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ON JORDAN CURVES 

If f(t) and f{J(t) are two single valued :runotions of 

the independent real variable ~ define~ a.t every point of 

the interval t 0 ~ t = t~, the pair of' equations 

x = f(t} y = f (t) t €:tG:.1.. 
0 - ~, ... , 

are said to define a OUl"Ve. If f ( t) and <(> ( t) are ~ontinu-. 

oue on th~ in,terval, we have the_ ·representation of a ~ 

tinuous curve. If f(t 0 ) .= f(teu) and rp(t 0 ) .= f (t,.,) so that 

the initi~l,and end_points oo~ncide, we have a closed 

curve provided the curve is oontinuoua. If there exist no 

two values of t on tha inte1•val t 0 E- t § tw other tl?a.n t 0 

and t...., for which tha corresponding points coincide, the curve 

wiW.have no multiple points and is oalled a simple olosed 

These definitions are due to Camille Jordan who was 

one of the first to study the properties of continuous 

c~rvee and it is for that reason that simple oloaed ourves 

are sometimes called ~~pd.!!!, ourvas. A fundamental theorem 

called the Jordan Theorem ~on~erning ei~ple oloee~ ourvee 

is the .followi~g; every Jordan o~rve divides the plane. 

into two regions, an inner region and an outer region 

such that (1) any two points of the inner region,may be 

connected by a oo~tinuou~ curve which doea not cut the 

given curve and (2) ~ny continuous curve whioh connects 

a point of one region with a point of the other mu.st out 



the gI.!en ou:r:-vE?·· Most proofs of th~_s. theorem are rathE)r 

diffioult because the extreme simplicity of the statement 

and the lack of facts to work with demand reasoning of 

the keenest and most logioal ~indo In this paper however, 

I shall attempt to show by mean8 of the simploet a.na.lyti• 

oal considerations that for any Jordan curve it ie poe~ible 

to construct a unicursal curve which shall haV$ a loop 

containin'?; no rea.1 mu:t,tiple points and a.pproxima.ting the 

Jordan ourva as closal7 ae we please. The nature of the 

approximation will be explained in the following pageso 

Let then the equations 

x = f(t) y = 'f(t) c::=:. .c.. 
t = t = tc.J 0 

with the conditions placed upon them by definition repre• 

sent our Jordan curve. The first condition was that f (t) 

and p<t> should be defined for every t in the interval. 

The s eoond ()Ondi ti on was t}?.a t both f ( t) and flt) should 

be_ oontinuou~ on the intervalo Continuity on the interval 

guarantees uniform continuity for both f(t) and ~t) a.nd 

we may express thie fa.ot a.na.lytioa._lly e.e f'ol~ows: given 
£ 

a positive number v-z 
1 

f a.a small as we please, there exists 

a. S such that when It.- t.,_1 .:::.. J 

I f<t,)-:f' ( t,_)j ~ ~ and j tp ( t,)- fit-.) j ~ ~ 
where t,and t 1 repreeent any two values oft on the in• 

terval t 0 a t ~ t~· Now the geometrio distance from the 

point(x~~) ioe• the point for whioh t = t, 1 to(x1 yJ is 

Ll = v'<x,- x.)'"+ (Y, - y._)'" =,€ (t,) - f (t1~i-[1Yt,,)-t/it.y2. , 
andA,always positive, will be smaller than 
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whenever the points (x, ,Y) and . (x
1 
-1) are such that (t, .. t-2) ~ S, 

~ th t d. id interval t --L t -= t ....,uppose now a we . iv . _e our .o w 

into a finite number of aub=intervale by the pointd 

to , t, I tt I . , . 

such that t/( 4 t"'' for k = O 1 11 

"t I tl.U '1-1 

n-2., and t L t and suoh · ,,,,, 1.41 

that the difference between any two suooessive t's is 

lees in absolute value than J o ~emote by P; the point. 

on the curve for which t = tio If".we now join th~ points 

suooeasiv~ly by straight line segments; we have a poly~ 

gon of n sides inscribed on our curve and the length of 

ecch side will be lees than e o 

Consider one side of our polygon, the aide Pl< P1<.,., for 

example. As we increase t continuously from tK to t , 
/Of 

the point P will move from P 1< to P"""' along the aro joining . ~ 
P/( and P"'f' o Let PO( be any point on the a.ro segment P"' I!,.,o · ·1 

If Prx. does not coincide with Px or Ji.,;> we have to< grea tar 

than tf(and less than t,0 ,and therefore \tor._= t"J~s .and )tot. .. t"'.,.,l-~ $'. 

Consequently P~ Pl< and ~Ji.,, are both less than e., :for we 

have shown that the distance between a.nl two points whose 

t 'a differ by less than ~is loe~ than f o A line join.1ng 

P« to any point on the line segment P~ P1e.,.1 would be shorter· 

than one of the line segments P(.l( P/( or ~.~'+'and oonaequent ... 

ly less than e in lengtho Since P~ is any point on the 
'"" arc PK J:!,.,,, , we see thR.t the distanoe from any point .of' the 
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~ 

aro P>r PKti to a.ny point o~ the lin49 eegma~t PK Pxt-i is 
leas than E. • It wi'.ll surely be t~e then that the 

shortest dista.n~~ from Pix, to the l~n~ segment PH 1}11 is 

leas than c • Al~o, if Q~ is a._~y point on the segment 
~ 

Px ~,,., , the shortest distanoe from Q"' to the aro Pi< Px t-l 

is less than t.. 

The same discussion holds oonoerning the remain• 

1ng sides of the polygon·and the corresponding a.roe~ 

Let now P represent any point of the Jordan ourve 

and Ll.e the shortest diatanoe from P to the polygon. 

Let Q be any point on the polygon and .'1~ be the ahortH..st 

distance from Q to the ourveo As P movea along the 

curve,, LJp will take on a maximum value whioh will be 

smaller thane o We shall call this the maximum distanoe 

from the curve to the:'':polygono Similarly we shall 

oall the maximum value of Llathe maximum dista.noe from 

the polygon to the curve. Thie will also be less than 

£.We have shown, then, that it is possible to in" 

scribe a. polygon on our Jordan curve suoh that the 

maximum dietanoe from the polygon to the curve and 

the maximum dieta.noe from the curve to the polygon 

will both be lase than £. 

The question now arises: can we make the divisions 

of the interval t 0 to tw ao small that our polygon 

will have.no multiple points? Intuitively we would 

answer yea, but the oorreotnesa of our guess could 

not· be verified by any simple oonsiderations. We shall 
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~~erefore a.~it.the.pose~bl~ existenoe of a finite 

number of multiple p()in~~. _on ()U:t:- polygon and treat 
them in the following paragraphso 

Consider first a._doub1e point P, formed by the 

intersection of the two ei~es Pi Pi+, and P"" P,r+i' as sum• 

ing first that P doaa not ooinoide with P, 1 Fh,,PK ')or PM+r. 

With P as center and radius lees tha.n£' , where O < e' < E, 
~ 

describe a circle cutting ~he two lines at the points 

Q;,,Q;,,,Qk 8.lld QKHI Qi being on the line 17.· l?t, nearer P eto. 

/K 
, Q,, 

/-1j· /. 

-P~+· ~ H 
Suppose that we start at P and pass thru Q .. :,., 

and PL·+r· If we continue in the same direction~ we 

shall return to P by way of Pfi( QK. If the polygonal 

line PP.·+t · · .. · · PKP has no point in common _with the 

remainder of the polygon other than P, it would be 

completely out off by joining Q(t-t to Q ~and throwing 

off the lines Q; Qi+• and Q11QK1 ,o To avoid this and a.t 
the ea.me time to get rid of our double point we shall 

join Qi to QK and Qin to Q,H,, casting off the lines 

Qi Qc'+i and Q~ Q i.<-tr• If., however, th~ polygonal line 

PptH···PKP has one or more points other than Pin 
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common with the remainder of the polygon, we may either 

join Q £_to Q,< and. ~L·1-, to . Q t<H or Q i-1-1 to Q/( and Qi to 

Q 1u, for neither method will_divide our polygon into 

two polygons having no points in oommone If P were 

one of the end points Pi, P(·'"' 1 Px, or Pkl''' the prooesa 

of suppression would be entirely similar •. 

Having suppressed the double point P1 we have 

a polygon with one lees dou~le pointo Let ue pro~ead 

to the next double point and suppress it in a similar 

manner and eo ono If our polygon hae no points of 

multiplioity higher than two, it will finally be re~ 

dti.oed to a polygon .. w1 ~hout multiple points o 

It must be observed that in eaoh case, the oirole 

used must be enough smaller than ff.' in radiue that 

it will out only segments of the two lines forming 

the double pointo Otherwise new. double points may 

be form.en in the act of suppressing the old ones. 

Also let us notioe that our polygon, after any sup8 

pression may be reduced to two oloead pol7gons inter• 

seoting·eaoh other in a finite number of pointso 'filleae 

pointa of intersection may then be treated in a manner 

the same as that used for double po1ntso 

1: Let ue remember that the radii o~ the oiroles 
E' 

used in suppreesion were taken smaller than z. "* The -

distan~e, then, between any two points in or on one 
. . I 

of theae oiroles is less than f o It is easily seen 
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therefoi,~a, that the maximum dista.noe (aa defined above) 
I 

from the original po~ygon :t.o the reduoed po~ygon is 
I 

lesa thane, aa is also t~a maximum·distanoa from 

the reduced polygon to the original polygono 

It still remains to treat points of mu.ltiplioity 

higher than two. If our original polygon oont~ina 

any suo~ points, eaoh one must be reduced to a number 

of double points ae followat let euoh a point be.Re 

With R as center describe a oirele of radi~$ lees 
e' than -z o It must be enough smaller that it will out 

no. aides of the polygon except those on R~ Remove 

all line segmente cut out by the o1rcle and replace each 

a egroe"nt by a br~1tan i-1na whi oh shall li s wholly within 

the circle except for its ~nd points. These lines 

must be such that no two Of the points or 1ntereeo~ 
tion thus formed by them shall coincide. 

The figure above ehowe a point of mult1p11o1ty four 

reduoed to eix··:double pointeo 

The double points whioh we thus obtain will all 

lie inside the oircle about R and we shall euppress 

each one ae indicated above. We shall take the oirclee 
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used in ~uppression so small that they ~ill lie ew·• 

tirely withi~ the ci~cle a,~out R. We have now a math~ 

. od for suppressing· e.11 multiple points in suoh a way 

that we shall obtain a polygon of no multiple points 

and the two maximum dietanoos between the original 

polygon and the reduced polygon shall both be lese 
c• o than e-

We shall now round o~f the corners of our re~ 

duced polygon by fitting into them small area of oerM 

tain curves. Wa desire to obtain in this way a "round" 

ed off" polygon., .such th~t a.e a point P moves a.long 

this rounded off polygon, the curvature at P will 

vary in a continuous fashion. Tlie::problem of rounding 

off our polygon in this manner reduoes iteel~ to this: 

given two straight lines l and 1 1 intersecting at a 

given angle.·. Required to determine the equation of' a. 

curve which shall be tangent to land l' near their 

point of intersection, and such that if we pase from 

a point on 1 to a point on 1 1 by way of this curve, 

the curvature along o~r path ehall vary oontinuoualyo 

Let ue find this curve for a spaoial case. Let l lie 

along the x~axis and let l' intersect l at the point 

A(a, o) and e. t an angle <:t. • Let P 1 be any point on the 

segmen~ OA and let P~ be a point on l' such that 

P, A = APz. Call P(p,q) the midpoint of P, Pz. We wish 

now to determine uniquely the poei tion of P, P,._ and 



and also the value of a oonstant m euoh that the curve 
.3 y = mx ehall be tangent to ~P~ at the point P. 

y 

0 

,H 
' ' ' \ 

I 

1 x 

The locus of points P is a fixed line k bisect• 

· ing the angle (l',1). The equation of k ie 

y = ·-1-(x = a) 
fd'l'I .!!!:_ ' ' z. 

and we therefore have the relation 

I 
q = --(p - a.) 

-fa.n~ 
? 

Now the elope of a tangent at P ia 
I 2- ()( y = 3mp = tan 2:'"" 

whence m =tan~ 
3p2 

(1) 

(2) 

If we put this value of m into the relation q H mp 

we have 
I 0( . 

q = 3 p· tan ~ 

Combining this with (1) we find 
a 

p: I-'- .!L-t-. I _ 3 £d.n ?. -til-,., ~ ' 2-

Thia value of P immediately determines by (2) a value• 

form and fixes the position of P and hence of P1 P~o 

9 



/.' . 

Let ua now i~agine a eeoond aro o'p' ooinoid~~g 

w1th·6P, o.' falling at. o a.nd P' falling ~t P. Suppose 
. r;-;. ' 

now that we change the.position of OP in euoh a 

way that o' will fall on l' at a point whioh we shall 
I r-) call Q and P shall r~main at P, and :rurtharmore o'p 

shall still remain tangent to P,Pz at Po It is obvious 

that OP, = P~Qo It is also obvious that as a movable 

point approaches P along either aro segment, the our~ 

vature at that point will approach a unique value. 
~ ' Moreover the arc OP has a contact of order two with 

the x~axis at the origin,-- a fact which guarantees 

continulty of curvature as we pa.es o~to Po f'rom the 

negative half of the x-a.xie •· The same may be said 
~ ' 

of PQ in reference to Hn~ 1' and thus we have obtained 

the aro \l\J/,ioh f'ulfill~ the requirements of the problem 

which we set for ourselvee. We have the equation of 
~ /"-the arc OP and the equation of the aro PQ may of oourae 

be obtained by the proper tra.netorma.tion of axee. 

Let ue notice that OA may be taken as small as 

we please. Suppose that OA is lees tha.n(3,/J >01 It is 

then evident that the maximum dietanoe from any point 
r-.... 

of the aro OPQ to any point of the broken line OAQ 

ia leas thanf. 

Let T be a vertex of our reduced polygono On 

the two adjaoen~ aides respeoti vely take th.e points 

T, and Te equidistant from T and at a diets.nee from 
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" II I it lees than f , o~E.c£.. Jo1.n T, and T-z.. by an e.ro 

such ae the one already.described and.diB,Of:Lrd the 

broken line T1 TT2. __ •_ If we do t1hie at every verte~, 

our pol~gon is transformed into the desired "rounded 

offtt polygon without multiple points and it is evident 

that the two maxiinum distanoes between the.reduoed 

polygon and the "rounded off" polygon are both less 
I/ thane 0 

We shall refer to this "rounded off" polygon 

as the polygon J. We now wish to represent J analyt" 

ically in the form of x and y as funotiona of' an in .... 

dependent parameter! 
J Consider the curve y = mx o The long~h or arc 

from a fixed point P0 on thie ourve to a variable 

point Pcm the curve is 
X' 

s = i~-( -1-.· _+_9_m-:-~ x-:";--) dx 

Xo 

Sipoe the integrand is continuous and positive on 

any finite interval, s is a continuous and monotonic 

inoreaaing function of x on any finit~ interval. Sinoe 

y = mx:3, y also is a monotonic oontinuoue funotion 

* of s on any finite interval4) It follows then·:·:.that 

the inverse :f'Unotione exist and are continuous and 

we have 

*see Veblen and Lennee: "Introduction to Infin= 
itesimal Analysis~ page 930 
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x = cf, {a) 

Y =:"rfz (a>. 

where </>; and ¢. a;e continuous on any finite in terve.l .. i . .... 

of so By the linea~ transformations 

x = aX + bY + m 

y=oX+dY+n 

we would have 

aX + bY + m = ¢, ( e ) 

oX + dY + n = cp't ( s ) 

and X and Y themselves would be continuous functions 

of s. This shows th.at the coordinates of a point on 

our cubical parabola are uniformly oontinuoue t'unotiona 

of the length of aro along the cubical pare.bola re• 

gardlese of I.ts position in respect to the coordinate 

axes. The aame statement may obviously be made oon-

oerning a straight line. Sinoe J consists of segments 

of cubical pare.bolas and straight lines, we may re" 

present it by. the pe,ir of ~qua.tione. 

:z: = 'J!, (a_) 

1 =Vi. cs> 
a representing the length of arc from a fixed point 

in a fixed direction. Now s may be allowed to vary 

from~OIO to+ ex:> if we put 

\fl, { s o + S ) = V, ( aJ 

Vz_ ( B o + S } = , ~ {a) 

where e 0 is any fixed value of a and S is the total 
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length or.J, i.e. the total length o~ aro as we move 

along J in a fixed direction from a point P0 and fi~ 

nally return to P0 • "Y, and 1JI;. are oontinuous along the 

arc or line segments of J. At any joining point., x 

and. y take on the ea.me values respectively as we ap• 

proach the point along e.i ther adjacent aegm.ant. Therel!'t 

fore V. and ~are continuous for all values of a. 

It will now be convenient for us to make the 

change of variable u = ~'TT' a. J will t.h~n be represent .... 

ed by the pair of equations 

x = F, (u) 

y = Fz. {\t) 

It is obvious that F, and F2 are oontinuous for all 

values of u and since 

F, (u 0 + 27T) = F, (u 0 ) 

Fi_ (u 0 · + 211") = F~ (uo) 

F1
, and F"l. are periodic and of period 21T • 

. Let ct. and ~represent the angles with the x~axis 

by the tangent and normal respectively at any point 

of Jo It is clear that as a point moves along J, cos~ 

and cos f3 vary in· a oontinuoua fashion. In f'a.ot the 

elope of the tangent varies oontinuoualy along the 

line segments and arc segments. At a joining point 

the tangent assumes the same position as we approach 

the point a.long J in either direotiono The angles <X 

and (3 therefore vary in a oontinuoue manner and 

consequently their cosines~ 
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Now, if to the identi ti ea .. 
cos a = dx = 211' F / (u) . dS 8 I 

cos (3. = dy = 271' F~ {u) ds S 

we apply the formulae of Frenet~sarret: 

d cos <i = cos{} 
ds R 

d oosf! = _ cos cX 
de R 

wher~ R represents the radius of .curYature along J,-
we obtain the identities 

// 
F1 (u) = 00 S f! " !±. TT 'L. 

R S2-
F 11 

( u) = _ cos CX: 4-" .,_ 
z R S2 

Now as we move; along J, ooa rx , ooa (3 , and R vary in 

a oontinuotia manner, ·and if we show that Ria nowhere 

zero, we have established the continuity of F;' (u) 
~I . 

and F 2. (u). Since 

'L 
d y 
~ 

'L 

R can only be zero if d Y is infinite. Sinoe d~y is 
dx 2 . . dx-.a.. 

fini te a.long any..:fini te · aro of the oubioal pa.re.bola, 
R oan not be zero along suoh an a.rco Along any straight 
line R is infinite. Thus R vanishes at no poont of J. 

Consider the ourvs .x = F, (u). Thia ourve may 



have in the interval O to 2~ a number of maximum or 

minimum points or segments euoh a~ the point A.or, 

the segment BO in Fig., 4o We shall call theee--·pointe 
y 

A 
c 

0 Z:rr- X 

simply maxima or minima and show that they must be 

finite in number on the interval O to 2~. A maximum 

or minimum ma.y only ooour when the corresponding point 

on J has its tangent parallel to the y~axie or when 

the corresponding line segment.of J is parallel to 

the yMaxis. By the nature of J, suoh points or seg~ 

manta are finite in number. Furthermore, again bearing 

in mind that J consists of a finite number of line 

and arc segments, 1 t is easily seen that oosoc , oosp 1 

and R have but a finite number of maxima and minima. 

Since 

F' (u) = ....§....608 ()( 
I 21f F~(u) = _§_ ooe /3 

2 '1T I 

F''<u) = cosg qr F~'(u) = 
I R Si I-

ooe ()( 'I".,_ 
R -0'°2 

··it follows that these four darivativea themselves 

have but a finite number of' maxima and minima. More• 

over since ooe p and ooe rJ. oa.n vary only from +1 to 

-1 and since R is nowhere zer()# it follows that the 

four derivatives remain e.lwaya finite. 
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Since F1 (u) has the per~od 27r1 we have 

F / ( U) = F / ( U ·~ 27r) 
I tf for all values of u. Since F1 (u) a.nd F, (u) are oon• 

tinuoua for all values of u, it follows that 

F ,' (u) I = F; (u + 27r) 

F,''cu) = F,''(u + 27T) 

for all values of' u., That is, F,' (u) and F,''(u) are 
. , 

both periodic and of period 2'1To Likewise Ft. (u) and 
" . . 

F~(u) are both periodic and of period 21Te 

Let us now summarize the properties of the f'unc• 

tiona F, (u} and F~(u) and their derivatives:-

( 1) F, (u) and F 1- (u) are fini ta and oontin .... 

uoua for all values of Uo 

(2) F, (u) and F2..(u) both admit of period 21T. 

(3) F1 (u) and F2 (u) both have maxima and 

- minima (as defined above) finite in 

number on any int~rval of length 21T. 

( 4) Pro:p ert~ es ( 1) , ( 2) 1 and ( 3) hold for 

F, ' ( u >. and F/ (;u} o 

(5) Properties (1), (2) 1 and (3) hold for 
. ,, ,, 

F1 { u) an(]_ F 2 ( u ) !' 

Suppose now that we expand F1 (u) and F2 (u) in 

the trigonometric series 
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Aa ,a result of' the properties outlined above,_:t~eae 

two expansions are absolutely and uniformly oonver" 

gent. Moreover the expansions 

00 
I 

a.~ 2--(i t + b,! sin ku) F
1 

{u) = + l<=f a.,c. coa ku 

()Ct F; {u) = o' 
L.. 

ku + d~ ain ku) + J<~1 (0~ oos 0 

are also absolutely and unifortp.ly convergent and ob" 

tainable by differentiating term by term the expansions 
' '*' for F, (u) and F2 {u) respectively. 

We shall now establish the following propoaitiont-
t! Ill II/ . 11 For every c.. >O, £. a.a ema. as we please, there exists 

a finite integer N euoh that the oloaed ourve repre~ 

aented by the pair of equations 
-n 

} x= ao+ L_ (a,<coa ku + bKsin ku) 
(3) f(::: I 

-n 
y = Co+ {;-; ( cf<.ooa ku + di<;'Si n ku) 

shall have the following properties whenever n is an 

integer greater than or.equal to N:~ 

(A) The maximum distance from the ourve to J 

"' shall be lass than £ , and the maximum dis~ 
' - "' tanoe from J to the curve shall be leas thane. 

(B) The curve shall have no multiple points. 

* See Carslaw "Fourier Series and Inte~re.le", 
section 62. Aleo Picard, "Traita d'Analyae ; second 
edition, page 2581Vof. f. 

lT 
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Proof. For convenience let ua write the equations 

(3) ae follows 

x = An(u) 

y = Bn(u) 

and le~ ~s designate by On the ourva thus defined. 

The distance Ll from ·a point .(x,y) on On to the 

corresponding point on J ia 

L} =l/[F, (u) ... A11(ui/ + /!2-(u) ~ B,,(u~" 
Owing to the uniform convergence of tha expansions 

f~r F1 (u) and F2 (u), we can find an integer N11 euoh 

tha.t ',, . t 
JF, (u) "An(u)/ < ~ 

. . [ '" /F2 (u) • Bn(u)/ <ff 
> A ./ e 111 

for all values of u whenever n = N,• Therefore "-''c 
:> for n = N1 , and for any value of u ~ That ia, the dia-

tanoe between ~ny pair of oo~respon~ing points is 
. Jll > 

less than f._ f<:?r n = N, • Thus __ any point Pc on On will 
,,, t· / 

be within a distance of f to ai_ lea~t on~ p~1nt Pj 

.(the corresponding point) on J and vioa versa. Con~ 
. . ~ aequently for n = N,· , the two maximum dista.noea 

Ill 
between Cn and J are both less than t • 

Bef?re going fUrther, let ua make this remark. 

If P, and P~ represent two points on J oorresponding 

respeoti vely to u, and u2., then Ju, ~ Uzi will be as 

small as we please whenever th~ distanoa ~ P2 1a 
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suf'fioientl~ small. Consider tha ourve 3 y = mx u If' 

~' an~ x 2 are.the abaci~sas (.)f two points on this 
curve, the length of aro joining them is 

~'L . 

8 = j{i_1 _+_9_ni_x_·}' 
dx 

x, 
Since this integral ie a uniformly cont~nuous funotion 

·of x, (see page 11). e may be. made as small as we 

please by taking the points suoh · t'hat \x, ... xz.\ 1~ 

sufficiently -~mallo Since fx, r:a xi.\' is the length_ of 

the x-projection of the geometric distance between 

our points, we oan make ( x, !ft ~I ~s small as, we please ' 

by taking the_ points near enough::.: to eaoh otherio Thus 

the length of aro on the curve y = mx3 will ba as 

small as we pleas~ whenever_ the geometric diatanoe 

between end p9ints is euffioiently smallb The same 

is obviously true for a straight lineo Moreover this 

relation between ohord and a~c ia independent of the 

position of tpe'curve in respeot to the coo~dinate 

axes. Let us recall that J oonaists of segments of 

straight lines and arcs of oubioal parabolas and 

that u = (constant)· (length of aro)., Consequently, 

from what has been aaid above, lu,= u2-( ,is as 'small 

as we please whenever Pi P2 ia sufficiently amallo 

Let ue now continue with our ·proofo Let ~ = .S ~ r 81T' 
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I Since ~,(u) ia tiniforml:yoontinuous.v there exists 

a.n 7 such that w}?.an lu~= ut<I .C::... 1{ 
IF: ( U() ... Ii'.: <1W I < ~ 

Le~ Pi and Pk represent points on J oorroapondM 

ing to Ui and uK. Let ~·be a. positive n~bar auoh 

that if'.~. Pt<<~ , \u:• uli\<~. We have proved above 

the existence of such a.~ o 

.::> Let N2 be a positive integer suoh that for n = N~ 

..::> a.nd let N3 be a positive integer such that for n = N3 

\F/(u) - A~(u) J'< f 
I F ~ cu> -- B~ ·cu> / < f 

The uniform convergel'l:oa of" All(u), Bn(u), A
1
11(u),,' o.nd 

B~ (u) gua.rant~e the existence of' N2. a.nd N3 • 

Now let n = N~ where N~ is greate~ than any 

of the integers N, , Nz, or ~3 .• We shall show that 

such a choice of n will result in a curve 011 ea.tis• 

fying (A) and (B ) • 

Suppose that for n = Ny the ourve 

x=A.11 (u)J 
o On y = JPn(u) 

h6s." a loop. We shall.denote by Pi .and T/ the points 

on J and On reepeoti vely oor1"esponding to Ui • Lat Tn. 
-~ 

~Thia makes the distance LI between any point on J 
and the oorreaponding point on 0 71 less thant • See 
page 17.. · z 
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be the double point on Cn corresponding· to the valuee 

From ( 5) and footnote ori p:i:~eoeeding page we 
-.- t - >- - ).. have TnP, <S·-z and T,.~P:z. <t· /, ~ P2 < ~ ·and oonaequent• 

l y I u, .... U:d ~ ·f .. ' 
At our double point we have 

A ,.('llt) = A n{u ~_) 

Bn (ty) = B-n (u i) 

By Rolle's Theorem there exists a u 3 and au~ both 

lying between u, and· u~ auch.:ttha t 

Since f u, ... u 1/ < '>'( and .. einoe u 3 and u 'f both 11 e between 

u, and u 2 , we have Ju1 = u,,,JL.J.1 me.king from (4-) 

Owing to our ohoioe of n we have 

/ F: ( U 3 ) ,. A 
1
ra ( U 3 ) / < f 

{ F: (u.,) ... B~ (u, >/ < ~ 

• { 6) 
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... . ~· 

From (6) and (7) it.follows that 

·fF,'Cu""' <- 2f 
We shall make use of the pair of inequauitie·e: 

l F: (u If)' l: 2 ~ 
f F; (u,,)/ '- ¥ 

If e re~resents the angle ~hich the·tangent to·J 
at P't makes withtha x-axis, we have 

from which 

f F: (u'I >{ = / 2~ cos t7 l < -2 ~ 
IF~ (u't) I =I :1T Si'TI e I<:. f 

)oos t>k4 '1r , \: . s 'r 
1~1h1 e~2l- . f 

But we have ohoaen ~ = §_ and we have therefore r 817 

looa 8 f < -f 
Jsin e 1 < 4-

which ie absurd. Consequently for n = ~¥' a double 
point on C:n is impoaa~ble •.. 

The same arguments would prove the impossibility 
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of the existence of multiple points,.of any order. 

~inoe NI{~ N, , C'" aa_tit?~i~~ oond~ tion (A) as well 

as (B) for n = N1 • Thus.our proposition is proved 

for we .. may take N = N., • 

Suppose that in the identities 

iku. -ik" 
cos ku = e +e 

2 

'''" e 
-c°/c IA 

sin ku = e -
2£ 

c't< 
we put e = v. We have then 

2.1< I v .,.. 
cos ku = 2.. v re. 

~'-"-I 
(8) 

sin ku = 2. . 1< LV 

If we make the substitutions (a) in the pa.ir of 

equations 

we obtain 

{'{ 

x = a. 0 + L (a.,<eCDs ku + bl<ein ku) 
/{2.f 

N 
y = 0 0 + [_ (cl<oos ku + d1<ein ku) 

/(:/ 

i'(v> 
X= 'IJ IV 

. /:- \I 
y = 

Rtvl ,,.-:--- ,.., 
t- a.V 

(9) 

where P(v) and R(v) a~e polynomials in v and both 

of degr~e 2N. That ie., we have represented x and y 

as rational functions of the independent variable v·o 



Let b be e~ positive number as small as we please, 
and suppose that we ohoose d J ,,, 

.;- I ) ,, 
E. L !& [ L. t L [ L 

?- r t?' 

We have then ,, I It d ( + £ 7 f +- ( <.. 

The equa~iona (9) therefore ~epr.esent a unicureal ourve 
which approximates our Jordan ourve so· that the maximum 
distance from the Jordan curve to the curve (9) is loss 

) . 

than and the maximum distance from the ourve (9) to 
the Jordan curve ia leas than ;--. 

We have thua shown that any Jordan curve may be 
approx1i:nated by a. real loop of.a unioureal curve, the 
loop containing no multiple points. 

" The natllra.of' the_appro.ximation is somewhat wea.ko 
It does no,~ pr~yent, for example, an approximation 
by a double loop ae shown in the figure below. 

J_. daJ1 t_ 11 rve 
L>Y . 

1 Ci1r1.H · 
j/ J::l' r,; K 1717tiT177 l 

It may be possible that by treating our multiple points 
of the first polygon in a diff~rent manner, we could 
strengthen the nature of.our approximation to an ex-
tent which would enable us to develope a new proof 
for the Jordan Theoremo 
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