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The environmental causation of species’ 

distributions depends on three general, interacting 
types of factors: the abiotic (or physical) 
environment, the biotic environment, and 
accessibility of areas across complex landscapes 
(Pulliam 2000; Soberón and Peterson 2005; 
Soberón 2007). Indirect variables, such as 
elevation, are those associated with the presence of 
species owing to correlation with the actual 
variables that directly and causally affect the 
fitness of the species, such as temperature or 
precipitation (Austin 2002). Put another way, 
variables can be arranged along a gradient of 
proximal to distal, regarding the immediacy of 
causality regarding the fitness of the species: 
indirect variables are always distal variables 
(Austin 2002). Contrary to proximal variables, 
distal variables are often easy measurable, and thus 
available in georeferenced databases (Fig. 1).  

Many researchers now attempt to reconstruct 
these environmental dimensions as ecological 
niche models (also termed “bioclimatic 
envelopes,” “environmental niche models,” or 
even “species distribution models”), using a 
variety of inferential approaches. Niche models 
have been used to predict geographic distributions 
of species (Guisan et al. 2006), anticipate 
distributions of unknown species (Raxworthy et al. 
2003), estimate the invasive potential of species 
(Peterson 2003; Thuiller et al. 2005), and forecast 
climate change effects on species’ distributions 
(Araújo et al. 2005). The predictive capacity of 
these approaches makes them particularly useful in 
applications involving “transferring” the niche 
model to make predictions regarding other 
landscapes or time periods (Araújo and Pearson 
2005; Peterson et al. 2007). 

Such transferability applications, however, 

depend critically on the assumption that 
environmental variables relevant on one landscape 
or at one time will be relevant on another. Niche 
models are probably never based directly on 
genuinely proximate variables, but rather rely on 
more easily measurable variables that are 
inevitably less directly related to the population 
biology of the species in question. As such, the 
correlation structure among environmental 
variables becomes key (Morin and Lechowicz 
2008): if correlation structures are stable and 
consistent across different landscapes and time 
periods, then niche models may be transferable to 
those other situations; if, on the other hand, 
correlation structures are not consistent among 
situations, then models may not be transferable, or 
at least not as fully or as readily.  

As correlation methods, niche modeling 
techniques simply select the set of variables that is 
best to explain the largest part of the variation in 
the dependent variable. Transferability exercises 
require the assumption that the variables selected 
(in isolation or in interaction terms, depending on 
the complexity of the technique) are those that 
have strongest influence on the real (unknown) 
causal variables. However, because of 
intercorrelations among variables, this relationship 
may not hold true, and other distal variables may 
be selected just because they are closely correlated 
with the key variables. In such situation, when 
transferring model predictions, if the correlation 
structure among distal variables is maintained, then 
model predictions will be robust; if not, then the 
model may not work properly.      

In this note, we present comparisons of 
correlation structures of suites of climatic, 
topographic, and surface-reflectance variables 
among continents and time periods. In general,
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Table 1. Summary of Mantel tests used to evaluate similarity of correlation structure among environmental 
data sets for different continents and different time periods. The Pearson product-moment correlation 
coefficient (r) was compared with similar calculations from 1000 randomized rearrangements of the 
original matrices to generate probability values (P). 

 
Comparison R P 
WorldClim Climate Data (19 bioclimatic variables)   
Africa vs Eurasia 0.712 <0.001 
Africa vs North America 0.673 <0.001 
Africa vs South America 0.734 <0.001 
Africa vs Australia 0.933 <0.001 
Eurasia vs North America 0.909 <0.001 
Eurasia vs South America 0.895 <0.001 
Eurasia vs Australia 0.758 <0.001 
North America vs South America 0.825 <0.001 
North America vs Australia 0.734 <0.001 
South America vs Australia 0.767 <0.001 
   
WorldClim Climate Data (7 bioclimatic variables)   
Africa vs Eurasia 0.800 <0.001 
Africa vs North America 0.743 <0.001 
Africa vs South America 0.714 <0.001 
Africa vs Australia 0.970 <0.001 
Eurasia vs North America 0.887 <0.005 
Eurasia vs South America 0.836 <0.001 
Eurasia vs Australia 0.843 <0.001 
North America vs South America 0.805 <0.005 
North America vs Australia 0.805 <0.005 
South America vs Australia 0.772 <0.001 
   
IPCC Mean Monthly Climate Data (10 variables)   
Africa vs Eurasia 0.587 <0.001 
Africa vs North America 0.511 <0.001 
Africa vs South America 0.884 <0.001 
Africa vs Australia 0.957 <0.001 
Eurasia vs North America 0.948 <0.001 
Eurasia vs South America 0.527 <0.001 
Eurasia vs Australia 0.648 <0.001 
North America vs South America 0.465 <0.001 
North America vs Australia 0.585 <0.001 
South America vs Australia 0.806 <0.001 
   
Normalized Difference Vegetation Index (10 monthly composites)   
Africa vs Eurasia 0.431 <0.05 
Africa vs North America 0.541 <0.05 
Africa vs South America 0.932 <0.001 
Africa vs Australia 0.968 <0.001 
Eurasia vs North America 0.948 <0.001 
Eurasia vs South America 0.530 <0.05 
Eurasia vs Australia 0.574 <0.05 
North America vs South America 0.613 <0.005 
North America vs Australia 0.665 <0.001 
South America vs Australia 0.939 <0.001 
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Hydro-1K Topographic Variables  
Africa vs Eurasia 0.985 0.013 
Africa vs North America 0.987 0.013 
Africa vs South America 0.994 0.02 
Eurasia vs North America 0.983 0.008 
Eurasia vs South America 0.994 0.008 
North America vs South America 0.987 0.007 
   
Pleistocene vs Present   
Africa 0.908 <0.001 
Australia 0.994 <0.001 
Eurasia 0.986 <0.001 
North America 0.988 <0.001 
South America 0.987 <0.001 
   
Pleistocene vs Future   
Africa 0.902 <0.001 
Australia 0.973 <0.001 
Eurasia 0.992 <0.001 
North America 0.973 <0.001 
South America 0.986 <0.001 
   
Present vs Future   
Africa 0.992 <0.001 
Australia 0.988 <0.001 
Eurasia 0.988 <0.005 
North America 0.983 <0.001 
South America 0.998 <0.001 

 
 

correlation structures are conserved, which 
indicates that models based on distal variables can 
be transferred among regions and time periods. 
However, the conservative nature of the 
correlation structure is not absolute, indicating 
some degree of caution in interpretation, 
particularly when transferring model predictions 
between Northern and Southern hemispheres. 

 
METHODS 

We assembled sets of environmental data of 
global extent describing aspects of climate, 
topography, and surface reflectance. Specifically, 
we used two climate data archives—WorldClim 
(Hijmans et al. 2005) and New et al. (1997), both 
widely used by the niche modeling community. 
From the former, we used the 19 “bioclimatic” 
variables (and in some analyses a subset of 7 of 
these variables: annual mean temperature, mean 
diurnal range, maximum temperature of warmest 
month, minimum temperature of coldest month, 
annual precipitation, precipitation of wettest 
month, and precipitation of driest month). 

Pleistocene (Last Glacial Maximum, 21,000 years 
BP) climate data were derived from the 
Community Climate System Model (CCSM; 
Collins et al. 2004), while future climate data (for 
2100) were derived from the CCM3 climate 
model (Govindasamy et al. 2003). These data sets 
were obtained, together with present-day climate 
data, from the WorldClim website1  at a 
resolution of 2.5’. From the New et al. (1999) 
data set, we used 10 mean climate surfaces 
derived from the period 1961-1990 at a resolution 
of 0.5°, comprising precipitation; wet-day 
frequency; mean, maximum and minimum 
temperature; diurnal temperature range; vapor 
pressure; sunshine percent; cloud cover; and wind 
speed. For comparison, we also analyzed a global 
8 km resolution dataset composed of 10 months’ 
(January, February, April, June, July, August, 
September, October, November, and December 
1998) Normalized Difference Vegetation Index 
(NDVI) maximum value composites from the

                                                 
1 http://www.worldclim.org/.  
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Figure 1. Schematic diagram of immediately causal proximate variables (P) in affecting whether or not a 
site is suitable for a species, as well as the easily measurable distal variables (D, direct; I, indirect) that 
are correlated or associated to varying degrees of directness with the proximate variables. Arrows indicate 
causal links—note the indirect nature of some of the causal links between easy-to-measure variables and 
proximate variables in this hypothetical case. 

 
 

Advanced Very High Resolution Radiometer 
(AVHRR) sensor, and a global 1 km digital 
elevation model with layers describing elevation, 
slope, compound topographic index, flow 
direction, and flow accumulation (USGS 2001; 
note that this data set is incomplete for Australia, 
so we omitted that continent from our analyses). 

We overlaid 10,000 random points on the 
extent of each of the 5 continents, and extracted 
grid values for each environmental data set at each 
point. For the NDVI data set, we developed 
analyses for the raw monthly data sets, and for a 
version in which the Southern and Northern 
hemispheres were offset by 6 months to reflect 
differences in seasonal timing. Then, across each 
continent, for each data set, we calculated all 
pairwise correlation coefficients among 
environmental variables to produce a square 
correlation matrix. Finally, we compared these sets 
of matrices using Mantel tests in the Vegan2  
package of R, with 1000 permutations. To 
summarize patterns, we clustered continent 
matrices using the Ward´s method as a linkage 
rule, based on similarity as measured by cell-by-

                                                 
2 http://r-forge.r-project.org/projects/vegan/.   

cell Pearson product-moment correlation 
coefficients among continent matrices. 

 
RESULTS AND DISCUSSION 

All pairwise matrix comparisons between 
variables from the same set (climate, topography, 
and surface reflectance) indicated a correlation 
structure statistically significantly more similar 
than null expectations (P < 0.05; Table 1). 
Correlation coefficients ranged 0.432-0.998, 
suggesting fairly-to-highly similar matrix 
structures; these numbers were generally higher 
for intertemporal comparisons, and lower for 
intercontinental comparisons. This result may be 
expected as past and future climate predictions 
are both derived from present-day models; for 
this reason, there is no guarantee that these 
measured correlations reflect the truth, instead of 
being affected to some degree by artifact. 
Topographic variables also showed quite-high 
correlation values (>0.940), as would be expected 
considering that they are derived from the same 
single variable, elevation. 
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Figure 2. Summary of patterns of similarity of correlation structure among continents for different 
environmental data sets, using Pearson product-moment correlation coefficients as similarity measures among 
matrices. (A) WorldClim data set, all 19 present-day “bioclimatic” variables (Hijmans et al. 2005); (B) 
WorldClim data set, 7 present-day “bioclimatic” variables (see Methods); (C) New et al. (1997), 10 mean 
montly climatic variables (see Methods); (D) Normalized Difference Vegetation Index (NDVI) derived from 
the Advanced Very High Resolution Radiometer (AVHRR) satellite, monthly measurements in 1998 (note 
Northern and Southern hemispheres offset by 6 months; results without offset were similar); (E) Hydro-1K 
digital elevation model, 6 variables. 
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Clustering continents by the matrix correlation 
coefficients, for the NDVI data, topographic 
features and the New et al. (1999) data, Southern 
Hemisphere continents and Northern Hemisphere 
continents formed the two major branches of the 
dendrogram (Fig. 2); analyses based on the 
WorldClim data maintained the general north-
south division, but placed South America 
separately from the other southern continents. To 
analyze whether spatial resolution of data sets 
affected the outcome, we also performed the 
analyses with the WorldClim dataset at 10’, 5’, 
and 2.5’ grid cell sizes: correlation structure is 
qualitatively identical (see appendix), except for 
some small decreases in correlations at highest 
resolutions. Analyses with and without the 6-
month seasonal offset of the NDVI data both 
yielded the Northern-versus-Southern hemisphere 
dichotomy.  

Transferability is a prerequisite for 
generalization of niche models, because they can 
otherwise be applied only locally and to a precise 
temporal “snapshot” (Fielding and Haworth 1995). 
Local adaptations, biotic interactions, sink 
populations, and historical constraints all can 
reduce transferability of models (Randin et al. 
2006; Staruss and Biedermann 2007; Vanreusel et 
al. 2007). However, besides these factors, when 
working with correlative models and indirect 
variables, a more basic consideration is needed: 
the maintenance of correlation structure of the set 
of factors. This point is even more important, 
given the current tendency to recommend use of 
complex modeling techniques (e.g., Elith et al. 
2006), which can potentially overfit the model to 
input data and reduce transferability (Randin et al. 
2006; Peterson 2007). 

The results of this study are simultaneously 
encouraging and discouraging for broad-scale 
niche model projections across space and time. In 
general, the correlation structure of environmental 
data sets is conservative, and in that sense 
projections of model rule sets among continents 
should generally be robust. However, the 
relatively lower similarity of correlation structure 
among continents in the Northern versus Southern 
hemispheres could potentially produce less 
accurate or less complete projections among 
hemispheres. Although our analyses were 

developed at an intercontinental scale, the 
problem of maintenance of the correlation 
structure among variables affects any 
transferability exercise at any spatial extent. 
Thus, we recommend assessing the degree of 
maintenance of the correlation structure in any 
transferability study to assess this potential 
source of uncertainty.    

The biggest unknown surrounding these 
results is whether and to what degree observed 
similarities and differences in correlation 
structure will affect predictions of potential 
distributional areas of species. That is, all of these 
matrices for individual continents were more 
similar in structure than random expectations, but 
none had the exact same correlation structure: 
does this result mean that model transfers among 
continents will be less efficient than those within 
continents? Similarly, to what degree could the 
inter-hemispheric reduction of similarity of 
correlation structure affect the predictive ability 
of the models when projected among 
hemispheres? These effects on model 
transferability, however, will depend on the 
correlation structure of the actual niches and the 
models we create thereof for the species, but this 
structure and its estimation are complex, and will 
require additional exploration. 

 
ACKNOWLEDGEMENTS 

We are grateful to Jorge Soberón for his 
valuable suggestions. AJ-V is supported by a 
MEC (Ministerio de Educación y Ciencia, Spain) 
postdoctoral fellowship (Ref.: EX-2007-0381). 
ALN received financial support from the Consejo 
Nacional de Ciencia y Tecnología of Mexico 
(189216). ATP was supported by a grant from 
Microsoft Research. 

 
LITERATURE CITED 

Austin, M. P. 2002 Spatial prediction of species 
distribution: an interface between ecological theory 
and statistical modeling. Ecological Modelling 
157:101-118. 

Araújo, M. B., and R. G. Pearson. 2005. Equilibrium 
of species' distributions with climate. Ecography 
28:693-695. 

Araújo, M. B., R. G. Pearson, W. Thuiller, and M. 
Erhard. 2005. Validation of species-climate impact 



JIMENEZ-VALVERDE ET AL. - ENVIRONMENTAL CORRELATION STRUCTURE 

34 

models under climate change. Global Change 
Biolology 11:1504-1513. 

Collins, W. D., C. M. Bitz, M. L. Blackmon, G. B. 
Bonan, C. S. Bretherton, J. A. Carton, P. Chang, S. 
C. Doney, J. J. Hack, T. B. Henderson, J. T. Kiehl, 
W. G. Large, D. S. McKenna, B. D. Santer, and R. 
D. Smith. 2004. The community climate system 
model: CCSM3. Journal of Climate 19:2122-2143. 

Elith, J., C. H. Graham, R. P. Anderson, M. Dudik, S. 
Ferrier, A. Guisan, R. J. Hijmans, F. Huettman, J. R. 
Leathwick, A. Lehmann, J. Li, L. G. Lohmann, B. 
A. Loiselle, G. Manion, C. Moritz, M. Nakamura, 
Y. Nakazawa, J. M. Overton, A. T. Peterson, S. J. 
Phillips, K. Richardson, R. Scachetti-Pereira, R. E. 
Schapire, J. Soberón, S. E. Williams, M. S. Wisz, 
and N. E. Zimmermann. 2006. Novel methods 
improve prediction of species' distributions from 
occurrence data. Ecography 29:129-151. 

Fielding, A. H., and P. F. Haworth. 1995. Testing the 
generality of bird-habitat models. Conservation 
Biology 9:1466-1481. 

Govindasamy, B., P. B. Duffy, and J. Coquard. 2003. 
High-resolution simulations of global climate, part 
2: Effects of increased greenhouse cases. Climate 
Dynamics 21:391-404. 

Guisan, A., O. Broennimann, R. Engler, M. Vust, N. G. 
Yoccoz, A. Lehmann, and N. E. Zimmermann. 
2006. Using niche-based models to improve the 
sampling of rare species. Conservation Biology 
20:501-511. 

Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, 
and A. Jarvis. 2005. Very high resolution 
interpolated climate surfaces for global land areas. 
International Journal of Climatology 25:1965-1978. 

Morin, X., and M. J. Lechowicz. 2008. Contemporary 
perspectives on the niche that can improve models 
of species range shifts under climate change. 
Biology Letters 4:573-576. 

New, M., M. Hulme, and P. Jones. 1997. A 1961-1990 
Mean Monthly Climatology of Global Land Areas. 
Climatic Research Unit, University of East Anglia, 
Norwich, U.K. 

New, M., M. Hulme, and P. D. Jones. 1999. 
Representing twentieth century space-time climate 
variability. Part 1: development of a 1961-90 mean 
monthly terrestrial climatology. Journal of Climate 
12:829-856. 

Peterson, A. T. 2003. Predicting the geography of 
species' invasions via ecological niche modeling. 
Quarterly Review of Biology 78:419-433. 

Peterson, A. T. 2007. Why not WhyWhere: The need 
for more complex models of simpler environmental 
spaces. Ecological Modelling 203:527-530. 

Peterson, A. T., M. Papeş, and M. Eaton. 2007. 
Transferability and model evaluation in ecological 

niche modeling: A comparison of GARP and 
Maxent. Ecography 30:550-560. 

Pulliam, H. R. 2000. On the relationship between 
niche and distribution. Ecology Letters 3:349-361. 

Randin, C. F., T. Dirnbock, S. Dullinger, N. E. 
Zimmermann, M. Zappa, and A. Guisan. 2006. Are 
niche-based species distribution models 
transferable in space? Journal of Biogeography 
33:1689-1703. 

Raxworthy, C. J., E. Martínez-Meyer, N. Horning, R. 
A. Nussbaum, G. E. Schneider, M. A. Ortega-
Huerta, and A. T. Peterson. 2003. Predicting 
distributions of known and unknown reptile 
species in Madagascar. Nature 426:837-841. 

Soberón, J. 2007. Grinnellian and Eltonian niches and 
geographic distributions of species. Ecology 
Letters 10:1115-1123. 

Soberón, J., and A. T. Peterson. 2005. Interpretation of 
models of fundamental ecological niches and 
species' distributional areas. Biodiversity 
Informatics 2:1-10. 

Staruss, B., and R. Biedermann. 2007. Evaluating 
temporal and spatial generality: How valid are 
species-habitat relationship models? Ecological 
Modelling 204:104-114. 

Thuiller, W., D. M. Richardson, P. Pysek, G. F. 
Midgley, G. O. Hughes, and M. Rouget. 2005. 
Niche-based modelling as a tool for predicting the 
risk of alien plant invasions at a global scale. Glob 
Change Biol 11:2234-2250. 

USGS. 2001. HYDRO1k Elevation Derivative 
Database http://edcdaac.usgs.gov/gtopo30/hydro/. 
U.S. Geological Survey, Washington, D.C. 

Vanreusel, W., D. Maes, and H. Van Dyck. 2007. 
Transferability of species distribution models: A 
functional habitat approach for two regionally 
threatened butterflies. Conservation Biology 
21:201-212. 

 
 
 
 
 
 



JIMENEZ-VALVERDE ET AL. - ENVIRONMENTAL CORRELATION STRUCTURE 

35 

APPENDIX I 
 
Correlation structure of bioclimatic variables among continents at different spatial resolutions. Tabular 
summary of Mantel tests used to evaluate similarity of correlation structure among environmental data of 
different spatial resolutions among continents. P-values were below 0.001 in all cases.  
 

 r 
WorldClim Climate Data (19 bioclimatic variables) 10’ 5’ 2.5’ 
Australia vs Africa 0.932 0.9327 0.9324 
Australia vs Eurasia 0.7574 0.7585 0.6672 
Australia vs North America 0.7332 0.7343 0.7348 
Australia vs South America 0.767 0.7681 0.7672 
Africa vs Eurasia 0.7113 0.7127 0.677 
Africa vs North America 0.6726 0.6738 0.6743 
Africa vs South America 0.7332 0.7345 0.7345 
Eurasia vs North America 0.9086 0.9089 0.7007 
Eurasia vs South America 0.8941 0.8947 0.7705 
North America vs South America 0.8253 0.8253 0.8239 

 
 
 
 
 

 


