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BOND OF EPOXY-COATED REINFORCEMENT TO CONCRETE: 
BAR PARAMETERS 

ABSTRACT 

The effects of coating thickness, deformation pattern, and bar size on the 

reduction in bond strength between reinforcing bars and concrete caused by epoxy 

coating are described. Tests include beam-end and splice specimens containing No. 

5, No. 6, No. 8, and No. 11 bars with average coating thicknesses ranging from 3 

to 17 mils. Three deformation patterns are evaluated. All bars are bottom-cast. 

Beam-end specimens have covers of 2 bar diameters, while splice specimens have 

covers that depend on bar size and are less than 2 bar diameters. The results are 

compared with the splice tests that were used to establish the epoxy-coated bar 

provisions in the 1989 ACI Building Code and 1989 AASHTO Bridge 

Specifications. Epoxy coatings are found to significantly reduce bond strength, but 

the extent of the reduction is less than used to select the development length 

modification factors in the ACI Building Code and AASHTO Bridge Specifications. 

Coating thickness has little effect on the amount of bond strength reduction for No. 

6 bars and larger. However, the thicker the coating, the greater the reduction in 

bond strength for No. 5 bars and smaller. In general, the reduction in bond 

strength caused by an epoxy coating increases with bar size. The magnitude of the 

reduction depends on the deformation pattern: bars with relatively larger rib-

bearing areas are affected less by the coating than bars with smaller bearing areas. 

This is the first in a series of reports. Subsequent reports will address the effects of 

concrete cover, bar position, concrete strength, and transverse reinforcement. 



INTRODUCTION 

Epoxy-coated reinforcing steel has been in general use for approximately the last fifteen 

years. Its role in reducing the corrosion damage to reinforcing steel in new construction is 

increasing each year. While epoxy coating acts to protect the steel, it has been widely suspected 

that the coating also would decrease the bond between the steel and concrete. 

The reduction in bond strength has been demonstrated in the two principal studies that have 

taken place over the past eight years. The studies, by Johnston and Zia (1982) and Treece and 

Jirsa (1987, 1989), were relatively small in scope but did indeed show that the bond strength of 

epoxy-coated reinforcement is reduced in comparison to uncoated steel. 

Using beam-end specimens containing transverse reinforcement, Johnston and Zia (1982) 

observed a 15 percent reduction in bond strength with the use of epoxy-coated bars. Using 

splices without transverse reinforcement, Treece and Jirsa (1987, 1989) reported an average 

reduction of 34 percent. Largely based on the recommendations of Treece and Jirsa, ACI 

Committee 318 (1989) adopted modification factors to increase the development length for 

epoxy-coated bars. The factor is 1.5 (50 percent increase) for bars with cover less than 3 bar 

diameters or clear spacing between bars less than 6 bar diameters and 1.2 for all other con-

ditions. AASHTO (1989) has adopted factors of 1.5 and 1.15 based on the same criteria. The 

new A CI and AASHTO provisions include no recognition of the effect of confining reinfor-

cement on the strength reduction obtained with epoxy coatings. 

The test results upon which the 1.5 factor is based are quite limited, representing a total of 

only 21 specimens, of which 12 contained epoxy-coated reinforcement. A single deformation 

pattern was evaluated, and no specimens were replicated. The deformation pattern used for 

these tests is no longer used for epoxy-coated bars because of difficulties in coating application.! 

Considering the high variability exhibited in bond tests, there exists a question as to whether 

these limited experiment results provide an accurate picture of the effect of epoxy coating on 

I Florida Steel Corporation, personal communication 
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bond strength. 

This is the first in a series of reports that describe a large-scale study to determine the effect 

of epoxy coating on bond strength. This report addresses the effects of parameters associated 

with the bars themselves: coating thickness, deformation pattern, and bar size. This report also 

addresses the effects of embedment length on the strength of epoxy-coated bars relative to 

uncoated bars as a means of establishing the applicability of the specimen configurations used in 

the study. The overall study also considers the effects of concrete cover, bar position, concrete 

strength, and transverse reinforcement. These topics will be covered in subsequent reports. 

EXPERIMENTAL PROGRAM 

The overall experimental program consists of 645 test specimens. This report deals with 

those specimens used to evaluate the effects of parameters which are associated with the bars 

themselves- the thickness of the epoxy coating, the deformation pattern of the bars, and the bar 

size. Tests to validate the specimens are also presented. 

In these tests, No. 5, No. 6, No. 8, and No. 11 bars with average coating thicknesses 

ranging from 3 to 17 mils (1 mil= 0.001 in.) were tested. Three deformation patterns, shown 

in Fig. 1, were evaluated. 

Test Specimens: 

Two types of test specimens, beam-end specimens and splice specimens, were used. 

Beam-end specimens containing No. 5, No. 6, and No. 8 bars were 9 in. wide by 24 in. long. 

For No. 11 bars, the width was increased to 10 in. Specimen depth was adjusted to provide 15 

in. of concrete above the bars and 2 bar diameters of cover below the bar (all bars discussed in 

this report were bottom-cast). A typical test specimen and test bar installation are illustrated in 

Fig. 2. 

The bars projected 22 in. out from the face of the test specimen. Two polyvinyl chloride 
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(PVC) pipes were used as bond breakers to limit the bonded length of the test bar and to prevent 

a cone type failure on the front face. The inside diameter of the PVC pipe matched the diameter 

of the bar. The bonded lengths of the test bars were selected to ensure that the bars did not yield 

before bond failure occurred (Brettmann, Donahey, and Darwin 1984, 1986). Standard bonded 

lengths of 31/z in. for No. 5 bars, 41/z in. for No. 6 bars, 8 in. for No. 8 bars, and 9 in. for 

No. 11 bars were used. The corresponding lengths of bond breaking PVC pipe at the front of 

the bars (lead lengths) were 23/s, 23/4, 33/4, and 11/z in., respectively. Additional specimens 

were tested to help evaluate the effect of epoxy coating as a function of lead length and bonded 

length. Beam-end specimens were used for the major portion of the study. 

The splice specimens consisted of simply supported beams, similar to those tested by 

Treece and Jirsa (1987, 1989). They are illustrated in Fig. 3. Splice lengths ranged from 12 

in. for No. 5 and No. 6 bars to 16 in. for No. 8 bars and 24 in. for No. 11 bars. Two or three 

adjacent splices were located within the constant moment region. Three splices were used for the 

No. 5 bars. An additional beam with two splices of uncoated No. 5 bars was used to evaluate 

the usefulness of double splice specimens for later tests. The strength of the double and triple 

splice specimens were nearly proportional to the number of splices. Based on this evidence 

(admittedly limited), double splice beams were used for No. 6, No. 8, and No. 11 bars. A 

cover of 1 in. was used for No. 5 and No. 6 bars, 11/z in. for No. 8, and 2 in. for No. 11 bars. 

The clear spacing between splices was equal to 4 in. and side cover was equal to 2 in. for all 

beams. Additional dimensions and data are included in Fig. 3. The spliced bars were all 

bottom-cast, in contrast to the Treece /Jirsa specimens, which primarily used top-cast bars. 

Materials 

Reinforcing Steel-ASTM A 615 (1987), Grade 60, No. 5, No. 6, No. 8, and No. 11 

bars were used. Bars with 3 deformation patterns, designated S, C, and N, were tested (Fig. 

1). Deformation patternS consisted of ribs perpendicular to the axis of the bar. Deformation 
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pattern C consisted of diagonal ribs inclined at an angle of 60" with respect to the axis of the bar. 

Deformation pattern N consisted of diagonal ribs inclined at an angle of 70" with respect to the 

axis of the bar. Bars of each size and deformation pattern were from the same heat of steel. 

Yield strengths and deformation properties are shown in Table 1. 

Epoxy coatings were applied in accordance with ASTM A 775 (1988) and ranged in 

thickness from 3 to 17 mils as measured by a pull-off type thickness gauge. Readings were 

taken at 6 points around the circumference of the bar between each set of deformations within 

the bonded length. Average readings within the bonded lengths are reported. A wide range in 

coating thickness, outside of the ASTM A 775 limits (5 to 12 mils), was used to help evaluate 

the effects of coating thickness on bond strength. 

Concrete-Non-air-entrained concrete was supplied by a local ready mix plant. Type I 

portland cement and 3J4 in. nominal maximum size coarse aggregate were used. Water-cement 

ratios from 0.41 to 0.55 were used to obtain concrete with nominal strengths of 5,000 or 6,000 

psi. 6,000 psi concrete was used for the majority of the specimens. Mix proportions are shown 

in Table 2. Concrete properties for individual specimen groups are given in Table 3. 

Placement Procedure 

Concrete was placed in two lifts. The first lift was placed in all specimens in a group 

before any specimen received a second lift. Each lift in the beam-end specimens was vibrated at 

6 evenly spaced points. Each lift in the splice specimens was vibrated on each side of the beams 

at staggered 1 ft intervals. 

Standard 6 x 12 in. test cylinders were cast in steel molds and cured in the same manner as 

the test specimens. Forms were stripped after the concrete had reached a strength of at least 

3,000 psi. 

Test Procedure 

Tests were made at nominal concrete strengths of 5,000 or 6,000 psi. The beam-end 
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specimens were tested using an apparatus developed by Donahey and Darwin (1983, 1985) and 

modified by Brettmann et al (1984, 1986). Specimens from a group were tested within a 12 

hour period (except for groups 18-20, for which tests were completed over a 48 hour period) at 

ages ranging from 3 to 10 days. No. 5 and No. 6 bars were loaded at approximately 3.0 kips 

per minute. No. 8 and No. 11 bars were tested at about 6.0 kips per minute. 

Splice specimens were inverted and tested as illustrated in Fig. 3. Loads were placed on 

the ends of the cantilever regions, resulting in a constant moment region between the two 

supports. Specimens were loaded monotonically. Crack locations and widths were recorded 

during the progress of the tests. Crack measurements ceased at a load below the expected failure 

load to insure that the balance of the test would not be interrupted and provide a consistent 

measure of member strength. Two specimens, C-pattern No. 6 coated and S-pattern No. 8 

uncoated, however, failed immediately after crack measurements were taken. Splice tests lasted 

20 to 25 minutes. 

Results and Observations 

Beam-end Specimens - The test variables and ultimate bond forces of the bars in the beam-

end specimens are listed in Table 4. 

Fig. 4 illustrates typical load-slip curves for No. 5 bars. Slip at the unloaded end of the 

bars is shown. Uncoated bars obtained a higher strength than bars with a nominal5 mil coating, 

which in turn had a greater bond strength than bars with a 12 mil coating. The initial slope of 

the load-slip curve decreases as the coating thickness increases. As will be discussed later in the 

report, No. 5 bars were the only bars to exhibit a marked sensitivity to coating thickness. 

A splitting type bond failure occurred in all tests. On the front surface of the beam-end 

specimens, one crack ran up through the cover from the test bar to the top surface. The top 

surface crack continued parallel to and above the test bar over the bonded section of the bar and 

fanned out over the rear PVC bond breaker (Fig. 5). On the front surface, one or two cracks ran 
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down below the test bar, similar to the crack patterns observed by Brettmann et a!. (1984, 

1986). Although two different crack patterns were observed, the concrete around the bar always 

split into three parts: wedges on either side of the bar, and the remaining specimen below the 

bar. 

Splice Specimens - The load-deflection curves for the splice specimens (Fig. 6) indicate 

little difference in the response of the members, with the principal exception that epoxy-coated 

bar specimens consistently failed at a lower load than uncoated bar specimens. 

Crack widths were measured within a region spanning 12 in. on either side of the splice. 

The number of cracks and maximum crack widths are summarized in Table 5. For three out of 

seven pairs, the specimens with epoxy-coated reinforcement exhibited a greater maximum crack 

width than the specimens with uncoated bars. For two pairs, the maximum crack widths were 

identical, and for two pairs the specimens with uncoated bars had the greater maximum crack 

width. For four pairs, the specimens with the uncoated bars exhibited a greater number of 

cracks, while in one case the two specimens had an identical number of cracks and in two cases 

the specimens with the epoxy-coated bars had the greater number of cracks. 

Table 5 also summarizes the strengths obtained for the splice specimens in terms of 

bending movement and bar stress. Bar stress is calculated using the usual expression for 

flexural strength. 

Splice specimens with epoxy-coated bars were uniformly weaker than specimens with 

uncoated bars, with the relative strengths ranging between 0.94 (S-pattern No. 6 bars) and 0.71 

(S-pattern No. 11 bars). At failure, splice specimens exhibited extensive longitudinal and 

transverse cracking in the region of the splices (Fig. 7). Concrete above the splices was easily 

removed with a hammer, exposing a nearly horizontal crack running the full width of the beam 

in the plane of the splices. 

Bar appearance - The test bars were examined following the tests by removing the concrete 

cover. Uncoated bars showed evidence of good adhesion to the concrete. Particles of concrete 
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were left on the shaft of the bar and on the sides of the deformations. Wedges of compacted 

concrete powder were lodged in the front of the ribs, adhering to the ribs on the pull side only. 

As observed in earlier tests of epoxy-coated reinforcement (Johnston and Zia 1982, Treece 

and Jirsa 1987, 1989), there was virtually no evidence of adhesion between the epoxy-coated 

bars and the surrounding concrete. No concrete particles were left on the deformations or the 

shaft of the coated bars. The concrete in contact with the epoxy-coated bars had a smooth, 

glassy surface. In a few cases, there were signs of the epoxy-coating being crushed against the 

concrete, but in general the epoxy was undamaged. 

EVALUATION OF EXPERIMENTAL RESULTS 

This report emphasizes the role of bar properties on the bond strength of epoxy-coated 

reinforcement. Specifically, the roles of coating thickness, deformation pattern, and bar size are 

studied. In addition, tests designed to validate the test specimen itself are discussed. The ratio 

of the bond strength of coated bars to the bond strength of uncoated bars, or relative bond 

strength C/U, will be used as the chief measure of the effects of epoxy coating. 

To obtain the best possible comparisons, adjustments in bond strengths are made to 

account for deviations in actual concrete cover from the standard of two bar diameters, 2 db 

(ACI Committee 318 1989). This adjustment is obtained by plotting all beam-end specimen 

strengths for bars of a given size versus the actual cover. Covers ranging from 1 to 3 db are 

used (note, the effect of cover will be addressed in a subsequent report). It is observed that the 

best fit lines for different groups of specimens are nearly parallel for bars of the same size, 

independent of deformation pattern or bar surface condition. Using the technique of dummy 

variables (Draper and Smith 1981), parallel best fit lines are obtained based on the assumption 

that changes in cover cause the same incremental change in bond force for bars of the same size, 

independent of deformation pattern or test group. Thus, each group of specimens is represented 
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by a separate line. A typical plot, in this case for No. 11 bars, is shown in Fig. 8. Individual 

specimen strengths are corrected by shifting the measured bond strength parallel to the best fit 

line to a value corresponding to 2 db cover. The impact of this correction is small. An analysis 

using No. 5 and No.6 bar data that was uncorrected for cover altered no conclusions obtained 

with the cover-corrected data. This is fortunate because a cover correction cannot be made for 

the No. 8 bars in gtoups 2 through 6, since actual cover was not measured for these specimens. 

For the epoxy-coated No. 5 bars, a similar correction is necessary based on coating 

thickness (9 mils is taken as the standard), due to the sensitivity of the bond strength of these 

bars to the thickness of the epoxy. As will be demonstrated, larger bars do not require a coating 

thickness correction, because the bond strength of No. 6 bars and larger is not sensitive to 

coating thickness. 

In addition to the cover and coating thickness corrections, test results are normalized with 

respect to a nominal concrete strength of 6,000 psi using the assumption that, within the 

concrete strength range used, bond strength is proportional to the square root of the compressive 

strength. Thus, bond strengths are multiplied by (6000/f~)l/2 to obtain the final modified 

values. Both the original and modified values of bond force are summarized in Table 4. The 

average modified values of bond force are summarized by bar size, deformation pattern and 

gtoup in Table 6. 

Splice test results are not modified for cover, coating thickness or concrete strength. 

Beam-end Specimens 

Specimen Evaluation-Due to the large number of variables in the overall study, it was 

considered desirable to use a single bonded length in the beam-end specimens for each bar size. 

At the outset, however, it was not clear what effect either the bonded length or the lead length 

had on the reduction in bond strength caused by the epoxy coating. To answer these questions, 

No. 5 bar beam-end specimens with a constant bonded length, 31h in., and lead lengths ranging 
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from 0 to 33/4 in., and No. 5, No. 6, and No. 8 bat beam-end specimens with non-standatd 

bonded and lead lengths were evaluated. In these latter groups, the non-standatd specimens had 

longer bonded lengths (No. 5, lb = 81f2 in.; No. 6, lb = 101/z in.; No. 8, lb = 14 in.) and a 

shorter lead length (h = liz in.) than the standatd test specimens described eatlier. 

Fig. 9 shows the variation in ultimate bond force as a function of lead length for N-pattem 

No.5 bats with a bonded length of 31/z in. (groups 7, 8, 11, and 12). As illustrated, bond 

strength increases neatly linearly with increasing lead length for both the coated and uncoated 

bars. Based on the best fit lines, C/U varies from only 0.936 to 0.934 for lead lengths of 0.0 

and 3.75 in., respectively. Thus, lead length does not appeat to play a role in the relative bond 

strengths of coated and uncoated bats. 

Fig. 10 compates the ultimate bond forces of N-pattern No. 5, No. 6, No. 8 bars and S-

pattern No. 5 bats as a function of bonded length plus lead length. The data points for the 

longer total embedment (all from group 16) represent the average of at least 3 test specimens. 

The data points for the shorter embedment represent the average of the standatd specimens of 

each type (corrected to a 2db cover and No. 5 bats corrected to a nominal 9 mil coating). As il-

lustrated, the ultimate bond force increases with increasing total embedment for No. 5 bats and 

No. 6 bats, but decreases with increasing total embedment for No. 8 bats. This reduction, 

occurs for both coated and uncoated No. 8 bats. Although not a key aspect of this study, Figs. 

9 and 10 show that maximum anchorage capacity does not depend solely on the length of bat in 

contact with concrete. 

Fig. 10 also shows that the bond strengths of coated and uncoated bats respond similatly to 

changes in specimen geometry, resulting in only small changes in C/U. For theN-pattern No.8 

bats, C/U increases from 0.84 for the standatd embedment length to 0.88 for the longer embed-

ment length. For the N-pattern No. 6 bats, C/U increases from 0.93 for the standatd embed-

ment length to 1.01 for the longer embedment length. For the N-pattern No. 5 bats, C/U 

increases from 0.91 for the standatd embedment length to 0.98 for the longer embedment 
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length, while for the S-pattern No. 5 bars, C/U decreases from 0.83 to 0.76. When both 

deformation patterns are considered for No. 5 bars, C/U remains virtually unchanged for the 

two embedment lengths, with mean values of 0.87 for both standard and longer embedments. 

Overall, these results might be used to suggest that C/U tends to increase with embedment 

length. However, considering the small number of nonstandard specimens tested, none of these 

variations is statistically significant. Thus, the evidence is just as strong that the effect of epoxy 

coating is independent of both the bonded length and the lead length. These observations 

contrast with the conclusion of Cleary and Ramirez (1989) that C/U drops with increasing 

anchorage length. However, their conclusion was based on an even smaller sampling of test 

data than considered here. 

Having established that the reduction in bond strength caused by an epoxy coating is 

independent of lead length and bonded length, the balance of this report is dedicated to 

answering the question: Does the effect of the epoxy coating depend on coating thickness, 

deformation pattern, or bar size? To answer these questions, 20 groups of specimens (groups 2-

15, 17-22) were tested. No.5, No.6, and No.8 bars are used to evaluate the effect of coating 

thickness. No. 5, No. 6, No. 8, and No. 11 bars are used to evaluate the effects of defor-

mation pattern and bar size. 

Coating Thickness -The effect of coating thickness is illustrated in Figs. 11, 12, and 13, 

for No. 8, No. 6, and No. 5 bars, respectively. In these figures, C/U is plotted as a function of 

the epoxy coating thickness for each deformation pattern. Each data point represents the ratio of 

the bond strength of an individual epoxy-coated bar to the average bond strength of uncoated 

bars with the same deformation pattern and bar size in the same group of specimens. Using the 

technique of dummy variables (Draper and Smith 1981), the best fit lines for each deformation 

pattern are obtained using the assumption that there may be differences in the effect of the 

coating due to deformation pattern, but that the effect of coating thickness is the same for all 

deformation patterns. 
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Figs. 11 and 12 show that coating thickness plays virtnally no role in the magnitude of 

strength reduction caused by the epoxy coating for No. 8 and No. 6 bars. This observation 

matches similar observations made by Johnston and Zia (1982) and Treece and Jirsa (1987, 

1989). The best fit lines in Figs. 11 and 12 for No. 8 and No. 6 bars, in fact, have very slight 

negative slopes, which result in decreases in C/U of 0.012 and 0.002, respectively, as the 

coating thickness increases from 5 to 12 mils. In contrast to these observations, Fig. 13 shows 

that coating thickness does play a role for No. 5 bars, with C/U dropping, on the average, by 

0.090 as the coating thickness increases from 5 to 12 mils. This observation does not conflict 

with earlier studies (Johnston and Zia 1982, Treece and Jirsa 1987, 1989), since those studies 

included no bars smaller than No. 6. On reflection, the conclusion that C/U depends on coating 

thickness for small bars seems completely reasonable, because as bar size decreases coating 

thickness becomes more significant in relation to the height of the bar ribs. 

Deformation Pattern-A second look at Figs. 11-13 provides convincing evidence that the 

effect of the epoxy coating varies considerably with deformation pattern. For the three bar sizes 

illustrated, the S pattern is affected the most. The values of C/U for the C and N patterns are 

very close for the No. 6 and No. 5 bars. Also, it can be observed that smaller bars are affected, 

on the average, less than larger bars. Some smaller bars, however, exhibit lower values of C/U 

than do larger bars of different deformation patterns. Mean values of C/U based on group, 

deformation pattern and bar size are summarized in Table 6. For a 9 mil coating, the mean 

values of CIU for the S, C and N deformation patterns are, respectively, 0.83, 0.91 and 0.91 

for No. 5 bars, 0.81, 0.91 and 0.93 for No. 6 bars, and 0.74, 0.90 and 0.84 for No. 8 bars. 

[Note: As will be explained later in this section, these values of C/U do not give a fair 

comparison of the deformation patterns.] 

At this point, one might ask: Is there any parameter that will tie the observed results 

together? 

In Europe, researchers have long felt that the so-called "related rib area" (really the ratio of 
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the bearing area of the ribs to the shearing area between ribs), R,, is an important predictor of the 

bond strength of deformed bars (Rehm 1961, Soretz and Ho1zebein 1979). The average values 

of C/U for individual groups of No. 5, No. 6, No. 8, and No. 11 bars are compared with R, in 

Fig. 14. The comparison shows that, in general, C/U decreases as R, decreases. 

An alternative parameter, the bearing area ratio, Rb, equal to the ratio of the rib-bearing area 

per inch of length to the nominal cross-sectional area of the bar, provides a similar correlation 

with C/U, as shown in Fig. 15. For both R, and Rb, the general correlation cuts across bar size, 

but the relative order of the bars in terms of R, and Rb is not constant. Based on these com-

parisons R, provides slightly better correlation with C/U, but comparisons with Rb have the 

advantage that bars of a given size are more closely spaced than if R, is used (for example, see 

the data points representing No.5 bars in Figs. 14 and 15). With additional analysis, it is likely 

that other parameters, such as rib orientation, will be found to play a role. 

The results shown in Figs. 11-15 do not give a completely equitable comparison of the 

deformation patterns, because the values of C/U are evaluated individually by deformation 

pattern. Thus, a coated bar may have a low C/U based on uncoated bars of the same deforma-

tion pattern, but, in fact, have a higher bond strength than another coated bar that has a high 

value of C/U because its uncoated bars have a low bond strength. It is fairer to base the values 

of C/U on the mean strengths of all uncoated bars of the same size. This is done in Table 6 and 

Figs. 16 and 17. For a 9 mil coating, the mean values of C/U calculated on this basis for the S, 

C and N patterns are, respectively, 0.85, 0.93, and 0.87 for No. 5 bars, 0.80, 0.89 and 0.97 

for No. 6 bars, 0.73, 0.83 and 0.90 for No. 8 bars, and 0.90, 0.80 and 0.78 for No. 11 bars. 

Table 6 and Figs. 16 and 17 also show the ratios of the mean strengths of uncoated bars in each 

gtoup to the mean strength of all uncoated bars of the same size, U/U. The mean values of U/U 

for the S, C and N patterns are, respectively, 1.03, 1.02 and 0.95 for No. 5 bars, 0.99, 0.97 

and 1.04 for No. 6 bars, 0.98, 0.96 and 1.06 for No. 8 bars, and 0.98, 0.97 and 1.05 for No. 

11 bars. It is worth noting that not only is the order of relative strength different for coated and 
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uncoated bars of the same size, but the range in the mean values of C/U significantly exceeds the 

range in the mean values ofU/U, except for No.5 bars where the range of relative strengths is 

identical. The wider spread in the bond strengths of coated bars emphasizes the strong 

dependance of bond strength reduction on deformation pattern. 

Unlike the coated bars, there is no clear relationship between Rb or Rr and the relative 

strengths of uncoated bars of the same size. 

Bar Size - The effect of epoxy coating on bond strength as a function of bar size is 

illustrated in Fig. 18, which compares the relative bond strengths of coated and uncoated bars by 

deformation pattern. As with Figs. 16 and 17, the relative strengths are expressed in terms of 

the mean strength of uncoated bars of the same size. 

For the coated bars, the overall trend is a reduction in C/U with increasing bar size. The 

mean values of C/U are 0.88, 0.89, 0.83 and 0.83 for No.5, No.6, No. 8, and No. 11 bars, 

respectively. Based on deformation pattern, the lowest mean values of C/U for each bar size are 

0.85, 0.80, and 0.73, for S-pattern No. 5, No. 6, and No. 8 bars, respectively, and 0.78 for N-

pattern No. 11 bars. 

The C/U values for No. 6 and No. 11 bars contrast sharply with the mean values obtained 

by Treece and Jirsa (1987, 1989) for splices: 0.74 for No. 6 bars and 0.64 for No. 11 bars. 

Splice Specimens 

Splice test specimens are larger and more costly than beam-end specimens. Therefore, it is 

desirable to run fewer splice tests than beam-end tests in a study. The question arises: Why run 

splice tests at all? The reasons are two-fold. Splice tests may provide a more realistic model of 

what happens in an actual structure, and the development length provisions for epoxy-coated 

bars in ACI 318-89 are based on the splice tests run by Treece and Jirsa (1987, 1989). With 

this in mind, it is important to know (1) if beam-end specimens give the same results as splice 

specimens, and (2) if the tests in the current study, both beam-end and splice tests, match the 
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earlier splice tests (Treece and Jirsa 1987, 1989). 

Before these questions are answered, the variability that is inherent in bond tests should be 

considered. Bond tests exhibit a great deal of scatter, as shown in Figs. 11-13. However, the 

scatter shown in these figures is only one-half of the picture, since the values of C/U are based 

on mean bond strengths of uncoated bars. 

Imagine if the bond strength of each coated bar is divided by the bond strength of each 

uncoated bar in the same test group. Clearly, the scatter in C/U will increase. The extent of the 

scatter is illustrated in Fig. 19, where these individual values of C/U are compared as a function 

of the bearing-area ratio, Rb. Since the splice tests in this study, as well as those performed by 

Treece and Jirsa (1987, 1989), were executed with individual coated and uncoated bar 

specimens, i.e. no replications, the expected scatter in C/U for splices should be like that shown 

for the beam-end specimens in Fig. 19. 

The C/U values for the splice tests in this study and those from Treece and Jirsa (1987, 

1989) also appear in Fig. 19. As illustrated, the splice tests generally lie within the scatter band 

obtained from the beam-end tests. A summary of the splice tests in the current study is 

presented in Table 5. 

For the current study, some splice results are on the high side of the scatter band (S-pattem 

No. 6, 0.94, S-pattem No. 8, 0.90, and N-pattem No. 8, 0.85) and some are on the low side 

(N-pattem No. 5, 0.75, C-pattem No. 6, 0.76, and S-pattem No. 11, 0.71). Overall, the key 

aspects of bond strength reduction caused by epoxy coating appear to be the same for both beam-

end and splice specimens. 

The mean value of C/U for the current splice tests, 0.82 is slightly lower than the mean for 

all beam-end tests, 0.85. However, the mean value ofC/U from Treece and Jirsa (1987, 1989), 

0.66 if weighted by test group or 0.69 if weighted by individual specimen, is considerably 

below the mean for the beam-end tests. The lower relative strength of the splices can be traced 

to the fact that most of the splices had a cover that was less than the 2 db used for the beam-end 
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specimens, and a lower strength is statistically expected for unconfined multiple splice 

specimens than for single splice or single bar specimens. Detailed consideration of these effects 

will be included in the next report. 

Implications for Design 

Although this report presents only a portion of the results from the University of Kansas 

study, the results described here have important implications for design. 

The major observation is that the bond strength of epoxy-coated bars, relative to uncoated 

bars, is considerably higher than the value of 0.66 used to calculate the 1.5 development length 

modification factor for bars with less than 3 db cover in the 1989 ACI Building Code and 1989 

AASHTO Bridge Specifications. The lowest average value of C/U obtained for any bar size or 

deformation pattern, 0.73 for S-pattern No. 8 bars, translates into a modification factor of 1.37. 

No. 5, No. 6, and No. 11 bars are affected even less, with modification factors of 1.18, and 

1.25, and 1.28, respectively, based on the deformation pattern with the lowest value of C/U. 

And these values are all based on a cover of 2 db. 

These results suggest that a lower penalty is necessary for bars with a 2 db cover than 

recommended by Treece and Jirsa (1987, 1989) and implemented by ACI (1989) and AASHTO 

(1989) for bars with a cover less than 3 db. It appears that development length modification 

factors can safely be reduced to 1.25 for No.6 bars and smaller and 1.35 or 1.40 for No.7 bars 

and larger (care should be taken in selecting values for No. 14 and No. 18 bars since no tests 

have been performed on these bar sizes). A modification factor of 1.25 for No. 5 bars and 

smaller is more than needed, based on a 9 mil coating, but will help to take into account the 

lower bond strengths obtained by small bars with thicker coatings. 

The results also suggest that development length modification factors can be reduced 

further by (1) altering deformation patterns to improve the bond strength of epoxy-coated bars or 

(2) standardizing on "strong" deformation patterns on an industry wide basis. Modification 
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factors for each bar size should be based on the deformation pattern with the lowest mean C/U 

value, rather than the mean value of C/U for all bars of a given size, since deformation is clearly 

a controllable parameter. As noted earlier, the deformation pattern tested by Treece and Jirsa 

(1987, 1989) is no longer used for epoxy-coated bars because of difficulties in coating. 

The insensitivity to coating thickness of bars larger than No. 5 indicates that coatings 

thicker than 12 mils could be used on larger bars to improve corrosion protection. This 

improved protection could be obtained with little reduction in bond strength beyond that 

currently observed. Additional study is necessary, however, before new limits on coating 

thickness can be established. 

CONCLUSIONS 

The following conclusions are based on the results and analyses presented in this report. 

1. Epoxy coatings in the range of 5 to 12 mils significantly reduce the bond strength of 

deformed reinforcing bars to concrete. However, the extent of the reduction is less than 

used to select development length modification factors in the 1989 ACI Building Code and 

1989 AASHTO Bridge Specifications. 

2. For coatings between 5 and 12 mils in thickness, differences in coating thickness have little 

effect on the amount of the bond strength reduction for No. 6 bars and larger. Thicker 

coatings cause a greater reduction in bond strength than thinner coatings for No. 5 bars and 

smaller. 

3. In general, the reduction in bond strength caused by epoxy coating increases with bar size. 

4. The magnitude of the reduction depends on deformation pattern. Bars with relatively larger 

rib bearing areas are affected less by the coating than bars with smaller bearing areas. 
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FUTURE REPORTS 

Research on the effect of epoxy coating on the bond strength of reinforcing steel is 

continuing at the University of Kansas. Future reports will address the effects of cover, bar 

position, concrete strength, and confinement, as well as presenting proposed revisions to the 

development length provisions of the ACI Building Code (ACI Committee 318 1989) and the 

AASHTO Bridge Specifications (1989). 
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Table 1 Average Test Bar Data 
==================================================================================== 

Bar Def. Yield Def. Def. De f. Bearing Related Bearing 
Size Pattern Str. Spacing Gap Angle Area Rib Area 

per Area * Ratio * 
Inch * 

(ksi) (in.) (in.) (deg.) (in.) (in.-1 ) 
==================================================================================== 

5 s 70.6 0.423 0.159 90 0.113 0.057 0.361 

5 c 72.3 0.413 0.140 60 0.143 0.074 0. 471 

5 N 68.4 0.379 0.158 70 0.166 0.086 0.545 

6 s 63.8 0.502 0.154 90 0.139 0.060 0.320 

6 c 70.9 0.467 0.122 60 0.188 0. 079 0.420 

6 N 64.2 0.462 0.151 70 0.201 0.084 0.448 

8 s 67.0 0.674 0.176 90 0.202 0.064 0.256 

8 c ** 0.656 0.195 60 0.241 0.077 0.305 

8 N 63.8 0.602 0.160 70 0.250 0.080 0.316 

11 s 64.6 0.945 0.217 90 0.313 0.071 0.202 

11 c 63.1 0.840 0.196 60 0.302 0.069 0.196 

11 N 64.3 0. 914 0.195 70 0. 287 0.065 0.185 

* Bearing area based on closely spaced measurements of ribs; 

bar perimeters and areas based on nominal dimensions. 

**Yield strength is greater than 70.0 ksi. 
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Table 2 Concrete Mixture Proportions 

(Cubic Yard Batch Weights) 

GJ:oup Nominal W/C ratio Cement Water Aqqrega.ta 
Strength Fine+ Coar8e* 

(poi) (lb) (lb) (lb) (lb) --
2 6000 0.41 756 310 1245 1575 

3-7 6000 0.45 622 280 1437 1575 
8-17,21 6000 0.45 733 330 1213 1575 
22,.SP2-SP4 
18-20,SP1 5000 0.55 600 330 1324 1575 

+ Kansas River Sand - Lawrence Sand Co., Lawrence, KS, bulk specific 
gravity • 2.62, absorption • 0.5%, fineness modulus • 3.0. 

*Crushed limestone - H~'s Quarry, Perry, KS, bulk' specific gravity • 
2.52, absorption- 3.5%, maximum size- 3/4 in., unit weigth • 97.2 
lb/ cubic ft. 

Table 3 Concrete Properties 

Group Sl""'!' Concrete Age at Average Compressive 
'I'emperature 'I' est Strength 

(in.) (F) (dayo) (poi) -----------
2 2 1/2 60 3 5700 
3 1 1/4 65 5 6090 
4 1 1/4 73 4 6130 
5 1 1/2 60 4 5920 
6 1 1/2 70 5 5870 
7 1 68 6 6000 
8 3 80 4 5800 
9 4 89 6 5650 
10 4 1/2 85 7 5990 
11 3 1/4 89 6 5970 
12 3 1/4 92 7 5940 
13 3 1/4 93 9 5840 
14 4 88 7 5800 
15 4 1/4 74 8 6000 
16 3 1/2 72 4 6240 
17 5 3/4 78 9 5850 
18 4 1/4 57 3 4790 

4 5010 
5 5430 

19 3 3/4 68 4 5070 
5 5270 

20 2 3/4 89 9 5290 
10 5260 

21 4 92 5 5990 
22 4 1/2 64 7 6300 
SPl * 4 3/4 70 11 5360 
SP2 2 3/4 78 6 6010 
SP3 5 1/2 74 6 5980 
SP4 3 1/2 87 7 5850 

* SP • Splice groups 



21 

Table 4 Beam-end Tests 
=·================================================================================ 
Group Specimen Average Cover Concrete Ultimate Modified Lead Length 

Label * Coating Strength Bond Bond (if non-
Thickness Force Force standard) 

(mils) (in.) (psi) (lb) (lb) (in.) 
================================================================================== 

7 5N 9- 3.5 9.5 1 1/4 6000 16000 16000 3.75 
5N 9- 3.5A 10.1 1 1/4 6000 16080 16080 3.75 
5N 9- 3.5B 8.9 1 5/8 6000 16200 16200 3.75 
5N 0- 3.5 0.0 1 9/32 6000 16890 16890 3.75 
5N 0- 3.5A 0.0 1 1/4 6000 15930 15930 3.75 
5N 0- 3.5B 0.0 1 9/16 6000 17100 17100 3.75 

8 5N 0- 3.5 0.0 1 1/4 5800 18110 18419 3.75 
5N 9- 3.5 5.6 1 9/32 5800 15860 16131 3.75 
5N 0- 3.5 o.o 1 5/16 5800 14580 14578 
5N 9- 3.5 7.0 1 11/32 5800 14100 13635 
5N 0- 3.5 0.0 1 1/4 5800 10850 11035 1.50 
5N 9- 3.5 5.1 1 1/4 5800 11180 11371 1.50 

9 58 5- 3.5 6.9 1 5/16 5650 11160 10903 
5S 5- 3.5A 5.5 1 5/16 5650 11910 11446 
5S 5- 3.5B 4.4 1 5/16 5650 13590 12995 
5512- 3.5 14.5 1 5/16 5650 10520 11495 
5S12- 3.5A 17.1 1 3/8 5650 11340 12517 
5S12- 3.5B 11.8 1 5/16 5650 10630 11164 
5S 0- 3.5 0.0 1 5/16 5650 14770 14969 
5S 0- 3.5A 0.0 1 5/16 6310 14870 14249 
5S 0- 3.5B 0.0 1 11/32 5650 13220 13246 

10 5C 9- 3.5 9.3 1 3/16 5990 12660 12970 
5C 9- 3.5A 10.1 1 1/4 5990 12950 13141 
5C 9- 3.5B 8.7 1 1/4 5990 12880 12841 
5C 5- 3.5 3.0 1 5/16 5990 14700 13473 
5C 5- 3.5A 4.5 1 1/4 5990 13370 12640 
5C 5- 3.5B 3.7 1 5/16 5990 14110 12997 
5C 0- 3.5 0.0 1 9/32 5990 13660 13545 
5C 0- 3.5A 0.0 1 1/4 5990 13340 13351 
5C 0- 3.5B 0.0 1 3/8 5990 14340 13849 

* Specimen Label 

#D T- LR 
# =bar size : 5,6,8,11 
D = deformation pattern : S,C,N 
T = nominal coating thickness 0,5,9,12 mils 
L = bonded length in inches 
R = replication I.D. : blank, A, B 
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Table 4 Beam-end Tests (continued) 

=============-==========================-=======-==========-====================== 
Group Specimen Average Cover Concrete Ultimate Modified Lead Length 

Label Coating Strength Bond Bond (if non-
Thickness Force Force standard) 

(mils) (in.) (psi) (lb) (lb) (in.) 
================================================================================== 

11 5N 9- 3.5 9.6 1 7/32 5970 12180 12435 
5N 9- 3.5A 10.0 1 1/4 5970 11630 11824 
5N 9- 3.5B 9.9 1 11/32 5970 11930 11731 
5N 0- 3.5 0.0 1 9/32 5970 12180 12085 
5N 0- 3.5A 0.0 1 1/4 5970 12800 12832 
5N 0- 3.5B 0.0 1 1/4 5970 13940 13974 
5N 0- 3.5 0.0 1 9/32 6090 7050 6997 0.00 
5N 0- 3.5A 0.0 1 3/16 6090 7000 6948 0.00 

12 5N 0- 3.5 0.0 1 1/4 5940 15320 15397 
5N 0- 3.5A 0.0 1 1/4 5940 13830 13899 
5N 0- 3.5B o.o 1 1/4 5940 12650 12713 
5N 9- 3.5 9.8 1 3/16 5940 12080 12523 
5N 9- 3.5A 10.5 1 3/16 5940 12570 13131 
5N 9- 3.5B 9.3 1 11/32 5940 11890 11622 
5N 0- 3.5 0.0 1 1/4 5940 10460 10512 1.50 
5N 0- 3.5A 0.0 1 1/4 5940 11250 11306 1.50 
5N 9- 3.5 8.3 1 1/4 5940 10690 10743 1.50 
5N 9- 3.5A 9.8 1 1/8 5940 11350 11407 1.50 
5N 0- 3.5 0.0 1 1/4 5940 9550 9598 1.00 
5N 0- 3.5A 0.0 1 5/16 5940 10730 10784 1.00 
5N 9- 3.5 9.0 1 9/32 5940 9260 9306 1.00 
5N 9- 3.5A 9.4 1 7/32 5940 10520 10572 1.00 
5N 0- 3.5 0.0 1 9/32 5940 9930 9980 0.50 
5N 0- 3.5A 0.0 1 1/16 5940 8720 8763 0.50 
5N 0- 3 .5B 0.0 1 3/16 5940 9290 9336 0.50 
5N 9- 3.5 9.2 1 7/32 5940 8310 8351 0.50 
5N 9- 3.5A 9.6 1 5/16 5940 8360 8402 0.50 
5N 9- 3.5B 8.8 1 7/16 5940 8150 8191 0.50 
5N 0- 3.5 0.0 1 9/32 5940 7980 8020 0.00 
5N 0- 3.5A 0.0 1 3/16 5940 7980 8020 0.00 
5N 9- 3.5 9.8 1 5/16 5940 6870 6904 0.00 
5N 9- 3.5A 8.1 1 7/32 5940 7950 7990 0.00 

13 5N 0- 3.5 0.0 1 9/32 5844 12170 12205 
5N 0- 3.5A 0.0 1 1/4 5844 13660 13841 
5N 0- 3.5B 0.0 1 3/16 5844 12850 13271 
5N 5- 3.5 7.1 1 9/32 5844 13110 12845 
5N 5- 3.5A 6.2 1 1/4 5844 12000 11698 
5N 5- 3.5B 6.2 1 1/4 5844 11700 11394 

16 5N 0- 8.5 0.0 1 1/4 6240 18400 18042 0.50 
5N 0- 8.5A 0.0 1 9/32 6240 15800 15493 0.50 
5N 0- 8.5B 0.0 1 9/32 6240 19400 19023 0.50 
5N 9- 8.5 7.0 1 5/32 6240 17600 17258 0.50 
5N 9- 8.5A 5.6 1 7/32 6240 16600 16277 0.50 
5N 9- 8.5B 6.5 1 11/32 6240 18500 18140 0.50 
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Table 4 Beam-end Tests (continued) 

================================================================================== 
Group Specimen Average Cover Concrete Ultimate Modified Lead Length 

Label Coating Strength Bond Bond (if non-
Thickness Force Force standard) 

(mils) (in.) (psi) (lb) (lb) (in.) 
-=============================================================================-== 

5S 0- 8.5 0.0 1 11/32 6240 18200 17846 0.50 
55 0- 8.5A 0.0 1 5/16 6240 17400 17062 0.50 
55 0- 8.5B 0.0 1 5/16 6240 17700 17356 0.50 
55 9- 8.5 9.6 1 9/32 6240 11200 10982 0.50 
5S 9- 8.5A 9.0 1 1/4 6240 17000 16669 0.50 
5S 9- 8.5B 10.3 1 1/4 6240 12100 11865 0.50 

21 5C 0- 3.5 0.0 31/32 5990 14180 15321 
5C 0- 3.5A 0.0 1 3/16 5990 14530 14793 
5C 0- 3.5B o.o 1 3/16 5990 14850 15113 
5C 5- 3.5 4.3 1 7/32 5990 12880 12242 
5C 5- 3.5A 5.0 1 7/32 5990 13030 12507 
5C 5- 3.5B 4.7 1 5990 12990 13296 
5C12- 3.5 11.2 1 3/8 5990 12940 12810 
5C12- 3.5A 11.3 1 1/4 5990 12670 13059 
5C12- 3.5B 10.8 1 1/4 5990 13900 14207 
5S 0- 3.5 0.0 7/8 5990 12790 14306 
5S 0- 3.5A 0.0 1 1/4 5990 14750 14762 
5S 0- 3.5B 0.0 1 3/16 5990 14460 14723 
5S 5- 3.5 4.7 1 1/4 5990 12460 11762 
5S 5- 3.5A 5.3 1 1/8 5990 12850 12753 
5S 5- 3.5B 5.6 1 1/4 5990 12880 12330 
5S12- 3.5 13.8 1 1/4 5990 10220 11019 
5512- 3.5A 10.0 1 1/32 5990 11340 12392 
5812- 3.5B 11.7 1 3/8 5990 11820 11772 

14 6S 0- 4.5 0.0 1 15/32 5800 20130 20660 
6S 0- 4.5A 0.0 1 15/32 5800 20210 20741 
6S 0- 4.5B 0.0 1 1/2 5800 16410 16690 
6S 5- 4.5 4.1 1 9/16 5800 15630 15524 
6S 5- 4.5A 4.8 1 1/2 5800 16140 16415 
6S 5- 4.5B 4.2 1 1/2 5800 14560 14808 
6512- 4.5 11.8 1 1/2 5800 15430 15693 
6S12- 4.5A 10.9 1 9/16 5800 15250 15137 
6512- 4.5B 11.6 1 17/32 5800 15330 15405 
6N 0- 4.5 0.0 1 1/2 5800 18000 18307 
6N 0- 4.5A 0.0 1 7/16 5800 18340 19026 
6N 0- 4.5B 0.0 1 1/2 5800 20240 20586 
6N 9- 4.5 7.2 1 9/16 5800 20680 20660 
6N 9- 4.5A 8.8 1 23/32 5800 19880 18915 
6N 9- 4.5B 8.0 1 9/16 5800 17760 17690 
6C 0- 4.5 o.o 1 1/2 5800 18850 19172 
6C 0- 4.5A 0.0 1 19/32 5800 17960 17707 
6C 0- 4.5B 0.0 1 1/2 5800 19000 19324 
6C 5- 4.5 4.7 1 9/16 5800 17290 17212 
6C 5- 4.5A 4.2 1 19/32 5800 18460 18216 
6C 5- 4.5B 4.1 1 9/16 5800 16970 16887 
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Table 4. Beam-end Tests (continued) 
================================================================================== 
Group Specimen Average Cover Concrete Ultimate Modified Lead Length 

Label Coating Strength Bond Bond (if non-
Thickness Force Force standard) 

(mils) (in.) (psi) (lb) (lb) (in.) 
================================================================================== 

6C12- 4.5 9.5 1 1/2 5800 18750 19070 
6C12- 4.5A 10.2 1 1/2 5800 18930 19253 
6C12- 4.5B 11.4 1 17/32 5800 17900 18019 

16 6N 0-10.5 0.0 1 9/16 6240 25200 24710 0.50 
6N 0-10.5A 0.0 1 15/32 6240 26500 25985 0.50 
6N 0-10.5B 0.0 1 9/16 6240 22900 22455 0.50 
6N 9-10.5 7.2 1 1/2 6240 26300 25789 0.50 
6N 9-10.5A 8.9 1 1/2 6240 23600 23141 0.50 
6N 9-10.5B 9.5 1 17/32 6240 25300 24808 0.50 

17 6C 0- 4.5 0.0 1 1/2 5850 17900 18128 
6C 0- 4.5A 0.0 1 9/16 5850 19800 19679 
6C 0- 4.5B 0.0 1 7/16 5850 17870 18470 
6C 5- 4.5 7.1 1 9/16 5850 16020 15851 
6C 5- 4.5A 5.9 1 1/2 5850 16740 16953 
6C 5- 4.5B 6.5 1 1/2 5850 16100 16305 
6C12- 4.5 9.3 1 1/2 5850 15890 16092 
6C12- 4.5A 10.5 1 1/2 5850 14570 14755 
6C12- 4.5B 10.9 1 1/2 5850 16160 16365 
6S 0- 4.5 0.0 1 15/32 5850 17400 17808 
6S 0- 4.5A 0.0 1 7/16 5850 18300 18905 
6S 0- 4.5B 0.0 1 1/2 5850 19200 19444 
6S 5- 4.5 5.7 1 1/2 5850 15130 15322 
6S 5- 4.5A 3.8 1 17/32 5850 15800 15814 
6S 5- 4.5B 3.6 1 17/32 5850 14900 14903 
6S12- 4.5 12.9 1 15/32 5850 15900 16288 
6S12- 4.5A 11.5 1 17/32 5850 16900 16928 
6S12- 4.5B 11.1 1 17/32 5850 13900 13890 

22 6N 0- 4.5 0.0 1 3/8 6300 19290 19570 
6N 0- 4.5A 0.0 1 1/2 6300 19970 19488 
6N 0- 4.5B 0.0 1 1/2 6300 19440 18971 
6N 0- 4.5C 0.0 1 5/8 6300 24530 23193 
6N 0- 4.5D o.o 1 5/16 6300 19880 20519 
6N 0- 4.5E 0.0 1 1/2 6300 21080 20571 
6N 9- 4.5 9.8 1 13/32 6300 18390 18505 
6N 9- 4.5A 8.0 1 7/16 6300 19330 19236 
6N 9- 4.5B 9.7 1 5/16 6300 16140 16869 
6N 9- 4.5C 8.6 1 3/8 6300 19560 19834 
6N 9- 4.50 8.9 1 15/32 6300 17870 17625 
6N 9- 4.5E 8.0 1 9/32 6300 17960 18831 

2 8C12- 8.0 13.3 2 5700 38300 39294 
ac 9- 8.0 10.0 2 5700 36760 37714 
ac 5- 8.0 5.3 2 5700 35990 36924 
8C 0- 8.0 0.0 2 5700 45990 47184 
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Table 4 Beam-end Tests (continued} 

================================================================================== 
Group Specimen Average Cover Concrete Ultimate Modified Lead Length 

Label Coating Strength Bond Bond (if non-
Thickness Force Force standard) 

(mils) (in.) (psi) (lb) (lb) (in.) 
================================================================================== 

3 as12- a.o 12.8 2 6090 27030 26a29 
8S12- S.OA 13.0 2 6090 32040 31a02 
as12- a.OB 12.3 2 6090 29110 2a894 
as 9- a.o 9.7 2 6090 29940 29717 
as 9- a .OA 10.2 2 6090 28140 27931 
as 9- S.OB 10.2 2 6090 31100 30869 
as 5- a.o 5.4 2 6090 2a990 2a774 
as 5- a .OA 6.4 2 6090 2a5aO 2a36a 
as 5- a.OB 6.5 2 6090 322aO 32040 
as 0- a.o 0.0 2 6090 434aO 43157 
as 0- a.OA 0.0 2 6090 40960 40656 
as 0- a.OB o.o 2 6090 40640 40338 

4 aN 9- a.o a.6 2 6130 35a20 35438 
aN 9- a.OA a.5 2 6130 42030 41581 
aN 9- a.OB a.a 2 6130 34970 34597 
aN 0- a.o 0.0 2 6130 45220 44737 
aN 0- a.OA 0.0 2 6130 50000 49466 
aN 0- a.OB 0.0 2 6130 445ao 44104 

5 ac12- a.o 13.a 2 5920 37370 37621 
ac12- a.OA 13.2 2 5920 30590 30795 
ac12- a .OB 12.7 2 5920 34560 34792 
ac 9- a.o 9.5 2 5920 36070 36312 
ac 9- a .OA 10.0 2 5920 33560 337a5 
ac 9- a.OB 9.4 2 5920 34290 34520 
ac 5- a.o 5.5 2 5920 33440 33665 
ac 5- a.OA 4.6 2 5920 35550 35789 
ac 5- a.OB 3.7 2 5920 35560 35799 
ac 0- a.o 0.0 2 5920 34550 34782 
ac 0- a.OA 0.0 2 5920 34740 34973 
ac 0- 8 .OB 0.0 2 5920 39490 39755 

6 as 9- 8.0 7.9 2 5a70 35430 35a20 
as 9- S.OA 10.8 2 5a70 32a40 33201 
as 0- a.o o.o 2 5a70 46500 47012 
as 0- a.OA 0.0 2 5a70 42710 431aO 
ac 9- a.o 10.7 2 5a70 33790 34162 
ac 9- a.OA 9.1 2 5a70 36630 37033 
ac 0- 8.0 o.o 2 5a70 43930 44413 
ac 0- a.OA 0.0 2 5a70 46a20 47335 
aN 9- a.o 9.2 2 5a70 36620 37023 
aN 9- a .OA 10.4 2 5a70 45070 45566 
aN 0- a.o 0.0 2 5a70 3aooo 3a41a 
SN 0- 8. OA 0.0 2 5a70 47670 4a194 
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Table 4 Beam-end Tests (continued) 
================================================================================== 
Group Specimen Average Cover Concrete Ultimate Modified Lead Length 

Label Coating Strength Bond Bond (if non-
Thickness Force Force standard) 

(mils) (in.) (psi) (lb) (lb) (in.) 
================================================================================== 

15 as 0- a.o 0.0 1 15/16 6000 41aoo 42650 
as 0- a.OA 0.0 2 6000 42700 42700 
as 5- a.o 4.1 2 6000 29050 29050 
as 5- a.OA 4.7 2 6000 33340 33340 
as 5- a.OB 6.a 1 15/16 6000 34730 355ao 
as12- a.o 16.5 2 6000 30500 30500 
as12- a .OA 11.7 2 1/16 6000 29100 2a249 
as12- a.OB 14.1 1 15/16 6000 32000 32850 
8N 0- 8.0 0.0 2 5a30 40600 41187 
aN 0- 8.0A 0.0 2 5830 42800 43419 
8N 0- 8.0B 0.0 2 5830 45140 45793 

16 8N 0-14.0 0.0 2 1/32 6240 36800 36085 0.50 
8N 0-14.0A 0.0 2 6240 38aoo 38046 0.50 
8N 0-14.0B 0.0 2 1/32 6240 37aoo 37065 0.50 
aN 9-14.0 10.3 2 6240 31900 31280 0.50 
8N 9-14.0A 7.7 2 6240 36100 3539a 0.50 
aN 9-14.0B 10.0 2 6240 31900 312ao 0.50 

18 8N 0- 8.0 0.0 1 7/a 5060 45600 51357 
aN 0- 8.0A 0.0 1 15/16 5060 42400 47021 
aN 0- a.OB 0.0 1 7/8 5060 41040 46391 
aN12- a.o 12.2 1 31/32 5060 33700 37122 
8N12- a .OA 9.3 1 31/32 5060 35700 39300 
aN12- a.OB 8.6 1 15/16 5060 35950 39997 
8S 0- a.o 0.0 1 31/32 5440 36920 39199 
as 0- a.OA 0.0 2 1/32 5440 43540 45300 
8S 0- a.OB 0.0 2 1/32 5440 37940 39419 
8S12- a.o a.1 2 1/16 5440 32660 33448 
8S12- 8.0A 9.7 1 29/32 5440 29510 32268 
8S12- 8.0B 11.6 l 29/32 5440 33510 3646a 

19 llN 0- 9.0 0.0 2 13/16 5070 36000 3a666 
llN 0- 9.0A 0.0 2 7/a 5270 46100 48195 
llN 0- 9. OB 0.0 2 9/16 5270 36100 40009 
llN 9- 9.0 10.3 2 3/4 5270 32000 34144 
llN 9- 9.0A a.5 2 3/4 5070 29600 32200 
llN 9- 9.0B a.1 2 3/4 5270 28200 30089 
llS 0- 9.0 0.0 2 ll/16 5270 38600 416a3 
llS 0- 9.0A 0.0 2 25/32 5270 36300 38484 
llS 0- 9 .OB 0.0 2 13/16 5070 34400 36925 
llS 9- 9.0 11.0 2 3/4 5270 27600 29449 
llS 9- 9.0A 10.9 2 5/a 5070 27700 31127 
11S 9- 9.0B 12.6 2 3/4 5270 36400 3aa39 
llC 0- 9.0 0. 0 2 1/2 5070 37500 42781 
llC 0- 9.0A 0.0 2 23/32 5270 37aoo 40581 
llC 0- 9.0B 0.0 2 ll/16 5270 35100 3794a 
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Table 4 Beam-end Tests (continued) 

=*=======-======================================================================== 
Group Specimen Average Cover concrete Ultimate Modified Lead Length 

Label Coating Strength Bond Bond (if non-
Thickness Force Force standard) 

(mils) (in.) (psi) (lb) (lb) (in.) 
================================================================================== 

llC 9- 9.0 12.1 2 3/4 5070 29000 31547 
llC 9- 9 .OA 13.1 2 3/4 5270 27700 29556 
llC 9- 9.0B 12.4 2 13/16 5270 29100 30553 

20 11N 0- 9.0 0.0 2 13/16 5290 47380 49962 
11N o- 9.0A 0.0 3 5260 39500 40200 
llN 0- 9.0B 0.0 2 11/16 5260 41330 44638 
l1N 9- 9.0 10.4 2 7/8 5290 29300 30210 
llN 9- 9.0A 8.7 2 15/16 5260 33700 34502 
11N 9- 9.0B 9.2 2 13/16 5260 32910 34652 
115 0- 9.0 0.0 2 13/16 5290 36480 38354 
115 0- 9.0A 0.0 2 13/16 5260 43990 46485 
115 0- 9.0B 0.0 2 11/16 5260 38060 41145 
115 9- 9.0 10.9 2 13/16 5290 41780 43998 
115 9- 9.0A 9.4 2 3/4 5260 36030 38481 
115 9- 9.0B 9.7 2 3/4 5260 39560 42251 
11C 0- 9.0 0.0 2 7/8 5290 41580 43289 
11C 0- 9.0A 0.0 2 13/16 5260 34500 36350 
11C 0- 9.0B 0.0 2 13/16 5260 39440 41626 
llC 9- 9.0 9.4 2 3/4 5290 28320 30160 
llC 9- 9.0A 8.2 2 11/16 5260 38600 41722 
llC 9- 9.0B 8.4 2 11/16 5260 33800 36596 
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Table s Splice Tests 

-----
Group Bar Def. Splice Average No. of Widest Bar stre:ss Ultimate Ultimate + 

No. pattern length Coating cracks crack for crack moment stress C/U 
Thickness comparison 

(in.) (mils) (mils) (ksi) (k-.in) (ksi) 

-------==- -==-.. --=== ---===-= SP1 5 N 12. o.o .7 9 40.9 521 58.7 

5• N 12 0.0 8 7 42.1 813 61.2 

5• N 12 9.5 6 7· 42.1 609 45.5 0.74 
--------------------------------------------------------------------------------------------

SP2 6 s 12 0.0 6 7 36.7 543 43.2 

6 s 12 8.3 3 9 36~7 511 40.6 0.94 

6 c 12 o.o 5 5 36.7 610 48.7 

6 c 12 8.8 6 5 36.7 466 36.9 0.76 
--------------------------------------------------------------------------------------------

SP3 8 s 16 o.o 6 7 25.9 854 40.1 

8 s 16 9.4 4 5 25.9 768 35.9 0.90 

8 N 16 o.o 5 9 25.9 858 40.3 

8 N 16 9.5 7 7 25.9 737 34.4 0.85 
---------------------------------------------------------------------------------------------

SP4 11 s 24 0.0 5 7 24.0 1459 37.6 

ll s 24 9.3 5 9 24.0 1053 26.6 0.71 

11 c 24 0.0 7 7 24.0 1372 35.2 

11 c 24 10.3 6 10 24.0 1128 28.6 0.81 ---------------- ww---------------------•---•••••••---------- --
Mean - 0.82 

* These beam8 contained 3 splices 

+ C/U • Ratio of bond strengths of coated to uncoated bars 

1 mil - 0.001 in. 
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Table 6 Summary of Beam-end Tests 
============================================================================= 

Bar Def. Group No. of Uncoated No. of Coated C/U+ U/U++ C/U++ 
aize pattern No. uncoated bars coated bars group all all 

bars bond bars bond 
force force 
(lb) (lb) 

***************************************************************************** 
***************************************************************************** 

5 
5 

5 
5 

9 
21 

3 
3 

14154 
14598 

6 
6 

11753 
12005 

0.83 
0.82 

1.01 0.84 
1.04 0.86 

-----------------------------------------------------------------------------
Average • 

5 
5 

Average = 

c 
c 

10 
21 

3 
3 

14376 

13580 
15078 

14329 

6 
6 

11879 

13009 
13020 

13014 

0.83 1.03 0.85 

0.96 
0.86 

0.91 

0.97 
1.08 

1.02 

0.93 
0.93 

0.93 
-----------------------------------------------------------------------------

5 N 11 3 12964 3 11998 0.93 0. 92 0.86 
5 N 12 3 14003 3 12425 0.89 1.00 0.89 
5 N 13 3 13107 3 11977 0.91 0.93 0.85 

Average = 13358 12133 0.91 0.95 0.87 
============================================================================= 
Average of all No. 5 bars * = 14021 12342 0.88 1.00 0.88 

***************************************************************************** 
***************************************************************************** 

6 
6 

Average = 

6 
6 

5 
s 

c 
c 

Average == 

6 
6 

N 

N 

Average = 

14 
17 

14 
17 

14 
22 

3 
3 

3 
3 

3 
6 

19363 
18720 

19041 

18733 
18760 

18746 

19309 
20385 

20026 

6 
6 

6 
6 

3 
6 

15498 
15525 

15511 

18112 
16056 

17084 

19089 
18486 

18687 

0.80 1.00 
0.83 0.97 

0.80 
0.81 

0.81 0.99 0.80 

0.97 
0.86 

0.97 0.94 
0.97 0.83 

0.91 0.97 0.89 

0.99 1.00 0.99 
0.91 1.06 0.96 

0.93 1.04 0.97 
============================================================================= 
_Average of all No. 6 bars * - 19271 17094 0.89 1.00 0.89 

+ Numerator and denominator based on group average 
++ Numerator based on group average. Denominator based on average for 

three deformation patterns for each bar size; each deformation 
pattern weighted equally 

* Each deformation pattern weighted equally 
** Each bar size weighted equally 
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Table 6 Summary of Beam-end Tests (continued) 

============================================================================= 
Ear De f. Group No. of Uncoated No. of Coated C/U+ U/U++ C/U++ 
size pattern No. uncoated bars coated bars group all all 

bars bond bars bond 
force force 
(lb) (lb) 

***************************************************************************** 
***************************************************************************** 

8 
8 
8 
8 

s 
s 
s 
s 

3 
6 
15 
18 

3 
2 
2 
3 

41384 
45104 
42680 
41312 

9 
2 
6 
3 

29472 
34512 
31600 
34064 

0. 71 
0.77 
0.74 
0.82 

0.96 
1.05 
0.99 
0.96 

0.68 
0.80 
0.73 
0. 79 

-----------------------------------------------------------------------------
Average = 42365 31303 0.74 0.98 0.73 

-----------------------------------------------------------------------------
8 c 2 1 47184 3 37976 0.80 1.10 0.88 
8 c 5 3 36504 9 34784 0.95 0.85 0.81 
8 c 6 2 45880 2 35600 0.78 1.07 0.83 

-----------------------------------------------------------------------------
Average = 41409 35584 0.90 0.96 0.83 

-----------------------------------------------------------------------------
8 N 4 3 46104 3 37208 0.81 1.07 0.86 
8 N 6 2 43304 2 41296 0.95 1.01 0.96 
8 N 15 3 43464 0 0 0.00 1.01 0.00 
8 N 18 3 48256 3 38800 0.80 1.12 0.90 

Average = 45461 38827 0.84 1.06 0.90 
============================================================================= 

Average of all No. 8 bars * = 43078 35238 0.83 1.00 0.82 
***************************************************************************** 
***************************************************************************** 
11 
11 

Average = 

11 
11 

Average = 

11 
11 

s 
s 

c 
c 

N 

N 

Average = 

19 
20 

19 
20 

19 
20 

3 
3 

3 
3 

3 
3 

39033 
41994 

40513 

40437 
40419 

40428 

42291 
44937 

43614 

3 
3 

3 
3 

3 
3 

33138 
41580 

37359 

30555 
36162 

33358 

32148 
32625 

32386 

0.85 0.94 0.80 
0.99 1.01 1.00 

0.92 0.98 0.90 

0.76 0.97 
0.89 0.97 

0.74 
0.87 

0.83 0.97 0.80 

0.76 
0.73 

1.02 
1.08 

0. 77 
0.79 

0.74 1.05 0. 78 
============================================================================= 

Average of all No. 11 bars * = 41518 34367 0.83 1.00 0.83 
***************************************************************************** 
*******************~********************************************************* 

Average of all bars ** = 0.86 1.00 0.85 
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s 

Fig. 1 Reinforcing Bar Deformation Patterns 
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C·=========:t=*=;=:=========::J 
~------------l--~1_2 db 

0: 15" + bar diameter + cover 
W: 9" for No.5, No.6 and No.8 bars 

1 0" for No.11 bars 

Lead 
length 

(a) 

Bonded 
length 4 1/2" 

Test bar 

Plywood form side 

Bond Steel conduit 
breaker 

Support bar 
24" 

(b) 

Fig. 2 (a) Beam-end Specimen Dimensions. (b) Test Bar Installation 
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Fig. 3 Splice Specimens 
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Fig. 5 Cracked Beam-end Specimen after Failure 
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Fig. 7 Cracked Splice Specimen after Failure 
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0 - Uncoated - N pottern 
El --- Coated - N pattern 
A - Uncoated - N pottern 
+ -- Coated - N pattern 

1.00 2.00 3.00 
Cover (in.) 

4.00 5.00 

Fig. 8 illtimate Bond Force versus Cover for No. 11 Bars 

• Uncoated Bars 

El Coated Bars 

1.00 2.00 3.00 
Lead Length (in.) 

6.00 

• 

4.00 

Fig. 9 illtimate Bond Force versus Lead Length for N-Pattem No. 5 Bars. Bonded length= 
3lh in. 
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Fig. 10 Ultimate Bond Force versus Bonded Length Plus Lead Length for N-Pattern No.5, 
No. 6, and No. 8 Bars and S-Pattern No. 5 Bars 
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Fig. 11 Relative Bond Strength, C/U, versus Coating Thickness for No. 8 Bars 
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Fig. 12 Relative Bond Strength, C/U, versus Coating Thickness for No.6 Bars 
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Fig. 13 Relative Bond Strength, C/U, versus Coating Thickness for No. 5 Bars 
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