
THEORETICAL AND SOFTWARE CONSIDERATIONS

FOR GENERAL DYNAMIC ANALYSIS

USING MULTILEVEL SUBSTRUCTURED MODELS

by

Richard J. Schmidt

and

Robert H. Dodds., Jr.

A Report on Research Sponsored By

NASA Lewis Research Center

Research Grant NAG3-32

University of Kansas

Lawrence, Kansas

September 1985

50272·101
.

REPORT DOCUMENTATION j'· REPORT NO. 2. 3. Recipient'& Accession No.

PAGE
: 4. Title and Subtitle 5. Report D.te .

Theoretical and Software Considerations for General September 1985
Dynamic Analysis Using Multilevel Subs true tured 6.

MnrlPl•
7. Author(s} a. Performina Oraanl.zatlon Rept. No;

Richard J. Schmidt and Robert H. Dodds, Jr. SM Report No. 15
9. Perfonntna: Oraanizatlon Name and Address 10. Project/T.sk/Work Unit No.

University of Kansas Center for Research Inc.
2291 Irving Hill Drive, West Campus 11. Contract(C) or Grant(G) No.

Lawrence, Kansas 66045 (C) .
{GJ

12. Sponsorlna: Orsanlzation Name and Address 13. Type of Report & Period Covered

final

14.

15. Supplementary Notes

-

16. Abstract (Limit: 200 words) An approach is presented for the dynamic analysis of complex structure
sy~t'=!!!S using the finite element method and multilevel substructured models. The fixed-
interface method is selected for substructure reduction because of its efficiency, accurac
and adaptability to restart and reanalysis. This method is extended to reduction of sub-
structures which are themselves composed of reduced substructures. Emphasis is placed on
the implementation and performance of the method in a general-purpose software system.
Solution algorithms consistent with the chosen data structures are presented in detail.

This study demonstrates that successful finite element software requires the use of
software executives to supplement the algorithmic language. As modeling and analysis
techniques become more complex, proportionally more implementation effort is spent on data
and computer resource management. Executive systems are essential tools for these tasks.
The complexity of the implementation of restart and reanalysis porcedures also illustrate
the need for executive systems to support the non-computational aspects of the software.

The example problems show that significant computational efficiencies can be achieved
through proper use of substructuring and reduction techniques without sacrificing solution
accuracy. The unique restart and reanalysis capabilities developed in this study and the
flexible procedures for multilevel substructured modeling allow analysts to achieve
economical yet accurate analyses of complex structural systems.

17, Document Analysis a. Descriptors

dynamic analysis, finite element method, multilevel subs true turing, modal synthesis,
eigenproblem solution, subspace iteration, software executives, software engineering

b. ldentlfiers/Open.Ended Terms

c. COSATI Field/Group

18. Avaltablllty Stat.ment 19. Security Cl .. s {This Report) 21. No. of Paa:es

unclassified 188
- --release unlimited 20. Security Class (This Page) 22. Price

unclassified
:<See ANSI-Z39.18} Set Instructions on R~tver•e OPTIONAL FORM 212 (4-77)

(Formerly NTIS-35)
Department of commerce

,

ACKNOWLEDGEMENTS

This report is based on the dissertation of Richard J.

Schmidt submitted to the Department of Civil Engineering, Uni­

versity of Kansas for the degree of Doctor of Philosophy. The

study was conducted under the direction of Dr. Robert H.

Dodds, Jr.

The research was supported by the NASA Lewis Research Center

under Grant No. NAG3-32. Dr. Murray S. Hirschbein served as

NASA Technical Officer.

Numerical computations were performed on Harris computers

operated by the Computer Aided Engineering Laboratory, School of

Engineering, University of Kansas.

CHAPTER

1

2

3

4

CONTENTS

INTRODUCTION

1.1 General

1.2 Substructured Modeling Techniques

1.3 Modal Synthesis Techniques.

1.4 Objectives and Scope

FIXED-INTERFACE METHOD

2 .1 General . .

2.2 Features of the Fixed-Interface Method.

2.2.1 Efficiency of the Reduction Method

2.2.2 Applicability to General Problems.

2.2.3 Substructure Independence.

2.2.4 Ease of Reanalysis ..

2.2.5 Accuracy and Stability

2.3 Formulation of the Fixed-Interface Method

2.3.1 Basic Formulation

2.3.2 Extension to Multilevel Substructuring

2.3.3 Substructure Reanalysis

SOFTWARE DEVELOPMENT ENVIRONMENT

3.1 General

3.2

3.3

3.4

3.5

3.6

The POLO Executive.

Data Definition Language.

Host Language .

FORTRAN Processing Routines

Run-Time Configuration. . .

SOFTWARE DESIGN AND IMPLEMENTATION

4.1 General . . .

4.2 FINITE System Organization.

4.2.1 Organization of FINITE Subsystems.

4.2.2 Application Databases.

4.2.3 Subsystem Interfacing.

Page

1

1

3

10

17

21

21

21

22

23

24

25

25

27

27

33

36

39

39

40

41

46

51

53

57

57

58

60

62

63

CHAPTER

5

6

Page

4.3 User Interface for Dynamic Analysis . 64

4.4 Data Structures for Dynamic Analysis. 71

4.4.1 Hypermatrix Data Structures. . 73

4.4.2 Hypermatrix Solution Algorithms. 77

4.5 Subsystem DYNAMICS. 80

4.6 Frequency Analysis. 83

4.6.1 Generalized Jacobi Method. 84

4.6.2 Conventional Subspace Iteration. 85

4.6.3 Hypermatrix Subspace Iteration . 87

4.6.3.1 Selection of Iteration Vectors. 88

4.6.3.2 Solution of the Subspace Eigenproblem 90

4.6.3.3 Orthogonalization of Iteration Vectors. 92

4.6.3.4 Subspace Iteration with Hypermatrices 95

4.6.3.5 Description of Procedures

4.7 Fixed-Interface Method ...

95

99

4.7.1 Static Constraint Modes. 99

4.7.2 Guyan Reduced Mass . . . 101

4.7.3 Fixed-Fixed Frequency Analysis 102

4.7.4 Mass Coupling Block. 103

4.7.5 Assembly of the Reduced Stiffness and Mass 104

4.8 Restart and Reanalysis ..

4.8.1 Automatic Restart.

4.8.2 Partial Reanalysis

NUMERICAL EXAMPLES

5.1 General ...

5.2 Cantilever Box.

5.3 Double Tetrahedron.

SUMMARY AND CONCLUSIONS.

6 . 1 Summary . .

6.2 Conclusions

104

106

108

112

112

113

138

153

153

154

REFERENCES . 157

APPENDIX A: USER INTERFACE AND INPUT DESIGN 162

FIGURE

1.1

1.2

1.3

1.4

1.5

2.1

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

5.1

5.2

5.3

5.4

5.5

LIST OF FIGURES

Bridge Structure to Illustrate Substructuring.

Substructured BRIDGE Model

Structural Hierarchy for BRIDGE Model.

POL Definition of BRIDGE Model

Typical Component Modes.

Substructure Equation Assembly

POLO Development Environment

Sample Data Structure

POLO Run-Time Configuration.

Resolution of Logical Data References.

FINITE System Organization

Functional Dependencies Among the FINITE Subsystems.

Substructured BRIDGE Model . .

POL Definition of BRIDGE Model

Sample Data Structure ..

Representation of a Hypermatrix.

Banded, Symmetric Hypermatrices.

Hypervector Data Structure . . .

Cosine Function Iteration Vectors.

Stiffness Matrix Resizing.

Open Cantilever Box Model.

Finite Element Mesh for Structure BOX 1.

POL Definition of Structure BOX_l

Finite Element Mesh for Structure BOX_2.

POL Definition of Structure BOX_2.

Page

5

6

7

9

13

35

42

44

54

56

59

61

66

67

72

74

75

89

89

111

114

115

117

118

119

simultaneously.

sic example.

substructures:

The structural frame of an aircraft provides the clas­

Independent design teams develop the individual

wing assembly, fuselage sections, vertical stabilizer,

etc. The substructures are later interfaced at their common boundaries.

The modeling and analysis technique can be extended using multilevel

substructuring, where the individual substructures can themselves be

composed of condensed substructures.

In dynamic analysis, exact reduction of an individual substructure

is dependent upon the natural frequencies of the total structural

system. Since the system frequencies are objectives of the analysis and

as yet unknown, the analyst must use reduction methods that are either

iterative or frequency independent (and therefore approximate). The

various reduction methods are collectively known as procedures for com­

ponent mode synthesis or modal synthesis.

In general, modal synthesis techniques have not been incorporated

into general FEM programs [13]. A possible exception is some work on

proprietary computer codes, full details of which are not readily

available. Analyses presented in the literature based on modal syn-

thesis techniques have been achieved by combining the functions of

structural modeling, eigensolution, and matrix manipulation through the

use of a number of independent and highly specialized computer programs.

As a consequence of this lack of sophistication in available software,

only trival models have been studied (e.g., planar trusses, rectangular

plates, etc). Each analysis requires a specialized driver program to

manage the computational procedures unique to the individual structural

model. Clearly, a more general analysis procedure is required to permit

general studies of modal synthesis techniques.

- 2 -

The objectives of this work are to review the state-of-the-art in

modal synthesis; to design and implement a general, user-oriented

software system incorporating multilevel substructured modeling for

dynamic analysis; and to perform preliminary evaluations of the impact

of the modeling and analysis techniques on computed results. The

development of general-purpose analysis systems, using sophisticated

software techniques, is vital to the incorporation of new analytical

techniques into the analysis and design procedures used by practicing

engineers and researchers. Modal synthesis techniques must be included

as an integral part of the dynamic analysis capabilities of general FEM

software. Without general-purpose analysis systems, the burden of

developing an individual analysis program for each unique structure

would significantly outweigh the computational advantages available with

modal synthesis.

1.2 Substructured Modeling Techniques

A brief review of the substructuring and condensation prodecures

for static analysis is needed before modal synthesis techniques can be

reviewed. Many investigators (20, 50, 56] have shown that partitioning

of a structural model into smaller, often identical, substructures can

lead to significant savings in model generation and computer solution

costs for static, linear and nonlinear analysis. The choice of parti-

tions is

constraints.

generally guided by economic, fabrication, or symmetry

The boundaries which result between substructures due to

partitioning may then be either real or artificial in form. When the

structure partitioning is applied to an assembly of substructures, a

recursive procedure known as multilevel substructuring is established.

- 3 -

The substructure partitioning ends when all "lowest level" structures

are composed of only finite elements.

The organization of the structural hierarchy for a multilevel sub·

structured model is represented as an inverted tree. The top of the

tree (the root node) defines the highest level structure and resides at

level "n" of the hierarchy. Any number of substructure levels may be

defined below the root node. There is no theoretical limit on the num­

ber of branches (or elements) that enter a node (or structure) at level

"i" from level "i-1". All terminal nodes of the tree are finite ele·

ments (ex: bars, frames, triangles, etc.). For generality, no

distinction is made throughout the hierarchy between finite elements and

substructures.

For static analysis of both linear and nonlinear structures, it has

been shown that a substructured model yields the same solution as a

nonsubstructured model which contains only finite elements. The equa­

tions governing the substructuring technique are fully documented

elsewhere [53] and will not be reviewed here. Instead a small example

is presented which illustrates the terminology associated with the sub·

structuring technique and the degree of simplification possible with a

user-oriented approach to substructure analysis. The example structure

is a simple two-span, plane truss shown in Figure 1.1. Components of

the substructured model are shown in Figure 1.2, with names assigned to

each component for identification purposes. Figure 1.3 illustrates the

substructure hierarchy in inverted-tree form. The lowest-level struc­

ture is the hierarchy is SPAN.

. 4 .

NODE y ~

I X
20' • ,.. •) l_

,.. • nt I J; • 41120'
U> 1- 4 @20'

Figure 1.1. Bridge Structure to Illustrate Substructuring

"'

BRIDGE

X, -
L 3 Rods7

I '\--r-L_ 3
SPAN-CON 4 I I '\ SPAN-CON 4

v..kfsth
1 2 4 6 8

SPAN

X,, -
Figure l. 2. Substructured BRIDGE Hodel

1
3 5 7

~
1 2 4 6 8

SPAN

X,, -

"

SPAN_ CON

13 Rod
Elements

Figure 1. 3. Structural Hierarchy for BRIDGE Hodel

After substructure SPAN is defined, nodes 1, 3, 7, and 8 are

selected as boundary nodes. They are retained in the condensed sub-

structure SPAN_GON for connection to adjacent substructures. The

remaining interior nodes (2, 4, 5, and 6) are eliminated by

condensation. The transformation of coordinates from SPAN to SPAN_GON

is achieved by use of the static constraint modes. A static constraint

mode is the displaced configuration of the interior nodes when a unit

displacement is applied to one of the boundary nodes with all other

boundary nodes constrained. The highest level structure, BRIDGE, is

defined using two copies of the condensed substructure and three rod

elements for closure over the center support.

Figure 1.4 illustrates the ease with which this structural model is

defined for analysis. The problem oriented language (POL) used to

describe the model is taken from the POLO-FINITE structural mechanics

system. As described below, POLO-FINITE supports user-defined, multi-

level substructuring as a natural extension of standard modeling and

analysis procedures. The lowest level substructure, SPAN, contains 8

nodes and 13 elements. Element types, properties, topology, and nodal

coordinates are easily defined through the POL. The condensed version

of SPAN is then defined as structure SPAN_GON. Structure SPAN_GON con-

tains the four boundary nodes from structure SPAN. These nodes are

identified through the incidence list for SPAN_GON. Structure SPAN is

referred to as the "parent" structure. SPAN_GON is the "child". This

technique for defining the condensed structure at an intermediate level

in the hierarchy eliminates confusion on the analyst's part and main-

tains a consistent definition of structures throughout the hierarchy.

Structure BRIDGE is modeled from two copies of SPAN_GON and three

additional rod elements. Copies of SPAN_GON (elements 1 and 2) are

- 8 -

"'

•RUN FINITE
c
C DEFINE THE BRIDGE SEGMENT: SPAN.
C UNITS ARE "XIPS~ AND "FEET".
c

c
c
c
c
c
c
c

c
c
c

STRUCTURE SPAN
NUMBER OF HODES 8 ELEMENTS 13
ELEMENTS ALL TYPE ROD E 3.0£04 AX 0.0347
COORDINATES

1 o.o o.o
2 20.0 o.o
3 20.0 20.0
4 40.0 o.o
5 40.0 20.0
6 60.0 . o.o
7 60.0 20.0
a eo.o o.o

INCIDENCES
l l 3
2 2 3
3 3 •
• • 5
5 • 7
• • 7
7 7 •
• 3 5
• 5 7

10 1 2
11 2 •
12 4 6
13 6 8

END OF STRUCTURE SPAN

DEFINE THE CONDENSED VERSION OF STRUCTURE SPAN.
RETAIN NODES 1 3 7 AND 8 IN THE CONDENSED STRUCTURE.

STRUCTURE SPAN CON
NUMBER OF NODES 4 ELEMENTS 1
ELEMENT 1 TYPE SPAN CONDENSED
INCIDENCES

l l 3 7 8

END OF STRUCTURE SPAN_CON

c
C DEFINE THE HIGHEST LEVEL STRUCTURE AS A COMBINATION
c OF TWO CONDENSED SPANS AND THREE SIMPLE ROD ELEMENTS
c
c

STRUCTURE BRIDGE
c

c

c

c

c

c

c

c

NUMBER OF NODES 8 ELEMENTS 5
ELEMENTS

1 2 TYPE SPAN CON ROTATION SUPPRESSED
3-5 TYPE ROD i J.OE04 AX 0.0347

COORDINATES
2 o.o 0.0
5 -20.0 20.0
6 o.o 20.0
1 20.0 20.0

INCIDENCES
1 1 .. 5 2
2 2 7 8 l
3 5 •
• • 7
5 2 •

CONSTRAINTS
1-3 v - o.o
1 u - o.o

<definition ot loads>

<raqueata tor co•putation>

<raqueata tor output>

STOP

Figure 1.4. POL Definition of BRIDGE Hodel

From a more application-oriented viewpoint, Hintz [28] grouped

combinations of the four mode classes: rigid-body, static constraint,

normal, and attachment into five different interface mode sets.

Implications of truncating a selected interface mode set were discussed

and guidelines were developed for retaining accuracy with a reduced size

model. In another ·application paper, Craig and Chang [12] discussed

alternatives for reduction of boundary coordinates for a number of dif­

ferent modal synthesis methods. Also included in their discussion were

requirements for substructure modeling that facilitate experimental

verification of the numerical model.

In the only known discussion of modal synthesis for multilevel

substructured models, Herting [27] presented work in progress on

NASTRAN. The modeling technique allows retention of an arbitrary set of

substructure normal modes (fixed, free, or hybrid), inertia relief

modes, and all geometric coordinates at substructure boundaries. This

method is the most general of the modal synthesis techniques. It is

shown in the study that both the fixed-interface method of Craig and

Bampton and the MacNeal's residual flexibility method are special cases

of the general technique. No discussion of solution economy or user­

interface in the NASTRAN implementation are presented.

A pair of frequency-dependent, iterative methods was developed by

Leung [39, 40] as extensions of Guyan reduction and the fixed-interface

method. In both methods, the unknown system frequency is retained in

the substructure reduction equations. Initial estimates for the natural

frequencies

dure. The

stiffness

of interest are improved after each iteration of the proce-

reduction yields a single coefficient matrix, the dynamic­

matrix, which defines a "standard" eigenvalue problem. In

- 16 -

contrast, other modal synthesis techniques produce two coefficient

matrices, generalized stiffness and mass matrices, which define a

"generalized" eigenvalue problem.

A second-order substructure condensation procedure generally ap-

plicable to the basic modal synthesis methods was presented by Kubomura

[37]. In this procedure, the component modes used in reduction include

fixed-interface, free-interface, and hybrid modes. Using the system

eigenvalue of interest, a rational approach to mode selection is

developed.

As an extension of Hurty's first paper on modal synthesis,

Meirovitch and Hale expanded the use of admissible functions in com-

ponent mode synthesis [24, 25, 45-47]. Their work broadened the

definition of admissible functions that are suitable for use in sub-

structure reduction. Their technique is applicable to both continuous

and discrete structural models. While the use of admissible functions

other than eigenfunctions presents the potential for significant reduc-

tion in analysis costs, the selection of suitable functions (low-order

polynomials) has not been automated such that the approach can be used

in a general finite element code.

1.4 ObJectives and Scope

The objectives of this work are:

1. To identify those modal
for incorporation into
which includes multilevel

synthesis techniques that are suitable
a general-purpose FEM software system
substructured modeling capabilities.

2. To design and implement the software required to perform general
purpose dynamic analysis. Specific needs include a flexible
input language, an automatic and accurate modal synthesis tech­
nique, and efficient analysis-restart capabilities.

- 17 -

dynamic analysis is an approximate technique, the analyst will generally

desire to verify the model by additional refinement and reanalysis. An

efficient software system permits the analyst to simply enhance the

existing model and recompute only those quantities affected by the

enhancement. This feature is rarely available in an automated, user-

controlled form. In this study, analysis restart has no relation to the

checkpoint/restart procedures supported by various hardware and software

systems.

The remainder of this report is divided into chapters which discuss

the major topics covered. Chapter 2 contains a detailed review of the

fixed-interface method and its use in multilevel substructured modeling.

Details of the POLO executive system as a tool for software development

are presented in Chapter 3. Both the development and the run-time en­

vironments supported by POLO are reviewed as they pertain to this study.

Software design and implementation are discussed in Chapter 4. Topics

include the structural modeling procedure, solution algorithms, and

analysis restart. The integration of data structures, system processing

modules, and element routines are discussed from the viewpoint of the

software engineer. Performance of the software resulting from this work

is examined in Chapter 5. Results from a number of example problems are

discussed. Chapter 6 presents a summary of the study and conclusions.

Topics for further investigation are also proposed.

- 20 -

CHAPTER 2 FIXED-INTERFACE METHOD

2.1 General

The modal synthesis method selected for implementation in this

study is the fixed-interface method as formulated by Craig and Bampton

[10]. The reasons for· this selection are presented in the next section.

Section 2.3 contains a detailed review of the development of the method

and the necessary extensions of the method for use with multilevel sub­

structured modeling. Procedures for analysis restart are also

developed.

2.2 Features of the Fixed-Interface Method

The goal of the fixed-interface method, as for all of the various

modal synthesis methods, is to generate stiffness and mass matrices that

accurately represent the stiffness and inertia characteristics of a

substructure with the minimum number of degrees of freedom (DOF). Two

basic operations are performed in the reduction process. First, the

substructure coefficient matrices are transformed from geometric coor­

dinates to a reduced set of generalized coordinates. The transformation

matrix normally contains substructure mode shapes that adequately

describe the dynamic characteristics of the substructure. The second

operation is the assembly of the reduced substructure matrices into the

next higher level of the model hierarchy. The details of this operation

vary according to the nature of the generalized coordinates representing

each substructure. In a multilevel substructured model, the transforma­

tion and assembly processes are performed recursively at each level.

- 21 -

In the fixed-interface method, all static constraint modes and some

of the fixed-fixed normal modes are selected as component modes for the

reduction transformation. The set of generalized coordinates contains

normal DOF associated with the fixed-fixed normal modes and boundary DOF

which are linked to the static constraint modes. During assembly of the

reduced substructures, displacement compatibility is enforced by equa­

tions of constraint which tie common boundary DOF at the interfaces

between adjacent substructures. Since the boundary DOF retain their

physical distinction during the transformation to generalized coor­

dinates, the assembly procedure is identical to that used for non­

substructured models. The normal DOF are not included in the constraint

equations. A complete development of the method follows in section 2.3.

2.2.1 Efficiency of the Reduction Method

The efficiency of a dynamic reduction method is influenced by three

factors. First, the method must produce an accurate reduction in the

order (number of DOF) of the substructure stiffness and mass matrices.

An efficient method yields synthesized stiffness and mass matrices that

accurately represent the dynamic characteristics of the substructure

with the minimum number of DOF. Second, the degree of analyst par­

ticipation should be limited to simply the definition of the model and

specification of the solution type. A method should be automatic once

the solution process begins, hence eliminating the need for the analyst

to interpret intermediate results and restart the analysis. This is not

to imply that the analyst should surrender control of the solution

process. Instead, the analyst should be relieved of the burdensome task

of supervising the computational process. Third, the synthesis method

- 22 -

should be efficient in its use of computer resources. Given the problem

size, algorithms should be chosen that minimize the required computer

resources, particularly processor time and I/0 (data transfers to and

from secondary storage). The number of arithmetic operations performed

should be predictable rather than dependent upon an arbitrary test for

convergence of an iterative process.

The fixed-interface method successfully satisfies the efficiency

criterion. The method is simple to apply and yields a significant size

reduction of properly substructured models. As will be demonstrated in

the example problems, the required user input and control is minimal.

2.2.2 Applicability to General Pr9blems

A wide variety of dynamics problems exists for which modal syn­

thesis is needed to achieve an economical and accurate solution. A

synthesis method used in a general purpose FEM system should be capable

of modeling substructures over a broad range of geometries with various

types of boundary constraint. Also helpful would be the ability to

incorporate experimental data (natural frequencies and mode shapes) into

the substructured model.

Dynamic reduction methods should lend themselves to incremental

solution procedures. By necessity, finite element analysis of a non-

linear structure is performed incrementally. As the effects of

nonlinear materials and geometry occur, the coefficient matrices must be

reformulated to accurately model the current state of the structure.

The fixed-interface method has limited capability to use experimen­

tal data. In the computation of substructure mode shapes for the

reduction process, all boundary nodes are fixed. As a consequence,

- 23 -

require that displacement gradients be well formed. Closely tied to

accuracy of the results is the numerical precision with which computa·

tions must be performed. Operations such as orthogonalization and

triangulation can have a significant impact on final accuracy and the

need for such operations should be considered in selecting the reduction

method.

The potential for numerical instabilities in the reduction methods

can be identified by examining the formulation of the methods. Typical

problem areas are the divide-by-zero singularity and the linear depend­

ence of the vectors contained in a transformation matrix.

The linear independence of the component modes in the fixed­

interface transformations ensures stability of the method and accuracy

has proven favorable for many problems. In fact, it is possible to

obtain any level of accuracy desired simply by adjusting the number of

normal DOF included in the synthesis process.

The decision to implement the fixed-interface method is supported

by the above evaluation and by the role of this method as a component of

several other modal synthesis techniques [1, 25, 27]. Implementation of

the fixed-interface method will act as a basis for further research into

modal synthesis and into other areas of structural dynamics. This study

establishes the necessary first step by developing a general software

system with multilevel substructuring capabilities.

- 26 -

2.3 Formulation of the Fixed-Interface Method

2.3.1 Basic Formulation

Consider an isolated substructure consisting of only finite ele-

ments, such as structure SPAN in Figure 1.2. The undamped, free

vibration equation of motion of the substructure, partitioned to

separate master (m) arid slave (s) DOF, is:

2 - "'. ~ (2.1)

Master DOF are those that remain after condensation and are usually DOF

at nodes on the boundary of the substructure. They are used for connec-

tivity to adjacent substructures. The slave DOF are those that are

eliminated and usually lie in the interior of the substructure. The

natural frequency "'· is that of the complete structural system, not just
l.

the isolated substructure. The presence of nonzero off-diagonal blocks

[Mms] and (Msm] l.·n Eq. (2 1) · 1" th f i . 1.mp 1.es e use o a cons stent mass

formulation. When a lumped mass model is used, the mass matrix is

diagonal.

The upper half of Eq. (2.1) can be expanded to

(2.2)

Solving for {us) in terms of {um) yields a coordinate transformation

which is dependent on the unknown system vibration frequency w .• If the l.

inertia forces on the slave DOF are assumed to be small compared to the

static forces, the former may be neglected. Thus, the frequency depend·

ence is eliminated and Eq. (2.2) simplifies to

- 27 -

(2.3)

c m s Defining the coordinate transformation [~ 1 from (u] to (u] as

(2.4)

(us] can be eliminated from Eq. (2.3) to yield

(2.5)

As in static condensation, [~c1 is evaluated by standard equation

solving techniques requiring triangulation of [Kss1 and reduction opera-

t . th t 'n -[Ksm1. ~ons on e vee ors • The columns of the transformation

matrix [~c1 are known as the "static constraint modes." Physically, a

static constraint mode is the displaced configuration of the slave DOF

resulting from a unit displacement applied to one master DOF while all

other master DOF are held fixed.

Now attention is returned to the inertia contribution of the slave

DOF. If the set of master DOF is restrained from displacement, Eq.

(2.1) reduces to

(2.6)

The solution of this eigenvalue problem yields the matrix of fixed-fixed

normal n ss ss modes, [~] , having the same order as [K] and [M] . The com-

puted vibration frequencies, ~i. are those of the isolated substructure

with its boundaries fixed.

The complete set of substructure normal n modes, [~ 1, plus the

static constraint modes, c
[~],provide the means to transform the dis-

placement vector (u] from geometric coordinates to an equivalent set of

- 28 -

generalized coordinates, {q). However, an exact transformation does not

serve to reduce the order of the coordinate vector. To reduce the order

of the substructure mass and stiffness matrices, the transformation to

generalized coordinates is defined as

{u) - ~-~~-~ (2.7)

The fixed-interface transformation, [Tf], is derived from the static

constraint modes and a truncated set of fixed-fixed normal modes as

[

-n • c l
-~--t-:-- (2.8)

-n n in which[~] is a rectangular matrix of mode shapes selected from[~].

In general, the modes corresponding to the lowest natural frequencies,

are retained -n in [rp] •
s The slave displacements, {u) , are now de-

pendent on both the static constraint modes and the retained normal

modes of the isolated substructure. Since the full set of substructure

normal modes is not used in the transformation, the generalized coor-

dinates {q) approximately represent the geometric coordinates {u).

Two observations regarding Eq. (2.8) are noteworthy. First, the

generalized coordinate subvector, m {q), corresponds precisely to the

master set of geometric coordinates, {um). This insures geometric com-

patibility between adjacent substructures when the substructure

equations are assembled at the next higher level of the hierarchy.

-n Secondly, as the number of mode shapes in [rp] is reduced, the transfer-

- 29 -

mation shrinks to just the static constraint modes and thus, the fixed-

interface method degenerates to Guyan reduction [23]. Likewise as more

and more mode shapes
-n f are retained in[~], [T] approaches an exact

coordinate transformation.

The strain and kinetic energies for the isolated substructure are

given by

(2.9a)

T - 1/2 !-~:-IT [~::.t-~:~]1-~:-
.m . .ms ' . .mm .m
U M 1 ~ U

(2.9b)

where (u) is the first time derivative of (u). The displacement and

velocity vectors in Eq. (2.9) can be replaced with the generalized coor-

dinate vectors by substitution of Eq. (2.7) and (2.8). The reduced

order stiffness and mass matrices in generalized coordinates are ob-

tained by maintaining equivalence of strain and kinetic energies between

the two coordinate systems. The resulting forms are

f f T f [[I] ; [Mnm] l
[M] - [T] [M] [T] - -------~-------

[~n] : [MG]

[~n] _ [~s][~n] + [~c]T[Mss][~n] and

[Mnm] [~n] T.

- 30 -

and

, where

(2.10)

(2.11)

(2.12a)

(2.12b)

When the substructure is composed only of elements formulated with

lumped mass, the off-diagonal submatrix of equation (2.11) simplifies to

(2.13)

G and [M] are the Guyan reduced stiffness and mass matrices. They

take the forms

and (2.14)

(2.15)

The form defined for [KG] is identical to that obtained when static

condensation is applied to the stiffness in static analysis. This fact

proves useful for implementation of the synthesis procedure. For the

simpler case of a lumped mass formulation, Eq. (2.15) reduces to

The identity submatrix in (Mf]

result from the -n orthonormality of the mode shapes in[~].

(2.16)

diagonal matrix of natural frequencies corresponding the the modes

retained in [~n].

The normal coordinates are coupled to the geometric DOF only in the

reduced mass matrix (submatrices [~] and [Mnm]). The off-diagonal

submatrices of [Kf] are null as a consequence of the equation

development.

- 31 -

Regardless of which mass matrix formulation is used, consistent or

lumped, the reduced mass submatrix, [MG], is fully populated. The com-

putational advantage of a lumped mass formulation is therefore limited

to reduction of the lowest level substructures in the hierarchy.

When time-dependent loads are applied to the slave DOF, they too

must be transformed to generalized coordinates. If the substructure is

subjected to an arbitrary virtual displacement, (5u), the work done by

the substructure forces {P) is

sw (2.17)

The condensed forces, {F), applied to the generalized coordinates must

do the same work during a virtual displacement consistent with (5u),

thus

T (5u) (P}.

Substituting Eq. (2.7), the condensed force vector becomes

{F)

(2.18)

(2.19)

The stiffness, mass, and loads for each substructure are parti-

tioned and condensed. Assembly of both the reduced substructure mass

and stiffness into the next higher level follows the standard procedure

for element assembly [10]. Displacement compatibility between adjacent

substructures is automatically insured by the use of the master DOF as

generalized coordinates. Although assembly of the reduced substructure

stiffness and mass is routine, an illustration of the final matrices is

useful. For an assembly of "r" substructures

- 32 -

.2 0 0 0 I 0 0 Mnm
"'1 1

0 .2 0 0 I 0 Mnm
"'2 2

* (K] * [M]

0 .2 0 0 0 I Mnm
"' r r

0 0 0 '*-G ~~n··· Mmrl~G
r

(2.20a) (2.20b)

The master DOF from the various substructures are coupled only in the

submatrices ['*-Gl and [&G], the assembled Guyan stiffness and mass.

The synthesis process for one level of substructuring is now

complete. After a free-vibration analysis has been performed for the

synthesized structure, it may be desirable to recover the portion of the

system mode shapes contained within the condensed substructures. This

is achieved by applying Eq. (2.7) to that portion of the system mode

shape associated with the generalized DOF from a particular

substructure.

In summary, the fixed-interface method employs static constraint

modes and a truncated set of fixed-fixed normal modes to achieve a

reduction in the order of the substructures stiffness and mass.

Geometric coordinates at internal boundaries are retained in the set of

generalized coordinates to insure displacement compatibility between

substructures.

2.3.2 Extension to Multilevel Substructuring

The fixed-interface method is extended to multilevel substructured

modeling in the following manner. Referring to the terminology of sec-

tion 1.2, assume that all substructures at level "i" have been assembled

- 33 -

either from finite elements or level "i+l" substructures (or both). The

level "i-1" substructures are defined by selecting master and slave DOF

for each substructure at level " . " l. ' condensing these substructures using

Eq. (2.10) and Eq. (2.11), and assembling as illustrated in Eq.

(2.20a,b).

A significant difference in the procedure for multilevel substruc-

tured models from that of the preceding section is the selection of

master and slave DOF. As previously mentioned, master DOF are usually

selected to lie along substructure boundaries and slaves are chosen as

the remaining DOF. For the normal DOF which exist as a result of the

synthesis of condensed substructures, no physical basis exists upon

which to make this selection. Conceptually, the normal DOF in the as-

sembled model could be identified as either master or slave DOF.

For this study, the following procedure is adopted. Since the

equations of constraint that link adjacent substructures are written

only in terms of the substructure boundary (geometric) DOF, the normal

(generalized) DOF for each substructure are grouped with the interior

DOF in the set of slaves.

As an example, consider structure "A" which is assembled from two

condensed substructures, "B" and •c•. The assembled stiffness and mass

matrices for structure "A" are illustrated in Figure 2 .1. The matrices

are partitioned into five zones as indicated. Zone I and II contain the

normal DOF from substructures "B" and "C" respectively. The identity

matrices in [MA) and the diagonal blocks of substructure frequencies in

[KA] are fully contained within the individual zones. This illustrates

that normal DOF from one substructure are not coupled with those from

- 34 -

-
....
WB

..... w c

KG
B

~
G

Kc

--._ __ "-''- _;~'---''--' -... - _,
II Ill IV V

-
's lfM

B

'c
MNM

c

MN MG
MB B

~ MN
Me MG

c

-
'-"-''-or~~~

II Ill IV V

Figure 2.1. Substructure Equation Assembly

- 35 -

adjacent substructures. The boundary DOF of substructure "B" occupy

zones III and IV while zones IV and V contain boundary DOF from sub-

structure "C".

"B" and "C".

Clearly zone IV represents the boundary DOF common to

The DOF in this zone are linked to enforce displacement

compatiblity between the substructures.

In one-level substructured models, this representation of structure

"A" would form the highest level structure and the synthesis process

would be complete. In multilevel substructured models, structure "A"

is partitioned into its own master and slave DOF and then condensed. As

mentioned above, master DOF are usually selected as those DOF on sub­

structure boundaries. In this respect, the master DOF for structure "A"

are selected from zones III, IV, and V. The remaining DOF in these

three zones, along with all generalized DOF in zones I and II are

grouped as slave DOF. The synthesized stiffness and mass matrices

resulting from condensation of structure "A" are identical in form to

the stiffness and mass matrices from any other condensed structure; see

Eq. (2.10) and (2.11). An evaluation of the impact of the above

master/slave selection procedure for multilevel substructured models

remains a topic for future study.

2.3.3 Substructure Reanalysis

When modal synthesis is used to condense the substructures in a

complex structural model, analysts will always question the accuracy of

the reduction and thus the quality of the final results. Substructure

reanalysis is the most obvious approach to verifying the representation

of an individual substructure. In the fixed-interface method, substruc­

ture reanalysis is achieved simply by adding more normal DOF to the

- 36 -

condensed substructures in question. Many of the computations performed

in the initial reduction need not be repeated during reanalysis.

Consequently, reanalysis is performed with some degree of efficiency

when computed results are retained after completion of the initial

analysis.

The first step in substructure reanalysis is to determine which

additional normal DOF are to be retained in the condensed substructure.

If sufficient fixed-fixed normal modes are not available for addition to

the transformation [Tf], the eigenproblem solver is restarted to compute

the required frequencies and mode shapes. Existing fixed-fixed normal

modes are not recomputed.

After the additional normal DOF for the substructure are computed,

the condensed stiffness and mass matrices are assembled. Referring to

equations (2.10) and (2.11), the Guyan reduced stiffness and mass sub-

matrices, [KG] and [MG], remain unchanged since the normal DOF do not

influence the static constraint modes. The only computations required

are those needed to expand the number of columns in the off-diagonal

mass submatrix, [~n]. These new columns are needed for the additional

substructure normal DOF.

similarly expanded.

Savings in the assembly of "reanalyzed" substructures are also

possible. Using the example presented in the previous section, suppose

that additional normal DOF have been added to substructures "B" and "C."

When the stiffness and mass matrices for structure "A" are reassembled,

only zones I and II need to be expanded (Figure 2.1). Since the Guyan

stiffness and mass submatrices for both "B" and "C" do not change during

• 37 -

reanalysis, their assembly into structure "A" is also unchanged. Thus

zones III, IV, and V are not altered, saving measurable time in struc­

ture assembly.

While the foregoing procedure is conceptually simple, implementa­

tion of reanalysis capabilities in a general software system presents

some special problems not yet considered. Details of this implementa­

tion are presented in Section 4.8.

- 38 -

CHAPTER 3 SOFTWARE DEVELOPMENT ENVIRONMENT

3.1 General

The fixed-interface method provides a theoretical basis to perform

dynamic analysis of multilevel substructured FEM models. Design and

implementation of the associated software for general-purpose analysis

makes the procedure accessible to researchers and designers. Finite

element researchers typically focus on developing and improving numeri­

cal algorithms, not on the design and implementation of sophisticated

engineering software. Software for these researchers is implemented

only to demonstrate the viability of the numerical method for a limited

class of problems. As a consequence, the software tends to be deficient

in the areas of user-interface, resource management, and generality.

The programming capabilities needed to overcome these deficiencies

are not supported by standard algorithmic languages (e.g. FORTRAN-77, C,

Pascal). A software developer who wishes to use hierarchial data struc­

tures, for example, is required to devise his own data management

capabilities. This task typically results in complex sequences of pro-

cedure calls from the processing routines in order to locate or create

the necessary data tables. For advanced applications, such as substruc­

tured modeling and nonlinear analysis, implementation of the numerical

procedure becomes a trivial task compared to the "bookkeeping" proce­

dures required to drive the crude data management routines.

One solution to this problem is the use of an •executive" system to

support and manage computing resources: memory, secondary storage, data

transfers between the two, and user-interface. The POLO system

[42, 43] provides the necessary support. The software developed during

- 39 -

this study relies heavily on the POLO executive. The software develop­

ment tools within POLO enable the areas of engineering mechanics,

numerical methods, and computer science to be effectively synthesized

into a functioning software system having considerable generality. The

remainder of this chapter briefly describes the components of POLO and

its influence on the software developed in this study. For additional

details on the POLO executive and on the concept of software virtual

machines, see [16] and [17].

3.2 Ihe POLQ Executive

POLO does not directly solve engineering problems. Rather it sup­

ports programming activities common to most engineering applications:

POL translation, data structure definition, data base and memory manage­

ment during execution, and logical control and integration of

application subsystems. A specific application program, or subsystem,

which runs under the control of POLO is needed to solve the engineering

problem. The existing finite element subsystem for POLO, named POLO­

FINITE, has been adopted as the starting point for the software

developed in this study.

POLO supports engineering software applications during the develop­

ment phase and during execution of the application program (also known

as "run-time"). During development, POLO provides languages to define

data structures, to symbolically access the data, and to control the

sequence of operatons on data required for the particular application.

At run-time, POLO support routines perform data base and memory manage­

ment, translate POL input, and execute the processing routines. At

- 40 -

program termination, POLO automatically secures all data bases for sub­

sequent analysis restart.

POLO provides compilers and execution processors for two higher

level languages: a data definition language (DDL) and a host language

(HL). These two languages and an algorithmic language (FORTRAN-77)

combine to define the development environment (Figure 3.1). The in­

dividual components of this environment and their inter-relationships

are discussed in the following sections. Section 3.6 describes the run­

time configuration of a POLO application program. The structure of

POLO-FINITE

chapter. A

as a

more

FEM application program is presented in the next

complete discussion of POLO-FINITE, including system

performance, nonlinear analysis capabilities, and element and material

model libraries, can be found elsewhere (16, 18, 43].

3.3 Data Definition Language

The development of a POLO subsystem centers on the structure of the

logical data space. Data structures in the POLO environment are

primarily of the hierarchical type. Other data structures, including

network and relational, may be defined using basic hierarchical tables

with additional pointer manipulation by the application subsystem. Data

structures are described to POLO with the data definition language

(DDL). As shown in Figure 3.1, the developer's data definition is com­

piled into an internal form by the DDL compiler. The resulting form of

the data definition resides in the DDL library. The DDL library con­

tains the logical definition of and the relationships among all data

structures defined for the application program. This library is later

accessed by the host language (HL) development processors to interpret

- 41 -

.,.
"'

APPLICATION
PROGRAMMER'S

INPUT

DATA DEFINITION

LANGUAGE

HOST LANGUAGE

MODULES

FORTRAN

SUBPROGRAMS

I

I
I
I
I
I
I
I
I

I

I
,~

I
I
I

DEVELOPMENT
PROCESSORS

DOL

COMPILER

HL

COMPILER

FORTRAN LOADER
COMPILER

r

' ./
POLO

OBJECT
....._CODE~

I

I
I
I
I
I
I
I
I

I

I
I
I
I
I

Figure 3.1. POLO Development Environment

;'
r-.....

APPLICA liON
PROGRAM

.........

./
DOL

LIBRARY
'-.... ~' RESIDE IN

SYSTEM
I" / DATA BASE
'-.... ./

HL
LIBRARY

'-.... ./

~ REAL MACHINE
EXECUTABLE
PROGRAM

data references made in the HL programs. At run-time, the data defini-

tion is used to map the logical data format onto a physical medium

(direct-access disk file) for the storage of problem data.

Figure 3.2 contains a sample data hierarchy defined for the dynamic

analysis systems. In this example the stiffness, mass, and frequency

analysis results are ·all stored in a table named COEFFICIENTS which has

its rows labelled (or named) and is one column wide. The COEFFICIENTS

table actually resides in a higher level table, ELEMENTS, which contains

other relevant structure data: nodal coordinates, element incidences,

constraints, loads, etc. The DDL for the sample data structure is

presented below.

TABLE ELEMENTS LABELLED GROUPING 25

TABLE COEFFICIENTS LABELLED 1
NNODE INTEGER
NROW INTEGER
NCOL INTEGER
TABLE STIFFNESS LABELLED NNODE

KLOW INTEGER
NUMBLOCKS INTEGER
TABLE ROWS ARRAY REAL NUMBLOCKS NROW NCOL
END OF TABLE

TABLE MASS LABELLED NNODE
MLOW INTEGER
NUMBLOCKS INTEGER
TABLE ROWS ARRAY REAL NUMBLOCKS NROW NCOL
END OF TABLE

TABLE LUMPEDMASS SET REAL NNODE NROW
TABLE FIXEDMODES LABELLED GROUPING 50

FREQUENCY REAL
TABLE SHAPES SET REAL NNODE NROW
END OF TABLE

TABLE FREEMODES LABELLED GROUPING 50
FREQUENCY REAL
TABLE SHAPES SET REAL NNODE NROW
END OF TABLE

END OF TABLE

- 43 -

COEF FICIENTS

Q
NODE N

N ROW

NCOL

STIF FNESS

MASS

MASS LUMPED

FIXEDM

FREEM

ODES

ODES

r--

r--

r--

r---!--
!---!---,....__

.... ...

/
NCY FREOUE

SH APE I

L

-

I--..

r-

~ --
-

• •
•

NNODE

KLOW •••

NUMBLOCKS •••

ROWS '/' •••

NCOL

,__
..... ~ ,__
• NROW • •

-
.___ NUMBLOCKS

NN ODE

/ MLOW •••
,/ -

:--- • NUMBLOCKS •••
•

• • ROWS ~ ••• • • :---
- ._NROW NCOL
_NNODE

~ ,__
.....

,....__

• • NROW
•

-
- NUMBLOCKS

G =50 G =50

••• FREQUENCY • ••

••• SHAPE 1 • ••

' r-::~ - - -
• • • - • • • • - • ,....-

•
:--- _NROW - ._NROW

.__ NNODE .___ NNODE

Figure 3.2. Sample Data Structure

- 44 -

The first three rows in table COEFFICIENTS are scalar entries. The

values are used to define sizes of lower level tables. The fourth row

of this table begins the definition of a labelled table named STIFFNESS.

This "table within a table" is defined simply in the DDL as shown.

Definition of other rows in COEFFICIENTS is temporarily suspended until

table STIFFNESS is "fully specified. After the three rows of the

STIFFNESS table are described, the END OF TABLE statement indicates that

the statements to follow define other rows of the COEFFICIENTS table.

For a consistent mass formulation, the mass matrix has the same

banding as the stiffness matrix. Thus the MASS table has a hierarchy

which is identical in structure to the STIFFNESS table. A different

data structure is appropriate for a lumped mass formulation in which DOF

coupling does not exist. The table LUMPEDMASS defines the values of

mass that reside at each DOF of every structure node. While both mass

tables (consistent and lumped) are specified for each structure, only

the one table that corresponds to the selected mass formulation for the

structure is created in the data base at run-time.

In a similar manner, two types of frequency analysis tables,

FIXEDMODES and FREEMODES, are defined. While both tables are defined

for any given structure, only the appropriate one is created to store

the results of the analysis. The FIXEDMODES table stores the fixed­

fixed frequencies and mode shapes for condensed substructures during

modal synthesis, while the FREEMODES table contains analysis results for

a free-vibration frequency analysis of the highest level structure.

In static analysis, only the STIFFNESS table is created at run-

time. In the problem data base, the rows of the COEFFICIENTS table

- 45 -

corresponding to the mass and mode shape tables then contain pointer

values of zero, indicating that the tables have not been created.

When a table is first referenced at run-time, it is created accord­

ing to the sizes defined in the DDL. If any of the sizing parameters

are variables, the data manager creates the table using the current

value of the variables. The sizing variables can then be changed during

execution of the application program so other tables can be created to

different sizes as required.

The FIXEDMODES and FREEMODES tables are slightly different from the

other labelled tables in the data structure. These two tables are known

as "grouped" tables and have a grouping factor of 50 (an arbitrary

choice). These tables are initially created with 50 columns. As addi-

tional columns of the table are needed, they are created in groups of 50

each. The groups of 50 columns are not necessarily contiguous in the

database. The COEFFICIENTS, STIFFNESS, and MASS tables are not grouped.

All columns required for each of these tables are allocated contiguously

in the database on the first reference to the table.

The data definition listed above is just a small part of the data

definition used in POLO-FINITE. Additional details regarding the

specific data structures developed in this study are presented in

Chapter 4.

3.4 Host Language

The second component of the POLO development environment is the

host language. After the developer has defined the data structures,

host language programs are written to drive execution of the application

subsystems. An HL program performs three primary functions: POL input

- 46 -

translation, execution of FORTRAN support routines, and execution of

other POLO subsystems. These functions are directed in HL command

statements that have a basic IF-THEN syntax.

The syntax of a HL command statement takes the following form:

<label> <logical ·test> <action list> <transfer destinations>.

The label is optional and serves the same purpose as a statement label

in FORTRAN. The logical test is evaluated to determine whether or not

the action list will be executed. If the result of the logical test is

false, the actions are skipped and the •false transfer of control" is

taken. If the logical test is true, the actions in the list are ex-

ecuted and the "true transfer• is performed. The actions executed by

the HL processor typically involve numerical computations that are effi-

ciently performed in the FORTRAN support routines (matrix multiplies,

etc.).

It may not always be appropriate to perform a logical test prior to

executing a list of actions. When this is the case, a dummy test,

*EXECUTE, is performed. The result of this test is always true and the

action list is executed. A situation in which a dummy true-test is

appropriate might be the execution of initialization routines at the

entry point to a subsystem.

Data references may be associated with each action in the action

list. A data reference is a symbolic reference to tables within the

hierarchy as defined in the DDL. An example of a data reference into

the hierarchy defined in the previous section is the following:

/STRUCTURE/ELEMENTS(COEFFICIENTS, STCOL, FREEMODES, 1, SHAPES,
!MODE, INODE, 1)

- 47 -

This data reference accesses the free-vibration mode shape data for a

particular vibration mode. The reference begins by identifying the data

base that contains the required data (the name is enclosed in"//").

Then starting with the name of a table defined at the highest level, the

hierarchy is symbolically traversed. STCOL is a variable that contains

the column number in the ELEMENTS table which contains data for the

desired structure; variable !MODE contains the column number in the

FREEMODES table that identifies the individual mode shape of interest;

variable !NODE contains the structure node number required. The

traversed rows of the labelled tables are referenced by name

(COEFFICIENTS, FREEMODES, and SHAPES). Lower levels of the data hierar-

chy are reached by appending additional subscripts to the reference.

A complete example of an HL command statement is given by:

LUMP_MASS *COMPARE(MASTYP, 1) ,
MOVEDATA(SCRTCH, /SOLVER/STRUCTURE(LUMPEDMASS,ICOL,l,l)),
JACOBI(/SOLVER/STRUCTURE(STIFFNESS,ICOL,l,l)),
GO TO SORT_RESULTS, CONSIS_MASS

This command statement is taken from the HL program which performs

eigenproblem solution by the generalized Jacobi method. LUMP_MASS is

the statement label used as a transfer destination. In this case the

logical test is *COMPARE in which the variable MASTYP is compared to the

integer 1 for equality. A MASTYP of 1 implies that the mass formulation

for the structure is lumped. If the result of the test is true, two

subsystem actions are executed. The MOVEDATA action copies the contents

of the LUMPEDMASS table from the SOLVER data base to the array SCRTCH.

If the data reference does not include a data base specification (ex.

/SOLVER/) the data item is a variable in COMMON. Action JACOBI performs

the eigenproblem solution using the STIFFNESS table from the SOLVER data

- 48 -

base and the mass data previously placed into COMMON by MOVEDATA. After

the actions have been executed, control is transferred to the statement

with the label SORT_RESULTS. If the result of the logical test is

false, the actions are not executed and control is transferred to the

statement labelled CONSIS_MASS.

As implied in the preceeding example, the HL programs and the

FORTRAN actions communicate through a COMMON area. When a particular

subsystem action is invoked by the HL program, the corresponding FORTRAN

subroutine is identified by variables in COMMON. Also, when data from a

data base is needed for execution of a subsystem action, the data

manager moves that data into COMMON. These two methods of subsystem

communication require that COMMON be divided into two sections. The

first section is the static COMMON area. This portion of COMMON con­

tains variables required throughout execution of a subsystem (MASTYP and

SCRTCH in the previous example). The second portion of COMMON contains

the dynamic pool which is partitioned into equally-sized pages. The

data manager places the data which is referenced by an action call into

the dynamic pool. When a data reference is resolved at run-time, the

data manager moves the data from the application data bases to the

dynamic pool. Paging of existing data in the pool to make room for new

data is handled automatically.

Each HL program contains an action list which establishes the

relationship between action names referenced in the HL and the cor­

responding FORTRAN subroutines. A portion of the action list related to

the previous example takes the form:

- 49 -

ACTIONS TYPE 33

JACOBI 7

END OF ACTIONS

The subsystem number 33 and the action number 7 are placed in static

COMMON to identify the FORTRAN subsystem and the subprogram which cor­

respond to the JACOBI action. Frequently used actions, such as

MOVEDATA, do not appear in the action list for the application

subsystem. POLO supports these actions as an integral part of the HL in

the same manner as FORTRAN provides the intrinsic functions: SIN, COS,

etc.

The completed HL programs are compiled by the HL compiler and the

object code is stored in the HL object library (Figure 3.1). This

library is also a part of the system data base. The HL compiler refers

to the DDL library to generate appropriate instructions as the data

references are resolved. The HL compiler checks each HL program for

command syntax errors and data references which are inconsistent with

the DDL. The subsystem developer receives appropriate messages when the

compiler detects these coding errors. When subsystem development is

complete, the object form of the HL programs act as instructions for the

POLO "virtual processor." The next section contains a brief description

of the virtual processor.

- 50 -

3.5 FORIRAN Processing Routines

As mentioned above, POLO is not capable of solving engineering

problems by itself. The set of actions available to developers is

limited to those procedures needed for data management, POL translation,

logical control, and other utility operations (ex: MOVEDATA).

Numerical operations such as matrix addition, multiplication, and trian­

gulation are not supported by the HL. Unacceptable overhead is incurred

if operations of this type (requiring loop indexing and array

subscripting) are coded in the HL. Instead, FORTRAN subroutines are

written to perform the numerical computations. The generalized Jacobi

method referenced in the previous section is a good example. Once the

data manager places the necessary data in COMMON as a result of an HL

reference, all numerical computations are efficiently performed in one

FORTRAN subroutine.

The FORTRAN subprograms are compiled with the FORTRAN compiler for

the host computer system. The resulting object code is combined with

the object code library of POLO (also compiled FORTRAN) and loaded into

a single executable program (Figure 3.1). This real machine program and

the system data base comprise the final application program.

A distinction is made here between the instructions generated by

the FORTRAN compiler and those generated by the POLO compilers (DDL and

HL). The FORTRAN compiler generates "real-machine" instructions which

are executed by the hardware processor. The POLO compilers generate

"virtual-machine" instructions which are interpreted by the POLO virtual

processor. A virtual instruction consists of an action to be performed

and a description of the data necessary to perform that action.

Execution of a virtual-machine instruction by the POLO virtual processor

- 51 -

typically results in 5-10 FORTRAN subroutine calls to the data base and

memory manager, followed by a reference to the action subprogram.

To demonstrate the link between HL programs and the FORTRAN sub-

routines, the JACOBI action is examined in more detail. Action JACOBI

is defined in the HL as action number 7 of subsystem 33. When the POLO

virtual processor interprets an instruction to execute JACOBI, it places

the integer 7 in a COMMON variable. The data reference associated with

the JACOBI action is resolved and the corresponding data is moved to the

dynamic pool if it is not already there. The location of the data and

the dimensions of the table from which it is obtained are also stored in

the COMMON area. A call to SUBROUTINE TGTY33 (subsystem 33) is issued

by POLO and control is thus transfered to the application subsystem.

The first few lines of the subsystem take the form:

SUBROUTINE TGTY33
COMMON /TGUSER/ RPOOL(l),
COMMON /PARAM/ !ACTION, LOCl, LOC2, ..•

GO TO(100, 200, 300, ...), !ACTON

700 CALL JACOBI(RPOOL(LOCl), SCRTCH, ...)
RETURN

END

The action number to execute is identified by !ACTON. Subroutine JACOBI

is passed the stiffness matrix (which starts at location LOCl in the

dynamic pool) and the lumped mass vector (stored in COMMON variable

SCRTCH by a prior call to action MOVEDATA). Array dimensions are also

passed to subroutine JACOBI so the data located in vector RPOOL can be

- 52 -

treated in its appropriate form (vector, matrix, or three-dimensional

array). The first few lines of subroutine JACOBI are:

SUBROUTINE JACOBI(STIFF, XMASS, NRSTIF, NCSTIF)
DIMENSION STIFF(NRSTIF, 1), XMASS(1)

3.6 Run-Time Configuration

The integration of POLO and the application subsystems into a

single executable program is illustrated in Figure 3.3. The POLO vir-

tual processor is the highest level driver and takes its instructions

from the compiled HL programs in the system data base. The virtual

processor drives the POL scanner, the data and memory managers, and the

application subsystems. After program initialization, the virtual

processor is instructed to read POL input from the current input device

(the user's terminal during interactive execution or a sequential disk

file during batch execution). The user's input is translated to fixed

format by the POL scanner and is placed at the top of the COMMON area.

Input is read one line at a time and acted upon as required.

The virtual processor calls the application subsystem after the

data manager has resolved the data reference and the memory manager has

placed the necessary data in COMMON. An application subsystem is com-

posed of an executive routine (ex. SUBROUTINE TGTY33) and a number of

lower level subprograms (ex. SUBROUTINE JACOBI). The application sub-

system has access to only the data in the COMMON area. The memory

manager controls all data transfers between the application data bases

and COMMON.

- 53 -

U>
4'-

*llUN FINlT£
STiUCTUkE BlliDGE
N~~ER OF ElEMENTS 50 NODES 35
t.'LEMENTS ALl TYPE Pl.ANETRUSS.

PROPERTIES £ 10000. AX 0.45
COORJ}lNATES

1 0.0 0.0

SYSTEM
DATA BASE

POL INPUT VIRTUAL PROCESSOR

DATA MANAGER

MEMORY MANAGER

APPLICATION DATA BASES
FORTRAN

COMMON
Figure 3,3. POLO Run-Time Configuration

APPLICATION SUBSYSTEMS
• ••

EXECUTIVE

"(• STATIC
COMMON

SUBPROGRAMS

DYNAMIC POOL
(FIXED PAGE SIZE)

"' "'

1¥
w
> I I
1¥
0

POLO

Figure 4.1. FINITE System Organization

!!!
0
m z

presented later in the chapter. Finally, the technique for interfacing

the FINITE subsystems is presented.

4.2.1 Organization of FINITE Subsystems

Figure 4.2 illustrates the functional dependencies among the FINITE

subsystems. Subsystem DRIVER is the highest level subsystem in FINITE

and is the entry point for the command: *RUN FINITE. This subsystem

ensures that the three databases exist and processes the highest level

user input commands. Through an internal POLO "RUN" command in its HL,

subsystem DRIVER invokes one of three subsystems: LIBRARY, STORE, or

COMPUTE to continue processing user input.

Subsystem LIBRARY is used by system developers to maintain tables

that define all finite elements and nonlinear material models. Element

tables contain information on the characteristics of each element, such

as the number of nodes, the types of DOF at each node, user-definable

properties, and possible mass and nonlinear formulations. Material

model tables describe the characteristics of the material, such as

initial material properties, the type of stress-strain or load·

deformation functions that may be used, and material hardening rules.

Subsystem LIBRARY is essentially an editor which maintains the LIBRARY

database. The function of subsystem LIBRARY is transparent to the user

who is not involved with system development.

Subsystem STORE translates user input that defines the characteris·

tics of a structural model for subsequent analysis. Structural

geometry, loads, constraints, element selections, and solution proce­

dures are all translated by STORE. This information is checked for

consistency and placed into the STRUCTURE database.

- 60

and 1.4 (repeated in Figures 4.3 and 4.4) illustrate the structural

model and present input to define the model for analysis. ~ith the

application of structure loads, a static analysis could be performed to

compute nodal displacements and element strains and stresses.

Additional structure characteristics and analysis parameters are needed

for dynamic analysis. The following is a discussion of specific input

commands for frequency and mode shape computation. Full details of the

input commands for dynamic analysis are given in Appendix A.

The first addition to the model definition is the specification of

the mass of each element and structure in the hierarchy. The mass of a

structure is considered in two parts: primary and secondary. Primary

mass is the mass of the load-carrying components (elements) of the

structure. Primary mass is defined in the POL through definition of a

mass formulation indicator: LUMPED or CONSISTENT, and a new element

property: MASS_DENSITY. The element definition command for the simple

elements in structure SPAN becomes;

ELEMENTS ALL TYPE ROD LUMPED E 3.0E04 AX 0.0347,
MASS_DENSITY 7.34E-04

A similar command is used for elements 3-5 in structure BRIDGE.

Definition of primary mass is necessary only for finite elements. The

primary mass for a structure is assembled from that of the elements

which form the structure. Assembly of a structure's primary mass fol-

lows a procedure identical to that used in stiffness assembly.

Structures which are composed of condensed lower level substructures

obtain their mass definition directly through the condensation process.

The FINITE system accepts up to thirty DOF at each node in the

structure. These are the displacement DOF (u v and w) plus their first

- 65 -

and second spatial derivatives (u,x v,x w,x u,xx ...). Depending upon

the type of elements incident on a given structure node, it is possible

for mass to be assigned to any or all of these DOF.

Secondary mass is the mass of non-load-carrying objects supported

by the structure. Examples include water in a tank and mechanical

equipment in a building. Secondary mass is always treated as a lumped

mass addition to the primary mass of the structure. There are two types

of secondary mass: nodal mass and element mass. Nodal mass is con-

centrated at a structure node. Element mass is concentrated or

distributed on the surface of an element. Element mass is resolved into

equivalent nodal mass by use of the same shape functions that resolve

element loads into equivalent nodal loads. As with primary mass, secon-

dary mass may be assigned to any of the applicable nodal DOF.

Application of secondary mass to structure SPAN could take the form:

MASS
NODAL

2 4 6 u v 1.23
ELEMENT MASS FOR ELEMENT TYPE PLANEFRAME

1-3 LINEAR U V W FRACTIONAL LA 0.0 LB 1.0 WA 0.0 WB 0.5

By this command sequence, nodes 2, 4, and 6 have mass of 1.23 units

applied to the U and V (translational) DOF. Also, elements 1-3 have a

linearly varying mass distributed along their length. The mass inten-

sity is 0.0 at the beginning of the elements and increases to 0.5 at the

end. The secondary mass command sequence is grouped with the definition

of COORDINATES, INCIDENCES, CONSTRAINTS, and LOADS.

Before frequency analysis of a structure can be performed, an

analysis method must be selected. In general, no single method is ap-

propriate for all structures in a complex hierarchy. Since eigenproblem

- 68 -

solution is normally a computationally expensive procedure, it is wise

to select an analysis method that is well suited to the structure being

analyzed. An analysis procedure that is effective for a small model

with a fully populated stiffness matrix will not generally be efficient

in the analysis of a large model with a tightly banded stiffness. Since

this broad variety of.structures may exist within one structural hierar-

chy, the analyst must have the capability to define a unique analysis

procedure for each structure for which frequency analysis will be

performed. Such a capability has been implemented in FINITE.

Specification of the analysis method for structure SPAN may take the

form:

FREQUENCY ANALYSIS TYPE JACOBI

where the generalized Jacobi method (4] is selected and default values

for convergence tolerance and maximum number of sweeps are implied. As

a second example, structure BRIDGE may require the following analysis

definition:

FREQUENCY ANALYSIS
PROPERTIES

TYPE SUBSPACE
NUMBER OF PAIRS 4
SUBSPACE SIZE 8

ITERATIONS 10,
STURM CHECK

In this command sequence, the subspace iteration method [58] is selected

and the default values are used for all properties not specified. These

sample commands are used to define the frequency analysis method and the

associated parameters that control the solution. The frequency analysis

is invoked by one of two procedures. First, the analyst may enter an

explicit "COMPUTE FREQUENCIES" or "COMPUTE MODE SHAPES" request.

Second, a frequency analysis can be invoked automatically within FINITE

to satisfy a computational request involving a substructured model. For

example, condensation of structure SPAN to produce structure SPAN_CON

- 69 -

COEF FICIENTS

~
NODE N

N ROW

NCOL

STIF FNESS

MASS

MASS LUMPED

FIXEDM

FREEM

ODES

ODES

r--

r--
.....__

--.....__

'---
~ --..__

--

/
NCY FREOUE

SH APE 1

L

,....

-

~ -r-
1--

•
• •

NNODE

KLOW •••

NUMBLOCKS • 0 0

ROWS I/ 000

~~
NCOL

.,.
1--

• NROW • •
1--

....._ NUMBLOCKS
NN ODE

/ MLOW 0. 0

./ t--
- 0 NUMBLOCKS •• 0

•
• • ROWS y • • 0

• • 1--
1--_ NROW NCOL
....._ NNODE

~ 1--.,.
1--

•
0

NROW
•

1--

...._ NUMBLOCKS

G =50 G =50

••• FREQUENCY • ••

• • • SHAPE ! •••
I

-:::~--
r-- - -

• •
• !-- • • • • r-- • -

•
1--_NROW r-- _NROW

...._ NNODE '--- NNODE

Figure 4.5. Sample Data Structure

- 72 -

4.4.1 Hyoerroatrix Data Structures

Hypermatrices provide the fundamental data structure used in FINITE

to support equation solving (triangulation and load-pass) and

eigensolution. A matrix which is partitioned by rows and columns into

submatrices is called a hypermatrix. Figure 4.6 illustrates hypermatrix

partitioning and the corresponding data structure for storing and

retrieving the individual submatrices. The order of each submatrix is

determined by the number of rows assigned to each hyperrow and the num­

ber of columns assigned to each hypercolumn. These assigned values are

selected to produce a balance among the overhead in accessing the sub­

matrices, I/0 performance, and memory requirements. The potential for

zero entries in a submatrix from a banded hypermatrix also influences

the size of the partitions. In general, the order of each submatrix may

vary from hyperrow to hyperrow and from hypercolumn to hypercolumn.

Currently, the maximum sizes of an individual submatrix in FINITE are 60

rows and 60 columns.

The data structure adopted to represent a hypermatrix is shown in

Figure 4.6b. The first-level pointer vector contains row pointers, each

of which locates data in the corresponding hyperrow. The second-level

vector of pointers, the column pointers, identifies the location of each

submatrix on the hyperrow. Two sizing vectors are used to store the

number of rows in each hyperrow and the number of columns in each

hypercolumn.

Banded, symmetric hypermatrices (such as the structure stiffness

and mass) are partitioned as illustrated in Figure 4.7a. Only sub­

matrices in the lower triangle of the matrix are stored. Zero

- 73 -

A. PARTITIONING OF A HYPERMATRIX

-
HYPERROWS

(VARIABLE SIZE) /

\

-

HYPER COLUMNS
(VARIABLE SIZE)

~ -

~ v
(IJ
i"-'

-

-"' r XX XXX

X~~ XX

...... v

/
)

INDIVIDUAL
SUBMATRIX.

SCALAR ENTRY

B. HYPERMATRIX DATA STRUCTURE

BASE ROW COLUMN
POINTER POINTERS POINTERS SUBMATRICES

XXX
xx_x
XXX
XXX

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx

ROW COLUMN
SIZES SIZES

Figure 4.6. Representation of a Hypermatrix

• 74 •

K

A. PARTITIONED STIFFNESS MATRIX

ZERO
BLOCK

NON-ZERO
BLOCK

B. ASSOCIATED DATA STRUCTURE

XXX
XXX
XXX

XXX
XXX
XXX

KLOW

Figure 4.7. Banded, Symmetric Hypermatrices

- 75 •

submatrices outside the band of the matrix are not created. Zero sub­

matrices within the band are created since the submatrices become non-

zero during computations. When a symmetric matrix is partitioned,

hyperrow and hypercolumn sizes are selected so that the diagonal sub­

matrices are square, thus yielding a symmetric partition.

The data structure for banded, symmetric hypermatrices is similar

to that for general hypermatrices. As shown in Figure 4.7b, a two-level

pointer hierarchy is used in which the first-level pointer vector lo­

cates data on the hyperrow. For banded, symmetric hypermatrices, the

column pointers locate data from the first non-zero submatrix on the

hyperrow through the diagonal submatrix. Since the symmetric partition

produces row-sizes and column-sizes vectors that are identical, a single

sizing vector is sufficient. The banding information is contained in a

vector called KLOW. KLOW contains one integer entry for each hyperrow

in the hypermatrix. This integer defines the hypercolumn subscript for

the first non-zero submatrix on the hyperrow. Using Figure 4.7 as an

example, the first non-zero submatrix on hyperrow 4 occurs in hyper­

column 3. Thus the fourth entry in vector KLOW is 3.

The data structure described above is just one of several ways to

represent a hypermatrix in a hierarchical form. One alternative is

presented in [19] in which the submatrix pointers are stored in a

pointer matrix rather than in a two-level pointer hierarchy. This tech­

nique allows the pointer matrix itself to partitioned into a hypermatrix

creating a multilevel hypermatrix data structure. While an exhaustive

study has not been made to identify the optimum technique (if one does

indeed exist), the foregoing data structure has proven to be effective

in FINITE. Even though hypermatrix data structures minimize data

- 76 -

management overhead, the total number of data words transfered between

memory and secondary storage may actually increase. This is because the

blocking procedures require the addition of extraneous zero terms to the

database. Remedies to this problem are discussed in the following

section.

4.4.2 Hypermatrix Solution Algorithms

An advantage of hypermatrix data structures is that submatrices of

a hypermatrix can be acc.essed as efficiently column-wise as row-wise.

In contrast to column (or skyline) storage of sparse matrices, a hyper­

matrix can be used effectively as a pre-multiplier, as a post­

multiplier, and as its own transpose [19]. In a virtual memory

environment, no paging penalties are incurred when performing matrix

multiplication, triangulation, and load-pass operations so long as no

more than one submatrix occupies a physical record (page) on secondary

storage.

Computations on hypermatrices typically require no more numerical

operations than the same computations on conventionally stored matrices.

Economical solutions can be achieved when proper account is made of

operations on zero entries in the non-zero submatrices and when data

accessing procedures are tailored to the specific application. As an

example, consider the triple-matrix product performed in subspace

iteration. The transformation of the mass matrix from geometric coor-

dinates to subspace coordinates is

(4.1)

- 77 -

where [M) is the structure mass matrix, [X] is the set of iteration

vectors, and [M] is the transformed mass. The conventional approach to

this transformation is to compute the product

[T] - [M] [X] (4.2)

followed by the product

[M] - [X] T [T] • (4.3)

With this approach, the intermediate product [T] must be computed and

held in memory or on secondary storage until all computations are

complete.

An alternative approach to implementation of the triple-matrix

product does not require the temporary matrix [T]. Assume that [M] is

partitioned as a hypermatrix with "n" hyperrows and "n" hypercolumns and

that [X] is partitioned into "n" hyperrows and "q" hypercolumns (q<<n

for most applications). The following algorithm requires only a tem-

porary submatrix [S] to perform the triple product.

DO i- 1, n
DO k- 1, q

[S] - [OJ
DOj-l,n

[S] - [S] + [Mij] [Xjk]

END DO
DO j - 1, n

[Mjkl - [Mjkl
END DO

END DO
END DO

In the above, the subscripts identify the hyperrow and hypercolumn from

which the associated submatrix is taken. This algorithm builds the

- 78 -

product [M] incrementally where the temporary product in [S] is used as

soon as it is computed.

The algorithm is modified to recognize leading zeros in the mass

submatrices as follows. When the submatrix product [Mij l [Xjkl is com-

puted, [Mij] is examined to locate the first non-zero entry on each row.

The corresponding column subscript is then used as a lower bound for the

inner loop of multiplies to avoid operations on zero entries. Since the

matrix of iteration vectors, [X], is fully populated, no tests are per-

- - T formed on the entries in [Xij] prior to computation of [Xij] [S].

The above algorithm is for the case when [M] is fully populated and

all submatrices are stored (lower and upper triangle). When [M] is

stored as a banded, symmetric hypermatrix, subscript adjustments are

necessary to properly access the [Mij] submatrices.

There is no significant difference in operation counts between this

algorithm and the procedure of equations (4.2) and (4.3). Also, the

number of submatrices accessed is the same for each algorithm. The

advantage of the new algorithm is that memory and secondary storage

requirements are minimized by eliminating the need for the temporary

hypermatrix [T]. The above procedure provides another advantage when

implemented on computers with virtual memory. The use of hypermatrices

serves to minimize operating system paging. Since the submatrices are

of moderate size, all entries in the submatrix can normally be accessed

without the need for paging by the operating system. Conventional

matrix products require row-wise data access and thrashing may result

when the matrices are large.

- 79 -

4.5 Subsystem DXNAMICS

Several new subsystems were needed for the implementation of

dynamic analysis capabilities in FINITE. Likewise, most of the existing

subsystems required either minor or major modification to handle the new

data structures and computational procedures. For example, subsystem

OUTPUT was simply extended to support output of natural frequencies,

mode shapes, modal loads, and modal strains and stresses. In contrast,

subsystem ASSEMBLER required major revision to combine mass matrix as­

sembly with stiffness assembly and to include the use of normal DOF in

both matrices. As mentioned earlier, it is impractical to review all

the details of the implementation. Instead, the remainder of this chap­

ter presents a selection of the software developed for the study. Both

new subsystems (DYNAMICS and EIGEN) and modifications to existing sub·

systems (ASSEMBLER, TRIANGULATE, and LOADPASS) are discussed.

In dynamic analysis, requests for computation and output are passed

to subsystem DYNAMICS by subsystem COMPUTE (see Section 4.2.1 and Figure

4.2). Subsystem DYNAMICS controls the processors that provide the

dynamic analysis capabilities of FINITE. When a "dynamics" request is

received, the request vector is examined to determine which function is

requested and which structural hierarchy is involved. DYNAMICS then

invokes lower level subsystems to satisfy the request. Current

capabilities of subsystem DYNAMICS include frequency analysis, computa­

tion of modal loads, recovery of computed results for condensed

substructures, and output of the various computed results. These

capabilities are managed by four separate subsystems, as shown in Figure

4.2. They are FREQUENCY, MODAL_LOADS, RECOVERY, and OUTPUT. The fol­

lowing is a brief overview of the first three of these subsystems.

- 80 -

Subsystem OUTPUT required only simple extension to support the various

dynamics output requests, so it is not described here.

Frequency analysis entails the computation of natural frequencies

and mode shapes for a structure at any level of the structural

hierarchy. Frequency analysis is preceded by assembly of the stiffness

and mass matrices for the structural model. For a standard (non·

substructured) model, assembly is performed without interruption and the

frequency analysis (subsystem EIGEN) is then invoked. The logical flow

through the subsystem hierarchy in Figure 4.2 is the following. When a

request

trol is

Subsystem

assembly.

for frequency analysis is translated by subsystem DRIVER, con·

transfered from DRIVER to COMPUTE to DYNAMICS to FREQUENCY.

FREQUENCY invokes ASSEMBLER to perform the stiffness and mass

Since the model does not include substructures, subsystem

ASSEMBLER performs the assembly without invoking any other subsystems

(only element stiffness and mass routines are called). When ASSEMBLER

terminates, control is returned to FREQUENCY. FREQUENCY then invokes

subsystem EIGEN to perform the frequency analysis. When EIGEN ter­

minates, control is transfered back to FREQUENCY, which in turn returns

control to DYNAMICS and so on.

If the structural model contains condensed, lower level substruc·

tures, the condensation and assembly procedure requires ASSEMBLER to run

other subsystems. For fixed-interface reduction of a substructure,

subsystem ASSEMBLER interrupts its own execution and invokes subsystem

EIGEN to perform the fixed-fixed frequency analysis of the substructure.

When EIGEN terminates, control is returned back to ASSEMBLER. Subsystem

TRIANGULATE is then initiated to perform the reduction. After the stif·

fness and mass matrices for the current substructure have been reduced,

- 81 .

control is again returned to ASSEMBLER and the assembly process

continues. This process is performed recursively until all structures

in the hierarchy have been condensed and assembled. When the entire

structural hierarchy has been assembled, ASSEMBLER terminates and con­

trol is returned to FREQUENCY. At that point, subsystem EIGEN is again

invoked to solve the eigenproblem for the highest level structure.

Details of the frequency analysis and condensation procedures follow

later in this chapter.

Computation of modal loads requires simply a transformation of a

load vector (in geometric coordinates) to modal coordinates. The load

vector is obtained from the prior definition of a loading condition by

the analyst. The mode shapes computed in a frequency analysis of the

structure are used for the transformation from geometric to modal

coordinates. The modal loads processor permits the analyst to identify

those vibration modes that are most likely to participate in the

response of the structure under a given dynamic load. This information

is useful in performing transient analysis by mode superposition. Full

implementation of mode superposition capabilities is not included in

this study.

After frequencies and mode shapes have been computed for the

highest level structure in a substructured model, the mode shapes for

condensed lower level substructures may be recovered. The necessary

procedures are managed by subsystem RECOVERY. A request for computation

or output of mode shapes, modal strains, or modal stresses causes

RECOVERY to be invoked. The transformation matrix of static constraint

modes and substructure normal modes is used to transform the mode shapes

from the reduced set of generalized coordinates back to the geometric

- 82 -

coordinates of the uncondensed substructure (see Equation 2.7). This

process is repeated recursively until the lowest level of the hierarchy

is reached. At this point, the portion of the mode shape which cor-

responds to the condensed substructure DOF can be output to the analyst.

Recovery of modal strains and modal stresses is performed after

mode shape recovery. Modal strains are the strains computed for the

individual finite elements when a free-vibration mode shape is used as a

displacement

through the

vector. Modal

stress-strain

stresses are derived from modal strains

relations for the element. Computation of

modal strains is useful in evaluation of the modeling and analysis pro­

cedures, as is discussed in the next chapter.

4.6 Frequency Analysis

The efficiency and flexibility of the dynamics capabilities of

FINITE depend heavily upon the capabilities of the eigenproblem solver.

For this reason, frequency analysis is discussed in more detail than the

previous topics.

Computation of natural frequencies and mode shapes has been imple­

mented in FINITE in the form of two eigenproblem solvers: the

generalized Jacobi method and subspace iteration. Computations for both

eigensolvers are managed by subsystem EIGEN. EIGEN may be invoked to

solve the eigenproblem for structures at any level of the structural

hierarchy and with any specified boundary conditions. This includes

fixed-fixed frequency analysis for condensed substructures and free-

vibration analysis for constrained or unconstrained structures.

Subsystem EIGEN determines the nature of the analysis from the charac­

teristics of the structure and from instructions contained in the

- 83 -

request vector. The particular solution method which is used (JACOBI or

SUBSPACE) is selected by the analyst. Each of the two eigensolvers is

discussed below. Data structures and details of the algorithms are

described.

4.6.1 Generalized Jacobi Method

The computation of natural frequencies and mode shapes for discrete

structural models is achieved by solution of the generalized

eigenproblem:

2
[K][rp] - [w][M][rp] (4.4)

where [K] and [M] are symmetric, positive definite coefficient matrices,

[rp] is the matrix of eigenvectors, and [w2] is the diagonal matrix of

eigenvalues. The generalized Jacobi method [4] is one of two eigensol-

vers implemented in FINITE for solution of this problem. The

generalized Jacobi method serves two functions in FINITE. First, it is

used to compute all frequencies and mode shapes for small structural

models. Second, the method is used as a component of subspace

iteration. The generalized Jacobi method is popular because of its

simplicity and its ability to handle ill-conditioned or singular coeffi-

cient matrices.

In the generalized Jacobi method, [K] and [M] are iteratively

transformed using orthogonal rotation matrices to zero the off-diagonal

terms in each matrix. After sufficient iteration, the matrices are

driven to diagonal form and the eigensolution is complete, yielding all

eigenpairs for the problem. Convergence of the method is quadratic once

the off-diagonal elements are small. Thus a high degree of accuracy in

- 84 -

the solution can be achieved by continued computation at little addi-

tional cost. This characteristic has made the generalized Jacobi method

an efficient component of the subspace iteration method (discussed in

the next section).

Implementation of the generalized Jacobi method in FINITE required

a limitation on the basic formulation presented in [4]. The order of

the problem which can be solved is currently limited to 60 DOF. This

restriction assures that the stiffness and mass matrices will each oc-

cupy only one submatrix. This yields a memory-resident solution

procedure. Since the generalized Jacobi method loses efficiency when

the order of the problem is large, a corresponding hypermatrix formula-

tion which requires additional I/0 is of questionable value [7].

4.6.2 Conventional Subspace Iteration

The subspace iteration method [3] is used to compute the "p" lowest

eigenvalues and corresponding eigenvectors for the generalized

eigenproblem, Equation (4.4). In this case, [K] and [M] have order nxn,

['P l 2 has order nxq, and [w] has order qxq (q>p). The method belongs to

the simultaneous iteration class of eigenproblem solvers in which in·

verse iteration is performed with a set of orthogonal iteration vectors.

In subspace iteration, a special Ritz analysis is performed to enforce

orthogonality of the iteration vectors and to enhance convergence.

The first step of the method is to select a set of "q" iteration

vectors that reside in the nxq matrix [X]. When the method was

initially proposed, "q" was selected as the minimum of "2p" and "p+8."

Using •q• iteration vectors instead of just "p" vectors improves the

- 85 -

convergence rate for

Next, [K] is triangulated such that

[K] - (L] (L] T (4.5)

where (L] is the lower triangular Choleski factor of [K]. After trian-

gulation, the iteration cycle begins.

Compute the inertia-load vectors

[F] - [M] [X]. (4.6)

Find the pseudo-displacements corresponding to the inertia loads by

solving for [X] in

[L][L]T(X] • [F].

Transform the stiffness and mass to subspace coordinates by

(K] - [X]T[F] and

[i]- [X]T[M][X].

(4.7)

(4.8)

(4.9)

Using the generalized Jacobi method, solve the qxq eigenproblem for the

subspace

(KJ (1!t] - [-X] [i] [1!t] • (4.10)

Finally, compute the improved iteration vectors [X] as

[X] - [X] [1lt] • (4.11)

The result of equation (4.11) is used in equation (4.6) to start the

next iteration. Convergence is achieved when the first "p" eigenvalues

in [-\] do not change (by more than a tolerance) from one iteration to

the next.

Equations (4.6) and (4.7) form the simultaneous inverse iteration

steps, while equations (4.8) - (4.11) define the Ritz analysis.

8q -

Selection of the initial iteration vectors may be based on a number

of different procedures. The simplest approach is the following.

Entries in the first column of [X] are taken as the diagonal terms of

[M]. The remaining columns of [X] are unit vectors with 1.0 entries at

coordinates with the largest mii/kii ratios. This procedure attempts to

excite the modes with the lowest natural frequencies.

The conventional subspace iteration method was not developed in

conjunction with any particular data structure. During implementation

the numerical procedure must be modified to be compatible with the

chosen data structures. A modified subspace iteration procedure was

developed, based on the work of other researchers, to conform to hyper­

matrix data structures.

4.6.3 Hyperroatrix Subspace Iteration

In spite of its popularity, several problems have been identified

with the use of the conventional subspace iteration method [58]. The

most significant of these is the computational expense required to form

and solve the subspace eigenproblem for large subspace sizes, Equations

(4.8- 4.10). One procedure that has found favor with researchers is

the

than

evaluation of eigenpairs in groups with the subspace size, q, less

the number of eigenpairs, p, that are required [5, 35, 58]. The

adopted in this study is essentially that presented in [58], procedure

in which eigenvectors are removed from the set of iteration vectors as

they converge. To keep the subspace size constant, new iteration vee-

tors are introduced to replace the converged vectors. This causes the

- 87 -

domain of the subspace to be shifted to the higher values in the fre­

quency spectrum of the structural model. Therefore, the order of the

subspace

(p) that

vergence

(q) does not place an upper limit on the number of eigenpairs

may be computed. Origin shifts are also used to improve con­

rates for the higher eigenvalues. The use of hypermatrices in

this study has prompted modifications to Wilson's procedure. These

modifications are discussed individually, and then the complete hyper­

matrix formulation is presented.

4.6.3.1 Selection of Iteration Vectors

For the conventional subspace iteration method, initial iteration

vectors are selected by identifying the coordinates with the largest

mii/kii ratios. This approach is not appropriate when the stiffness and

mass are stored as hypermatrices. In order to store the ratios, a hy­

pervector data structure is required (see Figure 4.8). Sorting the

ratios then requires a multiple-merge sort in which each of the in­

dividual subvectors is sorted, then the group of sorted vectors is

merged into a single sorted vector. During the entire process, the list

of ratios must remain in hypervector form so that it can be transferred

to secondary storage as other memory requirements develop.

As an alternative to implementation of the sorting procedure, a new

algorithm was developed to select initial iteration vectors. Iteration

vectors are chosen as discrete representations of a set of orthogonal

cosine functions (see Figure 4.9). This new algorithm guarantees that

all unconstrained coordinates will be excited by the inertia loads and

that each vector will be orthogonal to the others in the set. This

- 88 -

= n
0

Base
Pointer

Row
Pointers Subvectors

X
X
X
X

rn
rn

Figure 4.8. Hypervector Data Structure

= Row Number
j = Column Number

0 0 0

j = 1 j = 2 J = 3 j = 4
Figure 4.9. Cosine Function Iteration Vectors

- 89 -

procedure is used both for selecting the initial iteration vectors and

for generating new iteration vectors to replace converged eigenvectors.

Another procedure for selection of iteration vectors that is com-

patible with hypermatrix data structures is the use of randomly

generated vectors [9]. Although they are simple to generate, the random

vectors must be explicitly orghogonalized prior to use in the first

iteration.

4.6.3.2 Solution of the Subspace Eigenproblem

The generalized Jacobi method is typically used to solve the

eigenproblem for the subspace, Equation (4.10). In conventional sub-

space iteration, the computational effort required to form and solve the

subspace eigenproblem becomes prohibitive as the subspace size

increases. Transformation of [K] and [M] to [K] and [M] requires

2 (nq + 2nq) operations and solution of the subspace eigenproblem re-

quires roughly 3 2 (3q + 6q) operations. Therefore, it is desirable to

limit q to maintain efficiency of the overall solution. Yet if q is

small, 2 2 the convergence rate (~i;~q+l) is adversely affected. Selection

of q must be based on a balance between a "large" subspace size to ob-

tain good convergence rates and a "small" subspace size to maintain

efficiency in the transformations and Jacobi iterations.

Wilson [58] suggested that the optimum subspace size is a function

of the bandwidth of the model. This finding provides the basis for a

rational approach to the vector replacement procedure reviewed above.

To maintain consistency with the generalized Jacobi method and the use

- 90 -

of hypermatrices, the number of iteration vectors (and thus the order of

the subspace) is limited to the number of columns that can be placed in

one hypercolumn of a hypermatrix. When a set of iteration vectors in

[X] is generated, a hypermatrix data structure is used. The hyperrows

are sized according to the sizing vector used for [K] and [M] (Figure

4.4), and the number of hypercolumns is limited to just one. When the

stiffness and mass transformations are performed using Equations (4.8)

and (4.9), the resulting subspace stiffness [K] and mass [M] each occupy

only one submatrix. Thus, the generalized Jacobi procedure can be used

as a memory-resident eigensolver for Equation (4.10). Again, the cur­

rent limit on the order of the subspace eigenproblem is 60x60.

When the stiffness and mass matrices are transformed to subspace

coordinates, some terms in [K] and [M] may become quite large.

Additional computations using these terms (such as computing rotation

matrix coefficients) may produce exponential overflow. Sources of this

problem lie in the units of measure selected by the analyst and in the

magnitude of the inertia-load vectors, [F], relative to the structure

stiffness [K]. A simple remedy developed in this study involves scaling

the subspace stiffness and mass prior to eigensolution. The scale fac­

tor is computed as the average of the maximum and minimum exponents of

the diagonal terms in [K] and [M]. After eigensolution the scale factor

is removed from the eigenvectors [w]. The scaling procedure does not

affect the eigenvalues [A]. Use of this procedure has proven successful

in controling exponent growth of the terms in the transformed stiffness

and mass.

- 91 -

4,6.3.3 Orthogonalization of Iteration Vectors

When converged eigenvectors are removed from the set of iteration

vectors and replacement vectors are inserted, two orthogonalization

procedures must be performed. First, the replacement vectors must be

mass-orthogonalized to the other iteration vectors in [X]. This opera-

tion is performed only at the end of iterations in which replacement

vectors are added to [X] due to removal of converged eigenvectors. The

purpose of this operation is to force each iteration vector to converge

to a different eigenvector. If no convergence occurs during a certain

iteration, this orthogonalization step is skipped.

The second orthogonalization procedure guarantees that converged

eigenvectors do not reappear in the iteration vectors. Once an eigen-

vector has been removed from the subspace, all iteration vectors in [X]

must be mass-orthogonalized to that eigenvector, and to all other con-

verged eigenvectors. This step must be performed at the start of every

iteration following convergence of the first eigenvector.

The Gram-Schmidt procedure is used most often to perform the above

orthogonalizations [9, 58]. First, consider orthogonalization of re-

placement vectors to other iteration vectors in [X]. Assume that two or

more replacement vectors have just been added to (X] . The set of vee-

tors can be partitioned to separate "replacement" and "other" vectors:

(4.12)

Mass-orthogonalization of [X] to (X] is achieved by: r o

[X] - [X][X]T[M][X]. r o o r (4.13)

The new set of iteration vectors becomes:

- 92 -

(4 .14)

Notice that the vectors in [Xr] are not mass-orthogonalized to each

other as they are added to the subspace. The additional expense of this

activity is avoided by selecting replacement vectors which are known to

be mutually orthogonal

(4.15)

After orthogonalization with respect to [X
0

] by Equation (4.13), the

modified replacement vectors [Xr] will converge to the highest eigenvec-

tors within the domain of the subspace:

(4.16)

where {X) is the last vector in [X] , s - q+c, and "c" is the number of
q r

converged eigenvectors that have been removed from the subspace so far.

Since the convergence rates for these iteration vectors are relatively

slow (w~/w~+l for {Xq)), little change in the vectors will occur during

the next iteration. At that time, they too will become mass-orthogonal

through solution of Equations (4.8) - (4.11).

Mass-orthogonalization of the full set of iteration vectors [X] to

the "c" converged eigenvectors in [cp] follows the same procedure:

(4.17)

The new iteration vectors satisfy the required condition for

orthogonality:

(4 .18)

- 93 -

However, in solving Equation (4.17), mass-orthogonality of the vectors

A

in [X] to each other is violated. To evaluate the significance of this

effect, consider the following. Define [a] as the mass-weighted projec-

tion of [X] onto [~] prior to orthogonalization:

T
[a]-[~] [M][X]. (4.19)

After orthogonalization by Equation (4.17), the new iteration vectors

A

[X] satisfy Equation (4.18), however, they have been altered such that

(4.20)

If the vector projections in [a] are of the order . ' the mass-weighted

A 2 projections of the vectors in [X] on each other are on the order <

Since the operation of Equation (4.17) is performed after every itera-

tion, the projection values, . ' can be expected to be small. Thus, 2 •
will be smaller yet, and Equation (4.20) can be approximated by

(4.21)

A

The vectors in [X] are used as [X] in the next iteration without the

need for each vector to be individually mass-orthogonalized to the

others. While numerical values for the terms in [a] for various example

problems have not been examined, the above orthogonalization procedure

has not led to any stability or convergence difficulties.

- 94 -

4.6.3.4 Subspace Iteration with Hypermatrices

A summary of the subspace iteration method implemented in this

study is presented in the following pseudo-code. The individual proce-

dures are discussed in the following section.

CALL INITIALIZE
IF(SHIFT .NE. 0 -) CALL SHIFT_!<
CALL TRIANGULATE
GO TO $TRANS
LOOP

IF (CONVERGENCE_ COUNT . GT. 0) CALL ORTHOG _PHI
CALL INERTIA_LOADS
CALL LOAD_PASS

$TRANS CALL TRANSFORM
CALL JACOBI
CALL NEW_X
CALL TEST~CONVERGENCE
IF(CONVERGE) THEN

CALL MOVE_PHI
CALL REPLACE_X
CALL UPDATE_ORTHOG

END IF
IF(ALL_CONVERGED) EXIT
IF(ITERATION LIMIT EXCEEDED) EXIT
CALL NEW_SHIFT
IF(TIME_TO_SHIFT) THEN

CALL SHIFT_K
CALL TRIANGULATE

END IF
END LOOP

4.6.3.5 Description of Procedures

Procedure INITIALIZE computes the subspace size, evaluates the

discrete cosine functions used as initial iteration vectors, and

initializes iteration variables. If the analyst has indicated that the

structural model contains rigid body modes, variable SHIFT is set to a

small negative value.

Procedure SHIFT_!< applies the shift to the stiffness matrix which

is stored in hypermatrix format. The shifted stiffness is

[K']- [K]- SHIFT* [M]. (4.22)

- 95 -

Procedure TRIANGULATE performs Choleski decomposition on [K] if

SHIFT equals zero or on [K'] if SHIFT is non-zero (see Equation (4.5)).

During triangulation, the Sturm sequence check is performed. The number

of negative terms that appear on the diagonal of [L] during decomposi­

tion identifies the number of eigenvalues below SHIFT. If the STURM

CHECK property is specified by the analyst, this number is output during

the solution of the eigenproblem.

Procedure ORGHOG_PHI performs Gram-Schmidt orthogonalization of the

iteration vectors in [X] (see Equation (4.17)). The product [~][~]T[M]

is computed by procedure UPDATE_ORTHOG prior to executing this proce­

dure.

Procedure INERTIA_LOADS computes the inertia load vectors (see

Equation (4.6)).

Procedure LOAD_PASS computes [X] by performing a forward and a

backward load-pass on the inertia loads (Equation (4.7)).

Procedure TRANSFORM computes the projected operators for the

subspace. In the first iteration, [K] is computed from

[KJ [X] T [K] [X] . (4.23)

In all other iterations, Equation (4.8) is used. [M] is derived from

Equation (4.9) in all iterations.

Procedure JACOBI solves the eigenproblem for the subspace, Equation

(4.10). After solution of the eigenproblem, the eigenvalues [A] and the

corresponding eigenvectors (~] are sorted in ascending order so that

convergence of the vectors in [X] can be evaluated properly. In

- 96 -

Wilson's implementation [58], the shift is removed prior to solving the

subspace equations:

([K] + SHIFT * [M]) [>P'] - [A] [M] [>P']. (4.24)

Using this equation, the eigenvalues in [A] converge directly to the

system 2 eigenvalues [~]. If Equation (4.10) is solved, the eigenvalues

in [A] differ from those of [w2] by SHIFT.

Procedure NEW_X computes the improved iteration vectors [X],

Equation (4.11).

Procedure TEST_CONVERGENCE compares the values in [A] with those

from the previous iteration. If the difference in Ai from one iteration

to the next is within the convergence tolerance (10" 6 is typically

used), that eigenvalue has converged. The sort in procedure JACOBI

forces Al to converge before A2 , and so on. Therefore, convergence

testing terminates with the first value that fails the test. If any

values are found to converge, variable CONVERGE is set true, and the

convergence counter is incremented. When the required number of eigen-

values has converged, variable ALL_CONVERGED is set true.

Procedure MOVE_PHI moves the converged eigenvectors from [X] into

[~]. The converged eigenvalues are moved from [A] to [w2].

Procedure REPLACE X adds new iteration vectors to [X] to replace

the converged eigenvectors. As the replacement vectors are generated,

they are scaled by the largest eigenvalue estimate remaining in [A] to

control overflow problems. The replacement vectors are then mass-

orthogonalized to the other iteration vectors by Equation (4.13).

- 97 -

However, it is not necessary to perform both the forward and backward

load-pass operations. Only a special back-pass is required as described

in the following.

The procedure used in FINITE for static condensation involves

"partial decomposition" [57] of the stiffness matrix. Consider the

stiffness matrix for a substructure which is to be condensed.

Partitioning the matrix to separate master and slave DOF yields

[K] (4.25)

where the superscripts on the submatrices denote master (m) and slave

(s) DOF. Choleski decomposition is applied to completely eliminate the

slave DOF in [Kss]. Similarly, the master-slave coupling terms in [Kms]

are reduced following the standard procedures for off-diagonal terms. A

partial decomposition is then performed on the [~] submatrix of master

DOF coefficients to eliminate the coupling effect of the slave DOF in

submatrix [Kms]. The modified submatrix [Kmm] becomes the desired con­

densed stiffness matrix for the substructure. In partitioned form, the

partially decomposed stiffness matrix becomes

(4.26)

where [KG] is the statically condensed (or Guyan reduced) stiffness,

[Lss] is the lower triangular Choleski factor of the [Kss], and [Y] is

the matrix of "partial static constraint modes." As a consequence of

- 100 -

the condensation process, the submatrix [Y] contains the result of a

standard forward substitution:

(4.27)

To
c complete the static constraint modes [~],only a backward substitu-

tion is necessary:

(4.28)

Implementation of this backward substitution function required a

minor addition to subsystem TRIANGULATE. TRIANGUlATE is invoked by

subsystem ASSEMBLER when stiffness and mass matrix assembly requires

condensation of lower level substructures. After the condensed stiff-

ness is computed as described above, subsystem LOADPASS is initiated by

TRIANGUlATE to perform the backward substitution needed to complete the

static constraint modes. The matrix [~c] is then stored in the SOLVER

database and mass matrix condensation begins.

4.7.2 Guyan Reduced Mass

The second step in the condensation process is the computation of

the Guyan reduced mass. This procedure is implemented in subsystem

TRIANGUlATE directly as defined by Equation (2.15) for a consistent mass

formulation and Equation (2.16) for lumped mass models. Repeating those

equations for reference:

[MG] [~] + [~c]T[Mss][~c] + [~c]T[Msm] + [~s][~c]

[MG] _ [Mmm] + [~c]T[Mss][~c]

(2.15)

(2.16)

The algorithm for hypermatrix triple products described earlier in

this chapter at first appears to have application in computing [MG].

- 101 -

H · i th 1' bl k [. .mn], it is more owever, 1n comput ng e mass coup 1ng oc , M

economical (fewer numerical operations are required) to use the conven-

tional procedure for computing triple products. The matrix product

c T ss • G . .mn
[~] [M] 1S used in computation of both [M] and [M]. Therefore, it

is more efficient to compute the product once and hold it as a temporary

matrix, [T] . Then (T] is used in Equation (2.15) or (2.16) to compute

[MG] and again later to compute [~].

One additional facet of this step needs discussion. For consistent

mass formulations, the off-diagonal . sm ms submatnces, [M] and [M] are

included in the computation of [MG]. Since the mass matrix is

symmetric:

(4.29)

d 1 h . d [. .ms][Mc] an on y t e matr1x pro uct M y must be computed. The other

product is obtained by simple transposition.

When [MG] is finally computed, it too is stored in the SOLVER

database.

4.7.3 Fixed-Fixed Frequency Analysis

The normal modes used in the fixed-interface method are defined by

the eigenvalue problem:

- (4.30)

Solution of this problem for the selected frequencies and mode shapes is

performed by subsystem EIGEN as described in Section 4.6. Constraint of

the master DOF implied by Equation (4.30) is provided through equation

- 102 -

partitioning. Since the slave DOF are blocked in the top rows and

columns of the stiffness and mass matrices, the master DOF are effec­

tively constrained during frequency analysis by ignoring entries in [K]

and [M] below the last slave DOF. After solution, both the matrix of

normal modes, [~n], and the associated frequencies, (w2], are saved in

the SOLVER database. The normal modes are used in computation of the

mass coupling block and the frequencies represent the normal stiffness

coefficients in the reduced stiffness matrix.

While the fixed-fixed frequency analysis is logically the third

step in the reduction procedure, implementation followed a different

scheme. This step is actually performed before the other three steps.

In subsystem ASSEMBLER, the need for fixed-fixed normal modes is deter­

mined prior to invoking subsystem TRIANGULATE. If normal modes are used

in condensation, subsystem EIGEN is called first. Upon return from

EIGEN, ASSEMBLER initiates subsystem TRIANGULATE to do the condensation.

Once TRIANGULATE is initiated, steps 1, 2, and 4 are completed without

interruption because the fixed-fixed eigenpairs are already available.

4.7.4 Mass Coupling Block

The off-diagonal submatrix in the reduced mass matrix, [~], con­

tains the coupling terms between the normal and the master DOF of the

substructure. The submatrix is defined by Equation (2.12) for consis-

tent mass models and by Equation (2.13) when a lumped mass formulation

is used. Those equations are:

[~s][~n] + [~c]T[Mss][~n]

[~c]T[Mss][~n]

- 103 -

(2.12)

(2.13)

For the lumped mass formulation, Equation (2.13) is computed by a stan-

dard matrix product using the temporary matrix [T] as described above.

When a consistent mass is used, Equation (2.12) is rearranged so that

only one matrix product is computed. The off-diagonal block [~s] is

first added to [T] and then this sum is post-multiplied by [~n]. The

computations actually take the form:

c ss where [T]- [~][M].

4.7.5 Assembly of the Reduced Stiffness and Mass Matrices

(4.31)

When subsystem TRIANGULATE terminates execution after performing

the above reduction, the reduced stiffness and mass matrices are ac-

tually broken into four components, each stored separately in the SOLVER

database. The components are [KG] and [~2] which form the reduced stif·

fness and [MG] and [~n] which form the reduced mass. Subsystem

ASSEMBLER retrieves these components from the SOLVER database and as-

sembles them into the reduced stiffness and mass matrices. Assembly

occurs when the actual matrices are needed to form the stiffness and

mass for a higher level structure.

4.8 Restart and Reanalysis

Prior to performing the structural analysis, an analyst does not

generally know the number of natural frequencies below a certain target

frequency or the number of iterations required to compute a specified

number of eigenpairs. For substructured models, the analyst must also

- 104 -

select the number of normal DOF to retain in each condensed

substructure. If too few normal DOF are selected, overall response of

the structural model will be degraded. If too many normal DOF are

selected, the reduction process becomes excessively expensive.

Selection of the "correct" number of DOF to retain is based on ex­

perience and judgement. However, even experienced analysts can seldom

anticipate the number of normal DOF needed for accurate and economical

solution of a new structural model. Analysis software must provide the

capabilities for the analyst to gain this knowledge in an iterative

fashion. In order to efficiently achieve such an iterative solution,

the software must support automatic restart and partial reanalysis.

Automatic restart is defined as the resumption of a previously

terminated analysis without loss of computed results. For example,

suppose that an analyst computes the first 25 frequencies and mode

shapes for a structure and requests output of the natural frequencies

but terminates execution of the analysis prior to obtaining mode shape

output. Automatic restart allows access to the existing databases for

output of the mode shapes without recomputing them.

Partial reanalysis is the ability to make modifications to a struc­

tural model and to recompute the response of the highest level structure

without completely reanalyzing the entire structural model. For ex­

ample, suppose that a structure with three condensed substructures has

been analyzed and the analyst wants to refine the definition of the

first substructure. A partial reanalysis involves restarting the fixed­

fixed frequency analysis of that substructure, computing additional

normal DOF, recondensing the substructure, assembling it into the

highest level structure, and reanalyzing the highest level structure

- 105 -

without repeating the condensation and assembly of the two unmodified

substructures. This capability of the software is critical to the sue-

cess of the analysis of multilevel substructured models in which fixed­

interface reduction is used throughout the hierarchy of the structural

model.

Implementation of a general restart and reanalysis capability is

much more complex than the computational procedure indicates (see

Section 2.2.3). The reason is that the critical procedures are not

computational. Instead, extensive changes in both size and content of

previously created data structures are required. Sophisticated data

management procedures are the prerequisite for successful restart and

reanalysis. To begin the reanalysis, a complex traversal of the struc­

tural hierarchy is required to validate (or invalidate) existing data,

to determine what needed data are missing, and to determine the effects

of invalid or missing data at each level of the hierarchy. Once this

traversal is complete, the reanalysis begins. Existing valid data is

used wherever possible. New computations are performed only when

necessary.

4.8.1 Automatic Restart

Automatic restart was an operational feature of FINITE at the start

of this study. After termination of an analysis, the existing databases

could be accessed again and any conventional request issued. This in­

cludes definition and displacement computation for a new static loading

condition, output of previously computed displacements, strains, or

stresses for a structure, and continuation of a nonlinear static

analysis. The new dynamic analysis features are also implemented with

- 106 -

restart ?apabilities, the most powerful of which is frequency analysis

restart. Frequency analysis restart involves continuation of a previous

frequency analysis to compute additional eigenpairs for any specified

structure, at any level of the structural hierarchy. Since the general-

ized Jacobi method yields all eigenpairs for a structure, frequency

analysis restart applies only to subspace iteration.

The analyst defines restart of subspace iteration by specifying the

number of additional eigenpairs to compute and a value for the initial

subspace shift. The initial shift is some value greater than the last

converged eigenvalue but less than an estimate for the next eigenvalue

in the spectrum. For example, suppose that in the first analysis run,

15 eigenpairs converged with the largest eigenvalue equal to 2.SE+06.

When this initial run terminates, FINITE outputs an estimate for eigen-

value number 16, say 4.2E+06. If the analyst wants a total of 20

eigenvalues for the structure, parameters for restart of subspace itera-

tion would be defined as follows:

FREQUENCY ANALYSIS TYPE SUBSPACE
PROPS NUMBER OF PAIRS 5 ITERATIONS 10,

MINIMUM FREQUENCY 3.3E+06

In the above the MINIMUM FREQUENCY is the value to which a shift is

applied before continuing the analysis.

The key to efficient restart of subspace iteration is the re-use of

the previous set of iteration vectors. When the initial analysis run

terminates, several of the vectors in the iteration set will be nearly

converged. (This is the basis for the estimate of eigenvalue number 16

in the above example.) Since these vectors are the best known estimates

for the real eigenvectors, they provide the optimum set of initial

iteration vectors. Therefore, it is imperative that the software system

- 107 -

make these vectors available for re-use. Complications for data manage­

ment arise when the analyst changes another property of the analysis

method: the subspace size. Such a change forces the hypermatrix that

stores the iteration vectors to be resized (columns are either added or

removed depending on an increase or decrease of the subspace size). If

the subspace size is ·increased, new "cosine-function" iteration vectors

are added to fill out the set.

Another major task performed prior to restarting the subspace com­

putations is moving the existing eigenvectors into the SOLVER database

and storing them in hypermatrix form. The eigenvectors are needed for

the orthogonalization of iteration vectors after each iteration. After

these two data management operations are performed, the frequency

analysis is resumed. It is important to note that these data handling

tasks are performed automatically and are transparent to the analyst.

The analyst's contribution to restart is simply the selection of the

number of additional eigenpairs and the specification of an initial

shift. Since very few numerical operations are performed during this

set-up phase, overhead for analysis restart is minimal.

4.8.2 Partial Reanalysis

As discussed in Chapter 2, an analyst often requires reanalysis of

a model as a check on the quality of the reduction of one or more

substructures. To obtain the check, additional normal DOF are added to

selected substructures and the analysis is repeated.

For efficient restart, computations must be limited to only those

portions of the model affected by the modifications. Reanalysis begins

with the computation of additional fixed-fixed normal modes for the

- 108 -

substructures in question. When subspace iteration is specified for the

frequency analysis, restart is initiated as described in the previous

section. The tables which store the frequencies [~2] and mode shapes

[~n] are resized (enlarged) for storage of the newly computed data.

After the additional eigenpairs are determined, they are stored with

their counterparts from the previous analysis.

The next step is to compute a new mass coupling block [~n] for the

substructure. The new mass coupling block contains one new column for

each new mode shape in with the existing columns remaining

unchanged. Therefore, it is sufficient just to resize the matrix [~n]

and compute the new columns by the procedure discussed in Section 4.7.4.

The most complex step in the implementation is assembly of the

structure stiffness and mass matrices in which the reanalyzed substruc-

tures are used. The reanalysis procedure adds additional normal DOF to

the condensed substructures. The geometric DOF are not affected.

Therefore, when these substructures are re-assembled into the next level

of the hierarchy, only the normal DOF are processed. The complication

arises in reorganizing the hypermatrices that hold the stiffness and

mass at the higher levels.

Since the normal DOF are located at the top of the coefficient

matrices, the geometric DOF must be shifted down in the tables as new

normal DOF are added. Rather than move actual blocks of numerical data,

it is more efficient to create a new pointer hierarchy for the table and

then swap pointers from the old to the new.

- 109 -

Figure 4.10

matrix. Suppose

illustrates the procedure for resizing the stiffness

that the existing stiffness is partitioned into 5 hy-

perrows and 5 hypercolumns, with the first 2 hyperrows and hypercolumns

allocated to the normal DOF. Two non-zero submatrices (N1 and N2) are

used for the normal DOF and 5 for the geometric DOF (G1 - G5). With the

addition of new normal DOF to the lower level substructures, a new hy­

perrow and hypercolumn is added to contain the 3 normal DOF submatrices.

Rather than create an entirely new hierarchy to store the expanded

matrix, a new set of pointer vectors is created. Pointers to the

individual geometric DOF submatrices, G
1

·- G5 , are copied into the new

pointer hierarchy and the old pointer structure is destroyed. Actual

submatrices are not moved. At this point the new normal DOF sub-

matrices, &1 - &3 , are assembled from existing and newly added data.

Resizing and re-assembly of the structure mass matrix follows a

similar procedure. Submatrices containing only geometric DOF are

retained without change and submatrices containing normal DOF are com­

pletely re-assembled after the new DOF are added.

- 110 -

A. ORIGINAL STIFFNESS MATRIX

PARTITIONED HYPERMATRIX

Nl

N2
SYMMETRIC

Gl

G2 G3

G4 Gs

B. RESIZED AND RE-ASSEMBLED STIFFNESS MATRIX

PARTITIONED HYPERMATRIX

iiil

N2
SYMMETRIC

N3

Gl

G2 G3

G4 Gs

Figure 4.10. Stiffenss Matrix Resizing

- 111 -

Nl

N2

iii3

Gl

G2

G3

G4

CHAPTER 5 NUMERICAL EXAMPLES

5.1 General

The modeling and analysis procedures developed in this study are

demonstrated and evaluated in this chapter. Numerical studies on ex­

ample structures are-performed to demonstrate two principal products of

this research. First, the feasibility of multilevel substructured

analysis using modal synthesis techniques in a general purpose software

system is considered. Preliminary studies of solution accuracy and

computational efficiency are made to demonstrate the advantages of the

numerical procedures. Second, unique features of the software are

demonstrated. The convenience of the flexible user interface, automatic

restart, and partial reanalysis are all illustrated.

Natural frequencies, mode shapes, and modal strains are computed

for both substructured and non-substructured models. Each example

structure is initially modeled and analyzed without substructuring to

establish a baseline against which approximate results are compared.

Subsequent analyses are performed on the substructured models with vary­

ing topology and degrees of reduction.

The first example involves the analysis of a cantilever box struc­

ture composed of flat shell elements. This example demonstrates the

performance of the fixed-interface method applied to multilevel sub­

structured models. Both computational effort and solution accuracy are

evaluated. Detailed comparisons of natural frequencies, mode shapes,

and modal strains are made for this example.

- 112 -

The second example illustrates restart, reanalysis, and the

capabilities of the software to process rigid-body modes. Three-

dimensional truss elements are used to model a structure which has the

shape of a double tetrahedron. Emphasis in this example is placed on

the user interface and restart capabilities. Only frequencies are con-

sidered in the accuracy comparisons.

All numerical computations were performed on a Harris 500 computer.

On this machine, floating point numbers are represented with a 38 bit

mantissa and a 7 bit exponent. This format represents numerical values

which . -38 +39 vary in magnLtude from 10 to 10 with 11 - 12 decimal digits

of precision.

5.2 Cantilever Box

The first example structure is a thin-walled, cantilever box, open

on the top as shown in Figure 5.1. The structure is modeled with flat-

shell elements derived from plate and membrane elements. At nodes in

which connecting elements are not coplanar, there are six active DOF

(three translations and three rotations). At nodes in which elements

are coplanar, the rotation normal to the plane is constrained leaving

only five active DOF at the node. All analyses of this structure incor-

porate a consistent mass formulation.

The box structure is analyzed using three different models. The

first model is not substructured and contains 172 flat shell elements

and 196 nodes. This model, named BOX_l, provides the baseline against

which the approximate results of the substructured models are compared.

The finite element mesh for structure BOX 1 is shown in Figure 5.2.

Input data to generate the mesh and to perform the analysis are shown in

- 113 -

I II

16

12 II

J I
Figure 5 .1. Open Cantilever Box Hodel

- 114 -

STRUCTURE BOX-1

"'

NODE WITH 5 DOF

WAFER

(4 NODE FLAT
SHELL ELEMENT)

Figure 5.2. Finite Element l1esh for Structure :SOX 1

- 115 -

Figure 5.3. Since each shell element in the model is identical to all

the others, except for orientation, a single "stand-alone" element named

WAFER is defined first. The stiffness and mass matrices for this ele­

ment are computed only once and then are used repeatedly for each

occurrence of WAFER in structure BOX_l. In order to extend the defini­

tion of the model from static to dynamic analysis, only two additions to

the input are made. First the mass of element WAFER is defined. A

CONSISTENT mass formulation is chosen with a MASS_DENSITY of 7.339E-04.

Then the frequency analysis method is selected. Subspace iteration is

used to evaluate the first 10 natural frequencies and mode shapes for

the structure.

The second model, structure BOX_2, uses one level of substructuring

with condensation to reduce the number of DOF which are present in the

highest level structure. The mesh for this model is illustrated in

Figure 5.4 and the POL input is shown in Figure 5.5. The hierarchy of

the structural model is shown in Figure 5.6. The first level of sub-

structures contains the parent structures: structure SIDE (a side

and structure BOTTOM (a bottom panel). The condensed version panel)

(child) of each of these substructures contains the boundary nodes from

the parent structure and a selected number of normal DOF. Normal DOF

are computed by a fixed-fixed vibration analysis of the parent. The

condensation procedure is specified in the definition of the child

structures SIDE_CON and BOTT CON. The highest level structure, BOX_2,

has only 13 elements and 79 nodes (plus the normal DOF retained during

condensation).

Figure 5.7 illustrates the third model of the cantilever box struc-

ture, BOx_3. This model contains two levels of substructuring. Input

- 116 -

,_. ,_.
"

*RUN
c
c
c
c
c
c
c
c
c
c
c
c
c

FINITE

OPEN CANTILEVER BOX STRUCTURE USED TO DEMONSTRATE THE
PERFORMANCE OF THE FIXED-INTERFACE METHOD WITH
MULTILEVEL SUBSTRUCTURED MODELS.

THE STRUCTURE USES 112 RFSHELL ELEMENTS FORMED INTO A
LONG STEEL BOX WHICH IS OPEN ON TOP AND CANTILEVERED AT
ONE END. THE BOX IS 3.0" WIDE, 2.25 1' HIGH, AND 12.0"'
LONG WITH CONSTANT WALL THICKNESS OF 0.062511 •

THIS IS THE NON-SUBSTRUCTURED VERSION OF THE MODEL,

ELEMENT WAFER

c
c

c

c

TYPE RFSHELL CONSISTENT E 30000. NU 0.3 THICKNESS .0625 1

SHORT OUTPUT MASS DENSITY .0007339 NOSPRINGS
COORDINATES -

1 o.o o.o
2 0.75 o.o
J 0.15 0.75
• 0.0 0.75

STRUCTURE BOX 1
NUMBER OF ELEMENTS 172 NODES 196
ELEMENTS ALL TYPE WAFER ROTATION BY COORDINATES

COORDINATES
1 o.o
4 o.o
8 3.0

11 3.0
177 o.o
180 o. 0
184 3.0
187 3 .o
GEN 1-4 IN
GEN 4-8 IN
GEN 8-ll IN
GEN 177 188
GEN 17i 191
GEN 179 194

2.25
o.o
o.o
2.25
2.25
o.o
o.o
2.25

X 1-177
X 4-180
X 8-184
189 190
192 193
195 196

0.0
0.0
o.o
o.o

12.0
12.0
12.0
12.0

BYlliNY
BYlliNY
BY'lliNY
187
186
185

c

c

c

c

c
c
c

c
c
c

c

c

INCIDENCES

GEN 10 IN X 16 IN Y AS 1-160 FROM 1 2 13 12 ADD 1 IN X 11 IN Y

161 117 178 191 188
162 188 191 192 189
163 189 192 193 190
164 190 193 186 187
165 178 179 194 191
166 191 194 195 192
167 192 195 196 193
168 193 196 185 186
169 179 180 181 194
170 194 181 182 195
111 195 182 183 196
112 196 183 18< 185

CONSTRAINTS

FIX THE NODES AT THE CANTILEVER WALL.

1-ll ALL • 0,0

FIX THE THETA DOF WITH ZERO OUT-OF-PLANE STIFFNESS.

12•166 BY 11, 13-167 BY 11, 14-168 BY 11
16-170 BY 11, 17-171 BY 11, 18-172 BY 11
20-174 BY 11, 21•175 BY 11, 22-176 BY 11
188-196

FREQUENCY ANALYSIS TYPE SUBSPACE

THETAX •
THETAY
THETAX •
THETAZ

PROPERTIES NOM PAIRS 10 ITERATIONS 40 STURM CHECK

COMPUTE NATURAL FREQUENCIES
OUTPUT NATURAL FREQUENCIES MODE SHAPES
sroP

0.0
o.o
o.o
o.o

Figure 5.3. POL Definition of Structure BOX 1

.....
co

STRUCTURE SIDE

STRUCTURE BOX_2

STRUCTURE BOTTOM

Figure 5.4. Finite Element Hesh for Structure BOX 2

,_. ,_.
"'

*RUN FINITE
C HODEL 28; SUBSTRUCTURED VERSION OF THE CANTILEVER BOX

MODEL. SUBSTRUCTURES ARE REDUCED BY THE
FIXED-INTERFACE METHOD. THERE ARE 5 NORMAL
DOF RETAINED IN EACH SUBSTRUCTURE.

c
c
c
c
c

c

c

c

c

c

c

c

c

c

c

THIS, MODEL USES ONE LEVEL OF SUBSTRUCTURING.

ELEMENT WAFER
TYPE RFSHELL CONSISTENT

SHORT OUTPUT

COORDINATES
1 o.o o.o
2 0,75 o.o
3 0.75 0.75
-4 o.o 0.75

STRUCTURE SIDE

E 30000. NU 0.3 TUICKNESS 0,0625 1

MASS_OENSITY 0.0007339 NOSPRINGS

NUMBER OF ELEMENTS 12 NODES 20
ELEMENTS ALL TYPE WAFER ROTATION BY COORDINATES

COORDINATES
1 o.o
-4 0,0

17 o.o
20 o.o

2.25
0.0
2.25
0.0

GEN 1-4 IN X 1-11 B¥ 4

0.0
o.o
3.0
3.0
IN Y

INCIDENCES
GEN 3 IN X 4 IN Y AS 1-12 FROM 1 2 6 5 ADO 1 IN X 4 IN Y

FREQUENCY ANALYSIS TYPE SUBSPACE
PROPERTIES HUH PAIRS 5 ITERATIONS 15 STURM CHECK

CONSTRAINTS
5-7 1 9-11, 13-15 THETAX • 0.0

STRUCTURE SIDE CON
NUMBER OF ELEMENTS 1 NODES 11
ELEMENT 1 TYPE SIDE CONDENSED RETAIN NORMAL 1-5

INCIDENCES
1 1-4, 8, 12f 16, 20, 19, 18, 17

STRUCTURE BOTTOM
NUMBER OF ELEMENTS 16 NODES 25
ELEMENTS ALL TYPE WAFER ROTATION BY COORDINATES

COORDINATES
1 o.o
5 3.0

21 o.o
25 3.0
GEN 1-5 IN

o.o o.o
o.o o.o
o.o 3.0
0.0 3.0
X 1-21 B¥ 5 IN Y

c

c

c

c

c

c

c

c

c

c

INCIDENCES
GEM • IN X • IN Y AS 1•16 FROM 1 2 7 6 ADD 1 IN X 5 IN y

CONSTRAINTS
7-9, 12-14, 17-19 THETAY • 0,0

FREQUENCY ANALYSIS TYPE SUBSPACE
PROPS NUM PAIRS 5 ITERATIONS 15 STURM CHECK

STRUCTURE BOTT CON
NUMBER OF ELEMENTS 1 NODES 16
ELEMENT 1 TYPE BOTTOM CONDENSED RETAIN NORMAL 1-5

INCIDENCES
1 1-5 10 15 20 25 24 23 22 21 16 11 6

STRUCTURE BOX 2
NUMBER OF NODES 79 ELEMENTS 13
ELEMENTS

1-8 TYPE SIDE CON ROTATION SUPPRESSED
9-12 TYPE BOTT-CON ROTATION SUPPRESSED

13 T¥PE SIDE=CON ROTATION Y 90.0

INCIDENCES
GEN 1-4 FROM 1 2 3 4 12 13 14 21 20 19 18 ADD 17
GEN 5-8 FROM 11 10 9 8 15 16 17 25 26 27 28 ADD 17
GEN 9-12 FROM 4-8 15-17 25-21 BY -1 1• 13 12 ADO 17
13 69-79

CONSTRAINTS
1-11 ALL • 0,0
18-20 26-28 35-37 43-45 52-54 60-62 TUETAX ~ 0,0
22-24 39-41 56-58 THETAY a 0,0

FREQUENCY ANALYSIS TYPE SUBSPACE
PROPS NUM PAIRS 10 ITERATIONS 30 STURM CHECK

COMPUTE NATURAL FREQUENCIES
OUTPUT NATURAL FREQUENCIES
STOP

MODE SHAPES

Figure 5.5. POL Definition of Structure BOX 2

1-' .,
0

• • •
• • •

• • •
• • •

• • •

"v1HELL ELEMENTS \/ SHELL ELEMENTS

Figure 5.6. Hierarchy of Structure BOX_2

•••

....
N

•

STRUCTURE
SIDE

/
STRUCTURE

BOTTOM

I

\
STRUCTURE
CHANNEL

STRUCTURE BOX_3

Figure 5.7. Finite Element Hesh for Structure BOX 3

data for this model are listed in Figure 5.8 and the structural hierar­

chy is presented in Figure 5.9. The first level of substructures is

taken from the previous model, structures SIDE and BOTTOM, which are

condensed into SIDE_CON and BOTT_CON, respectively. The second sub­

structure level contains structure CHANNEL which consists of 4 condensed

side panels and 2 ·condensed bottom panels. The condensed version of

CHANNEL is CHAN_CON which contains the boundary nodes from CHANNEL and a

selected number of retained normal DOF. The highest level structure,

BOX_3, is assembled from two condensed channels and one condensed side

panel.

DOF).

This structure contains 3 elements and 33 nodes (plus normal

One purpose

fixed-interface

of this example is to evaluate the performance of the

method for the frequency analysis of a multilevel sub-

structured model. The key parameter for study is the number of normal

DOF retained in each of the reduced substructures. Table 5.1 lists the

various combinations of normal DOF retained in each substructure.

Structure BOX_2 was analyzed with four different combinations of normal

DOF. These analyses are represented as 2A through 2D. Analyses were

performed for structure BOX_3 using nine combinations of retained normal

DOF. These analyses are identified as 3A through 3I.

Two types of comparisons are made for the analyses of this example.

First, solution accuracy is evaluated. The errors in computing natural

frequencies, mode shapes, and modal strains are examined for all sub-

structured models. Approximate natural frequencies from the

substructured models are compared directly against those for the

baseline analysis. Mode shapes and modal strains are evaluated through

• 122 .

,_.
"' ""

*RUN FINITE
C MODEL JE; SUBSTRUCTURED VERSION OF THE CANTILEVER BOX

MODEL. SUBSTRUCTURES ARE REDUCED BY THE
FIXED-INTERFACE METHOD. THERE ARE 5 NORMAL
DOF RETAINED IN EACH SUBSTRUCTURE.

c
c
c
c
c

c

c

c

c

c

c

c

c

c

c

c

THIS HODEL USES TWO LEVELS OF SUBSTRUCTURING.

ELEMENT WAFER
TYPE RFSHELL CONSISTENT

SHORT OUTPUT
E 30000. NU 0,3 THICKNESS 0.0625 1

MASS_DENSITY 0,0007339 NOSPRINGS
COORDINATES

1 o.o
2 o. 75
3 0.75
4 o.o

STRUCTURE SIDE

o.o
o.o
0.75
0.75

NUMBER OF ELEMENTS 12 NODES 20
ELEMENTS ALL TYPE WAFER ROTATION BY COORDINATES

COORDINATES
1 o.o
4 0.0

17 o.o
20 o.o
GEN 1-4 IN X

INCIDENCES

2.25
o.o
:L2S
o.o

1-17 BY 4

0,0
o.o
3.0
3.0
IN Y

GEN 3 IN X 4 IN Y AS 1-12 FROM 1 2 6 5 ADD 1 IN X 4 IN Y

FREQUENCY ANALYSIS TYPE SUBSPACE
PROPERTIES NUK PAIRS 5 ITERATIONS 15 STURM CHECK

CONSTRAINTS
5-7 1 9-11 1 13-15 THETAX • 0.0

·STRUCTURE SIDE CON
NUMBER OF ELEMENTS 1 HODES 11
ELEMENT 1 TYPE SIDE CONDENSED RETAIN NORMAL 1-5

INCIDENCES
1 1-4, e, 12, 16, 20, 19, 18, 11

STRUCTURE BOTTOM
NUMBER OF ELEMENTS 16 NODES 25
ELEMENTS ALL TYPE WAFER ROTATION BY COORDINATES

COORDINATES
1 0,0 o.o o.o
5 3.0 0.0 o.o

21 0.0 o.o 3.0
25 3.0 o.o 3.0
GEN 1-5 IN X 1-21 BY 5 IN Y

INCIDENCES
GEN 4 IN X 4 IN Y AS 1-16 FROM 1 2 7 6 ADD 1 IN X 5 IN Y

CONSTRAINTS
7-9, 12-14, 17-19 THETAY a 0.0

FREQUENCY ANALYSIS TYPE SUBSPACE
PROPS NUM PAIRS 5 ITERATIONS 15 STURM CHECK

c

c

c

c

c

c

c

c

c

c

c

c

c

Figure 5.8.

STRUCTURE BOTT CON
NUMBER OF ELEMENTS 1 NODES 16
ELEMENT 1 TYPE BOTTOM CONDENSED RETAIN NORMAL 1-5

INCIDENCES
1 1-5 10 15 20 25 24 23 22 21 16 11 6

STRUCTURE CHANNEL
NUMBER OF NODES 45 ELEMENTS 6
ELEMENTS

l-4 TYPE SIDE_CON ROTATION SUPPRESSED
5-6 TYPE BOTT_CON ROTATION SUPPRESSED

INCIDENCES
GEN 1-2 FROM 1-4 12-14 21-18 BY -1
GEN 3-4 FROM 11-8 BY -1 15-17 25-28
GEN 5-6 FROM 4-8 15-17 25-21 BY -1 14 13 12

CONSTRAINTS
18-20, 26-28
22-24

THETAX • 0.0
THETAY • 0.0

FREQUENCY ANALYSIS TYPE SUBSPACE
PROPS PAIRS 10 ITERATIONS 40 STURM CHECK

STRUCTURE CHAN CON
NUMBER OF ELEMENTS 1 NODES 22

ADD 17
ADD 17

ADD 17

ELEMENT 1 TYPE CHANNEL CONDENSED RETAIN NORMAL 1-5

INCIDENCES
1 1-11 35-45

STRUCTURE BOX 3
NUMBER OF ELEMENTS 3 NODES 33
ELEMENTS

1-2 TYPE CHAN CON ROTATION SUPPRESSED
3 TYPE SIDE=CON ROTATION Y 90.0

INCIDENCES
1 1-22
2 12-33
3 23-33

CONSTRAINTS
12-U 20-22
16-18
1-11 ALL •

THETAX
THETA 'I

o.o
o.o
o.o

FREQUENCY ANALYSIS TYPE SUBSPACE
PROPS HUM P~RS 10 ITERATIONS 30 STURM CHECK

COMPUTE NATURAL FREQUENCIES
OUTPUT NATURAL FREQUENCIES MODE SHAPES
STOP

POL Definition of Structure BOX 3

.....
N
4'-

• • •

I
I .
I
I
I
I

v SHELL ELEMENTS \I SHELL ELEMENTS

Figure 5.9. Hierarchy of Structure BOX_3

MODEL

2A

2B

2C

2D

3A

3B

3C

3D

3E

3F

3G

3H

3I

Notes

1

2

SUBSTRUCTURE

SIDE_ CON (30) 1 BOTT_CON (45) 1 CHAN_CON

0 0 ---
5 5 ---

10 10 ---
15 15 ---

0 0 0

0 0 5

0 0 10

5 5 0

5 5 5

5 5 10

10 10 0

10 10 5

10 10 10

Numbers is parenthesis indicate the number of
interior nodal DOF in the parent substructure.

(129) 112

Models 2A-2D do not contain substructure CHAN_CON.

Table 5.1 Number of Retained Normal DOF in BOX Models

125 -

a pair of error norms which represent the overall quality of these ap·

proximate vectors. The second comparison focuses on the costs of

performing the analyses. Both CPU and paging requirements are examined.

CPU requirements are measured by recording the amount of time used by

the computer's central processor in solving the problem. Paging is

measured as the number of page faults (or page replacements) performed

by the POLO memory manager.

Table 5.2 lists the first 10 natural frequencies for the non­

substructured model (BOX_l) and the corresponding errors in natural

frequencies for the substructured models. Results for only 10 of the 13

substructured analyses are listed in the table. For models ZB, 2C, and

2D, computed frequencies for all 10 modes matched the baseline fre­

quencies to 4 significant figures. Examination of Tables 5.1 and 5.2

reveals that the substructured frequencies converge to the baseline

frequencies when at least 5 normal DOF are retained in each

substructure. This condition exists for models 2B, ZC, 2D, 3E, 3F, 3H,

and 3I. The maximum error in any of the 10 natural frequencies for

these models is only 2.0% with a mean error of 0.8%.

The need to retain normal DOF in the highest level structure is

demonstrated by the results for models 3A, 3D, and 3G. In these models

Guyan reduction is applied to condense the second level substructure

(CHANNEL). The results for these models are sufficiently poor to

preclude their use in practical applications. The results for models 3D

and 3G, which contain normal DOF in the first level substructures but

not in the second, show no measurable improvement over results for model

3A, in which Guyan reduction was used at each substructure level. The

- 126 -

....
N

PERCENT ERROR IN W MEASURED AGAINST BOX-1 VALUES1

w (radjsec) SUBSTRUCTURED MODEL

MODE BOX-1 2A 3A 3B 3C 3D 3E 3F 3G 3H

1 50.92 0,5 5.5 1.7 1.7 5.5 1.2 1.2 5.5 1.2

2 55.78 0.9 8.6 1.7 1.7 8.6 0.8 0.8 8.6 0.8

3 81.61 1. 5. 9.2 2.2 2.2 9.2 0.8 0.7 9.2 0.8

4 89.31 1.9 12.8 2.9 2.9 12.8 0.9 0.9 12.8 0.9

5 98.25 0.7 49.8 2.5 2.5 49.1 2.0 2.0 49.1 2.0

6 110.3 2.5 68.5 3.0 3,0 68.5 0.5 0.5 68.5 0.5

7 138.8 3.9 69.6 3.0 3.0 54.6 -0.4 -0.6 54.6 -0.4

8 153.2 3.5 56.2 2.9 2.9 56.1 0.2 -0.3 56.1 0.2

9 198.0 15.0 30.1 17.7 17.2 30.1 0.6 0.3 30.1 0.6

10 214.1 8.4 68,8 11.5 10.4 67.3 0.6 0.4 67.3 0,6

1 Models 2B, 2C, and 2D are exact to within 4 significant figures.

Table 5.2 -- Natural Frequencies for BOX Models

3I

1.2

0.8

0.7

0.9

2.0

0.5

-0.7

-0.3

0.3

0.3

retention of normal modes in the lower level does not appear to in­

fluence the quality of results for the higher level substructures if the

later are condensed by Guyan reduction. This effect is not unexpected

in light of the procedure developed for selection of master and slave

DOF (Section 2.3.2). The normal DOF in structures SIDE_CON and BOTT_CON

of models 3D and 3G are grouped as slave DOF when assembled into struc-

ture CHANNEL. As such, their influence is eliminated from the model

when Guyan reduction is applied to reduce structure CHANNEL into struc­

ture CHAN CON.

Models 3B and 3C produce sizable errors in natural frequency, rela­

tive to models 3D, 3E, 3H, and 31. This is due to the absence of normal

DOF in substructures SIDE_CON and BOTT_CON in these models. The need

for retained normal DOF at all levels of the structural hierarchy is

clearly demonstrated in this example.

Model 2A, which employs Guyan reduction of all substructures, shows

reasonable accuracy in natural frequencies. This is due to the greater

number of nodes in the highest level structure compared to 3A, 3D, and

3G (79 versus 33) and to the more uniform distribution of those nodes

(compare Figures 5.4 and 5.7).

The quality of a DOF reduction technique for dynamic analysis

should not be evaluated solely on the basis of natural frequencies. The

computed mode shapes and modal strains for the substructured box models

are also examined in this example to assess the accuracy of the

reduction. Results from the analysis of the non-substructured model

(BOX_l) again provide a baseline for comparison. The results from the

substructured models (2A-2D, 3A-3I) are taken as the approximate values

for which error norms are calculated.

- 128 -

To obtain a meaningful comparison between results from the baseline

and from the substructured models, the mode shapes for the substructured

models are transformed to the geometric coordinates of the substructures

at the lowest level of the hierarchy (see Section 2.3.1). A one-to-one

correspondence then exists between terms of the baseline and of the

approximate mode shapes.

Modal strains are computed for the individual finite elements using

the mode shapes as displacement vectors. After strains for each element

are computed, strains at the nodes are computed as the average of the

contributions from all elements incident on a given node. Only nodes

which join coplanar elements are considered. Nodes along the boundaries

of the panels are not included in the comparison since the shell element

is not expected to perform well at these locations [8]. The six strain

components evaluated at the nodes are:

.1 au; ax, .4 a2w;ax2

•z av;ay •s a2w;ay2 (5.1)

.3 au;ay + av;ax .6 a2w;axay

No changes are made in normalization of the mode shape vectors

prior to performing the comparisons. As they are computed, the mode

shapes are scaled to be orthonormal with respect to the mass matrix of

the structure. For the non-substructured model (the baseline), the mass

matrix may contain only geometric coordinates. For the substructured

models, the structure mass contains both geometric and normal coor­

dinates (a consequence of the substructure reduction procedure). This

- 129 -

apparent difference is not relevant since the mode shapes for the sub-

structures are recovered completely to the lowest level of the hierarchy

where all coordinates are geometric.

The quality of the approximate mode shapes and modal strains is

evaluated through the computation of two error norms. The two norms, L
1

and L2 [51], are defined by

in which:

Table

(

d.
],

d.
1

a

1
n

1
n

is

is

max
n is

5.3

X 100% and

n
I (d. - <i.)z) o.s
1 ~ 1 X 100%

the .th term in the approximate vector, 1

the .th term in the baseline vector, 1

is the largest term in the baseline vector~

the number of terms in the baseline vector.

lists the L1 norms for mode shapes for all

(5.2)

(5.3)

and

substructured

models (2A-2D, 3A-3I). The values in this table exhibit the same trends

established in Table 5.2 for the natural frequencies. Table 5.3 shows

slightly larger error norms for modes 5 and 10 relative to the other

modes. Apparently, an essential component of structure response for

these modes is omitted from the models by truncation of the normal DOF.

The models in which normal modes are retained at each level of the

hierarchy (2B-2D, 3E, 3F, 3H, and 3I) predict mode shapes with the least

- 130 -

....
w

MODE

1

2

3

4

5

6

7

8

9

10

2A 2B

0.3 0.1

0.3 0.1

0.4 0.1

0.9 0.1

1.6 0.1

0.6 0.1

1.4 0.4

1.3 0.3

15.8 0.2

11.7 0.4

2C 20 3A

0.2 0.1 1.7

0.3 0.4 1.8

0.4 0.2 2.9

0.4 0.9 12.9

0.3 0.7 24.3

0.6 0.3 5.1

1.0 1.7 10.2

1.0 0.6 13.7

2.3 3.3 13.7

1.7 1.6 11.2

Table 5.3

MODEL

3B 3C 3D 3E 3F 3G 3H 3I

0.5 0.5 1.7 0.4 0.4 1.7 0.4 0.4

0.5 0.5 1.8 0.4 0.4 1.8 0.4 0.4

0.5 0.5 2.9 0.3 0.3 2.9 0.3 0.3

0.6 0.6 12.8 0.6 0.6 12.8 0.6 0.6

1.0 1.0 24.4 1.7 1.6 24.4 1.7 1.6

0.7 0.7 5.1 0.3 0.3 5.1 0.3 0.3

1.6 1.6 10.1 0.6 0.6 10.1 0.6 0.6

1.5 1.5 13.8 0.7 0.5 13.8 0.7 0.5

7.8 8.8 13.7 0.8 0.6 13.7 0.8 o. 6 I

13.1 13.1 11.2 1.2 1.0 11.2 1.2 1.0

L1 Norm for Mode Shapes BOX Models

error. Some variability in L
1

is evident for models 2B-2D while the

norms for the other four models are virtually identical to each other.

The L
2

norms for the same mode shape vectors are listed in Table

5.4. By design, the L2 norm emphasizes regions of the approximation

vector where the error function (di - di) attains its maximum value.

Since the L2 norms are 2-5 times larger than the associated L1 norms,

regions of "higher-than-average• error are indicated. However, the

errors remain well within reasonable engineering accuracy for models in

which natural frequency is well predicted.

The L1 and L2 error norms for the approximate modal strains are

listed in Tables 5.5 and 5.6, respectively. The effects of numerical

differentiation of the mode shapes to obtain the strains are clearly

shown in these tables. While the trends established in the examination

of mode shapes are repeated for modal strains, the magnitudes of the

error norms are larger.

The effects of truncation of the normal DOF from the condensed

substructures are well illustrated in this example structure. The

natural frequencies are well predicted when normal DOF are retained in

the reduced substructures. Computation of modal strains resulted in

error norms that are higher than those for mode shapes. Within the

individual modal strain vectors, the lowest values for the error func-

tion (d. - d)
J.

are obtained for strain components and As

expected, error values increase for the remaining components of strain

as the order of the numerical differentiation increases.

- 132 -

.....
"' "'

MODE

1

2

3

4

5

6

7

8

9

10

2A 2B

0.7 0.5

1.2 1.1

1.2 0.8

1.6 0.6

2.9 0.6

1.4 0.5

2.9 2.0

2.9 1.4

22.4 1.0

19.2 2.7

2C 2D 3A

0.6 0.6 2.9

1.2 1.4 3.6

1.2 1.0 5.9

1.2 2.2 20.8

1.0 1.8 41.2

1.8 1.1 12.0

2.9 4.6 20.9

3.0 2.1 20.8

7.3 9.4 25.3

5.5 5.5 23.4

Table 5.4

MODEL

3B 3C 3D 3E 3F 3G 3H 3I

1.0 1.0 2.9 0.9 0.9 2.9 0.9 0.9

1.3 1.3 3.6 1.3 1.2 3.6 1.3 1.2

1.2 1.2 5.9 0.9 0.8 5.9 0.9 0.8

1.4 1.4 20.8 1.1 1.1 20.8 1.1 1.1

1.7 1.7 41.4 2.7 2.7 41.4 2.7 2.7

1.4 1.4 12.0 0.5 0.4 12.0 0.5 0.4

3.2 3.2 22.0 1.3 1.2 22.0 1.3 1.2

3.0 3.0 21.1 1.4 1.1 21.1 1.4 1.1

13.8 15.3 25.4 1.6 1.3 25.3 1.6 1.3

20.3 20.4 23.7 1.8 1.4 23.7 1.8 1.4

L2 Norm for Mode Shapes BOX Models

.....
w ,.

MODE

1

2

3

4

5

6

7

8

9

10

2A 2B

2.4 1.3

1.5 0.6

2.3 1.2

3.0 1.2

5.8 2.1

3.0 1.5

3.4 1.3

3.3 1.4

9.5 0.8

13.1 1.2

2C 2D 3A

3.1 3.0 5.5

1.7 2.3 4.1

2.8 2.7 5.7

3.1 4.6 13.9

3.3 4.6 36.7

4.3 3.4 10.3

3.5 4.5 11.3

4.0 3.3 10.5

4.1 4.4 15.5

4.6 4.4 9.0

Table 5.5

MODEL

3B 3C 3D 3E 3F 3G 3H 3!

3.1 3.0 5.5 2.3 2.1 5.5 2.3 2.1

1.6 1.6 4.1 0.9 0.7 4.1 0.9 0.7

2.4 2.4 5.7 1.6 1.4 5.7 1.5 1.4

3.0 3.0 13.9 1.4 1.3 13.9 1.4 1.2

5.2 5.2 37.5 4.0 3.8 37.5 4.0 3.8

3.0 3.0 10.4 1.6 1.6 10.4 1.5 1.5

3.7 3.7 12.2 1.9 1.6 12.3 1.9 1.5

3.5 3.5 10.7 2.1 1.7 10.7 2.1 1.6

10.2 11.1 15.5 1.6 1.3 15.5 1.6 1.3

8.0 8.2 9.4 1.6 1.4 9.4 1.6 1.3

L1 Norm for Modal strains BOX Models

,_.
w
lJ1

MODE

1

2

3

4

5

6

7

8

9

10

2A 28

7.2 4.4

4.0 2.2

7.1 4.0

7.3 3.4

13.2 5.5

8.7 5.0

8.5 3.9

9.0 4.6

18.6 2.3

25.9 4.4

2C 2D 3A

8.1 8.0 13.0

4.5 6.1 9.7

7.2 7.3 14.5

7.7 11.8 26.5

8.1 12.3 90.1

11.2 8.6 30.4

8.5 11.1 25.5

4.7 8.o 21.7

10.9 10.6 36.2

11.9 11.8 21.6

Table 5.6

MODEL

38 3C 3D 3E 3F 3G 3H 3I

7.7 7.7 13.1 5.4 5.1 13.1 5.4 5.0

4.2 4.2 9.7 2.6 2.4 9.7 2.6 2.4

7.2 7.2 14.5 4.4 4.2 14.5 4.4 4.2

7.7 7.7 26.5 3.7 3.6 26.5 3.6 3.6

11.4 11.5 91.6 8.1 7.7 91.6 8.0 7.6

8.8 8.8 30.5 4.9 4.9 30.5 4.8 4.9

8.8 8.9 29.9 4.4 3.6 29.8 4.4 3.6

9.0 9.0 22.2 5.3 4.3 22.0 5.3 4.3

21.2 23.2 36.2 3.4 2.8 36.2 3.8 3.4

17.5 17.9 25.0 3.7 3.3 25.1 3.8 3.4

L2 Norm for Modal Strains BOX Models

For the -6 analyses discussed above, a convergence tolerance of 10

on eigenvalues was used in frequency analysis at all levels of the

hierarchy. To check convergence, model 3E was re-analyzed with a

tolerance of 10"10 . No improvement in frequencies, mode shapes, or

modal strains was observed. This test verified that convergence of

frequencies -6 to a tolerance of 10 did not result in termination of the

analysis before the mode shapes fully converged.

The computational effort for analysis of the substructured can-

tilever box models is summarized in Figure 5.10. The data are plotted

against the CPU time and the number of page faults required for analysis

of structure BOX_l. In all cases significant savings were realized in

both CPU time and paging for· the analysis of the substructured models.

Also as expected, the multilevel substructured models, 3A - 3I, produced

greater savings than did models 2A - 2D.

For all substructured analyses, the ·efficiency gained in paging

exceeds that obtained for CPU time. This result is attributed to the

smaller databases required for the substructured models. In general,

only a small portion of the problem data can reside in memory at any one

time. Since the number of pages in the working set (or dynamic pool)

was held constant for all analyses performed in this example, propor-

tionatly fewer page faults were needed to access data for the smaller

models. Simply stated, for smaller models more of the database resides

in the working set for longer intervals resulting in fewer page faults.

In contrast, CPU performance is dominated by the number of computations

required for eigensolution. Working set size has little influence on

- 136 -
•

50 50

45 45

40 r- I I

% OF L o-
BOX-1 35 I I

CPU TIME
40

35
VALUES

~ 30 nU~ fa- PAGE FAULTS
30

.... 25 25
w .._,
•

20 20

15 15

10 10

5 5

0 0
2A 28 2C 2D 3A 38 3C 30 3E 3F 3G 3H 31

SUBSTRUCTURED MODEL
Figure 5.10. CPU and Paging Performance of BOX Hodels

the CPU time for such computationally intensive problems. Thus paging

efficiency exceeds CPU efficiency in this example.

The accuracy and economy of the fixed-interface method for models

using one level of substructuring has been previously noted [1, 10, 27].

Based on the results of this example problem, computational efficiency

is further improved· at no loss in solution accuracy when the fixed­

interface method is applied to multilevel substructured models. The

results for models 2B and 3E clearly demonstrate the advantage of multi­

level substructuring. Computed frequencies, mode shapes, and modal

strains are virtually identical but model 3E required only 33% of the

CPU time and 16% of the page faults needed by model 2B. Compared to the

baseline analysis, model 3E yielded savings of 90% for CPU time and 97%

for paging. Similar reductions in computational effort are anticipated

for other classes of structures.

5.3 Double Tetrahedron

The purpose of this example is to highlight the modeling techniques

and computational efficiency that are provided by substructured modeling

in dynamic analysis. Emphasis is placed on the unique modeling proce­

dures to handle a structure's rigid-body modes, to restart the frequency

analysis of the parent structure, and to increase the number of normal

DOF of a previously assembled child structure. While still critical to

the success of the analysis, solution accuracy is evaluated only on the

basis of natural frequencies.

The example structure is a space truss built in the form of a

double tetrahedron. The structure is modeled with simple three-

dimensional truss elements. The outline of the structure and the

- 138 -

support conditions are illustrated in Figure 5.11. The nine line ele­

ments in the figure are actually identical joist-like members composed

of 90 truss elements each. The geometry of one of these joists is il­

lustrated in Figure 5.12. Each joist consists of 10 triangular

transverse panels joined by longitudinal and diagonal truss elements.

For clarity the diagonal elements are omitted from the figure. At each

end of the joist are three additional truss elements that meet at a

single node. These end nodes are used for connectivity to the remainder

of the structure. Figure 5.13 shows the fully assembled structure.

Diagonal truss elements are again omitted from the joist members for

clarity. Since the truss elements contain only translational DOF at the

nodes, the entire structural system contains 10 rigid-body modes: one

rigid-body rotation for each joist about its own local x-axis and one

rigid-body rotation of the entire structure about an axis through its

ball-and-socket supports.

The baseline model for this structure, given code name Cl, uses a

consistent mass formulation and no condensation of the joist members.

Figure 5.14 lists the input data that defines this model~ Structure

JOIST is defined only once and then used nine times with different

orientations in structure TETRA. A lumped mass model, code named Ll, is

used as a companion to the baseline model. This second model is identi­

cal in all respects except mass formulation. This change is made by

replacing the mass formulation key word "CONSISTENT" with the key word

"LUMPED." The consistent mass and lumped mass analyses are examined

separately since the natural frequencies for each are expected to differ

slightly. The approximate models use both lumped and consistent mass

formulations and varying degrees of condensation of the JOIST

- 139 -

- 140 -

,_.
~
1-'

yl TRIANGULAR PANEL

,-1
l, ,_ b ... 5>

Figure 5.12. Finite Element Mesh for Structure JOIST

XL

42 -- 1.

I

I
I

I
I

I

I

I
I

I
I

I
I

I
I

I
I

I
I

I

i
I
I

I

....
-1'­
w

•RuN FINITE
c
c
c
c
c
c
c
c
c
c
c
c
c

c

c

c
c
c

c
c
c

c
c
c

c
c
c

SPACE TRUSS STRUCTURE USED TO DEMONSTRATE
RESTART OF SUBSPACE ITERATION, REANALYSIS OF
SUBSTRUCTURES, AND LUMPED AND CONSISTENT
MASS FORMULATIONS.

THE STRUCTURE USES SPACE TRUSS ELEMENTS TO BUILD A
LONG SLENDER JOIST SUBSTRUCTURE WUICH IS THEN USED
TO FORM THE NINE SIDES OF A DOUBLE TETRAHEDRON.

THIS IS THE NON-CONDENSED, CONSISTENT MASS VERSION.

STRUCTURE JOIST
NUMBER OF ELEMENTS 90 NODES 32
ELEMENTS ALL TYPE SPACETRUSS CONSISTENT MASS_DENSITY 0.0007339 1

E 30000, AX 0.5

COORDINATES
1 o.o o.o 0.0
2 10.0 6.667 o.o
3 10.0 -3.333 s.o
4 10.0 -3.333 -5.0

29 100,0 6.667 o.o
30 100.0 -3.333 5.0
Jl 1oo.o -J.JJJ -s.o
32 110.0 0.0 0.0
GEN 2-29 BY 3 NOPRINT
GEN 3-30 BY 3 NOPRINT
GEN 4-31 BY 3 NOPRINT

INCIDENCES

LONGITUDINAL CHORDS

GEN 3 IN X 9 IN Y AS 1-27 FROM 2 5 ADD 1 IN X 3 IN Y

TRANSVERSE PANELS

GEN 28-37 FROM 2 3 ADD 3
GEN 38-47 FROM 3 4 ADD 3
GEN 48-57 FROM 4 2 ADD 3

DIAGONALS

GEN 58-66 FROM 2 6 ADD 3
GEN 67-75 FROM 3 7 ADD 3
GEN 76-84 FROM 4 5 ADD 3

PYRAMIDS AT ENDS

GEN 85-87 FROM 1 2 ADO 0 1
GEN 88-90 FROM 29 32 ADD 1 0

c
c

c

c

c

STRUCTURE TETRA
NUMBER OF NODES 275 ELEMENTS 9
ELEMENTS TYPE JOIST

1 ROTATION Y 121.482 Z -16.102
2 ROTATION Y 58.518 Z -16.102
3 ROTATION Y 90.0 Z 35.265
4 ROTATION SUPPRESSED
5 ROTATION X 60.0
6 ROTATION X 120.0
1 ROTATION Y 58.518 Z 16.102
8 ROTATION Y 121.482 Z 16.102
9 ROTATION Y 90.0 Z -35,265

INCIDENCES
1 l-32
2 1, 33-63
3 1, 64-94
4 32, 95-124, 63
5 32, 125-154, 94
6 63, 155-184, 94
7 32, 185-215
8 63, 216-245, 215
9 94, 246-275, 215

CONSTRAINTS
1 215 ALL • 0.0

C DEFINE THE FREQUENCY ANALYSIS, SHIFT FOR THE RIGID
C BODY MODES OF THE STRUCTURE.
c

c

FREQUENCY ANALYSIS TYPE SUBSPACE
PROPS NUM PAIRS 15 ITERATIONS 20 STURM CHECK,

RIGID BODY SHIFT -10.0

COMPUTE FREQUENCIES
OUTPUT FREQUENCIES
STOP

Figure 5.14. POL Definition of Double Tetrahedron

correspond

sufficient

to

DOF

the true behavior of the structure due to the absence of

in the final structure. In effect, Guyan reduction

prevents

modes.

clearly

the structure

The application

demonstrates its

from vibrating at some of its lower natural

of Guyan reduction to this structural model

limited potential for accurate frequency

analysis of substructured models.

Guyan reduction eliminates the rigid-body modes from the condensed

substructures in analyses C2A and L2A. This characteristic is purposely

used in analyses C2B and L2B to reduce the number of rigid-body modes in

structure TETRA. For these analyses, the first 4 fixed-fixed normal

modes are computed for structure JOIST. Mode 1 describes rigid-body

rotation of the joist about its local x-axis. Modes 2-4 are elastic

modes with non-zero frequencies. When JOIST_CON is defined, only normal

modes 2-4 are retained through condensation. This procedure eliminates

the rigid-body DOF from the substructure so that structure TETRA has

only one rigid-body mode. Retention of normal modes 2-4 gives structure

JOIST CON elastic DOF which do not exist in the Guyan reduced models.

The frequency results for these two analyses are close to those for the

baseline but vary erratically. Normally, convergence to the baseline

solution is monotonic from above. For C2B and L2B, some frequencies are

underestimated, others are overestimated, and still others are virtually

exact. Apparently, the rigid-body DOF neglected in the definition of

JOIST CON has an influence on the elastic modes of the structure and

should be retained.

Analyses C2C and L2C include all four of the normal modes from

structure JOIST in the condensation process, thus preserving the rigid­

body mode of JOIST CON. Input for C2C is listed in Figure 5.15. These

- 148 -

models provide a more consistent prediction of the natural frequencies

for structure TETRA. For these two analyses, the lumped mass formula­

tion shows slightly better convergence than does the consistent mass

formulation

conclusions.

but the data are insufficient to draw any general

As a check on convergence of the consistent mass model, a partial

reanalysis of C2C is performed to add the next 4 normal DOF from struc·

ture JOIST to structure JOIST_CON. The restart and reanalysis procedure

is labeled analysis C2D. The reanalysis requires that the fixed-fixed

frequency analysis of JOIST be restarted to compute modes 5·8.

Substructure JOIST_CON is then re-defined to contain normal modes 1-8 in

the reduction (modes 1-4 from the first analysis, modes 5-8 from the

restart). The

5.16. Three

input

simple

commands for this analysis are shown in Figure

steps are involved in performing the analysis.

First subspace iteration is restarted to compute the next 4 fixed-fixed

eigenpairs of JOIST. The analyst defines the number ~f additional

eigenpairs to compute and an initial shift value. Then, structure

JOIST CON is re-defined to contain the first 8 normal modes from struc-

ture JOIST. Finally, the frequency analysis for structure TETRA is

requested. Characteristics of the structural model which do not change

are not re-defined. For instance, the COORDINATES and INCIDENCES of

structure JOIST are not repeated. Also, the orientation of each occur­

rence of JOIST_CON in TETRA remains unchanged during reanalysis so this

data is not repeated. To the analyst, these model changes simply aug­

ment the description of the structural hierarchy. In fact, a major

restructuring of the problem database takes place. However, this

restructuring is transparent to the user.

- 149 -

*RUN FINITE FILES=20,21,22
c
c
c
c
c
c
c
c
c
c
c

c

DOUBLE TETRAHEDRON ANALYSIS C2D
====================================
RESTART ANALYSIS C2C TO ADD NORMAL DOF 5-8 TO
THE CONDENSED VERSION OF STRUCTURE JOIST.

THE FREQUENCY ANALYSIS OF STRUCTURE JOIST MUST BE
RESTARTED TO COMPUTE THE FIXED-FIXED FREQUENCIES
AND MODE SHAPES.

ACCESS STRUCTURE JOIST NONDESTRUCTIVE

FREQUENCY ANALYSIS TYPE SUBSPACE
PROPERTIES NUM PAIRS 4 ITERATIONS 20 STURM CHECK,

RIGID BODY SHIFT -10.0 MIN FREQ 0.13E04
c
C DEFINE THE NEW LIST OF NORMAL DOF TO RETAIN IN
C THE CONDENSED STRUCTURE.
c

ACCESS STRUCTURE JOIST_CON NONDESTRUCTIVE
c

c
c
c
c

ELEMENT 1 TYPE JOIST CONDENSED RETAIN NORMAL 1-8

RECOMPUTE FREQUENCIES FOR THE HIGHEST LEVEL
STRUCTURE.

COMPUTE FREQUENCIES FOR STRUCTURE TETRA
OUTPUT FREQUENCIES FOR STRUCTURE TETRA
STOP

Figure 5.16 POL Definition for Restart and Reanalysis

- 150 -

Analysis C2E is

procedures of C2D.

performed to verify the restart and reanalysis

In analysis C2E, the first 8 fixed-fixed normal

modes are computed for JOIST at the outset. All of these modes are then

used in definition of JOIST_CON. This complete reanalysis procedure

would be necessary to check convergence or to improve computed results

had restart and partial reanalysis not been possible. In this example

the computational costs between partial and complete reanalysis are

almost the same. This is due to the relatively high overhead needed to

support the restart and reanalysis procedure for such a small structural

model. For larger models, analysis restart will be significantly more

efficient than complete re-analysis of the model. Savings will be most

evident when the costs for performing substructure reduction (fixed­

fixed frequency analysis and the fixed-interface transformation) are a

large portion of the cost for the entire structural analysis.

Performance statistics for all of the double-tetrahedron analyses

are listed in Table 5.7. The CPU and paging requirements for the

baseline analysis are assigned values of 1000 and results for the

remaining 9 analyses are scaled accordingly. The condensation process

provides a drastic reduction in computational expense compared to the

non-condensed models.

orders of magnitude

economical analysis

seen.

CPU and paging requirements are cut by up to two

in the approximate analyses. The potential for

of more practical structural systems is readily

This example problem has demonstrated that the use of modal syn­

thesis can produce orders-of-magnitude savings in computational effort

while maintaining excellent accuracy. The analysis restart feature is

an essential component of the software system. When there is doubt

- 151 -

about the quality of the reduced model, convergence testing can be con­

ducted in an economical and convenient fashion. This flexibility

encourages proper use of the advanced modeling and analysis techniques

by both researchers and designers.

- 152 -

CHAPTER 6 SUMMARY AND CONCLUSIONS

6.1 Summary

Multilevel substructuring has been a popular technique for the

economical analysis of

loads. Modal synthesis

extend the concept of

complex structural models subjected to static

is the collective name for techniques which

substructuring to dynamic analysis. From this

group of techniques, the fixed-interface method of Craig and Bampton was

chosen as the focal point of study. Emphasis was placed on the im­

plementation and performance of the method in POLO-FINITE, a general

purpose software system which supports user-defined, multilevel sub­

structured modeling.

The characteristics and analytical development of the fixed­

interface method were discussed in detail. Advantages and disadvantages

of the basic method were addressed, followed by a complete development

of the procedure. The formulation was then extended to multilevel sub­

structured modeling. Procedures for restart and reanalysis were also

presented.

Software design and implementation was a major topic in this study.

Application of the POLO executive for software development and run-time

support was presented. POLO's two higher-level languages, DDL and HL,

were reviewed. The function of each was illustrated through samples of

the software developed for dynamic analysis. Integration of the hierar­

chical data structures, HL modules, and FORTRAN processing routines was

also discussed.

The organization and control of the FINITE subsystems was reviewed

for linear static and dynamic analysis. The POL that supports the new

- 153 -

modeling and analysis capabilities was discussed. Hypermatrix data

structures and algorithms were presented as a basis for the computa­

tional procedures performed in FINITE. Control of the analysis

procedures was reviewed for each of the new analysis functions imple­

mented in this study. Implementation of frequency analysis procedures

and of the fixed-interface method were presented in detail. The effects

of hypermatrix data structures on the implementation were emphasized

throughout. The procedure for restart and substructure reanalysis was

outlined. The need for an effective data management executive to sup-

port this feature was demonstrated.

Two example structural systems were analyzed to demonstrate and

evaluate the modeling and computational features of the FINITE system.

These studies verified the accuracy and economy that is possible with

multilevel substructured modeling. The generality of the implementation

was shown to reduce both modeling effort and analysis costs while in­

creasing flexibility.

6.2 Conclusions

The fixed-interface method provides a conceptually simple and reli­

able approach for the reduction of substructures for dynamic analysis.

The method is applicable to multilevel substructured models and is com­

patible with flexible restart and reanalysis procenures. The fixed­

interface method is a subset of several other modal synthesis techniques

and thus provides an ideal choice for implementation in a general

software system. While superior accuracy is sometimes possible with

alternative

important.

synthesis methods, other considerations are equally

Computational costs, user-interaction, and generality

- 154 -

(application to multilevel substructured models) must also be evaluated.

These topics remain largely unstudied because of the lack of sophistica­

tion in other software systems used to evaluate modal synthesis

techniques.

The generality of FEM software is equally dependent on the numeri­

cal algorithms that are chosen and on the software methodology used for

implementation. General purpose software requires advanced techniques

for data and computer resource management. Algorithmic languages do not

support such tasks. The use of an executive system for development and

run-time support becomes a necessity to modern analysis software.

Restart and reanalysis are essential and natural features of dynamic

analysis software that are generally neglected due to the complexity of

the data management tasks. Implementation of this capability is depend­

ent on the sophistication and versatility of the data manager within the

executive.

The two example solutions clearly demonstrated the accuracy and

efficiency of the software resulting from this study. For the first

time, it has been demonstrated that fixed-interface reduction of multi­

level substructured models can yield impressive savings in computational

effort while maintaining good accuracy. Also, the unique restart and

reanalysis procedures are simple to invoke so the analyst will be more

willing to attempt convergence studies of the structural model.

The new modeling and computational components in POLO-FINITE estab­

lish the requisite tools for comprehensive studies in structural

dynamics using substructured models. Extensive numerical testing is

necessary to further evaluate the procedures for and consequences of

substructure reduction.

- 155 -

The effects of the equation blocking precedure selected in Chapter

2 require additional study. Retained normal DOF are blocked as slave

DOF when substructures containing reduced lower-level substructures as

elements are themselves condensed. An alternative is to retain some

normal coordinates as master DOF in higher level substructures. The

result would be to lessen the detrimental effects of Guyan reduction (as

illustrated in the cantilever box example, models 3A, 3D, and 3G) and to

increase the size (order) of the higher level structure for subsequent

analysis.

Implementation of standard dynamic analysis functions (transient

analysis, shock spectrum response, etc.) in the POLO-FINITE system is

now possible. The use of substructured modeling with time history in­

tegration is expected to yield significant reductions in both model

development time and computational costs, paralleling those achieved in

static analysis. A particularly promising area is the nonlinear

analysis of substructured models in which the nonlinear response can be

localized at the highest level of the hierarchy. Condensed, lower level

substructures act as linear-elastic restraint on the nonlinear zone. As

dynamic loading is applied, stiffness matrix updates are performed for

only the nonlinear region.

condensed.

The linear substructures need not be re-

The application of time-dependent loads on reduced substructures

presents a difficult implementation problem. Unlike static analysis,

time-varying substructure loads cannot be simply condensed to the master

DOF and carried forward in the hierarchy of the model. Special provi­

sions must be made for time-history integration at the substructure

level to fully evaluate these load effects .

• 156 .

REFERENCES

1. Bajan, R. L., Feng, C. C. andJaszlics, I. J., "VibrationAnalysis
of Complex Structural Systems by Modal Substitution," Shock and
Vibration Bulliten, vol. 39, no. 3, pp. 99-106 (1969)

2.

3.

Bamford,
Analysis
Systems,

R.,
of

ASME

Wada, B. K., Garba, J. A. and Chisholm, J., "Dynamic
Large Structural Systems," Synthesis of Vibratin~
Booklet, Nov. 1971, Library of Congress #76-179491

Bathe, K-J, and Wilson,
Dynamic Analysis," Journal
pp. 1471-1485 (1972)

E. L., •Large Eigenvalue Problems in
of Engineering Mechanics. ASCE, vol. 98,

4. Bathe, K-J, and Wilson, E. L., Numerical Methods in Finite Element
Analysis, Prentice Hall, (1976)

5. Bathe, K-J, and Ramaswamy,
Method," Computer Methods
vol. 23, pp. 313-331 (1980)

S., "An Accelerated Subspace Iteration
in Applied Mechanics and En~ineering,

6. Benfield, W. A. and Hruda, R. F., "Vibration Analysis of Structures
by Component Mode Substitution," AIM Journal, vol. 9, no. 7, pp.
1255-1261, (1971)

7. Braun, K. A., Dietrich, G., Frik, G., Johnsen, T. L., Straub, K.,
and Vallianos, G. , "Some Hypermatrix Algorithms in Linear Algebra,"
Proceedings, Second International Symposium on Computing Methods in
Applied Sciences and Engineering, Versailles (December, 1975)

8. Cook, R. D., Concepts and Applications of Finite Element Analysis,
Second Edition, John Wiley and Sons (1981)

9. Corr, R. B. and Jennings, A., "A Simultaneous Iteration Algorithm
for Symmetric Eigenvalue Problems, " International Journal for
Numerical Methods in En~ineering, vol. 1, pp. 647-663 (1976)

10. Craig,
Dynamic
(1968)

R. R. and Bampton, M. C. C., "Coupling of Substructures for
Analysis," AIM Journal, vol. 6, no. 7, pp. 1313-1319,

11. Craig, R. R. and Chang, C-J, "Free-Interface Methods of
Substructure Coupling for Dynamic Analysis," AIM Journal, vol. 14,
no. 11, pp. 1633-1635, (1976)

12. Craig, R. R. and Chang, C-J, Substructure Couplin~ for Dynamic
QA~n~a~l~y~s~i~s--~an~d--~T~e~s~t~in~g, NASA Contractors Report CR-2781, February
(1977)

13. Craig, R. R., "Methods of Component Mode Synthesis," Shock and
Vibration Digest, vol. 9, no. 11, pp. 3-10, (1977)

- 157 -

14. Craig, R. R. and Chang, C-J, "On the Use of Attachment Modes in
Substructure Coupling for Dynamic Analysis," Proceedings of the
18th SDM Conference, San Diego, Cal. March 1977

15. Dodds, R. H. and Lopez, L. A., "Substructuring in Linear and
Nonlinear Analysis," International Journal for Numerical Methods
in Engineering, vol. 15, pp. 583-597 (1980)

16. Dodds, R. H. and Lopez, L.A., "Generalized Software for Nonlinear
Analysis," International Journal for Advances in Engineering
Software, vol. 2; no. 4, pp. 161-168 (1981)

17. Dodds, R. H., Rehak, D. R., and Lopez, L. A., "Development
Methodologies for Scientific Software," Software - Practice and
Experience, vol. 12, pp. 1085-1100 (1982)

18. Dodds, R. H., Rehak,
Machines for Development
the 24th SDM Conference,

D. R., and Lopez, L.A., "Software Virtual
of Finite Element Systems," Proceedings of
Lake Tahoe, Nev., May, 1983

19. Fuchs, G. V. , Roy, J. R. , and Shrem, E. , "Hypermatrix Solution of
Large Sets of Symmetric Positive-Definite Linear Equations,•
Computer Metbods in Applied Methanics and Engineering, vol. 1, pp.
197-216 (1972)

20. Furuike, T., "Computerized Multiple Level Substructured Analysis,"
Computers and Structures, vol. 2, pp. 695-712 (1972)

21. Gladwell, G. M. L., "Branch Mode Analysis of Vibrating Systems,"
Journal of Sound and Vibration, vol. 1, pp. 41-59, (1964)

22. Goldman, R. L., "Vibration Analysis by Dynamic Partitioning," ~
Journal, vol. 7, no. 6, pp. 1152-1154, (1969)

23. Guyan, R. J., "Reduction of Stiffness and Mass Matrices," AIAA
Journal, vol. 3, no. 2, p. 380, (1965)

24. Hale, A. L. and Meirovitch, L., "A General Substructure Synthesis
Method for the Dynamic Simulation of Complex Structures," Journal
of Soypd and Vibration, vol. 69, no. 2, pp. 309-326 (1980)

25. Hale, A. L. and Meirovitch, L., "A Procedure for Improving Discrete
Substructures Representation in Dynamic Synthesis,• Proceedings of
the 24th SDM Conference, Lake Tahoe, Nev., May 1983

26.

27.

Henshell, R. D. and Ong, J. H., "Automatic Masters for Eigenvalue
Economization,• Earthquake Engineering and Structural Dynamics,
vol. 3, pp. 375-383 (1975)

Herting, D. N. "A
Synthesis Method,"
Louis, Mo. , 1979

General Purpose, Multi-Stage Component Modal
Proceedings of the 20th SDM Conference, St.

- 158 -

28. Hintz, R. M., "Analytical Methods in Component Modal Synthesis,"
AIAA Journal, vol. 13. no, 8, pp. 1007-1016, (1975)

29. Holze, G. H. and Boresi, A. P., "Free vibration Analysis Using
Substructuring," Journal of the Structural Division. ASCE, vol.
101, pp. 2627-2639, (1975)

30. Hou, S·N, "Review of Modal Synthesis Techniques and a New
Approach," Shock and Vibration Bulletin, vol. 4, no. 4, (1969)

31. Hurty, W. C., "Vibrations of Structural Systems by Component Mode
Synthesis," Journal of tbe Engineering Mechanics Division. ASCE,
vol. 86, no. 4, pp. 51-69, (1960)

32. Hurty, W. C., "Dynamic Analysis of Structural systems Using
Component Modes," AIAA Journal, vol. 3, no. 4, pp. 678-685, (1965)

33. Hurty, W. C., Collins, J.D. and Hart,
Large Structures by Modal Synthesis
Structures, vol. 1, pp. 535-563, (1971)

G. C., "Dynamic Analysis of
Techniques, u Computers and

34. Hurty, W. C., "Introduction to Modal Synthesis Techniques,"
Synthesis of vibrating Systems, ASME Booklet, Nov. 1971, Library of
Congress #76-179491

35. Jennings, A. and Agar, T. J. A., "Progressive Simultaneous Inverse
Iteration for Symmetric Linearized Eigenvalue Problems," Computers
and Structures, vol. 14, no. 1-2, pp. 51-61 (1981)

36. Kidder, R. L. , "Reduction of Structural Frequency Equations," aiM
Journal, vol. 11, no. 6, p. 892, (1973)

37. Kubomura, K., "A Theory of Substructure Modal Synthesis," Journal
of Applied Mechanics, vol. 49, pp. 903-909, (1982)

38. Kuhar, E. J. and Stahle, C. V., "Dynamic Transformation Method for
Modal Synthesis," AIAA Journal, vol. 12, no. 5, pp. 672-678, (1974)

39. Leung, Y. T., "An Accurate Method of Dynamic Condensation in
Structural Analysis," International Journal for Numerical Methods
in Engineering, vol. 12, pp. 1705·1715, (1978)

40. Leung, Y. T., "An Accurate Method of Dynamic Substructuring with
Simplified Computation," International Journal for Numerical
M~e~t~h~o~d=s~i~nL£E~n~g~inlle~e~r~1~·n~g, vol. 14, pp. 1241-1256 (1979)

41. Lopez, L. A., "POLO Problem Oriented Language Organizer,"

42.

Computers and Structures, vol. 2, pp. 555-572, (1972)

Lopez, L. A. , "FILES:
System," Journal of the
ST4, pp. 661-676 (1975)

Automated Engineering Data Management
Structural Division, ASCE, vo1. 101, no.

. 159 .

43. Lopez, L.
Systems,"
Engineering,

A., "FINITE: An Approach to Structural Mechanics
International Journal for Numerical Methods in
vol. 11, no. 5, pp. 851-866 (1977)

44. MacNeal, R. H., "A Hybrid Method of Component Mode Synthesis,•
Computers and Structures, vol. 1, pp. 581-601 (1971)

45. Meirovitch, L. and Hale, A. L., "Synthesis and Dynamic
Characteristics of Large Structures with Rotating Substructures,•
Rynamics of Multibody Systems, Symposium held in Munich, West
Germany, Aug. 29 ·. Sept. 3, 1977, pp. 231-244

46. Meirovitch, L. and Hale, A. L., "A General Dynamic Synthesis for
Structures with Discrete Substructures," Proceedin&s of the 21st
SDM Conference, Seattle, Wash. May, 1980

47. Meirovitch, L. and Hale, A. L., "On the Substructure Synthesis
Method," AIAA Journal, vol. 19, no. 7, pp. 940-947, (1981)

48. Miller, C. A., "Dynamic Reduction of Structural Models,• Journal of
the Structural Division. ASCE, vo1. 106, pp. 2097-2108, (1980)

49. Morosow, G. and Abbot, P., "Mode Selection," Synthesis of Vibratin&
Systems, ASME Booklet, Nov. 1971, Library of Congress #76-179491

50. Przemieniecki, J. S., "Matrix Structural Analysis of
Substructures," AIAA Journal, vol. 1, no. 1, pp. 138-147 (1963)

51. Rice, J. R., The Approximation of Functions, Addison-Wesley (1964)

52. Rubin, S., "Improved Component Mode
Dynamic Analysis,• AIAA Journal,
1006, (1975)

Representation for Structural
vol. 13, no. 8, pp. 995-

53. Schmidt, R. J. and Dodds, R. H., Theoretical and Software
Considerations for Nonlinear Dynamic Analysis, SM Report No. 8,
Feb. (1983) University of Kansas, Center for Research, Lawrence,
Kansas

54. Shah, V. N. and Raymund, M., "Analytical Selection of Masters for
the Reduced Eigenvalue Problem," International Journal for
Numerical Methods in Engineerin&, vol. 18, pp. 89-98 (1982)

55.

56.

Von Fuchs, G, Roy, J. R., and Schram, E., "Hypermatrix
Large Sets of Symmetric Positive-Definite Linear
Computer Methods in Applied Mechanics and Engineerin&,
197-216 (1972)

Solution of
Equations,"
vol. 1, pp.

Williams, F. W., "Comparison of Sparse
Methods," International Journal for
En&ineering, vol. 5, pp. 383-394 (1973)

Matrix and Substruture
Numerical Methods in

- 160 -

57.

58.

Wilson,
Journal
198-203

E. L., "The Static Condensation Algorithm,"
for Numerical Methods in Engineering, vol.

(1974)

International
8, no. 1, pp.

Wilson, E. L. and Itoh, T., "An Eigensolution Strategy for Large
Systems," Computers and Structures, vol. 16, no. 1-4, pp. 259-265
(1983)

59. Wright, G. C. and Miles, G. A., "An Economical Method for
Determining the Smallest Eigenvalues of Large Linear Systems,"
International Journal for Numerical Methods in Engineering, vol. 3,
pp. 25-33, (1971)

- 161 -

APPENDIX A USER INTERFACE AND INPUT DESIGN

A.l General

The most popular approach to user communication with structural

analysis software is the problem oriented language (POL). Virtually all

successful software 'systems use the POL approach, either by initial

design or by the use of pre-processors to translate POL input into

fixed-format, card images. The POL approach provides the user with

greater flexibility by placing him in control of the input process

rather than forcing him to conform to rigid formats and input sequences.

The self-documenting nature of the input reduces the need for reference

to manuals and provides a concise description of the structural model

for other analysts. The POL is essential for interactive processing in

which error recovery is often necessary.

The philosophy established during the development of FINITE was to

maintain as much independence as possible among the various components

of a complete structural model. These components include nonlinear

material models specification, geometric definition of the structures,

parameters controlling nonlinear solution algorithms, and requests for

computation and output. The primary reasons for choosing this approach

are to provide maximum flexibility in using condensed substructures as

elements in the higher level structures and to minimize the effect of

changes in the structural model throughout the analysis/design sequence.

Wherever possible, this philosophy is maintained in the extension

to dynamic

parameters

analysis.

must be

One area does exist in which dynamic solution

tied directly to the geometric definition of a

substructure. This is the frequency analysis of a substructure that is

- 162 -

to be condensed by modal synthesis. Since economical frequency analysis

depends upon the type of structure, the number of eigenpairs required,

and the solution method, it is not appropriate to select just one solu­

tion algorighm for all substructures in a complex model. Various

substructures will have differing characteristics and may require an

unequal number of retained normal modes for condensation. It is also

possible

differing

separate,

selection

that one substructure could be condensed two or more times in

ways, with varying geometric and generalized DOF, for use in

higher level structures. Thus, it is necessary to tie the

of the eigenproblem solution method to the structure

definition.

The capabilities selected for general purpose dynamic analysis,

along with the various options and parameters that control the solution,

must be defined accurately and unambiguously by the POL. Section A.2

presents an explanation of the capabilities to be incorporated into

POLO-FINITE. Section A.3 lists the syntax of the commands for dynamics

and examples of their use. As stated earlier, this appendix describes

the POL for a complete set of analysis capabilities, including those

that have not been implemented as a part of this study. Portions of the

POL which have not been implemented are indicated by an "*" in the sec­

tion headings.

- 163 -

A.2 Description of the POL

A.2.1 Structure and Element Mass

The mass of a structure can be divided into two parts: primary and

secondary. Primary mass is

(elements) of the structure.

specification of an· element

the mass of the load-carrying components

Its definition is easily added to the

through two new element properties. The

first defines the type of mass formulation: LUMPED or CONSISTENT. The

second is the MASS_DENSITY of the material of which the element is

composed. The element mass matrix can then be formed using existing

element shape functions. The FINITE system accepts up to thirty DOF at

each node of an element. These include the translational DOF: U, V,

and W, and their first and second derivatives: UX, VX, WX, UY, etc.

Depending upon the particular element formulation, it is possible for

mass to be assigned to any or all of these DOF.

Secondary mass is the mass of non-load-carrying components, such as

concentrated and distributed live-loads, that are supported by the

structure. Secondary mass is defined in a manner similar to the defini­

tion of gravity loads. The secondary mass is resolved into equivalent

nodal mass via the appropriate element load shape functions. The result

will always be a lumped mass matrix which is added to the primary mass

of the structure. As with primary mass, secondary mass may be as­

sociated with any of the thirty nodal DOF.

There are three types of secondary mass: nodal, element, and

pattern. Nodal mass is mass that is concentrated at a structure node.

Element mass is concentrated or distributed on the surface of an

element. Pattern mass enables the defintion of secondary mass in terms

of a previously defined loading condition, usually gravity loading. The

- 164 -

user must specify only the name of the loading condition to be used as

the pattern and a value for the acceleration of gravity to support the

appropriate conversion from force to mass.

The commands for computation (assembly) and output of the mass

matrix for a structure or stand-alone element follow directly from those

for the stiffness matrix.

A.2.2 Structure Damping - *
Damping is typically defined only for the highest level structure,

not for individual finite elements or substructures. Two methods are

available for defining structural damping: modal and Rayleigh.

Definition of modal damping requires input of the modal damping ratio

for each vibration mode under consideration. Modal damping is ap­

plicable only to transient analysis by mode superposition. Rayleigh

damping involves the definition of two damping ratios at two selected

frequencies; the frequencies need not be eigenvalues of the structure.

Rayleigh damping is applicable to transient analysis by either mode

superposition or time-history integration. Use of Rayleigh damping

requires that a frequency analysis be performed in order to compute the

modal damping ratios for mode superposition or to explicitly form the

damping matrix for time-history integration.

Depending upon the method used to define damping, either the damp­

ing matrix or modal ratios can be output for the structure.

A.2.3 Frequency Analysis

As previously mentioned, the parameters controlling the frequency

analysis (computation of natural frequencies and mode shapes) must be

- 165 -

defined individually for each structure for which the analysis is to be

performed. No default analysis method is adopted. The syntax for

specification of the solution method is similar to that for a nonlinear

material. The TYPE of solution procedure is identified followed by a

listing of the PROPERTIES which control the procedure. Solution method

properties can be chariged via analysis restart. If a substructure is to

be condensed by Guyan reduction, no frequency analysis specification is

required.

The request for computation may be made explicitly by the analyst

or the analysis may be invoked automatically by the FINITE processors.

Standard output included natural frequencies and mode shapes. Recovery

of mode shapes for condensed lower level substructures is performed when

an output request is encountered to print those quantities.

Substructures to be recovered are specified by appending a list of sub­

element numbers to the name of the structure.

Prior to a transient analysis by mode superposition, the user may

examine the modal content of a particular dynamic loading condition. A

special output request facilitates selection of the modes that par­

ticipate in the dynamic response. After a frequency analysis the

analyst may request output of MODAL LOADS for the loading condition.

The frequency content of the loading can then be examined and the ap­

propriate modes selected for superposition.

As a tool for evaluation of the quality of the results in a modal

synthesis analysis, MODAL STRAINS may be computed and output to the

analyst. MODAL STRAINS are the element strains which result when a

selected vibration mode shape is used as a displacement vector. Output

- 166 -

of MODAL STRAINS must be preceded by a frequency analysis of the

structure.

A.2.4 Substructure Reduction

The procedure to request reduction of a substructure for dynamic

analysis parallels tbat for static condensation. The reduction method

is defined at the intermediate substructure level; i.e., the substruc­

ture with only one element of type CONDENSED. Guyan reduction is the

default method. The fixed-interface method is invoked by specifying

which substructure normal modes to retain. The modes specified must be

within the range computed in the frequency analysis of the lower-level

substructure which is being condensed. The retained modes need not be

consecutively numbered. As an alternative to using substructure normal

modes, user-supplied mode shapes can be used in the synthesis process.

These modes could be derived from an experimental analysis or some other

source, such as low-order polynomials. Input data describing these

modes must be included with the definition of the structure to be

condensed.

Reduction can be explicitly invoked with a COMPUTE STIFFNESS ... or

COMPUTE MASS ... command for the intermediate level substructure.

Reduction is performed automatically when required to satisfy a request

for a higher-level structure.

A.2.5 Initial Conditions - *

Initial conditions can be defined for a structure prior to tran-

sient analysis. They define a starting solution, in terms of

displacements and velocities, for the unconstrained physical DOF at time

- 167 -

t 0. For all other times the displacements and velocities from the

previous time step are used in the integration.

The analyst may specify initial conditions in one of two ways.

First, he may define numerical values for each DOF with non-zero dis-

velocity. The default initial conditions are zero placement or

displacement and velocity for all unconstrained DOF. The second method

uses the static equilibrium configuration from a previous linear or

nonlinear analysis. This method allows the structure to be released

from some deflected initial shape with zero initial velocity. A dynamic

loading may then be applied as the transient response is evaluated.

A.2.6 Dynamic Loading - *
The dynamic loading function, P(x,y,z,t), is defined such that it

has a spatially-varying component, F(x,y,z), and a time-varying com­

ponent, G(t):

P(x,y,z,t) - F(x,y,z) * G(t). (A.l)

Simply stated, the pattern of the load is fixed and its magnitude

changes with time.

The load pattern, F(x,y,z), can be described as either actual

forces applied to the structure or as support accelerations. The former

can best be defined as a static linear loading condition, while the

latter requires an additional loading type: NODAL ACCELERATIONS. No

special provisions are necessary for input of out-of-phase support

accelerations. They can be recoginzed and handled automatically.

The time-varying component of the loading function, G(t), is

defined along with other loading data in a dynamic loading condition.

The G(t) vs. t relation may be harmonic, impulsive, or general. the

- 168 -

dynamic loading

F(x,y,z), which

condition can be

condition must also include the loading pattern,

is to be used. More than one static linear loading

combined to form the complete pattern of the dynamic

load. Other necessary input includes the values of time t at which

displacements are

size) and values

to

of

be computed (thus defining the integration step

time t at which computed results are to be

retained in the data base. This last item is important because a tran-

sient analysis

than could be

of any significant duration could result in more data

effectively stored. Also, it is likely that computed

results would be required at only a few of the many time steps for which

displacement are computed.

A.2.7 Transient Analysis - *
Transient analysis yields the displacement and velocity response of

the structure when it is subjected to time-varying loading or support

accelerations. Two approaches are available for performing transient

analysis: mode superposition and time-history integration. Mode super­

position requires that a frequency analysis be performed so the

equations of motion can be uncoupled. This implies that an appropriate

frequency analysis must be selected prior to requesting the transient

analysis. The resulting set of independent equations is easily solved

using one of the Lagrange interpolation formulae. Time-history integra­

tion is performed by any one of a number of explicit, implicit, or

hybrid operators. Specification of the transient analysis method is

similar to that for frequency analysis: the TYPE of method is defined

followed by the PROPERTIES list.

- 169 -

The request for computation includes the structure to be analysed,

the dynamic loading condition, time steps, and initial conditions.

Results available for output include displacements, velocities, strains,

and stresses.

A.2.8 Shock Spectrum ·Analysis • *
The analysis of shock spectrum response is currently restricted to

linear structures. The shock spectrum is input by defining the func­

tional relationship between a spatial coordinate and a time coordinate.

The spatial coordinate can be chosen as displacement, velocity, or ac­

celeration, while the time coordinate can be either period or frequency.

The user inputs discrete points from the spectrum and the remainder of

the curve is constructed by linear interpolation in four-way logarithmic

coordinates. The direction of application of the shock is defined using

direction cosines for the translational DOF (U, V, and W for 3-D

structures). The nodes at which the shock is applied are also defined.

Prior to computing the spectral response, a frequency analysis of

the structure must be performed. Spectral response quantities are com­

puted only after the corresponding output request has been made.

Results available for output include spectral displacements, spectral

velocities, spectral strains, and spectral stresses. These quantities

can be output on a mode-by-mode basis or in some combined form. Methods

used to combine the modal quantities include SRSS (square root of the

sum of the squares) and PEAK_SRSS (peak response mode plus SRSS of the

remaining modes). PEAK_SRSS is also known as the Naval sum. As a

measure of the portion of the total mass responding to the shock in each

mode, the modal PARTICIPATION_FACTORS can also be output.

- 170 -

A.3 POL Syntax and Exgmples

A.3.1 Syntax Conventions

The following is a description of the conventions used in this

section to illustrate the FINITE command syntax.

A descriptor is used to identify the position and class of a data

item in a particular FINITE command line. The descriptor is delimited

by the characters "< >." The command

NUMBER OF NODES <integer>

implies that the word NODES is to be followed by an integer. As ap-

propriate example is:

NUMBER OF NODES 100

The following are definitions of the descriptors used within the

POL:

<integer>

<real>

<number>

<integer list>

<real list>

<number list>

a series of digits optionally preceded by a plus
or minus sign. Examples are 121, +300, -8 .

a representation of a floating point number in
either decimal or exponential form. Real num­
bers must contain a decimal point and may be
signed. Examples are 1.0, -3.5, 5.2E-08 .

either an integer or a real number may be input.
The data item is converted to a real number.

a sequence of integers. The sequence may be
listed explicitly or defined over a range of
integers with a constant increment. The default
increment is 1 . Examples are: 1, 2, 4, 5, 8,
11; 1-10; 2-20 BY 2 .

a sequence of real numbers. Real lists have the
same form as integer lists except that there is
no default increment. Examples are: 1.0, 1.5,
2.0, 3.0; 0.0-2.5 BY 0.25

either an integer list or a real list is input.
The data is converted to real.

- 171 -

<label>

<string>

a series of letters and digits beginnings with a
letter. Labels are used as names for identify­
ing various entities. Examples are:
PLANEFRAME, DEADLOAD_lO .

any text enclosed within single or double
quotes. An example is: "THIS IS A STRING"

In some instances a description of the physical meaning of the data item

is added to the class·in the syntax of a descriptor. This is helpful in

clarifying the use of the data item. For example a command of the form

STRUCTURE <structure name:label>

implies that the data item following th~ word STRUCTURE is a label

defining the name of the structure.

It is not always necessary to completely spell out every word on a

command line in order to have the command correctly translated. Many

words can be abbreviated and these are identified in the command syntax

by underlining. The underlined portions of words identify the minimum

input necessary for proper command translation. Descriptors are not

underlined but are replaced by an item of the specified class when

applicable. If the command syntax has the form:

NUMBER Q[NODES <integer>

the following is acceptable as input:

NUM OF NODE 10

When only one word from a group of words may be selected as input,

the choices are listed one above the other and enclosed in braces, "{ }"

The command syntax

COMPUTE ! STIFFNESS l
DISPLACEMENTS

implies that any of the following commands are acceptable:

- 172 -

COMPUTE STIFF

COMPUTE DISPLACEMENTS

COMPUTE DISPL

When an entire word or phrase in the command is optional, it is

enclosed within parentheses. The command with the syntax

NUMBER (OF) NODES <integer>

can be issued as

NUM NODES 100

When more than one word from a group of words may be selected, the

group is enclosed in brackets, " [] "

OUTPUT DISPLACEMENTS

STRAINS

STRESSES

implies that the user may request

OUTPUT DISPL STRAINS

The command

Brackets and braces are combined to allow more flexibility in

designing commands. The command syntax

<integer>

implies that the user may enter data of the form:

1 X 0.0 Y 0.0 Z 5.0

2 X 1.0 Z 5.0

Continuation of an input line onto a second physical line is ac·

complished by placing a comma at the end of the line to be continued.

Comments may be placed in the data by placing a "C" in column 1 and

a blank in column 2 of the comment line .

. 173 •

One method for line termination is to place dollar-sign "$" on the

line. All entries on the line following the "$" are ignored by the

translator and may be used for comments.

A.3.2 Syntax and Examples

A.3.2.1 Specification of Mass

Example of the command to specify primary mass:

ELEMENT 1 TYPE CSTRIANGLE CONSISTENT E 30000. NU 0. 3,
HASS_DENSITY 0.000734

Example of the commands to specify secondary mass (nodal, element, and
secondary):

MASS
NODAL

2 U V W 20.0 THETAX THETAY 5.0
ELEMENT MASS FOR TYPE PLANEFRAME

3 LINEAR U V W FRACTIONAL LA 0.25 LB 0.75 WA 3.0 WB 8.0
1 CONCENTRATED U V W L 3.6 M 5.0
2 CONCENTRATED THETAZ L 3.6 M 3.0

USE WADING DEAD_WAD G 386.4

Assembly command:

COMPUTE MASS (FOR) I STRUCTURE l
ELEMENT

Ex: COMPUTE MASS STRUCTURE TRUSS

Output command:

OUTPUT MASS (FOR)

! ~CTUREl ELEMENT

Ex: OUTPUT MASS ELEMENT WAFER

- 174 -

<label>

<label>

A.3.2.2 Specification of Damping - *
Modal damping:

DAMPING MODAL

!
RATIOS !
PERCENTS

[<mode list:integer list> <number>]

Ex: DAMPING MODAL RATIOS 1 0.01 2 0.015 3-10 0.02

Rayleigh damping:

DAMPING RAYLEIGH FREQUENCIES! <number> <number>
PERIOD
RATIOS ! <number> <number>
PERCENTS

Ex: DAMPING RAYLEIGH FREQ 100.0 2000. 0 PERCENT 2. 0 5. 0

Output command:

OUTPUT DAMPING I MATRIX I ((FOR)
RATIOS
PERCENTS

STRUCTURE <label>) (,)

((EQE) MODES <integer list>)

Ex: OUTPUT DAMPING RATIOS STRUCTURE FRAME MODES 1-10

- 175 -

A.3.2.3 Specification of Frequency Analysis

Definition of the frequency analysis method:

FREQUENCY ANALYSIS (mJD JACOBI
SUBSPACE

~ERTIES'<list of properties:label:integer:real>

Ex: FREQUENCY TYPE SUBSPACE
PROPERTIES NUM PAIRS 10 ITERATIONS 8 STURM CHECK

Properties for the two analysis methods, JACOBI and SUBSPACE, are
listed in Tables A.l and A.2 respectively.

Computation request:

COMPUTE KNATURAL)
L(MODE)

mf).UENCIES]
SHAPES

Ex: COMPUTE FREQ STRUCTURE FRAME

Standard output request:

OUTPUT f(NATURAL) FREQUENCIES]
L<MODE) SHAPES

((FOR) STRUCTURE <label>)

((FOR) STRUCTURE <label>) (,)

((FOR) ~S <integer list>)

Ex: OUTPUT SHAPES STRUCTURE FRAME MODES ALL

Example of mode shape recovery for condensed substructures:

OUTPUT MODE SHAPES STRUCTURE HIGHEST/2/1/2 MODES 1-5

Modal loads output request:

OUXPUT MODAL LOADS ((FOR) STRUCTURE <label>) (,)
(EQE) ~ING <label>

Modal strain output request:

OUTPUT DYNAMIC STRAINS (FOR) STRUCTURE <label> ...

- 176 -

Command

TOLERANCE <number>

(NUMBER) (OF) SWEEPS <integer>

RIGID (BODY) (SHIFT) <number>

Default

l. OE-06

15

.FALSE.

Description

Convergence tolerance

Maximum number of
sweeps.

Shift for rigid body
modes.

Table A.l Properties for JACOBI Frequency Analysis Method

Command Default

(NUMBER) (OF) ~S <integer> 0

(NUMBER) (OF) ITERATIONS <integer> 0

~!MUM (FREQUENCY) <number>

IQ1ERANCE <number>

SUBSPACE (SIZE) <integer>

~(CHECK)

JACOBI (TOLERANCE) <number>

(NUMBER) (OF) SWEEPS <integer>

RIGID (BODY) (SHIFT) <number>

NO SHIFT

FREEZE (VECTORS)

-none-

l.OE-06

function
of model
bandwidth

.FALSE.

l.OE-12

15

.FALSE.

.FALSE.

.FALSE.

Description

Number of eigenpairs
to be computed.

Maximum number of
iterations.

Largest eigenvalue
to compute.

Convergence tolerance

Number of iteration
vectors to use.

Perform Sturm
sequence check.

Convergence tolerance
for Jacobi iterations

Maximum number of
sweeps for Jacobi
iterations.

Shift for ridid body
modes.

Surpress positive
shifting.

Surpress replacement
of converged vectors.

Table A.2 Properties for SUBSPACE Frequency Analysis Method

- 177

A.3.2.4 Specification of User-Supplied Mode Shapes • *
Command sequence:

ALTERNATE (MODES) <name:label> ((TITLE) <string>)

<specification of DOF order: U V W UX ... >

[
l1Q!J.E <mode number: integer>]
[<node numbe~:integer> [<DOF value:number>]]

Ex: ALTERNATE HODES LAB_TEST
u v w
MODE 1

1 0.3 0.0 0.2
2 0.1 0.0 0.1
3 0.6 0.0 0.4

MODE 2
1 0.0 1.0 0.1
2 0.0 0.5 0.5
3 0.0 2.0 0.2

A.3.2.5 Specification of Substructure Reduction

Element declaration for intermediate level substructure:

ELEMENT l mil: <structure name: label> CONDENSED (,)

I RETAIN (NORMAL) (MODES) <integer list>/
/ USE ALTERNATE (l1Q!J.ES) <label> 1

Ex: ELEMENT 1 TYPE CHANNEL CONDENSED RETAIN l-10

A.3.2.6 Specification of Initial Conditions • *
Command sequence:

INITIAL CONDITIONS <label> ((TITLE) <string>)

DISPLACEMENTS
[<node list:integer list><DOF list:labels>- <number>]

VELOCITIES
[<node list:integer list><DOF list:labels>- <number>]

USE ~CEMENTS ((FOR) STRUCTURE <label>) (,)
(FOR) LOADING <label>

Ex: INITIAL CONDITIONS PRE_LOAD
USE DISPLACEMENTS FOR LOADING PULL

- 178 -

A.3.2.7 Specification of Dynamic Loadin~ • *
Input of support accelerations as F(x,y,z):

LOADING <label> ((TITLE) <string>)
(NODAL) ACCELERATIONS

{<node list: integer list> <DOF list: labels> <number>]

Ex: LOADING QUAKE
ACCELERATIONS

1-3 u 2.0
1-3 v 1.5

Definition of the loading condition:

LOADING <label> ((TITLE) <string>)

[
DYNAMIC]
NONLINEAR

Definition of G(t) within the dynamic loading condition:

For a harmonic variation of G(t):

HARJ1QNIC PERIOD <number> (EliME. (ANGLE) <number>) (,)
(COMBINE) [<pattern name: label> (FACIOR) <number> (,)]

For a general variation of G(t):

GENERAL (COMBINE) [<label> [! ~~RS I <number list> J J
For an impulsive variation of G(t):

IHPULSIVE (SHAPE) I HALf-SINE I DURATION <number> (,)
RECTANGULAR
POS ·TRiANGULAR
NEW· TRIANGULAR

(COMBINE) { <label> (FACTOR) <number> 1

Step size definition within the dynamic loading condition:

[(TIHE) STEPS <integer list> ((TITLE) <string>) (,)
<number list> (SECONDS) 1

Selection of the individual steps to save in the data base:

SAVE (TIHE) STEPS <integer list>

Note that the last step computed is always saved, even if not in the
integer list or if the command is not given .

. 179 .

Ex: LOADING VIBRATE
DYNAHIC

IMPULSIVE HALF SINE DURATION 0.5 QUAKE 1.0
STEPS 1-100 0.005-0.500 BY 0.005
SAVE STEPS 5-100 BY 5

A.3.2.8 Specification of Transient Analysis - *
Definition of the transient analysis method:

TRANSIENT ANALYSIS (TYPE) MODE-SUPERPOSITION
NEWMARK
CENI&AL-DIFFERENCE

~ERTIES <list of properties:label:integer:real>

Computation request:

COMPUTE [DYNAHIC J DISPLACEMENTS ((FOR) STRUCTURE <label>) (,)
NONLINEAR

[

Lf2!Jll.ING <label> (TIME) STEPS <integer list:> l
INITIAL CONDITIONS <label> ·
INCLUDE MODES <integer list:>

Output request:

OUTPUT [DYNAMIC J [DISPLACEMENTS I (<integer list>) (,)]
NONLINEAR ~CITIES .

STRAINS
STRESSES

((FOR) STRUCTURE <label>) (,)
(FOR) LOADING <label>) (TIME) STEPS <integer list>

- 180 -

A.3.2.9 Specification of Shock Spectrum Analysis - *
Definition of the spectrum:

(SHOCK) SPECTRUM <name:label> ((TITLE) <string>)

l DISPLACEMENTS l
VELOCITIES
ACCELERATIONS

l PERIODS ·I
FREQUENCIES !

DIRECTIONS (,)

<number list>

<number list>

<node lisC:inCeger list> [l ~I <direction cosine:number>]

Ex: SPECTRUM SHAKER "EARTHQUAKE ONE"
DISPLACEMENTS 0. 0 1. 0 1. 0 0. 0
FREQUENCIES 0. 0 5. 0 100.0 1500.0
NODES 1-4
DIRECTIONS U 0.5 V 0.6 W 0.624

Output request:

OUTPUT DYNAMIC

[
~CEMENTS]
yg]j)CITIES
STRESSES
STRAINS
PARTICIPATION-FACTORS

((FOR) STRUCTURE <label> (,)

[

(FOR) (SHOCK) SPECTRUM <label>]
(fOR) HODES [<integer list>]

~
PEAK-SR,SS

(<integer list>) (,)

Ex: OUTPUT DYNAMIC STRSINS 1-100 STRUCTURE FRAME SPECTRUM SHAKER,
HODES 1-15, SRSS

- 181 -

