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simultaneously. 

sic example. 

substructures: 

The structural frame of an aircraft provides the clas­

Independent design teams develop the individual 

wing assembly, fuselage sections, vertical stabilizer, 

etc. The substructures are later interfaced at their common boundaries. 

The modeling and analysis technique can be extended using multilevel 

substructuring, where the individual substructures can themselves be 

composed of condensed substructures. 

In dynamic analysis, exact reduction of an individual substructure 

is dependent upon the natural frequencies of the total structural 

system. Since the system frequencies are objectives of the analysis and 

as yet unknown, the analyst must use reduction methods that are either 

iterative or frequency independent (and therefore approximate). The 

various reduction methods are collectively known as procedures for com­

ponent mode synthesis or modal synthesis. 

In general, modal synthesis techniques have not been incorporated 

into general FEM programs [13]. A possible exception is some work on 

proprietary computer codes, full details of which are not readily 

available. Analyses presented in the literature based on modal syn-

thesis techniques have been achieved by combining the functions of 

structural modeling, eigensolution, and matrix manipulation through the 

use of a number of independent and highly specialized computer programs. 

As a consequence of this lack of sophistication in available software, 

only trival models have been studied (e.g., planar trusses, rectangular 

plates, etc). Each analysis requires a specialized driver program to 

manage the computational procedures unique to the individual structural 

model. Clearly, a more general analysis procedure is required to permit 

general studies of modal synthesis techniques. 

- 2 -



The objectives of this work are to review the state-of-the-art in 

modal synthesis; to design and implement a general, user-oriented 

software system incorporating multilevel substructured modeling for 

dynamic analysis; and to perform preliminary evaluations of the impact 

of the modeling and analysis techniques on computed results. The 

development of general-purpose analysis systems, using sophisticated 

software techniques, is vital to the incorporation of new analytical 

techniques into the analysis and design procedures used by practicing 

engineers and researchers. Modal synthesis techniques must be included 

as an integral part of the dynamic analysis capabilities of general FEM 

software. Without general-purpose analysis systems, the burden of 

developing an individual analysis program for each unique structure 

would significantly outweigh the computational advantages available with 

modal synthesis. 

1.2 Substructured Modeling Techniques 

A brief review of the substructuring and condensation prodecures 

for static analysis is needed before modal synthesis techniques can be 

reviewed. Many investigators (20, 50, 56] have shown that partitioning 

of a structural model into smaller, often identical, substructures can 

lead to significant savings in model generation and computer solution 

costs for static, linear and nonlinear analysis. The choice of parti-

tions is 

constraints. 

generally guided by economic, fabrication, or symmetry 

The boundaries which result between substructures due to 

partitioning may then be either real or artificial in form. When the 

structure partitioning is applied to an assembly of substructures, a 

recursive procedure known as multilevel substructuring is established. 
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The substructure partitioning ends when all "lowest level" structures 

are composed of only finite elements. 

The organization of the structural hierarchy for a multilevel sub· 

structured model is represented as an inverted tree. The top of the 

tree (the root node) defines the highest level structure and resides at 

level "n" of the hierarchy. Any number of substructure levels may be 

defined below the root node. There is no theoretical limit on the num­

ber of branches (or elements) that enter a node (or structure) at level 

"i" from level "i-1". All terminal nodes of the tree are finite ele· 

ments (ex: bars, frames, triangles, etc.). For generality, no 

distinction is made throughout the hierarchy between finite elements and 

substructures. 

For static analysis of both linear and nonlinear structures, it has 

been shown that a substructured model yields the same solution as a 

nonsubstructured model which contains only finite elements. The equa­

tions governing the substructuring technique are fully documented 

elsewhere [53] and will not be reviewed here. Instead a small example 

is presented which illustrates the terminology associated with the sub· 

structuring technique and the degree of simplification possible with a 

user-oriented approach to substructure analysis. The example structure 

is a simple two-span, plane truss shown in Figure 1.1. Components of 

the substructured model are shown in Figure 1.2, with names assigned to 

each component for identification purposes. Figure 1.3 illustrates the 

substructure hierarchy in inverted-tree form. The lowest-level struc­

ture is the hierarchy is SPAN. 

. 4 . 
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After substructure SPAN is defined, nodes 1, 3, 7, and 8 are 

selected as boundary nodes. They are retained in the condensed sub-

structure SPAN_GON for connection to adjacent substructures. The 

remaining interior nodes (2, 4, 5, and 6) are eliminated by 

condensation. The transformation of coordinates from SPAN to SPAN_GON 

is achieved by use of the static constraint modes. A static constraint 

mode is the displaced configuration of the interior nodes when a unit 

displacement is applied to one of the boundary nodes with all other 

boundary nodes constrained. The highest level structure, BRIDGE, is 

defined using two copies of the condensed substructure and three rod 

elements for closure over the center support. 

Figure 1.4 illustrates the ease with which this structural model is 

defined for analysis. The problem oriented language (POL) used to 

describe the model is taken from the POLO-FINITE structural mechanics 

system. As described below, POLO-FINITE supports user-defined, multi-

level substructuring as a natural extension of standard modeling and 

analysis procedures. The lowest level substructure, SPAN, contains 8 

nodes and 13 elements. Element types, properties, topology, and nodal 

coordinates are easily defined through the POL. The condensed version 

of SPAN is then defined as structure SPAN_GON. Structure SPAN_GON con-

tains the four boundary nodes from structure SPAN. These nodes are 

identified through the incidence list for SPAN_GON. Structure SPAN is 

referred to as the "parent" structure. SPAN_GON is the "child". This 

technique for defining the condensed structure at an intermediate level 

in the hierarchy eliminates confusion on the analyst's part and main-

tains a consistent definition of structures throughout the hierarchy. 

Structure BRIDGE is modeled from two copies of SPAN_GON and three 

additional rod elements. Copies of SPAN_GON (elements 1 and 2) are 

- 8 -



"' 

•RUN FINITE 
c 
C DEFINE THE BRIDGE SEGMENT: SPAN. 
C UNITS ARE "XIPS~ AND "FEET". 
c 

c 
c 
c 
c 
c 
c 
c 

c 
c 
c 

STRUCTURE SPAN 
NUMBER OF HODES 8 ELEMENTS 13 
ELEMENTS ALL TYPE ROD E 3.0£04 AX 0.0347 
COORDINATES 

1 o.o o.o 
2 20.0 o.o 
3 20.0 20.0 
4 40.0 o.o 
5 40.0 20.0 
6 60.0 . o.o 
7 60.0 20.0 
a eo.o o.o 

INCIDENCES 
l l 3 
2 2 3 
3 3 • 
• • 5 
5 • 7 
• • 7 
7 7 • 
• 3 5 
• 5 7 

10 1 2 
11 2 • 
12 4 6 
13 6 8 

END OF STRUCTURE SPAN 

DEFINE THE CONDENSED VERSION OF STRUCTURE SPAN. 
RETAIN NODES 1 3 7 AND 8 IN THE CONDENSED STRUCTURE. 

STRUCTURE SPAN CON 
NUMBER OF NODES 4 ELEMENTS 1 
ELEMENT 1 TYPE SPAN CONDENSED 
INCIDENCES 

l l 3 7 8 

END OF STRUCTURE SPAN_CON 

c 
C DEFINE THE HIGHEST LEVEL STRUCTURE AS A COMBINATION 
c OF TWO CONDENSED SPANS AND THREE SIMPLE ROD ELEMENTS 
c 
c 

STRUCTURE BRIDGE 
c 

c 

c 

c 

c 

c 

c 

c 

NUMBER OF NODES 8 ELEMENTS 5 
ELEMENTS 

1 2 TYPE SPAN CON ROTATION SUPPRESSED 
3-5 TYPE ROD i J.OE04 AX 0.0347 

COORDINATES 
2 o.o 0.0 
5 -20.0 20.0 
6 o.o 20.0 
1 20.0 20.0 

INCIDENCES 
1 1 .. 5 2 
2 2 7 8 l 
3 5 • 
• • 7 
5 2 • 

CONSTRAINTS 
1-3 v - o.o 
1 u - o.o 

<definition ot loads> 

<raqueata tor co•putation> 

<raqueata tor output> 

STOP 

Figure 1.4. POL Definition of BRIDGE Hodel 



From a more application-oriented viewpoint, Hintz [28] grouped 

combinations of the four mode classes: rigid-body, static constraint, 

normal, and attachment into five different interface mode sets. 

Implications of truncating a selected interface mode set were discussed 

and guidelines were developed for retaining accuracy with a reduced size 

model. In another ·application paper, Craig and Chang [12] discussed 

alternatives for reduction of boundary coordinates for a number of dif­

ferent modal synthesis methods. Also included in their discussion were 

requirements for substructure modeling that facilitate experimental 

verification of the numerical model. 

In the only known discussion of modal synthesis for multilevel 

substructured models, Herting [27] presented work in progress on 

NASTRAN. The modeling technique allows retention of an arbitrary set of 

substructure normal modes (fixed, free, or hybrid), inertia relief 

modes, and all geometric coordinates at substructure boundaries. This 

method is the most general of the modal synthesis techniques. It is 

shown in the study that both the fixed-interface method of Craig and 

Bampton and the MacNeal's residual flexibility method are special cases 

of the general technique. No discussion of solution economy or user­

interface in the NASTRAN implementation are presented. 

A pair of frequency-dependent, iterative methods was developed by 

Leung [39, 40] as extensions of Guyan reduction and the fixed-interface 

method. In both methods, the unknown system frequency is retained in 

the substructure reduction equations. Initial estimates for the natural 

frequencies 

dure. The 

stiffness 

of interest are improved after each iteration of the proce-

reduction yields a single coefficient matrix, the dynamic­

matrix, which defines a "standard" eigenvalue problem. In 
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contrast, other modal synthesis techniques produce two coefficient 

matrices, generalized stiffness and mass matrices, which define a 

"generalized" eigenvalue problem. 

A second-order substructure condensation procedure generally ap-

plicable to the basic modal synthesis methods was presented by Kubomura 

[37]. In this procedure, the component modes used in reduction include 

fixed-interface, free-interface, and hybrid modes. Using the system 

eigenvalue of interest, a rational approach to mode selection is 

developed. 

As an extension of Hurty's first paper on modal synthesis, 

Meirovitch and Hale expanded the use of admissible functions in com-

ponent mode synthesis [24, 25, 45-47]. Their work broadened the 

definition of admissible functions that are suitable for use in sub-

structure reduction. Their technique is applicable to both continuous 

and discrete structural models. While the use of admissible functions 

other than eigenfunctions presents the potential for significant reduc-

tion in analysis costs, the selection of suitable functions (low-order 

polynomials) has not been automated such that the approach can be used 

in a general finite element code. 

1.4 ObJectives and Scope 

The objectives of this work are: 

1. To identify those modal 
for incorporation into 
which includes multilevel 

synthesis techniques that are suitable 
a general-purpose FEM software system 
substructured modeling capabilities. 

2. To design and implement the software required to perform general 
purpose dynamic analysis. Specific needs include a flexible 
input language, an automatic and accurate modal synthesis tech­
nique, and efficient analysis-restart capabilities. 
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dynamic analysis is an approximate technique, the analyst will generally 

desire to verify the model by additional refinement and reanalysis. An 

efficient software system permits the analyst to simply enhance the 

existing model and recompute only those quantities affected by the 

enhancement. This feature is rarely available in an automated, user-

controlled form. In this study, analysis restart has no relation to the 

checkpoint/restart procedures supported by various hardware and software 

systems. 

The remainder of this report is divided into chapters which discuss 

the major topics covered. Chapter 2 contains a detailed review of the 

fixed-interface method and its use in multilevel substructured modeling. 

Details of the POLO executive system as a tool for software development 

are presented in Chapter 3. Both the development and the run-time en­

vironments supported by POLO are reviewed as they pertain to this study. 

Software design and implementation are discussed in Chapter 4. Topics 

include the structural modeling procedure, solution algorithms, and 

analysis restart. The integration of data structures, system processing 

modules, and element routines are discussed from the viewpoint of the 

software engineer. Performance of the software resulting from this work 

is examined in Chapter 5. Results from a number of example problems are 

discussed. Chapter 6 presents a summary of the study and conclusions. 

Topics for further investigation are also proposed. 
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CHAPTER 2 FIXED-INTERFACE METHOD 

2.1 General 

The modal synthesis method selected for implementation in this 

study is the fixed-interface method as formulated by Craig and Bampton 

[10]. The reasons for· this selection are presented in the next section. 

Section 2.3 contains a detailed review of the development of the method 

and the necessary extensions of the method for use with multilevel sub­

structured modeling. Procedures for analysis restart are also 

developed. 

2.2 Features of the Fixed-Interface Method 

The goal of the fixed-interface method, as for all of the various 

modal synthesis methods, is to generate stiffness and mass matrices that 

accurately represent the stiffness and inertia characteristics of a 

substructure with the minimum number of degrees of freedom (DOF). Two 

basic operations are performed in the reduction process. First, the 

substructure coefficient matrices are transformed from geometric coor­

dinates to a reduced set of generalized coordinates. The transformation 

matrix normally contains substructure mode shapes that adequately 

describe the dynamic characteristics of the substructure. The second 

operation is the assembly of the reduced substructure matrices into the 

next higher level of the model hierarchy. The details of this operation 

vary according to the nature of the generalized coordinates representing 

each substructure. In a multilevel substructured model, the transforma­

tion and assembly processes are performed recursively at each level. 
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In the fixed-interface method, all static constraint modes and some 

of the fixed-fixed normal modes are selected as component modes for the 

reduction transformation. The set of generalized coordinates contains 

normal DOF associated with the fixed-fixed normal modes and boundary DOF 

which are linked to the static constraint modes. During assembly of the 

reduced substructures, displacement compatibility is enforced by equa­

tions of constraint which tie common boundary DOF at the interfaces 

between adjacent substructures. Since the boundary DOF retain their 

physical distinction during the transformation to generalized coor­

dinates, the assembly procedure is identical to that used for non­

substructured models. The normal DOF are not included in the constraint 

equations. A complete development of the method follows in section 2.3. 

2.2.1 Efficiency of the Reduction Method 

The efficiency of a dynamic reduction method is influenced by three 

factors. First, the method must produce an accurate reduction in the 

order (number of DOF) of the substructure stiffness and mass matrices. 

An efficient method yields synthesized stiffness and mass matrices that 

accurately represent the dynamic characteristics of the substructure 

with the minimum number of DOF. Second, the degree of analyst par­

ticipation should be limited to simply the definition of the model and 

specification of the solution type. A method should be automatic once 

the solution process begins, hence eliminating the need for the analyst 

to interpret intermediate results and restart the analysis. This is not 

to imply that the analyst should surrender control of the solution 

process. Instead, the analyst should be relieved of the burdensome task 

of supervising the computational process. Third, the synthesis method 
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should be efficient in its use of computer resources. Given the problem 

size, algorithms should be chosen that minimize the required computer 

resources, particularly processor time and I/0 (data transfers to and 

from secondary storage). The number of arithmetic operations performed 

should be predictable rather than dependent upon an arbitrary test for 

convergence of an iterative process. 

The fixed-interface method successfully satisfies the efficiency 

criterion. The method is simple to apply and yields a significant size 

reduction of properly substructured models. As will be demonstrated in 

the example problems, the required user input and control is minimal. 

2.2.2 Applicability to General Pr9blems 

A wide variety of dynamics problems exists for which modal syn­

thesis is needed to achieve an economical and accurate solution. A 

synthesis method used in a general purpose FEM system should be capable 

of modeling substructures over a broad range of geometries with various 

types of boundary constraint. Also helpful would be the ability to 

incorporate experimental data (natural frequencies and mode shapes) into 

the substructured model. 

Dynamic reduction methods should lend themselves to incremental 

solution procedures. By necessity, finite element analysis of a non-

linear structure is performed incrementally. As the effects of 

nonlinear materials and geometry occur, the coefficient matrices must be 

reformulated to accurately model the current state of the structure. 

The fixed-interface method has limited capability to use experimen­

tal data. In the computation of substructure mode shapes for the 

reduction process, all boundary nodes are fixed. As a consequence, 
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require that displacement gradients be well formed. Closely tied to 

accuracy of the results is the numerical precision with which computa· 

tions must be performed. Operations such as orthogonalization and 

triangulation can have a significant impact on final accuracy and the 

need for such operations should be considered in selecting the reduction 

method. 

The potential for numerical instabilities in the reduction methods 

can be identified by examining the formulation of the methods. Typical 

problem areas are the divide-by-zero singularity and the linear depend­

ence of the vectors contained in a transformation matrix. 

The linear independence of the component modes in the fixed­

interface transformations ensures stability of the method and accuracy 

has proven favorable for many problems. In fact, it is possible to 

obtain any level of accuracy desired simply by adjusting the number of 

normal DOF included in the synthesis process. 

The decision to implement the fixed-interface method is supported 

by the above evaluation and by the role of this method as a component of 

several other modal synthesis techniques [1, 25, 27]. Implementation of 

the fixed-interface method will act as a basis for further research into 

modal synthesis and into other areas of structural dynamics. This study 

establishes the necessary first step by developing a general software 

system with multilevel substructuring capabilities. 
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2.3 Formulation of the Fixed-Interface Method 

2.3.1 Basic Formulation 

Consider an isolated substructure consisting of only finite ele-

ments, such as structure SPAN in Figure 1.2. The undamped, free 

vibration equation of motion of the substructure, partitioned to 

separate master (m) arid slave (s) DOF, is: 

2 - "'. ~ (2.1) 

Master DOF are those that remain after condensation and are usually DOF 

at nodes on the boundary of the substructure. They are used for connec-

tivity to adjacent substructures. The slave DOF are those that are 

eliminated and usually lie in the interior of the substructure. The 

natural frequency "'· is that of the complete structural system, not just 
l. 

the isolated substructure. The presence of nonzero off-diagonal blocks 

[Mms] and (Msm] l.·n Eq. (2 1) · 1" th f i . 1.mp 1.es e use o a cons stent mass 

formulation. When a lumped mass model is used, the mass matrix is 

diagonal. 

The upper half of Eq. (2.1) can be expanded to 

(2.2) 

Solving for {us) in terms of {um) yields a coordinate transformation 

which is dependent on the unknown system vibration frequency w .• If the l. 

inertia forces on the slave DOF are assumed to be small compared to the 

static forces, the former may be neglected. Thus, the frequency depend· 

ence is eliminated and Eq. (2.2) simplifies to 
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(2.3) 

c m s Defining the coordinate transformation [~ 1 from (u ] to (u ] as 

(2.4) 

(us] can be eliminated from Eq. (2.3) to yield 

(2.5) 

As in static condensation, [~c1 is evaluated by standard equation 

solving techniques requiring triangulation of [Kss1 and reduction opera-

t . th t 'n -[Ksm1. ~ons on e vee ors • The columns of the transformation 

matrix [~c1 are known as the "static constraint modes." Physically, a 

static constraint mode is the displaced configuration of the slave DOF 

resulting from a unit displacement applied to one master DOF while all 

other master DOF are held fixed. 

Now attention is returned to the inertia contribution of the slave 

DOF. If the set of master DOF is restrained from displacement, Eq. 

(2.1) reduces to 

(2.6) 

The solution of this eigenvalue problem yields the matrix of fixed-fixed 

normal n ss ss modes, [~ ] , having the same order as [K ] and [M ] . The com-

puted vibration frequencies, ~i. are those of the isolated substructure 

with its boundaries fixed. 

The complete set of substructure normal n modes, [~ 1, plus the 

static constraint modes, c 
[~],provide the means to transform the dis-

placement vector (u] from geometric coordinates to an equivalent set of 
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generalized coordinates, {q). However, an exact transformation does not 

serve to reduce the order of the coordinate vector. To reduce the order 

of the substructure mass and stiffness matrices, the transformation to 

generalized coordinates is defined as 

{u) - ~-~~-~ (2.7) 

The fixed-interface transformation, [Tf], is derived from the static 

constraint modes and a truncated set of fixed-fixed normal modes as 

[ 

-n • c l 
-~--t-:-- (2.8) 

-n n in which[~] is a rectangular matrix of mode shapes selected from[~]. 

In general, the modes corresponding to the lowest natural frequencies, 

are retained -n in [ rp ] • 
s The slave displacements, {u ) , are now de-

pendent on both the static constraint modes and the retained normal 

modes of the isolated substructure. Since the full set of substructure 

normal modes is not used in the transformation, the generalized coor-

dinates {q) approximately represent the geometric coordinates {u). 

Two observations regarding Eq. (2.8) are noteworthy. First, the 

generalized coordinate subvector, m {q ), corresponds precisely to the 

master set of geometric coordinates, {um). This insures geometric com-

patibility between adjacent substructures when the substructure 

equations are assembled at the next higher level of the hierarchy. 

-n Secondly, as the number of mode shapes in [rp ] is reduced, the transfer-
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mation shrinks to just the static constraint modes and thus, the fixed-

interface method degenerates to Guyan reduction [23]. Likewise as more 

and more mode shapes 
-n f are retained in[~], [T] approaches an exact 

coordinate transformation. 

The strain and kinetic energies for the isolated substructure are 

given by 

(2.9a) 

T - 1/2 !-~:-IT [~::.t-~:~]1-~:-
.m . .ms ' . .mm .m 
U M 1 ~ U 

(2.9b) 

where (u) is the first time derivative of (u). The displacement and 

velocity vectors in Eq. (2.9) can be replaced with the generalized coor-

dinate vectors by substitution of Eq. (2.7) and (2.8). The reduced 

order stiffness and mass matrices in generalized coordinates are ob-

tained by maintaining equivalence of strain and kinetic energies between 

the two coordinate systems. The resulting forms are 

f f T f [ [I] ; [Mnm] l 
[M ] - [T ] [M] [T ] - -------~-------

[~n] : [MG] 

[~n] _ [~s][~n] + [~c]T[Mss][~n] and 

[Mnm] [~n] T. 
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When the substructure is composed only of elements formulated with 

lumped mass, the off-diagonal submatrix of equation (2.11) simplifies to 

(2.13) 

G and [M ] are the Guyan reduced stiffness and mass matrices. They 

take the forms 

and (2.14) 

(2.15) 

The form defined for [KG] is identical to that obtained when static 

condensation is applied to the stiffness in static analysis. This fact 

proves useful for implementation of the synthesis procedure. For the 

simpler case of a lumped mass formulation, Eq. (2.15) reduces to 

The identity submatrix in (Mf] 

result from the -n orthonormality of the mode shapes in[~]. 

(2.16) 

diagonal matrix of natural frequencies corresponding the the modes 

retained in [~n]. 

The normal coordinates are coupled to the geometric DOF only in the 

reduced mass matrix (submatrices [~] and [Mnm]). The off-diagonal 

submatrices of [Kf] are null as a consequence of the equation 

development. 
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Regardless of which mass matrix formulation is used, consistent or 

lumped, the reduced mass submatrix, [MG], is fully populated. The com-

putational advantage of a lumped mass formulation is therefore limited 

to reduction of the lowest level substructures in the hierarchy. 

When time-dependent loads are applied to the slave DOF, they too 

must be transformed to generalized coordinates. If the substructure is 

subjected to an arbitrary virtual displacement, (5u), the work done by 

the substructure forces {P) is 

sw (2.17) 

The condensed forces, {F), applied to the generalized coordinates must 

do the same work during a virtual displacement consistent with (5u), 

thus 

T (5u) (P}. 

Substituting Eq. (2.7), the condensed force vector becomes 

{F) 

(2.18) 

(2.19) 

The stiffness, mass, and loads for each substructure are parti-

tioned and condensed. Assembly of both the reduced substructure mass 

and stiffness into the next higher level follows the standard procedure 

for element assembly [10]. Displacement compatibility between adjacent 

substructures is automatically insured by the use of the master DOF as 

generalized coordinates. Although assembly of the reduced substructure 

stiffness and mass is routine, an illustration of the final matrices is 

useful. For an assembly of "r" substructures 
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.2 0 0 0 I 0 0 Mnm 
"'1 1 

0 .2 0 0 I 0 Mnm 
"'2 2 

* (K] * [M] 

0 .2 0 0 0 I Mnm 
"' r r 

0 0 0 '*-G ~~n··· Mmrl~G 
r 

(2.20a) (2.20b) 

The master DOF from the various substructures are coupled only in the 

submatrices ['*-Gl and [&G], the assembled Guyan stiffness and mass. 

The synthesis process for one level of substructuring is now 

complete. After a free-vibration analysis has been performed for the 

synthesized structure, it may be desirable to recover the portion of the 

system mode shapes contained within the condensed substructures. This 

is achieved by applying Eq. (2.7) to that portion of the system mode 

shape associated with the generalized DOF from a particular 

substructure. 

In summary, the fixed-interface method employs static constraint 

modes and a truncated set of fixed-fixed normal modes to achieve a 

reduction in the order of the substructures stiffness and mass. 

Geometric coordinates at internal boundaries are retained in the set of 

generalized coordinates to insure displacement compatibility between 

substructures. 

2.3.2 Extension to Multilevel Substructuring 

The fixed-interface method is extended to multilevel substructured 

modeling in the following manner. Referring to the terminology of sec-

tion 1.2, assume that all substructures at level "i" have been assembled 
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either from finite elements or level "i+l" substructures (or both). The 

level "i-1" substructures are defined by selecting master and slave DOF 

for each substructure at level " . " l. ' condensing these substructures using 

Eq. (2.10) and Eq. (2.11), and assembling as illustrated in Eq. 

(2.20a,b). 

A significant difference in the procedure for multilevel substruc-

tured models from that of the preceding section is the selection of 

master and slave DOF. As previously mentioned, master DOF are usually 

selected to lie along substructure boundaries and slaves are chosen as 

the remaining DOF. For the normal DOF which exist as a result of the 

synthesis of condensed substructures, no physical basis exists upon 

which to make this selection. Conceptually, the normal DOF in the as-

sembled model could be identified as either master or slave DOF. 

For this study, the following procedure is adopted. Since the 

equations of constraint that link adjacent substructures are written 

only in terms of the substructure boundary (geometric) DOF, the normal 

(generalized) DOF for each substructure are grouped with the interior 

DOF in the set of slaves. 

As an example, consider structure "A" which is assembled from two 

condensed substructures, "B" and •c•. The assembled stiffness and mass 

matrices for structure "A" are illustrated in Figure 2 .1. The matrices 

are partitioned into five zones as indicated. Zone I and II contain the 

normal DOF from substructures "B" and "C" respectively. The identity 

matrices in [MA) and the diagonal blocks of substructure frequencies in 

[KA] are fully contained within the individual zones. This illustrates 

that normal DOF from one substructure are not coupled with those from 
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adjacent substructures. The boundary DOF of substructure "B" occupy 

zones III and IV while zones IV and V contain boundary DOF from sub-

structure "C". 

"B" and "C". 

Clearly zone IV represents the boundary DOF common to 

The DOF in this zone are linked to enforce displacement 

compatiblity between the substructures. 

In one-level substructured models, this representation of structure 

"A" would form the highest level structure and the synthesis process 

would be complete. In multilevel substructured models, structure "A" 

is partitioned into its own master and slave DOF and then condensed. As 

mentioned above, master DOF are usually selected as those DOF on sub­

structure boundaries. In this respect, the master DOF for structure "A" 

are selected from zones III, IV, and V. The remaining DOF in these 

three zones, along with all generalized DOF in zones I and II are 

grouped as slave DOF. The synthesized stiffness and mass matrices 

resulting from condensation of structure "A" are identical in form to 

the stiffness and mass matrices from any other condensed structure; see 

Eq. (2.10) and (2.11). An evaluation of the impact of the above 

master/slave selection procedure for multilevel substructured models 

remains a topic for future study. 

2.3.3 Substructure Reanalysis 

When modal synthesis is used to condense the substructures in a 

complex structural model, analysts will always question the accuracy of 

the reduction and thus the quality of the final results. Substructure 

reanalysis is the most obvious approach to verifying the representation 

of an individual substructure. In the fixed-interface method, substruc­

ture reanalysis is achieved simply by adding more normal DOF to the 
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condensed substructures in question. Many of the computations performed 

in the initial reduction need not be repeated during reanalysis. 

Consequently, reanalysis is performed with some degree of efficiency 

when computed results are retained after completion of the initial 

analysis. 

The first step in substructure reanalysis is to determine which 

additional normal DOF are to be retained in the condensed substructure. 

If sufficient fixed-fixed normal modes are not available for addition to 

the transformation [Tf], the eigenproblem solver is restarted to compute 

the required frequencies and mode shapes. Existing fixed-fixed normal 

modes are not recomputed. 

After the additional normal DOF for the substructure are computed, 

the condensed stiffness and mass matrices are assembled. Referring to 

equations (2.10) and (2.11), the Guyan reduced stiffness and mass sub-

matrices, [KG] and [MG], remain unchanged since the normal DOF do not 

influence the static constraint modes. The only computations required 

are those needed to expand the number of columns in the off-diagonal 

mass submatrix, [~n]. These new columns are needed for the additional 

substructure normal DOF. 

similarly expanded. 

Savings in the assembly of "reanalyzed" substructures are also 

possible. Using the example presented in the previous section, suppose 

that additional normal DOF have been added to substructures "B" and "C." 

When the stiffness and mass matrices for structure "A" are reassembled, 

only zones I and II need to be expanded (Figure 2.1). Since the Guyan 

stiffness and mass submatrices for both "B" and "C" do not change during 
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reanalysis, their assembly into structure "A" is also unchanged. Thus 

zones III, IV, and V are not altered, saving measurable time in struc­

ture assembly. 

While the foregoing procedure is conceptually simple, implementa­

tion of reanalysis capabilities in a general software system presents 

some special problems not yet considered. Details of this implementa­

tion are presented in Section 4.8. 
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CHAPTER 3 SOFTWARE DEVELOPMENT ENVIRONMENT 

3.1 General 

The fixed-interface method provides a theoretical basis to perform 

dynamic analysis of multilevel substructured FEM models. Design and 

implementation of the associated software for general-purpose analysis 

makes the procedure accessible to researchers and designers. Finite 

element researchers typically focus on developing and improving numeri­

cal algorithms, not on the design and implementation of sophisticated 

engineering software. Software for these researchers is implemented 

only to demonstrate the viability of the numerical method for a limited 

class of problems. As a consequence, the software tends to be deficient 

in the areas of user-interface, resource management, and generality. 

The programming capabilities needed to overcome these deficiencies 

are not supported by standard algorithmic languages (e.g. FORTRAN-77, C, 

Pascal). A software developer who wishes to use hierarchial data struc­

tures, for example, is required to devise his own data management 

capabilities. This task typically results in complex sequences of pro-

cedure calls from the processing routines in order to locate or create 

the necessary data tables. For advanced applications, such as substruc­

tured modeling and nonlinear analysis, implementation of the numerical 

procedure becomes a trivial task compared to the "bookkeeping" proce­

dures required to drive the crude data management routines. 

One solution to this problem is the use of an •executive" system to 

support and manage computing resources: memory, secondary storage, data 

transfers between the two, and user-interface. The POLO system 

[42, 43] provides the necessary support. The software developed during 
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this study relies heavily on the POLO executive. The software develop­

ment tools within POLO enable the areas of engineering mechanics, 

numerical methods, and computer science to be effectively synthesized 

into a functioning software system having considerable generality. The 

remainder of this chapter briefly describes the components of POLO and 

its influence on the software developed in this study. For additional 

details on the POLO executive and on the concept of software virtual 

machines, see [16] and [17]. 

3.2 Ihe POLQ Executive 

POLO does not directly solve engineering problems. Rather it sup­

ports programming activities common to most engineering applications: 

POL translation, data structure definition, data base and memory manage­

ment during execution, and logical control and integration of 

application subsystems. A specific application program, or subsystem, 

which runs under the control of POLO is needed to solve the engineering 

problem. The existing finite element subsystem for POLO, named POLO­

FINITE, has been adopted as the starting point for the software 

developed in this study. 

POLO supports engineering software applications during the develop­

ment phase and during execution of the application program (also known 

as "run-time"). During development, POLO provides languages to define 

data structures, to symbolically access the data, and to control the 

sequence of operatons on data required for the particular application. 

At run-time, POLO support routines perform data base and memory manage­

ment, translate POL input, and execute the processing routines. At 
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program termination, POLO automatically secures all data bases for sub­

sequent analysis restart. 

POLO provides compilers and execution processors for two higher 

level languages: a data definition language (DDL) and a host language 

(HL). These two languages and an algorithmic language (FORTRAN-77) 

combine to define the development environment (Figure 3.1). The in­

dividual components of this environment and their inter-relationships 

are discussed in the following sections. Section 3.6 describes the run­

time configuration of a POLO application program. The structure of 

POLO-FINITE 

chapter. A 

as a 

more 

FEM application program is presented in the next 

complete discussion of POLO-FINITE, including system 

performance, nonlinear analysis capabilities, and element and material 

model libraries, can be found elsewhere (16, 18, 43]. 

3.3 Data Definition Language 

The development of a POLO subsystem centers on the structure of the 

logical data space. Data structures in the POLO environment are 

primarily of the hierarchical type. Other data structures, including 

network and relational, may be defined using basic hierarchical tables 

with additional pointer manipulation by the application subsystem. Data 

structures are described to POLO with the data definition language 

(DDL). As shown in Figure 3.1, the developer's data definition is com­

piled into an internal form by the DDL compiler. The resulting form of 

the data definition resides in the DDL library. The DDL library con­

tains the logical definition of and the relationships among all data 

structures defined for the application program. This library is later 

accessed by the host language (HL) development processors to interpret 
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data references made in the HL programs. At run-time, the data defini-

tion is used to map the logical data format onto a physical medium 

(direct-access disk file) for the storage of problem data. 

Figure 3.2 contains a sample data hierarchy defined for the dynamic 

analysis systems. In this example the stiffness, mass, and frequency 

analysis results are ·all stored in a table named COEFFICIENTS which has 

its rows labelled (or named) and is one column wide. The COEFFICIENTS 

table actually resides in a higher level table, ELEMENTS, which contains 

other relevant structure data: nodal coordinates, element incidences, 

constraints, loads, etc. The DDL for the sample data structure is 

presented below. 

TABLE ELEMENTS LABELLED GROUPING 25 

TABLE COEFFICIENTS LABELLED 1 
NNODE INTEGER 
NROW INTEGER 
NCOL INTEGER 
TABLE STIFFNESS LABELLED NNODE 

KLOW INTEGER 
NUMBLOCKS INTEGER 
TABLE ROWS ARRAY REAL NUMBLOCKS NROW NCOL 
END OF TABLE 

TABLE MASS LABELLED NNODE 
MLOW INTEGER 
NUMBLOCKS INTEGER 
TABLE ROWS ARRAY REAL NUMBLOCKS NROW NCOL 
END OF TABLE 

TABLE LUMPEDMASS SET REAL NNODE NROW 
TABLE FIXEDMODES LABELLED GROUPING 50 

FREQUENCY REAL 
TABLE SHAPES SET REAL NNODE NROW 
END OF TABLE 

TABLE FREEMODES LABELLED GROUPING 50 
FREQUENCY REAL 
TABLE SHAPES SET REAL NNODE NROW 
END OF TABLE 

END OF TABLE 
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The first three rows in table COEFFICIENTS are scalar entries. The 

values are used to define sizes of lower level tables. The fourth row 

of this table begins the definition of a labelled table named STIFFNESS. 

This "table within a table" is defined simply in the DDL as shown. 

Definition of other rows in COEFFICIENTS is temporarily suspended until 

table STIFFNESS is "fully specified. After the three rows of the 

STIFFNESS table are described, the END OF TABLE statement indicates that 

the statements to follow define other rows of the COEFFICIENTS table. 

For a consistent mass formulation, the mass matrix has the same 

banding as the stiffness matrix. Thus the MASS table has a hierarchy 

which is identical in structure to the STIFFNESS table. A different 

data structure is appropriate for a lumped mass formulation in which DOF 

coupling does not exist. The table LUMPEDMASS defines the values of 

mass that reside at each DOF of every structure node. While both mass 

tables (consistent and lumped) are specified for each structure, only 

the one table that corresponds to the selected mass formulation for the 

structure is created in the data base at run-time. 

In a similar manner, two types of frequency analysis tables, 

FIXEDMODES and FREEMODES, are defined. While both tables are defined 

for any given structure, only the appropriate one is created to store 

the results of the analysis. The FIXEDMODES table stores the fixed­

fixed frequencies and mode shapes for condensed substructures during 

modal synthesis, while the FREEMODES table contains analysis results for 

a free-vibration frequency analysis of the highest level structure. 

In static analysis, only the STIFFNESS table is created at run-

time. In the problem data base, the rows of the COEFFICIENTS table 
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corresponding to the mass and mode shape tables then contain pointer 

values of zero, indicating that the tables have not been created. 

When a table is first referenced at run-time, it is created accord­

ing to the sizes defined in the DDL. If any of the sizing parameters 

are variables, the data manager creates the table using the current 

value of the variables. The sizing variables can then be changed during 

execution of the application program so other tables can be created to 

different sizes as required. 

The FIXEDMODES and FREEMODES tables are slightly different from the 

other labelled tables in the data structure. These two tables are known 

as "grouped" tables and have a grouping factor of 50 (an arbitrary 

choice). These tables are initially created with 50 columns. As addi-

tional columns of the table are needed, they are created in groups of 50 

each. The groups of 50 columns are not necessarily contiguous in the 

database. The COEFFICIENTS, STIFFNESS, and MASS tables are not grouped. 

All columns required for each of these tables are allocated contiguously 

in the database on the first reference to the table. 

The data definition listed above is just a small part of the data 

definition used in POLO-FINITE. Additional details regarding the 

specific data structures developed in this study are presented in 

Chapter 4. 

3.4 Host Language 

The second component of the POLO development environment is the 

host language. After the developer has defined the data structures, 

host language programs are written to drive execution of the application 

subsystems. An HL program performs three primary functions: POL input 
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translation, execution of FORTRAN support routines, and execution of 

other POLO subsystems. These functions are directed in HL command 

statements that have a basic IF-THEN syntax. 

The syntax of a HL command statement takes the following form: 

<label> <logical ·test> <action list> <transfer destinations>. 

The label is optional and serves the same purpose as a statement label 

in FORTRAN. The logical test is evaluated to determine whether or not 

the action list will be executed. If the result of the logical test is 

false, the actions are skipped and the •false transfer of control" is 

taken. If the logical test is true, the actions in the list are ex-

ecuted and the "true transfer• is performed. The actions executed by 

the HL processor typically involve numerical computations that are effi-

ciently performed in the FORTRAN support routines (matrix multiplies, 

etc.). 

It may not always be appropriate to perform a logical test prior to 

executing a list of actions. When this is the case, a dummy test, 

*EXECUTE, is performed. The result of this test is always true and the 

action list is executed. A situation in which a dummy true-test is 

appropriate might be the execution of initialization routines at the 

entry point to a subsystem. 

Data references may be associated with each action in the action 

list. A data reference is a symbolic reference to tables within the 

hierarchy as defined in the DDL. An example of a data reference into 

the hierarchy defined in the previous section is the following: 

/STRUCTURE/ELEMENTS( COEFFICIENTS, STCOL, FREEMODES, 1, SHAPES, 
!MODE, INODE, 1 ) 
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This data reference accesses the free-vibration mode shape data for a 

particular vibration mode. The reference begins by identifying the data 

base that contains the required data (the name is enclosed in"//"). 

Then starting with the name of a table defined at the highest level, the 

hierarchy is symbolically traversed. STCOL is a variable that contains 

the column number in the ELEMENTS table which contains data for the 

desired structure; variable !MODE contains the column number in the 

FREEMODES table that identifies the individual mode shape of interest; 

variable !NODE contains the structure node number required. The 

traversed rows of the labelled tables are referenced by name 

(COEFFICIENTS, FREEMODES, and SHAPES). Lower levels of the data hierar-

chy are reached by appending additional subscripts to the reference. 

A complete example of an HL command statement is given by: 

LUMP_MASS *COMPARE( MASTYP, 1 ) , 
MOVEDATA( SCRTCH, /SOLVER/STRUCTURE(LUMPEDMASS,ICOL,l,l)), 
JACOBI( /SOLVER/STRUCTURE( STIFFNESS,ICOL,l,l )), 
GO TO SORT_RESULTS, CONSIS_MASS 

This command statement is taken from the HL program which performs 

eigenproblem solution by the generalized Jacobi method. LUMP_MASS is 

the statement label used as a transfer destination. In this case the 

logical test is *COMPARE in which the variable MASTYP is compared to the 

integer 1 for equality. A MASTYP of 1 implies that the mass formulation 

for the structure is lumped. If the result of the test is true, two 

subsystem actions are executed. The MOVEDATA action copies the contents 

of the LUMPEDMASS table from the SOLVER data base to the array SCRTCH. 

If the data reference does not include a data base specification (ex. 

/SOLVER/) the data item is a variable in COMMON. Action JACOBI performs 

the eigenproblem solution using the STIFFNESS table from the SOLVER data 
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base and the mass data previously placed into COMMON by MOVEDATA. After 

the actions have been executed, control is transferred to the statement 

with the label SORT_RESULTS. If the result of the logical test is 

false, the actions are not executed and control is transferred to the 

statement labelled CONSIS_MASS. 

As implied in the preceeding example, the HL programs and the 

FORTRAN actions communicate through a COMMON area. When a particular 

subsystem action is invoked by the HL program, the corresponding FORTRAN 

subroutine is identified by variables in COMMON. Also, when data from a 

data base is needed for execution of a subsystem action, the data 

manager moves that data into COMMON. These two methods of subsystem 

communication require that COMMON be divided into two sections. The 

first section is the static COMMON area. This portion of COMMON con­

tains variables required throughout execution of a subsystem (MASTYP and 

SCRTCH in the previous example). The second portion of COMMON contains 

the dynamic pool which is partitioned into equally-sized pages. The 

data manager places the data which is referenced by an action call into 

the dynamic pool. When a data reference is resolved at run-time, the 

data manager moves the data from the application data bases to the 

dynamic pool. Paging of existing data in the pool to make room for new 

data is handled automatically. 

Each HL program contains an action list which establishes the 

relationship between action names referenced in the HL and the cor­

responding FORTRAN subroutines. A portion of the action list related to 

the previous example takes the form: 
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ACTIONS TYPE 33 

JACOBI 7 

END OF ACTIONS 

The subsystem number 33 and the action number 7 are placed in static 

COMMON to identify the FORTRAN subsystem and the subprogram which cor­

respond to the JACOBI action. Frequently used actions, such as 

MOVEDATA, do not appear in the action list for the application 

subsystem. POLO supports these actions as an integral part of the HL in 

the same manner as FORTRAN provides the intrinsic functions: SIN, COS, 

etc. 

The completed HL programs are compiled by the HL compiler and the 

object code is stored in the HL object library (Figure 3.1). This 

library is also a part of the system data base. The HL compiler refers 

to the DDL library to generate appropriate instructions as the data 

references are resolved. The HL compiler checks each HL program for 

command syntax errors and data references which are inconsistent with 

the DDL. The subsystem developer receives appropriate messages when the 

compiler detects these coding errors. When subsystem development is 

complete, the object form of the HL programs act as instructions for the 

POLO "virtual processor." The next section contains a brief description 

of the virtual processor. 
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3.5 FORIRAN Processing Routines 

As mentioned above, POLO is not capable of solving engineering 

problems by itself. The set of actions available to developers is 

limited to those procedures needed for data management, POL translation, 

logical control, and other utility operations (ex: MOVEDATA). 

Numerical operations such as matrix addition, multiplication, and trian­

gulation are not supported by the HL. Unacceptable overhead is incurred 

if operations of this type (requiring loop indexing and array 

subscripting) are coded in the HL. Instead, FORTRAN subroutines are 

written to perform the numerical computations. The generalized Jacobi 

method referenced in the previous section is a good example. Once the 

data manager places the necessary data in COMMON as a result of an HL 

reference, all numerical computations are efficiently performed in one 

FORTRAN subroutine. 

The FORTRAN subprograms are compiled with the FORTRAN compiler for 

the host computer system. The resulting object code is combined with 

the object code library of POLO (also compiled FORTRAN) and loaded into 

a single executable program (Figure 3.1). This real machine program and 

the system data base comprise the final application program. 

A distinction is made here between the instructions generated by 

the FORTRAN compiler and those generated by the POLO compilers (DDL and 

HL). The FORTRAN compiler generates "real-machine" instructions which 

are executed by the hardware processor. The POLO compilers generate 

"virtual-machine" instructions which are interpreted by the POLO virtual 

processor. A virtual instruction consists of an action to be performed 

and a description of the data necessary to perform that action. 

Execution of a virtual-machine instruction by the POLO virtual processor 
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typically results in 5-10 FORTRAN subroutine calls to the data base and 

memory manager, followed by a reference to the action subprogram. 

To demonstrate the link between HL programs and the FORTRAN sub-

routines, the JACOBI action is examined in more detail. Action JACOBI 

is defined in the HL as action number 7 of subsystem 33. When the POLO 

virtual processor interprets an instruction to execute JACOBI, it places 

the integer 7 in a COMMON variable. The data reference associated with 

the JACOBI action is resolved and the corresponding data is moved to the 

dynamic pool if it is not already there. The location of the data and 

the dimensions of the table from which it is obtained are also stored in 

the COMMON area. A call to SUBROUTINE TGTY33 (subsystem 33) is issued 

by POLO and control is thus transfered to the application subsystem. 

The first few lines of the subsystem take the form: 

SUBROUTINE TGTY33 
COMMON /TGUSER/ RPOOL(l), 
COMMON /PARAM/ !ACTION, LOCl, LOC2, ..• 

GO TO( 100, 200, 300, ... ), !ACTON 

700 CALL JACOBI( RPOOL(LOCl), SCRTCH, ... ) 
RETURN 

END 

The action number to execute is identified by !ACTON. Subroutine JACOBI 

is passed the stiffness matrix (which starts at location LOCl in the 

dynamic pool) and the lumped mass vector (stored in COMMON variable 

SCRTCH by a prior call to action MOVEDATA). Array dimensions are also 

passed to subroutine JACOBI so the data located in vector RPOOL can be 
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treated in its appropriate form (vector, matrix, or three-dimensional 

array). The first few lines of subroutine JACOBI are: 

SUBROUTINE JACOBI( STIFF, XMASS, NRSTIF, NCSTIF ) 
DIMENSION STIFF( NRSTIF, 1 ), XMASS( 1) 

3.6 Run-Time Configuration 

The integration of POLO and the application subsystems into a 

single executable program is illustrated in Figure 3.3. The POLO vir-

tual processor is the highest level driver and takes its instructions 

from the compiled HL programs in the system data base. The virtual 

processor drives the POL scanner, the data and memory managers, and the 

application subsystems. After program initialization, the virtual 

processor is instructed to read POL input from the current input device 

(the user's terminal during interactive execution or a sequential disk 

file during batch execution). The user's input is translated to fixed 

format by the POL scanner and is placed at the top of the COMMON area. 

Input is read one line at a time and acted upon as required. 

The virtual processor calls the application subsystem after the 

data manager has resolved the data reference and the memory manager has 

placed the necessary data in COMMON. An application subsystem is com-

posed of an executive routine (ex. SUBROUTINE TGTY33) and a number of 

lower level subprograms (ex. SUBROUTINE JACOBI). The application sub-

system has access to only the data in the COMMON area. The memory 

manager controls all data transfers between the application data bases 

and COMMON. 
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presented later in the chapter. Finally, the technique for interfacing 

the FINITE subsystems is presented. 

4.2.1 Organization of FINITE Subsystems 

Figure 4.2 illustrates the functional dependencies among the FINITE 

subsystems. Subsystem DRIVER is the highest level subsystem in FINITE 

and is the entry point for the command: *RUN FINITE. This subsystem 

ensures that the three databases exist and processes the highest level 

user input commands. Through an internal POLO "RUN" command in its HL, 

subsystem DRIVER invokes one of three subsystems: LIBRARY, STORE, or 

COMPUTE to continue processing user input. 

Subsystem LIBRARY is used by system developers to maintain tables 

that define all finite elements and nonlinear material models. Element 

tables contain information on the characteristics of each element, such 

as the number of nodes, the types of DOF at each node, user-definable 

properties, and possible mass and nonlinear formulations. Material 

model tables describe the characteristics of the material, such as 

initial material properties, the type of stress-strain or load· 

deformation functions that may be used, and material hardening rules. 

Subsystem LIBRARY is essentially an editor which maintains the LIBRARY 

database. The function of subsystem LIBRARY is transparent to the user 

who is not involved with system development. 

Subsystem STORE translates user input that defines the characteris· 

tics of a structural model for subsequent analysis. Structural 

geometry, loads, constraints, element selections, and solution proce­

dures are all translated by STORE. This information is checked for 

consistency and placed into the STRUCTURE database. 
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and 1.4 (repeated in Figures 4.3 and 4.4) illustrate the structural 

model and present input to define the model for analysis. ~ith the 

application of structure loads, a static analysis could be performed to 

compute nodal displacements and element strains and stresses. 

Additional structure characteristics and analysis parameters are needed 

for dynamic analysis. The following is a discussion of specific input 

commands for frequency and mode shape computation. Full details of the 

input commands for dynamic analysis are given in Appendix A. 

The first addition to the model definition is the specification of 

the mass of each element and structure in the hierarchy. The mass of a 

structure is considered in two parts: primary and secondary. Primary 

mass is the mass of the load-carrying components (elements) of the 

structure. Primary mass is defined in the POL through definition of a 

mass formulation indicator: LUMPED or CONSISTENT, and a new element 

property: MASS_DENSITY. The element definition command for the simple 

elements in structure SPAN becomes; 

ELEMENTS ALL TYPE ROD LUMPED E 3.0E04 AX 0.0347, 
MASS_DENSITY 7.34E-04 

A similar command is used for elements 3-5 in structure BRIDGE. 

Definition of primary mass is necessary only for finite elements. The 

primary mass for a structure is assembled from that of the elements 

which form the structure. Assembly of a structure's primary mass fol-

lows a procedure identical to that used in stiffness assembly. 

Structures which are composed of condensed lower level substructures 

obtain their mass definition directly through the condensation process. 

The FINITE system accepts up to thirty DOF at each node in the 

structure. These are the displacement DOF (u v and w) plus their first 
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and second spatial derivatives (u,x v,x w,x u,xx ... ). Depending upon 

the type of elements incident on a given structure node, it is possible 

for mass to be assigned to any or all of these DOF. 

Secondary mass is the mass of non-load-carrying objects supported 

by the structure. Examples include water in a tank and mechanical 

equipment in a building. Secondary mass is always treated as a lumped 

mass addition to the primary mass of the structure. There are two types 

of secondary mass: nodal mass and element mass. Nodal mass is con-

centrated at a structure node. Element mass is concentrated or 

distributed on the surface of an element. Element mass is resolved into 

equivalent nodal mass by use of the same shape functions that resolve 

element loads into equivalent nodal loads. As with primary mass, secon-

dary mass may be assigned to any of the applicable nodal DOF. 

Application of secondary mass to structure SPAN could take the form: 

MASS 
NODAL 

2 4 6 u v 1.23 
ELEMENT MASS FOR ELEMENT TYPE PLANEFRAME 

1-3 LINEAR U V W FRACTIONAL LA 0.0 LB 1.0 WA 0.0 WB 0.5 

By this command sequence, nodes 2, 4, and 6 have mass of 1.23 units 

applied to the U and V (translational) DOF. Also, elements 1-3 have a 

linearly varying mass distributed along their length. The mass inten-

sity is 0.0 at the beginning of the elements and increases to 0.5 at the 

end. The secondary mass command sequence is grouped with the definition 

of COORDINATES, INCIDENCES, CONSTRAINTS, and LOADS. 

Before frequency analysis of a structure can be performed, an 

analysis method must be selected. In general, no single method is ap-

propriate for all structures in a complex hierarchy. Since eigenproblem 
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solution is normally a computationally expensive procedure, it is wise 

to select an analysis method that is well suited to the structure being 

analyzed. An analysis procedure that is effective for a small model 

with a fully populated stiffness matrix will not generally be efficient 

in the analysis of a large model with a tightly banded stiffness. Since 

this broad variety of.structures may exist within one structural hierar-

chy, the analyst must have the capability to define a unique analysis 

procedure for each structure for which frequency analysis will be 

performed. Such a capability has been implemented in FINITE. 

Specification of the analysis method for structure SPAN may take the 

form: 

FREQUENCY ANALYSIS TYPE JACOBI 

where the generalized Jacobi method (4] is selected and default values 

for convergence tolerance and maximum number of sweeps are implied. As 

a second example, structure BRIDGE may require the following analysis 

definition: 

FREQUENCY ANALYSIS 
PROPERTIES 

TYPE SUBSPACE 
NUMBER OF PAIRS 4 
SUBSPACE SIZE 8 

ITERATIONS 10, 
STURM CHECK 

In this command sequence, the subspace iteration method [58] is selected 

and the default values are used for all properties not specified. These 

sample commands are used to define the frequency analysis method and the 

associated parameters that control the solution. The frequency analysis 

is invoked by one of two procedures. First, the analyst may enter an 

explicit "COMPUTE FREQUENCIES" or "COMPUTE MODE SHAPES" request. 

Second, a frequency analysis can be invoked automatically within FINITE 

to satisfy a computational request involving a substructured model. For 

example, condensation of structure SPAN to produce structure SPAN_CON 
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4.4.1 Hyoerroatrix Data Structures 

Hypermatrices provide the fundamental data structure used in FINITE 

to support equation solving (triangulation and load-pass) and 

eigensolution. A matrix which is partitioned by rows and columns into 

submatrices is called a hypermatrix. Figure 4.6 illustrates hypermatrix 

partitioning and the corresponding data structure for storing and 

retrieving the individual submatrices. The order of each submatrix is 

determined by the number of rows assigned to each hyperrow and the num­

ber of columns assigned to each hypercolumn. These assigned values are 

selected to produce a balance among the overhead in accessing the sub­

matrices, I/0 performance, and memory requirements. The potential for 

zero entries in a submatrix from a banded hypermatrix also influences 

the size of the partitions. In general, the order of each submatrix may 

vary from hyperrow to hyperrow and from hypercolumn to hypercolumn. 

Currently, the maximum sizes of an individual submatrix in FINITE are 60 

rows and 60 columns. 

The data structure adopted to represent a hypermatrix is shown in 

Figure 4.6b. The first-level pointer vector contains row pointers, each 

of which locates data in the corresponding hyperrow. The second-level 

vector of pointers, the column pointers, identifies the location of each 

submatrix on the hyperrow. Two sizing vectors are used to store the 

number of rows in each hyperrow and the number of columns in each 

hypercolumn. 

Banded, symmetric hypermatrices (such as the structure stiffness 

and mass) are partitioned as illustrated in Figure 4.7a. Only sub­

matrices in the lower triangle of the matrix are stored. Zero 
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submatrices outside the band of the matrix are not created. Zero sub­

matrices within the band are created since the submatrices become non-

zero during computations. When a symmetric matrix is partitioned, 

hyperrow and hypercolumn sizes are selected so that the diagonal sub­

matrices are square, thus yielding a symmetric partition. 

The data structure for banded, symmetric hypermatrices is similar 

to that for general hypermatrices. As shown in Figure 4.7b, a two-level 

pointer hierarchy is used in which the first-level pointer vector lo­

cates data on the hyperrow. For banded, symmetric hypermatrices, the 

column pointers locate data from the first non-zero submatrix on the 

hyperrow through the diagonal submatrix. Since the symmetric partition 

produces row-sizes and column-sizes vectors that are identical, a single 

sizing vector is sufficient. The banding information is contained in a 

vector called KLOW. KLOW contains one integer entry for each hyperrow 

in the hypermatrix. This integer defines the hypercolumn subscript for 

the first non-zero submatrix on the hyperrow. Using Figure 4.7 as an 

example, the first non-zero submatrix on hyperrow 4 occurs in hyper­

column 3. Thus the fourth entry in vector KLOW is 3. 

The data structure described above is just one of several ways to 

represent a hypermatrix in a hierarchical form. One alternative is 

presented in [19] in which the submatrix pointers are stored in a 

pointer matrix rather than in a two-level pointer hierarchy. This tech­

nique allows the pointer matrix itself to partitioned into a hypermatrix 

creating a multilevel hypermatrix data structure. While an exhaustive 

study has not been made to identify the optimum technique (if one does 

indeed exist), the foregoing data structure has proven to be effective 

in FINITE. Even though hypermatrix data structures minimize data 
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management overhead, the total number of data words transfered between 

memory and secondary storage may actually increase. This is because the 

blocking procedures require the addition of extraneous zero terms to the 

database. Remedies to this problem are discussed in the following 

section. 

4.4.2 Hypermatrix Solution Algorithms 

An advantage of hypermatrix data structures is that submatrices of 

a hypermatrix can be acc.essed as efficiently column-wise as row-wise. 

In contrast to column (or skyline) storage of sparse matrices, a hyper­

matrix can be used effectively as a pre-multiplier, as a post­

multiplier, and as its own transpose [19]. In a virtual memory 

environment, no paging penalties are incurred when performing matrix 

multiplication, triangulation, and load-pass operations so long as no 

more than one submatrix occupies a physical record (page) on secondary 

storage. 

Computations on hypermatrices typically require no more numerical 

operations than the same computations on conventionally stored matrices. 

Economical solutions can be achieved when proper account is made of 

operations on zero entries in the non-zero submatrices and when data 

accessing procedures are tailored to the specific application. As an 

example, consider the triple-matrix product performed in subspace 

iteration. The transformation of the mass matrix from geometric coor-

dinates to subspace coordinates is 

(4.1) 
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where [M) is the structure mass matrix, [X] is the set of iteration 

vectors, and [M] is the transformed mass. The conventional approach to 

this transformation is to compute the product 

[T] - [M] [X] (4.2) 

followed by the product 

[M] - [X] T [T] • (4.3) 

With this approach, the intermediate product [T] must be computed and 

held in memory or on secondary storage until all computations are 

complete. 

An alternative approach to implementation of the triple-matrix 

product does not require the temporary matrix [T]. Assume that [M] is 

partitioned as a hypermatrix with "n" hyperrows and "n" hypercolumns and 

that [X] is partitioned into "n" hyperrows and "q" hypercolumns (q<<n 

for most applications). The following algorithm requires only a tem-

porary submatrix [S] to perform the triple product. 

DO i- 1, n 
DO k- 1, q 

[S] - [OJ 
DOj-l,n 

[S] - [S] + [Mij] [Xjk] 

END DO 
DO j - 1, n 

[Mjkl - [Mjkl 
END DO 

END DO 
END DO 

In the above, the subscripts identify the hyperrow and hypercolumn from 

which the associated submatrix is taken. This algorithm builds the 
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product [M] incrementally where the temporary product in [S] is used as 

soon as it is computed. 

The algorithm is modified to recognize leading zeros in the mass 

submatrices as follows. When the submatrix product [Mij l [Xjkl is com-

puted, [Mij] is examined to locate the first non-zero entry on each row. 

The corresponding column subscript is then used as a lower bound for the 

inner loop of multiplies to avoid operations on zero entries. Since the 

matrix of iteration vectors, [X], is fully populated, no tests are per-

- - T formed on the entries in [Xij] prior to computation of [Xij] [S]. 

The above algorithm is for the case when [M] is fully populated and 

all submatrices are stored (lower and upper triangle). When [M] is 

stored as a banded, symmetric hypermatrix, subscript adjustments are 

necessary to properly access the [Mij] submatrices. 

There is no significant difference in operation counts between this 

algorithm and the procedure of equations (4.2) and (4.3). Also, the 

number of submatrices accessed is the same for each algorithm. The 

advantage of the new algorithm is that memory and secondary storage 

requirements are minimized by eliminating the need for the temporary 

hypermatrix [T]. The above procedure provides another advantage when 

implemented on computers with virtual memory. The use of hypermatrices 

serves to minimize operating system paging. Since the submatrices are 

of moderate size, all entries in the submatrix can normally be accessed 

without the need for paging by the operating system. Conventional 

matrix products require row-wise data access and thrashing may result 

when the matrices are large. 
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4.5 Subsystem DXNAMICS 

Several new subsystems were needed for the implementation of 

dynamic analysis capabilities in FINITE. Likewise, most of the existing 

subsystems required either minor or major modification to handle the new 

data structures and computational procedures. For example, subsystem 

OUTPUT was simply extended to support output of natural frequencies, 

mode shapes, modal loads, and modal strains and stresses. In contrast, 

subsystem ASSEMBLER required major revision to combine mass matrix as­

sembly with stiffness assembly and to include the use of normal DOF in 

both matrices. As mentioned earlier, it is impractical to review all 

the details of the implementation. Instead, the remainder of this chap­

ter presents a selection of the software developed for the study. Both 

new subsystems (DYNAMICS and EIGEN) and modifications to existing sub· 

systems (ASSEMBLER, TRIANGULATE, and LOADPASS) are discussed. 

In dynamic analysis, requests for computation and output are passed 

to subsystem DYNAMICS by subsystem COMPUTE (see Section 4.2.1 and Figure 

4.2). Subsystem DYNAMICS controls the processors that provide the 

dynamic analysis capabilities of FINITE. When a "dynamics" request is 

received, the request vector is examined to determine which function is 

requested and which structural hierarchy is involved. DYNAMICS then 

invokes lower level subsystems to satisfy the request. Current 

capabilities of subsystem DYNAMICS include frequency analysis, computa­

tion of modal loads, recovery of computed results for condensed 

substructures, and output of the various computed results. These 

capabilities are managed by four separate subsystems, as shown in Figure 

4.2. They are FREQUENCY, MODAL_LOADS, RECOVERY, and OUTPUT. The fol­

lowing is a brief overview of the first three of these subsystems. 
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Subsystem OUTPUT required only simple extension to support the various 

dynamics output requests, so it is not described here. 

Frequency analysis entails the computation of natural frequencies 

and mode shapes for a structure at any level of the structural 

hierarchy. Frequency analysis is preceded by assembly of the stiffness 

and mass matrices for the structural model. For a standard (non· 

substructured) model, assembly is performed without interruption and the 

frequency analysis (subsystem EIGEN) is then invoked. The logical flow 

through the subsystem hierarchy in Figure 4.2 is the following. When a 

request 

trol is 

Subsystem 

assembly. 

for frequency analysis is translated by subsystem DRIVER, con· 

transfered from DRIVER to COMPUTE to DYNAMICS to FREQUENCY. 

FREQUENCY invokes ASSEMBLER to perform the stiffness and mass 

Since the model does not include substructures, subsystem 

ASSEMBLER performs the assembly without invoking any other subsystems 

(only element stiffness and mass routines are called). When ASSEMBLER 

terminates, control is returned to FREQUENCY. FREQUENCY then invokes 

subsystem EIGEN to perform the frequency analysis. When EIGEN ter­

minates, control is transfered back to FREQUENCY, which in turn returns 

control to DYNAMICS and so on. 

If the structural model contains condensed, lower level substruc· 

tures, the condensation and assembly procedure requires ASSEMBLER to run 

other subsystems. For fixed-interface reduction of a substructure, 

subsystem ASSEMBLER interrupts its own execution and invokes subsystem 

EIGEN to perform the fixed-fixed frequency analysis of the substructure. 

When EIGEN terminates, control is returned back to ASSEMBLER. Subsystem 

TRIANGULATE is then initiated to perform the reduction. After the stif· 

fness and mass matrices for the current substructure have been reduced, 
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control is again returned to ASSEMBLER and the assembly process 

continues. This process is performed recursively until all structures 

in the hierarchy have been condensed and assembled. When the entire 

structural hierarchy has been assembled, ASSEMBLER terminates and con­

trol is returned to FREQUENCY. At that point, subsystem EIGEN is again 

invoked to solve the eigenproblem for the highest level structure. 

Details of the frequency analysis and condensation procedures follow 

later in this chapter. 

Computation of modal loads requires simply a transformation of a 

load vector (in geometric coordinates) to modal coordinates. The load 

vector is obtained from the prior definition of a loading condition by 

the analyst. The mode shapes computed in a frequency analysis of the 

structure are used for the transformation from geometric to modal 

coordinates. The modal loads processor permits the analyst to identify 

those vibration modes that are most likely to participate in the 

response of the structure under a given dynamic load. This information 

is useful in performing transient analysis by mode superposition. Full 

implementation of mode superposition capabilities is not included in 

this study. 

After frequencies and mode shapes have been computed for the 

highest level structure in a substructured model, the mode shapes for 

condensed lower level substructures may be recovered. The necessary 

procedures are managed by subsystem RECOVERY. A request for computation 

or output of mode shapes, modal strains, or modal stresses causes 

RECOVERY to be invoked. The transformation matrix of static constraint 

modes and substructure normal modes is used to transform the mode shapes 

from the reduced set of generalized coordinates back to the geometric 
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coordinates of the uncondensed substructure (see Equation 2.7). This 

process is repeated recursively until the lowest level of the hierarchy 

is reached. At this point, the portion of the mode shape which cor-

responds to the condensed substructure DOF can be output to the analyst. 

Recovery of modal strains and modal stresses is performed after 

mode shape recovery. Modal strains are the strains computed for the 

individual finite elements when a free-vibration mode shape is used as a 

displacement 

through the 

vector. Modal 

stress-strain 

stresses are derived from modal strains 

relations for the element. Computation of 

modal strains is useful in evaluation of the modeling and analysis pro­

cedures, as is discussed in the next chapter. 

4.6 Frequency Analysis 

The efficiency and flexibility of the dynamics capabilities of 

FINITE depend heavily upon the capabilities of the eigenproblem solver. 

For this reason, frequency analysis is discussed in more detail than the 

previous topics. 

Computation of natural frequencies and mode shapes has been imple­

mented in FINITE in the form of two eigenproblem solvers: the 

generalized Jacobi method and subspace iteration. Computations for both 

eigensolvers are managed by subsystem EIGEN. EIGEN may be invoked to 

solve the eigenproblem for structures at any level of the structural 

hierarchy and with any specified boundary conditions. This includes 

fixed-fixed frequency analysis for condensed substructures and free-

vibration analysis for constrained or unconstrained structures. 

Subsystem EIGEN determines the nature of the analysis from the charac­

teristics of the structure and from instructions contained in the 
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request vector. The particular solution method which is used (JACOBI or 

SUBSPACE) is selected by the analyst. Each of the two eigensolvers is 

discussed below. Data structures and details of the algorithms are 

described. 

4.6.1 Generalized Jacobi Method 

The computation of natural frequencies and mode shapes for discrete 

structural models is achieved by solution of the generalized 

eigenproblem: 

2 
[K][rp] - [w ][M][rp] (4.4) 

where [K] and [M] are symmetric, positive definite coefficient matrices, 

[rp] is the matrix of eigenvectors, and [w2 ] is the diagonal matrix of 

eigenvalues. The generalized Jacobi method [4] is one of two eigensol-

vers implemented in FINITE for solution of this problem. The 

generalized Jacobi method serves two functions in FINITE. First, it is 

used to compute all frequencies and mode shapes for small structural 

models. Second, the method is used as a component of subspace 

iteration. The generalized Jacobi method is popular because of its 

simplicity and its ability to handle ill-conditioned or singular coeffi-

cient matrices. 

In the generalized Jacobi method, [K] and [M] are iteratively 

transformed using orthogonal rotation matrices to zero the off-diagonal 

terms in each matrix. After sufficient iteration, the matrices are 

driven to diagonal form and the eigensolution is complete, yielding all 

eigenpairs for the problem. Convergence of the method is quadratic once 

the off-diagonal elements are small. Thus a high degree of accuracy in 
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the solution can be achieved by continued computation at little addi-

tional cost. This characteristic has made the generalized Jacobi method 

an efficient component of the subspace iteration method (discussed in 

the next section). 

Implementation of the generalized Jacobi method in FINITE required 

a limitation on the basic formulation presented in [4]. The order of 

the problem which can be solved is currently limited to 60 DOF. This 

restriction assures that the stiffness and mass matrices will each oc-

cupy only one submatrix. This yields a memory-resident solution 

procedure. Since the generalized Jacobi method loses efficiency when 

the order of the problem is large, a corresponding hypermatrix formula-

tion which requires additional I/0 is of questionable value [7]. 

4.6.2 Conventional Subspace Iteration 

The subspace iteration method [3] is used to compute the "p" lowest 

eigenvalues and corresponding eigenvectors for the generalized 

eigenproblem, Equation (4.4). In this case, [K] and [M] have order nxn, 

[ 'P l 2 has order nxq, and [w] has order qxq (q>p). The method belongs to 

the simultaneous iteration class of eigenproblem solvers in which in· 

verse iteration is performed with a set of orthogonal iteration vectors. 

In subspace iteration, a special Ritz analysis is performed to enforce 

orthogonality of the iteration vectors and to enhance convergence. 

The first step of the method is to select a set of "q" iteration 

vectors that reside in the nxq matrix [X]. When the method was 

initially proposed, "q" was selected as the minimum of "2p" and "p+8." 

Using •q• iteration vectors instead of just "p" vectors improves the 
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convergence rate for 

Next, [K] is triangulated such that 

[K] - (L] (L] T (4.5) 

where (L] is the lower triangular Choleski factor of [K]. After trian-

gulation, the iteration cycle begins. 

Compute the inertia-load vectors 

[F] - [M] [X]. (4.6) 

Find the pseudo-displacements corresponding to the inertia loads by 

solving for [X] in 

[L][L]T(X] • [F]. 

Transform the stiffness and mass to subspace coordinates by 

(K] - [X]T[F] and 

[i]- [X]T[M][X]. 

(4.7) 

(4.8) 

(4.9) 

Using the generalized Jacobi method, solve the qxq eigenproblem for the 

subspace 

(KJ (1!t] - [-X] [i] [1!t] • (4.10) 

Finally, compute the improved iteration vectors [X] as 

[X] - [X] [1lt] • (4.11) 

The result of equation (4.11) is used in equation (4.6) to start the 

next iteration. Convergence is achieved when the first "p" eigenvalues 

in [-\] do not change (by more than a tolerance) from one iteration to 

the next. 

Equations (4.6) and (4.7) form the simultaneous inverse iteration 

steps, while equations (4.8) - (4.11) define the Ritz analysis. 
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Selection of the initial iteration vectors may be based on a number 

of different procedures. The simplest approach is the following. 

Entries in the first column of [X] are taken as the diagonal terms of 

[M]. The remaining columns of [X] are unit vectors with 1.0 entries at 

coordinates with the largest mii/kii ratios. This procedure attempts to 

excite the modes with the lowest natural frequencies. 

The conventional subspace iteration method was not developed in 

conjunction with any particular data structure. During implementation 

the numerical procedure must be modified to be compatible with the 

chosen data structures. A modified subspace iteration procedure was 

developed, based on the work of other researchers, to conform to hyper­

matrix data structures. 

4.6.3 Hyperroatrix Subspace Iteration 

In spite of its popularity, several problems have been identified 

with the use of the conventional subspace iteration method [58]. The 

most significant of these is the computational expense required to form 

and solve the subspace eigenproblem for large subspace sizes, Equations 

(4.8- 4.10). One procedure that has found favor with researchers is 

the 

than 

evaluation of eigenpairs in groups with the subspace size, q, less 

the number of eigenpairs, p, that are required [5, 35, 58]. The 

adopted in this study is essentially that presented in [58], procedure 

in which eigenvectors are removed from the set of iteration vectors as 

they converge. To keep the subspace size constant, new iteration vee-

tors are introduced to replace the converged vectors. This causes the 
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domain of the subspace to be shifted to the higher values in the fre­

quency spectrum of the structural model. Therefore, the order of the 

subspace 

(p) that 

vergence 

(q) does not place an upper limit on the number of eigenpairs 

may be computed. Origin shifts are also used to improve con­

rates for the higher eigenvalues. The use of hypermatrices in 

this study has prompted modifications to Wilson's procedure. These 

modifications are discussed individually, and then the complete hyper­

matrix formulation is presented. 

4.6.3.1 Selection of Iteration Vectors 

For the conventional subspace iteration method, initial iteration 

vectors are selected by identifying the coordinates with the largest 

mii/kii ratios. This approach is not appropriate when the stiffness and 

mass are stored as hypermatrices. In order to store the ratios, a hy­

pervector data structure is required (see Figure 4.8). Sorting the 

ratios then requires a multiple-merge sort in which each of the in­

dividual subvectors is sorted, then the group of sorted vectors is 

merged into a single sorted vector. During the entire process, the list 

of ratios must remain in hypervector form so that it can be transferred 

to secondary storage as other memory requirements develop. 

As an alternative to implementation of the sorting procedure, a new 

algorithm was developed to select initial iteration vectors. Iteration 

vectors are chosen as discrete representations of a set of orthogonal 

cosine functions (see Figure 4.9). This new algorithm guarantees that 

all unconstrained coordinates will be excited by the inertia loads and 

that each vector will be orthogonal to the others in the set. This 
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procedure is used both for selecting the initial iteration vectors and 

for generating new iteration vectors to replace converged eigenvectors. 

Another procedure for selection of iteration vectors that is com-

patible with hypermatrix data structures is the use of randomly 

generated vectors [9]. Although they are simple to generate, the random 

vectors must be explicitly orghogonalized prior to use in the first 

iteration. 

4.6.3.2 Solution of the Subspace Eigenproblem 

The generalized Jacobi method is typically used to solve the 

eigenproblem for the subspace, Equation (4.10). In conventional sub-

space iteration, the computational effort required to form and solve the 

subspace eigenproblem becomes prohibitive as the subspace size 

increases. Transformation of [K] and [M] to [K] and [M] requires 

2 (nq + 2nq) operations and solution of the subspace eigenproblem re-

quires roughly 3 2 (3q + 6q ) operations. Therefore, it is desirable to 

limit q to maintain efficiency of the overall solution. Yet if q is 

small, 2 2 the convergence rate (~i;~q+l) is adversely affected. Selection 

of q must be based on a balance between a "large" subspace size to ob-

tain good convergence rates and a "small" subspace size to maintain 

efficiency in the transformations and Jacobi iterations. 

Wilson [58] suggested that the optimum subspace size is a function 

of the bandwidth of the model. This finding provides the basis for a 

rational approach to the vector replacement procedure reviewed above. 

To maintain consistency with the generalized Jacobi method and the use 
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of hypermatrices, the number of iteration vectors (and thus the order of 

the subspace) is limited to the number of columns that can be placed in 

one hypercolumn of a hypermatrix. When a set of iteration vectors in 

[X] is generated, a hypermatrix data structure is used. The hyperrows 

are sized according to the sizing vector used for [K] and [M] (Figure 

4.4), and the number of hypercolumns is limited to just one. When the 

stiffness and mass transformations are performed using Equations (4.8) 

and (4.9), the resulting subspace stiffness [K] and mass [M] each occupy 

only one submatrix. Thus, the generalized Jacobi procedure can be used 

as a memory-resident eigensolver for Equation (4.10). Again, the cur­

rent limit on the order of the subspace eigenproblem is 60x60. 

When the stiffness and mass matrices are transformed to subspace 

coordinates, some terms in [K] and [M] may become quite large. 

Additional computations using these terms (such as computing rotation 

matrix coefficients) may produce exponential overflow. Sources of this 

problem lie in the units of measure selected by the analyst and in the 

magnitude of the inertia-load vectors, [F], relative to the structure 

stiffness [K]. A simple remedy developed in this study involves scaling 

the subspace stiffness and mass prior to eigensolution. The scale fac­

tor is computed as the average of the maximum and minimum exponents of 

the diagonal terms in [K] and [M]. After eigensolution the scale factor 

is removed from the eigenvectors [w]. The scaling procedure does not 

affect the eigenvalues [A]. Use of this procedure has proven successful 

in controling exponent growth of the terms in the transformed stiffness 

and mass. 
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4,6.3.3 Orthogonalization of Iteration Vectors 

When converged eigenvectors are removed from the set of iteration 

vectors and replacement vectors are inserted, two orthogonalization 

procedures must be performed. First, the replacement vectors must be 

mass-orthogonalized to the other iteration vectors in [X]. This opera-

tion is performed only at the end of iterations in which replacement 

vectors are added to [X] due to removal of converged eigenvectors. The 

purpose of this operation is to force each iteration vector to converge 

to a different eigenvector. If no convergence occurs during a certain 

iteration, this orthogonalization step is skipped. 

The second orthogonalization procedure guarantees that converged 

eigenvectors do not reappear in the iteration vectors. Once an eigen-

vector has been removed from the subspace, all iteration vectors in [X] 

must be mass-orthogonalized to that eigenvector, and to all other con-

verged eigenvectors. This step must be performed at the start of every 

iteration following convergence of the first eigenvector. 

The Gram-Schmidt procedure is used most often to perform the above 

orthogonalizations [9, 58]. First, consider orthogonalization of re-

placement vectors to other iteration vectors in [X]. Assume that two or 

more replacement vectors have just been added to (X] . The set of vee-

tors can be partitioned to separate "replacement" and "other" vectors: 

(4.12) 

Mass-orthogonalization of [X ] to (X ] is achieved by: r o 

[X] - [X ][X ]T[M][X ]. r o o r (4.13) 

The new set of iteration vectors becomes: 
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(4 .14) 

Notice that the vectors in [Xr] are not mass-orthogonalized to each 

other as they are added to the subspace. The additional expense of this 

activity is avoided by selecting replacement vectors which are known to 

be mutually orthogonal 

(4.15) 

After orthogonalization with respect to [X
0

] by Equation (4.13), the 

modified replacement vectors [Xr] will converge to the highest eigenvec-

tors within the domain of the subspace: 

(4.16) 

where {X ) is the last vector in [X ] , s - q+c, and "c" is the number of 
q r 

converged eigenvectors that have been removed from the subspace so far. 

Since the convergence rates for these iteration vectors are relatively 

slow (w~/w~+l for {Xq)), little change in the vectors will occur during 

the next iteration. At that time, they too will become mass-orthogonal 

through solution of Equations (4.8) - (4.11). 

Mass-orthogonalization of the full set of iteration vectors [X] to 

the "c" converged eigenvectors in [cp] follows the same procedure: 

(4.17) 

The new iteration vectors satisfy the required condition for 

orthogonality: 

(4 .18) 
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However, in solving Equation (4.17), mass-orthogonality of the vectors 

A 

in [X] to each other is violated. To evaluate the significance of this 

effect, consider the following. Define [a] as the mass-weighted projec-

tion of [X] onto [~] prior to orthogonalization: 

T 
[a]-[~] [M][X]. (4.19) 

After orthogonalization by Equation (4.17), the new iteration vectors 

A 

[X] satisfy Equation (4.18), however, they have been altered such that 

(4.20) 

If the vector projections in [a] are of the order . ' the mass-weighted 

A 2 projections of the vectors in [X] on each other are on the order < 

Since the operation of Equation (4.17) is performed after every itera-

tion, the projection values, . ' can be expected to be small. Thus, 2 • 
will be smaller yet, and Equation (4.20) can be approximated by 

(4.21) 

A 

The vectors in [X] are used as [X] in the next iteration without the 

need for each vector to be individually mass-orthogonalized to the 

others. While numerical values for the terms in [a] for various example 

problems have not been examined, the above orthogonalization procedure 

has not led to any stability or convergence difficulties. 
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4.6.3.4 Subspace Iteration with Hypermatrices 

A summary of the subspace iteration method implemented in this 

study is presented in the following pseudo-code. The individual proce-

dures are discussed in the following section. 

CALL INITIALIZE 
IF( SHIFT .NE. 0 -) CALL SHIFT_!< 
CALL TRIANGULATE 
GO TO $TRANS 
LOOP 

IF ( CONVERGENCE_ COUNT . GT. 0 ) CALL ORTHOG _PHI 
CALL INERTIA_LOADS 
CALL LOAD_PASS 

$TRANS CALL TRANSFORM 
CALL JACOBI 
CALL NEW_X 
CALL TEST~CONVERGENCE 
IF( CONVERGE ) THEN 

CALL MOVE_PHI 
CALL REPLACE_X 
CALL UPDATE_ORTHOG 

END IF 
IF( ALL_CONVERGED ) EXIT 
IF( ITERATION LIMIT EXCEEDED ) EXIT 
CALL NEW_SHIFT 
IF( TIME_TO_SHIFT ) THEN 

CALL SHIFT_K 
CALL TRIANGULATE 

END IF 
END LOOP 

4.6.3.5 Description of Procedures 

Procedure INITIALIZE computes the subspace size, evaluates the 

discrete cosine functions used as initial iteration vectors, and 

initializes iteration variables. If the analyst has indicated that the 

structural model contains rigid body modes, variable SHIFT is set to a 

small negative value. 

Procedure SHIFT_!< applies the shift to the stiffness matrix which 

is stored in hypermatrix format. The shifted stiffness is 

[K']- [K]- SHIFT* [M]. (4.22) 
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Procedure TRIANGULATE performs Choleski decomposition on [K] if 

SHIFT equals zero or on [K'] if SHIFT is non-zero (see Equation (4.5)). 

During triangulation, the Sturm sequence check is performed. The number 

of negative terms that appear on the diagonal of [L] during decomposi­

tion identifies the number of eigenvalues below SHIFT. If the STURM 

CHECK property is specified by the analyst, this number is output during 

the solution of the eigenproblem. 

Procedure ORGHOG_PHI performs Gram-Schmidt orthogonalization of the 

iteration vectors in [X] (see Equation (4.17)). The product [~][~]T[M] 

is computed by procedure UPDATE_ORTHOG prior to executing this proce­

dure. 

Procedure INERTIA_LOADS computes the inertia load vectors (see 

Equation (4.6)). 

Procedure LOAD_PASS computes [X] by performing a forward and a 

backward load-pass on the inertia loads (Equation (4.7)). 

Procedure TRANSFORM computes the projected operators for the 

subspace. In the first iteration, [K] is computed from 

[KJ [X] T [K] [X] . (4.23) 

In all other iterations, Equation (4.8) is used. [M] is derived from 

Equation (4.9) in all iterations. 

Procedure JACOBI solves the eigenproblem for the subspace, Equation 

(4.10). After solution of the eigenproblem, the eigenvalues [A] and the 

corresponding eigenvectors (~] are sorted in ascending order so that 

convergence of the vectors in [X] can be evaluated properly. In 
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Wilson's implementation [58], the shift is removed prior to solving the 

subspace equations: 

( [K] + SHIFT * [M]) [>P'] - [A] [M] [>P']. (4.24) 

Using this equation, the eigenvalues in [A] converge directly to the 

system 2 eigenvalues [~ ]. If Equation (4.10) is solved, the eigenvalues 

in [A] differ from those of [w2] by SHIFT. 

Procedure NEW_X computes the improved iteration vectors [X], 

Equation (4.11). 

Procedure TEST_CONVERGENCE compares the values in [A] with those 

from the previous iteration. If the difference in Ai from one iteration 

to the next is within the convergence tolerance (10" 6 is typically 

used), that eigenvalue has converged. The sort in procedure JACOBI 

forces Al to converge before A2 , and so on. Therefore, convergence 

testing terminates with the first value that fails the test. If any 

values are found to converge, variable CONVERGE is set true, and the 

convergence counter is incremented. When the required number of eigen-

values has converged, variable ALL_CONVERGED is set true. 

Procedure MOVE_PHI moves the converged eigenvectors from [X] into 

[~]. The converged eigenvalues are moved from [A] to [w2]. 

Procedure REPLACE X adds new iteration vectors to [X] to replace 

the converged eigenvectors. As the replacement vectors are generated, 

they are scaled by the largest eigenvalue estimate remaining in [A] to 

control overflow problems. The replacement vectors are then mass-

orthogonalized to the other iteration vectors by Equation (4.13). 
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However, it is not necessary to perform both the forward and backward 

load-pass operations. Only a special back-pass is required as described 

in the following. 

The procedure used in FINITE for static condensation involves 

"partial decomposition" [57] of the stiffness matrix. Consider the 

stiffness matrix for a substructure which is to be condensed. 

Partitioning the matrix to separate master and slave DOF yields 

[K] (4.25) 

where the superscripts on the submatrices denote master (m) and slave 

(s) DOF. Choleski decomposition is applied to completely eliminate the 

slave DOF in [Kss]. Similarly, the master-slave coupling terms in [Kms] 

are reduced following the standard procedures for off-diagonal terms. A 

partial decomposition is then performed on the [~] submatrix of master 

DOF coefficients to eliminate the coupling effect of the slave DOF in 

submatrix [Kms]. The modified submatrix [Kmm] becomes the desired con­

densed stiffness matrix for the substructure. In partitioned form, the 

partially decomposed stiffness matrix becomes 

(4.26) 

where [KG] is the statically condensed (or Guyan reduced) stiffness, 

[Lss] is the lower triangular Choleski factor of the [Kss], and [Y] is 

the matrix of "partial static constraint modes." As a consequence of 
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the condensation process, the submatrix [Y] contains the result of a 

standard forward substitution: 

(4.27) 

To 
c complete the static constraint modes [~],only a backward substitu-

tion is necessary: 

(4.28) 

Implementation of this backward substitution function required a 

minor addition to subsystem TRIANGULATE. TRIANGUlATE is invoked by 

subsystem ASSEMBLER when stiffness and mass matrix assembly requires 

condensation of lower level substructures. After the condensed stiff-

ness is computed as described above, subsystem LOADPASS is initiated by 

TRIANGUlATE to perform the backward substitution needed to complete the 

static constraint modes. The matrix [~c] is then stored in the SOLVER 

database and mass matrix condensation begins. 

4.7.2 Guyan Reduced Mass 

The second step in the condensation process is the computation of 

the Guyan reduced mass. This procedure is implemented in subsystem 

TRIANGUlATE directly as defined by Equation (2.15) for a consistent mass 

formulation and Equation (2.16) for lumped mass models. Repeating those 

equations for reference: 

[MG] [~] + [~c]T[Mss][~c] + [~c]T[Msm] + [~s][~c] 

[MG] _ [Mmm] + [~c]T[Mss][~c] 

(2.15) 

(2.16) 

The algorithm for hypermatrix triple products described earlier in 

this chapter at first appears to have application in computing [MG]. 
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H · i th 1' bl k [ . .mn], it is more owever, 1n comput ng e mass coup 1ng oc , M 

economical (fewer numerical operations are required) to use the conven-

tional procedure for computing triple products. The matrix product 

c T ss • G . .mn 
[~] [M ] 1S used in computation of both [M] and [M ]. Therefore, it 

is more efficient to compute the product once and hold it as a temporary 

matrix, [T] . Then (T] is used in Equation (2.15) or (2.16) to compute 

[MG] and again later to compute [~]. 

One additional facet of this step needs discussion. For consistent 

mass formulations, the off-diagonal . sm ms submatnces, [M ] and [M ] are 

included in the computation of [MG]. Since the mass matrix is 

symmetric: 

(4.29) 

d 1 h . d [ . .ms][Mc] an on y t e matr1x pro uct M y must be computed. The other 

product is obtained by simple transposition. 

When [MG] is finally computed, it too is stored in the SOLVER 

database. 

4.7.3 Fixed-Fixed Frequency Analysis 

The normal modes used in the fixed-interface method are defined by 

the eigenvalue problem: 

- (4.30) 

Solution of this problem for the selected frequencies and mode shapes is 

performed by subsystem EIGEN as described in Section 4.6. Constraint of 

the master DOF implied by Equation (4.30) is provided through equation 
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partitioning. Since the slave DOF are blocked in the top rows and 

columns of the stiffness and mass matrices, the master DOF are effec­

tively constrained during frequency analysis by ignoring entries in [K] 

and [M] below the last slave DOF. After solution, both the matrix of 

normal modes, [~n], and the associated frequencies, (w2], are saved in 

the SOLVER database. The normal modes are used in computation of the 

mass coupling block and the frequencies represent the normal stiffness 

coefficients in the reduced stiffness matrix. 

While the fixed-fixed frequency analysis is logically the third 

step in the reduction procedure, implementation followed a different 

scheme. This step is actually performed before the other three steps. 

In subsystem ASSEMBLER, the need for fixed-fixed normal modes is deter­

mined prior to invoking subsystem TRIANGULATE. If normal modes are used 

in condensation, subsystem EIGEN is called first. Upon return from 

EIGEN, ASSEMBLER initiates subsystem TRIANGULATE to do the condensation. 

Once TRIANGULATE is initiated, steps 1, 2, and 4 are completed without 

interruption because the fixed-fixed eigenpairs are already available. 

4.7.4 Mass Coupling Block 

The off-diagonal submatrix in the reduced mass matrix, [~], con­

tains the coupling terms between the normal and the master DOF of the 

substructure. The submatrix is defined by Equation (2.12) for consis-

tent mass models and by Equation (2.13) when a lumped mass formulation 

is used. Those equations are: 

[~s][~n] + [~c]T[Mss][~n] 

[~c]T[Mss][~n] 
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For the lumped mass formulation, Equation (2.13) is computed by a stan-

dard matrix product using the temporary matrix [T] as described above. 

When a consistent mass is used, Equation (2.12) is rearranged so that 

only one matrix product is computed. The off-diagonal block [~s] is 

first added to [T] and then this sum is post-multiplied by [~n]. The 

computations actually take the form: 

c ss where [T]- [~ ][M ]. 

4.7.5 Assembly of the Reduced Stiffness and Mass Matrices 

(4.31) 

When subsystem TRIANGULATE terminates execution after performing 

the above reduction, the reduced stiffness and mass matrices are ac-

tually broken into four components, each stored separately in the SOLVER 

database. The components are [KG] and [~2 ] which form the reduced stif· 

fness and [MG] and [~n] which form the reduced mass. Subsystem 

ASSEMBLER retrieves these components from the SOLVER database and as-

sembles them into the reduced stiffness and mass matrices. Assembly 

occurs when the actual matrices are needed to form the stiffness and 

mass for a higher level structure. 

4.8 Restart and Reanalysis 

Prior to performing the structural analysis, an analyst does not 

generally know the number of natural frequencies below a certain target 

frequency or the number of iterations required to compute a specified 

number of eigenpairs. For substructured models, the analyst must also 
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select the number of normal DOF to retain in each condensed 

substructure. If too few normal DOF are selected, overall response of 

the structural model will be degraded. If too many normal DOF are 

selected, the reduction process becomes excessively expensive. 

Selection of the "correct" number of DOF to retain is based on ex­

perience and judgement. However, even experienced analysts can seldom 

anticipate the number of normal DOF needed for accurate and economical 

solution of a new structural model. Analysis software must provide the 

capabilities for the analyst to gain this knowledge in an iterative 

fashion. In order to efficiently achieve such an iterative solution, 

the software must support automatic restart and partial reanalysis. 

Automatic restart is defined as the resumption of a previously 

terminated analysis without loss of computed results. For example, 

suppose that an analyst computes the first 25 frequencies and mode 

shapes for a structure and requests output of the natural frequencies 

but terminates execution of the analysis prior to obtaining mode shape 

output. Automatic restart allows access to the existing databases for 

output of the mode shapes without recomputing them. 

Partial reanalysis is the ability to make modifications to a struc­

tural model and to recompute the response of the highest level structure 

without completely reanalyzing the entire structural model. For ex­

ample, suppose that a structure with three condensed substructures has 

been analyzed and the analyst wants to refine the definition of the 

first substructure. A partial reanalysis involves restarting the fixed­

fixed frequency analysis of that substructure, computing additional 

normal DOF, recondensing the substructure, assembling it into the 

highest level structure, and reanalyzing the highest level structure 
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without repeating the condensation and assembly of the two unmodified 

substructures. This capability of the software is critical to the sue-

cess of the analysis of multilevel substructured models in which fixed­

interface reduction is used throughout the hierarchy of the structural 

model. 

Implementation of a general restart and reanalysis capability is 

much more complex than the computational procedure indicates (see 

Section 2.2.3). The reason is that the critical procedures are not 

computational. Instead, extensive changes in both size and content of 

previously created data structures are required. Sophisticated data 

management procedures are the prerequisite for successful restart and 

reanalysis. To begin the reanalysis, a complex traversal of the struc­

tural hierarchy is required to validate (or invalidate) existing data, 

to determine what needed data are missing, and to determine the effects 

of invalid or missing data at each level of the hierarchy. Once this 

traversal is complete, the reanalysis begins. Existing valid data is 

used wherever possible. New computations are performed only when 

necessary. 

4.8.1 Automatic Restart 

Automatic restart was an operational feature of FINITE at the start 

of this study. After termination of an analysis, the existing databases 

could be accessed again and any conventional request issued. This in­

cludes definition and displacement computation for a new static loading 

condition, output of previously computed displacements, strains, or 

stresses for a structure, and continuation of a nonlinear static 

analysis. The new dynamic analysis features are also implemented with 
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restart ?apabilities, the most powerful of which is frequency analysis 

restart. Frequency analysis restart involves continuation of a previous 

frequency analysis to compute additional eigenpairs for any specified 

structure, at any level of the structural hierarchy. Since the general-

ized Jacobi method yields all eigenpairs for a structure, frequency 

analysis restart applies only to subspace iteration. 

The analyst defines restart of subspace iteration by specifying the 

number of additional eigenpairs to compute and a value for the initial 

subspace shift. The initial shift is some value greater than the last 

converged eigenvalue but less than an estimate for the next eigenvalue 

in the spectrum. For example, suppose that in the first analysis run, 

15 eigenpairs converged with the largest eigenvalue equal to 2.SE+06. 

When this initial run terminates, FINITE outputs an estimate for eigen-

value number 16, say 4.2E+06. If the analyst wants a total of 20 

eigenvalues for the structure, parameters for restart of subspace itera-

tion would be defined as follows: 

FREQUENCY ANALYSIS TYPE SUBSPACE 
PROPS NUMBER OF PAIRS 5 ITERATIONS 10, 

MINIMUM FREQUENCY 3.3E+06 

In the above the MINIMUM FREQUENCY is the value to which a shift is 

applied before continuing the analysis. 

The key to efficient restart of subspace iteration is the re-use of 

the previous set of iteration vectors. When the initial analysis run 

terminates, several of the vectors in the iteration set will be nearly 

converged. (This is the basis for the estimate of eigenvalue number 16 

in the above example.) Since these vectors are the best known estimates 

for the real eigenvectors, they provide the optimum set of initial 

iteration vectors. Therefore, it is imperative that the software system 
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make these vectors available for re-use. Complications for data manage­

ment arise when the analyst changes another property of the analysis 

method: the subspace size. Such a change forces the hypermatrix that 

stores the iteration vectors to be resized (columns are either added or 

removed depending on an increase or decrease of the subspace size). If 

the subspace size is ·increased, new "cosine-function" iteration vectors 

are added to fill out the set. 

Another major task performed prior to restarting the subspace com­

putations is moving the existing eigenvectors into the SOLVER database 

and storing them in hypermatrix form. The eigenvectors are needed for 

the orthogonalization of iteration vectors after each iteration. After 

these two data management operations are performed, the frequency 

analysis is resumed. It is important to note that these data handling 

tasks are performed automatically and are transparent to the analyst. 

The analyst's contribution to restart is simply the selection of the 

number of additional eigenpairs and the specification of an initial 

shift. Since very few numerical operations are performed during this 

set-up phase, overhead for analysis restart is minimal. 

4.8.2 Partial Reanalysis 

As discussed in Chapter 2, an analyst often requires reanalysis of 

a model as a check on the quality of the reduction of one or more 

substructures. To obtain the check, additional normal DOF are added to 

selected substructures and the analysis is repeated. 

For efficient restart, computations must be limited to only those 

portions of the model affected by the modifications. Reanalysis begins 

with the computation of additional fixed-fixed normal modes for the 
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substructures in question. When subspace iteration is specified for the 

frequency analysis, restart is initiated as described in the previous 

section. The tables which store the frequencies [~2 ] and mode shapes 

[~n] are resized (enlarged) for storage of the newly computed data. 

After the additional eigenpairs are determined, they are stored with 

their counterparts from the previous analysis. 

The next step is to compute a new mass coupling block [~n] for the 

substructure. The new mass coupling block contains one new column for 

each new mode shape in with the existing columns remaining 

unchanged. Therefore, it is sufficient just to resize the matrix [~n] 

and compute the new columns by the procedure discussed in Section 4.7.4. 

The most complex step in the implementation is assembly of the 

structure stiffness and mass matrices in which the reanalyzed substruc-

tures are used. The reanalysis procedure adds additional normal DOF to 

the condensed substructures. The geometric DOF are not affected. 

Therefore, when these substructures are re-assembled into the next level 

of the hierarchy, only the normal DOF are processed. The complication 

arises in reorganizing the hypermatrices that hold the stiffness and 

mass at the higher levels. 

Since the normal DOF are located at the top of the coefficient 

matrices, the geometric DOF must be shifted down in the tables as new 

normal DOF are added. Rather than move actual blocks of numerical data, 

it is more efficient to create a new pointer hierarchy for the table and 

then swap pointers from the old to the new. 
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Figure 4.10 

matrix. Suppose 

illustrates the procedure for resizing the stiffness 

that the existing stiffness is partitioned into 5 hy-

perrows and 5 hypercolumns, with the first 2 hyperrows and hypercolumns 

allocated to the normal DOF. Two non-zero submatrices (N1 and N2) are 

used for the normal DOF and 5 for the geometric DOF (G1 - G5). With the 

addition of new normal DOF to the lower level substructures, a new hy­

perrow and hypercolumn is added to contain the 3 normal DOF submatrices. 

Rather than create an entirely new hierarchy to store the expanded 

matrix, a new set of pointer vectors is created. Pointers to the 

individual geometric DOF submatrices, G
1 

·- G5 , are copied into the new 

pointer hierarchy and the old pointer structure is destroyed. Actual 

submatrices are not moved. At this point the new normal DOF sub-

matrices, &1 - &3 , are assembled from existing and newly added data. 

Resizing and re-assembly of the structure mass matrix follows a 

similar procedure. Submatrices containing only geometric DOF are 

retained without change and submatrices containing normal DOF are com­

pletely re-assembled after the new DOF are added. 
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Figure 4.10. Stiffenss Matrix Resizing 
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CHAPTER 5 NUMERICAL EXAMPLES 

5.1 General 

The modeling and analysis procedures developed in this study are 

demonstrated and evaluated in this chapter. Numerical studies on ex­

ample structures are-performed to demonstrate two principal products of 

this research. First, the feasibility of multilevel substructured 

analysis using modal synthesis techniques in a general purpose software 

system is considered. Preliminary studies of solution accuracy and 

computational efficiency are made to demonstrate the advantages of the 

numerical procedures. Second, unique features of the software are 

demonstrated. The convenience of the flexible user interface, automatic 

restart, and partial reanalysis are all illustrated. 

Natural frequencies, mode shapes, and modal strains are computed 

for both substructured and non-substructured models. Each example 

structure is initially modeled and analyzed without substructuring to 

establish a baseline against which approximate results are compared. 

Subsequent analyses are performed on the substructured models with vary­

ing topology and degrees of reduction. 

The first example involves the analysis of a cantilever box struc­

ture composed of flat shell elements. This example demonstrates the 

performance of the fixed-interface method applied to multilevel sub­

structured models. Both computational effort and solution accuracy are 

evaluated. Detailed comparisons of natural frequencies, mode shapes, 

and modal strains are made for this example. 
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The second example illustrates restart, reanalysis, and the 

capabilities of the software to process rigid-body modes. Three-

dimensional truss elements are used to model a structure which has the 

shape of a double tetrahedron. Emphasis in this example is placed on 

the user interface and restart capabilities. Only frequencies are con-

sidered in the accuracy comparisons. 

All numerical computations were performed on a Harris 500 computer. 

On this machine, floating point numbers are represented with a 38 bit 

mantissa and a 7 bit exponent. This format represents numerical values 

which . -38 +39 vary in magnLtude from 10 to 10 with 11 - 12 decimal digits 

of precision. 

5.2 Cantilever Box 

The first example structure is a thin-walled, cantilever box, open 

on the top as shown in Figure 5.1. The structure is modeled with flat-

shell elements derived from plate and membrane elements. At nodes in 

which connecting elements are not coplanar, there are six active DOF 

(three translations and three rotations). At nodes in which elements 

are coplanar, the rotation normal to the plane is constrained leaving 

only five active DOF at the node. All analyses of this structure incor-

porate a consistent mass formulation. 

The box structure is analyzed using three different models. The 

first model is not substructured and contains 172 flat shell elements 

and 196 nodes. This model, named BOX_l, provides the baseline against 

which the approximate results of the substructured models are compared. 

The finite element mesh for structure BOX 1 is shown in Figure 5.2. 

Input data to generate the mesh and to perform the analysis are shown in 
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Figure 5 .1. Open Cantilever Box Hodel 
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STRUCTURE BOX-1 

"' 

NODE WITH 5 DOF 

WAFER 

(4 NODE FLAT 
SHELL ELEMENT) 

Figure 5.2. Finite Element l1esh for Structure :SOX 1 
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Figure 5.3. Since each shell element in the model is identical to all 

the others, except for orientation, a single "stand-alone" element named 

WAFER is defined first. The stiffness and mass matrices for this ele­

ment are computed only once and then are used repeatedly for each 

occurrence of WAFER in structure BOX_l. In order to extend the defini­

tion of the model from static to dynamic analysis, only two additions to 

the input are made. First the mass of element WAFER is defined. A 

CONSISTENT mass formulation is chosen with a MASS_DENSITY of 7.339E-04. 

Then the frequency analysis method is selected. Subspace iteration is 

used to evaluate the first 10 natural frequencies and mode shapes for 

the structure. 

The second model, structure BOX_2, uses one level of substructuring 

with condensation to reduce the number of DOF which are present in the 

highest level structure. The mesh for this model is illustrated in 

Figure 5.4 and the POL input is shown in Figure 5.5. The hierarchy of 

the structural model is shown in Figure 5.6. The first level of sub-

structures contains the parent structures: structure SIDE (a side 

and structure BOTTOM (a bottom panel). The condensed version panel) 

(child) of each of these substructures contains the boundary nodes from 

the parent structure and a selected number of normal DOF. Normal DOF 

are computed by a fixed-fixed vibration analysis of the parent. The 

condensation procedure is specified in the definition of the child 

structures SIDE_CON and BOTT CON. The highest level structure, BOX_2, 

has only 13 elements and 79 nodes (plus the normal DOF retained during 

condensation). 

Figure 5.7 illustrates the third model of the cantilever box struc-

ture, BOx_3. This model contains two levels of substructuring. Input 
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,_. ,_. 
" 

*RUN 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

FINITE 

OPEN CANTILEVER BOX STRUCTURE USED TO DEMONSTRATE THE 
PERFORMANCE OF THE FIXED-INTERFACE METHOD WITH 
MULTILEVEL SUBSTRUCTURED MODELS. 

THE STRUCTURE USES 112 RFSHELL ELEMENTS FORMED INTO A 
LONG STEEL BOX WHICH IS OPEN ON TOP AND CANTILEVERED AT 
ONE END. THE BOX IS 3.0" WIDE, 2.25 1' HIGH, AND 12.0"' 
LONG WITH CONSTANT WALL THICKNESS OF 0.062511 • 

THIS IS THE NON-SUBSTRUCTURED VERSION OF THE MODEL, 

ELEMENT WAFER 

c 
c 

c 

c 

TYPE RFSHELL CONSISTENT E 30000. NU 0.3 THICKNESS .0625 1 

SHORT OUTPUT MASS DENSITY .0007339 NOSPRINGS 
COORDINATES -

1 o.o o.o 
2 0.75 o.o 
J 0.15 0.75 
• 0.0 0.75 

STRUCTURE BOX 1 
NUMBER OF ELEMENTS 172 NODES 196 
ELEMENTS ALL TYPE WAFER ROTATION BY COORDINATES 

COORDINATES 
1 o.o 
4 o.o 
8 3.0 

11 3.0 
177 o.o 
180 o. 0 
184 3.0 
187 3 .o 
GEN 1-4 IN 
GEN 4-8 IN 
GEN 8-ll IN 
GEN 177 188 
GEN 17i 191 
GEN 179 194 

2.25 
o.o 
o.o 
2.25 
2.25 
o.o 
o.o 
2.25 

X 1-177 
X 4-180 
X 8-184 
189 190 
192 193 
195 196 

0.0 
0.0 
o.o 
o.o 

12.0 
12.0 
12.0 
12.0 

BYlliNY 
BYlliNY 
BY'lliNY 
187 
186 
185 

c 

c 

c 

c 

c 
c 
c 

c 
c 
c 

c 

c 

INCIDENCES 

GEN 10 IN X 16 IN Y AS 1-160 FROM 1 2 13 12 ADD 1 IN X 11 IN Y 

161 117 178 191 188 
162 188 191 192 189 
163 189 192 193 190 
164 190 193 186 187 
165 178 179 194 191 
166 191 194 195 192 
167 192 195 196 193 
168 193 196 185 186 
169 179 180 181 194 
170 194 181 182 195 
111 195 182 183 196 
112 196 183 18< 185 

CONSTRAINTS 

FIX THE NODES AT THE CANTILEVER WALL. 

1-ll ALL • 0,0 

FIX THE THETA DOF WITH ZERO OUT-OF-PLANE STIFFNESS. 

12•166 BY 11, 13-167 BY 11, 14-168 BY 11 
16-170 BY 11, 17-171 BY 11, 18-172 BY 11 
20-174 BY 11, 21•175 BY 11, 22-176 BY 11 
188-196 

FREQUENCY ANALYSIS TYPE SUBSPACE 

THETAX • 
THETAY 
THETAX • 
THETAZ 

PROPERTIES NOM PAIRS 10 ITERATIONS 40 STURM CHECK 

COMPUTE NATURAL FREQUENCIES 
OUTPUT NATURAL FREQUENCIES MODE SHAPES 
sroP 

0.0 
o.o 
o.o 
o.o 

Figure 5.3. POL Definition of Structure BOX 1 
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STRUCTURE SIDE 

STRUCTURE BOX_2 

STRUCTURE BOTTOM 

Figure 5.4. Finite Element Hesh for Structure BOX 2 



,_. ,_. 
"' 

*RUN FINITE 
C HODEL 28; SUBSTRUCTURED VERSION OF THE CANTILEVER BOX 

MODEL. SUBSTRUCTURES ARE REDUCED BY THE 
FIXED-INTERFACE METHOD. THERE ARE 5 NORMAL 
DOF RETAINED IN EACH SUBSTRUCTURE. 

c 
c 
c 
c 
c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

THIS, MODEL USES ONE LEVEL OF SUBSTRUCTURING. 

ELEMENT WAFER 
TYPE RFSHELL CONSISTENT 

SHORT OUTPUT 

COORDINATES 
1 o.o o.o 
2 0,75 o.o 
3 0.75 0.75 
-4 o.o 0.75 

STRUCTURE SIDE 

E 30000. NU 0.3 TUICKNESS 0,0625 1 

MASS_OENSITY 0.0007339 NOSPRINGS 

NUMBER OF ELEMENTS 12 NODES 20 
ELEMENTS ALL TYPE WAFER ROTATION BY COORDINATES 

COORDINATES 
1 o.o 
-4 0,0 

17 o.o 
20 o.o 

2.25 
0.0 
2.25 
0.0 

GEN 1-4 IN X 1-11 B¥ 4 

0.0 
o.o 
3.0 
3.0 
IN Y 

INCIDENCES 
GEN 3 IN X 4 IN Y AS 1-12 FROM 1 2 6 5 ADO 1 IN X 4 IN Y 

FREQUENCY ANALYSIS TYPE SUBSPACE 
PROPERTIES HUH PAIRS 5 ITERATIONS 15 STURM CHECK 

CONSTRAINTS 
5-7 1 9-11, 13-15 THETAX • 0.0 

STRUCTURE SIDE CON 
NUMBER OF ELEMENTS 1 NODES 11 
ELEMENT 1 TYPE SIDE CONDENSED RETAIN NORMAL 1-5 

INCIDENCES 
1 1-4, 8, 12f 16, 20, 19, 18, 17 

STRUCTURE BOTTOM 
NUMBER OF ELEMENTS 16 NODES 25 
ELEMENTS ALL TYPE WAFER ROTATION BY COORDINATES 

COORDINATES 
1 o.o 
5 3.0 

21 o.o 
25 3.0 
GEN 1-5 IN 

o.o o.o 
o.o o.o 
o.o 3.0 
0.0 3.0 
X 1-21 B¥ 5 IN Y 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

INCIDENCES 
GEM • IN X • IN Y AS 1•16 FROM 1 2 7 6 ADD 1 IN X 5 IN y 

CONSTRAINTS 
7-9, 12-14, 17-19 THETAY • 0,0 

FREQUENCY ANALYSIS TYPE SUBSPACE 
PROPS NUM PAIRS 5 ITERATIONS 15 STURM CHECK 

STRUCTURE BOTT CON 
NUMBER OF ELEMENTS 1 NODES 16 
ELEMENT 1 TYPE BOTTOM CONDENSED RETAIN NORMAL 1-5 

INCIDENCES 
1 1-5 10 15 20 25 24 23 22 21 16 11 6 

STRUCTURE BOX 2 
NUMBER OF NODES 79 ELEMENTS 13 
ELEMENTS 

1-8 TYPE SIDE CON ROTATION SUPPRESSED 
9-12 TYPE BOTT-CON ROTATION SUPPRESSED 

13 T¥PE SIDE=CON ROTATION Y 90.0 

INCIDENCES 
GEN 1-4 FROM 1 2 3 4 12 13 14 21 20 19 18 ADD 17 
GEN 5-8 FROM 11 10 9 8 15 16 17 25 26 27 28 ADD 17 
GEN 9-12 FROM 4-8 15-17 25-21 BY -1 1• 13 12 ADO 17 
13 69-79 

CONSTRAINTS 
1-11 ALL • 0,0 
18-20 26-28 35-37 43-45 52-54 60-62 TUETAX ~ 0,0 
22-24 39-41 56-58 THETAY a 0,0 

FREQUENCY ANALYSIS TYPE SUBSPACE 
PROPS NUM PAIRS 10 ITERATIONS 30 STURM CHECK 

COMPUTE NATURAL FREQUENCIES 
OUTPUT NATURAL FREQUENCIES 
STOP 

MODE SHAPES 

Figure 5.5. POL Definition of Structure BOX 2 
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Figure 5.6. Hierarchy of Structure BOX_2 
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Figure 5.7. Finite Element Hesh for Structure BOX 3 



data for this model are listed in Figure 5.8 and the structural hierar­

chy is presented in Figure 5.9. The first level of substructures is 

taken from the previous model, structures SIDE and BOTTOM, which are 

condensed into SIDE_CON and BOTT_CON, respectively. The second sub­

structure level contains structure CHANNEL which consists of 4 condensed 

side panels and 2 ·condensed bottom panels. The condensed version of 

CHANNEL is CHAN_CON which contains the boundary nodes from CHANNEL and a 

selected number of retained normal DOF. The highest level structure, 

BOX_3, is assembled from two condensed channels and one condensed side 

panel. 

DOF). 

This structure contains 3 elements and 33 nodes (plus normal 

One purpose 

fixed-interface 

of this example is to evaluate the performance of the 

method for the frequency analysis of a multilevel sub-

structured model. The key parameter for study is the number of normal 

DOF retained in each of the reduced substructures. Table 5.1 lists the 

various combinations of normal DOF retained in each substructure. 

Structure BOX_2 was analyzed with four different combinations of normal 

DOF. These analyses are represented as 2A through 2D. Analyses were 

performed for structure BOX_3 using nine combinations of retained normal 

DOF. These analyses are identified as 3A through 3I. 

Two types of comparisons are made for the analyses of this example. 

First, solution accuracy is evaluated. The errors in computing natural 

frequencies, mode shapes, and modal strains are examined for all sub-

structured models. Approximate natural frequencies from the 

substructured models are compared directly against those for the 

baseline analysis. Mode shapes and modal strains are evaluated through 
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*RUN FINITE 
C MODEL JE; SUBSTRUCTURED VERSION OF THE CANTILEVER BOX 

MODEL. SUBSTRUCTURES ARE REDUCED BY THE 
FIXED-INTERFACE METHOD. THERE ARE 5 NORMAL 
DOF RETAINED IN EACH SUBSTRUCTURE. 

c 
c 
c 
c 
c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

THIS HODEL USES TWO LEVELS OF SUBSTRUCTURING. 

ELEMENT WAFER 
TYPE RFSHELL CONSISTENT 

SHORT OUTPUT 
E 30000. NU 0,3 THICKNESS 0.0625 1 

MASS_DENSITY 0,0007339 NOSPRINGS 
COORDINATES 

1 o.o 
2 o. 75 
3 0.75 
4 o.o 

STRUCTURE SIDE 

o.o 
o.o 
0.75 
0.75 

NUMBER OF ELEMENTS 12 NODES 20 
ELEMENTS ALL TYPE WAFER ROTATION BY COORDINATES 

COORDINATES 
1 o.o 
4 0.0 

17 o.o 
20 o.o 
GEN 1-4 IN X 

INCIDENCES 

2.25 
o.o 
:L2S 
o.o 

1-17 BY 4 

0,0 
o.o 
3.0 
3.0 
IN Y 

GEN 3 IN X 4 IN Y AS 1-12 FROM 1 2 6 5 ADD 1 IN X 4 IN Y 

FREQUENCY ANALYSIS TYPE SUBSPACE 
PROPERTIES NUK PAIRS 5 ITERATIONS 15 STURM CHECK 

CONSTRAINTS 
5-7 1 9-11 1 13-15 THETAX • 0.0 

·STRUCTURE SIDE CON 
NUMBER OF ELEMENTS 1 HODES 11 
ELEMENT 1 TYPE SIDE CONDENSED RETAIN NORMAL 1-5 

INCIDENCES 
1 1-4, e, 12, 16, 20, 19, 18, 11 

STRUCTURE BOTTOM 
NUMBER OF ELEMENTS 16 NODES 25 
ELEMENTS ALL TYPE WAFER ROTATION BY COORDINATES 

COORDINATES 
1 0,0 o.o o.o 
5 3.0 0.0 o.o 

21 0.0 o.o 3.0 
25 3.0 o.o 3.0 
GEN 1-5 IN X 1-21 BY 5 IN Y 

INCIDENCES 
GEN 4 IN X 4 IN Y AS 1-16 FROM 1 2 7 6 ADD 1 IN X 5 IN Y 

CONSTRAINTS 
7-9, 12-14, 17-19 THETAY a 0.0 

FREQUENCY ANALYSIS TYPE SUBSPACE 
PROPS NUM PAIRS 5 ITERATIONS 15 STURM CHECK 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

Figure 5.8. 

STRUCTURE BOTT CON 
NUMBER OF ELEMENTS 1 NODES 16 
ELEMENT 1 TYPE BOTTOM CONDENSED RETAIN NORMAL 1-5 

INCIDENCES 
1 1-5 10 15 20 25 24 23 22 21 16 11 6 

STRUCTURE CHANNEL 
NUMBER OF NODES 45 ELEMENTS 6 
ELEMENTS 

l-4 TYPE SIDE_CON ROTATION SUPPRESSED 
5-6 TYPE BOTT_CON ROTATION SUPPRESSED 

INCIDENCES 
GEN 1-2 FROM 1-4 12-14 21-18 BY -1 
GEN 3-4 FROM 11-8 BY -1 15-17 25-28 
GEN 5-6 FROM 4-8 15-17 25-21 BY -1 14 13 12 

CONSTRAINTS 
18-20, 26-28 
22-24 

THETAX • 0.0 
THETAY • 0.0 

FREQUENCY ANALYSIS TYPE SUBSPACE 
PROPS PAIRS 10 ITERATIONS 40 STURM CHECK 

STRUCTURE CHAN CON 
NUMBER OF ELEMENTS 1 NODES 22 

ADD 17 
ADD 17 

ADD 17 

ELEMENT 1 TYPE CHANNEL CONDENSED RETAIN NORMAL 1-5 

INCIDENCES 
1 1-11 35-45 

STRUCTURE BOX 3 
NUMBER OF ELEMENTS 3 NODES 33 
ELEMENTS 

1-2 TYPE CHAN CON ROTATION SUPPRESSED 
3 TYPE SIDE=CON ROTATION Y 90.0 

INCIDENCES 
1 1-22 
2 12-33 
3 23-33 

CONSTRAINTS 
12-U 20-22 
16-18 
1-11 ALL • 

THETAX 
THETA 'I 

o.o 
o.o 
o.o 

FREQUENCY ANALYSIS TYPE SUBSPACE 
PROPS HUM P~RS 10 ITERATIONS 30 STURM CHECK 

COMPUTE NATURAL FREQUENCIES 
OUTPUT NATURAL FREQUENCIES MODE SHAPES 
STOP 

POL Definition of Structure BOX 3 
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Figure 5.9. Hierarchy of Structure BOX_3 



MODEL 

2A 

2B 

2C 

2D 

3A 

3B 

3C 

3D 

3E 

3F 

3G 

3H 

3I 

Notes 

1 

2 

SUBSTRUCTURE 

SIDE_ CON (30) 1 BOTT_CON (45) 1 CHAN_CON 

0 0 ---
5 5 ---

10 10 ---
15 15 ---

0 0 0 

0 0 5 

0 0 10 

5 5 0 

5 5 5 

5 5 10 

10 10 0 

10 10 5 

10 10 10 

Numbers is parenthesis indicate the number of 
interior nodal DOF in the parent substructure. 

(129) 112 

Models 2A-2D do not contain substructure CHAN_CON. 

Table 5.1 Number of Retained Normal DOF in BOX Models 
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a pair of error norms which represent the overall quality of these ap· 

proximate vectors. The second comparison focuses on the costs of 

performing the analyses. Both CPU and paging requirements are examined. 

CPU requirements are measured by recording the amount of time used by 

the computer's central processor in solving the problem. Paging is 

measured as the number of page faults (or page replacements) performed 

by the POLO memory manager. 

Table 5.2 lists the first 10 natural frequencies for the non­

substructured model (BOX_l) and the corresponding errors in natural 

frequencies for the substructured models. Results for only 10 of the 13 

substructured analyses are listed in the table. For models ZB, 2C, and 

2D, computed frequencies for all 10 modes matched the baseline fre­

quencies to 4 significant figures. Examination of Tables 5.1 and 5.2 

reveals that the substructured frequencies converge to the baseline 

frequencies when at least 5 normal DOF are retained in each 

substructure. This condition exists for models 2B, ZC, 2D, 3E, 3F, 3H, 

and 3I. The maximum error in any of the 10 natural frequencies for 

these models is only 2.0% with a mean error of 0.8%. 

The need to retain normal DOF in the highest level structure is 

demonstrated by the results for models 3A, 3D, and 3G. In these models 

Guyan reduction is applied to condense the second level substructure 

(CHANNEL). The results for these models are sufficiently poor to 

preclude their use in practical applications. The results for models 3D 

and 3G, which contain normal DOF in the first level substructures but 

not in the second, show no measurable improvement over results for model 

3A, in which Guyan reduction was used at each substructure level. The 
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N ..... 

PERCENT ERROR IN W MEASURED AGAINST BOX-1 VALUES1 

w (radjsec) SUBSTRUCTURED MODEL 

MODE BOX-1 2A 3A 3B 3C 3D 3E 3F 3G 3H 

1 50.92 0,5 5.5 1.7 1.7 5.5 1.2 1.2 5.5 1.2 

2 55.78 0.9 8.6 1.7 1.7 8.6 0.8 0.8 8.6 0.8 

3 81.61 1. 5. 9.2 2.2 2.2 9.2 0.8 0.7 9.2 0.8 

4 89.31 1.9 12.8 2.9 2.9 12.8 0.9 0.9 12.8 0.9 

5 98.25 0.7 49.8 2.5 2.5 49.1 2.0 2.0 49.1 2.0 

6 110.3 2.5 68.5 3.0 3,0 68.5 0.5 0.5 68.5 0.5 

7 138.8 3.9 69.6 3.0 3.0 54.6 -0.4 -0.6 54.6 -0.4 

8 153.2 3.5 56.2 2.9 2.9 56.1 0.2 -0.3 56.1 0.2 

9 198.0 15.0 30.1 17.7 17.2 30.1 0.6 0.3 30.1 0.6 

10 214.1 8.4 68,8 11.5 10.4 67.3 0.6 0.4 67.3 0,6 

1 Models 2B, 2C, and 2D are exact to within 4 significant figures. 

Table 5.2 -- Natural Frequencies for BOX Models 

3I 

1.2 

0.8 

0.7 

0.9 

2.0 

0.5 
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0.3 

0.3 



retention of normal modes in the lower level does not appear to in­

fluence the quality of results for the higher level substructures if the 

later are condensed by Guyan reduction. This effect is not unexpected 

in light of the procedure developed for selection of master and slave 

DOF (Section 2.3.2). The normal DOF in structures SIDE_CON and BOTT_CON 

of models 3D and 3G are grouped as slave DOF when assembled into struc-

ture CHANNEL. As such, their influence is eliminated from the model 

when Guyan reduction is applied to reduce structure CHANNEL into struc­

ture CHAN CON. 

Models 3B and 3C produce sizable errors in natural frequency, rela­

tive to models 3D, 3E, 3H, and 31. This is due to the absence of normal 

DOF in substructures SIDE_CON and BOTT_CON in these models. The need 

for retained normal DOF at all levels of the structural hierarchy is 

clearly demonstrated in this example. 

Model 2A, which employs Guyan reduction of all substructures, shows 

reasonable accuracy in natural frequencies. This is due to the greater 

number of nodes in the highest level structure compared to 3A, 3D, and 

3G (79 versus 33) and to the more uniform distribution of those nodes 

(compare Figures 5.4 and 5.7). 

The quality of a DOF reduction technique for dynamic analysis 

should not be evaluated solely on the basis of natural frequencies. The 

computed mode shapes and modal strains for the substructured box models 

are also examined in this example to assess the accuracy of the 

reduction. Results from the analysis of the non-substructured model 

(BOX_l) again provide a baseline for comparison. The results from the 

substructured models (2A-2D, 3A-3I) are taken as the approximate values 

for which error norms are calculated. 
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To obtain a meaningful comparison between results from the baseline 

and from the substructured models, the mode shapes for the substructured 

models are transformed to the geometric coordinates of the substructures 

at the lowest level of the hierarchy (see Section 2.3.1). A one-to-one 

correspondence then exists between terms of the baseline and of the 

approximate mode shapes. 

Modal strains are computed for the individual finite elements using 

the mode shapes as displacement vectors. After strains for each element 

are computed, strains at the nodes are computed as the average of the 

contributions from all elements incident on a given node. Only nodes 

which join coplanar elements are considered. Nodes along the boundaries 

of the panels are not included in the comparison since the shell element 

is not expected to perform well at these locations [8]. The six strain 

components evaluated at the nodes are: 

.1 au; ax, .4 a2w;ax2 

•z av;ay •s a2w;ay2 (5.1) 

.3 au;ay + av;ax .6 a2w;axay 

No changes are made in normalization of the mode shape vectors 

prior to performing the comparisons. As they are computed, the mode 

shapes are scaled to be orthonormal with respect to the mass matrix of 

the structure. For the non-substructured model (the baseline), the mass 

matrix may contain only geometric coordinates. For the substructured 

models, the structure mass contains both geometric and normal coor­

dinates (a consequence of the substructure reduction procedure). This 
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apparent difference is not relevant since the mode shapes for the sub-

structures are recovered completely to the lowest level of the hierarchy 

where all coordinates are geometric. 

The quality of the approximate mode shapes and modal strains is 

evaluated through the computation of two error norms. The two norms, L
1 

and L2 [51], are defined by 

in which: 

Table 

( 

d. 
], 

d. 
1 

a 

1 
n 

1 
n 

is 

is 

max 
n is 

5.3 

X 100% and 

n 
I (d. - <i.)z ) o.s 
1 ~ 1 X 100% 

the .th term in the approximate vector, 1 

the .th term in the baseline vector, 1 

is the largest term in the baseline vector~ 

the number of terms in the baseline vector. 

lists the L1 norms for mode shapes for all 

(5.2) 

(5.3) 

and 

substructured 

models (2A-2D, 3A-3I). The values in this table exhibit the same trends 

established in Table 5.2 for the natural frequencies. Table 5.3 shows 

slightly larger error norms for modes 5 and 10 relative to the other 

modes. Apparently, an essential component of structure response for 

these modes is omitted from the models by truncation of the normal DOF. 

The models in which normal modes are retained at each level of the 

hierarchy (2B-2D, 3E, 3F, 3H, and 3I) predict mode shapes with the least 
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MODE 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

2A 2B 

0.3 0.1 

0.3 0.1 

0.4 0.1 

0.9 0.1 

1.6 0.1 

0.6 0.1 

1.4 0.4 

1.3 0.3 

15.8 0.2 

11.7 0.4 

2C 20 3A 

0.2 0.1 1.7 

0.3 0.4 1.8 

0.4 0.2 2.9 

0.4 0.9 12.9 

0.3 0.7 24.3 

0.6 0.3 5.1 

1.0 1.7 10.2 

1.0 0.6 13.7 

2.3 3.3 13.7 

1.7 1.6 11.2 

Table 5.3 

MODEL 

3B 3C 3D 3E 3F 3G 3H 3I 

0.5 0.5 1.7 0.4 0.4 1.7 0.4 0.4 

0.5 0.5 1.8 0.4 0.4 1.8 0.4 0.4 

0.5 0.5 2.9 0.3 0.3 2.9 0.3 0.3 

0.6 0.6 12.8 0.6 0.6 12.8 0.6 0.6 

1.0 1.0 24.4 1.7 1.6 24.4 1.7 1.6 

0.7 0.7 5.1 0.3 0.3 5.1 0.3 0.3 

1.6 1.6 10.1 0.6 0.6 10.1 0.6 0.6 

1.5 1.5 13.8 0.7 0.5 13.8 0.7 0.5 

7.8 8.8 13.7 0.8 0.6 13.7 0.8 o. 6 I 

13.1 13.1 11.2 1.2 1.0 11.2 1.2 1.0 

L1 Norm for Mode Shapes BOX Models 



error. Some variability in L
1 

is evident for models 2B-2D while the 

norms for the other four models are virtually identical to each other. 

The L
2 

norms for the same mode shape vectors are listed in Table 

5.4. By design, the L2 norm emphasizes regions of the approximation 

vector where the error function (di - di) attains its maximum value. 

Since the L2 norms are 2-5 times larger than the associated L1 norms, 

regions of "higher-than-average• error are indicated. However, the 

errors remain well within reasonable engineering accuracy for models in 

which natural frequency is well predicted. 

The L1 and L2 error norms for the approximate modal strains are 

listed in Tables 5.5 and 5.6, respectively. The effects of numerical 

differentiation of the mode shapes to obtain the strains are clearly 

shown in these tables. While the trends established in the examination 

of mode shapes are repeated for modal strains, the magnitudes of the 

error norms are larger. 

The effects of truncation of the normal DOF from the condensed 

substructures are well illustrated in this example structure. The 

natural frequencies are well predicted when normal DOF are retained in 

the reduced substructures. Computation of modal strains resulted in 

error norms that are higher than those for mode shapes. Within the 

individual modal strain vectors, the lowest values for the error func-

tion (d. - d) 
J. 

are obtained for strain components and As 

expected, error values increase for the remaining components of strain 

as the order of the numerical differentiation increases. 
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MODE 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

2A 2B 

0.7 0.5 

1.2 1.1 

1.2 0.8 

1.6 0.6 

2.9 0.6 

1.4 0.5 

2.9 2.0 

2.9 1.4 

22.4 1.0 

19.2 2.7 

2C 2D 3A 

0.6 0.6 2.9 

1.2 1.4 3.6 

1.2 1.0 5.9 

1.2 2.2 20.8 

1.0 1.8 41.2 

1.8 1.1 12.0 

2.9 4.6 20.9 

3.0 2.1 20.8 

7.3 9.4 25.3 

5.5 5.5 23.4 

Table 5.4 

MODEL 

3B 3C 3D 3E 3F 3G 3H 3I 

1.0 1.0 2.9 0.9 0.9 2.9 0.9 0.9 

1.3 1.3 3.6 1.3 1.2 3.6 1.3 1.2 

1.2 1.2 5.9 0.9 0.8 5.9 0.9 0.8 

1.4 1.4 20.8 1.1 1.1 20.8 1.1 1.1 

1.7 1.7 41.4 2.7 2.7 41.4 2.7 2.7 

1.4 1.4 12.0 0.5 0.4 12.0 0.5 0.4 

3.2 3.2 22.0 1.3 1.2 22.0 1.3 1.2 

3.0 3.0 21.1 1.4 1.1 21.1 1.4 1.1 

13.8 15.3 25.4 1.6 1.3 25.3 1.6 1.3 

20.3 20.4 23.7 1.8 1.4 23.7 1.8 1.4 
--------------------

L2 Norm for Mode Shapes BOX Models 
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MODE 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

2A 2B 

2.4 1.3 

1.5 0.6 

2.3 1.2 

3.0 1.2 

5.8 2.1 

3.0 1.5 

3.4 1.3 

3.3 1.4 

9.5 0.8 

13.1 1.2 

2C 2D 3A 

3.1 3.0 5.5 

1.7 2.3 4.1 

2.8 2.7 5.7 

3.1 4.6 13.9 

3.3 4.6 36.7 

4.3 3.4 10.3 

3.5 4.5 11.3 

4.0 3.3 10.5 

4.1 4.4 15.5 

4.6 4.4 9.0 

Table 5.5 

MODEL 

3B 3C 3D 3E 3F 3G 3H 3! 

3.1 3.0 5.5 2.3 2.1 5.5 2.3 2.1 

1.6 1.6 4.1 0.9 0.7 4.1 0.9 0.7 

2.4 2.4 5.7 1.6 1.4 5.7 1.5 1.4 

3.0 3.0 13.9 1.4 1.3 13.9 1.4 1.2 

5.2 5.2 37.5 4.0 3.8 37.5 4.0 3.8 

3.0 3.0 10.4 1.6 1.6 10.4 1.5 1.5 

3.7 3.7 12.2 1.9 1.6 12.3 1.9 1.5 

3.5 3.5 10.7 2.1 1.7 10.7 2.1 1.6 

10.2 11.1 15.5 1.6 1.3 15.5 1.6 1.3 

8.0 8.2 9.4 1.6 1.4 9.4 1.6 1.3 

L1 Norm for Modal strains BOX Models 



,_. 
w 
lJ1 

MODE 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

2A 28 

7.2 4.4 

4.0 2.2 

7.1 4.0 

7.3 3.4 

13.2 5.5 

8.7 5.0 

8.5 3.9 

9.0 4.6 

18.6 2.3 

25.9 4.4 

2C 2D 3A 

8.1 8.0 13.0 

4.5 6.1 9.7 

7.2 7.3 14.5 

7.7 11.8 26.5 

8.1 12.3 90.1 

11.2 8.6 30.4 

8.5 11.1 25.5 

4.7 8.o 21.7 

10.9 10.6 36.2 

11.9 11.8 21.6 

Table 5.6 

MODEL 

38 3C 3D 3E 3F 3G 3H 3I 

7.7 7.7 13.1 5.4 5.1 13.1 5.4 5.0 

4.2 4.2 9.7 2.6 2.4 9.7 2.6 2.4 

7.2 7.2 14.5 4.4 4.2 14.5 4.4 4.2 

7.7 7.7 26.5 3.7 3.6 26.5 3.6 3.6 

11.4 11.5 91.6 8.1 7.7 91.6 8.0 7.6 

8.8 8.8 30.5 4.9 4.9 30.5 4.8 4.9 

8.8 8.9 29.9 4.4 3.6 29.8 4.4 3.6 

9.0 9.0 22.2 5.3 4.3 22.0 5.3 4.3 

21.2 23.2 36.2 3.4 2.8 36.2 3.8 3.4 

17.5 17.9 25.0 3.7 3.3 25.1 3.8 3.4 

L2 Norm for Modal Strains BOX Models 



For the -6 analyses discussed above, a convergence tolerance of 10 

on eigenvalues was used in frequency analysis at all levels of the 

hierarchy. To check convergence, model 3E was re-analyzed with a 

tolerance of 10"10 . No improvement in frequencies, mode shapes, or 

modal strains was observed. This test verified that convergence of 

frequencies -6 to a tolerance of 10 did not result in termination of the 

analysis before the mode shapes fully converged. 

The computational effort for analysis of the substructured can-

tilever box models is summarized in Figure 5.10. The data are plotted 

against the CPU time and the number of page faults required for analysis 

of structure BOX_l. In all cases significant savings were realized in 

both CPU time and paging for· the analysis of the substructured models. 

Also as expected, the multilevel substructured models, 3A - 3I, produced 

greater savings than did models 2A - 2D. 

For all substructured analyses, the ·efficiency gained in paging 

exceeds that obtained for CPU time. This result is attributed to the 

smaller databases required for the substructured models. In general, 

only a small portion of the problem data can reside in memory at any one 

time. Since the number of pages in the working set (or dynamic pool) 

was held constant for all analyses performed in this example, propor-

tionatly fewer page faults were needed to access data for the smaller 

models. Simply stated, for smaller models more of the database resides 

in the working set for longer intervals resulting in fewer page faults. 

In contrast, CPU performance is dominated by the number of computations 

required for eigensolution. Working set size has little influence on 

- 136 -
• 



50 50 

45 45 

40 r- I I 

% OF L o-
BOX-1 35 I I 

CPU TIME 
40 

35 
VALUES 

~ 30 nU~ fa- PAGE FAULTS 
30 

.... 25 25 
w .._, 
• 

20 20 

15 15 

10 10 

5 5 

0 0 
2A 28 2C 2D 3A 38 3C 30 3E 3F 3G 3H 31 

SUBSTRUCTURED MODEL 
Figure 5.10. CPU and Paging Performance of BOX Hodels 



the CPU time for such computationally intensive problems. Thus paging 

efficiency exceeds CPU efficiency in this example. 

The accuracy and economy of the fixed-interface method for models 

using one level of substructuring has been previously noted [1, 10, 27]. 

Based on the results of this example problem, computational efficiency 

is further improved· at no loss in solution accuracy when the fixed­

interface method is applied to multilevel substructured models. The 

results for models 2B and 3E clearly demonstrate the advantage of multi­

level substructuring. Computed frequencies, mode shapes, and modal 

strains are virtually identical but model 3E required only 33% of the 

CPU time and 16% of the page faults needed by model 2B. Compared to the 

baseline analysis, model 3E yielded savings of 90% for CPU time and 97% 

for paging. Similar reductions in computational effort are anticipated 

for other classes of structures. 

5.3 Double Tetrahedron 

The purpose of this example is to highlight the modeling techniques 

and computational efficiency that are provided by substructured modeling 

in dynamic analysis. Emphasis is placed on the unique modeling proce­

dures to handle a structure's rigid-body modes, to restart the frequency 

analysis of the parent structure, and to increase the number of normal 

DOF of a previously assembled child structure. While still critical to 

the success of the analysis, solution accuracy is evaluated only on the 

basis of natural frequencies. 

The example structure is a space truss built in the form of a 

double tetrahedron. The structure is modeled with simple three-

dimensional truss elements. The outline of the structure and the 

- 138 -



support conditions are illustrated in Figure 5.11. The nine line ele­

ments in the figure are actually identical joist-like members composed 

of 90 truss elements each. The geometry of one of these joists is il­

lustrated in Figure 5.12. Each joist consists of 10 triangular 

transverse panels joined by longitudinal and diagonal truss elements. 

For clarity the diagonal elements are omitted from the figure. At each 

end of the joist are three additional truss elements that meet at a 

single node. These end nodes are used for connectivity to the remainder 

of the structure. Figure 5.13 shows the fully assembled structure. 

Diagonal truss elements are again omitted from the joist members for 

clarity. Since the truss elements contain only translational DOF at the 

nodes, the entire structural system contains 10 rigid-body modes: one 

rigid-body rotation for each joist about its own local x-axis and one 

rigid-body rotation of the entire structure about an axis through its 

ball-and-socket supports. 

The baseline model for this structure, given code name Cl, uses a 

consistent mass formulation and no condensation of the joist members. 

Figure 5.14 lists the input data that defines this model~ Structure 

JOIST is defined only once and then used nine times with different 

orientations in structure TETRA. A lumped mass model, code named Ll, is 

used as a companion to the baseline model. This second model is identi­

cal in all respects except mass formulation. This change is made by 

replacing the mass formulation key word "CONSISTENT" with the key word 

"LUMPED." The consistent mass and lumped mass analyses are examined 

separately since the natural frequencies for each are expected to differ 

slightly. The approximate models use both lumped and consistent mass 

formulations and varying degrees of condensation of the JOIST 
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c 
c 
c 
c 
c 
c 
c 

c 

c 

c 
c 
c 

c 
c 
c 

c 
c 
c 

c 
c 
c 

SPACE TRUSS STRUCTURE USED TO DEMONSTRATE 
RESTART OF SUBSPACE ITERATION, REANALYSIS OF 
SUBSTRUCTURES, AND LUMPED AND CONSISTENT 
MASS FORMULATIONS. 

THE STRUCTURE USES SPACE TRUSS ELEMENTS TO BUILD A 
LONG SLENDER JOIST SUBSTRUCTURE WUICH IS THEN USED 
TO FORM THE NINE SIDES OF A DOUBLE TETRAHEDRON. 

THIS IS THE NON-CONDENSED, CONSISTENT MASS VERSION. 

STRUCTURE JOIST 
NUMBER OF ELEMENTS 90 NODES 32 
ELEMENTS ALL TYPE SPACETRUSS CONSISTENT MASS_DENSITY 0.0007339 1 

E 30000, AX 0.5 

COORDINATES 
1 o.o o.o 0.0 
2 10.0 6.667 o.o 
3 10.0 -3.333 s.o 
4 10.0 -3.333 -5.0 

29 100,0 6.667 o.o 
30 100.0 -3.333 5.0 
Jl 1oo.o -J.JJJ -s.o 
32 110.0 0.0 0.0 
GEN 2-29 BY 3 NOPRINT 
GEN 3-30 BY 3 NOPRINT 
GEN 4-31 BY 3 NOPRINT 

INCIDENCES 

LONGITUDINAL CHORDS 

GEN 3 IN X 9 IN Y AS 1-27 FROM 2 5 ADD 1 IN X 3 IN Y 

TRANSVERSE PANELS 

GEN 28-37 FROM 2 3 ADD 3 
GEN 38-47 FROM 3 4 ADD 3 
GEN 48-57 FROM 4 2 ADD 3 

DIAGONALS 

GEN 58-66 FROM 2 6 ADD 3 
GEN 67-75 FROM 3 7 ADD 3 
GEN 76-84 FROM 4 5 ADD 3 

PYRAMIDS AT ENDS 

GEN 85-87 FROM 1 2 ADO 0 1 
GEN 88-90 FROM 29 32 ADD 1 0 

c 
c 

c 

c 

c 

STRUCTURE TETRA 
NUMBER OF NODES 275 ELEMENTS 9 
ELEMENTS TYPE JOIST 

1 ROTATION Y 121.482 Z -16.102 
2 ROTATION Y 58.518 Z -16.102 
3 ROTATION Y 90.0 Z 35.265 
4 ROTATION SUPPRESSED 
5 ROTATION X 60.0 
6 ROTATION X 120.0 
1 ROTATION Y 58.518 Z 16.102 
8 ROTATION Y 121.482 Z 16.102 
9 ROTATION Y 90.0 Z -35,265 

INCIDENCES 
1 l-32 
2 1, 33-63 
3 1, 64-94 
4 32, 95-124, 63 
5 32, 125-154, 94 
6 63, 155-184, 94 
7 32, 185-215 
8 63, 216-245, 215 
9 94, 246-275, 215 

CONSTRAINTS 
1 215 ALL • 0.0 

C DEFINE THE FREQUENCY ANALYSIS, SHIFT FOR THE RIGID 
C BODY MODES OF THE STRUCTURE. 
c 

c 

FREQUENCY ANALYSIS TYPE SUBSPACE 
PROPS NUM PAIRS 15 ITERATIONS 20 STURM CHECK, 

RIGID BODY SHIFT -10.0 

COMPUTE FREQUENCIES 
OUTPUT FREQUENCIES 
STOP 

Figure 5.14. POL Definition of Double Tetrahedron 



correspond 

sufficient 

to 

DOF 

the true behavior of the structure due to the absence of 

in the final structure. In effect, Guyan reduction 

prevents 

modes. 

clearly 

the structure 

The application 

demonstrates its 

from vibrating at some of its lower natural 

of Guyan reduction to this structural model 

limited potential for accurate frequency 

analysis of substructured models. 

Guyan reduction eliminates the rigid-body modes from the condensed 

substructures in analyses C2A and L2A. This characteristic is purposely 

used in analyses C2B and L2B to reduce the number of rigid-body modes in 

structure TETRA. For these analyses, the first 4 fixed-fixed normal 

modes are computed for structure JOIST. Mode 1 describes rigid-body 

rotation of the joist about its local x-axis. Modes 2-4 are elastic 

modes with non-zero frequencies. When JOIST_CON is defined, only normal 

modes 2-4 are retained through condensation. This procedure eliminates 

the rigid-body DOF from the substructure so that structure TETRA has 

only one rigid-body mode. Retention of normal modes 2-4 gives structure 

JOIST CON elastic DOF which do not exist in the Guyan reduced models. 

The frequency results for these two analyses are close to those for the 

baseline but vary erratically. Normally, convergence to the baseline 

solution is monotonic from above. For C2B and L2B, some frequencies are 

underestimated, others are overestimated, and still others are virtually 

exact. Apparently, the rigid-body DOF neglected in the definition of 

JOIST CON has an influence on the elastic modes of the structure and 

should be retained. 

Analyses C2C and L2C include all four of the normal modes from 

structure JOIST in the condensation process, thus preserving the rigid­

body mode of JOIST CON. Input for C2C is listed in Figure 5.15. These 
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models provide a more consistent prediction of the natural frequencies 

for structure TETRA. For these two analyses, the lumped mass formula­

tion shows slightly better convergence than does the consistent mass 

formulation 

conclusions. 

but the data are insufficient to draw any general 

As a check on convergence of the consistent mass model, a partial 

reanalysis of C2C is performed to add the next 4 normal DOF from struc· 

ture JOIST to structure JOIST_CON. The restart and reanalysis procedure 

is labeled analysis C2D. The reanalysis requires that the fixed-fixed 

frequency analysis of JOIST be restarted to compute modes 5·8. 

Substructure JOIST_CON is then re-defined to contain normal modes 1-8 in 

the reduction (modes 1-4 from the first analysis, modes 5-8 from the 

restart). The 

5.16. Three 

input 

simple 

commands for this analysis are shown in Figure 

steps are involved in performing the analysis. 

First subspace iteration is restarted to compute the next 4 fixed-fixed 

eigenpairs of JOIST. The analyst defines the number ~f additional 

eigenpairs to compute and an initial shift value. Then, structure 

JOIST CON is re-defined to contain the first 8 normal modes from struc-

ture JOIST. Finally, the frequency analysis for structure TETRA is 

requested. Characteristics of the structural model which do not change 

are not re-defined. For instance, the COORDINATES and INCIDENCES of 

structure JOIST are not repeated. Also, the orientation of each occur­

rence of JOIST_CON in TETRA remains unchanged during reanalysis so this 

data is not repeated. To the analyst, these model changes simply aug­

ment the description of the structural hierarchy. In fact, a major 

restructuring of the problem database takes place. However, this 

restructuring is transparent to the user. 
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*RUN FINITE FILES=20,21,22 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

DOUBLE TETRAHEDRON ANALYSIS C2D 
==================================== 
RESTART ANALYSIS C2C TO ADD NORMAL DOF 5-8 TO 
THE CONDENSED VERSION OF STRUCTURE JOIST. 

THE FREQUENCY ANALYSIS OF STRUCTURE JOIST MUST BE 
RESTARTED TO COMPUTE THE FIXED-FIXED FREQUENCIES 
AND MODE SHAPES. 

ACCESS STRUCTURE JOIST NONDESTRUCTIVE 

FREQUENCY ANALYSIS TYPE SUBSPACE 
PROPERTIES NUM PAIRS 4 ITERATIONS 20 STURM CHECK, 

RIGID BODY SHIFT -10.0 MIN FREQ 0.13E04 
c 
C DEFINE THE NEW LIST OF NORMAL DOF TO RETAIN IN 
C THE CONDENSED STRUCTURE. 
c 

ACCESS STRUCTURE JOIST_CON NONDESTRUCTIVE 
c 

c 
c 
c 
c 

ELEMENT 1 TYPE JOIST CONDENSED RETAIN NORMAL 1-8 

RECOMPUTE FREQUENCIES FOR THE HIGHEST LEVEL 
STRUCTURE. 

COMPUTE FREQUENCIES FOR STRUCTURE TETRA 
OUTPUT FREQUENCIES FOR STRUCTURE TETRA 
STOP 

Figure 5.16 POL Definition for Restart and Reanalysis 
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Analysis C2E is 

procedures of C2D. 

performed to verify the restart and reanalysis 

In analysis C2E, the first 8 fixed-fixed normal 

modes are computed for JOIST at the outset. All of these modes are then 

used in definition of JOIST_CON. This complete reanalysis procedure 

would be necessary to check convergence or to improve computed results 

had restart and partial reanalysis not been possible. In this example 

the computational costs between partial and complete reanalysis are 

almost the same. This is due to the relatively high overhead needed to 

support the restart and reanalysis procedure for such a small structural 

model. For larger models, analysis restart will be significantly more 

efficient than complete re-analysis of the model. Savings will be most 

evident when the costs for performing substructure reduction (fixed­

fixed frequency analysis and the fixed-interface transformation) are a 

large portion of the cost for the entire structural analysis. 

Performance statistics for all of the double-tetrahedron analyses 

are listed in Table 5.7. The CPU and paging requirements for the 

baseline analysis are assigned values of 1000 and results for the 

remaining 9 analyses are scaled accordingly. The condensation process 

provides a drastic reduction in computational expense compared to the 

non-condensed models. 

orders of magnitude 

economical analysis 

seen. 

CPU and paging requirements are cut by up to two 

in the approximate analyses. The potential for 

of more practical structural systems is readily 

This example problem has demonstrated that the use of modal syn­

thesis can produce orders-of-magnitude savings in computational effort 

while maintaining excellent accuracy. The analysis restart feature is 

an essential component of the software system. When there is doubt 
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about the quality of the reduced model, convergence testing can be con­

ducted in an economical and convenient fashion. This flexibility 

encourages proper use of the advanced modeling and analysis techniques 

by both researchers and designers. 
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CHAPTER 6 SUMMARY AND CONCLUSIONS 

6.1 Summary 

Multilevel substructuring has been a popular technique for the 

economical analysis of 

loads. Modal synthesis 

extend the concept of 

complex structural models subjected to static 

is the collective name for techniques which 

substructuring to dynamic analysis. From this 

group of techniques, the fixed-interface method of Craig and Bampton was 

chosen as the focal point of study. Emphasis was placed on the im­

plementation and performance of the method in POLO-FINITE, a general 

purpose software system which supports user-defined, multilevel sub­

structured modeling. 

The characteristics and analytical development of the fixed­

interface method were discussed in detail. Advantages and disadvantages 

of the basic method were addressed, followed by a complete development 

of the procedure. The formulation was then extended to multilevel sub­

structured modeling. Procedures for restart and reanalysis were also 

presented. 

Software design and implementation was a major topic in this study. 

Application of the POLO executive for software development and run-time 

support was presented. POLO's two higher-level languages, DDL and HL, 

were reviewed. The function of each was illustrated through samples of 

the software developed for dynamic analysis. Integration of the hierar­

chical data structures, HL modules, and FORTRAN processing routines was 

also discussed. 

The organization and control of the FINITE subsystems was reviewed 

for linear static and dynamic analysis. The POL that supports the new 
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modeling and analysis capabilities was discussed. Hypermatrix data 

structures and algorithms were presented as a basis for the computa­

tional procedures performed in FINITE. Control of the analysis 

procedures was reviewed for each of the new analysis functions imple­

mented in this study. Implementation of frequency analysis procedures 

and of the fixed-interface method were presented in detail. The effects 

of hypermatrix data structures on the implementation were emphasized 

throughout. The procedure for restart and substructure reanalysis was 

outlined. The need for an effective data management executive to sup-

port this feature was demonstrated. 

Two example structural systems were analyzed to demonstrate and 

evaluate the modeling and computational features of the FINITE system. 

These studies verified the accuracy and economy that is possible with 

multilevel substructured modeling. The generality of the implementation 

was shown to reduce both modeling effort and analysis costs while in­

creasing flexibility. 

6.2 Conclusions 

The fixed-interface method provides a conceptually simple and reli­

able approach for the reduction of substructures for dynamic analysis. 

The method is applicable to multilevel substructured models and is com­

patible with flexible restart and reanalysis procenures. The fixed­

interface method is a subset of several other modal synthesis techniques 

and thus provides an ideal choice for implementation in a general 

software system. While superior accuracy is sometimes possible with 

alternative 

important. 

synthesis methods, other considerations are equally 

Computational costs, user-interaction, and generality 
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(application to multilevel substructured models) must also be evaluated. 

These topics remain largely unstudied because of the lack of sophistica­

tion in other software systems used to evaluate modal synthesis 

techniques. 

The generality of FEM software is equally dependent on the numeri­

cal algorithms that are chosen and on the software methodology used for 

implementation. General purpose software requires advanced techniques 

for data and computer resource management. Algorithmic languages do not 

support such tasks. The use of an executive system for development and 

run-time support becomes a necessity to modern analysis software. 

Restart and reanalysis are essential and natural features of dynamic 

analysis software that are generally neglected due to the complexity of 

the data management tasks. Implementation of this capability is depend­

ent on the sophistication and versatility of the data manager within the 

executive. 

The two example solutions clearly demonstrated the accuracy and 

efficiency of the software resulting from this study. For the first 

time, it has been demonstrated that fixed-interface reduction of multi­

level substructured models can yield impressive savings in computational 

effort while maintaining good accuracy. Also, the unique restart and 

reanalysis procedures are simple to invoke so the analyst will be more 

willing to attempt convergence studies of the structural model. 

The new modeling and computational components in POLO-FINITE estab­

lish the requisite tools for comprehensive studies in structural 

dynamics using substructured models. Extensive numerical testing is 

necessary to further evaluate the procedures for and consequences of 

substructure reduction. 
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The effects of the equation blocking precedure selected in Chapter 

2 require additional study. Retained normal DOF are blocked as slave 

DOF when substructures containing reduced lower-level substructures as 

elements are themselves condensed. An alternative is to retain some 

normal coordinates as master DOF in higher level substructures. The 

result would be to lessen the detrimental effects of Guyan reduction (as 

illustrated in the cantilever box example, models 3A, 3D, and 3G) and to 

increase the size (order) of the higher level structure for subsequent 

analysis. 

Implementation of standard dynamic analysis functions (transient 

analysis, shock spectrum response, etc.) in the POLO-FINITE system is 

now possible. The use of substructured modeling with time history in­

tegration is expected to yield significant reductions in both model 

development time and computational costs, paralleling those achieved in 

static analysis. A particularly promising area is the nonlinear 

analysis of substructured models in which the nonlinear response can be 

localized at the highest level of the hierarchy. Condensed, lower level 

substructures act as linear-elastic restraint on the nonlinear zone. As 

dynamic loading is applied, stiffness matrix updates are performed for 

only the nonlinear region. 

condensed. 

The linear substructures need not be re-

The application of time-dependent loads on reduced substructures 

presents a difficult implementation problem. Unlike static analysis, 

time-varying substructure loads cannot be simply condensed to the master 

DOF and carried forward in the hierarchy of the model. Special provi­

sions must be made for time-history integration at the substructure 

level to fully evaluate these load effects . 
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APPENDIX A USER INTERFACE AND INPUT DESIGN 

A.l General 

The most popular approach to user communication with structural 

analysis software is the problem oriented language (POL). Virtually all 

successful software 'systems use the POL approach, either by initial 

design or by the use of pre-processors to translate POL input into 

fixed-format, card images. The POL approach provides the user with 

greater flexibility by placing him in control of the input process 

rather than forcing him to conform to rigid formats and input sequences. 

The self-documenting nature of the input reduces the need for reference 

to manuals and provides a concise description of the structural model 

for other analysts. The POL is essential for interactive processing in 

which error recovery is often necessary. 

The philosophy established during the development of FINITE was to 

maintain as much independence as possible among the various components 

of a complete structural model. These components include nonlinear 

material models specification, geometric definition of the structures, 

parameters controlling nonlinear solution algorithms, and requests for 

computation and output. The primary reasons for choosing this approach 

are to provide maximum flexibility in using condensed substructures as 

elements in the higher level structures and to minimize the effect of 

changes in the structural model throughout the analysis/design sequence. 

Wherever possible, this philosophy is maintained in the extension 

to dynamic 

parameters 

analysis. 

must be 

One area does exist in which dynamic solution 

tied directly to the geometric definition of a 

substructure. This is the frequency analysis of a substructure that is 
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to be condensed by modal synthesis. Since economical frequency analysis 

depends upon the type of structure, the number of eigenpairs required, 

and the solution method, it is not appropriate to select just one solu­

tion algorighm for all substructures in a complex model. Various 

substructures will have differing characteristics and may require an 

unequal number of retained normal modes for condensation. It is also 

possible 

differing 

separate, 

selection 

that one substructure could be condensed two or more times in 

ways, with varying geometric and generalized DOF, for use in 

higher level structures. Thus, it is necessary to tie the 

of the eigenproblem solution method to the structure 

definition. 

The capabilities selected for general purpose dynamic analysis, 

along with the various options and parameters that control the solution, 

must be defined accurately and unambiguously by the POL. Section A.2 

presents an explanation of the capabilities to be incorporated into 

POLO-FINITE. Section A.3 lists the syntax of the commands for dynamics 

and examples of their use. As stated earlier, this appendix describes 

the POL for a complete set of analysis capabilities, including those 

that have not been implemented as a part of this study. Portions of the 

POL which have not been implemented are indicated by an "*" in the sec­

tion headings. 
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A.2 Description of the POL 

A.2.1 Structure and Element Mass 

The mass of a structure can be divided into two parts: primary and 

secondary. Primary mass is 

(elements) of the structure. 

specification of an· element 

the mass of the load-carrying components 

Its definition is easily added to the 

through two new element properties. The 

first defines the type of mass formulation: LUMPED or CONSISTENT. The 

second is the MASS_DENSITY of the material of which the element is 

composed. The element mass matrix can then be formed using existing 

element shape functions. The FINITE system accepts up to thirty DOF at 

each node of an element. These include the translational DOF: U, V, 

and W, and their first and second derivatives: UX, VX, WX, UY, etc. 

Depending upon the particular element formulation, it is possible for 

mass to be assigned to any or all of these DOF. 

Secondary mass is the mass of non-load-carrying components, such as 

concentrated and distributed live-loads, that are supported by the 

structure. Secondary mass is defined in a manner similar to the defini­

tion of gravity loads. The secondary mass is resolved into equivalent 

nodal mass via the appropriate element load shape functions. The result 

will always be a lumped mass matrix which is added to the primary mass 

of the structure. As with primary mass, secondary mass may be as­

sociated with any of the thirty nodal DOF. 

There are three types of secondary mass: nodal, element, and 

pattern. Nodal mass is mass that is concentrated at a structure node. 

Element mass is concentrated or distributed on the surface of an 

element. Pattern mass enables the defintion of secondary mass in terms 

of a previously defined loading condition, usually gravity loading. The 
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user must specify only the name of the loading condition to be used as 

the pattern and a value for the acceleration of gravity to support the 

appropriate conversion from force to mass. 

The commands for computation (assembly) and output of the mass 

matrix for a structure or stand-alone element follow directly from those 

for the stiffness matrix. 

A.2.2 Structure Damping - * 
Damping is typically defined only for the highest level structure, 

not for individual finite elements or substructures. Two methods are 

available for defining structural damping: modal and Rayleigh. 

Definition of modal damping requires input of the modal damping ratio 

for each vibration mode under consideration. Modal damping is ap­

plicable only to transient analysis by mode superposition. Rayleigh 

damping involves the definition of two damping ratios at two selected 

frequencies; the frequencies need not be eigenvalues of the structure. 

Rayleigh damping is applicable to transient analysis by either mode 

superposition or time-history integration. Use of Rayleigh damping 

requires that a frequency analysis be performed in order to compute the 

modal damping ratios for mode superposition or to explicitly form the 

damping matrix for time-history integration. 

Depending upon the method used to define damping, either the damp­

ing matrix or modal ratios can be output for the structure. 

A.2.3 Frequency Analysis 

As previously mentioned, the parameters controlling the frequency 

analysis (computation of natural frequencies and mode shapes) must be 
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defined individually for each structure for which the analysis is to be 

performed. No default analysis method is adopted. The syntax for 

specification of the solution method is similar to that for a nonlinear 

material. The TYPE of solution procedure is identified followed by a 

listing of the PROPERTIES which control the procedure. Solution method 

properties can be chariged via analysis restart. If a substructure is to 

be condensed by Guyan reduction, no frequency analysis specification is 

required. 

The request for computation may be made explicitly by the analyst 

or the analysis may be invoked automatically by the FINITE processors. 

Standard output included natural frequencies and mode shapes. Recovery 

of mode shapes for condensed lower level substructures is performed when 

an output request is encountered to print those quantities. 

Substructures to be recovered are specified by appending a list of sub­

element numbers to the name of the structure. 

Prior to a transient analysis by mode superposition, the user may 

examine the modal content of a particular dynamic loading condition. A 

special output request facilitates selection of the modes that par­

ticipate in the dynamic response. After a frequency analysis the 

analyst may request output of MODAL LOADS for the loading condition. 

The frequency content of the loading can then be examined and the ap­

propriate modes selected for superposition. 

As a tool for evaluation of the quality of the results in a modal 

synthesis analysis, MODAL STRAINS may be computed and output to the 

analyst. MODAL STRAINS are the element strains which result when a 

selected vibration mode shape is used as a displacement vector. Output 
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of MODAL STRAINS must be preceded by a frequency analysis of the 

structure. 

A.2.4 Substructure Reduction 

The procedure to request reduction of a substructure for dynamic 

analysis parallels tbat for static condensation. The reduction method 

is defined at the intermediate substructure level; i.e., the substruc­

ture with only one element of type CONDENSED. Guyan reduction is the 

default method. The fixed-interface method is invoked by specifying 

which substructure normal modes to retain. The modes specified must be 

within the range computed in the frequency analysis of the lower-level 

substructure which is being condensed. The retained modes need not be 

consecutively numbered. As an alternative to using substructure normal 

modes, user-supplied mode shapes can be used in the synthesis process. 

These modes could be derived from an experimental analysis or some other 

source, such as low-order polynomials. Input data describing these 

modes must be included with the definition of the structure to be 

condensed. 

Reduction can be explicitly invoked with a COMPUTE STIFFNESS ... or 

COMPUTE MASS ... command for the intermediate level substructure. 

Reduction is performed automatically when required to satisfy a request 

for a higher-level structure. 

A.2.5 Initial Conditions - * 

Initial conditions can be defined for a structure prior to tran-

sient analysis. They define a starting solution, in terms of 

displacements and velocities, for the unconstrained physical DOF at time 

- 167 -



t 0. For all other times the displacements and velocities from the 

previous time step are used in the integration. 

The analyst may specify initial conditions in one of two ways. 

First, he may define numerical values for each DOF with non-zero dis-

velocity. The default initial conditions are zero placement or 

displacement and velocity for all unconstrained DOF. The second method 

uses the static equilibrium configuration from a previous linear or 

nonlinear analysis. This method allows the structure to be released 

from some deflected initial shape with zero initial velocity. A dynamic 

loading may then be applied as the transient response is evaluated. 

A.2.6 Dynamic Loading - * 
The dynamic loading function, P(x,y,z,t), is defined such that it 

has a spatially-varying component, F(x,y,z), and a time-varying com­

ponent, G(t): 

P(x,y,z,t) - F(x,y,z) * G(t). (A.l) 

Simply stated, the pattern of the load is fixed and its magnitude 

changes with time. 

The load pattern, F(x,y,z), can be described as either actual 

forces applied to the structure or as support accelerations. The former 

can best be defined as a static linear loading condition, while the 

latter requires an additional loading type: NODAL ACCELERATIONS. No 

special provisions are necessary for input of out-of-phase support 

accelerations. They can be recoginzed and handled automatically. 

The time-varying component of the loading function, G(t), is 

defined along with other loading data in a dynamic loading condition. 

The G(t) vs. t relation may be harmonic, impulsive, or general. the 
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dynamic loading 

F(x,y,z), which 

condition can be 

condition must also include the loading pattern, 

is to be used. More than one static linear loading 

combined to form the complete pattern of the dynamic 

load. Other necessary input includes the values of time t at which 

displacements are 

size) and values 

to 

of 

be computed (thus defining the integration step 

time t at which computed results are to be 

retained in the data base. This last item is important because a tran-

sient analysis 

than could be 

of any significant duration could result in more data 

effectively stored. Also, it is likely that computed 

results would be required at only a few of the many time steps for which 

displacement are computed. 

A.2.7 Transient Analysis - * 
Transient analysis yields the displacement and velocity response of 

the structure when it is subjected to time-varying loading or support 

accelerations. Two approaches are available for performing transient 

analysis: mode superposition and time-history integration. Mode super­

position requires that a frequency analysis be performed so the 

equations of motion can be uncoupled. This implies that an appropriate 

frequency analysis must be selected prior to requesting the transient 

analysis. The resulting set of independent equations is easily solved 

using one of the Lagrange interpolation formulae. Time-history integra­

tion is performed by any one of a number of explicit, implicit, or 

hybrid operators. Specification of the transient analysis method is 

similar to that for frequency analysis: the TYPE of method is defined 

followed by the PROPERTIES list. 
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The request for computation includes the structure to be analysed, 

the dynamic loading condition, time steps, and initial conditions. 

Results available for output include displacements, velocities, strains, 

and stresses. 

A.2.8 Shock Spectrum ·Analysis • * 
The analysis of shock spectrum response is currently restricted to 

linear structures. The shock spectrum is input by defining the func­

tional relationship between a spatial coordinate and a time coordinate. 

The spatial coordinate can be chosen as displacement, velocity, or ac­

celeration, while the time coordinate can be either period or frequency. 

The user inputs discrete points from the spectrum and the remainder of 

the curve is constructed by linear interpolation in four-way logarithmic 

coordinates. The direction of application of the shock is defined using 

direction cosines for the translational DOF (U, V, and W for 3-D 

structures). The nodes at which the shock is applied are also defined. 

Prior to computing the spectral response, a frequency analysis of 

the structure must be performed. Spectral response quantities are com­

puted only after the corresponding output request has been made. 

Results available for output include spectral displacements, spectral 

velocities, spectral strains, and spectral stresses. These quantities 

can be output on a mode-by-mode basis or in some combined form. Methods 

used to combine the modal quantities include SRSS (square root of the 

sum of the squares) and PEAK_SRSS (peak response mode plus SRSS of the 

remaining modes). PEAK_SRSS is also known as the Naval sum. As a 

measure of the portion of the total mass responding to the shock in each 

mode, the modal PARTICIPATION_FACTORS can also be output. 
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A.3 POL Syntax and Exgmples 

A.3.1 Syntax Conventions 

The following is a description of the conventions used in this 

section to illustrate the FINITE command syntax. 

A descriptor is used to identify the position and class of a data 

item in a particular FINITE command line. The descriptor is delimited 

by the characters "< >." The command 

NUMBER OF NODES <integer> 

implies that the word NODES is to be followed by an integer. As ap-

propriate example is: 

NUMBER OF NODES 100 

The following are definitions of the descriptors used within the 

POL: 

<integer> 

<real> 

<number> 

<integer list> 

<real list> 

<number list> 

a series of digits optionally preceded by a plus 
or minus sign. Examples are 121, +300, -8 . 

a representation of a floating point number in 
either decimal or exponential form. Real num­
bers must contain a decimal point and may be 
signed. Examples are 1.0, -3.5, 5.2E-08 . 

either an integer or a real number may be input. 
The data item is converted to a real number. 

a sequence of integers. The sequence may be 
listed explicitly or defined over a range of 
integers with a constant increment. The default 
increment is 1 . Examples are: 1, 2, 4, 5, 8, 
11; 1-10; 2-20 BY 2 . 

a sequence of real numbers. Real lists have the 
same form as integer lists except that there is 
no default increment. Examples are: 1.0, 1.5, 
2.0, 3.0; 0.0-2.5 BY 0.25 

either an integer list or a real list is input. 
The data is converted to real. 

- 171 -



<label> 

<string> 

a series of letters and digits beginnings with a 
letter. Labels are used as names for identify­
ing various entities. Examples are: 
PLANEFRAME, DEADLOAD_lO . 

any text enclosed within single or double 
quotes. An example is: "THIS IS A STRING" 

In some instances a description of the physical meaning of the data item 

is added to the class·in the syntax of a descriptor. This is helpful in 

clarifying the use of the data item. For example a command of the form 

STRUCTURE <structure name:label> 

implies that the data item following th~ word STRUCTURE is a label 

defining the name of the structure. 

It is not always necessary to completely spell out every word on a 

command line in order to have the command correctly translated. Many 

words can be abbreviated and these are identified in the command syntax 

by underlining. The underlined portions of words identify the minimum 

input necessary for proper command translation. Descriptors are not 

underlined but are replaced by an item of the specified class when 

applicable. If the command syntax has the form: 

NUMBER Q[ NODES <integer> 

the following is acceptable as input: 

NUM OF NODE 10 

When only one word from a group of words may be selected as input, 

the choices are listed one above the other and enclosed in braces, "{ }" 

The command syntax 

COMPUTE ! STIFFNESS l 
DISPLACEMENTS 

implies that any of the following commands are acceptable: 
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COMPUTE STIFF 

COMPUTE DISPLACEMENTS 

COMPUTE DISPL 

When an entire word or phrase in the command is optional, it is 

enclosed within parentheses. The command with the syntax 

NUMBER (OF) NODES <integer> 

can be issued as 

NUM NODES 100 

When more than one word from a group of words may be selected, the 

group is enclosed in brackets, " [ ] " 

OUTPUT DISPLACEMENTS 

STRAINS 

STRESSES 

implies that the user may request 

OUTPUT DISPL STRAINS 

The command 

Brackets and braces are combined to allow more flexibility in 

designing commands. The command syntax 

<integer> 

implies that the user may enter data of the form: 

1 X 0.0 Y 0.0 Z 5.0 

2 X 1.0 Z 5.0 

Continuation of an input line onto a second physical line is ac· 

complished by placing a comma at the end of the line to be continued. 

Comments may be placed in the data by placing a "C" in column 1 and 

a blank in column 2 of the comment line . 

. 173 • 



One method for line termination is to place dollar-sign "$" on the 

line. All entries on the line following the "$" are ignored by the 

translator and may be used for comments. 

A.3.2 Syntax and Examples 

A.3.2.1 Specification of Mass 

Example of the command to specify primary mass: 

ELEMENT 1 TYPE CSTRIANGLE CONSISTENT E 30000. NU 0. 3, 
HASS_DENSITY 0.000734 

Example of the commands to specify secondary mass (nodal, element, and 
secondary): 

MASS 
NODAL 

2 U V W 20.0 THETAX THETAY 5.0 
ELEMENT MASS FOR TYPE PLANEFRAME 

3 LINEAR U V W FRACTIONAL LA 0.25 LB 0.75 WA 3.0 WB 8.0 
1 CONCENTRATED U V W L 3.6 M 5.0 
2 CONCENTRATED THETAZ L 3.6 M 3.0 

USE WADING DEAD_WAD G 386.4 

Assembly command: 

COMPUTE MASS (FOR) I STRUCTURE l 
ELEMENT 

Ex: COMPUTE MASS STRUCTURE TRUSS 

Output command: 

OUTPUT MASS (FOR) 

! ~CTUREl ELEMENT 

Ex: OUTPUT MASS ELEMENT WAFER 

- 174 -

<label> 

<label> 



A.3.2.2 Specification of Damping - * 
Modal damping: 

DAMPING MODAL 

!
RATIOS ! 
PERCENTS 

[<mode list:integer list> <number>] 

Ex: DAMPING MODAL RATIOS 1 0.01 2 0.015 3-10 0.02 

Rayleigh damping: 

DAMPING RAYLEIGH FREQUENCIES! <number> <number> 
PERIOD 
RATIOS ! <number> <number> 
PERCENTS 

Ex: DAMPING RAYLEIGH FREQ 100.0 2000. 0 PERCENT 2. 0 5. 0 

Output command: 

OUTPUT DAMPING I MATRIX I ((FOR) 
RATIOS 
PERCENTS 

STRUCTURE <label>) (,) 

((EQE) MODES <integer list>) 

Ex: OUTPUT DAMPING RATIOS STRUCTURE FRAME MODES 1-10 
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A.3.2.3 Specification of Frequency Analysis 

Definition of the frequency analysis method: 

FREQUENCY ANALYSIS (mJD JACOBI 
SUBSPACE 

~ERTIES'<list of properties:label:integer:real> 

Ex: FREQUENCY TYPE SUBSPACE 
PROPERTIES NUM PAIRS 10 ITERATIONS 8 STURM CHECK 

Properties for the two analysis methods, JACOBI and SUBSPACE, are 
listed in Tables A.l and A.2 respectively. 

Computation request: 

COMPUTE KNATURAL) 
L(MODE) 

mf).UENCIES] 
SHAPES 

Ex: COMPUTE FREQ STRUCTURE FRAME 

Standard output request: 

OUTPUT f(NATURAL) FREQUENCIES] 
L<MODE) SHAPES 

((FOR) STRUCTURE <label>) 

((FOR) STRUCTURE <label>) (,) 

((FOR) ~S <integer list>) 

Ex: OUTPUT SHAPES STRUCTURE FRAME MODES ALL 

Example of mode shape recovery for condensed substructures: 

OUTPUT MODE SHAPES STRUCTURE HIGHEST/2/1/2 MODES 1-5 

Modal loads output request: 

OUXPUT MODAL LOADS ((FOR) STRUCTURE <label>) (,) 
(EQE) ~ING <label> 

Modal strain output request: 

OUTPUT DYNAMIC STRAINS (FOR) STRUCTURE <label> ... 
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Command 

TOLERANCE <number> 

(NUMBER) (OF) SWEEPS <integer> 

RIGID (BODY) (SHIFT) <number> 

Default 

l. OE-06 

15 

.FALSE. 

Description 

Convergence tolerance 

Maximum number of 
sweeps. 

Shift for rigid body 
modes. 

Table A.l Properties for JACOBI Frequency Analysis Method 

Command Default 

(NUMBER) (OF) ~S <integer> 0 

(NUMBER) (OF) ITERATIONS <integer> 0 

~!MUM (FREQUENCY) <number> 

IQ1ERANCE <number> 

SUBSPACE (SIZE) <integer> 

~(CHECK) 

JACOBI (TOLERANCE) <number> 

(NUMBER) (OF) SWEEPS <integer> 

RIGID (BODY) (SHIFT) <number> 

NO SHIFT 

FREEZE (VECTORS) 

-none-

l.OE-06 

function 
of model 
bandwidth 

.FALSE. 

l.OE-12 

15 

.FALSE. 

.FALSE. 

.FALSE. 

Description 

Number of eigenpairs 
to be computed. 

Maximum number of 
iterations. 

Largest eigenvalue 
to compute. 

Convergence tolerance 

Number of iteration 
vectors to use. 

Perform Sturm 
sequence check. 

Convergence tolerance 
for Jacobi iterations 

Maximum number of 
sweeps for Jacobi 
iterations. 

Shift for ridid body 
modes. 

Surpress positive 
shifting. 

Surpress replacement 
of converged vectors. 

Table A.2 Properties for SUBSPACE Frequency Analysis Method 
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A.3.2.4 Specification of User-Supplied Mode Shapes • * 
Command sequence: 

ALTERNATE (MODES) <name:label> ((TITLE) <string>) 

<specification of DOF order: U V W UX ... > 

[ 
l1Q!J.E <mode number: integer> ] 
[ <node numbe~:integer> [ <DOF value:number> ]] 

Ex: ALTERNATE HODES LAB_TEST 
u v w 
MODE 1 

1 0.3 0.0 0.2 
2 0.1 0.0 0.1 
3 0.6 0.0 0.4 

MODE 2 
1 0.0 1.0 0.1 
2 0.0 0.5 0.5 
3 0.0 2.0 0.2 

A.3.2.5 Specification of Substructure Reduction 

Element declaration for intermediate level substructure: 

ELEMENT l mil: <structure name: label> CONDENSED (,) 

I RETAIN (NORMAL) (MODES) <integer list>/ 
/ USE ALTERNATE (l1Q!J.ES) <label> 1 

Ex: ELEMENT 1 TYPE CHANNEL CONDENSED RETAIN l-10 

A.3.2.6 Specification of Initial Conditions • * 
Command sequence: 

INITIAL CONDITIONS <label> ((TITLE) <string>) 

DISPLACEMENTS 
[<node list:integer list><DOF list:labels>- <number>] 

VELOCITIES 
[<node list:integer list><DOF list:labels>- <number>] 

USE ~CEMENTS ((FOR) STRUCTURE <label>) (,) 
(FOR) LOADING <label> 

Ex: INITIAL CONDITIONS PRE_LOAD 
USE DISPLACEMENTS FOR LOADING PULL 
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A.3.2.7 Specification of Dynamic Loadin~ • * 
Input of support accelerations as F(x,y,z): 

LOADING <label> ((TITLE) <string>) 
(NODAL) ACCELERATIONS 

{<node list: integer list> <DOF list: labels> <number>] 

Ex: LOADING QUAKE 
ACCELERATIONS 

1-3 u 2.0 
1-3 v 1.5 

Definition of the loading condition: 

LOADING <label> ((TITLE) <string>) 

[
DYNAMIC ] 
NONLINEAR 

Definition of G(t) within the dynamic loading condition: 

For a harmonic variation of G(t): 

HARJ1QNIC PERIOD <number> (EliME. (ANGLE) <number>) (,) 
(COMBINE) [ <pattern name: label> (FACIOR) <number> (,) ] 

For a general variation of G(t): 

GENERAL (COMBINE) [<label> [ ! ~~RS I <number list> J J 
For an impulsive variation of G(t): 

IHPULSIVE (SHAPE) I HALf-SINE I DURATION <number> ( ,) 
RECTANGULAR 
POS ·TRiANGULAR 
NEW· TRIANGULAR 

(COMBINE) { <label> (FACTOR) <number> 1 

Step size definition within the dynamic loading condition: 

[ (TIHE) STEPS <integer list> ((TITLE) <string>) (,) 
<number list> (SECONDS) 1 

Selection of the individual steps to save in the data base: 

SAVE (TIHE) STEPS <integer list> 

Note that the last step computed is always saved, even if not in the 
integer list or if the command is not given . 
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Ex: LOADING VIBRATE 
DYNAHIC 

IMPULSIVE HALF SINE DURATION 0.5 QUAKE 1.0 
STEPS 1-100 0.005-0.500 BY 0.005 
SAVE STEPS 5-100 BY 5 

A.3.2.8 Specification of Transient Analysis - * 
Definition of the transient analysis method: 

TRANSIENT ANALYSIS (TYPE) MODE-SUPERPOSITION 
NEWMARK 
CENI&AL-DIFFERENCE 

~ERTIES <list of properties:label:integer:real> 

Computation request: 

COMPUTE [DYNAHIC J DISPLACEMENTS ((FOR) STRUCTURE <label>) (,) 
NONLINEAR 

[ 

Lf2!Jll.ING <label> (TIME) STEPS <integer list:> l 
INITIAL CONDITIONS <label> · 
INCLUDE MODES <integer list:> 

Output request: 

OUTPUT [DYNAMIC J [ DISPLACEMENTS I (<integer list>) (,)] 
NONLINEAR ~CITIES . 

STRAINS 
STRESSES 

((FOR) STRUCTURE <label>) (,) 
(FOR) LOADING <label>) (TIME) STEPS <integer list> 
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A.3.2.9 Specification of Shock Spectrum Analysis - * 
Definition of the spectrum: 

(SHOCK) SPECTRUM <name:label> ((TITLE) <string>) 

l DISPLACEMENTS l 
VELOCITIES 
ACCELERATIONS 

l PERIODS ·I 
FREQUENCIES ! 

DIRECTIONS (,) 

<number list> 

<number list> 

<node lisC:inCeger list> [ l ~I <direction cosine:number>] 

Ex: SPECTRUM SHAKER "EARTHQUAKE ONE" 
DISPLACEMENTS 0. 0 1. 0 1. 0 0. 0 
FREQUENCIES 0. 0 5. 0 100.0 1500.0 
NODES 1-4 
DIRECTIONS U 0.5 V 0.6 W 0.624 

Output request: 

OUTPUT DYNAMIC 

[
~CEMENTS ] 
yg]j)CITIES 
STRESSES 
STRAINS 
PARTICIPATION-FACTORS 

((FOR) STRUCTURE <label> (,) 

[

(FOR) (SHOCK) SPECTRUM <label>] 
(fOR) HODES [<integer list>] 

~ 
PEAK-SR,SS 

(<integer list>) (,) 

Ex: OUTPUT DYNAMIC STRSINS 1-100 STRUCTURE FRAME SPECTRUM SHAKER, 
HODES 1-15, SRSS 
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