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() JORDAN CURVES

If £(t) and fﬂ(t) are two single valuedlﬂrundtions of
the independent real vafiable p'defined_at evéfy point of
the interval t,% t =t,, the pair of equations

—2t) oy =P@)  tStf,
are said to define a ggggggrzf f(t)vqnd @ (x) are contimus=

ous on the interval, we have the representation of a gcons

tinuous curve. If f£(te) = . £(t.) and P(t,) = Plt,) so that

the initial and ‘end points coincide, we have a closed
gggzg_prov1ded the curve_is qontinuoua. If there exist no

two values of t on the.inﬁgfval t,5 t £t other than i,

and te fof which the corresponding points coinoide, the curve

willlhave no multiple points and 1s oslled a simple closed

gurve. -

These definitions are due»to}Oamille Jofdan who wes
6ne of the first to study the pfoperties of continuous
cyrves and it is for that reagon that simple olosed Gurves

are sometimes called Jordan ourves. A fundamental theorem

called the Jor@an Theqrem qongepning simpla_olosed ourves
ls the following: everbeordanr§gfve di?ides the plane.
into two regions, an innef region and an outer region
such that (1) any two points of the inmer region may be
connected by a continuous curve which does not cut the
given curve andl(z)_any cbntinuous curve which commects

a polnt of one region with a point of the other must cut



the given ourves Most proofs of this theorem are rather
difficqltrbecause the extfeme simpliocity of the statement .
end the leck of facts to work with demand reasoning of
the keenest”and mbét 1og1§a; kind. In this paper howevef,
I shall attempt to show by means of the simpleet analyti=
oal considerations that for any Jordan ourve 1t 1s possible
to construct a unicursal cufve wh;dh shall have e 160p
containing no real mu;tipié pointsiand appfoximating the
Jordan ourve as closely as we pleaaée The naturevof the
approximation will be explained in the following pages.
Let then the equations
x = £(t) g = P& t. 5t

U

te

with'the conditione placed upon them by definition repre=

sent our Jordan curve. The first condition wag that £(t)

and P(t) should be defined for every t in the interval.

The second condition was that both f(t) and {(t) should

be continuous on the interval, Continuity on the interval

guarantees uniform continuity for both £(t) and ¢t)and

- Wwe may express:-this fact analytlcally as follows: given

a positive number_é%)f a8 smail a8 we please, there exisis

a § guch that when |t,-t,|< & ,
lect)-2ct)|< & and  |P(t)-f) ] < 75

where t,and tzrepbesent any two values of t on the in=

terval t,£ t £ t,. Now the geometrioc distance from the

point(x,y) i.e. the point for which t = t, to(x{yﬁfis

A = \/(x,_xz);@,-,y;:}/g (t) ~ £ )+ [fe)- 46.)

and 4,always positive, will be emaller than




whenevar the points (x 3 and (x 7y) are such that lt -t |4£

Suppose now that we divide our interval t,% t £ ¢t
- into a finite number of sub=intervals by the pointd
By tp tys o - - -ty b
such that t <t for k = 0,1, n~Z, and t <t and such

that the differsnce between any i;wo guccessive t's is
less in absolute value than J , Denote by P, tho point
on the curve for which t = t;. If we now Join the points
Fos 55 55 P s E, . |

guccessively by straight line gegments, we have a poly=
gon of n sides inscribed on oub ocurve and the length Vof
ecch gide will be less than € .

Consider one side of our polygon, the side b B,, for
example; As we increase t continucusly from t, to t ,

34

the point P will move from P, to P
L]
P, and Py, . Lot Pxbe any point on the arc segment P P

v,

b.,, along the arc joining

°
' If Pg does not coincide with Fcor E_, we have t, greater
then t.and less than t ,and therefore |t.= t <& and |t = t )< 9.
Consequently B, P, and P E;m are both less than £, for we

have shown that the distance between any two points whose

t's differ by less than & is loss than £, A line joining

P, to any po:mt on the line megment P, Pkﬂwould be shorter
than one of the line segments B, I B, or B B, and donsequentn

ly less than £ in length. Since P. 1is any point on the

) :
arc B L, s We soe that the distance from any point of the



<
arc E . F , to any point of the 1ine segment B P, % Expr 18
less than £ . It will surely be true then that the

shortest distanoe from Px to the 1line segment P is

Bers
less than £ » Also, 1f Qu is any point on the segment

P B, , the shortest dlstance from Qu to the arc P B sy
is less than €,

The same discussisn holds oonoerning» the remains
ing sides of the polygon *an_d the ocorresponding arcs.
Let now P represent any point of the Jordan ourve
and 4, the shortest distance from P to the polygon.

Let Q be any point on the polygon and /]ybe the shortest
distance from Q to the curves As P moves along the
curve, [, will teke on & maximum value which will be
smaller thané . We shall oall this the maximum distance
from the ourve to»t.hsrf;polygon. Similafly woe sha,ll

call the maximum value of /] the maximum distance from

the polygon to the curve. This will also be less than
€ o We have shown, then, that it is possible to inm
soribe a polygon on our Jordan ourire such that the
maxinium distance from the polygon to the curve and

the maximum distance frbm the curve to the polygon
will both be less than £.

The question now arises: can we make the divisions
of the interval t, to t,, so small that our polygon
will have no multiple points? Intultively we would
answer yes, but the correotness of our gusss could

not be verified by any simple coneiderations. We shall



therefore admit the possible existenoe of a finite
number of multiple points on our polygon and treat
them in the following paragraphsg

Consider first s doubie point P, formed by the
intersection of the two sides P, F;,, and P % Presrs 8EBUMm
ing first that P does not ooincide with P ,F,,,Bcs 0r Pyy,.

]

With P as center and radius less thane » where 0<&'<E,

describe a circle cutting the two lines at the points

QiR +Qx 8nd Q.yy Q; belng on the 11ne1%1ﬂ,nearer P etc.
Rq—\ ) p“

Suppose that wg\gtart at P}and pass thru Q,,
and Py« If we continue in the samé difedtion; ﬁe
shall return to P by way of P,Q,. If the polygonal
line PB,,----- PP has no point in common with the
. remainder of the polygon other than P, it would be
completely cut off by Joining q;4 to Q,<and throwing
voff the lines Q:QGH end Q,Qy, e To avold this and at
the same time to get rid of our double point we shall
Join Q; to Q,&nd Q,,to Q,, daating off the lines
Q({Qcer and Q,Quye If, however, the polygonal line

PP, - PP has one or more points other than P in



common with the remainder of the polygon, we may either
Join Q, to Q, and Qtf,to Quy Or Q.4 t0 Q, 8nd Q. tO
Q,ﬁ, for neither method will divide our polygon into
two polygoné having no pqinté in common, If P werse
one of the end points P, , P, s Fys O Pk“, the prooess
of suppression would be entirely similare
‘ Having suppressed the double point Py we have
a polygon with ons less double pointo Let us proaoed
to the next double point and suppress it in a similar
manner and 80 ono If our polygon has no points of
multiplioity higher than two, 1t will finally be re=
duoed to a polygon without mltiple pointsa

It must be obserVed that in eadh oase, the circle
uaed mst be enough smaller than é? in radius that
it will cut only segments of the two lines forming
the double point, Otherwise new»double points may
be formen in the act of suppressing the old onos.
Algo let us notloe that our polygon, after any sup=
~,pression may be reduced to two oloaad polygons inters
seoting‘eaoh other in a finite number of points. These
points of 1ntebaection may then be treated in & manner
the same as that used,foﬁ double polnts, i
1 Let us!femembef that the fadii}of the oircles
used in auppfeasion weré taken smaller then %; The
distance, then, betwéen any two points in or on one

of these olrcles is lesa than € , It is eesily seen



therefore, that the paximum_distan¢e.(as gefined above)
f#om the‘ofiginal polygon ﬁo_ﬁhe_#eduoed polygén_is
less then &, as is also the maximun. distanco f‘fom
the feduced polygon to the ofiginal ﬁolygon;

It etill remains to treat points of multipliocity
 higher than two. If our oéiginal polygon dontgins
any such points, each one must be feduoed to & number
of doubls points as follows: let such a point be,Re
- With R aé center describe a cii¢le of‘radius loss
than %gc It must be enough amaller that 1t will out
no sides of the polygon exdept those on R Remove
all line éegments cut out by the difdle and bepladé each
segmént'by:a broken 1ine which shall 1le wholly within
the circle exdept for»its end pointé. These lines
must be such that no two of the polnts of intsfseca

tion thus formed by them shall coincide.

The flgure above shows a point of multiplioity four

reduced to six¢double points, |
The double points which we thus obtein will all

lie ineiae the difcle abcut-3 and we shall suppress

each one as indidated above. We Shall take the dirdles



used in suppfessionigo_smallwthat they will 1ie enw
tirely within the circle about R. We have now & methw
”od fof suppfeésing‘all multiple points in such & way
that we shall obtain a polygon of no multiplé points
and the two maximum.distanﬁes between the original
polygon andkthe reduced polygon shall both be less
than & . '

We ghall now round off the corners of our re=
duced polygon by fitting into them small afde of oorm
tain dufves. We desire to obtein in this way a "roundw
edvoff" po1ygon,1sudh that as a point P moves along
this rounded off polygon, the durvatufe at P will
vary in a contlnuous fashion. Tﬁexpfoblem of rounding
off our polygoﬁ in this manner reduces itself to this:
given two stfaight lines 1 and 1' intefsacting at a
given angle. Requlred to detérmine the equation of a
cufve which shall be tangent to 1 and 1' near their
point of intersection,’and such that 1f we pass from
& point on 1 to a point on 1' by way of this ocurve,
the curvature along our path shall vary dontinuously,
Let us find this curve for & speclal cesee Let 1 lie
along the xwaxls and let 1} intersedt 1 at the point
A(a,0) and at an angle o . Let P, be any point on the
segment OA and let P, be a point on 1! such that
P A = AP, . Call P(p,q) the midpoint of P, P, » We wish
now to determine unique%y the poeition of B P, and



and also the value of a oonstant m such that the ourve

' 3 % .
'y = mx shall be tangent to F, P, at the point P.

Fig. 3,

The locus of points P is & fixed line k blsect=
ing the angle (1',1). The equation of k 18

) /
=T

and we therefore have the relation

/

“fa -

q= —(p =2a) | (1)

A
Now the slope of & tangent at P is
/

y = Bmp2 = tan %%
. o
whence m = ten 7z (2)
| Fe* |

If we put this value of m into the relation q H mp

we have 7
1 X
q =3p-tan 3
Combining this with (1) we find
a
/ [4
fg-ian-§j+ a7, &

—

. Z - .
This value of P immediately determines by (2) a value’

p:

for m and fixes the position of P and hende of,g,Pza



. Let us now imagine a second aro,éjgb ooincid;pg
with 0 P, 0’ falling at 0 and P’ falling at P. Suppose
now that we change the'posiﬁion of‘6?5>vin suéh a
way that 0’ will fall on 1' at a .p\oini;,whidh we shall.
call @ and P’ shall remsin at P, and furthermore 67;)
shall still remain tangent to P,B, at P, It 1s obvious
that OF, = P, Q. It is also obvious that as a movable
point apﬁroaches P along elther arc segment, the curs
vature at that point will dppboadh a uniqus vglue.
Moreover the aro OF has & contact of order two with
the x~axis at thekorigin,- e fadt which guarantees
continuity of curvature as we pass onto P0 from the
negative half of the x=axis, The same may be sald
ofPQ in reference to 1ime 1’ and thus we have obtained
the arc Mﬁich fulfills the fequifements of the problem

which we set for ourselves. We have the equation of

~
the arc 6B‘and the equation of the arc FQ may of oourse

be ohtained by the proper transfofmation of axes.

Let us notice that OA may be taken‘as small as
we please. Suppose that OA 1s less thanf >0, It is
then evident that the maximumvdistdnoe from any point
of the arc'sga to any ﬁoint of the broken line 0AQ
is less than /3’ .

Let T be a vertex of our feduéed polygon, On
the two adjacent sldes reepedtively take the points
T, and T, equidistant rfom T and at a distance from

10



it lese than £ P O<£<£ Join T and Tz by an are
such ags the one already desoribed and discard the
broken line T,TTZ. If we do this at avery vertex,
our polygon is transformed into the desired "rounded
off" polygon without multiple points and it 1s evident
that the two maxlimum distanoea ‘between the reduoed
polygon and the rounded off" polygon are both less
than €%

We shall réfer to thie "rounded off" polygon
‘as the polygon J. We ﬁbw wish to'represent J analyte
ically in the form of x and y as fundtions of an in~
depéndeﬁt parameter,

Consider>the‘durve vy= mx?o‘The length of arec
»frcm a fixedApoint.‘_Po on thie dufve to a variable

point Fon the curve is

X
N( 1+0omx ) dx
Xo - .
Since the integrand is continuous and poaitive on
any finite interval, s 1s a continmuous and.monotonic
increasing function of x on any finite interval. Since
y= mx3, ¥y also is a monotonic continuous funotion
of s on any finite intefvala It follows then' that

the inverse functions exist and are eontinuous and

we have

See Veblen and Lennes: "Introduction to Infin=
itesimal Analysis} page 93.



il

q’.(s)
' (s)

where ®, ana WQ%are continuous on sny finite interval

X

-y

of 8, By the linear transformations

X=8aX+DbY +n

y = oX + dY +n
we would have ’
| aX-t;bY+m=an(s)

oX + aY +n = ¢z(5)
and X and Y themaelfes wéuld be continuous funotlons
of s. This shoﬁs that the doordinates of a point on
our dubical'parabola are unifoémly continuous funoctions
of the length 6f arc along the cublcal parabola re=
gardless of its position in respeot to the coordinate
axes. The same statemént may obviously be made conm
cerning a straight 1ine. Since J consists of segments
of cubical paraboleas and straight lines, we may re=
present it byfthe pair of eqﬁationﬁl

x = Y{(s)
y =V, (s) .
s representing the length of arc from & fixed point
in a fixed direotion‘ Now s may be allowed to vary
from-0° to+ oo 1f we put
| Y, (8, +8) =V, ()
VY(s, +8) =V (s)

where s, is any fixed value of 8 and S is the toial

12



length of J, i.e. the total length of arc as we move
along J in a fixed direotion ffom a point P, and fi~
naelly return to P, .'Vf and VQ are continuous along the
aré or line segments of J. At any joining point, x
and y take on the same values respédtively as wWe apm
proach the point along either adjacent segment, Thereom
fore V. and VY, are continuous‘for all values of s,

| It will now be oonvenient for us to make the
change of variable u.= %g-s. J will ihen be represente
ed b& the pair of equations

x =F, (u)

y = F, W)
It is obvious that F, and F, are contimuous for all
values of u and since

7 (u, + 27)

F, (u,)
F,(u, + 2r7) = F, (u,)
F, and Fz are‘periodicrand of period 2w.

- Let ot and p’represent the angles with the x-~axis
by‘the tangent and normal respectively at any point
of Jo It is clear that as a_point.moves elong J, cos «
end cos 8 vary in a oontinuous fashion. In fact the
slope of the tangent vafies continuously along the
line segments and arc segments. At a Jolning point
the tangent assumes the same position as we approach
the point aiong J in elther direction. The angles &
and f3 therefore vary in a ocontinuous manner and

consequently their dosineaa
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Now, if to the identities .

=8x _2n

!
ops a = g== ZF, (u)

B . _dy=2ﬂ- z
cos B=qi =% Blu)

we apply the formulse of Frenet—Serret:
d coso = CO8
ds R

d cogf . cogX
ds R

where R represents the radius of curvature along J,—

we obtain the identities

Ftu) = 0088 47t

82.
u - cog X Tt
. Fz(u) -7 R ¢ 4;5\2

Now as we 'move-; along 'J‘, cosX, coBpS, and R vary in
8 continuous manner, eand 1f we show that R is nowhere
zero, we have established the continuity of F/" (u)

e

2" '
and F, (u). Since

T

dy
dx *
. 1 ' 1
R cen only be zero if £ Y ig infinite. Since & Y ig
ax”* . ' ax*

finite along any finlte arc of the cubical parabole,
R can not be zero along sudh an arc. Along any straight
line R is infinite. Thus R vanishes at no poont of J.

Congider the ourve x = F,(u). This curve may
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have in the”interval‘oAto 27 a number of maximum or
minimum points or segments such as the point A or.
the ségment BC in Fig, 4. We shali call these-points

Y

A

Fig.#

o) ' — = X

pimply maxima or minims and show that they must be
finite in number on the interval 0 to 2m. A maximum

or minimum mey only oocuf‘when the corresponding point
on J has its tangen£ parallel to the y=axis or when
the corresponding iine segment of J is parallel to

the y~axis. By the nature of J, such points or segm
menta are finite in number. Furthermore, again bearing

in mind that J dqnsists of a finite number of line

and arc segments, it is easily seen that cosx , 009/3,

~and R have but a finite numbef of maxima and minims.
Since

'4 - / '
F (u) =S .¢cosx ‘ =5
, (u) 503 F,(u) 5 008 /3

, F,”(u) - E?l_:é%l’; F;'(u) =_oo§oc %71:
it follows that these four derivétivas theﬁsslves
have but a finite number of maxima and minima. More=
over since cos g and cos ¢ ocan vary only from +1 to
~1 and since R is nowhere zebq, it follows that the

four derivatives remein always finite.



Sinée F, (u) has the period 2w, we have
"_FI (w) =F, (u+ 2m)
for al1 values of u, Since F,(u) and F,lu) are con=
tinuousvfor all values of u, it follows that
F/(u) = F'(u + 2m)
F,"(u)

for all values of u. That iz, F, (u) and F,(u) are

F;"(u + 27)

both periodic and of period 2w, Likéwiss F, (u) and
F:ku) are both pefiodic and of period 2.
Let us now summarize the pr0pertiee of}the funcm
tions F, (u) and Fz(u) and their derivatives:w
(1) F, (u) and F, (u) are finite and contin
uous for all values of u,
(2) F,(u) and F,(u) both admit of period 2m.
(3) F, (u) and F,(u) both have maxima and
- minima (asvdofined above) finite in
nﬁmber on any interval of length-zw.
(4) ProPerties (1), (2), and (3) hola for
F'(u) and E (u)n |
(5) Properties (1), (2), and (3) hold for
F‘ (u) end F, (u)..
Suppose now that we expand F,(u) and F (u) in
the trigonometric series

00 ‘
x=F, (u) = a,+ ig%ékoos ku + b, sin ¥u)

o<r’
y = F,(u) = o+ é’(okoos ku + d,sin ku)

16



As .a result of the properties 6ut11ned_a.bove,ﬁ_theae
two expansions are absolutely and uniformly convers

gent, Moreover the epr.nsions

02
+ 2-(al cos ku + b sin ku )

’ V .
F, (w) = a =1

[

F{(u)

i
Q
©

o
+ ﬁ:_,(c;« cos ku + a% sin ku)

are also absolutely and uniformly convergent and obw
tainable by differentisting term by term the expansions
 for F, (u) and F, (u) _respedtively X

We shall now eatablish the following propositlont=~
For every £”>0, £"” as small as we please, thers exista
a finite iriteger N such _‘that the closed curve repre-

sented by the palr of equations

X

n
a,+ Z. (a,cos ku + b sin ku)

K=1

(3)

n .
Vv = Co+ %(ckcos ku + digsin ku)

shall have ths‘ following properties whenever n is an

1ntegér greater than or equal to N:m

(A) The meximum distance from the curve to J

shall be less then £, and the maximum dis~

tance from J to the curve shall be less than e’

(B) The curve shall have no multiple points.

* See Carslaw "Fourier Series and Integrals”,
gection 62. Also Picard, "Traité d'Analyse", second
edition, page 258,Vol, .

17



Proof. For convenience let us write the equations

(3) as follows

x = Ap(u)

Bp(u)

I

, , Y o .
and let us designate by C,, the ourve thus defined.
The distande /l from a point (x,y) on C, to the

corresponding point on J is

A AY[Fw) = s, + [Fute) - a0

Owing to the uniform convergence of the expansions

for F, (u) and F,(u), we can find an integer N,, such

that

o ‘ ™
,F, (w) = A,,(u)] < _'Véz—;
|7, () = B < 5
for all values of u whenever n = N. Therefors A< € "
for n = N, ,and for any value of u. That is,the dias-
tance between any pa.if of cor_'responciing points is
less t.ha.n 4‘:"' for n = N, « Thus any po’int» Pc on C,, will
be within a disignce of 8"'130 at leé,;t oné point /PJ'

( the cofresponding point) on J ahd vica versa. Consw
sequ'eﬁtly for n = N, , the two maximum distences
between C, and J are both less thaﬁ 8".’

| Befpre going further, Iet. us ma.ke tl}is remark.
If P, and P, represent two polnts on J corresponding
respeotiveiy tou, and u,, then fu, = u,| will be as

small as we please whenever the distance E P,is

18
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sufficiently small. Consider thsycupve_ y :meza}If
X, and X, are the abacissas of two points on this
durve, the length of aro Joining them is

K .

s = JVI + 9 nf;y dx
Xy ‘ :

Since this 1ntegral is a uniformly continuous funotion
"of x, (see page 11) s may beAmade ag small as we
please by taking the points such that [x,= x,| 1is
sufficiently smell, Since [x,= x,| is the length of

. the x~projection of the géometrio distance between
our pointé; we can make (X, = x,|as small ag we please
by taking the points near enough:.to each other. Thus
the length of are on the ocurve y ='mx3 will be as
small as we please whenever the geoﬁetric distanoe
between end points is~euffidient1yksma11n The same

is obviously true for a straight 1ineo_Mofeover this
rélation between chord and arc is independent of the
© position of,théfcuéve in fespedt to the coordinate
axes. Let us redal; that J‘dgnsiéts of segments of
straight lines and arcs éf cubiocal pababolas and
that u = (constent)-(length of arc). Consequently,
from what has been said above, ‘u,mku2|‘is ag small
as we please whenevari??;is sufficiently small.

- Let us now continue with ouf'proofe Let §»='§%f
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S_ince,l?f (u) 1s uniformly contimuousy there exists
an T(such that when [u‘a u < | 4
Pl ~w < - - - @)
Let P; and Py reprves‘ent points on J correspond-
ing to u; and u,. Let { be a positive number such
't".ha,ti if I’:—P;<§' s Ju;e u;‘\.(?(, We have pfoved above
the exi_.stende of guch ai’ °
Let N, be a positive integer such that for n 2 N,
[F, () = 4, (u)] <

¥
& (5)
F,(u) = Bp(u)<.$
7,00 = Bt <

and let N, be & positive integer sudh that for n = N,

£/ () = A | < ¥

IF) =B <E

The uniform 'cor}\rergen‘c.e oft A, (u), Bplu), AL(u), and
B;,(u) guafa_ntge the existence Qf. N, and N;.

Now let kn'“= N, where N, 1s gfeater than any
‘of the integers N,, N, or N;. We shall show that
such & cholce of m Will result in a curve C, satis=
fying (a) anci (B).

Sﬁppose that for n = Ny the curve

X = A (u)
y = Bu(w) "

Ha’si d loop. We shall ,deﬁote by P; and T, the points

on J and G, respectively corresponding to u; . Let T,,
G '

*This makes the distance 4 between any point on J
and the corresponding point on O, less than{ . Ses
page 17. o o A



'I;e the double point on C,, cofrespo'nding‘ to the values

u, and u

2.

~ From ‘(5‘) and footnote on preceeding page we
have T,P, <§Z: and T, P, < _g_ . ., BEKC ¢ and donsequent-
1y lu/"' WLl < 7.
At our double point we have
B,(u) = B,(u,)
By Rolle's Theorem there exists & u, and & u, both

lying between u, and u, such that

/

since [u, = 'uz[<’{ and eince u, and uy, both lie between

u, and u,, we have |u,= u,,)<7, meking from (4)
. , h . .
. ,F_‘. (uj;) = F, (u,)l 4’} o+« (6)
Owing to our choles of n woe have

(5 (0,) = aluy)] < &
|5 we) =B, ,) < &



But since A,(u,) = 0 and B;(uq) = 0, we have

|5/ ) < §

()
lF (uq)'<? .

From (6) and (7) it follows that
JB )] < 2¢ ;
We shall make use of the pair of inequauities.
lF,‘(u,,)I L2f
1
-le (u,,)[ < ?
If O represents the angle which the fangent to-J

at P,f _makes with the xw~exis, we have

'FI‘(I;,;)l. =| 005 0] <. 2
s (w)] =] £ sin B]c
from whieh
|oos 6}<4.§1r ¥
|sin e‘<_231£ r
S

But we have chosen'g = o and we have therefore
!
|oos 8] < %
. !
,5@7: 9’ < ;I_“'

which is absurd. Consequently forn= }, a double
point on Cy is imposslble. o

The same arguments weuld pfove the impossibility
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of the existence of multiple points of any_oﬁdez;.
Since N,,;\H,, C, satisfies condition (A) as well
~as (B) for h'= Nye ‘I.’hus‘our'_pr‘oposition is prbved
for we may take N = N, . | |

Suppose that in the identitios

. . tll(“‘f. e-t‘ktl
e
cos ku =
y 2
cha ~chku
-~ &
gin kxu =

2

we put e“; ve We have then

: 2K |
" cog ku Y

- Z v,(
o 2. (8)
sin ku = ""%-‘L"\’;,R

If we make the substitutions (8) in the pair of

equations
N~
X = a,+ Z (a,(aos ku + b sin ku)
Y] :
¥y = c,+ Z(c,(cos ku + d,msin ku)
K=t
we obtain
Plv> Rw
X-—_‘zvlv y= 5w M (9)

where P(v) and R(v) are polynomisls in v aad both
| of dagreé 2N. That is, we have represented x and y

as rational functions of the independent varisble V.



2¢

‘Let & be & positive number as small as we please,

”i

and suppose that we choose

7y <
We have then p 1 5

¢+ € + € & <

The{equationa‘(9)_therefofe rep?esént & unicurssl ourve
which approximates our Jofdan ourve so that the maximum
digtande from the Jofdan cufve to the ourve (9) 1 less
than  and the,maximum_éistance from the curve (9) to
the Jordan ourve is less than J . i

We have thus shown that any Jordan oﬁrve may be
app?oximatedlby & real loop of & unioursal curve; the
loop containing no multiple points.

&he nﬁture_o£ ﬁhévapproximatiqn is somewhat weak.
It does nQ§ pfgyent, for exgﬁple, an appfoiimation
by a double loop as shown in the figure below.
| . Torda Z/(/f'vc‘

Appren e

Carve:

It may be possible that by treating our multiple points
of the first polygon‘in a diffgrent menner, we could
gtrengthen thewnatufequ‘our epproximation to an ex-
tent which would enable us to dQVeldpe a new pfoof

for the Jordan Theorem.
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