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ABSTRACT 

The behavior of saturated specimens of cement paste and mortar under 

monotonic, sustained and cyclic loading, is compated to that of concrete at water -

cement ratios of 0.5 and 0.7. Specimen age, at testing, ranges from 27 to 29 days. 

For monotonic loading, the behavior of each material is described in terms of peak 

stress, strain at peak stress, and initial modulus of elasticity. For sustained loading, 

the behavior is described in terms of creep strain as a function of stress - strength 

ratio and time under load. Mathematical relationships ate developed on the sustained 

load response to estimate the cumulative static creep for a cyclic test. 

Cyclic test results ate exatnined in terms of strain at 15 seconds, the difference 

between the strain at 15 seconds and the peak strain for a given cycle (cyclic strain), 

the estimated creep strain for a cyclic test (equivalent creep, based on sustained load 

test results), the difference between cyclic strain and equivalent creep (cyclic action 

strain), and the change in secant unloading modulus (a measute of material damage). 

The equivalent creep duting a cyclic test is used to distinguish between cyclic strain 

and cyclic action strain, which may include accelerated creep strain as well as strain 

related to tnicrocracking. Cyclic action strain is correlated with change in modulus of 

elasticity to determine the extent to which these strains ate the result of damage. 

Monotonic test results show that for the materials used in this study, at a given 

water - cement ratio, cement paste has a higher strength and strain capacity than do 

the corresponding mortat and concrete, while mortat and concrete have a higher 

initial stiffness than cement paste. Sitnilatly, mortat has a higher strength and strain 

capacity than the corresponding concrete, but has approximately the same initial 

stiffness. 
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The sustained load test results show that over a four hour period, creep strain 

increases nonlinearly with increasing stress - strength ratio. At the same stress -

strength ratio, total strain and creep strain accumulate more rapidly for cement paste 

than for mortar and more rapidly for mortar than for concrete. 

The cyclic test results show that for cyclic tests with a maximum stress - strength 

ratio greater than 0.6f', cyclically loaded cement paste, mortar and concrete exhibit 

larger strains than similar materials exposed to a sustained load equal to the mean 

cyclic stress. For the load regimes studied, maximum cyclic stress appears to have a 

much greater impact on the cyclic action strain and change in stiffness than the mean 

cyclic stress or the cyclic stress range. The overall damage, as measured by the 

cyclic action strain and change in secant unloading modulus, in mortar in concrete is 

similar, suggesting that the behavior of concrete under cyclic loading is dominated by 

its mortar constituent. 

Under monotonic, sustained and cyclic loading, the behavior of mortar more 

closely resembles that of concrete than it does cement paste. 
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1.1 GENERAL 

CHAPTER 1 

INTRODUCTION 

Concrete is a composite material which deforms in a nonlinear, inelastic manner 

under load. Research indicates that the behavior of concrete depends on the behavior 

of its constituent materials. To predict the behavior of concrete under general load 

regimes requires an understanding of the stress-strain behavior and mechanisms of 

damage in these constituents. This understanding can only be gained through 

extensive testing and observation, so that the behavior can be described and theories 

can be developed. 

Concrete is used in a variety of structural applications, many of which involve 

cyclic compressive loading in addition to static or sustained loading. Under 

sustained loading, concrete undergoes a gradual but continuous deformation known 

as creep. Creep is a phenomena characterized by strain accumulating over time, in 

addition to the "elastic" strain or the strain produced by the initial application of load. 

The mechanisms of creep in concrete are not fully understood, but probably involve 

nondestructive consolidation of the material, rnicrocracking, and fluid movement. 

Research has shown (Washa and Fluck 1950, Cook and Chindaprasirt 1980) that a 

sustained load producing low stresses, applied prior to testing monotonically, 

significantly increases the initial modulus of elasticity of concrete. This implies that 

creep, at least at low stresses, is not a result of detrimental cracking or damage to the 

material. 

When cyclic loading is applied, the strain measured at the maximum stress 

increases with each cycle. This increase in strain has also been called creep by a 

number of researchers (Whaley and Neville 1973, Brooks and Forsyth 1986). There 

is general agreement among researchers that a statically loaded specimen undergoes 
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less strain than a specimen loaded cyclically about an equivalent mean stress. The 

mechanism of this additional strain is unknown and leads to some uncertainty in the 

definition of "creep" for a cyclically loaded specimen. Whaley and Neville (1973) 

suggest that the cyclic nature of the load merely accelerates the process of static creep 

and that there are no detrimental effects if the maximum stress is below the "fatigue 

limit", approximately 50 percent of the ultimate strength. Cook and Chindaprasirt 

(1980) found that for cyclic loading histories reaching 40 percent of ultimate, cement 

paste, mortar and concrete all increase in stiffness, with slight increases in strength, 

upon reloading to failure. Maher and Darwin (1980 and 1982) indicate that these 

gains in stiffness and strength occur primarily during the first cycle of loading and 

only for specimens cycled to a maximum stress of 56 percent of ultimate or less. 

Similarly, Cook and Chindaprasirt found that when specimens are cycled to 60 

percent of ultimate, both stiffness and strength are reduced. For cycles to a 

maximum strain, Spooner, Pomeroy and Dougill (!976) found that most of the 

damage occurs during the frrst cycle and that after several cycles stability is attained 

It is apparent that at any level of stress, cyclic loads induce larger strains than 

static loads. The mechanism of these additional strains may or may not be the same 

as that of static creep. No information about the magnitude of these additional strains 

is available because no attempt has been made to separate them from the more 

familiar static creep strains. Some researchers have compared changes in cyclic 

strain at peak stress to static creep strain at a stress equal to the mean cyclic stress 

(Whaley and Neville 1973), while others (Bazant and Panula 1979) have compared 

changes in strain measured at the mean cyclic stress to static creep measured at the 

same stress. 

Combining static creep strain and strain caused by cyclic loading under the 

general title of "creep" makes for some confusion. For the purposes of this report, 
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the difference between the total strain at the peak stress for a cycle and the strain 

measured at the peak stress of the first cycle will be called cyclic strain, while the 

term creep will refer to static creep only. 

1.2 BACKGROUND 

Microcracks exist in concrete prior to loading, begin to propagate at very low 

strains and continue to propagate under increasing load until failure occurs (Hsu, 

Slate, Sturman and Winter 1963, Derocher 1978). In nonloaded concrete specimens, 

these cracks are primarily interfacial bond cracks between aggregate particles and the 

mortar matrix. Some cracks extend from the bond cracks, at right angles, into the 

mortar matrix (Derucher 1978). As compressive load is applied, bond cracks and 

mortar cracks widen and propagate. Mortar cracks eventually bridge between 

aggregate particles. When a sufficiently large number of these mortar cracks join 

each other, failure occurs. Failure of concrete results from large numbers of inclined 

macroscopic cracks, widely distributed throughout the material. 

The nonlinear behavior of concrete is directly related to the process of damage 

and must be explained in terms of the behavior of its constituent materials. 

Comparisons of concrete, mortar and cement paste under monotonic loading indicate 

that damage is much more localized in cement paste, with a small number of vertical 

cracks causing failure, while the behavior of mortar more closely resembles that of 

concrete. Cement paste and mortar are not elastic-brittle materials as once thought 

(Shah and Winter 1966) but are nonlinear materials that are damaged continuously 

under load (Spooner, Pomeroy and Dougill 1976, Cook and Chindaprasirt 1980). 

Coarse aggregate is a linear-elastic material and usually has a higher strength and 

stiffness than the surrounding mortar (Hobbs 1973). Spooner et al. (1976) suggest 

that this difference in stiffness creates stress concentrations in the mortar matrix 
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leading to crack initiation, and further that cement paste and mortar behavior are 

controlling factors in the response of concrete to load. 

This research compares the behavior of cement paste, mortar and concrete under 

monotonic, sustained, and cyclic loading. Cyclic strains are distinguished from 

creep strains, and the magnimdes of each are examined. These strains are compared 

to changes in stiffness, a measure of internal damage, to help determine the 

mechanisms causing material deformation. 

1.3 PREVIOUS WORK 

Hsu, Slate, Sturman and Winter (1963) investigated microcrack propagation in 

concrete subjected to uniaxial compressive loading using a light microscope at 40x 

magnification. They found that interfacial bond cracks exist prior to loading. 

Looking at cross sections of specimens previously loaded to varying stresses and 

then unloaded they discovered that these cracks begin to propagate at 30 to 40 percent 

of the compressive strength (f'c) of the concrete. The onset of microcracking 

corresponds to the beginning of nonlinear stress-strain behavior and lateral expansion 

of the specimen. At 70 to 90 percent of f' c. mortar cracks begin to form and 

propagate at an accelerating rate until failure. 

Derocher (1978) used a scanning electron microscope to examine dried concrete 

specimens while applying an eccentric, compressive load. He concluded that the 

drying process does not significantly increase microcracking. He observed cracks 

extending into the mortar, at right angles to the bond cracks, prior to any loading. 

Under increasing compression, he observed that bond cracks do not propagate, but 

instead widen, while the mortar cracks widen and propagate at stresses as low as 15 

percent off' c· As the load increases, mortar cracks begin to bridge between bond 

cracks and, at about 0.45f'0 , the bridging is complete. At about 0.75f' 0 , mortar 
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cracks begin to join each other and eventually cause the specimen to fail. 

To assess the importance of bond microcracking, Darwin and Slate (1970) and 

Perry and Gillott ( 1977) conducted uniaxial compressive tests of concrete made with 

aggregate for which the interfacial bond strength had been modified. Their results 

show that bond strength has a relatively small impact (maximum of 15%) on the 

uniaxial compressive strength of concrete. 

Using a sequence of loading, unloading and reloading, Spooner and Dougill 

( 197 5) developed highly sensitive techniques to quantify damage in concrete. They 

measured the energy dissipated in damage, based on ideal material behavior, and 

compared the results with changes in modulus of elasticity based on the initial portion 

of the reloading curve (Ej). Their data indicates a good correlation between energy 

dissipated in damage and Ei. Signs of degradation appear at applied strains as low as 

400 microstrain. Their work indicates that damage in cement paste and concrete is a 

continuous process, beginning at very low strains. The work also.indicates that, for 

cycles to a maximum imposed strain, damage occurs primarily during the first cycle. 

This would seem to imply that degradation in terms of cracking, is a function of 

maximum strain. Spooner and Dougill also observe that an increasing aggregate 

concentration increases the degree of damage for a given applied load. 

Karsan and Jirsa (1979), using cycles to "common points", found that stiffness 

reached a stable value after only a few cycles. Common points occur when the 

loading branch of the stress-strain curve reaches the unloading branch of the previous 

cycle (implying both decreased stress and strain for each successive cycle). 

Whaley and Neville (1973) suggest that cyclic loads below a fatigue limit merely 

accelerate the process of creep. Neville and Hirst (1978) speculate that the 

acceleration results from limited additional bond cracking and that it is not detrimental 

to concrete strength or stiffness. Cook and Chindaprasirt (1980) found that cyclic 
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loading to sixty percent of f' c decreased both the stiffness and the strength of 

concrete upon reloading, indicating that cyclic loading causes damage. Specimens 

subjected to a sustained load, of less than sixty percent of ultimate, showed increased 

strength and stiffness, indicating that creep strain, per se, does not imply damage. 

When combined with the results of the cyclic tests, this leads to the conclusion that 

cyclic strain differs in nature from creep strain. Comparing concrete to mortar and 

paste, Cook and Chindaprasirt (1980) note that previously applied cyclic loads to 

forty percent of ultimate have no effect on the stiffness of cement paste or mortar, 

and may slightly increase the compressive strength. Cycles to forty percent of 

ultimate slightly decrease the strength and stiffness of concrete with a w/c ratio of 

0.55, but have less effect on lower w/c ratio mixtures. For cycles to sixty percent of 

ultimate, they found that cement paste and mortar were slightly degraded in terms of 

strength and stiffness, while concrete was affected to a greater degree, with 

reductions in strength and stiffness being most pronounced for the highest w/c ratio. 

Cook and Chindaprasirt also suggest that this change in stiffness is due to limited 

microcracking, in agreement with Spooner and Dougill (1975), and they suggest that 

an increase in cement paste strength can reduce the amount of microcrack damage. 

Tests of mortar (Maher and Darwin 1980, 1982) show that strengthening and 

stiffening due to compaction occur primarily within the first cycle of loading for 

stresses as high as 56 percent of ultimate, f' m· Further cycles or higher stresses 

·degrade the stiffness of mortar. As with concrete, damage in mortar begins at low 

stresses and is continuous for both monotonic and cyclic load. 

Attiogbe and Darwin (1985) subjected cement paste specimens to both cyclic and 

monotonic loading to produce strains of up to 4000 microstrain. They observed that 

microcracking in the cement paste was greater, at a given total strain, for the 

specimens subjected to cyclic loading than for specimens subjected to either 
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monotonic or sustained loading, indicating that damage increases as a result of the 

cyclic load. 

The rate of loading has been shown to affect the behavior of most materials. For 

a single cycle, high rates of load or impact loads can yield much greater concrete 

strengths than slowly applied loads. A number of researchers, including Spooner 

(1972) and Kaplan (1980), found that increasing the rate of loading produces 

increases in the strength of concrete. Kaplan also found that using a slower rate of 

loading, up to about 30 percent of ultimate, and then increasing the load rate before 

loading to failure yields higher strengths in cement paste than using a constant load 

rate throughout the test. However, continuing the slow rate of load beyond 30 

percent of ultimate results in decreased strength. Both Spooner and Kaplan indicate 

that curing and in particular moisture content at the time of test influence rate 

sensitivity. Kaplan has shown that an increasing moisture content increases the rate 

sensitivity, suggesting that fluid movement and pore pressure affect the response of 

concrete under load. 

The effect of frequency of cyclic loading on concrete has been studied 

extensively by Brooks and Forsyth (1986). They tested concrete using frequencies 

ranging from 1 cycle per day (1.157 x10-5 Hz) to 1 cycle per second (1 Hz) and 

loads ranging from 10 to 50 percent of ultimate for periods of up to 5 days. They 

note that much of the previous research performed on cyclic loading of concrete used 

frequencies ranging from 0.37 to 10Hz and that information about slower and more 

common rates of loading is scarce. Brooks and Forsyth defined three measures of 

"creep", the minimum strain during a cycle minus the residual strain of the first cycle, 

the strain at the mean stress minus the strain at mean stress for the first cycle, and the 

maximum strain for a cycle minus the maximum strain for the first cycle (defined as 

cyclic strain in this report). They indicate that the creep measured at the mean stress 
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is greater than the creep at the maximum stress (because of changes in the shape of 

the stress-strain curve with time) but that this phenomena diminishes with time to a 

difference of about 10 to 15 percent at 5 days. Their results also show that cyclic 

strain, as defined in this report, exceeds static creep measured at a stress equal to the 

mean cyclic stress for all loading frequencies. For saturated specimens, loaded at 

frequencies between 1 cycle per day and 30 cycles per hour, cyclic strain is 

independent of frequency. However, at higher frequencies cyclic strain increases 

with increasing frequency. 

Using a nonlinear representation for mortar, Maher and Darwin (1977) 

developed a finite element model for concrete which shows that the nonlinear 

behavior of mortar has a significant influence on the nonlinear behavior of the 

composite concrete. Their work strongly suggests that the nonlinear behavior of 

concrete is controlled by its mortar constituent. 

1.4 OBJECT AND SCOPE 

This research compares the behavior of cement paste, mortar and concrete under 

monotonic, sustained, and cyclic loading. A model for creep strain as a function of 

stress is developed to estimate the creep strain occurring in a cyclically loaded 

specimen. This estimate is used to separate the effects of creep from the effects of 

the cyclic load. 

Specimens of cement paste, mortar, and concrete with water-cement ratios of 0.5 

and 0.7 are tested at ages of 27 to 30 days. The cement paste and mortar are 

representative of the constituents of the corresponding concrete. Monotonic tests are 

performed to determine strength, initial modulus of elasticity, and the strain at peak 

stress. Sustained load tests are conducted for stress levels of 20, 40, 60, 80 and 90 

percent of ultimate strength (f). Cyclic tests, designed to study the effects of mean 
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stress level and stress range, are performed for stress ranges of O.l-0.3f', 0-0.4f', 

0.2-0.6f', and 0-0.Sf', using a frequency of 0.033 Hz (2 cycles per minute). Both 

sustained and cyclic tests have a maximum duration of four hours. 

Twenty-four batches (7 cement paste, 8 mortar, and 9 concrete) of six specimens 

each were tested. Some data cannot be used due to errors in measurement. The 

results of 17 cyclic, 62 sustained, and 40 monotonic tests are reported. The findings 

are compared to the results of previous research. 
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CHAPTER 2 

EXPERIMENTAL WORK 

To study the compressive behavior of concrete and its cement paste and mortat 

constituents, prismatic specimens were tested under monotonic, sustained, and cyclic 

loading using a closed-loop servo-hydraulic testing machine. Sustained and cyclic 

loading tests were limited to a maximum of 4 hours. The tests were designed to 

compate the stress-strain response and rate of degradation of concrete and its con­

stituent materials. 

2.1 MATERIALS 

Materials used were: 

Type I portland cement 

Fine aggregate: Mainly quartz with about 25 percent feldspat. Fineness 

modulus = 2.8. Bulk specific gravity (saturated surface dry) = 2.58. Absorption = 

1 percent. Source: Kansas River, Lawrence, Kansas. 

Coatse aggregate: lh in. crushed limestone. Bulk specific gravity (saturated 

surface dry) = 2.56. Absorption = 3.5 percent. Unit weight = 95 lb/ft3. Source: 

Hatnm's quatry, Perry, Kansas. 

The coatse aggregate was separated into size fractions, passing the lh in. and 

retained on a 3fg in. sieve, and passing the 3/g in. and retained on the No. 4 sieve. 

The two sizes were then combined in a ratio of 55 to 45 percent by weight, 

respectively. 

Two concrete mixtures, along with their mortat and cement paste constituents, 

were used. With water-cement ratios, w/c, of 0.5 and 0. 7, the concrete mixtures 
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produced 28 day compressive strengths of 4900 and 2800 psi, respectively. Mixture 

proportions of the concretes and the constituent materials are given in Table 2.1. 

2.2 PREPARATION 

The test specimens were prepared so that the cement paste and mortar mixtures 

approximated the constituents of the concrete as closely as possible. Prior to 

hatching, all aggregate was oven dried and cooled to room temperature. The mix 

water was then added to the aggregate and allowed to stand for a period of ten 

minutes. The water and aggregate weights were corrected to account for aggregate 

absorption obtained in a 20 minute saturation period, 0.95 percent and 2.95 percent 

for the fine and coarse aggregate, respectively. Following the 10 minute waiting 

period, the cement was added and the material was mixed for 5 minutes. After 

mixing, prismatic test specimens were placed vertically in steel forms, 2 x 2 x 8 in. 

for cement paste and mortar and 3 x 3 x 12 in. for concrete. The material was con­

solidated in three layers, each layer rodded 25 times with a 3fs rod. The forms were 

sealed at the top, and the specimens were stored in a horizontal position to reduce the 

effects of bleeding, and insure uniform properties throughout the height of the 

specimens. The importance of specimen uniformity is discussed below. 

After 24 hours, the specimens were removed from the molds and stored in lime 

saturated water until the time of test. 

Prior to testing, the specimens were shortened to obtain a length to width ratio of 

3 to 1 by removing equal portions from each end with a high-speed saw lubricated 

with saturated calcium hydroxide solution. 

Specimens were wrapped with plastic and tested in a saturated condition at ages 

ranging from 27 to 30 days. 
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2.3 TESTING 

Just prior to testing, specimens were capped with a 1/g in. layer of high-strength 

gypsum cement. Two sheets of 4 mil thick plastic, separated by a heavy layer of 

grease, were placed on each end of the specimen to reduce friction with the loading 

platens. Specimens were placed in the test machine, separated from the loading 

platens by 3 I 4 in. steel plates. The upper steel plate was then seated to the testing 

platen using high-strength gypsum cement (Fig. 2.1). The gypsum cement obtained 

a strength in excess of 7000 psi at the time of test 

A 110,000 pound capacity closed-loop, servo-hydraulic testing machine was 

used. The load was transmitted through flat rigid platens in order to minimize the 

strain gradient across the specimens. 

Specimens were instrumented using either a variable length compressometer or 

with extensometers attached directly to the specimen. The compressometer was 

attached to wood strips on the test specimens, using set screws. The gage length 

was 1 in. shorter than the length of the specimen (5 in. for cement paste and 8 in. for 

concrete). A strain gage type extensometer was installed on the compressometer to 

monitor strain and provide closed-loop control for the testing machine. In some 

tests, extensometers were attached directly to the surface of the specimens with a 

gage length equal to two-thirds of the specimen height ( 4 in. for cement paste and 

mortar, 6 in. for concrete). Load and strain were plotted during the test and recorded 

using a data acquisition system. 

Monotonic tests were run at a constant strain rate of 9 microstrain/sec. Readings 

were taken a 3 second intervals for the duration of monotonic tests. Sustained load 

(short-term creep) and cyclic load tests were run using load control, with the 

maximum load attained in 15 seconds. For sustained load tests, readings were taken 
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at 1 second intervals for the first 135 seconds, at 2 second intervals until an elapsed 

time of 255 seconds, at 10 second intervals until an elapsed time of 555 seconds, at 

30 second intervals until an elapsed time of 855 seconds, at 60 second intervals until 

an elapsed time of 3555 seconds, and at 300 second intervals until the end of the test, 

at an elapsed time of 14355 seconds. Cycles were applied at 2 cycles per minute for 

all cyclic tests. For cyclic tests readings were taken for the fust 5 cycles and then for 

5 cycles at 40 cycle (20 minute) intervals, specifically, cycles: 41 - 45 (1215- 1335 

sec), 81 - 85 (2415- 2535 sec), 121- 125 (3615- 3735 sec), 161 - 165 (4815-

4935), 201- 205 (6015- 6135), 241 - 245 (7215- 7335), 281- 285 (8415- 8535), 

321 - 325 (9615 - 9735), 361 - 365 (10815- 10935), 401 - 405 (12015- 12135), 

441 - 445 (13215- 13335), 481 - 485 (14415- 14535). Since data was recorded 

with 20 minute gaps between groups of 5 cycles, the failure of most specimens was 

not recorded. Only cyclic specimens 2C2, 3C4 and 6C2 failed during the collection 

of data. Therefore, the large strains normally associated with the failure of the 

specimens, and measured for these three specimens, are not recorded for the 

remainder of the cyclic test specimens. 

2.4 TEST PROGRAM 

The goals of the test program were two fold: (1) to compare the behavior of 

concrete with its cement paste and mortar constituents, and (2) to determine what 

aspects of material behavior in cyclicly loaded specimens are caused by the cycles 

themselves and what aspects are due to creep. 

Twenty-four batches (7 paste, 8 mortar, 9 concrete) of six specimens each were 

cast. Twenty-three of these one hundred forty-four specimens were discarded due to 

flaws. Specimens were subjected to three loading regimes: monotonic loading at a 

constant strain rate, sustained loading up to 4 hours, and cyclic loading up to 4 
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hours. Sustained loads were monitored at stress/strength ratios, cr/f', of 0.2, 0.4, 

0.6, and 0.8 and 0.9 for each material. Cyclic loading regimes consisted of stress 

cycles between of stress/strength ratio 0-0.8, 0-0.4, 0.1-0.3, and 0.2-0.6 for cement 

paste, 0-0.8, 0-0.4, and 0.2-0.6 for mortar and 0-0.8 and 0.2-0.6 for concrete. Two 

specimens of cement paste with w/c = 0.5 were subjected to sustained loads equal to 

0.8f'p until reaching a maximum strain of 0.004 and were then unloaded to measure 

the secant unloading modulus. This allows a comparison of the change in modulus 

under a sustained load to the change in modulus under a cyclic load. These 

specimens will be discussed in section 3.5. 

To determine possible effects of specimen size a limited number of concrete 

specimens with 2 in. x 2 in. cross sections and 3 in. x 3 in. cross sections were 

tested monotonically. The results show no significant difference and 3 in. x 3 in. 

specimens were used for the remainder of the test program. 
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CHAPTER 3 

RESULTS AND EVALUATION 

This chapter describes the results of the monotonic, sustained, and cyclic tests. 

An evaluation of the monotonic tests provides a general description of differences in 

material behavior for cement paste, mortar, and concrete. The results of the 

sustained load tests are used to estimate the contributions of static creep to total strain 

under cyclic load. The cyclic test data is used to better understand the mechanisms of 

strain and material behavior under cyclic loading. 

3.1 MONOTONIC LOADING 

The monotonic tests were designed to compare the stress-strain behavior of 

cement paste, mortar and concrete in terms of the initial modulus of elasticity, 

strength and strain capacity, and thereby deduce the extent to which the behavior of 

cement paste and mortar influences that of concrete. A summary of monotonic tests, 

including initial modulus of elasticity, peak stress, and strain at peak stress is 

presented in Table 3.1. 

Typical monotonic stress-strain curves for cement paste, mortar and concrete 

with a w/c ratio of 0.5, including lateral strains, are shown in Fig. 3.1. Stress-strain 

curves for materials with a w/c ratio of 0.7 are shown in Fig. 3.2. 

The figures illustrate key aspects of material behavior, some of which are not 

well known. For a given water-cement ratio, cement paste has a higher strength and 

strain capacity than do the corresponding mortar and concrete, while mortar and con­

crete have a higher initial stiffness than cement paste. For the current tests, the initial 

stiffness of the mortar and concrete are nearly the same. In general, the addition of 

aggregate increases the initial stiffness and decreases the strain capacity of cement 
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paste. 

The average peak stresses and corresponding strains are compared in Table 3.2 

along with the initial stiffnesses for each of the materials tested. 

On the average, cement paste is stronger than mortar, which is in turn stronger 

than concrete. This observation is at odds with earlier research by Shah and Chandra 

(1970) and by Cook and Chindaprasirt (1980) which found that the strength of 

concrete exceeded that of cement paste with the same w/c ratio. This difference in 

strength may be due to the difference in methods of preparation. Unlike previous 

research in which newly cast specimens remained vertical, the specimens in the 

current study were initially cured in a horizontal position. This prevented the effects 

of bleeding from creating a portion of weakened material at the upper end of the test 

specimens. The effects of bleeding are by far the greatest in cement paste, and 

therefore, a sizeable reduction in strength would be expected if the specimens were 

stored upright initially. 

Although the specimens were stored in a horizontal position in the current work, 

some bleeding was clearly evident, especially in the cement paste specimens. The 

bleeding manifested itself in the form of excess bleed water on the surface of the 

specimen and a reduced specimen dimension in the case of w/c = 0.7 specimens (ap­

proximately 1.7 in. x 2 in.). The overall result is that the cement paste specimens 

had a lower effective water-cement ratio due to the loss of the bleed water (this is not 

especially significant for w/c = 0.5 but may be for w/c = 0.7). For mortar and 

concrete, this bleed water did not move to the surface on the small specimens and 

was instead trapped by the aggregate particles. 

The rigid, non-rotating platens of the load machine forced all portions of the 

specimen cross section to share the load, limiting the effects of any gradient in proper­

ties caused by the bleeding. 
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A comparison of the monotonic stress-strain curves provides some additional 

information (Figs. 3.1, 3.2 and Tables 3.1, 3.2). For a w/c of 0.5, the strengths of 

cement paste, mortar, and concrete are closer than for a w/c of 0.7. For w/c = 0.5, 

paste strength averages 5916 psi, while mortar and concrete strengths average 5557 

and 4931 psi, or 94 and 83 percent of the paste strength, respectively. For w/c = 

0.7, paste strength averages 3865 psi, while mortar and concrete strengths average 

3500 and 2779 psi, or 91 and 72 percent of the paste strength, respectively. 

The strains corresponding to the peak stress decrease with increasing w/c for 

mortar and concrete, but increase for cement paste. For w/c's of 0.5 and 0.7 

respectively, the values for cement paste are 5560 ~E and 6403 ~E, while mortar has 

values of 3067 ~E and 2516 ~E and concrete has values of 1839 ~E and 1489 ~E. 

Overall, the stress-strain curves illustrate that cement paste, mortar and concrete are 

highly nonlinear materials and that saturated cement paste has a higher strain capacity 

than either mortar or concrete. For all three materials, a decrease in water-cement 

ratio increases initial stiffness and strength but seems to result in a more brittle 

failure, as illustrated by a more rapid decrease in stress, once the peak stress is 

attained. 

For the materials illustrated in Table 3.2, it is clear that for each water-cement 

ratio, cement paste is by far the most variable in terms of strength and strain at the 

peak stress. The relatively large standard deviations in strength ( 422 psi for cement 

paste, versus 229 psi and 380 psi for mortar and concrete at w/c = 0.5, and 275 psi 

for cement paste, versus 149 psi and 118 psi for mortar and concrete at w/c = 0.7) 

are likely due to the mode of failure of the cement paste specimens. Failure in cement 

paste is far more localized, with a small number of vertical cracks. Macroscopic 

damage in mortar and concrete is more distributed, with a large number of inclined 

cracks. This difference seems to indicate that the strength of cement paste is 
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controlled by the failure of a relatively small number of local regions; whereas 

damage in mortar and concrete is distributed throughout a greater volume of material 

due to the presence of the stiffer, stronger aggregate. 

The high standard deviation in the strain corresponding to the peak stress for 

cement paste (534 J.l€ and 708 J.l€ at w/c's of 0.5 and 0.7, respectively) is largely a 

function of the broad plateau in the stress-strain curves over which the stress varies 

very little. Mortar and concrete, which fail more suddenly, have lower standard 

deviations of the strain at peak stress (136 and 67 J.l€ for mortar and 141 and 106 J.l€ 

for concrete at w/c's of 0.5 and 0.7, respectively). 

The initial modulus of elasticity, Ei, was calculated by passing a parabola 

through the first three recorded data points of the stress-strain curve and finding the 

slope of the parabola at a stress equal to 10 percent of the ultimate strength. Concrete 

has average Ei values of 4169 and 3303 ksi for w/c = 0.5 and 0.7, respectively. 

Mortar has values close to those of concrete, 4118 and 3306 ksi, which are nearly 

double those of cement paste, 2305 and 1681 ksi, for w/c = 0.5 and 0.7, 

respectively. The addition of coarse aggregate might be expected to consistently 

increase the initial stiffness of the mortar. This is the case for w/c = 0.7, but not for 

w/c = 0.5. The relatively porous coarse aggregate used in this study apparently has a 

stiffness greater than that of the w/c = 0.7 mortar, but not of the w/c = 0.5 mortar. 

Thus, for w/c = 0.5, mortar has a slightly higher initial stiffness than concrete. 

Overall, the monotonic test results show that the stress-strain curves of mortar 

and concrete are quite similar and differ substantially from those for cement paste. 

This indicates that the addition of sand significantly affects the behavior of cement 

paste, while the addition of coarse aggregate has a measurable but less significant 

impact. The mortar constituent of concrete appears to strongly influence the behavior 

of the total composite. 
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3.2 SUSTAINED LOADING 

The primary goal of the sustained load tests and the analysis that follows is to 

develop a relationship between creep strain and stress-strength ratio, cr/f', for the 

materials tested. This numerical description of creep strain, as a function of cr/f', is 

used to estimate the amount of creep strain accumulated during a cyclic test. Stress­

strength ratios of 0.2, 0.4, 0.6, 0.8, and 0.9 were used for the sustained load tests. 

A summary of the sustained load tests, including applied stress, strain at 15 seconds, 

ending strain and test duration is presented in Table 3.3. 

Typical sustained-load stress-strain curves for cement paste, mortar and concrete 

are shown in Figs. 3.3 and 3.4 for w/c's = 0.5 and 0.7, respectively. 

For the purposes of this investigation, creep strain, €c, is defined as the total 

strain minus the strain at 15 seconds (when the load reaches maximum), €t5· From 

the curves in Figs. 3.3 and 3.4, it is evident that creep strain is a nonlinear function 

of the stress-strength ratio, increasing to a greater degree than cr/f', as cr/f' increases. 

For each material, at each stress-strength ratio, best fit curves were computed for 

the accumulated experimental data. Using log-time as the independent variable and 

total strain, e,, as the dependant variable, third order polynomials were fit for each of 

the five stress-strength ratios and for each of the six materials tested. The form of the 

equation is: 

€ =A + B(log10 t) + C(log10 t)2 + D(log10 t)3 (3.1) 

fort between 15 sec and 4 hours (14,400 sec). 

Plots of the experimental and best fit curves are shown in Figs. 3.5-3.10. The 

coefficients for the best fit curves are given in Table 3.4. For sustained load tests 
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with the a stress-strength ratio of 0.8 or less, all specimens lasted the full four hours, 

although at a stress-strength ratio of 0.9 some specimens creeped to failure, under the 

constant stress, before the scheduled end of the test. These specimens resulted in 

highly non-linear curves, which could not be represented by Eq. 3.1. For these 

curves, Eq. 3.1 was applied only to the region over which a satisfactory fit could be 

obtained. The curves for total strain shown in Figs. 3.5- 3.10 are converted to creep 

strain by subtracting the strain at 15 seconds from the total strain. 

It is apparent from the data for mortar and concrete loaded at cr/f' = 0.2 (Fig. 3.6, 

3.7, 3.9, 3.10) that there was slip in the strain measuring equipment, incorrectly 

indicating a decrease in strain for the latter portions of the tests. Where additional 

data at the same stress-strength ratio is available, data indicating slip in the gage is 

excluded from the regression analysis to minimize the impact of slip on the best fit 

curves. In Figs. 3.5-3.10, the experimental curves are shown as solid lines, and the 

actual best fit curves are shown as dotted lines. Modified best fit curves, shown as 

dashed lines, are used in place of the best-fit lines in cases where slip is evident 

(Figs. 3.7, 3.9 and 3.10). The modified best fit curves differ from the best fit curves 

in that strain values are not allowed to decrease. If the slope of the best fit equation 

becomes negative, the strain value of the modified best fit curve remains constant 

with respect to time until the strain value of the actual best fit curve exceeds that of 

the modified best fit. Where appropriate, the modified best fit curves are used in later 

calculations to estimate equivalent creep. 

One way to estimate the total slip accumulated during a sustained load test is to 

sum all incremental decreases in stain throughout the test (this estimate may include 

random noise). Applying this method to the tests in Figs. 3.5-3.10, specimen 6A6, 

at 0.2f' min Fig. 3.6, accumulated 99 J.ie of slip. This is approximately 50 percent of 

the total strain in this test and the largest measured value of all the tests that showed 
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slip. Specimen 2A5, at 0.6f' m in Fig. 3.9, accumulated 44 lJ.E of slip or ap­

proximately 10 percent of the total strain for this test. Using this measure of slip, 

some strains are included that are due to small but measurable fluctuations in load; 

many of the tests exhibited 5-10 lJ.E of such "slip". The appearance of slip in some 

low stress tests suggests that slip may have occurred in other tests. Although the 

relative magnitude of the slip is less significant at higher stresses, this implies that the 

data may underestimate the true strains to some degree. 

The effect of water-cement ratio on the stress-strain behavior of cement paste, 

mortar and concrete is similar. Keeping in mind that the absolute stress was higher 

for w/c = 0.5, the same stress-strength ratios yielded higher total strains and creep 

strains for w/c = 0.5 than for w/c = 0.7, except at a stress-strength ratio of 0.9 

(specimens that creeped to failure). For these tests, initial total strains were also 

typically higher for w/c = 0.5 but were approximately equal at failure for both w/c's. 

Creep strains at the highest stress-strength ratio were higher for w/c = 0.7 than for 

w/c = 0.5. 

Comparing cement paste, mortar and concrete shows that both total strain and 

creep strain accumulate more rapidly for cement paste than for mortar and more 

rapidly for mortar than for concrete at the same stress-strength ratio. This is true, 

except for a number of the high stress tests, where concrete or mortar specimens 

(5F2, 6A2, 2D5, 206, 8A2, 9C5, 9C6, 4A2, 2A2, 6F2, 7F2) accumulated very 

large strains and failed prior to the end of the test. Arbitrarily selecting a data point 

954 sec into the test and using the best fit curves for cement paste, mortar and 

concrete at a stress-strength ratio of 0.2, average creep strains are 69, 18, and 10 

microstrain, respectively, for w/c = 0.5. At the same stress-strength ratio for w/c = 
0.7, the values are 46, 10, and 4 microstrain, respectively. Again at 954 sec, but at a 

stress-strength ratio of 0.9, creep strains for paste, mortar and concrete are 2264, 
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1195 and 710 microstrain, respectively, for w/c = 0.5, and are 2348, 1414 and 1119 

microstrain, respectively, for w/c = 0.7. 

The addition of fine and coarse aggregate to cement paste reduces both the total 

strain and the creep strain. At the same time, it also reduces the strain capacity and 

causes specimens to fail in a shorter time at a stress-strength ratio of0.9. Although 

the addition of coarse aggregate results in reduced total strains and creep strains, the 

behavior of mortar more closely parallels that of concrete than it does the behavior of 

cement paste. Strains in mortar are 25 to 80 percent higher than those in concrete, 

and strains in cement paste are 60 to 440 percent higher than those in mortar. 

A family of second order curves is used to numerically describe the relationship 

between stress- strength ratio and creep as a function of time. Using Eq. 3.1 at 0.2, 

0.4, 0.6, and 0.8f' for each material, the creep strain is calculated at one hundred 

points spaced evenly along the log-time axis. These points are plotted in the cr/f'- E;; 

domain. For each of these one hundred values of time, second order spline curves 

are fit exactly through the four data points, each data point representing one stress­

strength ratio at the same point in time. Each spline curve is a composite of three 

parabolic sections. The parabolic sections are of the form: 

e;; = A(cr/f')2 + B(cr/f') + C (3.2) 

The first section is defined by the origin and the data points at 0.2 and 0.4f'. The 

second section is defined by the points at 0.4 and 0.6f' and the slope of the first 

section at 0.4f'. Similarly, the third section is defined by the points at 0.6 and 0.8f' 

and the slope of the second section at 0.6f'. Each of the three part spline curves 

represents one point in time during a four hour interval and can be used to estimate 

creep strain for intermediate values of cr/f'. This allows an estimate of creep strain 
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for any stress-strength ratio during the four-hour loading period. 

In the case of concrete, the constant time cr/f'- Ec curves tended to be concave left­

ward for the range 0 - 0.2f', falsely indicating smaller creep strains at higher 

stresses. To correct for this behavior, a linear relationship is used for concrete bet­

ween 0 and 0.2f'c, and three second order curves are used from 0.2 - 0.8f' c· For 

w/c = 0.7 concrete, the slope of the second order curve between 0.2 and 0.4f' cis 

forced to match that of the line between 0 and 0.2f'c , while w/c = 0.5 concrete 

curves are allowed to have a discontinuity in slope at 0.2f' c· This forces ec to 

increase monotonically with cr/f'. Figs. 3.11 - 3.16 show representative cr/f'versus 

ec curves for the six materials at t = 15, 26, 357, 9450, and 14000 sec. Data points 

for seven other times (t =50, 96, 185, 688, 1324, 2549, 4908 sec) are also shown. 

The coefficients of equation 3.2 (A, B, and C) for each material, at all twelve time 

points shown in Figs. 3.11-3.16 are given in Appendix A. 

3.3 CYCLIC LOADING 

The cyclic tests were designed to compare the cyclic behavior of cement paste, 

mortar and concrete subjected to a variety of cyclic load regimes. The results from a 

total of seventeen cyclic tests are reported. The materials and cr/f' ranges for each test 

are given in Table 3.5. 

It is clear from previous research (Whaley and Neville 1973, Cook and 

Chindaprasirt 1980, Brooks and Forsyth 1986), and the work presented here, that 

cyclically loaded concrete undergoes larger strains than concrete exposed to a sus­

tained load equal to the mean cyclic stress. The reasons for the larger strains are at 

least two-fold. Flrst, static creep is a non-linearly increasing function of stress, with 

greater creep occurring at stresses above the mean stress, compared to stresses below 

the mean stress. Thus, the "static creep" portion of the total strain accumulated in a 
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cyclic test should be greater than static creep produced at the mean cyclic stress. 

Second, a portion of the total strain may result directly from the cyclic nature of the 

loading. The goal of the analysis that follows next is to separate the strain due to the 

effective sustained load (the equivalent static creep ot equivalent creep) from the 

strain due to the cyclic action. 

The resulting strains will then be used, along with changes in the material 

moduli, to help determine the mechanisms that cause the strain. Some strains are 

directly related to microcracking of the material. Microcracking and its associated 

strains can be correlated with permanent damage occurring in the material, and 

changes in the modulus of elasticity have been shown to be a useful measure of that 

damage (Spooner and Dougill1975, Attiogbe and Darwin 1985). Of specific interest 

is whether cyclic loads result in additional microcracking or accelerated creep. 

Taking a small enough time interval, a cyclic test may be thought of, 

mathematically, as a series of short sustained load tests. For material cycling 

between two fixed values of cr/f', one estimate of strain due to the mechanisms that 

cause static creep can be made by averaging the values of creep strain recorded for 

specimens at the maximum and minimum stress-strength ratios fot the same point in 

time. However, since the relationship between creep strain and stress-strength ratio 

is nonlinear, a better estimate can be obtained by averaging the creep strain over the 

entire range of stress. This can be accomplished by integrating the cr/f' versus static 

creep curve, for the given material at the point in time of interest (Figs. 3.11 - 3.16), 

between the maximum and minimum stress-strength ratios and dividing the integral 

by the range of stress-strength ratio. This average strain is the equivalent creep 

strain, Eec· 

The raw data from the cyclic tests must be modified before it can be compared 

with Eec. because the data collection was not synchronized with the peak stresses in 
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each cycle. Thus, the strain at maximum stress (unloading strain, Eu) must bees­

timated. This is done by passing a patabola tltrough the last three data points on the 

ascending branch of the stress-strain curve. Eu is then the strain at the point of 

intersection of the parabola with a straight line representing the maximum stress for 

the test. A typical plot of actual data and the estimated peak strain is shown in Fig. 

3.17. The strain at minimum stress (residual strain, Er) is estimated in a similar 

fashion. 

The portion of the strain due to the cyclic action, Eca. can be estimated by 

subtracting the equivalent creep, Eec, from the total cyclic strain, Ecy (Ecy = e,- E15, e, 

= total strain). Eca may result from damage, presumably microcracking, but may also 

include additional consolidation and other mechanisms of static creep aggravated by 

the cyclic nature of the load. 

Since creep strain includes strain due to both consolidation and material damage, 

Eec is not strictly a measure of either. However, the microcracking studies of 

Attiogbe and Darwin (1985) show that sustained loading results in less damage than 

cyclic loading to the same strain. The tests reported in section 3.5 also support this 

observation. Thus, as a component of total strain, Eec should be viewed as 

representing less damage than Eca· 

Changes in the modulus of elasticity can be used to quantify the damage 

occurring during a cyclic test. Two measures of the modulus of elasticity are 

examined. The initial modulus, E;, is found by passing a parabola tltrough the first 

three points on the ascending branch of the stress-strain curve and finding the slope 

at O.lf. The secant unloading modulus, E,u, is defined as the slope of a line tltrough 

the estimated maximum strain for a cycle and the following estimated minimum 

strain. 

Both E; and Esu provide useful gages of the structural integrity of a material, 
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since they represent the state of the material at a particular point in time. Thus, they 

reflect both the positive effects of consolidation and the negative effects of 

rnicrocracking. Values of E; and Esu are tabulated in Appendix B as a function of 

number of load cycles and time. Example plots of E; and Esu as functions of the 

number of cycles of loading (for cement paste specimen 1D2, mortar specimen 2C2, 

and concrete specimen 3C2, all loaded from 0 to 0.8[') are shown in Figs. 3.18-

3.20. 

Of the two measures of modulus, E; exhibits more scatter than Esu· E; generally 

exhibits less scatter in high stress range tests than in low stress range tests. This may 

be due to the data points lying further apart in the higher stress tests and the parabolic 

fit being less sensitive to minor fluctuations. E; also exhibits less scatter for cement 

paste than for mortar or concrete. Ei is always greater than Esu for paste (as shown 

in Fig. 3.18) and for low stress tests of mortar and concrete. For high stress ( cr/f' <:: 

0.6) tests of mortar and concrete, Ei typically starts out at a higher value than Esu but 

drops below Esu after about 45 cycles (Figs. 3.19 and 3.20). This appears in the 

stress- strain curve as a change from a "clam shell" shape to a "banana" shape as the 

test progresses. This can be seen in Fig. 3.21, which shows cycle number 2 

(leftmost cycle) and cycle number 124 (rightmost cycle), for specimen 2C2, 

beginning at 30 seconds and 3720 seconds, respectively. Early in the test (cycle 2), 

there is a significant increase in the strain, at zero stress, between the beginning and 

end of the cycle. Later in the test (cycle 124), the beginning and ending strain are 

nearly equal, indicating that larger unrecoverable strains accumulate in the initial 

cycles than in later cycles. 

The change in the shape of the stress - strain curve (from clam shell to banana 

shape) is most likely due to large microcracks that open up as mortar and concrete are 

unloaded, thereby reducing the effective load carrying area of the specimen cross 
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section when the load is removed. As the specimen is reloaded, the apparent 

stiffness of the material increases only as the cracks reclose, resulting in the lower 

portion of the stress-strain curve being concave leftward. 

Due to the lack of aggregate and the relatively localized cracking in cement paste, 

the ascending branch of the stress-strain curves is typically concave rightward and 

more consistent from cycle to cycle. 

Figs. 3.22 - 3.24 show complete stress - strain records for cement paste 

specimen lD2, mortar specimen 2C2, and concrete specimen 3C2. 

3.4 CYCLIC TEST RESULTS 

The cyclic test results show that cycles to a maximum stress of 0.6f' or less 

produce only small changes in stiffness (less than 10 percent) and similarly small 

cyclic action strains for all six materials. This observation is in general agreement 

with the work of a number of previous researchers (Whaley and Neville 1973, Cook 

and Chindaprasirt 1980, Maher and Darwin 1980 and 1982) who identified a value 

of maximum stress, about 0.5f', below which little or no damage occurs. 

Typically, both cyclic strain and equivalent creep accumulate rapidly during the 

first 45 cycles, and then accumulate at a slower rate throughout the balance of the 

test. Figs. 3.25- 3.41 present plots of cyclic strain and equivalent creep versus time 

for all seventeen cyclic tests. Figs. 3.42-3.47 show cyclic action strain versus time 

for each test. Figs. 3.48-3.53 show the corresponding changes in Esu versus 

number of cycles. 

The results from one test will be used to illustrate the information that can be 

obtained from the figures. Fig. 3.29 is a plot of Ecy and Eec versus time for mortar 

specimen 2C5 (w/c = 0.5, loaded from 0.2 to 0.6f'm)· The difference between the 

two curves is the cyclic action strain, Eca, shown in Fig. 3.43. Fig. 3.49 shows Esu 
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versus number of cycles for three w/c = 0.5 mortar specimens (including specimen 

2C5) at stress ranges of 0-0.4f' m. 0.2-0.6f' m• and 0-0.8f' m· 

In tests where the maximum cr/f' is less than 0.6, the strain that accumulates after 

45 cycles (1350 seconds) appears to be primarily equivalent creep (Eca tends to 

stabilize after 45 cycles). The change in modulus, from initial to final, generally 

increases with maximum stress. However, the change in modulus of specimens with 

cr/f' $; 0.6 is much smaller than observed for specimens with cr/f' > 0.6. 

Tests with a cyclic stress range of 0-0.8f' m consistently exhibit a marked loss of 

stiffness and large cyclic action strains. The much greater changes in stiffness 

observed in the 0-0.8f' tests are evident in Fig. 3.49. 

Comparing cement paste to mortar and concrete reveals that, in general, all 

measures of strain are larger for paste than for mortar and larger for mortar than for 

concrete. This comparison also indicates that fine and coarse aggregate reduce 

average creep strains and damage strains, as well as average strains on the initial load 

cycle, e1s. The addition of aggregate increases the initial stiffness, with E; of mortar 

and concrete being nearly equal for these mixes, and approximately double that of 

cement paste. The change in stiffness from initial loading to failure during a cyclic 

test is greatest for mortar and least for cement paste, with concrete falling in the 

middle. This may be due to the fact that the addition of fine aggregate creates 

numerous stress concentrations in the material, leading to crack damage in the mortar 

matrix (Spooner, Pomeroy and Dougi111976). 

In the descriptions that follow, specimen response will be compared at 45 cycles 

and at 4 hours or the time at which the test ended, prior to 4 hours. The final values 

of total strain, Et. cyclic strain, Ecy = e,- EJs, equivalent creep strain, Eec• and cyclic 

action strain, Eca. for all cyclic tests (whether the test reached the time limit of four 

hours or the specimen failed prior to the four hour limit) are listed in Table 3 .6, in 
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addition to the strain at the peak of the first cycle, e1s. 

Table 3.7 lists the values of Ecy at 45 cycles and at 4 hours, or at failure, and the 

ratio of Ecy at 45 cycles to fey final. This table shows that, for all tests, a minimum 

of 16 percent and a maximum of 62 percent of the total cyclic strain occurs during the 

first 45 cycles. The percentage of total cyclic strain occurring during the first 45 

cycles is least for 0 - 0.8f' specimens. For these tests, an average of 26 percent of 

the total cyclic strain occurs during the first 45 cycles. For tests with a maximum 

cyclic stress of 0.6f' or less, an average of 53 percent of the total cyclic strain occurs 

during the fust 45 cycles. 

Table 3.8 lists Eec at 45 cycles and at the end of the test, and the ratio of Eec at 45 

cycles to Eec final. This table shows that a minimum of 42 percent and a maximum of 

67 percent of the equivalent static creep occurs during the first 45 cycles of a test. 

For tests with a maximum cyclic stress of 0.8f', an average of 60 percent of the total 

equivalent creep occurs during the first 45 cycles. For tests with a maximum cyclic 

stress of 0.6f' or less, an average of 55 percent of total equivalent creep occurs 

during the fust 45 cycles. 

Table 3.9lists Eca at 45 cycles, Eca fmal, and the change in Eca between 45 cycles 

and the end of the test. Change in Eca is more readily interpreted than a ratio of the 

value at 45 cycles to the final value. This table shows that a minimum of -7 J.U' 

(indicating a value close to zero) and a maximum of 2134 I.J.E occurs between 45 

cycles and 4 hours, or failure of the specimen. For tests with a maximum cyclic 

stress of 0.8[', an average of 1413 I.J.E occurs between 45 cycles (22.5 minutes) and 

the end of the test. For tests with a maximum cyclic stress of 0.6f' or less, an 

average of 15 J.U' occurs between 45 cycles and the end of the test. The limited data 

presented in this table indicates that, below a stress of 0.6[', the cyclic action of the 

load causes little or no additional strain due to accelerated creep or microcracking. 
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The absence of damage due to cycles with a maximum stress ::; 0.6f' is in general 

agreement with previous research. The fact that equivalent creep accounts for nearly 

all of the cyclic strain indicates that static creep is not accelerated by cyclic loading, in 

contrast to earlier statements by Whaley and Neville (197 6). The reason for the 

contrasting conclusions is due to the ability of equivalent creep to take into account 

the nonlinear relationship of static creep and applied stress which is not taken into 

account when creep is based on the mean cyclic stress (Whaley and Neville 197 6). 

Three of the low maximum stress tests (2C3, 4C4, 5C5) had negative ending 

values of Eca· The cyclic action strain (a calculated, not measured, strain) actually 

decreases between 45 cycles and the end of the test for specimens 2C3 and 5C5. 

This indicates that either total cyclic strain is accumulating more slowly in the 

cyclically loaded specimen than is creep strain in a specimen loaded to an equivalent 

static load, or more likely that the total strain is due essentially to creep and that the 

values of Eca calculated for these tests are well within the combined accuracy of the 

tests and the analysis. The values of eec and Eca as a percent of total strain and cyclic 

strain are given in Table 3.1 0. 

The change in modulus can be used to estimate how much of the damage is 

occurring early in the test Initial E5u, final Esu, change in Esu and percent change in 

Esu are given in Table 3.11. For tests with a maximum cyclic stress of 0.6f' or less, 

nearly all of the decrease in modulus occurs during the first 45 cycles of the test. The 

modulus of elasticity actually increases between 45 cycles and the end of the test for 

specimens 2C5 and 4C5, indicating that consolidation is taking place, with little or no 

additional rnicrocracking. Specimens with a maximum cyclic stress of 0.8f' have 

much greater decreases in stiffness during the first 45 cycles than lower maximum 

stress tests and continue to degrade in stiffness throughout the test. 
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3.4.1 DISCUSSION OF INDIVIDUAL TEST RESULTS 

Two cyclic tests of cement paste with w/c = 0.5 were conducted, 1D2 with a 

cyclic stress range of0-0.8f'p, and 1D3 with a cyclic stress range of0-0.4f'p. 

Fig. 3.25 shows Ecy and Eec versus time for test 1D2 (0-0.8f' p). Both Ecy and 

Eec accumulate rapidly for the first 1350 sec (45 cycles) of the test, and then increase 

at a reduced, but steady, rate until failure. At failure, the cyclic strain is 2115 J.LE, of 

which 32 percent is equivalent creep and 68 percent is cyclic action strain. Table 3.8 

and Fig. 3.42 shows that the cyclic action strain at 45 cycles is 354 J.LE, or 25 percent 

of the cyclic action strain at failure, 1439 J.LE. Fig. 3.48 (dashed line) and Table 3.11 

show the loss of stiffness (E,u) for the test. At 45 cycles, the drop in stiffness is 16 

percent, slightly over half of the total change to failure. At failure, Esu has dropped 

27 percent from its initial value. Using change in Esu as a measure of damage, over 

half of the total damage occurs during the first 45 cycles. The equivalent creep at 45 

cycles is 346 JlE or half of the 677 JlE at failure. However, only a third of the cyclic 

strain occurs in the first 45 cycles. Over 67 percent of the cyclic strain and 7 5 

percent of the cyclic action strain occur after the fust 45 cycles. 

Fig. 3.26 shows Ecy and Eec versus time for test 1D3 (0-0.4f' p). Again, strains 

accumulate more quickly for the first 45 cycles of the test and then continue to 

increase at a slower rate. Nearly half of the 155 JlE total cyclic strain accumulates 

during the first 22 minutes of the 4 hour test. At 45 cycles, the equivalent creep is 

virtually equal to (actually slightly larger than) the cyclic strain resulting in a cyclic 

action strain of -10 J.LE. This indicates that the total strain is due to creep, i.e. that the 

cyclic nature of the loading has no effect. After four hours, the cyclic strain is equal 

to the equivalent creep strain, providing the same conclusion. Fig. 3.42 shows that 

the cyclic action strain is negligible, while Fig. 3.48 and Table 3.11 show that Esu 
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decreases 3 percent during the first 45 cycles and decreases another 1 percent during 

the remainder of the test 

Three cyclic tests of mortar with w/c = 0.5 were conducted, 2C2 with a cyclic 

stress range of 0-0.8f' P• 2C3 with a cyclic stress range of 0-0.4f' P• and 2C5 with a 

cyclic stress range of 0.2-0.6f' p· Specimen 2C2 failed at 296 cycles. Specimens 

2C3 and 2C5 lasted the full4 hours. 

Fig. 3.27 shows Ecy and Eec versus time for test 2C2 (0-0.8f' m). As with the 

w/c = 0.5 paste, the rate of increase in both cyclic strain and equivalent creep is 

higher initially, accumulating 22 percent of the total cyclic stain and 65 percent of the 

total equivalent creep strain during the first 45 cycles. At 45 cycles, 25 percent of the 

cyclic strain is equivalent creep and 75 percent is cyclic action strain. During the ftrSt 

45 cycles, 18 percent of the total cyclic action strain accumulates and 23 percent of 

the total change in stiffness occurs, decreasing 17 percent from its initial vaiue. Fig. 

3.49 and Table 3.11 show that the drop in Esu is similar to the accumulation in cyclic 

strain, with Esu dropping quickly at frrst, continuing to drop at a slower but steady 

rate, and then dropping sharply as the specimen approaches failure. Fig. 3.43 shows 

that the cyclic action strain accumulates very rapidly as the specimen approaches 

failure. At failure, the cyclic strain is 2820 !JE, of which 8 percent is equivalent creep 

and 92 percent is cyclic action strain. The total change in Esu is 56 percent. The 

figures show that degradation of the mortar is continuous throughout the test. 

Fig. 3.28 shows Ecy and Eec versus time for test 2C3 (0-0.4f' m). At 45 cycles, 

50 percent of the total cyclic strain has accumulated and is completely accounted for 

by equivalent creep. As the test continues, the cyclic specimen accumulates Jess 

strain than a specimen loaded with an equivalent static load. The equivalent creep at 

the end of the test slightly exceeds the measured cyclic strain, yielding a small 

negative cyclic action strain (Fig. 3.43). At 45 cycles, the decrease in Esu is 4 
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percent. Although Fig. 3.49 (dotted line) shows that Esu varies somewhat after 45 

cycles, the decrease in Esu is 4 percent at the end of the test, and it appears that most 

of the damage to the specimen occurs during the first 45 cycles. 

Fig. 3.29 shows Ecy and Eec versus time for test 2C5 (0.2-0.6f' m). Again, ap­

proximately 50 percent of the total cyclic strain and total equivalent creep occurs 

during the first 45 cycles. The stiffness decreases 3 percent during the first 45 cycles 

but recovers to a 1 percent decrease over the 4 hour test (Fig. 3.49). The increase in 

modulus, between 45 cycles and the end of the test, observed for this test and some 

of the other low stress tests indicates that beneficial consolidation may counteract the 

reduction in stiffness due to microcracking. At the end of the test, the total cyclic 

strain is 7 5 J..LC, of which 68 percent is equivalent creep and 32 percent is cyclic action 

strain (Fig. 3.43). The 0.2 - 0.6f' m test recorded 5 times as much cyclic strain and 

twice as much equivalent creep as the 0 - OAf' m test. 

Three cyclic tests of concrete with w/c = 0.5 were conducted, 3C2 and 3C4 with 

a cyclic stress range of 0-0.8f' 0 , and 3C5 with a cyclic stress range of 0.2-0.6f'0 • 

Specimens 3C2 and 3C4 failed after 205 and 240 cycles, respectively, while 

specimen 3C5 lasted the fu114 hours. 

Fig. 3.30 shows Ecy and Eec versus time for test 3C2 (0-0.8f'0 ). At 45 cycles, 

the accumulated cyclic strain is 36 percent of the final cyclic strain and the equivalent 

creep is 67 percent of its fmal value. Fig. 3.44 shows that the cyclic action strain at 

45 cycles is 45 percent of its final value. At failure, the cyclic strain is 727 f.l.E, of 

which just 14 percent is equivalent creep and 86 percent is cyclic action strain. Fig. 

3.50 shows that Esu decreases 13 percent in the first 45 cycles, with a final drop of 

28 percent. 

Fig. 3.31 shows Ecy and Eec versus time for test 3C4 (0-0.8f'0 ). This is the only 

duplicate cyclic test data available (same batch and load regime as 3C2). At 45 
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cycles, the cyclic action strain is nearly equal to that of specimen 3C2 (Fig. 3.44) and 

the equivalent creep is nearly identical. After 45 cycles, test 3C4 accumulates 

slightly higher values of cyclic action strain than specimen 3C2. Specimen 3C4 

failed during one of the groups of pre-selected cycles for which data was recorded 

(as did cyclic specimens 2C2 and 6C2) while specimen 3C2 (and 1D2) failed at a 

point in time during which no data was being collected. For this reason the recorded 

ending strain and decrease in modulus is disproportionately small for specimen 3C2 

compared to specimen 3C4. For specimen 3C4, 16 percent of the total cyclic strain 

and 64 percent of the equivalent creep occur during the first 45 cycles. At failure, the 

cyclic strain is 1818 J.!E, of which 6 percent is equivalent creep and 94 percent is 

cyclic action strain. Fig. 3.50 (lower dashed line) shows that the percent decrease in 

Esu is 11 percent at 45 cycles and 39 percent at failure. Until the unrecorded failure 

of 3C2, both specimens exhibited very similar changes in Esu and strain. 

Fig. 3.32 shows Ecy and Eec versus time for test 3C5 (0.2-0.6f' c). Over half of 

the total cyclic strain and equivalent creep occurs during the first 45 cycles. The final 

cyclic strain is 141 J.!E, of which 37 percent is cyclic action strain (Fig. 3.44). As 

with low stress tests of cement paste and mortar, the small drop in stiffness occurs 

early in the test. 

Four cyclic tests of cement paste with w/c = 0.7 were conducted, 4C2 with a 

cyclic stress range of 0-0.8f' P• 4C3 with a cyclic stress range of 0-0.4f' P' 4C4 with a 

cyclic stress range of O.l-0.3f' P' and 4C5 with a cyclic stress range of 0.2-0.6f'p· 

None of the tests resulted in failure. Test 4C4 was terminated early at 245 cycles due 

to equipment problems. 

Fig. 3.33 shows Ecy and Eec versus time for test 4C2 (0-0.8f'p). Again, the rate 

of increase in cyclic strain and equivalent creep is higher for the first 45 cycles (29 

percent of the total cyclic strain and 50 percent of the total equivalent creep) than for 
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the remainder of the test. 579 ~ of cyclic action strain accumulates during the first 

45 cycles (the highest of all tests), which is 24 percent of the fmal cyclic action 

strain value (Fig. 3.45). At 45 cycles, the equivalent creep accounts for 34 percent 

of the cyclic strain. Fig. 3.51 (dashed line) shows that Esu drops very quickly duriug 

the first 45 cycles, decreasing 23 percent, and then continues to drop at a reduced rate 

throughout the test, accumulating a 39 percent total loss of stiffness over the four 

hours. The specimen did not fail, and the cyclic strain at four hours is 3017 ~. of 

which 20 percent is equivalent creep and 80 percent is cyclic action strain. 

Fig. 3.34 shows Ecy and Eec versus time for test 4C3 (0-0.4f'p). Duriug the first 

45 cycles, 47 percent of the total cyclic strain and 52 percent of the total equivalent 

creep accumulates. At 45 cycles, all of the cyclic strain is accounted for by equivalent 

creep, and the cyclic action strain is 0. Fig. 3.51 (solid line) shows that all of the 3 

percent total decrease in stiffness occurs duriug the fust 45 cycles. Of the total cyclic 

strain (13 ~), 90 percent is equivalent creep and 10 percent is cyclic action strain, 

suggesting that little, if any, damage has occurred. 

Fig. 3.35 shows Ecy and Eec versus time for test 4C4 (0.1-0.3f'p). The data for 

this test at 45 cycles was lost and is therefore not recorded iu Table 3.5. At the end 

of the test (245 cycles), the cyclic strain is 66 I!E and the equivalent creep is 80 I!E, 

resulting iu a cyclic action strain of -141!E (Fig. 3.45). Fig. 3.51 (small dashed line) 

shows that all of the 3 percent decrease in Esu occurs during the fust 45 cycles. 

Fig. 3.36 shows Ecy and Eec versus time for test 4C5 (0.2-0.6f' p). At 45 cycles, 

the specimen has already accumulated 56 percent of the total cyclic strain, 53 percent 

of the total equivalent creep, and over 80 percent of the total cyclic action strain (43 

I!E). At 45 cycles, the total cyclic strain is 219 i!E, of which 85 percent is equivalent 

creep. Fig. 3.51 (dotted line) shows that the decrease in Esu occurs almost entirely 

during the first 45 cycles, dropping 7 percent. Esu drops 9 percent by the end of the 
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four hour test. Of the total cyclic strain (392 Jle), 89 percent is equivalent creep and 

11 percent is cyclic action strain. For this test, the majority of cyclic action strain 

occurs, like the change in modulus, during the frrst 45 cycles. 

Three cyclic tests of mortar with w/c = 0. 7 were conducted, 5C2 with a cyclic 

stress range of 0-0.8f' P• 5C3 with a cyclic stress range of 0-0.4f'p, and 5C5 with a 

cyclic stress range of 0.2-0.6f' p· None of the specimens failed during the 4 hour 

test. 

Fig. 3.37 shows Ecy and Eec versus time for test 5C2 (0-0.8f' m). At 45 cycles, 

only 19 percent of the total cyclic strain has occurred. The equivalent creep is 51 

percent of its final value. The cyclic action strain is 357 J.LE, which is 16 percent of 

the final cyclic action strain of 2162 Jle (Fig. 3.46). During the first 45 cycles, the 

stiffness decreases 25 percent. At four hours, the cyclic strain was 2361 JlE, of 

which 8 percent is equivalent creep and 92 percent is cyclic action strain. Fig. 3.52 

(dashed line) shows that the change in Esu behaves similarly to the cyclic strain (Fig. 

3.46), dropping quickly at frrst, continuing to drop at a slower but steady rate, and 

dropping quickly again near the end of the test, with a total change in Esu of 55 

percent. The figures show that degradation of the mortar is continuous throughout 

the test. 

Fig. 3.38 shows Ecy and Eec versus time for test 5C3 (0-0.4f' m). At 45 cycles, 

approximately half of the total cyclic strain, equivalent creep, and cyclic action strain 

have accumulated and the equivalent creep accounts for slightly less than half of the 

cyclic strain. Cyclic action strain versus time is plotted in Fig. 3.46. The decrease in 

stiffness at 45 cycles is 7 percent. At four hours, equivalent creep is 40 percent, and 

cyclic action strain is 60 percent of the final total cyclic strain of 59 Jle. Fig. 3.52 

(dotted line) shows Esu drops 6 percent during the first 45 cycles and drops another 

2 percent during the remainder of the four hour test. 
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Fig. 3.39 shows fey and fee versus time for test 5C5 (0.2-0.6f' m). At 45 cycles, 

62 percent of the total cyclic strain and 56 percent of the total equivalent creep have 

occurred, with the cyclic action strain being 5 IJ.f or lO percent of the cyclic strain. 

At the end of the four hour test, the cyclic action strain has decreased 6 IJ.f, to -1 1-1£ 

(Fig. 3.46). Fig. 3.52 (solid line) shows that Esu decreases 7 percent in the first 45 

cycles and only an additional 1 percent during the four hour test. Again, it appears 

from the change in modulus that nearly all of the damage takes place during the first 

45 cycles. However, over 91 percent of the cyclic strain at 45 cycles is predicted by 

the equivalent creep. 

Two cyclic tests of concrete with w/c = 0.7 were conducted, 6C2 with a cyclic 

stress range of 0-0.Sf' c and 6C5 with a cyclic stress range of 0.2-0.6f' c· Specimen 

6C2 failed at 165 cycles while specimen 6C5 lasted the fu114 hours. 

Fig. 3.40 shows ecy and fee versus time for test 6C2 (0-0.Sf'c). At 45 cycles, 

73 percent of the total equivalent creep has already accumulated, while only 24 

percent of the total cyclic strain has occurred. The equivalent creep only accounts for 

16 percent of the 3611J.f of cyclic stain at 45 cycles. The cyclic action strain at 45 

cycles is 303 1-1£ (Fig. 3.47), and the decrease in stiffness is 22 percent. At failure, 

the accumulated cyclic strain is 1487 IJ.f, of which 5 percent is equivalent creep and 

95 percent is cyclic action strain. Fig. 3.53 shows that Esu continues to decrease, 

with a 47 percent drop from its initial value. Nearly half of the decrease in stiffness 

occurs during the first 45 cycles, but only 22 percent of the cyclic action strain has 

accumulated at 45 cycles. In the high stress tests of concrete, cyclic actions strains 

appear to increase less rapidly than stiffness decreases during the first 45 cycles. 

Afterward, the changes in cyclic strain and Esu appear to be quite similar. 

Fig. 3.41 shows fey and fee versus time for test 6C5 (0.2-0.6£' c). At 45 cycles, 

58 percent of the total cyclic strain and 67 percent of the total equivalent creep have ac-
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cumulated, and the equivalent creep accounts for half of the cyclic strain. The 

stiffness decreases 3 percent in the first 45 cycles and decreases to a 4 percent drop at 

the end of the test. Cyclic action strain versus rime is plotted in Fig. 3.47. At four 

hours the cyclic strain is 112 f!E, of which 43 percent is equivalent creep and 57 

percent is cyclic action strain. Fig. 3.53 shows that for the low stress test, a small 

decrease in Esu occurs dnring the first 45 cycles. 

3.4.2 EFFECT OF WATER-CEMENT AND AGGREGATE-CEMENT 

RATIOS 

The mix proportions used in this study do not allow for the ditect comparison of 

results based on water-cement ratio alone, since concrete proportions were modified 

by keeping the water content constant and reducing the amount of cement to increase 

the water-cement ratio from 0.5 to 0.7. The volume of the concrete, thus, was 

maintained by replacing the cement with an equal volume of fine aggregate. The w/c 

= 0.7 mixes, therefore, have a higher aggregate volume than do the w/c = 0.5 mixes. 

Since aggregate plays a significant role in reducing strains and increasing stiffness, 

the increased aggregate volumes obtained with the increased water-cement ratios for 

mortar and concrete contribute to differences in the behavior of the mixes. 

The effects of cyclic loading as a function of mix proportions can be evaluated 

based on strain in 15 seconds, and strain and stiffness at 45 cycles from both the low 

and high stress cyclic tests. In the comparison that follows, it should be kept in mind 

that, except for w/c = 0.5 concrete, no test is replicated. Therefore, any analysis 

must rely on the bulk of the data, rather than on specific comparisons. 

The overall test results, as reflected in Tables 3.1-3.11, indicate that w/c = 0.5 

materials generally undergo less damage than the corresponding w/c = 0.7 materials. 

This is particularly evident in terms of the cyclic action strain, Eca, at 45 cycles, and 
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the relative decrease in stiffness, E5u, both at 45 cycles and at the conclusion of the 

test. In terms of material response that is less closely connected to damage than Eca 

and change in Esu, the lower water-cement ratio materials generally show greater 

strains at 15 seconds and in all cases exhibit higher values of equivalent creep, 

equivalent creep as a percentage of total strain, and, with one exception (0.2 -

0.6f' m), equivalent creep as a percentage of cyclic strain. 

Looking at the individual comparisons in Table 3.5, w/c = 0.5 paste and mortar 

specimens failed prior to the conclusion of the 4 hour test, at 405 and 196 cycles, 

respectively. The corresponding w/c = 0.7 specimens lasted for the full 4 hour 

duration. For concrete, the two w/c = 0.5 specimens, at 205 and 240 cycles, 

respectively, lasted longer than the w/c = 0.7 specimen, which failed at 165 cycles. 

All of the lower stress tests lasted the full 4 hours, with the exception of the test of 

the w/c = 0.7 paste specimen cycled from 0.1- 0.3f'p, which was terminated early. 

Due to the limited number of tests, it is difficult to come a conclusion about the 

nature of damage as a function of water-cement ratio or aggregate-cement ratio based 

on the duration of the high stress cyclic tests. Useful information can be obtained, 

however, based on the comparisons that follow. 

Information in Table 3.6, on the strain at 15 seconds, cyclic strain, equivalent 

creep, and cyclic action strain at the conclusion of the tests is combined with more 

detailed information in Tables 3.7, 3.8, and 3.9 on Ecy, Eec, and Eca at 45 cycles to 

draw some useful conclusions about the effect of the mix proportions used on the 

nature of the response of the individual materials. At 15 seconds, the lower water­

cement ratio specimens of mortar and concrete exhibit 37 to 83 percent higher strains 

than the w/c = 0.7 specimens. In contrast, the values of E15 for the w/c = 0.5 and 

0. 7 cement paste specimens do not differ by more than 5 percent for either the 0 -

O.Sf' p or the 0 - 0.4f' P load regime. The reason for this difference is due to the fact 
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that the specimens were loaded to fixed percentages of ultimate strength. The 

stiffness of the aggregate remains constant throughout the test, and the response of 

the aggregate to load is the same for both water-cement ratios. Since the w/c = 0.7 

mortar and concrete are loaded to lower stresses than the w/c = 0.5 materials, the 

strains in the aggregate are lower. In addition, since there is a greater proportion of 

aggregate in the higher water-cement ratio materials, as stress increases, the relative 

contribution of aggregate to stiffness increases as the stiffness of the paste decreases. 

The effect of this response is illustrated in Fig. 3.54 and 3.55 where the monotonic 

stress-strain curves for mortar and concrete are plotted in terms of stress-strength 

ratio versus strain. In these cases, the higher water-cement ratio materials exhibit 

relatively higher stiffnesses. This type of response is not exhibited to the same extent 

in cement paste. As illustrated in Fig. 3.56, w/c = 0. 7 paste exhibits a relative 

stiffness that is nearly equal to the stiffness of the w/c = 0.5 paste. 

The strains, E1 , at the end of the 0- 0.8f' test are lower for the w/c = 0.5 pastes 

and concretes and higher for the w/c = 0.5 mortar than for the corresponding w/c = 
0.7 materials. For the lower stress cyclic tests, E1 is higher for the lower water­

cement ratio materials, with the exception of the 0 - 0.4 f' P tests where the strains are 

nearly identical. 

In making the observations that follow, unless noted, the trends observed at 45 

cycles are the same as those observed at the conclusion of the tests. For the 0 - 0.8f' 

tests, paste and concrete exhibit increased cyclic strains, fey. with increasing water­

cement ratio, while the opposite is true for mortar. One of the w/c = 0.5 concrete 

specimens, however, has a strain greater than the w/c = 0.7 specimen. Increasing 

Ecy with increasing water-cement ratio is also observed for all three materials in the 

lower stress tests, except for the 0 - 0.4 r m tests. 

Equivalent creep is greater for the 0.5 w/c specimens than for the 0.7 w/c 
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specimens at all stages of all tests in this study. The opposite is true for cyclic action 

strains at 45 cycles, with the exception of the 0- 0.8 f' m tests. At the conclusion of 

the tests, eca is lower for the lower water-cement ratio cement paste and one of the 

lower water-cement ratio concretes, but higher for the lower water-cement ratio 

mortar. 

The most useful comparisons can be obtained by comparing ratios of equivalent 

creep, eec, and cyclic action strain, eca, to total strain, e,, and cyclic strain, fey, and 

percent changes in stiffness, E,u, for the materials. These comparisons strongly 

suggest that an increase in water-cement ratio and/or aggtegate-cement ratio will lead 

to more rapid deterioration under cyclic loading. In all cases, equivalent creep 

represents a gteater percentage of e, and, in all cases but one (0.2 - 0.6 f' m), a greater 

percentage of fey for the lower water-cement material. Conversely, eca represents a 

higher percentage of e, (except for 0.2- 0.6 f' m and one 0- 0.8f' c) and ecy (except 

for 0.2 - 0.6£' m and 0 - 0.8f' m) for the w/c = 0.7 material than for the w/c = 0.5 

materials. At 45 cycles and at the conclusion of the test (with the exception of 0 -

0.8f' m final and 0.2- 0.6f'c 45 cycles and final), the percentage decrease in stiffness, 

a principal measure of damage, is gteater for the higher water-cement ratio materials. 

Since the comparisons of ecJe, ecJecy, and change in Esu can be made for 

cement paste, mortar, and concrete, it appears that, independent of the aggtegate­

cement ratio, an increase in the water-cement ratio will result in an increase in the 

degree of cyclic damage for materials cycled to the same stress-strength ratio. 
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3.4.3 EFFECT OF MAXIMUM STRESS 

Many previous tests of cement paste, mortar and concrete subjected to cyclic 

loading have been analyzed based on the mean cyclic stress and the cyclic stress 

range. Although the strain at 15 seconds, e15, and cyclic strain, Ecy, clearly increase 

with increases in either mean stress or stress range, large changes in Esu are observed 

only for cycles with a maximum stress greater than 0.6f'. Figs. 3.48-3.53 show the 

change in Esu versus number of cycles for cement paste, mortar and concrete at both 

w/c ratios. Figs. 3.42 - 3.47 show Eca versus time for the same tests. In all tests 

with a maximum stress-strength ratio of 0.6 or less, changes in stiffness occur 

almost entirely during the first 45 cycles or 22 minutes. In two cases, the stiffness 

recovers slightly between 45 cycles and the end of the test. As stated earlier, this 

may be due to beneficial, non-destructive consolidation of the material or due simply 

to scatter in the data. 

The strain contribution due to cycling, Eca, is no greater than 12 percent of the 

total strain for any test with a maximum cyclic stress of 0.6f' or less. It is impossible 

to detennine precisely how much of the cyclic strain is creep and how much is related 

to microcracking resulting form the cyclic nature of the load. However, in many 

cases, the equivalent creep represents nearly all of the cyclic strain in the first 45 

cycles and even over predicts the cyclic strain in test 1D5 (0.5 paste, 0-0.4f'p). This 

indicates that at stresses below 0.6f', the cyclic nature of the load has little effect. 

In contrast, for tests with a cyclic stress range of 0-0.Sf', Eca at failure is as high 

as 68 percent of the total strain (0.7 w/c mortar). The corresponding 55 percent 

decrease in Esu confirms that considerable damage is taking place during cycling. 

The equivalent creep at failure is highest for 0-0.8f' cycles, but equivalent creep as a 

percentage of total strain is generally lower for the high stress range tests than for 
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low stress range tests (Table 3.10). Equivalent creep, as a percentage of total strain, 

is largest in tests with a cyclic stress range of 0.2 - 0.6[', reaching 21 percent of the 

total strain and 89 percent of the cyclic strain for 0.7 w/c paste. 

3.4.4 EFFECT OF MEAN STRESS 

Previous research has separated the effect of stress range from that of mean 

cyclic stress. Stress ranges of 0 - 0.4f' and 0.2 - 0.6f' were tested for cement paste 

with w/c = 0.7 and mortar with w/c = 0.5 and 0. 7 for the purpose of examining the 

effect of mean stress. 

For w/c = 0.7 cement paste, holding the variation in stress constant while 

increasing the mean stress from 0.2 to 0.4f' P increases the total strain by 70 percent 

and the cyclic strain, equivalent creep and cyclic action strains by 200 percent. For 

the 0- 0.4f'p test, the total cyclic action strain is only 1 percent of the final total strain 

and for the 0.2 - 0.6f' P• the total cyclic action strain is 3 percent of the final total 

strain. For w/c = 0.5 mortar, increasing the mean stress from 0.2 to 0.4f' m• 

increases the total strain by 100 percent, the cyclic strain by 400 percent and the 

equivalent creep and cyclic action strains by 200 percent. Ecy/Et increases from 0 for 

the 0- 0.4f' m test to 7 percent for the 0.2- 0.6f'm test. For w/c = 0.7 mortar, the 

total strain and cyclic strain increase by 30 percent and the equivalent creep increases 

by 200 percent, while the cyclic action strain actually decreases. However, in this 

case, Ecy/Et decreases from 9 percent for the 0-0.4f' m test to 0 percent for the 0.2-

0. 6f' m test. 

With the limited amount of data available, it is difficult to make quantitative as­

sessments of the relationship between mean stress and the various measures of strain 

and stiffness. However, it should be noted that equivalent creep, as a percent of total 

strain, is greatest for the 0.2 - 0.6f' tests (a mean stress level of 0.4f), because the 
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cyclic strain values remain relatively small as long as the stress remains below 0.6f'. 

Consideration of the mean stress value alone fails to account for the large increases in 

all measures of strain that occur when the maximum stress is greater than or equal to 

0.8f'. 

3.4.5 EFFECT OF CYCLIC STRESS RANGE 

Holding the mean cyclic stress constant and increasing the range of stress over 

which the specimen is loaded produces increases in both consolidation and cracking. 

A comparison of the stress ranges 0.2-0.6f' and 0-0.8f' was intended to provide 

some insight into the effect of stress range. It is obvious that, for all materials tested, 

the 0-0.Sf' stress range produces considerably larger strains and changes in stiffness. 

It is not clear whether this is a result of increased range of stress or increased 

maximum stress. Similarly, maintaining an average cyclic stress of 0.2f' P and 

increasing the cyclic stress range from O.l-0.3f'p to 0-0.4f' P (w/c= 0.7) results in a 

small increase in cyclic action and total strains, but with a 3 percent decrease in 

modulus occurring for both tests. Again, it is difficult to distinguish between the 

effects of stress range and the effects of maximum stress. Comparing results for the 

0.2-0.6f' range tests to results for the 0·0.4f' tests, there is clearly a small increase in 

accumulated cyclic strains. This lends some support to the idea that maximum stress 

is the primary factor. Other research has indicated that there is an effect of stress 

range. However, based on research by Maher and Darwin (1980, 1982) and others 

(Whaley and Neville 1973), these results are probably influenced to a larger degree 

by the level of maximum stress. 

3.4.6 PASTE COMPARED TO MORTAR 

At a w/c = 0.5 and a stress range of 0·0.8[', cement paste exhibits about 50 
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percent more strain at 15 seconds and 200 percent more equivalent creep at failure 

than mortar. However, at failure, mortar exhibits 30 percent more cyclic strain than 

paste; the total strains at failure are approximately equal. The cyclic action strain in 

mortar is nearly 100 percent greater than that of cement paste, and the change in 

stiffness of mortar is about 200 percent greater than that of cement paste. This is in 

agreement with the earlier observation of Spooner, Pomeroy and Dougill (1976) that 

the introduction of aggregate makes the mortar more susceptible to microcracking 

damage than cement paste. Fig. 3.57 shows that w/c = 0.5 mortar degrades faster 

than cement paste. After 45 cycles, the rate of degradation of both materials tends to 

slow and the loss of stiffness continues at a much reduced rate. Near failure, the 

stiffness of the mortar drops precipitously, in contrast to cement paste which appears 

to loose stiffness at nearly a constant rate until failure. This is related to the fact that 

mortar fails more gradually than cement paste, with a large volume of material 

sustaining damage, while damage in cement paste is relatively localized. 

The 0-0.4f' test results show that paste has 100 percent more strain at 15 

seconds and at the end of the test, and 200 percent more cyclic strain, equivalent 

creep, and cyclic action strain than mortar. The change in modulus is negligible in 

either case. Very little damage occurs at the lower stress range, and the stiffer mortar 

accumulates less strain than the cement paste. At the higher stresses, strains that 

result from damage dominate the behavior, and mortar suffers more damage than 

paste due to its nonhomogeneous nature. 

For the w/c = 0.7 materials at 0- 0.8f', the strain at 15 seconds, cyclic strain, 

and equivalent creep are all at least 50 percent higher for cement paste than for 

mortar, while the cyclic action strains are nearly equal. The decrease in stiffness at 

the end of the test is 55 percent for mortar compared to 39 percent for cement paste. 

Fig. 3.58 shows that mortar degrades in stiffness more rapidly than cement paste 
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throughout the test. The w/c = 0.7 mortar does not exhibit the accelerated loss of 

stiffness that the 0.5 w/c mortar does near failure, but the w/c = 0.7 mortar did not 

fail (note only a single test of each was conducted). At 485 cycles, cement paste 

exhibits a decreased stiffness, although the curve appears to be concave upward, 

indicating possible stability at some greater number of cycles. 

For tests at 0 - 0.4f' and 0.2 - 0.6f', as with the higher stress tests, the strains in 

cement paste are somewhat larger than in the corresponding mortar. For the 0 - 0.4f' 

stress range, mortar drops 7 percent in stiffness while cement paste drops only 3 

percent. For the 0.2-0.6£' stress range, paste drops 9 percent in stiffness while the 

mortar drops 8 percent. 

These comparisons indicate some trends, but it should be kept in mind that these 

results represent only individual tests of each material and load regime combination. 

In general, the primary differences between mortar and cement paste are in stiffness 

and susceptibility to damage. The aggregate particles in mortar give the material a 

higher initial stiffness than cement paste and therefore the strains, at stresses below 

0.6f', are smaller for mortar. The aggregate, being stiffer than the surrounding 

paste, also creates stress concentrations in the paste. When the stresses are high 

enough, the stress concentrations cause microcracks to form and propagate through 

the paste. The result is a greater drop in stiffness for mortar than for cement paste 

(note that this is so, even though the maximum stresses are less for mortar than for 

cement paste loaded over the same cr/f' range). Thus, it can be concluded that, for 

loads above 0.6f', mortar sustains more crack damage than does the more 

homogeneous cement paste. 

3.4.7 MORTAR COMPARED TO CONCRETE 

The behavior of mortar more closely resembles that of concrete than it does 
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cement paste. The composite nature of these materials dominat~s their behavior. 

Looking at tests with a cyclic stress range of 0-0.8f' for mortar and concrete at w/c = 

0.5, mortar sustains 30 to 300 percent more strain, for each measure of strain, than 

does concrete. The lower strain in the concrete is undoubtedly due to the higher total 

aggregate content which limits average strains in the material. Eca is higher for mortar 

than for concrete as is the decrease in modulus (73 percent for mortar versus 27 and 

63 percent for the two concrete specimens). Fig. 3.57 shows that the stiffness of 

mortar degrades more rapidly than the stiffness of concrete throughout the test. For 

both materials, stiffness decreases rapidly at the beginning of the test, continues to 

decrease at a reduced rate as the test continues, and decreases rapidly once again as 

failure is approached. Eca/Ecy are about equal for both materials. The mortar 

specimen lasted 196 cycles, while the two concrete specimens lasted 205 cycles and 

240 cycles. It is important to note that, although the concrete sustains substantial 

damage and fails in less than the four hour test period, as did the mortar, the presence 

of the coarse aggregate limits both total strain and reduction in stiffness. Tests at 

lower stress ranges for the same w/c yield similar comparisons. In general, mortar 

undergoes larger strains and a greater decrease in stiffness than concrete at this w/c. 

For w/c = 0.7, the mortar accumulates larger strains than does concrete. For 

both high and low stress tests, ecafecy is about equal for the two materials. Fig. 3.57 

shows that mortar initially looses stiffness more rapidly than concrete, but that after 

the first 45 cycles, concrete looses stiffness more rapidly than mortar and fails after 

just 165 cycles. In contrast, mortar maintains a steady decrease in stiffness and does 

not fail within the 485 cycle test. The change in stiffness (initial to final) for the 0-

0.8f' tests is 55 percent for mortar and 46 percent for concrete. For the 0.2-0.6f' 

stress range, mortar accumulates more total strain and cyclic strain but less cyclic 

action strain than concrete. The mortar drops 8 percent in stiffness while the concrete 
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drops 3 percent. 

In spite of the differences in material response, the overall nature of damage 

appears to be quite similar in mortar and concrete, which suggests that the behavior 

of concrete under cyclic loading is dominated by its mortar constituent. 

3.4.8 PASTE COMPARED TO CONCRETE 

For w/c = 0.5, over the course of the tests, cement paste cycled from 0 to 0.8f' 

accumulates 100 to 200 percent higher strain than concrete, for each measure of 

strain, with the exception of equivalent creep, which is 500 to 600 percent higher for 

paste than for concrete. Cyclic action strain as a percent of cyclic strain is 68 percent 

for the paste and 86 percent for the concrete, while the decrease in modulus is 27 

percent for both. 

For w/c = 0.7 paste and concrete cycled from 0 to O.Sf', paste also accumulates 

much higher strain than does concrete. However, the cyclic action strain as a percent 

of cyclic strain is 80 percent for paste compared to 95 percent for concrete, and the 

decrease in modulus is 39 percent for paste compared to 46 percent for concrete. 

Although the strain is larger in cement paste than in concrete, a greater percentage of 

the strain in concrete, than in cement paste, is damage related. Figs. 3.57 and 3.58 

show that the moduli of elasticity of the concrete specimens drop more rapidly than 

the moduli of the cement paste specimens at both w/c's. The greater loss of stiffness 

seen in concrete shows that cement paste is damaged less by cyclic loading than is 

concrete. 

For the lower stress range tests, only 0.7 w/c cement paste and concrete loaded 

from 0.2 - 0.6f' can be compared, as no other matching data is available. The 

concrete accumulates 64 !l£ while the cement paste accumulates 43 !l£ over the course 

of the test. Eca/Ecy is 57 percent for concrete and 11 percent for cement paste. 
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However, the drop in stiffness is 3 percent for concrete compared to 9 percent for 

cement paste. This comparison provides no clear conclusions. 

For w/c = 0.5, the 0-0.8f' test of cement paste lasted 405 cycles, while the tests 

of concrete lasted 205 cycles and 240 cycles. The lower stress range tests lasted the 

full four hours for both materials. For w/c = 0.7, only the 0-0.8f' c test (specimen 

6C2) failed prior to the end of the 4 hour test. 

In general, it appears that for high stress tests, both cement paste and concrete 

initially undergo large decreases in stiffness. After 45 cycles, the decrease in 

stiffness of cement paste is more gradual while that of concrete continues to be higher 

and accelerates near failute. The behavior of concrete appears to be dominated by its 

non-homogeneous nature. However, both cement paste and concrete sustain little 

damage for stresses below 0.6f' and significant damage for stresses above 0.6£', 

indicating that cement paste is clearly the critical material in controlling the strength of 

concrete. 

3.5 SUSTAINED LOADING COMPARED TO CYCLIC LOADING 

For the purpose of determining how much damage is caused by sustained 

loading compared to that caused by cyclic loading, the total change in modulus for a 

sustained load test can be compared to the total change in modulus for cyclic tests of 

the same material at the same mean stress-strength ratio and/or at the same maximum 

stress-strength ratio. A measure of the change in modulus for sustained load tests 

can be obtained only if the specimen does not fail and is unloaded at the end of the 

four hour test. 

The measure of change in modulus used here is the difference between the secant 

loading modulus, E,1, for the initial loading branch of the test and the secant 

unloading modulus, E,u, of the unloading branch at four hours (or at some other 
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point in a cyclic test). The secant loading modulus is obtained by calculating the 

slope of a straight line passing through the origin and the first point on the stress­

strain curve where the load has reached its maximum stress-strength ratio. 

Examination of cyclic test results reveals, for later cycles, that for a given cycle the 

secant loading modulus differs from the secant unloading modulus by less than a 

percent. 

To make valid comparisons, it is desirable to compare sustained load tests to 

cyclic tests at equal strains. Some additional information can be gained by comparing 

decreases in modulus over the entire 4 hour test. In the following paragraphs, cyclic 

tests are compared to sustained load tests of the same material at stresses equal to the 

maximum and/or mean stress - strength ratios for which data is available, at 

equivalent values of strain if possible, or at the end of the test if the total strain in the 

cyclic specimen never matches the ending strain of the sustained load specimen. The 

comparisons are summarized in Table 3.12. 

For w/c = 0.5 cement paste, at 0- 0.8f' P' cyclic specimen 1D2 can be compared 

to sustained load specimens 8C5 and 8C6 at 4000 j.l.E. The sustained load specimens 

exhibit decreases in modulus of 374 ksi and 435 ksi, representing decreases of 17 

and 21 percent, while cyclic specimen 1D2 exhibits a decrease in modulus of 538 ksi 

or 24 percent. For 0- 0.4f' P' cyclic specimen 1D3 (E, = 1030 j.l.E) can be compared 

at 4 hours to sustained load tests at 0.2f'p (5A5, e, = 1548 j.l.E) and at 0.4f'p (5A6, e, 

= 648 j.l.E). In this case, the cyclic specimen exhibits a drop of 3 percent in stiffness, 

while the sustained load test at the same mean stress exhibits a 7 percent drop and the 

sustained load test at the same maximum stress exhibits a 3 percent drop in stiffness. 

Although this data is limited, some observations can be made. First, for 0 -

0. Sf' P' while both types of loading result in material damage, cyclic loading causes 

more damage than sustained loading to the same strain. This is so even though the 
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mean stress for the cyclic load is only one-half of the sustained load stress. These 

observations agree with the measurements of submicroscopic cracking by Attiogbe 

and Darwin (1985) for cement paste specimens subjected to similar stress histories. 

Secondly, at 0- 0.4f'p, the cyclically loaded specimen exhibits a smaller decrease in 

stiffness than the sustained load specimens at either the same maximum stress or the 

same mean stress. This illustrates the point, made by a number of previous 

researchers (Whaley and Neville 1973, Cook and Chindaprasirt 1980, Maher and 

Darwin 1980 and 1982), that at low stresses, the cyclic nature of the loading may be 

beneficial. 

For 0.5 w/c mortar, at a stress range of 0-0.8f' m, cyclic specimen 2C2 can be 

compared to sustained load specimens 6A3 and 5F3, both of which were loaded to 

the same maximum stress-strength ratio. At the conclusion of the test, at a maximum 

strain of 2921 J.l.E, sustained load specimen 6A3 exhibits a 17 percent drop in 

stiffness. At the same strain, cyclic specimen 2C2 exhibits a 34 percent drop in 

stiffness. At a maximum strain of 2613 J.l.E, sustained load specimen 5F3 exhibits a 

18 percent drop in stiffness. At the same strain, cyclic specimen 2C2 exhibits a 28 

percent drop in stiffness. This demonstrates the fact that, at high stress-strength 

ratios, a cyclic load is more damaging than a sustained load equivalent to the 

maximum cyclic stress and therefore much more damaging than a sustained load 

equivalent to the mean cyclic stress. 

For the 0-0.4f' m stress range, specimen 2C3, a comparison can be made to 

sustained load specimens 5F5 and 6A5, both loaded to the same maximum stress -

strength ratio. The modulus of specimen 5F5 decreases 4 percent during the 4 hour 

test and specimen 6A5 suffers no loss of stiffness, while cyclic specimen 2C3 shows 

a 3 percent decrease in stiffness. 

Specimen 2C5, 0.2 - 0.6f' m, experiences a 10 percent increase in stiffness over 
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the 4 hour test. Sustained load specimen 6A4, loaded at the same maximum stress 

range exhibited a 9 percent drop in stiffness. For low stress range tests, cyclic loads 

appear to cause little if any increased loss of stiffness over a sustained load test to the 

same maximum stress - strength ratio and may result in increased stiffness due to 

consolidation. 

For w/c = 0.5 concrete at a stress range of 0-0.8f'c, specimens 3C2 and 3C4 can 

be compared at a strain of 1558 J.LE to sustained load specimen 8A3, which was 

loaded to the same maximum stress. Cyclic specimens 3C2 and 3C4 exhibit 21 and 

15 percent drops in stiffness, respectively, while sustained load specimen 8A3 

exhibits a 5 percent drop in stiffness. At 0.2-0.6£' c. cyclic specimen 3C5 ( Et = 780 

J.LE) exhibits a 6 percent increase in stiffness at 4 hours, and sustained load specimen 

8A5 (et = 513 J.LE) exhibits a 1 percent drop in stiffness. For concrete, as for mortar 

and cement paste, cyclic loads appear to be more damaging than sustained loads at 

high stress-strength ratios and less detrimental at low stress-strength ratios. 

For w/c = 0.7 cement paste at a stress range of 0-0.8f'p, cyclic specimen 4C2 (et 

= 4850 J.LE) exhibits a 35 percent drop in stiffness at 4 hours. Sustained load 

specimen 3A3 ( Et = 5678 J.LE), loaded to the same maximum stress-strength ratio, 

exhibits a 26 percent drop in stiffness at 4 hours, and sustained load specimen 3A5 

(et = 1240 J.LE), loaded to the mean stress-strength ratio exhibits a 7 percent drop in 

stiffness. Specimen 4C3, 0-0.4f' P• exhibited a 3 percent increase in stiffness at 4 

hours (et = 1009 J.Le). At 0.2-0.6f'p, cyclic specimen 4C5 (et = 1703 J.LE) exhibits 

only a 2 percent drop in stiffness, while sustained loads to the same maximum (3A4, 

Et = 2264J.Le) and mean (3A5, Et = 1240 J.LE) stress-strength ratio produced 15 and 7 

percent drops, respectively. 

For w/c = 0.7 mortar at a stress range of 0-0.8f' m• cyclic test specimen 5C2 

exhibits a 33 percent drop in stiffness at 1949 J.LE, while sustained load specimen 4A3 



53 

(loaded to the same maximum stress-strength ratio) exhibits a 19 percent drop in 

stiffness at the same strain. At 2560 J.LE, specimen 5C2 exhibits a 42 percent drop in 

stiffness, and at the same strain, sustained load specimen 2A3 (loaded to the same 

maximum stress-strength ratio) exhibits a 25 percent drop in stiffness. After 4 

hours, specimen 5C2 suffers a 52 percent drop in stiffness. The drop in stiffness for 

4A3 and 2A3 at 4 hours are the same as given above. These results agree with the 

other 0-0.8f' tests in the sense that, at high stress-strength ratios, cyclic loads cause 

more damage than sustained loads equivalent to either the mean stress or the 

maximum stress. Cyclic test specimen 5C5 (0.2- 0.6f' m• e, = 640 JlE) cannot be 

compared at any equivalent strains but can be compared at 4 hours to sustained load 

specimens 2A4 (Et = 843 JlE) and 4A4 ( e, = 760 JlE) at the equivalent maximum 

stress, and 2A5 (e, = 476 JlE) and 4A5 (e, = 428 JlE), at the same mean stress. At 4 

hours, cyclic specimen 5C5 exhibits a 3 percent drop in stiffness. Specimen 4A4 

exhibits a 9 percent drop, 2A4 exhibits a 10 percent drop, 4A5 exhibits a 6 percent 

drop, and 2A5 exhibits an 5 percent loss. These observations also agree with 

previous results, in that cyclic tests with a maximum stress-strength ratio of 0.6 or 

less accumulate less damage than sustained load tests with an stress-strength ratio 

equal to either the maximum or mean stress-strength ratio. 

For 0.7 w/c concrete, cyclic specimen 6C2 (0- 0.8f' 0) exhibits a 20 percent drop 

in stiffness at 1098 JlE, while sustained load specimen 7F3 exhibits a 11 percent drop 

in stiffness at the same strain. At 117 6 JlE, 6C2 exhibits a 23 percent drop in 

stiffness, while sustained load specimen 6F3 exhibits 11 percent drop in stiffness at 

the same strain. At 4 hours, 6C2 (e, = 2157 JlE) exhibits a 44 percent drop as 

compared to 11 percent for both 7F3 and 6F3. Sustained load specimen 6F5 (loaded 

to the mean cyclic stress-strength ratio) exhibits a 3 percent drop in stiffness at four 

hours. Again, the cyclic load is much more detrimental than the sustained load, even 
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at the maximum cyclic stress-strength ratio. 

At 4 hours specimen 6C5 (0 - 0.4f' 0 , Et = 553 ~E) exhibits a decrease in 

modulus of 4 percent, while specimens 6F4 (Et = 652 ~E) and 7F4 (E t = 637 ~E) 

with the same maximum stress - strength ratio exhibit 5 and 6 percent decreases, 

respectively. As for the other tests of w/c = 0.7 concrete with a maximum stress of 

0.6f' or less, the cyclically loaded specimens exhibit smaller decreases in stiffness 

than sustained load specimens loaded to the same maximum stress - strength ratio. 

In general, it appears that cyclic loading is less damaging, or at least shows a 

lower drop in stiffness, than sustained loading (at either the mean or maximum stress­

strength ratio) for stress-strength ratios not exceeding 0.6f'. This behavior may be 

due to consolidation that occurs under cyclic loading, but not sustained loading. 

However, if the stress-strength ratio exceeds 0.6£', cyclic loading results in a greater 

loss of stiffness than sustained loading at either the mean or maximum cyclic stress­

strength ratio. 

3.6 CORRELATION OF CHANGE IN MODULUS TO CYCLIC 

ACTION STRAIN 

The cyclic action strain, Eca• and the change in the secant unloading modulus, 

E5u, are the principal measures of damage used in the current study. The question 

arises as to how closely these responses mirror one another. A check of the data 

indicates that the high stress tests provide the clearest comparisons. Before making 

those comparisons, however, it is important to note that neither Esu or Eca represents 

damage alone. Changes in Esu provide a measure of both damage, which causes Esu 

to decrease, and consolidation, which causes Esu to increase. Likewise, Eca serves as 

a measure of strain due to both accumulated damage and accelerated consolidation, if 

any, that occurs as the result of cyclic loading. Both damage and consolidation will 
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increase Eca· 

A comparison of the cyclic action strain, €ca• plots, Figs. 3.42-3.47, with the 

corresponding plots for changes in E5u, Figs. 3.48-3.53, indicates that, for the 0-0.8 

f' tests, both measures of damage increase most rapidly during the early cycles and 

increase more slowly afterward. For cement paste, €ca exhibits relatively more 

change than Esu after 45 cycles. For mortar, the changes in €ca and Esu are closely 

matched throughout the tests. For concrete, €ca changes more rapidly than E su 

during in the first 45 cycles; afterward the changes are similar. Alternatively, it could 

be observed that the two quantities match for the first 45 cycles, but that Eca exhibits 

relatively less change after 45 cycles. 

For cement paste, the changes in Esu are almost identical for the 0.5 and 0.7 w/c 

materials. For mortar, the changes in Esu are very close for the two water-cement 

ratios over the fust 100 cycles (with the w/c = 0.5 mortar showing somewhat less 

deterioration). The drop in Esu for w/c = 0.5 exceeds that for w/c = 0.7 above 100 

cycles. The w/c = 0.5 mortar deteriorates rapidly after approximately 170 cycles, 

while the w/c = 0.7 mortar exhibits a nearly constant rate of decrease in Esu· For 

concrete, the w/c = 0.5 material exhibits a slower drop in Esu than w/c = 0.7 concrete 

throughout the duration of the test. These general trends are mirrored by €ca. which 

accumulates more rapidly for the high water-cement ratio paste and concrete and 

more slowly for the high water-cement ratio mortar. 

Overall, the current tests suggest that trends observed in changes in Esu and Eca 

are similar, but the details of the changes are different, and the two measures of 

damage appear to represent different aspects of material response. The subject of 

measures of damage is worthy of additional study. 
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CHAPTER 4 

SUMMARY AND CONCLUSIONS 

The purpose of this investigation is to study the behavior of cement paste, mortar 

and concrete under monotonic, sustained and cyclic loading. The behavior of cement 

paste and mortar under the various load regimes is compared to that of concrete to 

determine the contribution each constituent makes to the overall behavior of the 

composite material. For monotonic loading, the behavior of each material is described 

in terms of peak stress, strain at peak stress, and initial modulus of elasticity. For 

sustained loading, the behavior is described in terms of creep strain as a function of 

stress-strength ratio and time under load. Mathematical relationships are developed on 

the sustained load response to estimate the cumulative static creep for a cyclic test. 

Saturated cement paste, mortar and concrete specimens with water-cement ratios 

of 0.5 and 0.7 are used. Specimens are tested at ages ranging from 27 to 29 days. 

Specimens are loaded in compression using a closed-loop servo-hydraulic testing 

machine. 

Cyclic test results are examined in terms of strain at 15 seconds, the difference 

between the strain at 15 seconds and the peak strain for a given cycle (cyclic strain), the 

estimated creep strain for a cyclic test (equivalent creep, based on sustained load test 

results), the difference between cyclic strain and equivalent creep (cyclic action strain), 

and the change in secant unloading modulus (a measure of material damage). The 

equivalent creep during a cyclic test is used to distinguish between cyclic strain and 

cyclic action strain. The cyclic action strain may include accelerated creep strain as well 

as strain related to microcracking. Creep strain may include consolidation of the 

material as well as some microcracking. The cyclic action strains are correlated with 
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changes in modulus of elasticity to determine the extent to which these strains are the 

result of damage. 

4.2 CONCLUSIONS 

The following conclusions are based on the findings of this study: 

1. For the materials used in this study, at a given water - cement ratio, 

cement paste has a higher strength and strain capacity than do the 

corresponding mortar and concrete, while mortar and concrete have a 

higher initial stiffness than cement paste. 

2. For the materials used in this study, at a' given water - cement ratio, 

mortar has a higher strength and strain capacity than does the 

corresponding concrete but has approximately the same initial stiffness 

as concrete. 

3. At a water- cement ratio of 0.5, the strengths of cement paste, mortar, 

and concrete are closer than for a water-cement ratio of 0. 7. 

4. The strains corresponding to the peak stress decrease with increasing 

water-cement ratio for mortar and concrete, but increase for cement 

paste. 

5. Under monotonic loading, the stress - strain curves of mortar and 

concrete are quite similar but differ substantially from the stress - strain 

curves of cement paste. The addition of aggregate increases the initial 

stiffness of the mortar and concrete, and reduces total strain, but also 

reduces the ultimate strength of the material. 

6. Over a four hour period, creep strain is a nonlinear function of the stress -

strength ratio, increasing to a greater degree than stress - strength ratio 

as the stress - strength ratio increases. 
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7. For the sustained load tests at a given stress - strength ratio ( cr ~ O.Sf'), 

specimens of cement paste, mortar and concrete with a water - cement 

ratio of 0.5 exhibit higher total strains than specimens with a water -

cement ratio of 0.7. 

8. For sustained loading at the highest stress-strength ratios (0.90, the 

0.7 water-cement ratio specimens exhibit higher values of creep strain 

than 0.5 water-cement ratio specimens. 

9. Under sustained loading, at the same stress-strength ratio, total strain 

and creep strain accumulate more rapidly for cement paste than for 

mortar and more rapidly for mortar than for concrete. 

10. Under sustained loading, the addition of fine aggregate to cement paste 

reduces the total strain, creep strain and strain capacity of the material. 

11. Under sustained loading, strains in mortar are 25 to 80 percent higher 

than those in concrete, and strains in cement paste are 60 to 440 percent 

higher than those in mortar. 

12. For cyclic tests with a maximum stress-strength ratio greater than 

0.6f', cyclically loaded cement paste, mortar and concrete exhibit larger 

strains than similar materials exposed to a sustained load equal to the 

mean cyclic stress. 

13. For cyclic loading, the initial modulus of elasticity exhibits more scatter 

than the secant unloading modulus. 

14. For cyclic loading the initial modulus of elasticity is always greater than 

the secant unloading modulus for tests of cement paste and for tests of 

mortar and concrete with a maximum stress of 0.6f' or less. However, 

for mortar and concrete with a maximum stress of 0.8[', the initial 

modulus typically starts out higher and then drops below the secant un-
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loading modulus. 

15. For materials under cyclic load, the relative change in the secant 

unloading modulus over the duration of the test is greatest for mortar 

and least for cement paste with concrete falling in the middle. 

16. In many of the tests with a maximum stress of 0.6f' or less, equivalent 

creep predicts all of the measured cyclic strain, and, in some cases, even 

over predicts the cyclic strain, during the ftrSt 45 cycles. This indicates 

that no additional damage occurs due to the cyclic nature of the load. 

17. For the load regimes studied, maximum cyclic stress appears to have a 

much greater impact on the cyclic action strain and change in stiffness 

than the mean cyclic stress or the cyclic stress range. 

18. For maximum stresses above 0.6f', cyclic loads produce larger changes 

in stiffness, at the same total strain, than sustained load tests at either the 

mean cyclic stress or the maximum cyclic stress. 

19. For cyclic loads, at stresses of 0.6f' and below, mortar accumulates 

smaller strains and smaller changes in modulus than cement paste. 

However at high stresses, damage related strains dominate the behavior, 

and mortar suffers more damage than cement paste due to its non­

homogeneous nature. 

20. For the cyclic load ranges used in these tests, mortar sustains larger 

strains and (with the exception of one test, 0.2-0.6f' m at w/c = 0.5) 

larger changes in stiffness than does concrete at the same water-cement 

ratio. 

21. Under monotonic, sustained and cyclic loading, the behavior of mortar 

more closely resembles that of concrete than it does cement 

paste. 
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22. The overall nature of damage, as measured by cyclic action strain and 

decrease in secant unloading modulus, in mortar and concrete is quite 

similar, which suggests that the behavior of concrete under cyclic 

loading is dominated by its mortar constituent 

4.3 FUTURE WORK 

Although this study provides significant insight into the behavior of concrete and 

its dependance on the behavior of its cement paste and mortar constituents, a number of 

important questions cannot be answered with the available data. One limitation of the 

current study is due to the number of cyclic test specimens and the lack of duplicate 

tests. Additional tests need to be conducted to provide a statistically valid foundation 

for the observations made here. 

Another aspect of the current study that needs further examination is the relative 

influence of the water- cement ratio and the aggregate - cement ratio. In the current 

study these ratios are varied simultaneously. Additional tests need to be conducted to 

determine the individual effects of these parameters. 

Of particular interest is the possible existence of a "endurance limit" or a stress -

strength ratio below which concrete would suffer no damage due to the cyclic nature of 

the load. From the current study, and from the existing body of evidence, it would 

appear that such a stress - strength ratio exists and that it is between O.Sf' and 0.8f'. 

Further tests within this stress range are needed to verify the existence of a limit and to 

accurately determine its value. 

The test results analyzed in this study are for load durations of only 4 hours. 

Although it appears that the majority of strains and changes in modulus occur during 

the first 45 cycles (with the exception of stress ranges above 0.6f), longer duration 

tests are required to obtain a complete understanding of material behavior in real 
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structures. 

Finally, further tests of the materials, combined with morphological studies, are 

needed to develop a complete understanding of the microscopic and macroscopic 

behavior of concrete. Only through a full understanding of the response of concrete to 

general types of load can the behavior of this important construction material be 

understood. 
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Table 2.1 Mix Proportions 

Water Cement Ratio 
0.5 0.7 

Concrete Mix Proportions 
Materials lb/cu yd kg/cu m lb/cu yd kg/cu m 
Cement 610 303.7 436 845.6 
Water 305 591.5 305 591.5 
Fine Aggregate 1401 2717.2 1542 2990.6 
Coarse Aggregate 1539 2984.8 1539 2984.8 
Slump, in(mm) 3 (75) 3 (75) ~ 

Relative Proportions by Weight, C:FA:CA 
Concrete 1 : 2.30 : 2.52 1 : 3.54 : 3.53 
Mortar 1 : 2.30: 0.0 1 : 3.54: 0.0 
Cement Paste 1 : 0.0 :0.0 1 : 0.0 :0.0 



Batch I # 
1C 1 
1D 1 
1F 1 
1G 1 
2A 1 
2C 1 
2D 1 
3A 1 
3D 2 

4 
5 
6 

3E 1 
4A 1 
48 1 

2 
3 
4 
5 

4C 1 
4E 1 
5A 1 
5C 1 
SF 1 
6A 1 
68 4 

5 
6 

6F 1 
7A 2 
78 1 
7C 1 
7F 1 
SA 1 
ac 1 
BE 1 
9A 1 

2 
9C 1 
9E 1 

65 

Table 3.1 
Summary of Monotonic Tests 

I Mat I w/c I E init (ksi) I 
p 0.5 2296753 
p 0.5 2307599 
p 0.7 1744532 
p 0.5 2234338 
M 0.7 3662848 
M 0.5 4376234 
M 0.5 4095601 
p 0.7 1643500 
c 0.5 4118857 
c 0.5 4056727 
c 0.5 4275068 
c 0.5 3996124 
p 0.7 1574545 
M 0.7 3103349 
c 0.7 3107442 
c 0.7 3352756 
c 0.7 3254668 
c 0.7 3334237 
c 0.7 3316589 
p 0.7 1784342 
p 0.5 2315634 
p 0.5 2234063 
M 0.7 3255734 
M 0.5 4126789 
M 0.5 4198864 
c 0.5 3953671 
c 0.5 4392319 
c 0.5 4314171 
c 0.7 3202144 
p 0.7 1564349 
p 0.5 2247532 
M 0.5 3791776 
c 0.7 3555249 
c 0.5 4015752 
p 0.5 2496418 
p 0.7 1776473 
c 0.5 3996233 
c 0.5 4414651 
c 0.5 4325634 
M 0.7 3203457 

f' (ksi) I E @f!J.B 
5558 4922 
5385 5322 
4192 6950 
6189 5838 
3582 2515 
5555 3064 
5166 2867 
4098 7050 
5262 2041 
5262 1836 
5438 2051 
5258 1864 
3862 6570 
3342 2491 
2795 1300 
2670 1450 
2660 1430 
2935 1520 
2935 1560 
3543 5700 
5757 5180 
6499 6199 
3411 2450 
5627 3159 
5705 3025 
4839 1730 
4859 1 811 
5108 1 81 0 
2768 2768 
3541 3541 
6331 6331 
5733 5733 
2688 2688 
4834 4834 
5695 5695 
3952 3952 
4258 4258 
4357 4357 
4765 4765 
3664 3664 



Table 3.2 
Material Properties Under Monotonic Loading 

Water/Cement Ratio 
0.5 0.7 

Paste I Mortar I Concrete Paste I Mortar I Concrete 
No. of Specimens 7 5 11 6 4 7 

Avg. Compr. Strength (f') ksi 5916 5557 4931 3865 3500 2779 
Std. Dev. (f') ksi 422 229 380 275 149 118 

Avg. Strain @ Pk. Strs. (E (I')) 5560 3067 1839 6403 2516 1489 
Std. Dev. ( £(!')) 534 136 141 708 67 106 

Avg. Initial Modulus (Ei) ksi 2305 4118 4169 1681 3306 3303 
Std. Dev. (Ei) ksi 91 212 177 100 246 140 ~ 
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Table 3.3 
Summary of Sustained Load Specimens 

Soecimenl Material! w/c I cr/f'l cr (psi) I e15 ).Le I e, ).Le I e, e1s ).Lei Tfailure 

1C6 • 
106 
1G2 
1G4 
1G5 
1G6 
2A2 
2A3 
2A4 
2A5 
2A6 
2C6 
205 
206 
3A2 
3A3 
3A4 
3A5 
3A6 
3C6 
4A2 
4A3 
4A4 
4A5 
4A6 
4C6 
5A2 
5A3 
5A4 
5A5 
SAG •• 

p 0.5 0.6 3347 1353 2228 875 14355 
p 0.5 0.6 3231 1386 2216 830 14355 
p 0.5 0.9 5556 2764 8639 5875 10455 
p 0.5 0.8 4892 2254 5243 2989 14355 
p 0.5 0.4 2484 1029 1413 384 11955 
p 0.5 0.6 3701 1588 2673 1085 14355 
M 0.7 0.9 3240 1139 3456 2317 1395 
M 0.7 0.8 2822 945 2560 1615 14355 
M 0.7 0.6 2144 598 852 254 14055 
M 0.7 0.4 1431 378 476 98 14355 
M 0.7 0.2 721 174 174 0 12855 
M 0.5 0.6 3322 759 1095 336 14355 
M 0.5 0.9 4640 1359 2513 1154 1275 
M 0.5 0.9 4643 1417 2501 1084 923 
p 0.7 0.9 3654 2565 10617 8052 8184 
p 0.7 0.8 3279 2226 5706 3480 14055 
p 0.7 0.6 2458 1405 2264 859 14355 
p 0.7 0.4 1634 901 1240 339 14355 
p 0.7 0.2 828 444 542 98 14055 
c 0.5 0.6 2855 659 844 185 14355 
M 0.7 0.9 3030 1109 3979 2870 2245 
M 0.7 0.8 2696 874 1949 1075 14355 
M 0.7 0.6 2004 545 760 215 14355 
M 0.7 0.4 1363 353 428 75 14355 
M 0.7 0.2 670 160 1888 1728 14355 
p 0.7 0.6 2127 1233 1890 657 14355 
p 0.5 0.9 5841 2796 8707 5911 6901 
p 0.5 0.8 5196 2399 6119 3720 14355 
p 0.5 0.6 3897 1658 2844 1186 13755 
p 0.5 0.4 2609 1073 1548 475 14355 
p 0.5 0.2 1312 524 648 124 14355 

• Corresponding monotonic specimens, summarized in Table 3.1, can be 
identified by matching the first two characters of the specimen 10#. 

•• Continued on following page. 
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Table 3.3 
Summary of Sustained Load Specimens (Cont.) 

Soecimen I Material I w I c I 0" I f'1 cr (psi) I EJS !lE I E, !lE I Et-EJ5 !lE I Trailure 

6C6 c 0.7 0.6 1696 429 466 37 14355 
6F2 c 0.7 0.9 2494 896 2958 2062 1245 
6F3 c 0.7 0.8 2215 680 1176 496 14355 
6F4 c 0.7 0.6 1656 481 652 171 14355 
6F5 c 0.7 0.4 11 09 289 323 34 14355 
6F6 c 0.7 0.2 557 143 130 -1 3 13455 
7C6 M 0.5 0.6 3433 826 1279 453 14355 
7F2 c 0.7 0.9 2420 825 1980 11 55 855 
7F3 c 0.7 0.8 2145 637 1098 461 14355 
7F4 c 0.7 0.6 1616 468 642 174 14055 
7F6 c 0.7 0.2 540 130 141 1 1 14355 
8A2 c 0.5 0.9 4350 1183 2779 1596 1203 
8A3 c 0.5 0.8 3868 925 1564 639 14055 
8A4 c 0.5 0.6 2899 660 847 187 8655 
BAS c 0.5 0.4 1939 426 514 88 14055 
8A6 c 0.5 0.2 966 195 205 1 0 14355 
scs p 0.5 0.8 4550 2154 3985 1831 3555 
8C6 p 0.5 0.8 4548 2117 4002 1885 3075 
9C5 c 0.5 0.9 4282 1122 1503 381 265 
9C6 c 0.5 0.9 4278 11 07 1499 392 545 
5F2 M 0.5 0.9 5070 1503 4518 3015 3555 
5F3 M 0.5 0.8 4508 1200 2609 1409 13755 
5F4 M 0.5 0.6 3403 831 1288 457 14355 
SFS M 0.5 0.4 2268 509 658 149 14355 
5F6 M 0.5 0.2 1144 239 294 55 14055 
6A2 M 0.5 0.9 5133 1498 4998 3500 3040 
6A3 M 0.5 0.8 4601 1271 2919 1648 14055 
6A4 M 0.5 0.6 3442 813 1160 347 14055 
6A5 M 0.5 0.4 2290 535 661 126 14355 
6A6 M 0.5 0.2 1153 243 208 -35 4755 
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Table 3.4 
Coefficients of Creep Strain vs. Log-Time Best-Fit Curves 

Material cr I f' A I B I c I D 
0.2 -3.423 0.1 829 -0.06212 0.007618 
0.4 -3. 123 0.1809 -0.05744 0.007488 

0.5 Paste 0.6 -2.928 0.1165 -0.02811 0.004494 
0.8 -2.817 0.1 951 -0.04712 0.007920 
0.9 -2.865 0.3850 -0.1238 0.01974 

0.2 -3.791 0.2361 -0.09450 0.01268 
0.4 -3.349 0.08777 -0.02798 0.003980 

0.5 Mortar 0.6 -3.202 0.1374 -0.03659 0.004872 
0.8 -3.021 0.1340 -0.02736 0.005324 
0.9 -3.310 0.6621 -0.2704 0.04394 
0.2 -3.843 0.1767 -0.06635 0.007831 
0.4 -3.468 0.1286 -0.04481 0.005843 

0.5 Concrete 0.6 -3.243 0.07740 -0.02093 0.002954 
0.8 -3.140 0.1570 -0.04675 0.006803 
0.9 -3.427 0.7249 -0.3319 0.05600 
0.2 -3.496 0.1 937 -0.07055 0.008973 
0.4 -3.146 0.1328 -0.04177 0.005713 

0.7 Paste 0.6 -3.010 0.1617 -0.04658 0.006398 
0.8 -2.812 0.1838 -0.03768 0.006435 
0.9 -3.035 0.5898 -0.2206 0.03508 
0.2 -3.960 0.2553 -0.1015 0.01272 
0.4 -3.545 0.1442 -0.04927 0.006285 

0.7 Mortar 0.6 -3.364 0.1 551 -0.04720 0.006125 

0.8 -3.159 0.1334 -0.02288 0.004914 
0.9 -3.482 0.7617 -0.3251 0.05693 
0.2 -3.942 0.1071 -0.03881 0.004054 

0.4 -3.655 0.1440 -0.04707 0.005171 

0. 7 Concrete 0.6 -3.401 0.09307 -0.02338 0.003210 

0.8 -3.274 0.1054 -0.01963 0.003248 

0.9 -3.764 1.0470 -0.4892 0.08625 
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Table 3.5 
Cyclic Test Stress Ranges 

Material Test # cr /f' # Cycles 

102. 0-0.8 405 
0.5 Paste 103 0-0.4 485 

2C2 0-0.8 196 
0.5 Mortar 2C3 0-0.4 485 

2C5 0.2-0.6 485 

3C2 0-0.8 205 
0.5 Concrete 3C4 0-0.8 240 

3C5 0.2-0.6 485 

4C2 0-0.8 485 
0.7 Paste 4C3 0-0.4 485 

4C4 0.1-0.3 245 
4C5 0.2-0.6 485 

5C2 0-0.8 485 
0.7 Mortar 5C3 0-0.4 485 

5C5 0.2-0.6 485 

0.7 Concrete 6C2 0-0.8 165 
6C5 0-0.4 485 

* Corresponding monotonic tests, summarized in 
Table 3.1, can be identified by matching the first 
two characters of the specimen 10#. 

** Test 4C4 was terminated early due to 
equipment problems. 

** 



Table3.6 
Rnal Elastic, Total, Cyclic, Equivalent Creep, and Cyclic Action Strains 

Material Test ali' Et5 llE e, llE Ecy llE Eec l1£ Eca llE 

0.5 Paste 1D2 0-0.8 0.001938 0.004054 0.002115 0.000677 0.001439 
1D3 0-0.4 0.000875 0.001030 0.000155 0.000153 0.000002 

0.5 Mortar 2C2 0-0.8 0.001247 0.004067 0.002820 0.000226 0.002594 
2C3 0-0.4 0.000486 0.000537 0.000051 0.000057 -0.000006 
2C5 0.2-0.6 0.000808 0.001042 0.000234 0.000159 0.000075 

0.5 Concrete 3C2 0-0.8 0.000918 0.001644 0.000727 0.000102 0.000625 
3C4 0-0.8 0.000947 0.002765 0.001818 0.000106 0.001712 
3C5 0.2-0.6 0.000639 0.000780 0.000141 0.000089 0.000052 

0.7 Paste 4C2 0-0.8 0.001833 0.004850 0.003017 0.000609 0.002409 --.! 

4C3 0-0.4 0.000880 0.001009 0.000129 0.000116 0.000013 
>-' 

4C4 0.1-0.3 0.000586 0.000652 0.000066 0.000080 -0.000014 
4C5 0.2-0.6 0.001311 0.001703 0.000392 0.000349 0.000043 

0.7 Mortar 5C2 0-0.8 0.000839 0.003200 0.002361 0.000199 0.002162 
5C3 0-0.4 0.000355 0.000414 0.000059 0.000024 0.000036 
5C5 0.2-0.6 0.000548 0.000640 0.000092 0.000093 -0.000001 

0.7 Concrete 6C2 0-0.8 0.000670 0.002157 0.001487 0.000079 0.001408 
6C5 0.2-0.6 0.000441 0.000553 0.000112 Q.QQQ()49 0.0000§4 



Material Test 

0.5 Paste 102 
103 

0.5 Mortar 2C2 
2C3 
2C5 

0.5 Concrete 3C2 
3C4 
3C5 

0.7 Paste 4C2 
4C3 
4C4 
4C5 

0.7 Mortar 5C2 
5C3 
5C5 

0.7 Concrete 6C2 
6C5 
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Table3.7 
Cyclic Strain at 45 Cycles and end of Test 

cr/f' 

0-0.8 
0-0.4 

0-0.8 
0-0.4 

0.2-0.6 

0-0.8 
0-0.8 

0.2-0.6 

0-0.8 
0-0.4 

0.1-0.3 
0.2-0.6 

0-0.8 
0-0.4 

0.2-0.6 

0-0.8 
0.2-0.6 

""""' ., ~ 
0.000699 
0.000075 

0.000607 
0.000025 
0.000115 

0.000263 
0.000282 
0.000081 

0.000883 
0.000061 

-
0.000219 

0.000457 
0.000032 
0.000057 

0.000361 
0.000065 

Ecyfin.J ~ 

0.002115 
0.000155 

0.002820 
0.000051 
0.000234 

0.000727 
0.001818 
0.000141 

0.003017 
0.000129 
0.000066 
0.000392 

0.002361 
0.000059 
0.000092 

0.001487 
0.000112 

avg =0.8 
avg:>0.6 
avo all 

Ecy <!!I 4> I E,ytin.J 

33% 
48% 

22% 
50% 
49% 

36% 
16% 
57% 

29% 
47% 
-

56% 

19% 
54% 
62% 

24% 
58% 

26% 
53% 
41% 



Material 

0.5 Paste 

0.5 Mortar 

0.5 Concrete 

0.7 Paste 

0.7 Mortar 

0.7 Concrete 
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Table3.8 
Equivalent Creep at 45 Cycles and end of Test 

Test cr 1 f' 

102 0-0.8 
103 0-0.4 

2C2 0-0.8 
2C3 0-0.4 
2C5 0.2-0.6 

3C2 0-0.8 
3C4 0-0.8 
3C5 0.2-0.6 

4C2 0-0.8 
4C3 0-0.4 
4C4 0.1-0.3 
4C5 0.2-0.6 

5C2 0-0.8 
5C3 0-0.4 
5C5 0.2-0.6 

6C2 0-0.8 
6C5 0.2-0.6 

"=@45 ~ 

0.000346 
0.000085 

0.000147 
0.000024 
0.000084 

0.000068 
0.000068 
0.000048 

0.000304 
0.000061 
0.000052 
0.000185 

0.000101 
0.000014 
0.000052 

0.000057 
0.000033 

Bee nnal J.1S 

0.000677 
0.000153 

0.000226 
0.000057 
0.000159 

0.000102 
0.000106 
0.000089 

0.000609 
0.000116 
0.000080 
0.000349 

0.000199 
0.000024 
0.000093 

0.000079 
0.000049 

avg -0.8 
avg~0.6 

avgall 

"= @ 45 1 "=final 

51% 
55% 

65% 
42% 
53% 

67% 
64% 
55% 

50% 
52% 
65% 
53% 

51% 
60% 
56% 

73% 
67% 

60% 
56% 
58% 



Material 

0.5 Paste 

0.5 Mortar 

0.5 Concrete 

0.7 Paste 

0.7 Mortar 

0.7 Concrete 
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Table3.9 
Cyclic Action Strain at 45 Cycles and end of Test 

Test cr If' 

102 0-0.8 
103 0-0.4 

2C2 0-0.8 
2C3 0-0.4 
2C5 0.2-0.6 

3C2 0-0.8 
3C4 0-0.S 
3C5 0.2-0.6 

4C2 0-0.8 
4C3 0-0.4 
4C4 0.1-0.3 
4C5 0.2-0.6 

5C2 0-0.8 
5C3 0-0.4 
5C5 0.2-0.6 

6C2 0-0.8 
6C5 0.2-0.6 

"""@45 JlS 

0.000354 
-0.000010 

0.000460 
0.000001 
0.000031 

0.000195 
0.000214 
0.000033 

0.000578 
0.000000 

0.000035 

0.000357 
0.000018 
0.000005 

0.000303 
0.000032 

>;,,fiml JlS 

0.001439 
0.000002 

0.002594 
-0.000006 
0.000075 

0.000625 
0.001712 
0.000052 

0.002409 
0.000013 
-0.000014 
0.000043 

0.002162 
0.000036 
-0.000001 

0.001408 
0.000064 

avg -0.8 
avgs0.6 
avoall · 

>;,,fin<>! • """ @ 45 

0.001085 
0.000012 

0.002134 
-0.000007 
0.000044 

0.000431 
0.001498 
0.000020 

0.001830 
0.000013 

0.000008 

0.001806 
0.000018 
-0.000006 

0.001105 
0.000032 

0.001413 
0.000015 
0.000626 



Material 

0.5 Paste 

0.5 Mortar 

0.5 Concrete 

0.7 Paste 

0.7 Mortar 

0.7 Concrete 

-

Table 3.10 
Ratios of Equivalent Creep and Cyclic Action Strain to Total Strain and Cyclic Strain 

At Conclusion of Test 

Test atf" Eec I e, Eec I Ecv Eca I e, 

102 0-0.8 17% 32% 35% 
103 0-0.4 15% 99% 0% 

2C2 0-0.8 6% 8% 64% 
2C3 0-0.4 11% 112% -1% 
2C5 0.2-0.6 15% 68% 7% 

3C2 0-0.8 6% 14% 38% 
3C4 0-0.8 4% 6% 62% 
3C5 0.2-0.6 11% 63% 7% 

4C2 0-0.8 13% 20% 50% 
4C3 0-0.4 12% 90% 1% 
4C4 0.1-0.3 12% 121% -2% 
4C5 0.2-0.6 21% 89% 3% 

5C2 0-0.8 6% 8% 68% 
5C3 0-0.4 6% 40% 9% 
5C5 0.2-0.6 15% 101% 0% 

6C2 0-0.8 4% 5% 65% 
6C5 0.2-0.{) __ - __ 9o/o ____ 4~% 12% 

Eca f Ecy 

68% 
1% 

92% 
-12% 
32% 

86% 
94% 
37% 

80% 
10% 
-21% 
11% 

92% 
60% 
-1% 

95% 
57% 

' 

! 

! 

! 

I 
' 

-.I 
Ul 



Table 3.11 
Initial and Final Secant Unloading Modulus, Change in Modulus and Percent Change in Modulus 

Material Test c:r/f' Esu initial Esu@50 Esu final delta Esu@45 delta Esu delta Esu@45/ini 
(psi) (psi) (psi) (psi) (psi) 

0.5 Paste 102 0-0.8 2320542 1956846 1691402 -363696 -629140 -16% 

103 0-0.4 2500493 2433581 2395023 -66912 -105470 -3°/o 

0.5 Mortar 2C2 0-0.8 3788582 3148270 1673047 -640312 -2115535 -17% 

2C3 0-0.4 4635852 4436713 4433829 -199139 -202023 -4% 

2C5 0.2-0.6 4551164 4427214 4514931 -123950 -36233 -3% 

0.5 Concrete 3C2 0-0.8 4364818 3799242 3159698 -565576 -1205120 -13% 
3C4 0-0.8 4290319 3800486 2599701 -489833 -1690618 -11% 
3C5 0.2-0.6 4916879 4704835 4713052 -212044 -203827 -4'Yo 

0.7 Paste 4C2 0-0.8 1627207 1257123 995152 -370084 -632055 -23% 
4C3 0-0.4 1709926 1660093 1659502 -49833 -50424 -3% 

4C4 0.1-0.3 1917399 - - 1863602 - - -53797 - -
4C5 0.2-0.6 1741545 1613251 1583081 -128294 -158464 -7% 

0.7 Mortar 5C2 0-0.8 3504828 2632193 1564721 -872635 -1940107 -25% 
5C3 0-0.4 3937729 3716264 3609745 -221465 -327984 -6% 
5C5 0.2-0.6 4094860 3825293 3757695 -269567 -337165 -7% 

0. 7 Concrete 6C2 0-0.8 3546139 2766080 1878530 -780059 -1667609 -22% 
6C5 0.2-0.6 4133549 4001190 3978566 -132359 -154983 -3°/o 

delta Esu/init 

-27% 
~4% 

-56% 

-4% 
-1 %> 

-28% 
-39% 
-4% 

-39% 
-3o/o 
-3°/o 
-9% . 

-55°/o 
-8% 
- 8°/o 

-47% 
-4o/o 

-..l 

"' 



Table 3.12 
Initial Secant Loading Modulus, Final Secant Unloading Modulus, Change in Modulus and Percent Change in Modulus 

Specimen I Material I w /c I olf *I Time /sec) I E, 1.1£ I Es 1 /psi) I 
1 D2 
8C5 
8C6 
1D3 
5A5 
5A6 
2C2 
6A3 
2C2 
5F3 
2C3 
5F5 
6A5 
2C5 
6A4 
3C2 
8A3 
3C4 
3C5 
8A5 
4C2 
3A3 
3A5 
4C3 
4C5 

_3A4.**_ 

p 0.5 0-0.8 11858 4000 2229071 
p 0.5 0.8 5672 4000 2147725 
p 0.5 0.8 3075 4000 2112388 
p 0.5 0-0.4 14550 1030 2458200 
p 0.5 0.4 14355 1548 2432687 
p 0.5 0.2 14355 648 2502823 
M 0.5 0-0.8 4874 2921 3553896 
M 0.5 0.8 14355 2921 3621189 
M 0.5 0-0.8 3993 2613 3553896 
M 0.5 0.8 14355 2613 3756253 
M 0.5 0-0.4 14550 537 4563367 
M 0.5 0.4 14355 126 4453006 
M 0.5 0.4 14355 661 4280099 
M 0.5 0.2-0.6 14550 1042 4102112 
M 0.5 0.6 14355 1156 4235809 
c 0.5 0-0.8 5509 1558 4119507 
c 0.5 0.8 14355 1558 4003446 
c 0.5 0-0.8 4296 1558 4006768 
c 0.5 0.2-0.6 14550 780 4461106 
c 0.5 0.4 14355 513 4549792 
p 0.7 0-0.8 14550 4850 1532290 
p 0.7 0.8 14355 5678 1473157 
p 0.7 0.4 14355 1240 1814222 
p 0.7 0-0.4 14550 1009 1612462 
p 0.7 0.2-0.6 14550 1703 1610703 
p 0.7 0.6 14355 2264 1749782 ----- .. 

* Loads such as 0-0.8 are cyclic and loads such as 0.8 are sustained. 
•• Continued on following page. 

Esu /Psi) 1Esu-Es1 (psi)I(Esu-Es1 )/Es1 
1691402 -537669 -24% 
1773617 ·374108 -1 7% 
1677809 -434579 -21% 
2392108 -66092 -3% 
2262634 -170053 ·7% 
2436147 ·66676 -3% 
2362093 -1191803 -34% 
2988257 -632932 -17% 
2569945 -983951 -28% 
3069304 -686949 -18% 
4446284 -117083 -3% 
4256461 -196545 -4% 
4293337 13238 0% 
4522208 420096 10% 
3861598 -374211 ·9% 
3267082 -852425 -21% 
3783560 -219886 ·5% 
3386282 -620486 -15% 
4708502 247396 6% 
4484766 -65026 ·1% 
997210 ·535080 -35% 
1082920 ·390237 -26% 
1683744 ·130478 -7% 
1655061 42599 3% 
1578755 -3194 8 ·2% 
1488526 -261256 -15% 

:::l 

I 
I 

I 

I 

I 



Table 3.12 
Initial Secant Loading Modulus, Final Secant Unloading Modulus, Change in Modulus and Percent Change in Modulus 

Specimen I Material I w I c I cr 1 r· *I Time (sec) I e, IJ.E I Es1 (psi) I Esu (psi) 1Esu-Es1 (psi)I(Esu-Es1)/Es 1 
5C2 M 0.7 0-0.8 6015 1949 3250516 2181912 -1068604 -33% 
4A3 M 0.7 0.8 14355 1949 3083248 2504724 -578524 -19% 
5C2 M 0.7 0-0.8 10308 2560 3250516 1888142 -1362374 -42% 
2A3 M 0.7 0.8 14355 2560 2985744 2243724 -742020 -25% 
5C2 M 0.7 0-0.8 14550 3200 3250516 1558115 -1692401 -52% 
5C3 M 0.7 0-0.4 14550 414 3867582 3609745 -257837 -7% 
4A5 M 0.7 0.4 14355 428 3866667 3637321 -229346 -6% 
2A5 M 0.7 0.4 14355 476 3790853 3591919 -198934 -5% 
5C5 M 0.7 0.2-0.6 14550 640 3800416 3701506 -98910 -3% 
4A4 M 0.7 0.6 14355 760 3676941 3360337 -316604 -9% 
2A4 M 0.7 0.6 14355 843 3585189 3214142 -371047 -1 0% 
6C2 c 0.7 0-0.8 1709 1098 3373378 2689487 -683891 -20% 
7F3 c 0.7 0.8 14355 1098 3366681 2986983 -379698 -11% 
6C2 c 0.7 0-0.8 1884 1176 3373378 2600649 -772729 -23% 
6F3 c 0.7 0.8 14355 1176 3255420 2900461 -354959 -11% 
6C2 c 0.7 0-0.8 14550 2157 3373378 1878530 -1494848 -44% 
6F5 c 0.7 0.4 14355 0 3839418 3716127 -123291 -3% 
6C5 c 0.7 0.2-0.6 14550 553 3978566 3835213 -143353 -4% 
6F4 c 0.7 0.6 14355 652 3444121 3270087 -174034 -5% 
7F4 c 0.7 0.6 14355 637 3453687 3259637 -194050 -6% 

• Loads such as 0-0.8 are cyclic and loads such as 0.8 are sustained. 
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Fig. 3.1 Monotonic stress versus longitudinal and transverse strain for w/c = 0.5 cement paste, mortar, and concrete under 
monotonic loading. 
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Fig. 3.2 Stress versus longitudinal strain for w/c = 0.7 cement paste, mortar, and concrete under monotonic loading. 
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0.4, 0.6, 0.8, and 0.9£' under sustained loading. 
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Fig. 3.4 Stress versus longitudinal strain for w/c = 0.7 cement paste, mortar, and concrete at stress- strength ratios of 0.2, 

0.4, 0.6, 0.8, and 0.9f' under sustained loading. 
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Fig. 3.5 Experimental and best fit strain versus time curves for sustained load tests of w/c = 0.5 cement paste. 
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Fig. 3.7 Experimental and best fit strain versus time curves for sustained load tests of w/c = 0.5 concrete. 
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APPENDIX A 

Coefficients A, B and C of equation 3.2 for w/c = 0.5 cement paste. 

Stress Tune A B c 
0-0.4f' 15 0.0000000 0.0000000 0.0000000 

26 7.3833510£-05 7.3622500£-05 0.0000000 
50 1. 86197 60E-04 1.3214270£-04 0.0000000 
96 3.2447420£-04 1. 6311710E-04 0.0000000 

185 4.8803000£-04 1.7215980£-04 0.0000000 
357 6.7683880£-04 1.65S6700E-04 0.0000000 
688 8.9207220£-04 1. 4987S90E-04 0.0000000 

1324 1.13 67 490E-03 1.3156900£-04 0.0000000 
2S49 1.4163910£-03 1.1694310£-04 0.0000000 
4908 1.7398800£-03 1.1209850£-04 0.0000000 
94SO 2.1206320£-03 1.2309000E-04 0.0000000 

14000 2.38438SOE-03 1. 39883 60E-04 0.0000000 

0.4-0.6f' 1S 0.0000000 0.0000000 0.0000000 
26 -2.9777730£-04 3. 7091120£-04 -5.9457730£-0S 
so -4.6462710£-04 6.S280240E-04 -1.0413200£-04 
96 -4.4109720£-04 7.7557420£-04 -1. 22491SOE-04 

18S -2.SOS7420E-04 7.6304310£-04 -1.1817670£-04 
3S7 7.7679750£-0S 6.4489390£-04 -9.S86S460E-OS 
688 5.1161930£-04 4.5423820£-04 -6. 0872640£-0S 

1324 1.0176170£-03 2.2687530£-04 -1.9061150£-0S 
2549 1.S611410E-03 1.1431980£-06 2.3159780£-0S 
4908 2 .10S2130E-03 -1.8016810£-04 S.84S3060E-OS 
9450 2.6072440£-03 -2.6619810£-04 7.7857640£-0S 

14000 2.8664740£-03 -2.4578910£-04 7.7134460£-0S 

0.6-0.8f' 1S 0.0000000 0.0000000 0.0000000 
26 2.2098800£-03 -2.6382770£-03 8.4329860£-04 
so 4.5847320£-03 -S.4064290E-03 1. 7136380£-03 
96 6.7686830£-03 -7.87 61610E-03 2.4730290£-03 

18S 8.9017290£-03 -1.0219720£-02 3.1766S30E-03 
3S7 1.1169810£-02 -1.2665660£-02 3.8973010£-03 
688 1.3808640£-02 -l.SS02180E-02 4.7260S30E-03 

1324 1. 7118320£-02 -1.9093970£-02 5.7771920£-03 
2549 2.1488270£-02 -2.3911410£-02 7.1969280£-03 
4908 2.7441830£-02 -3.0584110£-02 9.1796360£-03 
94SO 3.5708300£-02 -3.9987460£-02 1.1994240£-02 

14000 4.2198150£-02 -4.7443790£-02 1.4236540£-02 
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Coefficients A, B and C of equation 3.2 for w/c = 0.5 mortar. 

Stress Trme A B c 
0-0.4f' 15 0.0000000 0.0000000 0.0000000 

26 -5.4162270E-05 4.7568190E-05 0.0000000 
50 -6 .1591130E-05 7.6932670E-05 0.0000000 
96 -1.8513730E-05 8.2608190E-05 0.0000000 

185 5.9761860E-05 7.2317040E-05 0.0000000 
357 l. 567 5320E-04 5.4376000E-05 0.0000000 
688 2.5591570E-04 3.7230810E-05 0.0000000 

1324 3.4104380E-04 2.9314540E-05 0.0000000 
2549 3.9559180E-04 3 .9343ll0E-05 0.0000000 
4908 4. Oll5480E-04 7.6996790E-05 0.0000000 
9450 3.3463920E-04 1.5414100E-04 0.0000000 

14000 2.4730560E-04 2.2577000E-04 0.0000000 

0.4-0.6f' 15 0.0000000 0.0000000 0.0000000 
26 4.9604870E-04 -3 .9260060E-04 8.8033750E-05 
so 9.5829550E-04 -7 .3897680E-04 l.6318190E-04 
96 1.3038600E-03 -9.7529050E-04 2.1157980E-04 

185 1.5669270E-03 -1.1334150E-03 2. 4ll4640E-04 
357 1.7870390E-03 -1.2498530E-03 2.6084580E-04 
688 2. 0068250E-03 -1.3634960E-03 2.8014540E-04 

1324 2 .2711840E-03 -1.5147970E-03 3.0882240E-04 
2549 2.6288890E-03 -1. 7472950E-03 3. 57327 60E-04 
4908 3 .1363850E-03 -2 .llll870E-03 4.3763680E-04 
9450 3.8644230E-03 -2.6696860E-03 5. 647 6530E-04 

14000 4.4455170E-03 -3 .1328000E-03 6. 7171390E-04 

0.6-0.8f' 15 0.0000000 0.0000000 0.0000000 
26 0.0000000 1.6980780E-04 -7.0833760E-05 
50 0.0000000 3.9909120E-04 -1.7467250E-04 
96 3.7762710E-04 1. 3 618870E-04 -1.2186410E-04 

185 1.1478960E-03 -6.3057800E-04 9.0295330E-05 
357 2.2554120E-03 -1. 8ll8990E-03 4.2945980E-04 
688 3. 7145750E-03 -3.4127970E-03 8. 9493530E-04 

1324 5.5577190E-03 -5.4586360E-03 1. 49197 40E-03 
2549 7. 8427700E-03 -8.0039500E-03 2.2343250E-03 
4908 1.0661850E-02 -l.ll41750E-02 3.1468040E-03 
9450 1.4153790E-02 -1.50 16920E-02 4.2689360E-03 

14000 1. 6652600E-02 -1. 7781300E-02 5.0662650E-03 
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Coefficients A, B and C of equation 3.2 for w/c = 0.5 concrete. 

Stress Tnne A B c 
0-0.2f' 15 0.0000000 0.0000000 0.0000000 

26 0.0000000 2 .3863830E-05 0.0000000 
50 0.0000000 4.1694950E-05 0.0000000 
96 0.0000000 4.9788580E-05 0.0000000 

185 0.0000000 5. 0914250E-05 0.0000000 
357 0.0000000 5. 0914250E-05 0.0000000 
688 0.0000000 5.0914250E-05 0.0000000 

1324 0.0000000 5. 0914250E-05 0.0000000 
2549 0.0000000 5.0914250E-05 0.0000000 
4908 0.0000000 5. 0914250E-05 0.0000000 
9450 0.0000000 5.0914250E-05 0.0000000 

14000 0.0000000 5.0914250E-05 0.0000000 

0.2-0.4f' 15 0.0000000 0.0000000 0.0000000 
26 5.1492100E-06 2.2833990E-05 0.0000000 
50 3. 0260750E-05 3.5642800E-05 0.0000000 
96 7.4667330E-05 3. 4855110E-05 0.0000000 

185 1.3374620E-04 2.4165000E-05 0.0000000 
357 1. 8830420E-04 1.3253400E-05 0.0000000 
688 2 .4325130E-04 2.2639940E-06 0.0000000 

1324 3.0953890E-04 -1.0993 530E-05 0.0000000 
2549 3.9867030E-04 -2.8819820E-05 0.0000000 
4908 5.2301250E-04 -5.3688260E-05 0.0000000 
9450 6 .9636800E-04 -8.8359360E-05 0.0000000 

14000 8 .3048860E-04 -1.1518350E-04 0.0000000 

0.4-0.6f' 15 0.0000000 0.0000000 0.0000000 
26 -3.1439470E-05 5.2104940E-05 -5.8541920E-06 
50 -4.4219490E-05 9.5226980E-05 -1.1916840E-05 
96 -3.7793880E-05 1.2482410E-04 -1.7993810E-05 

185 -1.57 43310E-05 1.4375660E-04 -2.3918330E-05 
357 4.6419790E-05 1. 267 6100E-04 -2.2701510E-05 
688 1.2465450E-04 9.7141430E-05 -1. 8975490E-05 

1324 1.8301730E-04 9.0223620E-05 -2.0243430E-05 
2549 1.8438200E-04 1.4261090E-04 -3.4286170E-05 
4908 8.9471000E-05 2 .9314470E-04 -6.9366620E-05 
9450 -1. 4545370E-04 5.8509830E-04 -1.3469150E-04 

14000 -3.7456440E-04 8.4885900E-04 -1.9280850E-04 
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Coefficients A, B and C of equation 3.2 for w/c = 0.5 concrete. 

Stress Tune A B c 

0.6-0.8f' 15 0.0000000 0.0000000 0.0000000 
26 5.4148710£-04 -6.3540700E-04 2.0039940£-04 
so 1.0627540£-03 -1.2331410£-03 3.8659360£-04 
96 1.4854290£-03 -1.7030430£-03 5.3036630£-04 

185 1.8515750£-03 -2.0970250£-03 6.4831620£-04 
357 2.1824490£-03 -2.43 64740E-03 7.4626900£-04 
688 2.5547090£-03 -2. 8189240E-03 8.5584400£-04 

1324 3.0645000£-03 -3 .3675560£-03 1.0170900E-03 
2549 3.8197810£-03 -4.2198680£-03 1.2744570£-03 
4908 4.9461780£-03 -5.5349030£-03 1.6790480£-03 
9450 6.5973430£-03 -7.5062570£-03 2.2927150£-03 

14000 7.9195690£-03 -9.1041030£-03 2.7930800£-03 
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Coefficients A, B and C of equation 3.2 for w/c = 0.7 cement paste. 

Stress Tune A B .c: 
0-0.4f' 15 0.0000000 0.0000000 0.0000000 

26 -8.1767500E-06 7.1438850E-05 0.0000000 
50 3.9242850E-05 1.2197820E-04 0.0000000 
96 1.4160750E-04 1.4085210E-04 0.0000000 

185 2. 8886230E-04 1.3588810E-04 0.0000000 
357 4.6989800E-04 1.1578760E-04 0.0000000 
688 6.7394450E-04 8.9519720E-05 0.0000000 

1324 8 .9128930E-04 6.6037230E-05 0.0000000 
2549 1.1135150E-03 5.4293430E-05 0.0000000 
4908 1.3332850E-03 6.3537740E-05 0.0000000 
9450 1.5434640E-03 1.0400950E-04 0.0000000 

14000 1.6616600E-03 1.4825610E-04 0.0000000 

0.4-0.6f' 15 0.0000000 0.0000000 0.0000000 
26 3.6711300E-04 -2.2879300E-04 6.0046370E-05 
so 7.0158110E-04 -4.0789240E-04 1.0597410E-04 
96 9.3755130E-04 -4.9590270E-04 1.2735100E-04 

185 1. 0979810E-03 -5.1140650E-04 1.2945890E-04 
357 1.2122630E-03 -4.7810380E-04 1.1877830E-04 
688 1.3132930E-03 -4.2195940E-04 1. 0229570E-04 

1324 1. 43 69440E-03 -3.7048660E-04 8.7304740E-05 
2549 1. 6225380E-03 -3.5292380E-04 8.1443460E-05 
4908 1. 9153 250E-03 -4.0209430E-04 9. 3126320E-05 
9450 2 .3709930E-03 -5.5801310E-04 1.3240440E-04 

14000 2. 7521480E-03 -7.2413310E-04 1. 7 447780E-04 

0.6-0.8f' 15 0.0000000 0.0000000 0.0000000 
26 1.4498450E-03 -1. 5280720E-03 4.4982990E-04 
50 3. 6066650E-03 -3.8939940E-03 1.1518040E-03 
96 6.2689800E-03 -6.8936190E-03 2.0466650E-03 

185 9.4875970E-03 -1.0578950E-02 3.1497210E-03 
357 1.3334540E-02 -1.5024830E-02 4.4827960E-03 
688 l.7918040E-02 -2.0347650E-02 6.0800050E-03 

1324 2.3398680E-02 -2.6724570E-02 7.9935280E-03 
2549 3. 0011460E-02 -3.4419630E-02 1.0301450E-02 

4908 3.8095680E-02 -4.3818510E-02 1.3118050E-02 
9450 4.8140610E-02 -5.5481550E-02 1. 6609470E-02 

14000 5.5390210E-02 -6.3889810E-02 1.9124180E-02 
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Coefficients A, B and C of equation 3.2 for w/c = 0.7 mortar. 

Stress Tune A B c 
0-0.4f' 15 0.0000000 0.0000000 0.0000000 

26 -7.1013350E-06 2.7643980E-05 0.0000000 
50 1.7179230E-05 4 .0926100E-05 0.0000000 
96 7.1200750E-05 3.6514950E-05 0.0000000 

185 1.3580700E-04 2.3746210E-05 0.0000000 
357 1.8978880E-04 1.2949850E-05 0.0000000 
688 2.4220190E-04 2.4672340E-06 0.0000000 

1324 3.0329840E-04 -9.7520750E-06 0.0000000 
2549 3.8385380E-04 -2. 5863140E-05 0.0000000 
4908 4.9546190E-04 -4.8184770E-05 0.0000000 
9450 6.1402500E-04 -6.4491060E-05 0.0000000 

14000 6.2780890E-04 -4.5878680E-05 0.0000000 

0.4-0.6f' 15 0.0000000 0.0000000 0.0000000 
26 1.5869450E-04 -1.049927 OE-04 2.6527320E-05 
50 2.9303630E-04 -1.7975960E-04 4. 4137140E-05 
96 3.7788770E-04 -2.0883470E-04 4.9069910E-05 

185 4.5069920E-04 -2.2816760E-04 5 .0382730E-05 
357 5.5430450E-04 -2.7866280E-04 5.8322500E-05 
688 6.7238420E-04 -3 .4167870E-04 6. 8829160E-05 

1324 7.8793650E-04 -3.97 46260E-04 7. 7542090E-05 
2549 8.8479220E-04 -4.2661400E-04 8.0150090E-05 
4908 9.4747400E-04 -4.0979450E-04 7.2321910E-05 
9450 1.0346780E-03 -4. 0101380E-04 6.7304470E-05 

14000 1.2259170E-03 -5.2436530E-04 9. 5697290E-05 

0.6-0.8f' 15 0.0000000 0.0000000 0.0000000 
26 3.4595640E-05 -3.0824620E-05 8.6190010E-06 
50 1. 0671660E-03 -1.1087150E-03 3 .2282360E-04 
96 2.0370690E-03 -2 .1998520E-03 6.4637510E-04 

185 3.2749650E-03 -3.6172860E-03 1.0671180E-03 
357 4.7741920E-03 -5.3425270E-03 1.5774820E-03 
688 6.6011430E-03 -7.4561900E-03 2 .2031820E-03 

1324 6. 6011430E-03 -7 .4561900E-03 2.2031820E-03 
2549 1.1614860E-02 -1.3302700E-02 3 .94297SOE-03 
4908 1.5071300E-02 -1.7358390E-02 5.1569010E-03 
9450 1.9350280E-02 -2.2379740E-02 6. 660923 OE-03 

14000 2.2296590E-02 -2.5809180E-02 7 .6811400E-03 
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Coefficients A, B and C of equation 3.2 for w/c = 0.7 concrete. 

Stress T!IDe A B c 
0-0.2f' 15 0.0000000 0.0000000 0.0000000 

26 0.0000000 1.0238800E-05 0.0000000 
so 0.0000000 1. 7464410E-05 0.0000000 
96 0.0000000 1.9980360E-05 0.0000000 

185 0.0000000 2.0005170E-05 0.0000000 
357 0.0000000 2.0005170E-05 0.0000000 
688 0.0000000 2.0005170E-05 0.0000000 

1324 0.0000000 2.0005170E-05 0.0000000 
2549 0.0000000 2.0005170E-05 0.0000000 
4908 0.0000000 2.0005170E-05 0.0000000 
9450 0.0000000 2.000S170E-OS 0.0000000 

14000 0.0000000 2.000S170E-OS 0.0000000 

0.2-0.4f' 1S 0.0000000 0.0000000 0.0000000 
26 9.0021790E-OS -2.S769910E-OS 3.6008710E-06 
so 1.8929140E-04 -5.82S2160E-05 7 .5716570E-06 
96 2.8038040E-04 -9.2171810E-OS 1.1215220E-05 

185 3.5114650E-04 -1.2045340E-04 1.4045860E-05 
357 3.8838920E-04 -1.3535050E-04 l.S535S70E-05 
688 4.0415550E-04 -1.41657 0 OE-04 1.6166220E-05 

1324 4.1110250E-04 -1.4443580E-04 1.6444100E-05 
2549 4.2201570E-04 -1.4880110E-04 1. 688063 OE-05 
4908 4.4977120E-04 -1.5990330E-04 1. 7990850E-05 
9450 5. 07 49160E-04 -1.8299140E-04 2.0299660E-05 

14000 5.6220070E-04 -2.0487510E-04 2 .2488030E-05 

0.4-0.6f' 15 0.0000000 0.0000000 0.0000000 
26 -9.7 651110E-05 1. 243 6840E-04 -2. 6426790E-05 
so -1.4562540E-04 2. 0968130E-04 -4.6015040E-05 
96 -1.2210490E-04 2.29816SOE-04 -S .3182430E-05 

185 -1.2693520E-05 1.70618SOE-04 -4.4168560E-05 
357 1.9784340E-04 1. 7086220E-05 -1.4951800E-05 
688 4.8690060E-04 -2.0785320E-04 2.9405430E-05 

1324 8.3187160E-04 -4. 8105110E-04 8.3767150E-05 
2549 1.2113330E-03 -7.8025470E-04 1.4317140E-04 
4908 1.6056720E-03 -1. 0846230E-03 2. 0293490E-04 
9450 1.9972150E-03 -1.37 477 OOE-03 2.5865540E-04 

14000 2.2240700E-03 -1.5343700E-03 2.8838710E-04 
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Coefficients A, Band C of equation 3.2 for w/c = 0.7 concrete. 

Stress Tlille A B c 

0.6-0.8f' 15 0.0000000 0.0000000 0.0000000 
26 3.0847370E-04 -3. 6298130E-04 1.1977810E-04 
50 6.0958650E-04 -6.9657290E-04 2.2586120E-04 
96 8.4579900E-04 -9.3166810E-04 2.9526300E-04 

185 8.4579900E-04 -9.3166810E-04 2.9526300E-04 
357 1.0949250E-03 -1. 0594110E-03 3.0799730E-04 
688 1.1356200E-03 -9.8631620E-04 2.6294440E-04 

1324 1.1678640E-03 -8.8424260E-04 2.0472440E-04 
2549 1.2295880E-03 -8.0215980E-04 1.4974280E-04 
4908 1. 3 605240E-03 -7.9044650E-04 1.1468170E-04 
9450 1.6033740E-03 -9.0216100E-04 1.1687240E-04 

14000 1.8224660E-03 -1. 0524450E-03 1.4380970E-04 
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APPENDIX B 

CYCLIC TEST 1D2 (0 . O.Sf' p) 

Time (sec) Stress (psi) Strain (J.le) Ei (106 psi) Esu (1 06 psi) 

74.81438, 4320.13000, 0.0020668780, 
89.89345, 0.00000, 0.0001243510, 2.223974, 2.198466 

1274.85300, 4320.13000, 0.0026283230, 
1289.87500, 0.00000, 0.0004204672, 1.956708, 1.955047 

2474.89000, 4320.13000, 0.0028705230, 
2489.91000, 0.00000, 0.0005750622, 1.882032, 1.878139 

3674.92500, 4320.13000, 0.0030524580, 
3689.94800, 0.00000, 0.0007042772, 1. 83 9778' 1.835583 

4874.96300, 4320.13000, 0.0032050150, 
4889.98600, 0.00000, 0.0008209384, 1.812077' 1.808744 

6075.00400, 4320.13000, 0.0033512210, 
6090.02400, 0.00000, 0.0009294359, 1. 783862' 1.781239 

7275.04300, 4320.13000, 0.0034875040, 
7290.08300, 0.00000, 0.0010434550, 1.767612, 1. 765115 

8475.08300, 4320.13000, 0.0036164400, 
8490.12100, 0.00000, 0.0011423390, 1.746141, 1. 748381 

9675.12300, 4320.13000, 0.0037465610, 
9690.14000, 0.00000, 0.0012610560, 1.738130, 1. 736206 

10875.11000, 4320.13000, 0.0038718950, 
10890.13000, 0.00000, 0.0013526230, 1.714833, 1.714399 

12075.21000, 4320.13000, 0.0040388850, 
12090.21000, 0.00000, 0.0015004400, 1.701880, 1.696524 
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CYCLIC TEST 1D3 (0 - 0.4£' p) 

Time (sec) Stress (psi) Strain (J.l.E) Ei (106 psi) Esu (1 06 psi) 

74.79221, 2151.13000, 0. 0008922413' 
89.89400, 0.00000, 0.0000286512, 2.490915, 2.462799 

1274.86900, 2151.13000, 0.0009476815, 
1289.88000, 0.00000, 0.0000697910, 2.450340, 2.440882 

2474.89800, 2151.13000' 0.0009653385, 
2489.91800, 0.00000, 0.0000770304, 2.421603, 2.428052 

3674.94000, 2151.13000' 0.0009740305, 
3689.95700, 0.00000, 0.0000880664, 2.428010, 2.419352 

4874.98900, 2151.13000, 0.0009813198, 
4889.98900, 0.00000, 0.0000917859, 2.418266, 2.416777 

6075.01000, 2151.13000, 0.0009845399, 
6090.03000, 0.00000, 0.0000892250, 2.402652, 2.421318 

7275.05100, 2151.13000' 0.0009999106, 
7290.06400, 0.00000, 0.0001082856, 2.412595, 2.417484 

8475.08500, 2151.13000, 0.0010056300, 
8490.10600, 0.00000, 0.0001141151, 2. 412892' 2.408566 

9675.12800, 2151.13000, 0.0010167940, 
9690.14400, 0.00000, 0.0001218655, 2.403689, 2.402896 

10875.12000, 2151.13000' 0. 0010227220' 
10890.16000, 0.00000, 0.0001332899, 2.418544, 2.414935 

12075.18000, 2151.13000, 0.0010264470, 
12090.20000, 0.00000, 0.0001354290, 2.414239, 2.416678 

13275.21000, 2151.13000' 0.0010361630, 
13290.21000, 0.00000, 0.0001400048, 2.400391, 2.393482 

14475.29000, 2151.13000, 0.0010407010, 
14490.30000, 0.00000, 0. 0001492283' 2.413006, 2.407770 
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CYCLIC TEST 2C2 (0 · 0.8£' m) 

Time (sec) Stress (psi) Strain (!1E) Ei (106 psi) Esu ( 106 psi) 

74.76691, 4433.19000, 0. 0013265870' 
89.85569, 0.00000, 0.0001270665, 3.695801, 3.632705 

1274.84900, 4433.19000, 0.0018413700, 
1289.87800, 0.00000, 0.0004331449, 3.148068, 3.141637 

2474.88400, 4433.19000, 0.0021675940, 
2489.91600, 0.00000, 0.0006413986, 2.904732, 2.887601 

3674.91700, 4433 .19000' 0.0025030350, 
3689.95400, 0.00000, 0.0008280538, 2.646711, 2.637765 

4874.96300, 4433.19000, 0.0029364690, 
4889.98400, 0.00000, 0.0010657720, 2.369807, 2.351480 

5864.30300, 4433.19000, 0.0040674990, 
5799.73600, 0.00000, 0.0014177280, 2.369807, 2.351480 



149 

CYCLIC TEST 2C3 (0 - 0.4f' m) 

Time (sec) Stress (psi) Strain (J.le) Ei (106 psi) Esu (106 psi) 

74.80930, 2218.67000, 0.0004938991, 
89.89262, 0.00000, 0.0000084774, 4.570602, 4.586191 

1274.86100, 2218.67000, 0.0005126289, 
1289.91200, 0.00000, 0.0000163753, 4.470839, 4.446107 

2474.90400, 2218.67000, 0.0005168803, 
2489.94900, 0.00000, 0.0000148582, 4.419467, 4.428293 

3674.94100, 2218.67000, 0.0005144562, 
3689.98900, 0.00000, 0.0000134267, 4.428223, 4.419119 

487 4. 97700' 2218.67000, 0. 0005136039' 
4890.02600' 0.00000, 0.0000102458, 4.407738, 4.399371 

6075.02000, 2218.67000, 0.0005171598, 
6090.06100, 0.00000, 0.0000149674, 4.417968, 4.387840 

7275.05600' 2218.67000, 0.0005126094, 
7290.09700, 0.00000, 0.0000076008, 4.393331, 4.415849 

8475.08700, 2218.67000, 0.0005180554, 
8490.13700, 0.00000, 0. 0000134958, 4.397241, 4.416957 

9675.12300, 2218.67000, 0.0005262978, 
9690.17800, 0.00000, 0.0000230972, 4.409116, 4.427630 

10875.19000, 2218.67000, 0.0005317339, 
10890.24000, 0.00000, 0.0000278856, 4.403449, 4.424983 

12075.19000, 2218.67000, 0.0005385844, 
12090.24000, 0.00000, 0.0000360358, 4.414836, 4.416133 

13275.28000, 2218.67000, 0.0005372268, 
13290.33000, 0.00000, 0.0000382315, 4.446274, 4.437724 

14475.30000, 2218.67000, 0.0005428488, 
14490.34000, 0.00000, 0.0000399902, 4.412115, 4.435139 
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CYCLIC TEST 2C5 (0.2 • 0.6f' m) 

Time (sec) Stress (psi) Strain ().l.e) Ei (106 psi) Esu (1 06 psi) 

74.64081, 3313.53000, 0.0008439466, 
89.65060, 1112.94000, 0.0003497206, 4.452599, 4.346592 

1279.05300, 3313.53000, 0.0009213540, 
1293.92600, 1112.94000, 0. 0004292413, 4.471719, 4.472440 

2483.52200, 3313.53000, 0.0009466847, 
2498.52200, 1112.94000, 0.0004610155, 4.531047, 4.491145 

3688.07400, 3313.53000, 0.0009677686, 
3703.07400, 1112.94000, 0.0004824332, 4.534163, 4.498813 

4892.64800, 3313.53000, 0.0009837630, 
4907.67700, 1112.94000, 0.0004953355, 4.505459, 4.520187 

6097.35500, 3313.53000, 0.0009943752, 
6112.36900, 1112.94000, 0.0005089070, 4.532923, 4.520195 

7301.97400, 3313.53000, 0.0010027000, 
7317.04000, 1112.94000, 0.0005153524, 4.515441, 4.545153 

8476.78200, 3313.53000, 0.0010104650, 
8491.80100, 1112.94000,. 0.0005243559, 4.526946, 4.549834 

9681.61900, 3313.53000, 0.0010176880, 
9696.64600, 1112.94000, 0.0005328765, 4.539064, 4.547716 

10886.50000, 3313.53000, 0.0010242060, 
10901.53000, 1112.94000, 0.0005397173, 4.542086, 4.547642 

12091.40000, 3313.53000, 0.0010355250, 
12106.48000, 1112.94000, 0.0005465253, 4.500188, 4.552601 

13296.60000, 3313.53000, 0.0010404040, 
13311.70000, 1112.94000' 0.0005550593, 4.534079, 4.563177 

14501.90000, 3313.53000, 0.0010475320, 
14516.99000, 1112.94000, 0.0005620002, 4.532333, 4.569517 
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CYCLIC TEST 3C2 (0 • O.Sf' c) 

Time (sec) Stress (psi) Strain (Jle) Ei (106 psi) Esu (1 Q6 psi) 

74.73652, 3780.30000, 0.0009752683, 
89.86593' 0.00000, 0.0000703932, 4.177703, 4.149374 

1274.89500, 3780.30000, 0.0011766890, 
1289.89200, 0.00000, 0.0001820055, 3.800505, 3.820114 

2474.92200, 3780.30000, 0.0012699450, 
2489.92500, 0.00000, 0.0002351127, 3.653055, 3.651536 

3674.96500, 3780.30000, 0.0013655360, 
3689.95900, 0.00000, 0.0002864572, 3.503265, 3.509640 

4874.99800, 3780.30000, 0. 0014 77 4010' 
4889.99400, 0.00000, 0.0003484030, 3.348369, 3.350217 

6075.03500, 3780.30000, 0.0016338990, 
6090.02800, 0.00000, 0. 0004411705' 3.169455, 3.164515 
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CYCLIC TEST 3C4 (0 - O.Sf'c) 

Time (sec) Stress (psi) Strain ()lE) Ei (106 psi) Esu (1 Q6 psi) 

74.74200, 3795.49000, 0.0009936226, 
89.88303, 0.00000, 0.0000861975, 4.182703, 4.133769 

1274.90200, 3795.49000, 0.0012215440, 
1289.88100, 0.00000, 0.0002255570, 3.810781, 3.804849 

2474.93900, 3795.49000, 0. 0013590220' 
2489.91700' 0.00000, 0.0003115006, 3.623307, 3.630921 

3674.98600, 3795.49000, 0.0014864510, 
3689.95300, 0.00000, 0.0003947776, 3.476765, 3.456666 

4875.01900, 3795.49000, 0. 0016291610, 
4889.98800, 0.00000, 0.0004765014, 3.292810, 3.299791 

6075.04100, 3795.49000, 0.0018294800, 
6090.02500, 0.00000, 0.0005957290, 3.076384, 3. 061183 

6675.07200' 3795.49000, 0.0019958520, 
6690.04200, 0.00000, 0.0006928185, 2. 912812' 2.887635 

7125.07600, 3795.49000, 0.0022474080, 
7140.05600' 0.00000, 0.0008214813, 2.661771, 2. 634119 
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CYCLIC TEST 3C5 (0.2 • 0.6f'c) 

Time (sec) Stress (psi) Strain (!le) Ei (106 psi) Esu (1 06 psi) 

75.01709, 2851.67000, 0.0006684504, 
90.14597, 957.94000, 0.0002731834, 4.791014, 4. 710273 

1280.40300, 2851.67000, 0.0007177773, 
1295.52100, 957.94000, 0.0003161249, 4.714848 4.755039 

2486.01300, 2851.67000' 0.0007338184, 
2501.11600' 957.94000, 0.0003323795, 4.717355, 4.764292 

3691.74900' 2851.67000, 0.0007428579, 
3706.83600, 957.94000, 0.0003421615, 4.726097, 4.747661 

4897.50200, 2851.67000, 0.0007510165, 
4912.60600, 957.94000, 0.0003483415, 4.702874, 4.753535 

6103.19800, 2851.67000' 0.0007583466, 
6118.34500, 957.94000, 0.0003555399, 4.701337, 4.737368 

7278.80600, 2851.67000, 0.0007620479, 
7293.89900, 957.94000, 0. 0003 611680' 4.723933, 4.751259 

8484.64300, 2851.67000' 0.0007653610, 
8499.75200, 957.94000, 0.0003635355, 4.712817, 4.760038 

9690.50600, 2851.67000, 0. 0007701438, 
9705.62900, 957.94000, 0.0003685626, 4.715684, 4. 759778 

10896.30000, 2851.67000' 0.0007754468, 
10911.46000, 957.94000, 0. 0003724957' 4.699652, 4.724977 

12102.20000, 2851.67000' 0.0007750635, 
12117.37000, 957.94000, 0.0003749010, 4.732403, 4.749571 

13277.90000, 2851.67000' 0.0007799857, 
13293.06000, 957.94000, 0.0003777683, 4.708224, 4.749741 

14483.80000, 2851.67000, 0.0007845041, 
14498.95000, 957.94000, 0.0003822181, 4.707422, 4.734073 
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CYCLIC TEST 4C2 (0 - 0.8f' p) 

Time (sec) Stress (psi) Strain (J.I£) Ei (106 psi) Esu (106 psi) 

74.74000, 2809.63000, 0.0020049010, 
89.89783, 0.00000, 0.0001562548, 1.519831, 1. 501688 

1274.90300, 2809.63000, 0.0026994870, 
1289.90100, 0.00000, 0.0004693674, 1.259856, 1.256576 

2474.93800, 2809.63000, 0.0030350840, 
2489.94000, 0.00000, 0.0006744859, 1.190220, 1.189066 

3674.98700, 2809.63000, 0.0033132180, 
3689.97600, 0.00000, 0.0008568688, 1.143824, 1.141613 

4875.01700, 2809.63000, 0.0035470090, 
4890.01400, 0.00000, 0.0010189500, 1.111378, 1.109843 

6075.04900, 2809.63000, 0.0037625690, 
6090.04400, 0.00000, 0. 0011827920' 1. 089098, 1.085819 

7275.08800' 2809.63000, 0.0039611770, 
7290.08500' 0.00000, 0.0013290080, 1.067420, 1. 066423 

8475.12900, 2809.63000, 0.0041539410, 
8490.11900, 0.00000, 0.0014772020, 1. 049647' 1.047497 

9675.15900, 2809.63000, 0.0043333910, 
9690.16200, 0.00000, 0.0016229880, 1. 03 6610' 1.036713 

10875.17000, 2809.63000, 0.0045157730, 
10890.15000, 0.00000, 0.0017670630, 1. 022163' 1.019233 

12075.24000, 2809.63000, 0.0046776160, 
12090.24000, 0.00000, 0.0018990620, 1. 011184, 1.011947 

13275.31000, 2809.63000, 0.0048515560, 
13290.30000, 0.00000, 0.0020462390, 1.001537, 0.9992914 

14475.33000, 2809.63000, 0.0049978090, 
14490.31000, 0.00000, 0.0021805720, 0.9972997' 0.9941835 
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CYCLIC TEST 4C3 (0 • 0.4f' p) 

Time (sec) Stress (psi) Strain (J.LE) Ei (106 psi) Esu (1 06 psi) 

74.79456, 1418.89000, 0.0009012103, 
89.87791, 0.00000, 0.0000607258, 1.688181, 1. 684406 

1274.82700, 1418.89000, 0.0009388378, 
1289.88100' 0.00000, 0.0000878642, 1.667372, 1. 655111 

2474.86800, 1418.89000, 0.0009516324, 
2489.91000, 0.00000, 0.0000950439, 1.656443, 1.654685 

3674.90400, 1418.89000, 0. 0009655718' 
3689.94300, 0.00000, 0.0001029008, 1. 644764, 1. 658249 

4874.94100, 1418.89000, 0. 0009738611, 
4889.97900, 0.00000, 0.0001140233, 1. 650183' 1. 649991 

6074.98200, 1418.89000, 0.0009853563, 
6090.02700, 0.00000, 0.0001178073, 1.635516, 1.643631 

6074.98200, 1418.89000, 0.0009853563, 
6090.02700, 0.00000, 0.0001178073, 1. 635516' 1.643631 

8475.06400, 1418.89000, 0.0009917595, 
8490.09700, 0.00000, 0.0001382464, 1.662411, 1. 657909 

9675.08800, 1418.89000, 0. 0010013480' 
9690.13500, 0.00000, 0.0001371941, 1.641940, 1. 659112 

10875.14000, 1418.89000, 0.0010001460, 
10890.19000, 0.00000, 0.0001445050, 1. 658278' 1.655644 

12075.14000, 1418.89000, 0.0010124780, 
12090.19000' 0.00000, 0.0001564245, 1.657479, 1.650104 

13275.17000, 1418.89000, 0.0010120440, 
13290.20000, 0.00000, 0.0001610985, 1.667428, 1. 652922 

14475.25000, 1418.89000, 0.0010199400, 
14490.29000, 0.00000, 0. 0001597728, 1. 649551, 1. 650867 
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CYCLIC TEST 4C4 (0.1 - 0.3f' p) 

Time (sec) Stress (psi) Strain ()lE) Ei (106 psi) Esu (1 06 psi) 

75.64088, 1070.80000, 0.0005957757, 
90.50249, 359.40000, 0.0002186744, 1. 886496' 1.856667 

2505.57200, 1070.80000, 0.0006333736, 
2520.41200, 359.40000, 0.0002437550, 1. 825888' 1.835074 

2505.57200, 1070.80000, 0.0006333736, 
2520.41200, 359.40000, 0.0002437550, 1. 825888' 1.835074 

3689.70700, 1070.80000, 0.0006448599, 
3704.57500, 359.40000, 0.0002480561, 1. 792826, 1.804202 

4903.99800, 1070.80000, 0.0006512101, 
4918.82800, 359.40000, 0.0002572170, 1. 792826, 1.804202 

6088.23600, 1070.80000, 0.0006493339, 
6103.09100, 359.40000, 0.0002619179, 1. 805616, 1.795160 

7271.89100' 1070.80000, 0.0006536755, 
7287.19100, 359.40000, 0. 0002674776, 1. 836269' 1.843278 
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CYCLIC TEST 4C5 (0.2 • 0.6f' p) 

Time (sec) Stress (psi) Strain (J..Le) Ei (106 psi) Esu (1 Q6 psi) 

74.64352, 2111.53 000' 0.0013901180, 
89.75251, 709.81000, 0.0005487949, 1.666090, 1.638243 

1303.93900, 2111.53000, 0.0015245100, 
1318.85800, 709.81000, 0.0006582385, 1.618107, 1. 621386 

2502.84400, 2111.53 000' 0.0015562550, 
2517.76400, 709.81000, 0.0006869642, 1.612487, 1.622187 

3701.88300' 2111.53000, 0. 0015780360' 
3716.82100' 709.81000, 0.0007009668, 1. 598186' 1.604288 

4901.12300, 2111.53000, 0.0016098200, 
4916.04800, 709.81000, 0.0007151620, 1.566767' 1.569385 

6099.95600, 2111.53 000' 0.0016256740, 
6114.90500, 709.81000' 0.0007338434, 1. 571733' 1.569818 

7299.00900, 2111.53 000' 0.0016517390, 
7313.91300, 709.81000, 0.0007569033, 1.566455, 1.564998 

8498.30100, 2111.53000, 0.0016707200, 
8513.20000, 709.81000, 0.0007708920, 1.557765, 1.561883 

9697.72400, 2111.53000, 0.0016808200, 
9712.64600' 709.81000, 0.0007862807, 1. 566973' 1.570263 

10897.01000, 2111.53000, 0.0016899410, 

10911.93000' 709.81000, 0.0007981716, 1.571841, 1.572453 

12096.45000, 2111.53000, 0.0016997830, 
12111.36000, 709.81000, 0.0008080953, 1.571985, 1.573558 

13295.90000, 2111.53000' 0.0017040490, 
13310.85000, 709.81000, 0.0008106799, 1.569026, 1.574946 

14465.34000, 2111.53000, 0.0017157610, 
14480.26000, 709.81000, 0.0008262205, 1.575781, 1.570774 
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CYCLIC TEST 5C2 (0 • O.Sf' m) 

Time (sec) Stress (psi) Strain (J.l.e) Ei (106 psi) Esu (106 psi) 

74.74100, 2730.73000, 0. 0009156662' 
89.88618, 0.00000, 0. 000077243 9' 3.256986, 3.235381 

1274.89600, 2730.73000, 0.0012836450, 
1289.88300, 0.00000, 0.0002537639, 2.651501, 2.640837 

2474.92100, 2730.73000, 0.0014835870, 
2489.92200, 0.00000, 0.0003670299, 2.445669, 2.449184 

3674.97600, 2730.73000, 0.0016596010, 
3689.95200, 0.00000, 0.0004950145, 2.344807, 2.321284 

4874.99200, 2730.73000, 0.0018015120, 
4889.98900, 0.00000, 0.0005830084, 2.241052, 2.244510 

6075.03400, 2730.73000, 0.0019578970, 
6090.02400, 0.00000, 0.0006967033' 2.165195, 2.150862 

7275.07600' 2730.73000, 0.0021043440, 
7290.05700, 0.00000, 0.0007973941, 2.089391, 2.088247· 

8475.10800, 2730.73000, 0.0022674320, 
8490.09300, 0.00000, 0. 0009134212' 2.016771, 2.015489 

9675.14700, 2730.73000, 0.0024515330, 
9690.13300, 0.00000, 0.0010438810, 1.939918, 1.936317 

10875.17000, 2730.73000, 0.0026533230, 
10890.15000, 0.00000, 0.0011850410, 1. 859814, 1. 861086 

12075.25000, 2730.73000, 0.0028860660, 
12090.24000, 0.00000, 0.0013586940, 1. 787863, 1. 775247 

13275.25000, 2730.73000, 0.0031803290, 
13290.24000, 0.00000, 0. 0015-629520' 1. 688370, 1. 682364 

14475.29000, 2730.73000, 0.0036181580, 
14490.27000, 0.00000, 0.0018881410, 1. 578441, 1.570891 
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CYCLIC TEST 5C3 (0 . 0.4f' m) 

Time (sec) Stress (psi) Strain (J..Le) Ei (106 psi) Esu (1 06 psi) 

74.79322, 1372.03000, 0. 0003631167' 
89.91969, 0.00000, 0.0000056958, 3.838695, 3.838937 

1275.31800, 1372.03000, 0.0003852185, 
1290.32200, 0.00000, 0.0000144886, 3.700888, 3.702926 

2474.90300, 1372.03000, 0.0003905860, 
2489.92500, 0.00000, 0.0000194706, 3.697044, 3. 716015 

3674.93700, 1372.03000, 0.0003998394, 
3689.95800, 0.00000, 0.0000236737, 3.647409, 3.678216 

4874.96500, 1372.03000' 0.0004050093, 
4889.99000, 0.00000, 0.0000325538, 3.683742, 3.706196 

6075.00500, 1372.03000' 0.0004079813, 
6090.03400, 0.00000, 0.0000322300, 3.651431, 3.677027 

7275.04000, 1372.03000, 0.0004149443, 
7290.05900, 0.00000, 0. 0000387710' 3.647336, 3.651318 

8475.08600, 1372.03000, 0.0004127954, 
8490.08800, 0.00000, 0.0000359525, 3.640854, 3.646525 

9675.56400, 1372.03000, 0.0004148393, 
9690.56400, 0.00000, 0.0000372410, 3.633570, 3.602215 

10875.11000, 1372.03000, 0.0004177176, 
10860.13000, 0.00000, 0.0000429951, 3. 626001, 3.661456 

12075.13000, 1372.03000, 0.0004165519, 
12090.16000, 0.00000, 0.0000388297, 3. 632379' 3. 682763 

13275.18000, 1372.03000, 0.0004158983, 
13290.20000, 0.00000, 0.0000398442, 3. 648491, 3.651035 

14475.27000, 1372.03000, 0.0004180816, 
14490.29000, 0.00000, 0.0000410407, 3.638943, 3. 654289 
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CYCLIC TEST SCS (0.2 - 0.6f' m) 

Time (sec) Stress (psi) Strain ()lE) Ei (106 psi) Esu (1 06 psi) 

74.84593, 2054.60000, 0.0005731414, 
89.90622, 693.43000, 0.0002270737, 3.933249, 3.881403 

1277.51200, 2054.60000, 0.0006079125, 
1292.53800, 693.43000, 0.0002458363, 3.759347, 3.749016 

2480.08300, 2054.60000, 0.0006172906, 
2495.11800, 693.43000, 0.0002526947, 3.733367, 3.730416 

3682.79000, 2054.60000, 0.0006185042, 
3697.80400, 693.43000, 0. 0002513403' 3.707254, 3.718802 

4885.31400, 2054.60000, 0.0006217058, 
4900.33700, 693.43000, 0.0002572366, 3.734665, 3. 713563 

6088.14800, 2054.60000, 0.0006257525, 
6103.18300, 693.43000, 0.0002602486, 3.724092, 3.744624 

7290.82400, 2054.60000, 0.0006304911, 
7305.84700, 693.43000, 0.0002649690, 3.723907, 3.707510 

8493.32500, 2054.60000, 0.0006392162, 
8508.36000, 693.43000, 0.0002719838, 3.706564, 3.702535 

9695.85000, 2054.60000, 0.0006368654, 
9710.86600, 693.43000, 0.0002739905, 3.751073, 3.733525 

10898.54000, 2054.60000, 0.0006390252, 
10913.55000, 693.43000, 0.0002758026, 3.747482, 3.731047 

12101.11000, 2054.60000, 0.0006389936, 
12116.14000, 693.43000, 0.0002775168, 3.765580, 3. 753724 

13303.64000, 2054.60000, 0.0006438351, 
13318.68000' 693.43000, 0. 0002796306, 3.737378, 3.756179 

14475.60000, 2054.60000, 0.0006434527, 
14490.60000, 693.43000, 0.0002878985, 3.828305, 3.806071 
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CYCLIC TEST 6C2 (0 · O.Sf'c) 

Time (sec) Stress (psi) Strain ().IE) Ei (106 psi) Esu (1 06 psi) 

74.74000, 2262.08000, 0.0007329574, 
89.89893, 0.00000, 0.0000543999, 3.333660, 3.305062 

1274.89000, 2262.08000, 0.0010214050, 
1289.87100, 0.00000, 0.0002040204, 2.767462, 2.766981 

2474.92400, 2262.08000, 0.0012350540, 
2489.90500, 0.00000, 0. 0003450312' 2.541600, 2.522637 

3674.95800, 2262.08000, 0.0015026280, 
3689.94600, 0.00000, 0.0005208724, 2.304118, 2.287387 

4874.99000, 2262.08000, 0.0020898330, 
4889.97900, 0.00000, 0.0009024698, 1. 905128' 1.871861 
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CYCLIC TEST 6C5 (0.2 - 0.6f'c) 

Time (sec) Stress (psi) Strain ()lE) Ei (106 psi) Esu (1 Q6 psi) 

75.08006, 1691.78000' 0.0004598558, 
90.15495, 566.89000, 0.0001838946, 4.076262, 3.933892 

1280.89300, 1691.78000' 0.0005055098, 
1296.03300, 566.89000, 0.0002253331, 4.014931, 4.056714 

2486.93700, 1691.78000, 0.0005208298, 
2502.06700, 566.89000, 0.0002393679, 3.996597, 4.024671 

3692.89700, 1691.78000, 0. 0005293136, 
3708.03300, 566.89000, 0.0002463215, 3.974988, 4.014087 

4898.88700, 1691.78000, 0.0005317281, 
4914.00900, 566.89000, 0.0002482643, 3.968372, 4.018147 

6104.96100' 1691.78000' 0.0005301477, 
6120.11100, 566.89000, 0.0002473344, 3. 977500' 4.001044 

7280.78600, 1691.78000' 0.0005360527, 
7295.90800, 566.89000, 0.0002533896, 3. 979613' 4.009365 

8486.61900, 1691.78000, 0.0005404724, 
8501.74100, 566.89000, 0. 0002597356' 4.006920, 4.037667 

9692.38300, 1691.78000' 0.0005486957, 
9707.51600, 566.89000, 0.0002672937, 3.997449, 4.004279 

10898.00000, 1691.78000, 0.0005494636, 
10913 .14000' 566.89000, 0.0002685067, 4.003782, 4.020519 

12103.80000, 1691.78000' 0.0005516688, 
12118.91000' 566.89000, 0.0002692835, 3.983529, 4.055128 

13279.30000, 1691.78000, 0.0005531632, 
13294.42000, 566.89000, 0.0002722835, 4.004881, 4.047411 

14484.80000, 1691.78000' 0. 0005554134, 
14499.90000, 566.89000, 0.0002743244, 4.001899, 4.043025 




