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EFFECT OF DEFORMATION HEIGHT AND SPACING ON 

BOND STRENGTH OF REINFORCING BARS 

ABSTRACT 

The effect of deformation pattern on bond strength is studied using 1 in. diameter machined 

bars with deformation heights of 0.05, 0.075, and 0.10 in. and deformation spacings ranging from 

0.26 in. to 2.2 in. The combinations of rib height and spacing produce relative rib areas (ratio of 

projected rib area normal to bar axis to product of nominal bar perimeter and center-to-center rib 

spacing) of 0.20, 0.10, and 0.05 for each deformation height Conventional reinforcing bars, with 

a relative rib area of 0.07, are also studied. The effect of deformation pattern is evaluated using 

beam-end specimens with varying degrees of confinement provided to the test bars. Degrees of 

confinement are: 1) 2 in. cover without transverse stirrups, 2) 2 in. cover with confining trans­

verse stirrups, and 3) 3 in. cover without confining transverse stirrups. Bars with 2 in. cover have 

an initial unbonded length of lh in. and a bonded length of 12 in. Bars with 3 in. cover have an 

initial unbonded length of 4 in. and a bonded length of 81h in. 

The bond force-slip response of reinforcing bars is a function of the relative "rib area of the 

bars, independent of the specific combination of rib height and rib spacing. Under all conditions 

of bar confmement, the initial stiffness of load-slip curves increases with an increase in the relative 

rib area. Under conditions of relatively low confinement, in which bond strength is governed by 

splitting of the concrete, bond strength is independent of deformation pattern. Under conditions in 

which additional bar confinement is provided by transverse reinforcement or higher cover, bond 

strength increases compared to the bond strength of bars with less confmement. The magnitude of 

the increase in bond strength increases with an increase in the relative rib area. 



INTRODUCTION AND BACKGROUND 

There is widely conflicting evidence on the effect of deformation pattern on the bond 

strength between reinforcing bars and concrete. Some studies indicate that deformation pattern has 

a strong influence on bond strength. Other studies show that deformation pattern has little influ­

ence, and it is not uncommon for bars with different patterns to produce nearly identical develop­

ment and splice strengths. 

The current criteria for reinforcing bar deformation patterns in the United States are based 

on research carried out more than forty years ago by Arthur P. Clark (1946, 1949) at the National 

Bureau of Standards (now the National Institute of Standards and Technology) under a fellowship 

from the American Iron and Steel Institute. Clark evaluated seventeen reinforcing bar patterns. 

Based on his study, Tentative Specification AS1M A 305-47T was developed and later modified 

(ASTM A 305-49) to include a maximum average spacing of deformations, or ribs, equal to 70 

percent of the nominal diameter of the bar and a minimum height of deformations equal to 4 percent 

for bars with a nominal diameter of liz in. or smaller, 4.5 percent for bars with a nominal diameter 

of 5fs in., and 5 percent for larger bars. These provisions constitute the major deformation re­

quirements in use today (AS1M A 615-90, A 616-90, A 617-90, A 706-90). 

Clark's work was based primarily on pullout tests, but included some beam tests. His 

evaluation of bar performance was based on bond behavior throughout the usable range of bond 

stress, rather than on bond strength. Clark averaged the bond stresses at loaded end slips of 

0.0005, 0.001, 0.002, 0.003, 0.004, 0.005, 0.0075, and 0.01 in. for each bar. He then averaged 

the values for top and bottom-cast bars to obtain a single representative bond stress for each 

deformation pattern. His reports (Clark 1946, 1949) do not include the peak stresses obtained in 

the tests. 

At the time Clark made his recommendations on rib spacing and height, he also recom­

mended that the ratio of the shearing area (bar perimeter times distance between ribs) to the rib 

bearing area (projected rib area normal to the bar axis) be limited to a maximum of 10, and if 
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possible 5 or 6. Today this criterion is usually described in terms of the inverse ratio, that is the 

ratio of the bearing area to the shearing area, which is known alternately as the "rib area", "related 

rib area", or "relative rib area" (DIN 1986, Soretz and Holzenbein). Relative rib area, Rr, will be 

used as the descriptive term in this report. 

R = projected rib area nomal to bar axis 
r nominal bar perimeter x center-tcrcenterrib spacing 

(1) 

Clark's recommendations then become a minimum relative rib area, Rr, of 0.10, with 

desirable values of 0.20 or 0.17. It is interesting to note that Clark's rib area recommendations 

were not included in ASTM A 305-49 and that current defortnation patterns in the U.S. (ASTM A 

615), Europe (DIN 1986, ISO 1990) and Japan (TIS 1975) do not provide the relatively high 

bearing areas recommended by Clark. Typical values of Rr for bars manufactured in the U.S. 

range from 0.057 to 0.084 (Choi et al. 1990). In 1949, the best performing deformation patterns 

were not used as the industry standard largely because of a desire on the part of the reinforcing bar 

producers only to remove the weakest patterns, rather than establish the best possible anchorage to 

concrete (Wildt 1991 ). In his studies, Clark also observed that the face angle of the rib with 

respect to the longitudinal surface of the bar had an important effect on slip. The more gradual the 

inclination of the rib face, the greater the slip for a given force. 

Since the time of Clark's efforts, a great deal has been learned about the bond performance 

of deformed reinforcing bars. It is generally agreed that the bond between reinforcing steel and 

concrete consists of a chemical adhesion, friction, and mechanical interlock. For regular deformed 

bars, the effect of the mechanical interaction has long been believed to be the major contributor to 

bond strength (Menzel1939, Lutz et al. 1966, Lutz and Gergely 1967). 

During the late 1950's and the 1960's, Rehm (1957, 1961) and Lutz et al. (1966, 1967) 

demonstrated that, as reinforcing steel moves with respect to concrete, one of two failure modes 

can occur. Either the concrete in front of the ribs gradually crushes, resulting in a "plow-through" 

or pullout-type failure, or the ribs and/or crushed concrete in front of the ribs acts as a wedge, 
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introducing tensile stresses perpendicular to the bar axis, which result in a splitting type failure of 

the concrete. Rehm (1957, 1961) found that if the ratio of rib spacing to rib height is less than 7 

and if the rib face angle (or rib flank inclination, as it is called in Europe) is greater than 40°, then 

the concrete in front of the ribs undergoes gradual crushing, followed by a pullout failure. If the 

ribs have a spacing to height ratio greater than 10, for a rib face angle greater than 40°, the concrete 

in front of the ribs first crushes and then forms wedges that induce tensile stresses that, in turn, 

cause transverse cracking and longitudinal splitting of the concrete. In general, the higher the 

confinement, the more likely a pullout failure. However, in most structural applications, a splitting 

failure is more common (Clark 1949, Menzell952, Chinn et al. 1955, Ferguson and Thompson 

1962, Losberg and Olsson 1979, Soretz and Holzenbein 1979, Johnston and Zia 1982, Treece and 

Jirsa 1989, and Choi et al. 1991, to list but a few). 

Slip of a reinforcing bar with respect to the concrete has the effect of crushing the concrete 

in front of the ribs, producing a rib with an effective angle of 30 to 40° (Lutz and Gergely 1967), 

which, rather than the steel itself, acts as the wedge. Lutz et al. (1966, 1967) showed that a rib­

face angle below 30° considerably softens the load-slip relationship. Work by Skorobogatov and 

Edwards (1979) on bars with face angles of 48.5° and 57.8° supports these _observations. 

Skorobogatov and Edwards concluded that, in the range tested, the face angle does not affect bond 

strength since the high rib face angle is flattened by the crushed concrete wedge which reduces the 

effective face angle to a smaller value. 

Losberg and Olsson (1979), in a study of three deformation patterns commonly used in 

Sweden, came to the conclusion that traditional pullout tests, of the type used by Clark, are not 

useful for predicting the response of reinforcing bars in actual structures, because the state of stress 

around the bars in pullout specimens is considerably different from the state of stress in actual 

structures, largely due to the additional confinement provided in pullout tests. Losberg and Olsson 

found that the three deformation patterns produced considerably different bond strengths when 

they were evaluated using a pullout test. However, in tests where splitting governed, they found 

little difference for the three patterns, with the possible exception that bars with ribs that were 
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oriented obliquely to the longitudinal axis caused greater splitting and thus provided a slightly 

lower strength than bars with ribs at a right angle to the bar. They also tested some specially 

machined bars, with different deformation spacings, and found that splitting strength was not 

sensitive to rib spacing. Their tests indicated that bond capacity actually decreased once ribs 

became closer than about two-thirds of the bar diameter. 

Soretz and Holzenbein (1979) studied a number of bar parameters, including the height and 

spacing of ribs, the inclination of the ribs with respect to the bar axis, and the cross-sectional shape 

of the ribs along the longitudinal direction of the bar. 

In one portion of their study, keeping the rib-bearing area per unit length constant while 

changing the spacing and height of the ribs, they found little difference in behavior, up to a slip of 

1 mrn. However, for slips greater than 1 mrn, the bar with the lowest rib height exhibited 20 

percent lower strength than the other two patterns tested. They also observed that the bar with the 

highest ribs caused more splitting. They concluded, somewhat in opposition to the observations of 

Losberg and Olsson ( 1979), that the optimum geometry would be rib spacings of 0.3 bar diameter 

and rib heights of 0.03 bar diameter to give the best combination of increased bond strength and 

limited splitting. In tests of the effect of rib inclination on bond strength, Soretz and Holzenbein 

observed that the more perpendicular the rib to the longitudinal axis, the higher the bond strength. 

However, they found rib inclination to be a relatively small factor compared to rib bearing area. In 

studying the effect of rib face angle, they observed that ribs with a lower face angle exhibit more 

slip, but provide the same strength as bars with equal rib heights and steeper rib-face angles. They 

concluded that requirements for a minimum rib face inclination are not needed. Soretz and 

Holzenbein also studied the fabrication performance of bars using rebend tests and observed that 

the lower the rib height and the closer the inclination of the ribs to being parallel with the longitudi­

nal axis of the bar, the better the performance (the lower the frequency of failure) in the rebend 

tests. 

A recent study by Kimura and Jirsa (1992) using pullout specimens supports many of the 

earlier obserations, including an increase in bond strength with increasing relative rib area. 
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The work by Clark (1946, 1949), Losberg and Olsson (1979), and Soretz and Holzenbein 

( 1979), and Kimura and Jirsa (1992) indicates that, at least under some conditions, an increase in 

relative rib area will increase bond strength. However, under other conditions it will have no effect 

(Los berg and Olsson 1979). Ribs that are more perpendicular to the longitudinal axis provide the 

highest bond strength, but the effect of rib inclination is relatively minor. Work by Rehm ( 1957, 

1961), Lutz et al. (1966, 1967) and Soretz and Holzenbein (1979) indicates that increasing the rib 

face angle above about 40° will not improve bond strength. Other than these observations, there is 

little agreement on precise criteria for rib spacing and height. 

In addition to research specifically addressed to the effect of deformation pattern, statistical 

studies covering a wide range of splice and development data have shown that bond strength 

increases with increasing cover, bar spacing, and confinement provided by transv<;rse reinforce­

ment (Orangun et al. 1975, 1979, Darwin et al. 1992a, 1992b). For members without transverse 

reinforcement, the relationship observed between bond strength and development/splice length, 

cover, bar spacing, and bar size shows relatively little scatter (Darwin et al. 1992a, 1992b) and 

appears to be independent of deformation pattern. In contrast, the relationship for members with 

transverse reinforcement exhibits large scatter (Orangun et al. 1975, 1979). That large scatter may 

be due to the need for a better characterization of bond strength, which may need to include the 

effect of the deformation pattern, a parameter that has not yet been incorporated in the statistical 

analyses. 

The work described in this report represents the first major experimental effort in a large­

scale study to improve the development characteristics of reinforcing bars. It is the purpose of this 

study to specifically determine the effect of rib height, spacing, and relative rib.area on bond 

strength, including the conditions under which changes in deformation pattern play a role. The 

results of this study are being used as guidance for the design of a new series of reinforcing bar 

patterns that are being placed in production as part of the overall research program. 

This study also includes the modification of previous test specimen designs and test 

methods (Brettmann et al. 1986, Choi et al. 1991) to provide a more realistic measure of bond 
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performance. 

EXPERIMENTAL PROGRAM 

The experimental program consists of 156 test specimens. The first portions of the test 

series were used to modify the configuration of the test specimen and test setup. The modifications 

were made in accordance with the results of an unpublished finite element study (Niwa 1991) that 

indicated that the stress fields adjacent to the reinforcing bars would be closer to those obtained in 

flexural members if the compressive reaction on the front of the specimen were moved further 

away from the reinforcing bar than in previous tests (Brettrnann et al. 1984, 1986, Choi et al. 

1990, 1991). As will be described, modification of the test configuration also required, the 

addition of shear reinforcement to the test specimen. While these changes in test configuration are 

described, the report emphasizes the effect of deformation pattern on bond strength. 

The principal parameters in this study are rib height, rib spacing, relative rib area and 

degree of confmement provided by concrete and transverse reinforcing steel. The study was 

carried out using specially machined reinforcing bars along with bars with standard deformation 

patterns for comparison. 

Test Specimens 

The beam-end test specimens illustrated in Figs. la and b were used for most of the tests. 

The specimen contains a 1 in. nominal diameter bottom-cast test bar with a 2 in. cover and 15 in. 

of concrete above the bar. The specimen contains four closed stirrups to provide shear strength. 

The stirrups are oriented parallel, rather than perpendicular, to the sides of the test specimen to limit 

their effect on a splitting bond failure. The test specimen also contains two No. 6 bars, with 11/z 

in. bottom and side cover, to serve as flexural reinforcement. The overall dimensions are 9 x 18 x 

24 in. The specimen contains three transverse No. 5 bars that are used to aid in fabrication and 

testing. The specimen configuration is altered for Group 9 which is used to evaluate the effect of 

additional concrete confinement. This is obtained by raising the test bar and the No. 6 bar flexural 
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reinforcement by 1 in. 

As shown in Fig. 1 b, some test specimens include four additional No. 3 bar stirrups to 

determine the effects of confinement provided by transverse reinforcement 

Test bars extended 22 in. out from the face of the specimens. Two polyvinyl chloride 

(PVC) pipes were used as bond breakers to control the bonded length of the bar and to avoid a 

localized cone-type failure of the concrete at the loaded end of the specimen. Bonded lengths of 8, 

81/z, 10, 12, and 131h in. were used in different test groups. Lengths of bond breaking PVC pipe 

in front of the bars (lead lengths) of 0.5 and 4 in. were used in various tests. 

During the middle portion of the study, concern was raised about the fact that the ultimate 

bond forces obtained using the test specimen were limited by the bond strength of the No. 6 bars. 

In Groups 7 and 8, the straight No. 6 bars were replaced by hooked No. 6 bars. The hooked bars 

had a 11h in. cover, with the tails of the hooks terminating 11h in. from the upper surface of the 

test specimen. The addition of the hooks was found to increase the bond strength of some bars but 

not to materially affect the maximum capacity that could be obtained from the test specimen. 

Straight No. 6 bars were used as auxiliary flexural reinforcement in the balance of the tests. 

The first two test groups were exploratory in nature. They were tested in a different 

manner from the later groups and did not contain side stirrups. 

Materials 

Reinforcing steel.-The principal test bars were fabricated from 110 ksi yield strength 

ASTM A 311 (1990) cold-rolled steel. The minimutu diameter of all bars was 1.0 in. Three test 

specimens each of 9 different deformation patterns were fabricated. As illustrated in Fig. 2a, three 

rib heights, 0.05 in., 0.075 in., and 0.10 in., were used with spacings ranging from 0.263 in. to 

2.20 in. to produce relative rib areas, Rr (Eq. 1), of 0.20, 0.10, and 0.05. The patterns were 

selected to produce all three values of relative rib area for each deformation height The bars with 

0.05 in. ribs were machined from 11/g in. diameter bars. The other bars were machined from 11/4 

in. diameter bars. 
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A 60° face angle was used on the machined bars. The rib width for each test bar is shown 

in Fig. 2a. 

In addition to the machined bars, ASTM A 615 (1990) Grade 60 No.8 bars were evaluated 

to compare the prototype test bars to standard reinforcement. Two patterns, designated S and N, 

were evaluated. Deformation pattern S, R, = 0.070, consisted of ribs perpendicular to the axis of 

the bar. Deformation pattern N, R, = 0.078, consisted of diagonal ribs inclined at 70° with respect 

to the axis of the bar. The S-pattern bars, shown in Fig. 2b, were used for most comparisons. 

No. 3 bars, with ribs perpendicular to the axis of the bar, were used as stirrups. Reinforcing bar 

properties are summarized in Table 1. 

Concrete.-Air-entrained concrete was supplied by a local ready mix plant. Portland 

cement, 3/4 in. nominal maximum size crushed limestone, and Kansas river sand were used. A 

water-cement ratio of 0.41 was used to produce strengths of 4,500 to 6,000 psi at the time of test 

for Groups 3-9. Mix proportions and concrete properties are given in Tables 2a and 2b. 

Placement Procedure 

Forms were fabricated using plywood, 2 x 4 in. studs, and all-thread rods. Joints in the 

forms were sealed with flexible caulk to prevent leakage. Joints between the reinforcing bar, PVC 

pipe, steel conduit, and formwork were sealed with modeling clay. 

The concrete was placed in two lifts. The first lift was placed in all specimens in a group 

before any specimen received a second lift. Each lift was vibrated at six evenly spaced points. To 

minimize the effects of differences in concrete properties within a batch on test results, test speci­

mens with similar test parameters were placed at different points during the fabrication of each 

group. 

Most test groups were placed at one time. However, Groups 6 and 9 were placed on three 

and two different days, respectively, to reduce logistical problems. 

To ascertain what effect, if any, the location of the test bars within the bonded length had 

on bond strength, three configurations were evaluated in Groups 5 and 6. For configuration A, a 
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constant distance of 1/4 in. was used between the face of the first rib within the bonded length and 

the adjacent bond-breaking PVC pipe. For configuration B, a constant distance of 1/4 inch was 

maintained between the bearing face of the last rib within the bonded length and the adjacent PVC 

pipe. For configuration C, an equal distance was provided between the bearing face of the first rib 

and the adjacent PVC pipe and the bearing face of the last rib and the adjacent PVC pipe. Each 

configuration was used for one-third of the test bars in Groups 5 and 6. The results show that the 

positioning of the bars did not affect bond strength. 

Standard 6 x 12 in. test cylinders were cast in steel molds and cured in the same manner as 

the test specimens. Forms were stripped after the concrete had reached the strength of at least 

3,000 psi. 

Test Procedure 

The tests were carried out at concrete strengths of 4,500 to 6,000 psi. The specimens were 

tested using an apparatus developed by Donahey and Darwin (1983, 1985) and modified by 

Brettrnann et a!. ( 1984, 1986). Further modifications were carried out to increase the distance 

between the test bar and the compressive reaction plate (Fig. 3). In previous studies (Brettmann et 

a!. 1986, Choi et al. 1990, 1991, Hadje-Ghaffari et al. 1991, 1992), the 4 in. high reaction plate 

providing the compressive force on the front of the test specimen was centered i in. below the 

center of the test bar. Groups 1 and 2 were tested using this configuration. For Groups 3-8, the 

reaction plate was positioned to bear on the bottom 31/z in. of the test specimen, as illustrated in 

Fig. 3. This arrangement provided a lever arm of approximately 133/4 in. between the centroid of 

the compressive force and the test bar. For Group 9, the bearing plate was positioned to bear on 

the bottom 21/z in. of the test specimen providing a lever arm of approximately 131/4 in. 

As shown in Fig. 3, the specimens were tied to the structural floor by two wide flange 

sections and four tie-down rods. Load was applied at a rate of about 6 kips per minute by two 60-

ton hollow-core hydraulic jacks powered by an Amsler hydraulic testing machine, through two 1 

in. diameter load rods instrumented as load cells. The hydraulic jacks exerted a pulling force on 
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two yokes through a wedge-grip assembly. The tensile force in the bar was counteracted by the 

reaction plate. 

Bar slip was measured using spring-loaded linear variable differential transformers 

(L VDTs). Two L VDTs were attached to the test bar with an aluminum yoke, 4 in. from the 

concrete surface, to measure loaded end slip. A single L VDT was placed in contact with the back 

end of the test bar through the steel conduit to measure unloaded end slip. 

The specimens were tested 7 to 19 days after casting. For specimens cast and/or tested on 

different days, separate sets of at least 3 test cylinders were used to measure the concrete strength. 

Following the tests, the test bars were removed for reuse. 

RESULTS, OBSERVATIONS, AND EVALUATION 

Groups 1-4 were used to modify the test setup and to select the test configurations. 

Therefore, major emphasis is placed upon results obtained from the 110 specimens evaluated in 

Groups 5-9. The specimens in Groups 5, 8 and 9 (cover= 2, 2, and 3 in., respectively) contained 

bars that were not confined by transverse reinforcement. The specimens in Groups 6 and 7 (cover 

= 2 in.) contained bars that were confined by transverse stirrups. Lead lengths of 0.5 and 4.0 in. 

were used in Groups 5-8 and Group 9, respectively. Straight auxiliary No.6 flexural reinforce­

ment was used in Groups 5, 6 and 9. Hooked auxiliary reinforcement was used in Groups 7 and 

8. 

The test results described in the following sections show that the relative rib area has a 

dominant effect on the load-slip response of all bars, independent of rib height. An increase in 

relative rib area results in an increase in the stiffness of the initial portion of the load-slip curve, 

matching the observations of Clark (1946, 1949). The test results also show that the effect of 

relative rib area on bond strength depends on the degree of confinement provided to the reinforcing 

bar. For bars not confined by transverse reinforcement or high concrete cover, differences in 

relative rib area have little effect on bond strength. However, the addition of transverse reinforce­

ment or an increase in the confmement provided by the concrete results in a significant increase in 
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bond strength with increasing relative rib area. The details of specimen behavior follow. 

Test variables and bond strengths are listed in Table 3. 

Cracking Patterns 

A splitting failure was observed in all tests. The nature of the failure was brittle or ductile, 

depending on the absence or presence of transverse stirrups. As illustrated in Fig. 3, the speci­

mens were tested in an inverted position. The discussion that follows refers to the specimen as 

oriented for the test, with the test bar at the top of the specimen. 

Specimens without transverse stirrups.-For bars with 2 in. cover, failure was 

preceded by the initiation of a crack above the test bar, running parallel to the bar, vertically 

through the cover along the top surface of the specimens (Figs. 4-6). As described below, addi­

tional cracking occurred during the test. However, the crack above the test bar was the widest at 

the completion of the test. For bars with 3 in. cover, a major horizontal crack formed prior to 

failure (Fig. 7). The crack intercepted the test bar and the two auxiliary No. 6 bars. 

Three patterns were observed for specimens with 2 in. cover (Groups 5 and 8): 

1. As illustrated in Fig. 4, in addition to the main crack, two cracks were visible on 

the front face of the specimen, running down and out from underneath the test 

bar to the midsection of the specimen, forming an inverted V with an enclosed 

angle of 100-120°. Together with the main crack above the specimen, the three 

cracks formed an inverted Y. 

2. As illustrated in Fig. 5, two horizontal cracks propagated from either side of the 

test bar to the edge of the specimen. Together with the main crack, these cracks 

formed an inverted T. 

3. As illustrated in Fig. 6, the initial vertical crack ran from the top of the test 

specimen through the test bar to the midsection of the test specimen before 

branching out into two diagonal arms, again forming an inverted Y. 

On the top of specimens with 2 in cover, the main crack continued towards the back end of 
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the bonded length. The crack then branched out into two arms, propagating towards the sides of 

the specimen, with an enclosed angle between the two branches of 120 to 180°. In addition to 

these "major" cracks, smaller transverse cracks were observed on most specimens. Minimal 

cracking was observed on the sides of the specimens with straight auxiliary reinforcement (Group 

5). For the specimens with the hooked auxiliary bars (Group 8), the cracks on the front surface 

joined with cracks on the sides. The side cracks inclined towards the vertical and joined with 

transverse cracks on the top of the specimen. These transverse cracks were located about 2 in. 

from the front surface. 

For specimens with 3 in. cover (Group 9) there was, in most cases, no vertical crack 

through the cover. The crack on the loaded face of the specimen started from the test bar and ran, 

approximately horizontally, through the auxiliary bars to the sides of the specimen (Fig. 7). These 

cracks continued horizontally on the sides and toward the rear of the specimen, finally inclining 

toward the top surface. A transverse crack across the mid-section of the top surface connected the 

two side cracks, forming a wedge of concrete above the test bar. In some cases, this wedge of 

concrete completely separated from the rest of the specimen at failure. In addition to the main 

cracks, some minor cracks were observed on the top surface, usually starting from the main 

transverse crack, running longitudinally toward the back of the specimen, and branching out into a 

Y. Other minor diagonal cracks formed on the sides of the specimen, starting close to the position 

of the compressive bearing plate. The diagonal cracks were more noticeable during the latter stages 

of the loading process than after failure. 

Specimens with transverse stirrups.-Cracking patterns for specimens with trans­

verse stirrups (Groups 6 and 7) were similar to those observed for specimens with 2 in. cover, 

without transverse stirrups (Groups 5 and 8). However, specimens with transverse stirrups 

exhibited more extensive transverse cracking on the top surface of the specimen (Fig. 8). In 

addition, the front face of the specimens exhibited more transverse cracking than most specimens 

without transverse stirrups, largely due to the fact that the front faces of concrete tended to pull out 

of the specimen at the time of failure. These specimens exhibited higher bond strengths and more 



13 

ductile behavior at peak loads than the specimens without transverse stirrups. However, in 

contrast to the specimens without stirrups, which failed rather quietly, these specimens failed with 

a bang, which was often accompanied by pieces of concrete that separated from the specimen in an 

explosive manner. 

Most failures involved the formation of two steep diagonal cracks on the sides of the 

specimens. These cracks joined the bottom portion of the inverted Y -shaped cracks on the front 

face of the specimen and transverse cracks on the top surface of the specimen within about 5 in. of 

the loaded face. 

Crushing of Concrete around Test Bar Ribs 

The following observations were made upon removal of concrete after completion of the 

tests. These observations pertain only to test specimens without transverse stirrups. The process 

of removing the test bars from specimens with transverse stirrups involved destruction of the 

concrete and prevented clear observations from being made. 

Concrete surrounding the loaded side of the ribs was crushed as the bar slipped under load. 

For specimens with ribs spacings up to lh in., practically all of the concrete between the ribs was 

crushed. For specimens with rib spacings greater than 1/z in., the extent of the crushing varied 

from I/4 in. to Ilz in. in front of the loaded face of the ribs. 

As the bars were removed from the concrete, some concrete powder could be found lodged 

against the loaded face of some of the ribs. Concrete also was observed to form a small truncated 

cone between the first rib and the bond breaker PVC pipe. The diameter of the cone increased 

from the diameter of the rib to the outside diameter of the PVC pipe. For the concrete crushed in 

front of the ribs, the angle between the surface of the concrete powder and the bar shaft ranged 

between 17° and 40°. The lower angles were observed on the 0.05 in. ribs, while the higher 

angles were observed for the 0.07 5 and 0.10 in. ribs. 

There was evidence of bonding between the test bars and the concrete, as indicated by the 

presence of concrete particles on the bar shaft 
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Load-Slip Response 

Load-slip curves for the specimens in Groups 5-9 are presented in Figs. 9-32. Where 

more than one specimen has the same combination test parameters, average curves are presented. 

As shown in Figs. 9-24, the initial portions of the load-slip curves are not sensitive to the 

presence of transverse stirrups. As would be expected, the load versus loaded end slip curves 

exhibit lower initial stiffness than the load-unloaded end slip curves. With increased slip, this 

observation is also true for specimens with 2 in. cover and straight auxiliary reinforcement, 

without transverse reinforcement (Group 5). However, for specimens with transverse reinforce­

ment, hooked reinforcement, or 3 in. cover, the load-loaded end slip curves appear to be stiffer at 

loads above about 30 kips. This apparent stiffening is due to the fact that portions of the front face 

of the concrete in these specimens tend to move forward as the specimen begins to crack. Thus, 

the loaded end slip, which is actually measured with respect to the front concrete surface, appears 

to be less than the unloaded end slip, which is measured with respect to the unloaded end of the 

concrete. The effect of this behavior is especially clear in the load-loaded end slip curves for 

Gr6up 7 (Figs. 17-19) which are highly erratic due to separation of concrete on the front face of 

the specimen. 

For bars with 2 in. cover and without transverse reinforcement (Groups 5 and 8), the load 

versus loaded and unloaded end slip curves (Figs. 9-24) generally rise steeply and then flatten out 

as the peak load is attained. This description also applies to the load-loaded end slip curves for the 

specimens with transverse reinforcement (Groups 6 and 7) (Figs. 9-12, 17-20) and the specimens 

with 3 in. cover without transverse reinforcement (Group 9) (Fig. 25-28). This description does 

not apply, however, to the load-unloaded end slip curves for Groups 6, 7, and 9 (Figs. 13-16,21-

24, 29-32). For these three groups, the load-unloaded end slip curves initially rise steeply, reach a 

plateau at a load of 30 to 40 kips and begin to rise again only after significant additional slip, until 

the peak load is attained. The large increase in slip observed for these specimens may occur in 

conjunction with the separation of portions of concrete on the front or top surfaces of the test 

specimens, lowering the effective bond stiffness and allowing the additional bar movement. The 
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separation of the concrete, however, does not represent the maximum capacity of the specimen. 

The load at which the high increase in unloaded end slip occurs for these specimens approximates 

the maximum capacity of the test specimens. 

A comparison of load-slip response based on relative rib area shows that, for all test 

groups, the higher Rr. the higher the initial stiffness of the load-slip curve. For similar degrees of 

confinement, the initial stiffness appears to depend on Rn independent of rib height. The two 

higher relative rib areas, in general, produced similar curves, with the 0.20 relative rib area bars 

producing slightly stiffer curves than those with Rr = 0.10. Bars with Rr = 0.05 showed signifi­

cantly more slip than those with the higher relative rib areas. The conventional reinforcing bars, 

with Rr = 0.07, showed greater initial loaded end slips than even the prototype bars with Rr = 

0.05, but unloaded end slips between those obtained for Rr = 0.05 and 0.10. The high stiffness 

and low slip obtained with higher values of Rr may prove useful in reducing the rate of degradation 

of reinforced concrete members subjected to severe cyclic loading. 

Bond Strength 

The bond strengths obtained for test specimens in Groups 5 and 6, 7 and 8, and 9 are 

presented in Figs. 33, 34, and 35, respectively. Each data point in Fig. 33 represents the average 

of three test results. The data points in Fig. 34 represent individual test results, and the data points 

illustrated in Fig. 35 represent one or the average of two or three test specimens. Specific results 

are presented in Table 3. 

Since concrete strengths range from 4,500 to 6,000 psi, the test results are modified to 

allow individual tests to be compared on an equitable basis. Modified bond strengths are obtained 

by normalizing the test results with respect to a nominal concrete strength of 5,000 psi, using the 

assumption that, within the concrete strength range used, bond strength is proportional to the 

square root of the compressive strength. Thus, bond strengths are multiplied by (5000/f'c)l/2. 

As illustrated in Figs. 33 and 34, the significant difference in load-slip behavior obtained as 

a function of relative rib area, Rr. does not always translate into higher strength. For specimens 
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without transverse reinforcement, bond strengths are independent of deformation pattern, although 

most of the prototype bars exhibit higher strengths than the conventional reinforcing bars, marked 

RV and RH. In these cases, the bars were subject to low confining stresses and appear to have 

acted as wedges, causing the concrete to split at the time of failure. These results suggest that there 

is apparently little difference in the wedging effect, as a function of rib height and spacing, based 

on strength. The lower strength obtained by the conventional bars may be tied to the lower face 

angle of the ribs, which may cause these bars to act as somewhat more efficient wedges than the 

machined bars. It can also be observed that the conventional bars with the longitudinal ribs 

oriented in the vertical position (RV) consistently provide higher bond strengths than the conven­

tional bars with the longitudinal ribs oriented in a horizontal position (RH). This may be due to the 

fact that the specimens fail principally by vertical cracking and the vertical orientation of the 

longitudinal ribs brings more of the surface area of the transverse ribs to bear on the concrete at the 

time of failure. 

In contrast to the bars without transverse reinforcement, the bars with transverse rein­

forcement (Groups 6 and 7) exhibit a significant effect of deformation pattern on bond strength. In 

all cases, bond strength increases significantly with the addition of transverse reinforcement; 

however, that increase is generally greater, the greater the relative rib area. For the tests illustrated 

in Fig. 33, the bars with the lowest value of Rr (0.05) exhibit a 25 percent increase in bond 

strength due to confinement. As relative rib area increases, the additional bond strength provided 

by the confinement increases up to 50 percent for R, = 0.20. With the exception of the bars with 

Rr = 0.05 and rib height= 0.10 (rib spacing= 2.20 in.) shown in Fig. 33, relative rib area appears 

to be the primary controlling factor in the added bond strength, i.e., relative rib area rather than rib 

height and/or rib spacing appears to be the factor controlling the increase in bond capacity. The 

added strength obtained for the conventional reinforcement (Rr = 0.07) is below thl}t obtained for 

most of the machined bars with R, = 0.05. 

In evaluating the test results for Group 6 (Fig. 33), the observation was made that, for 

most bars with Rr = 0.20, the strength appeared to be controlled by splitting around the auxiliary 
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No. 6 bars used as tensile reinforcement For this reason, it is not clear that the maximum strength 

obtained in the tests with the highest relative rib areas are indicative of what could be obtained. To 

improve the ability of the specimen to handle test bars with higher bond forces, new sets of 

specimens were fabricated in which the straight auxiliary bars shown in Figs. 1a and 1 b were 

replaced by hooked bars. The results for these specimens both with (Group 7) and without 

(Group 8) transverse reinforcement, are illustrated in Fig. 34. The results show that the capacity 

of all bars was increased by the change in specimen configuration. However, the use of the 

hooked bars did not greatly alter the maximum capacity of the test specimen. The modification 

resulted in a 3 kip increase in bond strength for bars without transverse reinforcement and a similar 

increase in bond strength for bars with transverse reinforcement, up to a maximum of 45 to 48 

kips. For bars with transverse reinforcement, the added bond strength appears, in all cases, to be a 

function of relative rib area. However, the bond strength leveled off for bars with transverse 

reinforcement and relative rib areas greater than 0.10. This leveling off appears to be due primarily 

to the test specimen rather than the deformation geometry. As a result, the tests in Group 9 

returned to the original reinforcement configuration. 

To evaluate the effects of additional concrete confinement, the specimen configuration 

shown in Fig. 1 a was modified by raising the position of the test bar and the auxiliary reinforce­

ment by 1 in. and increasing the lead length to 4 in., while reducing the bonded length to 81/z in. 

(total embedment remained at 121h in.) to limit the total bond force. The results (Fig. 35) illustrate 

that there is a strong relationship between bond strength and relative rib area if there is added 

confinement provided by the concrete. The results illustrated in Fig. 35 represent all but two of the 

test specimens in Group 9. Two specimens, M32-8.5-4C and M33-8.5-4C, are excluded because 

they had unusually low strengths, 12 and 6 kips, respectively, below other bars with the sante test 

parameters. For completeness, the average results including these bars are shown in Fig. 36. 

A comparison of either Fig. 35 or Fig. 36 with the results for Groups 5 and 8 in Figs. 33 

and 34 shows that added concrete confinement siguificantly increases bond strength and that the 

higher the relative rib area, the greater the increase. For the results illustrated in Fig. 35, the 
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average bond strengths increase by 40, 49, and 58 percent for Rr = 0.05, 0.10, and 0.20, respec­

tively, compared to the specimens in Group 5 (Fig. 33). As observed for the test results shown in 

Figs. 33 and 34, the bond strengths obtained by the conventional reinforcement are below those 

obtained by the machined bars, increasing by an average of just 31 percent, compared to similar 

bars tested in Group 5. In this case, the bond strength obtained by the conventional reinforcement 

appears to be unaffected by the orientation of the longitudinal ribs, perhaps because the principal 

failure crack was horizontal. 

Overall, comparisons between Figs. 33 and 35 suggest that increasing Rr for bars in 

practice will result in even greater improvements in bond strength with added cover and bar 

spacing than can be obtained currently. 

DISCUSSION 

The results obtained in this study explain many earlier observations. The most important 

observations in the current study involve 1) the conditions under which deformation pattern plays a 

role in bond strength and 2) the effect of the relative rib area, R., on bond force-slip relationships 

and bond strength. 

Within the range of the deformation parameters evaluated in this study, deformation pattern 

has virtually no effect on bond strength when a splitting failure of the concrete governs. This 

matches the earlier observations ofLosberg and Olsson (1979), as well as the statistical evaluations 

by Orangun et al. (1975, 1977) and Darwin et al. (1992a, 1992b). Under these conditions, a 

deformed reinforcing bar behaves as a wedge, causing the concrete to split. The effectiveness of 

the wedge is not sensitive to the details of the deformation pattern. Under conditions of increased 

confinement (as in a standard pullout test or with the addition of transverse reinforcement or higher 

concrete cover and bar spacing), the greater the rib bearing area, the higher the bond strength. 

Thus, with additional confinement provided by either transverse reinforcement or additional 

concrete, bond strength increases significantly with increases in the relative rib area. This matches 

the observations of Losberg and Olsson (1979), Soretz and Holzenbein (1979), and Kimura and 
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Jirsa (1992). The current study has not established an upper limit on the relative rib area beyond 

which no improvement in bond strength occurs; there is likely an upper limit, based on practical 

considerations of bar production and concrete placement However, since Rr is typically less than 

0.08 (Choi et al. 1990), there clearly is considerable room for improvement. 

The close relationship berween the shape of the load-slip curve and Rr matches the observa­

tions of Clark (1946, 1949); under all conditions, the initial stiffness of the curve increases with 

increasing relative rib area. As mentioned earlier, the high load-slip stiffness of bars with high 

values of Rr could prove to be useful for structures subjected to cyclic loading. 

The low scatter of test data for development and splice tests (Darwin et al. 1Q92a, 1992b) is 

likely due to the insensitivity of bond strength to deformation pattern when splitting of concrete 

controls. The high scatter of test data for bars confined by transverse reinforcement must be due, 

at least in part, to unaccounted differences in the deformation patterns of the bars used in the tests. 

There are some aspects of the current study that do not agree completely with earlier 

observations. Rehm (1957, 1961) found a relationship berween the ratio of rib spacing to rib 

height and the nature of bond failure. For spacing/height ratios less than 7, Rehm observed that a 

pullout failure will occur, while for spacing/height ratios greater than 10, a splitting failure will 

occur. In the current study, splitting failures occurred in all cases, even down to spacing/height 

ratios of 5.26. 

Losberg and Olsson (1979) observed that bond capacity decreased once ribs become closer 

than about rwo-thirds of the bar diameter. This did not occur in the current study. No degradation 

in bond strength was observed for rib spacings as close as 0.263 bar diameter. The differences in 

these observations may be due, in part, to the effect of the width of the concrete between the 

deformations. In the current study, deformation widths are relatively small, allowing adequate 

concrete strength between deformations. If the deformation width were increased, the amount of 

concrete available to Carty shear stresses would be decreased, which might decrease bond strength. 

This factor will be the subject of further experimental work at the University of Kansas. 

Lutz and Gergely (1967) observed that crnshed concrete in front of ribs produced an 
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effective rib face angle of 30 to 40°. In the current study, that angle ranged from 17 to 40°. The 

lower angles were observed on bars with rib heights of 0.05 in. The higher angles were observed 

for bars with rib heights of 0.07 5 and 0.10 in. In spite of the differences in effective face angle, 

overall response was a function of relative rib area. In the current study, there does not seem to be 

a relationship between the angle of the crushed concrete and bond behavior. 

In addition to the effect of the width of concrete between ribs, there are at least two other 

questions that have not been answered in the current study. First, it is not clear why the conven­

tional reinforcing provided lower bond strengths than the machined reinforcing bars when con­

finement was provided by transverse reinforcement or additional concrete cover. Second, since the 

nominal diameter of the reinforcing bars used in tbis study was constant, it is not clear whether the 

observed effect of relative rib area is truly non dimensional or a function of the bearing area of the 

ribs per unit lengtb of the bar. These questions will also be addressed in continuing research. 

SUMMARY AND CONCLUSIONS 

The effect of deformation pattern on bond strength was studied using 1 in. diameter 

machined bars with deformation heights of 0.05, 0.075, and 0.10 in. and deformation spacings 

ranging from 0.263 in. to 2.2 in. The combinations of rib height and spacing produced relative rib 

areas of 0.20, 0.10, and 0.05 for each deformation height. Conventional reinforcing bars were 

also studied. The effect of deformation pattern was evaluated using beam-end specimens with 

varying degrees of confinement provided to the test bars. Degrees of confinement ~ere: 1) 2 in. 

cover without confining transverse stirrups, 2) 2 in. cover with confining transverse stirrups, and 

3) 3 in. cover without confining transverse stirrups. Test bars with 2 in. cover had an initial 

unbonded lengtb of lh in. and a bonded length of 12 in. Bars with 3 in. cover had an initial 

unbonded lengtb of 4 in. and a bonded length of 8 lf2 in. The study was also used to refme the 

design and test configuration used for the beam-end test specimen. 

The following conclusions are based on the results and analyses presented in this report for 

the range of the parameters evaluated. 
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1. The bond force-slip response of reinforcing bars is a function of the relative rib area of 

the bars, independent of the specific combination of rib height and rib spacing. 

2. Under all conditions of bar confinement, the initial stiffness of the load-slip curve 

increases with an increase in the relative rib area. 

3. Under conditions of relatively low confinement, in which bond strength is governed by 

splitting of the concrete, bond strength is independent of deformation pattern. 

4. Under conditions in which additional bar confinement is provided by transverse rein­

forcement or higher covers and lead lengths, bond strength increases compared to the bond 

strength of bars with less confmement. The magnitude of the increase in bond strength increases 

with an increase in the relative rib area. 

5. The observed relationships between deformation pattern, degree of confmement, and 

bond strength appear to explain the large scatter obtained in earlier splice and development tests for 

bars that are confined by transverse reinforcement. 

6. The observations made in this study will be used in the development of reinforcing bars 

with greater relative rib areas that will substantially decrease the required development lengths of 

bars confmed by transverse reinforcement and/or high concrete covers and bar spacings. 
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Table 1: Test Bar Data 

Nominal Def. Yield Def. De f. Def. Def. Bearing Relative 
Bar Pattern Strength Height Spacing Gap Angle Area per Rib 
Dia. inch Area 
(in.) ( ksi) (in.) C in.) C in.) c deg.) C in.) 
3/8 B 77.3 0.032' 0.2560' 0.115' 90 .. •• 
1 s 71.1 0.055' 0.6670' 0.175' 90 0.219. 0.070 
1 N 63.8 0.060' 0.6040' 0.162' 70 0.245 0.078 

M11 110 0.050 0.2630 90 0.629 0.200 
M12 110 0.050 0.5250 90 0.314 0.100 
M13 110 0.050 1.0500 90 0.157 0.050 

M21 110 O.Q75 0.4030 90 0.629 0.200 
M22 110 O.Q75 0.8060 90 0.314 0.100 
M23 110 0.075 1.6125 90 0.157 0.050 

M31 110 0.100 0.5500 90 0.629 0.200 
M32 110 0.100 1.1000 90 0.314 0.100 
M33 110 0.100 2.2000 90 0.157 0.050 

• Average 
" Not measured 
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Table 2a : Concrete Mixture Proportions C Per Cubic Yard) 

Group 

1 - 9 

Nominal 
Strength 

C psi) 
60CO 

W!C 
Ratio 

0.41 

Cement Water 

( lb) ( lb) 

550 225 

• Kansas River Sand- Lawrence Sand Co .. Lawrence. KS. 

Aggregate 
Rne • Coarse •• 
(lb) (lb) 

1564 1588 

Bulk Specific Gravity CSSD) = 2.62; Absorption= 0.5 %; Fineness Modulus = 2.89. 

•• Crushed Umestone- Fogel's Quarry. Ottawa. KS. 
Bulk Specific Gravity CSSD) = 2.58; Absorption= 2.7%; Max. Size= 3/4 in.; 
Untt Weight= 90.5 lb/cu. ft. 

Table 2b: Concrete Properties 

Group Slump Concrete Air Age at Av. Comp. 
Temperature Content Test Strength 

(in.) (F) (%) C days) (psi) 

1 2 1/4 57 5.8 7 3890 
2 3 1/2 65 6.8 10 4230 
3 1 55 3.5 7 5460 

40 2 1/2 75 3.0 10 5360 
4b 2 1/2 75 3.0 11 5530 
5o 2 1/2 72 3.9 8 4560 
5b 2 l/2 72 3.9 9 4610 
60 2 1/2 75 3.9 9 4600 
6b 2 72 3.8 9 4720 
6c 1 3/4 65 3.2 8 4530 
7 2 70 3.2 9 4750 
8 2 56 4.1 8 4630 

9a 2 49 3.2 19 5990 
9b 2 45 3.1 10 5040 
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Table 3: Beam- end Tests 

Group Specimen Ht. of Rib Rei. Cover Concrete Bond Mod. Stirrups 
Label" Ribs Spacing Rib Strength Str. Bond 

Area Str~ ..... 
(in.) (in.) (in.) ( esi) ( lb) ( lb) 

M11-8-4 •• 0.05 0.2630 0.200 1 7/8 38<;() 27930 31670 
M12-8-4 •• 0.05 0.5250 0.100 1 13/16 38<;() 38270 433<;() 
M13-8-4 •• 0.05 1.0500 0.050 2 38<;() 36230 41080 
M31-8-4 •• 0.10 0.5500 0.200 1 15/16 38<;() 27250 308<;() 
M32-8-4 •• 0.10 1.1000 0.100 2 1/16 38<;() 32670 37040 
M33-8-4 •• 0.10 2.2000 0.050 2 1/16 38<;() 28500 32310 

2 NH8-8-4A •• 0.06 0.604 0.078 2 4230 28540 31030 
NH8-8-4B •• 0.06 0.604 O.Q78 2 1/16 4230 25520 27750 
Avg. 293<;() 
NH8-8-4C 0.06 0.604 O.Q78 2 4230 37510 40780 

NH8-10-4A •• 0.06 0.604 O.D78 1 7/8 4230 36710 39910 
NH8-10-4B •• 0.06 0.604 O.Q78 1 15/16 4230 41010 445<;() 
Avg. 42250 
NH8-10-4C 0.06 0.604 O.Q78 2 4230 41600 45220 

NH8-13.5-.5A •• 0.06 0.604 0.078 1 7/8 4230 32500 35330 
NH8-13.5-.5B •• 0.06 0.604 O.Q78 1 7/8 4230 32110 34910 
Avg. 35120 
NH8-13.5-.5C 0.06 0.604 0.078 2 4230 31600 343<;() 

3 M1H0-4 0.05 0.2630 0.200 1 7/8 5460 35410 338<;() 
M12-10-4 0.05 0.5250 0.100 2 5460 38540 36880 
M13-10-4 0.05 1.0500 0.050 2 5460 40080 38350 
M3H0-4 0.10 0.5500 0.200 2 1/4 5460 32450 31050 
M32-10-4 0.10 1.1000 0.100 2 5460 44340 42430 
M33-10-4 0.10 2.2000 0.050 1 7/8 5460 38440 367<;() 

S8H-8-4A 0.05 0.6670 0.070 2 5460 357<;() 34249 
S8H-8-4B 0.05 0.6670 0.070 2 5460 37500 35886 
S8H-8-4C 0.05 0.6670 0.070 7/8 5460 31000 29665 
Avg. 33267 
S8H-10-4A 0.05 0.6670 0.070 1 7/8 5460 41400 39618 
S8H-10-4B 0.05 0.6670 0.070 1 7/8 5460 44560 42642 
S8H-10-4C 0.05 0.6670 0.070 2 5460 40270 38536 
Avg. 40265 
S8H-13.5-.5A 0.05 0.6670 0.070 2 5460 31400 30048 
S8H-13.5-.5B 0.05 0.6670 0.070 2 1/8 5460 27380 26201 
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Table 3: Beam- end Tests ( Cont'd) 

Group Specimen Ht. of Rib Rei. Cover Concrete Bond Mod. Stirrups 
· Label· Ribs Spacing Rib Strength Str. Bond 

Area Str, *** 
(in.) (in.) (in.) ( esi) ( lb) ( lb) 

3 S8H·13.5-.5C 0.05 0.6670 0.070 2 5460 28750 27512 
Avg. 27921 

4 Mll-1Q-4A 0.050 0.2630 0.200 2 1/16 5360 39850 38490 
Mll-10-4B 0.050 0.2630 0.200 2 5530 42590 40500 
Avg. 39495 
M12-1Q-4A 0.050 0.5250 0.100 2 1/8 5360 39660 38300 
M12-1Q-4B 0.050 0.5250 0.100 2 5530 39480 37540 
Avg. 37920 
M13-1Q-4A 0.050 1.0500 0.050 2 1/8 5530 42500 40410 
M13-1Q-4B 0.050 1.0500 0.050 2 1/16 5360 37890 36600 
Avg. 38505 
M21-1Q-4A O.Q75 0.4030 0.200 2 1/16 5360 40500 39120 
M21-1Q-4B O.Q75 0.4030 0.200 2 1/8 5530 41410 39380 
Avg. 39250 
M22-1Q-4A 0,075 0.8060 0.100 2 1/16 5360 42680 41220 

M23-1Q-4A O.Q75 1.6125 0.050 2 5360 35000 331\00 
M23-1Q-4B O.Q75 1.6125 0.050 2 5530 40890 38880 
Avg. 36340 
M31-1Q-4A 0.100 0.5500 0.200 2 1/8 5360 36790 35530 
M31-1Q-4B 0.100 0.5500 0.200 2 1/8 5530 41390 39360 
Avg. 37445 
M32-1Q-4A 0.100 1.1000 0.100 2 5360 45230 43680 
M32-1Q-4B 0.100 1.1000 0.100 2 5360 39320 37980 
Avg. 40830 
M33-1Q-4A 0.100 2.2000 0.050 2 1/8 5360 38420 37110 

5 Mll-12-.5A . 0.050 0.2630 0.200 2 1/8 4560 29080 30450 
M1 H2-.5B 0.050 0.2630 0.200 2 1/8 4610 29880 31120 
M1H2-.5C 0.050 0.2630 0.200 2 1/16 4610 28780 29970 
Avg. 30513 
M12-12·.5A 0.050 0.5250 0.100 2 1/16 4610 31400 32700 
M12-12-.5B 0.050 0.5250 0.100 2 1/8 4610 34130 35540 
M12-12-.5C 0.050 0.5250 0.100 2 1/8 4560 29900 31310 
Avg. 33183 
M13-12-.5A 0.050 1.0500 0.050 2 1/8 4610 29720 30950 
M13·12-.5B 0.050 1.0500 0.050 2 3/16 4610 28050 29210 
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Table 3: Beam- end Tests C Cont'd) 

Group Specimen Ht. of Rib Rei. Cover Concrete Bond Mod. Stirrups 
Label* Ribs Spacing Rib Strength Str. Bond 

Area Str . ... 
C in.) C in.) C in.) ( E2Si) ( lb) Clb) 

5 M13-12-.5C 0.050 1.0500 0.050 2 3/16 4560 31240 32710 
Avg. 30957 
M21-12-.5A O.Q75 0.4030 0.200 2 3/8 4610 30600 31870 
M21-12-.5B O.Q75 0.4030 0.200 2 1/8 4560 25420 26620 
M21-12-.5C O.Q75 0.4030 0.200 2 1/8 4610 31340 32640 
Avg. 30377 
M22-12-.5A O.Q75 0.8060 0.100 2 4610 31460 32760 
M22-12-.5B O.Q75 0.8060 0.100 2 1/8 4560 29620 31020 
M22-12-.5C O.Q75 0.8060 0.100 2 1/4 4610 26000 27080 
Avg. 30287 
M23-12-.5A O.Q75 1.6125 0.050 2 4610 31240 32530 
M23-12-.5B O.Q75 1.6125 0.050 2 1/16 4560 30770 32220 
M23-12-.5C O.Q75 1.6125 0.050 2 1/16 4610 28080 29240 
Avg. 31330 
M31-12-.5A 0.100 0.5500 0.200 2 1/16 4560 31130 32600 
M31-12-.5B 0.100 0.5500 0.200 2 1/16 4610 29990 31230 
M31-12-.5C 0.100 0.5500 0.200 2 3/16 4560 29030 30400 
Avg. 31410 
M32-12-.5A 0.100 1.1000 0.100 1 15/16 4560 29950 31360 
M32-12-.5B 0.100 1.1000 0.100 1 15/16 4610 30260 31510 
M32-12-.5C 0.100 1.1000 0.100 2 1/16 4610 30110 31360 
Avg. 31410 
M33-12-.5A 0.100 2.2000 0.050 2 1/8 4610 32110 33440 
M33-12-.5B 0.100 2.2000 0.050 2 3/16 4610 27970 29130 
M33-12-.5C 0.100 2.2000 0.050 2 1/8 4610 25750 26820 
Avg. 29797 
S8V-12-.5A 0.055 0.6670 0.070 2 1/4 4560 30070 31490 
S8V-12-.5B 0.055 0.6670 0.070 2 3/16 4610 29540 30760 
S8V-12-.5C 0.055 0.6670 0.070 2 4610 29180 30390 
Avg. 30880 
S8H-12-.5A . 0.055 0.6670 0.070 2 1/8 4560 27270 28560 
S8H-12-.5B 0.055 0.6670 0.070 2 1/16 4610 29160 30370 
S8H-12-.5C 0.055 0.6670 0.070 2 1/16 4610 29950 31190 
Avg. 30040 

6 M11-12-.5A 0.050 0.2630 0.200 2 1/8 4600 41820 43600 4 -#3 
Mll-12-.5B 0.050 0.2630 0.200 2 1/8 4720 46060 47410 4 -#3 
M11-12-.5C 0.050 0.2630 0.200 2 1/16 4530 41850 43970 4 -#3 
Avg. 44993 
M12-12-.5A 0.050 0.5250 0.100 2 1/8 4600 39840 41540 4 -#3 
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Table 3: Beam- end Tests ( Cont'd) 

Group Specimen Ht. of Rib Rei. Cover Concrete Bond Mod. Stirrups 
Lobel • Ribs Spacing Rib Strength Str. Bond 

Area Str . ... 
(in.) (in.) (in.) ( esi) ( lb) ( lb) 

6 M12-12-.5B 0.050 0.5250 0.100 1 15/16 4720 41560 42770 4-#3 
M12-12-.5C 0.050 0.5250 0.100 1 15/16 4530 38350 40290 4- #3 
Avg. 41533 
M13-12-.5A 0.050 1.0500 0.050 2 1/16 4600 33380 34800 4 -#3 
M13-12-.5B 0.050 1.0500 0.050 2 5/16 4720 37110 38190 4 -#3 
M13-12-.5C 0.050 1.05(10 0.050 2 3/16 4530 38890 '40860 4-#3 
Avg. 37950 
M21-12-.5A O.Q75 0.4030 0.200 2 1/4 4720 42560 43800 4-#3 
M21-12-.5B O.Q75 0.4030 0.200 2 3{16 4530 45180 47470 4- #3 
M21-12-.5C O.Q75 0.4030 0.200 2 4600 45140 47060 4-#3 
Avg. 46110 
M22-12-.5A O.Q75 0.8060 0.100 2 1/8 4720 41730 42950 4-#3 

· M22-12-.5B O.Q75 0.8060 0.100 2 3/16 4530 40920 42990 4 -#3 
M22-12-.5C O.Q75 0.8060 0.100 2 4600 37920 39530 4 -#3 
Avg. 41823 
M23-12-.5A O.Q75 1.6125 0.050 2 1/16 4720 36560 37630 4 -#3 
M23-12-.5B O.Q75 1.6125 0.050 2 l/16 4530 36840 38700 4-#3 
M23-12-.5C O.o75 1.6125 0.050 2 1/16 4600 36230 37770 4-#3 
Avg. 38033 
M31-12-.5A 0.100 0.5500 0.200 2 4530 40840 42910 4-#3 
M31-12-.5B 0.100 0.5500 0.200 1 15/16 4600 44180 46060 4 -#3 
M31-12-.5C 0.100 0.5500 0.200 2 1/16 4720 45830 47170 4-#3 
Avg. 45380 
M32-12-.5A 0.100 1 '1000 0.100 2 4530 34980 36750 4-#3 
M32-12-.5B 0.100 1.1000 0.100 2 1/8 4600 39710 41400 4-#3 
M32-12-.5C 0.100 1.1000 0.100 2 1/8 4720 44740 46050 4-#3 
Avg. 41400 
M33-12-.5A 0.100 2.2000 0.050 1 15/16 4530 34590 36340 4-#3 
M33-12-.5B 0.100 2.2000 0.050 2 4600 31550 32890 4-#3 
M33-12-.5C 0.100 2.2000 0.050 2 1/16 4720 27440 28240 4-#3 
Avg. 32490 
S8V-12-.5A 0.055 0.6670 0.070 2 1/16 4600 35250 36750 4-#3 
S8V-12-.5B 0.055 0.6670 0.070 2 3/16 4720 39670 40830 4-#3 
S8V-12-.5C 0.055 0.6670 0.070 2 1/4 4530 33350 35040 4-13 
Avg. 37540 
S8H-12-.5A 0.055 0.6670 0.070 2 1/8 4600 33450 34870 4-#3 
S8H-12-.5B 0.055 0.6670 0.070 1 15/16 4720 37210 38300 4-13 
S8H-12-.5C 0.055 0.6670 0.070 2 1/16 4530 31960 33580 4-#3 
Avg. 35583 
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Table 3: Beam- end Tests ( Cont'd) 

Group Specimen Ht. of Rib Rei. Cover Concrete Bond Mod. Stirrups 
Label* Ribs Spacing Rib Strength Str. Bond 

Area Str. *** 
C in.) (in.) (in.) ( QSi) ( lb) ( lb) 

7 M11-12-.5 0.050 0.2630 0.200 2 3/16 4750 47670 48910 4 -#3 
M12-12-.5 0.050 0.5250 0.100 2 1/16 4750 44420 45570 4-#3 
M13-12-.5 0.050 1.0500 0.050 2 1/16 4750 39470 40500 4- #3 
M21-12-.5 0.075 0.4030 0.200 2 1/8 4750 44180 45330 4 -#3 
M22-12-.5 0.075 0.8060 0.100 2 3/16 4750 46460 47670 4-#3 
M23-12-.5 0.075 1.6125 0.050 2 4750 39460 40490 4-#3 
M31-12-.5 0.100 0.5500 0.200 2 4750 45790 46980 4-#3 
M32-12-.5 0.100 1.1000 0.100 2 4750 46050 47250 4-#3 
M33-12-.5 0.100 2.2000 0.050 2 3/16 4750 40910 41970 4-#3 
S8V-12-.5 0.055 0.6670 0.070 2 1/8 4750 38980 39990 4-#3 
S8H- )2-.5 0.055 0.6670 0.070 2 1/16 4750 37090 38050 4-#3 

8 M11-12-.5 0.050 0.2630 0.200 2 1/16 4630 32180 33441 
M12-12-.5 0.050 0.5250 0.100 2 1/8 4630 31990 33244 
M13-12-.5 0.050 1.0500 0.050 2 1/4 4630 31940 33192 
M21-12-.5 0.075 0.4030 0.200 2 4630 32050 33306 
M22-12-.5 0.075 0.8060 0.100 2 1/8 4630 31440 32672 
M23-12-.5 0.075 1.6125 0.050 2 1/8 4630 30270 31456 
M31-12-.5 0.100 0.5500 0.200 2 4630 31820 33067 
M32-12-.5 0.100 1.1000 0.100 2 3/16 4630 33180 34480 
M33-12-.5 0.100 2.2000 0.050 2 1/8 4630 31350 32579 
S8V-12-.5 0.055 0.6670 0.070 2 1/8 4630 29360 30511 
S8H-12-.5 0.055 0.6670 0.070 2 4630 27520 28598 

9 Mll-8.5-4A 0.050 0.2630 0.200 3 5990 55510 50716 
M11-8.5-4B 0.050 0.2630 0.200 3 1/4 5040 45500 45319 
Avg. 48017 
M12-8.5-4A 0.050 0.5250 0.100 3 1/8 5990 54680 49957 
M12-8.5-4B . 0.050 0.5250 0.100 3 1/4 5040 42700 42530 
Avg. 46244 
M13-8.5-4A 0.050 1.0500 0.050 3 5990 49270 45015 
M13-8.5-4B 0.050 1.0500 0.050 3 5040 42500 42331 
Avg. 43673 
M21-8.5-4 0.075 0.4030 0.200 3 5990 55040 50286 
M22-8.5-4 0.075 0.8060 0.100 3 5990 53250 48651 
M23-8.5-4 0.075 1.6125 0.050 3 1/16 5990 48280 44110 

M31-8.5-4A 0.100 0.5500 0.200 3 5990 50580 46212 
M31-8.5-4B 0.100 0.5500 0.200 3 1/16 5040 47400 47212 
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Table 3: Beam- end Tests C Cont'd) 

Group Specimen Ht. of Rib Rei. Cover Concrete Bond Mod. Stirrups 
Lobel• Ribs Spacing Rib Strength Str. Bond 

Area Str .... 
C in.) C in.) C in.) ( QSi) ( lb) ( lb) 

9 M31-8.5-4C 0.100 0.5500 0.200 3 5040 49000 48805 
Avg. 47409 
M32-8.5-4A 0.100 1.1000 0.100 3 1/8 5990 51840 47363 
M32-8.5-4B 0.100 1.1000 0.100 3 1/8 5040 45600 45419 
M32-8.5-4C 0.100 1.1000 0.100 3 1/8 5040 34600 34462 
Avg. w/o M32-8.5-4C 46391 
Avg. w/ M32-8.5-4C 42415 
M33-8.5-4A 0.100 2.2000 0.050 3 1/16 5990 44290 40465 
M33-8.5-4B 0.100 2.2000 0.050 3 1/16 5040 42300 42132 
M33-8.5-4C 0.100 2.2000 0.050 3 1/8 5040 35500 35359 
Avg. W/0 M33-8.5-4C 41298 
Avg. w/ M33-8.5-4C 39318 
S8V-8.5-4A 0.055 0.6670 0.070 3 5990 44120 40309 
S8V-8.5-4B 0.055 0.6670 0.070 3 5040 40000 39841 
Avg. 40075 
S8H-8.5-4A 0.055 0.6670 0.070 3 1/8 5990 44650 40794 
S8H-8.5-4B 0.055 0.6670 0.070 3 1/8 5040 39200 39044 
Avg. 39919 

• Specimen Lobel 

1. Machined Bars C MHX-B-LR) 2. SMI #8 Bars C S8Q-B-LR) 3. North Star #8 Bars ( N80-B-LR) 
H =Rib height designation: 1 =Low. 0.05 in.; 2 =Medium, 0.075 in.; 3 =High, 0.10 in. 
X = Rib spacing designation : 1 = Small ; 2 = Medium ; 3 = Lorge 
0 = Orientation of longitudinal rib : V =Vertical ; H = Horizontal 
B = Bonded length, in. 
l = Lead length, in. 
R = Replication mark : A , B , C 

•• Specimen wtthout side stirrups 

••• Modified Bond Strength= Bond Strength C 5000/fc) '12 
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Fig. 2b Conventional reinforcement deformation pattern 
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Fig. 4 Beam-end test specimen without transverse stirrups after failure. Cracks on the front face 
of specimen form an inverted Y centered on the test bar 

Fig. 5 Beam-end test specimen without transverse stirrups after failure. Cracks on the front face 
of specimen form an inverted T centered on the test bar 
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Fig. 6 Beam-end test specimen without transverse stirrups after failure. Cracks on the front face 
of specimen form an inverted Y with vertical crack passing through the location of the test 
bar 

Fig. 7 Beam-end test specimen with 3 in. cover, without transverse reinforcement, after failure 
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Fig. 8 Beam-end test specimens with transverse reinforcement after failure 
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