

Component-Based Software Engineering,Software Architecture and Reuse (ICIS-

COMSAR’06), pages 56–62, July 2006.

[35] M. Swanson, N.Bartol, J. Sabato, J. Hash, and L. Graffo. Security metric guide

for information technology systems. In NIST Sepical Publication 800-55 Revision

1. National Institute of Standards and Technologies, 2008.

[36] A. Tripathi and U. K. Singh. Estimating risk levels for vulnerability categories

using cvss. Int. J. Internet Technol. Secur. Syst., 4(4):272–289, May 2012.

[37] A. Tripathi and U. K. Singh. A model for quantitative security measurement and

prioritisation of vulnerability mitigation. Int. J. Secur. Netw., 8(3):139–153, Nov.

2013.

[38] V. Verendel. Quantified security is a weak hypothesis: A critical survey of results

and assumptions. In Proceedings of the 2009 Workshop on New Security Paradigms

Workshop, NSPW ’09, pages 37–50, New York, NY, USA, 2009. ACM.

[39] J. Walden and M. Doyle. Savi: Static-analysis vulnerability indicator. IEEE

Security Privacy, 10(3):32–39, May 2012.

34

[40] J. A. Wang, M. Guo, H. Wang, M. Xia, and L. Zhou. Ontology-based security

assessment for software products,” presented at the. In Proceedings of the 5th

Annual Workshop on Cyber Security and Information Intelligence Research: Cyber

Security and Information Intelligence Challenges and Strategies, Oak, 2009.

[41] J. A. Wang, H. Wang, M. Guo, and M. Xia. Security metrics for software systems.

In Proceedings of the 47th Annual Southeast Regional Conference, ACM-SE 47,

pages 47:1–47:6, New York, NY, USA, 2009. ACM.

[42] J. A. Wang, F. Zhang, and M. Xia. Temporal metrics for software vulnerabilities.

In Proceedings of the 4th Annual Workshop on Cyber Security and Information

Intelligence Research: Developing Strategies to Meet the Cyber Security and Infor-

mation Intelligence Challenges Ahead, CSIIRW ’08, pages 44:1–44:3, New York,

NY, USA, 2008. ACM.

[43] J. L. Wright, M. McQueen, and L. Wellman. Analyses of two end-user software

vulnerability exposure metrics. In Proceedings of the 2012 Seventh International

Conference on Availability, Reliability and Security, ARES ’12, pages 1–10, Wash-

ington, DC, USA, 2012. IEEE Computer Society.

[44] B. Wu and A. J. A. Wang. Evmat: An oval and nvd based enterprise vulnera-

bility modeling and assessment tool. In Proceedings of the 49th Annual Southeast

Regional Conference, ACM-SE ’11, pages 115–120, New York, NY, USA, 2011.

ACM.

[45] A. A. Younis and Y. K. Malaiya. Using software structure to predict vulnerability

exploitation potential. In Software Security and Reliability-Companion (SERE-C),

2014 IEEE Eighth International Conference on, pages 13–18, June 2014.

[46] A. A. Younis, Y. K. Malaiya, and I. Ray. Using attack surface entry points and

reachability analysis to assess the risk of software vulnerability exploitability. In

High-Assurance Systems Engineering (HASE), 2014 IEEE 15th International Sym-

posium on, pages 1–8, Jan 2014.

35

	Abstract
	Table of Contents
	Introduction
	Related Work
	Software Development Phases and Security metrics
	Design Phase Metrics
	Towards a Measuring Framework for Security Properties of Software Scandariato06
	Security Metrics for Object-Oriented Designs Alshammari10
	Security Estimation Framework: Design Phase Perspective Chandra09
	NIST 800-55 Security Metrics Guide for Information Technology Systems Swanson08
	Common Criteria or ISO/IEC 15408 ISO/IEC05
	An Efficient Measurement of Object Oriented Design Vulnerability Agrawal09
	Design Phase Metrics Comparison

	Implementation and Testing Phase Metrics
	Security Metrics for Source Code Structures Chowdhury08
	Prioritization of software security intangible attributes Colombo12
	Side-channel vulnerability factor: a metric for measuring information leakage Demme12
	Deploying Suitable Countermeasures to Solve the Security Problems within an E-learning Environment Neila14
	A Hierarchical Security Assessment Model for Object-Oriented Programs Alshammari11
	A New Security Sensitivity Measurement for Software Variables Cheng08
	Evaluating Security Controls Based on Key Performance Indicators and Stakeholder Mission Sheldon08
	Is Complexity Really the Enemy of Software Security? Shin08
	Implementation and Testing Phase Metrics Comparison

	Deployment Phase Metrics
	Analyses Of Two End-User Software Vulnerability Exposure Metrics Wright12
	How dangerous is your Android app?: an evaluation methodology Atzeni14
	Measuring the attack surfaces of two FTP daemons Manadhata06
	Ontology-based Security Assessment for Software Products Wang009
	EVMAT: an OVAL and NVD based enterprise vulnerability modeling and assessment tool Wu01
	A model for quantitative security measurement and prioritization of vulnerability mitigation Tripathi13
	Security Metrics for Software Systems Wang09
	Temporal metrics for software vulnerabilities Wang08
	An Approach to Measuring a System's Attack Surface Manadhata07
	An Approach to Analyzing the Windows and Linux Security Models Song06
	Experimenting with Quantitative Evaluation Tools for Monitoring Operational Security Ortalo99
	SAVI: Static-Analysis Vulnerability Indicator Walden12
	Deployment Phase Metrics Comparison

	Maintenance Phase Metrics
	Using Software Structure to Predict Vulnerability Exploitation Potential Younis014
	Using Attack Surface Entry Points and Reachability Analysis to Assess the Risk of Software Vulnerability Exploitability Younis14
	Enterprise Software Management Systems by Using Security Metrics Bhanudas12
	Taxonomy of quality metrics for assessing assurance of security correctness Ouedraogo11
	Comparing Vulnerability Severity and Exploits Using Case-Control Studies Allodi14
	Estimating risk levels for vulnerability categories using CVSS Tripathi12
	Maintenance Phase Metrics Comparison

	Multiple Phases Metrics
	Complexity, Coupling, and Cohesion Metrics be Used as Early Indicators of Vulnerabilities? Chowdhury10
	Automated software architecture security risk analysis using formalized signatures: Metric to measure the security at different architecture levels through the development cycle Almorsy13
	CWE (Common Weakness Enumeration) Martin10
	A tool for security metrics modeling and visualization Latvala14
	An Analyzer-based Software Security Measurement Model for Enhancing Software System Security Lai10

	Discussion
	Conclusion
	References

