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increased above a predetermined value, the bottom tee is also as­

signed increasing increments of shear. In a comparison with the 

experimental results of Granade, the model greatly underestimates the 

shear strength of composite beams with web openings (Fig. 1.1). The 

model does, however, illustrate the significant increase in moment 

capacity provided by the concrete. 

Swartz and Eliufoo (40) developed an elastic analysis technique 

for web openings in composite beams using the Vierendeel method. 

Their technique is based on full composite action and considers a 

transformed, cracked section. Their method compares reasonably well 

with finite element solutions. Although Swartz and Eliufoo did not 

make a comparison with experimental results, their test case uses the 

same section and loading as Beam 2 in an experimental study by 

Clawson and Darwin (9, 11). Comparison of Swartz and Eliufoos• 

predictions with the experimental results indicates that the most 

significant deviation is in the prediction of concrete stresses. 

This deviation is probably due to their assumption of zero slip at 

the concrete-steel interface. 

Clawson and Darwin (9, 10, 11) conducted an experimental inves­

tigation of composite beams with web openings and developed a 

strength model to predict the behavior of the beams. Six openings 

were tested with heights and lengths of 60 and 120 percent of the 

steel section depth, respectively. All beams were constructed with 

solid slabs. 
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They found that, although the peak loads were governed by 

failure of the concrete slab, failure was generally ductile. They 

also found that the compressive strains in the concrete generally 

remained low, well after the steel had begun to yield. Prior to 

failure, large slips occurred between the concrete and steel. 

Clawson and Darwin observed that the moment to shear ratio 

(M/V) at the opening had a prominent effect on the failure mode. For 

openings under high bending stress and low shear, failure tended to 

be governed by crushing of the concrete, while beams under moderate 

or high shear exhibited Vierendeel action, with large differential 

deformation through the opening. They also found that the point of 

inflection in the portion of the beam above the opening, or top tee, 

was not at the centerline of the opening, but was displaced towards 

the low moment end. 

Clawson and Darwin (10, 11) proposed a model in which the slab 

contributes to both the moment and shear capacity at a web opening. 

Shear forces are assigned both to the concrete slab and to the steel 

tees. Concrete forces are assumed to exist only at the high moment 

end of the opening, while the reinforcing steel is considered to be 

yielding in tension at the low moment end of the opening. 

The model developed by Clawson and Darwin accounts for combined 

shear and normal stress in the concrete. A failure criterion for the 

concrete was developed by transforming principal stress data (23) to 

a state of combined shear and compression. Shear stresses in the 

concrete are assumed to be effective over a width of the slab equal 
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to three times the slab thickness. The concrete force is limited by 

the material model or by normal force equilibrium. Interaction 

diagrams are generated by assigning increasing amounts of shear to 

both the top and bottom tees. Clawson and Darwin show that the model 

is conservative for beams with solid slab construction. 

A simplified version of the model (11) was developed for use in 

design. Maximum moment capacity and maximum shear capacity are 

calculated for the beam at the opening, the values are plotted on a 

moment-shear interaction diagram, and the points are connected with 

an ellipse. The simplified version shows good agreement with the 

detailed model (Fig. 1.2). 

Cho (8) largely duplicated the work of Clawson and Darwin using 

small sections relative to the concrete slab. He arrived at essen­

tially the same conclusions. 

More recently, Redwood and Wong (34, 46) conducted an ex­

perimental and analytical study of composite beams with web openings. 

They tested 6 rectangular openings with heights and lengths of 60 and 

120 percent of the steel section depth, respectively. All beams had 

ribbed slab construction with the ribs transverse to the steel 

section. 

Their work confirmed that the failure mode of composite beams 

with web openings is largely a function of the M/V ratio. Beams with 

high and medium M/V ratios had compressive failures of the concrete 

slab, while beams with low M/V ratios had diagonal cracking above the 
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opening accompanied by rib splitting and separation of the steel and 

slab. 

The analysis procedure developed by Redwood and Wong (34) 

obtains the maximum bending and shear strengths. The maximum moment 

that can be sustained at the maximum shear is also calculated, gener­

ating a vertical line on the right side of the interaction curve. 

The curve is closed with an ellipse. 

The procedure developed by Redwood and Wong is based on the 

formation of four hinges, one at each corner of the opening. No 

stress is allowed in the concrete at the low moment end, while the 

concrete force at the high moment end of the opening is limited by 

the shear capacity of the stud connectors above the opening. The 

procedure is very conservative for high shear cases. Redwood and 

Wong felt that it was important to model the compressive stresses in 

the slab at the low moment end, brought about by slip of the concrete 

deck, and that consideration of this should result in higher 

predicted strengths. 

Redwood and Wong expressed concern about concrete cracking at 

working loads at the low moment end of openings subjected to high 

shears (low M/V ratios). They did observe, however, that deflections 

at working loads satisfied live load deflection criteria normally 

used. 

More recently, Redwood and Poumbouras (30, 32) tested three 

additional openings. The tests were designed to study the influence 

of the amount of shear connection above the opening and the effect of 
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construction loads acting on the steel section before composite 

action is effective. The openings were subjected to high shears and 

had a relatively low number of shear connectors between the opening 

and the point of zero moment. 

Redwood and Poumbouras concluded that limited shear connection 

above the opening will significantly reduce the strength of openings 

with low M/V ratios. They also concluded that construction loads up 

to 60 percent of the non-composite beam strength at the opening have 

only a small effect on the strength of the composite section. 

Poumbouras (30) has proposed a strength model for composite 

beams with ribbed slabs. Compressive forces are assumed in the slab 

at both the low moment and high moment ends of the opening. The 

concrete force at the low moment end is assumed to be at the top of 

the slab at zero shear; however, it is allowed to move to the bottom 

of the slab as the shear at the opening is increased. The concrete 

force at the high moment end is selected such that moment equilibrium 

is satisfied at the opening. The model is not conservative for 

openings with high shear and a low number of shear connectors above 

the opening and between the opening and the support. 

Redwood and Poumbouras developed an analysis procedure that 

includes the compressive force in the concrete at the low moment end 

of the opening (33). This force is set equal to the total shear 

connector capacity between the opening and the point of zero moment. 

The shape of their interaction curve (Fig. 1.3) is similar to that of 

Redwood and Wong (33). Their procedure provides a good match with 
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their tests ( 30, 32) and those of Redwood and \~ong (34, 46). They 

do, however, express some concern about applying the theory to ope­

nings with a heavy steel section and a thin slab. 

Momeni (28) modified the model developed by Clawson and Darwin 

to include web reinforcement in the analysis. His model allows the 

cracked portion of the slab at the high moment end of the opening to 

carry shear. A concrete material model described by a single func­

tion is used in place of a two-function relationship used by Clawson 

and Darwin (10, 11). The top tee is allowed to carry all of the 

shear at the opening, up to the maximum shear capacity of the top 

tee. The model produces unconservative results for beams using 

shallow steel sections with openings with low M/V ratios. 

Donoghue (15) proposed a design procedure that neglects the 

shear contribution of the slab to strength. His procedure includes 

consideration of web reinforcement at the opening. 

The design procedure proposed by Redwood and Wong has been 

incorporated in a design aid published by U.S. Steel (44). A series 

of tables of non-dimensional parameters are presented to allow the 

Fapid construction of interaction diagrams for composite beams with 

web openings. 

In a 1984 state-of-the-art paper, Darwin described the behavior 

and failure modes of composite beams with web openings (14) and 

summarized current analysis techniques. 

Tests of prototype beams with reinforced openings were recently 

conducted in Illinois (37) and in Australia (41). The former test 
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was conducted on a 2·1 in. deep beam with a large ( 15 x 39 in.) open­

ing at the midspan. Failure occurred in the slab near the support. 

The latter test was conducted on a 530 mm (20.9 in.) deep beam with a 

large [300 x 715 mm (11.8 x 28.1 in.)] opening and a small [300 x 515 

mm (11.8 x 20.3 in.)] opening at approximately the quarter points in 

the span. The test was not continued to failure. The Australian 

design was based in part on the Clawson and Darwin (10, 11) model and 

on an elastic finite element analysis. 

1.3 OBJECT AND SCOPE 

This study consists of laboratory tests and detailed analyses 

leading to a comprehensive design procedure for composite beams with 

web openings. 

Fifteen tests to failure were carried out on composite beams 

with web openings. All specimens were full scale composite beams 

with ribbed slabs using formed steel deck. Slabs had ribs oriented 

either perpendicular to or parallel to the steel section. Parameters 

investigated included moment-shear ratio, partial composite behavior, 

deck rib orientation, slab thickness, opening shape, opening ec­

centricity, and modification of the deck over the opening. 

A strength model is developed which shows good agreement with 

all experimental work on composite beams with web openings. Three 

versions of a practical strength design technique are presented. A 

comprehensive design procedure, including both strength and service­

ability criteria is developed. 
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CHAPTER 2 

EXPERIMENTAL WORK 

A number of experimental investigations of composite beams with 

rectangular web openings have been conducted (8, 9, 11, 19, 32, 34, 

37, 41). Granade (19), Clawson and Darwin (9, 11), and Cho (8) 

tested composite beams with solid, or flat-soffit slab construction. 

Redwood and others at McGill University (32, 34, 46) tested composite 

beams with ribbed slab construction with the ribs oriented transverse 

to the steel section. Prototype tests were conducted in Illinois 

(37) and Australia (41). The test configurations used in previous 

investigations are summarized in Appendix B. This information is 

used in Chapters 4 and 5 as input for strength calculations. 

The current experimental study is designed both to investigate 

parameters not included in earlier studies and to confirm trends 

indicated in those studies. 

2.2 TEST SPECIMENS 

Nine test beams with a total of 15 rectangular web openings 

were tested (Fig. 2.1 - 2.10). One W10 x 15 and eight W21 x 44 

sections were used. All beams had ribbed slab construction; the 

ribs were oriented transversely on 8 beams and longitudinally on 1 

beam. All slabs were made using normal weight concrete. The con­

crete slab dimensions, shear stud quantities and locations, and 

opening sizes and locations were varied. 
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The moment-shear (M/V) ratio at the web opening has been shown 

to have a significant effect on the behavior of composite beams with 

web openings (9, 11). Tests 1 through 3 and and Test 6a were used to 

provide additional information on the effect of the M/V ratio. Test 

1 (Fig. 2.1) had a lowM/V ratio (3.5 ft.), Test 2 (Fig. 2.2) had a 

medium M/V ratio (6.5 ft.), and Test 3 (Fig. 2.3) had a high M/V 

ratio (45.1 ft.). For Test 6A (Fig. 2.5), the opening was placed at 

a point of contraflexure (M/V = 0 ft.). 

Tests 2, 4A, 4B, and 5A (Fig. 2.2 and 2.4), which had medium 

M/V ratios (6.5 ft.), and Test 6B (Fig. 2.6), which had a low M/V 

ratio (3.5 ft.) were used to investigate the effect of the quantity 

of shear connectors above the web opening and between the opening and 

the support. Tests 2 and 4B had a large number of shear connectors 

between the web opening and the support, while Tests 4A and 5A had a 

low number of shear connectors between the opening and the support. 

Tests 2 and 5A had 4 and 2 shear connectors, respectively, above the 

opening, while Tests 4A and 4B had none. The steel deck in Tests 4A 

and 4B was attached to the steel beam at each rib above the opening 

using puddle welds. 

Test 6B (Fig. 2.6) was used to test a possible reinforcement 

procedure for composite beams with web openings. 22 gage steel pans 

were fabricated to match the deck profile (Fig. 2.11 and 2.12). The 

pans were placed on the top flange of the steel beam between the ribs 

of the deck from the high moment end of the opening to the support. 

4 x 6 in. rectangular holes were cut in the deck above the pans and 2 
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shear connectors were welded through each pan to the steel beam. 

During concrete placement, the concrete around the pans was well 

consolidated to ensure that any voids were removed. 

Most of the test openings were concentric (top and bottom steel 

tees were of equal depth), had depths equal to 60 percent of the beam 

depth (0.60d), and had lengths equal to 120 percent of the beam depth 

(1 .20d). There were, however, exceptions. Test 5B (M/V = 6.5 ft., 

Fig. 2.4) had an opening with a 1 in. negative (downward) ec-

centricity and an opening shape of 0.67d x 1.20d. Test 8B (M/V = 

2.46 ft., Fig. 2.9) had a 0.15 in. negative eccentricity and an 

opening shape of o.63d x 1.84d. Test 9A (MIV = 3.5 ft., Fig. 2.10) 

had a concentric opening and an opening shape of 0.71d x 1.20d. Test 

9B (M/V = 3.0 ft., Fig. 2.10) had a 0.13 in. negative eccentricity 

and an opening shape of 0.71d x 0.71d. 

Tests 7A (M/V = 3.5 ft.) and 7B (M/V = 6.5 ft.) (Fig. 2.7) were 

used to study the effect of deck orientation on composite beams with 

web openings and used steel deck with the ribs placed parallel to the 

beam. 

Tests 8A (M/V = 3. 28 ft.), 8B, 9A, and 9B (Fig. 2.8 - 2.10) 

were used to evaluate the effect of the relative thickness of the 

slab on opening behavior. Tests 1 through 7B had relatively thin 

slabs compared to the depth of the beam, while Tests SA through 9B 

had relatively thick slabs. The ratio of the slab thickness above 

the ribs, t , to steel beam depth, d, for Tests 1 through 7B was s 
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approximately 0.1. The ratios for Beams 8 and 9 were 0.25 and 0.19, 

respectively. 

2.3 BEAM DESIGN 

The composite beams were designed following the AISC Steel 

Construction Manual (2). All beams were designed to be fully com­

posite and were designed to fail at the web opening. 

The slab reinforcement for Beams 1 to 6, 8 and 9 was designed 

following the ACI Building Code (1). Transverse and longitudinal 

reinforcement were selected to meet ACI temperature steel require­

ments based on the gross slab thickness. Reinforcement consisted of 

#3 bars on nominal 12 in. centers in both directions and provided a 

nominal slab reinforcement ratio of 0.0018. The longitudinal rein­

forcement rested on the formed steel deck, and the transverse 

reinforcement was tied to the longitudinal reinforcement at the 

centerlines of the deck ribs. Beam 7 reinforcement was selected 

based on Steel Deck Institute recommendations for minimum temperature 

steel (36). The minimum recommended reinforcing ratio is 0.00075 

based on the slab thickness above the deck flutes. 6 x 6-W1.4 x W1.4 

welded wire fabric was placed at the top of the steel decking. 

The metal decking was selected to minimize the decking stiff­

ness and to minimize the net concrete above the deck. 22 gage 

decking with 3 in. deep ribs on 12 in. centers was selected, 
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2.4 MATERIALS 

Beams 1 through 6 were fabricated using A572 Grade 50 W21 x 44 

sections. Beams 7 and 9 were fabricated using A36 W21 x 44 sections. 

Beam 8 used an A36 W10 x 15 section. The yield strength, static 

yield strength and tensile strength of the rolled sections were 

measured using standard test coupons from both the web and the 

flanges in a screw-type test machine. Specimens were loaded through 

the yield plateau at a relative head speed of 0.5 mm/min. At a 

minimum of two points on the yield plateau, the displacement was 

stopped so that the static yield load could be determined. When the 

load stabilized (at the static yield load), displacement was resumed. 

When strain hardening was observed, the relative head speed was 

increased to 5 mm/min. and loading was continued to failure. The 

average steel properties are summarized in Table 2.1. 

The deformed reinforcing steel was Grade 60 with a yield stress 

of 70.9 ksi. The yield stress of the welded wire fabric was measured 

as 90.9 ksi using the 0.2% offset method. 

All shear studs were supplied by the Nelson Stud Welding 

Division of TRW. Beams 1 through 7 had 3/4 in. diameter studs with a 

tensile strength of 67.9 ksi. Beam 8 had 5/8 in. diameter studs with 

a tensile strength of 63.2 ksi, and Beam 9 had 3/4 in. diameter studs 

with a tensile strength of 68.8 ksi. The 3/4 in. diameter studs were 

Nelson Type S3L, and the 5/8 in. diameter studs were Nelson Type H4L, 

modified for through-deck welding. 
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The steel decking was 22 gage Lok-Floor decking with 3 inch 

ribs supplied by United Steel Deck, Inc. The deck profile is shown 

in Fig. 2.12. The yield and tensile strengths of the decking were 

40.7 ksi and 53.1 ksi, respectively. 

The concrete was normal weight, Portland cement concrete sup­

plied by a local ready-mix company. Coarse aggregate was crushed 

limestone, and fine aggregate was Kansas River sand. All mixes were 

ordered with entrained air. Concrete slump and air content were 

measured at the time of placement. Concrete strengths were measured 

using standard 6 by 12 in. test cylinders. Concrete properties are 

summarized in Table 2.2. 

2.5 BEAM FABRICATION 

The initial step in beam fabrication was the preparation of the 

web opening. The opening location was marked and 3/4 in. diameter 

holes were drilled at the corners to reduce stress concentrations. 

The opening was flame cut using an oxy-acetylene torch. Strain gage 

locations were ground with an abrasive wheel. 

Stiffeners were either welded or bolted to the beam web at load 

points and supports on Beams 2 through 9. No stiffeners were used on 

Beam 1. Bearing plates for the beam supports were bolted in place. 

The steel section was supported at each end, and shoring was 

installed to support the deck. Metal decking was positioned on the 

section and attached to the shoring with nails to prevent deck move­

ment during stud welding. Shear studs were welded though the deck 
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using a Nelson Stud Welding unit. With the exception of Beam 4, 

studs were welded in each rib. The ribs over the openings in Beam 4 

were attached to the wide flange section using 3/4 in. puddle welds. 

After the shear studs were welded in place, the deck was 

scraped and brushed to remove welding debris. The nails holding the 

decking to the shoring were removed and the form sides were 

installed. All joints between the steel decking and concrete forms 

were caulked, and the reinforcing steel was installed. 

The concrete was delivered by truck and placed using a 1 cubic 

yard bucket. After the forms were filled, the concrete was con­

solidated using a 1-112 in. electric vibrator inserted on 1 ft. 

centers. The concrete was screeded using a metal-edged screed and 

finished using a magnesium bull-float. 

Slump and air tests were performed and test cylinders were cast 

as the beam was cast. After the concrete had begun to set, the slab 

and the test cylinders were covered with polyethylene sheets. All 

test cylinders were stored near the slab. The beam and the cylinders 

were kept continuously moist until a strength of 3000 psi was 

reached. The concrete was then allowed to dry. 

Two openings were tested on Beams 4 through 9. After the first 

opening was tested, a second opening was cut in the steel section at 

the opposite end of the beam. A plate was welded in the first 

opening. The damaged concrete above the first opening was repaired 

using gypsum cement grout or high strength concrete. 
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On Tests 48, 58, and 68, transverse cracks formed in the slabs 

above the openings when the openings were cut. On Tests 48 and 6B, 

the cracks formed at the low moment edge of the rib peak at the low 

moment end of the opening, while on Test 58, the crack formed at the 

high moment edge of the rib peak at the high moment end of the 

opening. All of the cracks extended completely across the top of the 

slab and extended approximately 1 in. down the side of the slab. 

The opening locations, load configurations, and span lengths 

are shown in Fig. 2.1 through 2.10. Section and opening dimensions 

are summarized in Table 2.3. Stud quantities and rib dimensions are 

summarized in Table 2.4. 

2.6 INSTRUMENTATION 

The beams were instrumented with electrical resistance strain 

gages and DC linear variable differential transformers (LVDT's). 

Strain gages were placed on both the steel and the concrete around 

the opening. Steel gages were located along a line 1-112 in. from 

the vertical edges of the opening to reduce the effect of stress 

concentrations at the opening corners. Concrete gages were placed on 

the top of the slab for all tests. In most cases, concrete gages 

were also placed on the bottom of the slab. 1 by 4 in. slots were 

cut in the steel decking and closed with duct tape before concrete 

placement. The tape was supported from below. Before the beam was 

tested, the support and tape were removed to expose the bottom of the 

slab. 
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Micromeasurements 120 ohm foil strain gages with a 0.240 in. 

gage length were applied to the steel following the gage manufac­

turer's recommended procedures. Precision Measurements 120 ohm 

paper-backed strain gages with 2.4 in. gage lengths were bonded to 

the concrete using Duco cement. All gages were wired with shielded 

cables. For Tests 1 through 3, the strain gages were read using 

Vishay Model P-350A strain indicators and a Hewlett-Packard 3052A 

data acquisition system with Diego Systems Model 113 strain gage 

conditioners. For Tests 4A through 98, strain gages were read using 

a Hewlett-Packard Model 3054A data acquisition system. For all 

beams, the data acquisition system was controlled using a Hewlett­

Packard 9825T Computer. 

LVDT's were installed at the point of maximum moment and at the 

ends of the opening to monitor beam deflection, LVDT's were also 

installed at the ends of the concrete slab to monitor slip between 

the slab and the steel section. 

Some of the openings had LVDT's installed at the ends of the 

opening to monitor the relative movement of the slab and the steel 

section. For these beams, steel bars were embedded in the slab to 

allow the measurement of horizontal slip. Holes were also cut in the 

steel decking to allow the vertical separation to be monitored. All 

LVDT's were read using the Hewlett-Packard data acquisition systems. 

White wash was applied to the steel beam around the web opening 

to act as brittle coating. Diluted latex paint was applied to the 

concrete slab so that cracks could be seen. 
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2.7 LOAD SYSTEM 

When the concrete reached the desired strength, the deck shor­

ing was removed, and the beam was placed on pin and roller supports. 

Bearing plates were grouted to the concrete at the load points. On 

beams with transverse deck ribs, additional bearing plates were 

grouted between the steel beam and the steel deck (load was applied 

at the rib peak). The loading system was installed (Fig. 2.13). 

The loading system applied load at one or two load points on 

each beam. At each load point, two tension rods transferred load 

through rockers to the top of a transverse load beam in contact with 

the test specimen. All load systems, with the exception of the load 

system for Test 8B, had 1-1/2 in. diameter hot-rolled tension rods. 

The load system for Test 8B had 1 in. diameter cold-rolled tension 

rods. The tension rods extended through openings in the load beam, 

the concrete slab, and the lab structural floor. Below the struc­

tural floor, the rods passed through hollow core Enerpac jacks which 

applied the load (Fig. 2.13). Hydraulic pressure was applied using 

an Amsler pendulum dynamometer. A manifold with flow control valves 

was used to control the individual jacks to prevent twisting of the 

test beam. 

The tension rods were instrumented as load cells using two 

longitudinal and two transverse gages in a full-bridge circuit and 

were calibrated using a Tinius-Olsen column tester. The tension rods 

were monitored using a Hewlett-Packard data acquisition system and 
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computer. During a test, the load and deflection were monitored at 

two second intervals. 

For Beams 1 through 6, Test 8A, and Beam 9, the total weight of 

the load system was 0.6 kips per load point. For Beam 7, which did 

not require bearing plates between the steel beam and the steel deck, 

the weight was 0.55 kips per load point. For Test 8B, which had 

in. diameter tension rods, the weight was 0.44 kips per load point. 

2.8 LOADING PROCEDURE 

Each beam was cycled 13 times to low maximum loads to relieve 

residual stresses, to seat the loading system, and to test the 

instrumentation. 

The tests to failure were run using the following procedure. 

Initial readings were taken at zero hydraulic system pressure and 

with the jacks hanging freely from the load rods. The first and 

second load increments were equal to the peak load of the pre-test 

cycles. The remaining load increments varied according to beam 

behavior. Preselected increments of load were used until the load­

deflection curve indicated the beam was softening (the load­

deflection curve became nonlinear). Load increments were then 

selected to produce increments of deflection for the remainder of the 

test. Load and deflection were plotted continuously. Concrete 

cracks were marked at each load step using felt pens. Prior to 

softening, the load was maintained while the instrumentation was read 
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and cracks were marked. Once the load deflection curve became non­

linear, the deflection was maintained while readings were taken and 

cracks were marked. After failure, all additional cracks were marked 

and photographs were taken. 

Two of the 15 tests deviated from the standard loading proce­

dure. During Tests 1 and 3, after the specimens had been loaded well 

above their initial yield, the specimens had to be unloaded and then 

reloaded to failure. For Test 1, significant twisting of the beam 

was noted at 70 percent of the ultimate applied load. The beam was 

unloaded and the load system was adjusted to compensate for the 

twisting. For Test 3, large deflections at 98 percent of the ul­

timate applied load caused large rotations in the load beams, 

resulting in bending of the load rods. The beam was unloaded and the 

load system was adjusted to compensate for the rotation of the load 

beams. After the beam was reloaded to 98 percent of ultimate, the 

beam had to be unloaded a second time for further adjustments prior 

to the final application of load. 

The results of the tests are described in the next chapter. 
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CHAPTER 3 

EXPERIMENTAL RESULTS 

Previous experimental work has shown that the deformation and 

failure mode of composite beams with web openings is largely a func­

tion of the moment-shear (M/V) ratio at the opening ( 8, 9, 11, 19, 

32, 34, 36). 

For openings with high M/V ratios, the openings tend to have 

small relative deformations across the opening and to fail in a 

flexural mode. At failure, the bottom tee completely yields in 

tension, and the concrete crushes at the high moment end of the 

opening. 

As the M/V ratio decreases, the Vierendeel effect becomes more 

pronounced, as the shear at the opening induces secondary bending 

moments in the tees. Differential deflections across the opening 

increase. The concrete tends to crack at the top of the slab at the 

low moment end of the opening, and the bottom tee has compressive, as 

well as tensile strains. At failure, the concrete slab tends to 

separate from the steel section at the high moment end of the 

opening. Beams with solid slabs display a diagonal tension failure 

in the slab (9, 11), while beams with ribbed slabs display rib 

separation cracking (34, 46). 

The results of the tests from the current study are presented 

and evaluated in the following sections. 
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3.2 BEHAVIOR UNDER LOAD 

Most of the tests in the current study had relatively low M/V 

ratios (Tests 1, 2, 4A-9B). For these tests, the behavior under load 

was dominated by the effects of secondary bending. Large differen­

tial deformations across the opening were observed as the beams were 

loaded (Fig. 3.1). One test (Test 3) had a high M/V ratio. The 

behavior of this opening was dominated by the primary moment at the 

opening. Relatively small differential deformations across the 

opening were observed (Fig. 3.2). 

Load-deflection diagrams for the 15 tests in this study are 

presented in Fig. 3.3 to 3.17. Strain distributions at the opening 

are presented in Fig. 3.18 to 3.32 for 4 stages of applied load 

(elastic, first yield, late yield, and collapse)~ 

As a general rule, the failure of the beams was quite ductile. 

The peak loads were preceeded by major cracking in the concrete, 

yielding of the steel, and large deflections in the member (Fig. 3.3 

- 3.17). 

In all cases, yielding in the steel tees was observed at rela­

tively low levels of loading (Fig. 3.18-3.32). As the tests 

progressed, transverse and longitudinal cracking occurred in the 

slabs. As the tests approached ultimate, the concrete around the 

shear studs above the opening failed, and the slab lifted from the 

steel beam at the high moment end of the opening. 

The applied load at first yield and the applied load at the 

first occurrence of transverse, longitudinal, and diagonal cracking 
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near the opening are presented in Table 3.1. These loads are ex­

pressed as percentages of the applied (total - dead) load at failure. 

First yielding was noted in tension in the top or the bottom 

tee. For Tests 1-6A, and 7A-8A, first yielding occurred in tension 

at the top of the low moment end of the bottom tee. For Tests 6B, 

8B, 9A, and 9B, first yielding occurred in tension at the bottom of 

the high moment end of the top tee. First yielding occurred at 

applied loads as low as 19 percent, and as high as 52 percent of 

ultimate, with an average of 33 percent (Table 3. 1). As concluded 

for beams with solid slabs (9, 10), the first yield does not give an 

accurate measure of section capacity. 

Transverse, diagonal, and longitudinal cracks were noted in the 

slabs as the loads increased. Transverse cracks formed in the top of 

the slab at the low moment end of the openings (Fig. 3.33). The 

cracks occurred at applied loads as low as 25 percent, and as high 96 

percent of ultimate (Table 3.1). For Tests 4B, 5B, and 6B, 

transverse cracks occurred when the opening was being cut. However, 

these cracks appeared to have no effect on the behavior of the open­

ing under load. As the loading increased, all transverse cracks 

increased in width and in depth, eventually propagating to within 

approximately 1/2 in. of the bottom of the slab. 

All tests with transverse ribs displayed diagonal cracking. 

Diagonal cracking occurred at an average applied load of 63 percent 

of ultimate. Diagonal cracks started at the high moment end of the 

opening at the low moment end of a rib and propagated toward the load 
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point as the load was increased. For Tests 7A and 78, which had 

longitudinal ribs, no diagonal cracks were observed. 

Longitudinal cracking (Fig. 3.33) occurred at an average ap­

plied load of 80 percent of ultimate. Longitudinal cracks started at 

the top of the slab at the low moment end of the opening directly 

above the steel section and propagated toward the load point and the 

support as the load increased. 

Failure at openings was preceeded by failure of the concrete 

around the studs above the opening and between the opening and the 

support. For the tests with longitudinal ribs, a longitudinal shear 

failure occurred between the rib and the surrounding deck (Fig. 

3.34), and a slight slab uplift was noted. For the tests with 

transverse ribs, the concrete failed in a shearing mode in the rib 

(Fig. 3.35). The rih pulled away from the concrete around the stud 

group, leaving a wedge-shaped block. For high shear tests on beams 

with ribs transverse to the steel section (Tests 1, 2, 4A-6A, and 8A-

98), rib failure was followed by slab uplift, resulting in bridging 

of the slab over the opening (Fig. 3.36). For the high moment test 

(Test 3), only a minor slab uplift was noted (Fig. 3.2). For tests 

68, 8A, and 88, the diagonal cracks in the slab propagated to the top 

surface of the slab near the load point. All tests exhibited a large 

amount of slip between the concrete and steel. 

At all stages of loading, strains at the opening indicate a 

lack of strain compatibility between the tees and between the top tee 

steel and the slab (Fig. 3.18-3.32). The strain data show that, with 
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the exception of Test 3 (high M/V) (Fig. 3.20), strains were quite 

low in the concrete slab at failure. 

The moments and shears at ultimate and the modes of failure for 

the current test series are presented in Table 3.2. The failure 

loads include the weight of the beam and load system, as well as the 

applied loads. 

3.3 DISCUSSION OF BEHAVIOR 

The tests in the current study confirm that the behavior of 

composite beams with web openings is largely controlled by the M/V 

ratio at the opening. Deformation, cracking in the slab, and the 

failure load are all functions of the M/V ratio. 

In general, the deflection across a web opening, 6 , increases 
0 

as the M/V ratio decreases. It is useful to normalize 6
0 

with 

respect to the deflection at the point of maximum moment at failure, 

om, to obtain a normalized opening deflection, 6 = 6
0

/om. 

and o are summarized in Table 3.3. 

For tests with low to intermediate M/V ratios, o is high. As 

the M/V ratio increases, o decreases. Tests 1 through 6B had similar 

sections. 6 was 2. 27 for Test 6A (M/V = 0), an average of 1. 06 for 

Tests 1 and 6B (M/V = 3.5 ft), an average of 1.03 for Tests 2, 4A, 

4B, SA, and 5B (M/V = 6.5 ft), and 0.03 for Test 3 (M/V = 45.2 ft). 

Transverse cracking of the concrete slab at the low moment end 

of the opening is also strongly affected by the M/V ratio. As the 

M/V ratio decreases, transverse cracks tend to appear at lower loads. 
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Cracking occurred at only 21 percent of the maximum applied load for 

Test 6A (M/V = 0), an average of 42 percent for Tests 1 and 7A {M/V 

3.5 ft), an average of 65 percent for Tests 2, 4A, 5A, and 7B (M/V = 

6.5 ft), and 96 percent of the maximum load for Test 3 (M/V = 45.2 

ft) (Table 3.1). 

Longitudinal and diagonal cracking of the slab appear not to be 

functions of the M/V ratio (Table 3. 1). Longitudinal cracking oc­

curred at 70 percent of the maximum applied load for Test 6A (M/V = 

0), an average of 86 percent for Tests 1 and 7A (M/V = 3.5 ft), an 

average of 84 percent for Tests 2, 4A, 5A, and 7B (M/V = 6.5 ft), and 

76 percent for Test 3 {M/V = 45.2 ft). Diagonal cracking occurred at 

70 percent of the maximum applied load for Test 6A, an average of 67 

percent for Tests 1 and 7A, an average of 81 percent for Tests 2, 4A, 

5A, and 7B, and 76 percent for Test 3. 

The failure loads were affected by the quantity of shear con­

nectors above the opening and between the opening and the support. 

As the quantity of connectors increased, the failure load tended to 

increase. Tests 2, 4A, 4B and 5A had M/V ratios of 6.5 ft, had the 

same section and opening dimensions, and had approximately the same 

material strengths. Test 2 had a high number of studs over the 

opening and between the opening and the support (H-H), Test 4A had no 

studs over the opening and a low number of studs between the opening 

and the support (N-L), Test 4B had no studs over the opening and a 

high number of studs between the opening and the support (N-H), and 

Test 5A had a low number of studs above the opening and a low number 
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of studs between the opening and the support (L-L). The shears at 

failure for Tests 2 (H-H), 48 (N-H), 5A (L-L), and 4A (N-L) were 

39.0, 39.0, 34.6, and 32.7, respectively (Table 3.2). 

Test 48 (N-H) and Test 2 (H-H) failed at the same maximum 

shear, even though the quantities of shear connectors were not the 

same. This is probably due to the fact that the puddle welds in the 

ribs above the opening effectively transferred shear between the 

steel tee and the concrete. The shear transfer was calculated to be 

11.4 kips for Test 48 and 25.9 kips for Test 2 using the elastic 

strain distributions for the two tests. Very large deflections were 

required in order to mobilize the shear strength of the puddle welds 

(Table 3.3). 

Test 68 was used to evaluate a possible reinforcement procedure 

for composite beams with web openings (Section 2.2). Test 6B and 

Test 1 had M/V ratios of 3.5 ft and had approximately the same 

material strengths. Test 68 had additional studs over the opening 

and between the opening and the support. Test 1 failed at a shear of 

37.8 kips, while Test 68 failed at a shear of 48.9 kips. The addi­

tional studs provided a significant increase in shear capacity. The 

failure mode of Test 6B was also affected by the additional studs 

(Table 3.2). For Test 1, diagonal cracking in the slab occurred at 

67 percent of ultimate, while for Test 68, diagonal cracking occurred 

at 94 percent of ultimate. While rib failure occurred for both 

tests, the rib failure in Test 68 was followed by a diagonal tension 
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failure near the load point similar to that observed in beams with 

solid slabs ( 9, 11). 

As the shear at a web opening increases, the moment capacity at 

the opening decreases. An interesting way to illustrate this com-

pares the normalized failure moment with a generalized measure of the 

M/V ratio as follows: The moments at failure, M (test) for the 
n 

current test series (Table 3.2) along with those for previous tests 

(Table B.4), are normalized by dividing by the calculated "pure" 

moment capacity at the opening, M . M is obtained using the Slutter 
m m 

and Driscoll procedure (35) for the flexural capacity of the net 

section at the opening and considering partial composite action. 

M (test)/M is compared to the M/V ratio normalized to the depth of n m 

the steel section, d. The M/Vd ratio is equivalent to a "shear-span 

to depth ratio". M (test)/M is plotted versus ln(M/Vd) in Fig. n m 

3.37. Test 6A (M/Vd = 0) and Tests 4A and 4B (puddle welds over the 

opening) are excluded from the plot. 

A positive trend exists between M (test)/M and ln(M/Vd), n m 

indicating that the moment at failure is strongly dependent on the 

(M/Vd) ratio at the opening. The correlation coefficient, r, ob-

tained from a linear regression analysis of the data in Fig. 3.37 is 

0.944. 

3.4 SUMMARY 

The location of the opening (as indicated by the M/V or M/Vd 

ratios) has a major effect on the opening behavior and on the 
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capacity at the opening. As the M/V ratio decreases, deflections 

across the opening increase and transverse cracking occurs at lower 

loads. 

First yield of the steel around an opening is not a good 

measure of the section capacity. 

The failure of the beams in the current study was, in general, 

quite ductile. 

The amount of shear transfer between the concrete and the steel 

above the opening and between the opening and the support has a major 

effect on the strength of beams with web openings. Increased shear 

transfer allows the concrete slab to contribute more to the strength. 
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CHAPTER 4 

STRENGTH MODEL 

A number of strength models for composite beams with web ope­

nings have been proposed (10, 11, 28, 30, 42). All of the models are 

based on the static theorem of plasticity (21) and are used to gener­

ate moment-shear interaction diagrams representing the strength of 

beams at web openings. For each combination of moment and shear, 

moment equilibrium is enforced. The steel tees are assumed to yield 

in either tension or compression, and the interaction of shear and 

normal stress is accounted for based on the von Mises yield 

criterion. 

Three of the models pertain to composite beams with solid slabs 

(10, 11, 28, 42), while one of the models was developed specifically 

for composite beams with ribbed slabs (30). One of the models (28) 

includes the effects of reinforcement around the opening. 

In addition to the strength models, a number of simplified 

design techniques have been developed (11, 15, 33, 34). 

The existing strength models are limited in application, while 

the simplified design techniques do not provide detailed information 

on the behavior or strength at an opening, over the full range of 

moments and shears. This chapter presents a comprehensive strength 

model which is applicable to any slab configuration and includes 

provisions for web reinforcement. The model is relatively complex 

and is formulated primarily as a research tool. Chapter 5 presents 
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accurate, practical design techniques that were developed based on 

the lessons learned with the model. 

The model is described in five major sections. The basic 

assumptions are discussed in Section 4.2, along with a general dis­

cussion of the procedure used to develop moment-shear interaction 

diagrams. The interaction between shear and compressive stresses in 

the steel and in the concrete are considered in Section 4.3. 

Equilibrium equations relating the moments, shears, and axial forces 

in the bottom and top tees are developed in Sections 4.4 and 4.5, 

respectively. Details of the interaction procedure are presented in 

Section 4.6. 

In the final section, the model is used to predict the strength 

of tests. Ratios of test to calculated strength are presented and 

discussed. 

4.2 OVERVIEW OF THE MODEL 

The model presented here represents a modification and major 

extension of the model developed by Clawson and Darwin (10, 11). The 

modifications are based on the improved understanding obtained from 

the 29 additional tests that have been completed since Clawson and 

Darwin completed their work, along with the experience gained from 

other models and design procedures (15, 28, 33, 34, 42). 

The model is based on the static theorem of plasticity (21). 

Therefore, failure mechanisms must be assumed. The mechanisms are 

functions of the moment and shear acting at the opening. 
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For pure bending (V = 0), the entire opening is assumed to form 

a plastic hinge. The bottom tee yields in tension, while the con­

crete crushes (Fig. 4.1). 

When both shear and bending act at the opening, the shear 

induces secondary bending moments in the top and bottom tees at both 

ends of the opening. Plastic hinges are assumed at both ends of the 

bottom tee and at the high moment end of the top tee. In addition, 

the concrete is assumed to fail under combined compression and shear 

at the high moment end of the opening (Fig. 4.2). 

The forces acting at a web opening are shown in Fig, 4.3. The 

maximum shear capacity at the opening is calculated by assuming zero 

axial force in the bottom and top tees (Pb = Pt = 0). Plastic hinges 

form at both ends of the bottom tee. Two failure modes, a 

"mechanism" failure and a "shear" failure, are considered for the top 

tee. A "mechanism" failure occurs with plastic hinges forming at 

both ends of the top tee. The concrete is assumed to fail under 

combined compression and shear at both ends of the opening. At the 

high moment end, the failure occurs at the top of the slab, while at 

the low moment end, the failure occurs .at the bottom of the slab 

(Fig. 4. 4). A "shear" failure occurs when the pure shear capacity of 

both the concrete and the steel is exceeded in the top tee (Fig. 

4.5). The strength of the top tee in pure shear, Vt(max), is the 

lower of the strengths found for the two failure modes. The shear 

strength of the beam at the web opening is the sum of the top and the 

bottom tee shear strengths. 
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Moment-shear interaction diagrams are developed by calculating 

the primary moment capacity, M . , at the opening centerline as pr1mary 

the shear is increased from zero to the maximum shear capacity. A 

predetermined portion of the shear is assigned to the bottom and top 

tees (Vb and Vt' respectively) (Fig. 4.3). Using Vb, an axial force, 

Pb, and secondary bending moments, Mbl and Mbh' are calculated. Pt 

and Vt are applied to the top tee (Pt = Pb and is applied in the 

opposite direction). The secondary moment capacity of the high 

moment end of the top tee, Mth' is then calculated. Finally, 

M . is calculated using the secondary moment capacities and the pr1mary 

axial force. 

( 4. 1 ) 

in which z = the distance between the axial forces, P = Pb = Pt' a
0 

the opening length, and Vtotal = Vb + Vt. 

The following simplifying assumptions are used: 

1) The steel will yield in tension or compression. 

2) Shear forces can be carried in the steel and concrete at 

both ends of the opening. 

3) Shear forces in the steel are carried only in the webs. 

4) Shear stresses in the steel webs are uniformly distributed 

over the full depth of the steel tees. 

5) The normal forces in the concrete are applied over an area 

defined by the 9quivalent stress block (1). 
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6) The compressive forces in the concrete are limited by the 

crushing capacity of the slab, normal force equilibrium, 

and the shear capacity of the shear studs between the ends 

of the opening and between the opening and the supports. 

The model includes provisions for web reinforcement at the 

opening. In addition, the model includes provisions for solid slabs 

and ribbed slabs with either transverse or longitudinal ribs. 

It must be noted that, while the model is an extension of the 

Clawson and Darwin model, there are significant differences. In the 

Clawson and Darwin model, concrete force exists only at the high 

moment end of the opening, the slab is fully composite, and reinforc-

ing steel in the slab is considered. Shear forces in the steel can 

be carried in the flanges, as well as in the webs of the tees. In 

addition, the Clawson and Darwin model does not include provisions 

for web reinforcement and applies only to solid slab construction. 

4.3 MATERIALS 

Both concrete and steel are assumed to be in a state of plane 

stress. The models for these materials are described below. 

4.3.1 Steel 

The structural steel is represented as a rigid, perfectly 

plastic material. The maximum yield strength, cr , is the yield 
0 

stress obtained from a uniaxial tension test. No strain hardening is 

considered. 



36 

The steel yield criterion is the von Mises yield hypothesis. 

For a state of plane stress, this reduces to 

2 2 2 o
0 

= a + 3T (4.2a) x xy 

in which o = normal stress and T = shearing stress. For a web x xy 

under combined tension and shear, the reduced longitudinal yield 

strength due to shear, F is ywr' 

F = (F2 - 3T2 ) 1/2 
ywr yw xy (4.2b) 

in which F = yield strength of the web in uniaxial tension. yw 

4.3.2 Concrete 

The strength model for concrete is based on the biaxial tests 

of Kupfer, Hilsdorf, and RUsch (23) for combined tension and compres-

sion (Fig. 4.6). Clawson and Darwin (10, 11) transform the principal 

stress data for concrete with a nominal compressive strength of 4450 

psi (23) to a state of combined shear stress, T, and normal stress, 

f. T and f, normalized with respect to the concrete strength, f', 
c 

are presented in Fig. 4.7. The maximum shear stress, 0.21f', is 
c 

obtained at a normal stress of 0.73f~. 

Clawson and Darwin ( 10, 11) fit the data with two parabolic 

curves. The right-hand and left-hand curves are, respectively, 



f 2 
[ -2.9(f') + 

c 

and 

T = 

37 

- 1.3]f' c 

- 0.042]f' c 

Both equations are used in the failure model. 

(4.3a) 

(4.3b) 

The concrete is assumed to be in compression and shear at both 

ends of the opening. The concrete compressive strength is limited to 

0.85f, with f given by either Eq. (4.3a) or (4.3b). The normal 

stress is applied over the effective width of the slab, b (defined e 

in Section 4.5), while the shear stress is applied over a width equal 

to 3 times the gross slab thickness, T • The nominal shear strength s 

of the concrete is limited to 3.5~ (10,11). 

4.4 BOTTOM TEE 

The forces in the bottom tee under a positive primary moment 

are shown in Fig. 4.3. These forces consist of a shear force, an 

axial force, and secondary moments. Equilibrium for the bottom tee 

requires that 

pb = pbl = pbh 

vb vbl = vbh 

Mbl + Mbh = Vbao 

(4.4a) 

(4.4b) 

(4.4c) 
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in which Pbl = the low moment end axial force, Pbh = the high moment 

end axial force, Vbl = the low moment end shear force, and Vbh = the 

high moment end shear force. 

The web stub is assumed to extend through the flange and stiff-

ener. The shear stress in the web, Tb' is 

(4.5) 

in which sb = the web stub depth, and tw = the web thickness (Fig. 

4.8). F and Tb are related by Eq. (4.2b) with Tb = T ywr xy 

Plastic hinges are assumed to form at each end of the tee. The 

equilibrium relationships (Eq. (4.4)) and the von Mises criterion 

(Eq. (4.2b)) are used to express Pb as a function of Vb. 

4.4. 1 Low Moment End 

When a positive primary moment is applied to the web opening, 

the low moment end of the bottom tee is subjected to a tensile force 

and a negative secondary moment. The top of the tee is in tension, 

while the bottom of the tee is in compression. 

The neutral axis is assumed to be in either the web or the 

flange, at a distance g, from the top of the tee (Fig. 4.9). The 

neutral axis will always be below the stiffener, if the area of the 

stiffener is no larger than the area of the flange. 

The minimum value for g is attained when Pb = 0. As the axial 

force increases with increasing primary moment, the neutral axis 
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shifts downward. The maximum axial force, Pu' is obtained when Vb = 

0. The neutral axis is, therefore, at the bottom of the flange, and 

P is given by 
u 

P = F (b - t )t + Fywsbtw + F (b - t )t u yf f w f ys s w s (4.6) 

in which F = the yield strength of the stiffener, ts = the stiff­ys 

ener thickness, b = the total stiffener width, including the web 
s 

thickness, Fyf = the yield strength of the flange, tf = the flange 

thickness, and bf = the flange width (Fig. 4.8). P is often 
u 

referred to as the squash load (21). For a specific stress distribu-

tion, Pb is less than or equal to Pu. The squash load ratio, n, is 

defined (21) as 

(4.7) 

Equations of equilibrium can be written for any stress dis-

tribution with a neutral axis location, g. When the neutral axis is 

in the flange (Fig. ~.9a), normal force equilibrium results in 

Pb= F t (2g - sb) + F t (b - t ) ywr w ys s s w 

= t (b - t ) and solving for g gives s s w 

(4.8) 
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Moment equilibrium requires that 

2 s 
= F t c.-.E 

ywr w 2 
2 

- g ) - F A y ys s s 

(4.9) 

(4.10) 

Combining Eq. (4.6), (4.7), (4.9), and (4.10) gives Mbl in terms of 

n. 

(4.11a) 

(A F + A F + A F ) f yf w yw s ys in which 
2(F t + F f(bf ~ t )) ywr w y w 

(4.11b) 

F A - F A + F f(bf - t )(2sb - tf) ywr w ys s y w (4.11c) 

cf
3 

= - F t - F (b - t ) ywr w yf f w (4.11d) 

and 

(4.11e) 
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When the neutral axis is in the web (Fig. 4.9b), normal force 

equilibrium gives 

P = Fywrtw(2g - s ) + F t (b - t ) b b ys s s w 

Using Af 

g = 
P ~ F A + F A + F A 

b ys s ywr w yf f 
2F t ywr w 

Moment equilibrium requires that 

2 
sb 

= F t (-­ywr w 2 

(4.12) 

(4.13) 

(4.14) 

Combining Eq. (4.6), (4.7), (4.13), and (4.14) gives Mbl in terms of 

n. 

Mbl 
2 2 

+ 2Cw,Cw2cw3n + 
2 

+ cw4 (4.15a) = Cw,Cw3n cw2cw3 

Al Y.f + A F + A F 
in which cw1 = 

W 'f.W s ys (4.15b) 
2(Fywrtw) 

F A - F A + FytAf 
cw2 

'f.Wr w ys s (4.15c) 
2(Fywrtw) 
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C = - F t w3 ywr w (4.15d) 

and 
s 

FywrAw 2b- FysAsys + FyfAf(sb- tf/ 2) (4.15e) 

Eq. (4.11a) anr! (4.15a) are quadratic equations in n. For any 

value of Mbl' therefore, the corresponding axial force, Pb = nPu, can 

be found. 

The neutral axis crosses over from the flange to the web when 

when g = sb- tf. Substituting for gin Eq (4.12) gives 

(4.16) 

Substituting for Pb in Eq. (4.7) and consolidating terms gives 

F t (s -ywr w b 
+ F A + F A ) ywr w ys s 

(4.17) 

f in which nxl = the flange to web crossover ratio at the low moment 

end of the bottom tee. 

4.4.2 High Moment End 

When the opening is subjected to a positive primary moment, the 

high moment end of the bottom tee is subjected to a tensile force and 
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positive secondary moment. Therefore, the top of the tee will be in 

compression, and the bottom of the tee will be in tension. 

The neutral axis is located a distance g from the top of the 

tee. Unlike the low moment end, the neutral axis can be located 

anywhere within the stub depth (Fig. 4.10). 

The maximum value for g is attained when Pb = 0. As the ten­

sion force is increased under increasing primary moment, the neutral 

axis shifts upward. Based on normal force and moment equilibrium, 

equations giving Mbh in terms of n are developed. 

When the neutral axis is in the web above the stiffener (Fig. 

4.10a), normal force equilibrium requires that 

P = F t (sb - 2g) + F (b - t )t b ywr w ys s w s 

(4.18) 

Moment equilibrium requires that 

M Ca
2

1ca
3

n2 2C c c c2 c c bh = - a1 a2 a3n + a2 a3 + a4 (4.19a) 

in which 
(AfFyf + A F + A F ) 

C = _..:_..;._..:_=-;;"w~y-:wc,_..::s~y..::s:..... 
a1 2(F t) ywr 

(4.19b) 

(4.19c) 
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C = - F t a3 ywr w (4.19d) 

and (4.19e) 

When the neutral axis is in the stiffener (Fig. 4.10b), normal 

force equilibrium requires that 

Pb = F t (sb- 2g) + 2F (b - t )(y -g) ywr w ys s w s 

(4.20) 

Moment equilibrium requires that 

Mbh 
c2 c 2 - 2Cs1cs2cs3n + 

2 
+ cs4 (4.21a) = cs2cs3 s1 s3n 

(Al yf + A F + A F ) 
in which cs1 = 

w y_w s ys (4.21b) 2(F t + F (b - t ) ) ywr w ys s w 

A F + A F + 2F ( b - t )y 
cs2 = 

f yf w y_wr y_s s w s (4.21c) 2(F t + F (b - t )) ywr w ys s w 

C = - F t - F (b - t ) s3 ywr w ys s w (4.21d) 

and cs4 = FyfAf(sb- tf/2) + F A 
sb 

ywr w 2 

F (b - t ) 
t /2) 2 

+ (y - t /2) 2) + 
y_s s w ( (y + (4.21e) 2 s s s s 
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The neutral axis crosses over from the web above the stiffener to the 

stiffener when g ~ ys- ts/2. Substituting for gin Eq. (4.18) gives 

(4.22) 

Substituting for Pb in Eq. (4.7) and consolidating terms gives 

(4.23) 

s in which nxh ~ the squash load ratio at crossover from the web above 

the stiffener to the stiffener at the high moment end of the tee. 

If the neutral axis is in the web below the stiffener (Fig. 

4.10c), the moment-axial force equation for the high moment end is 

M Cw
2

1cw
3
n2 2C c c c2 c c bh = - w1 w2 w3n + w2 w3 + w4 (4.24) 

in which the coefficients are given by Eq. (4.15b) - (4.15e). The 

neutral axis crossover from the stiffener to the web below the stiff-

ener occurs when g ~ y + t /2. Therefore, the squash load ratio at 
s s 

w 
crossover, nxh' is 

w F t (s - 2y - t ) + F A - F A ywr w b s s yf f ys s 
n = xh (F A + F A + F A ) yf f yw w ys s 

(4.25) 



46 

If the neutral axis is in the flange (Fig. 4.10d), the moment-axial 

force equation for the high moment end is 

(4.26) 

in which the coefficients are given by Eq. (4.11b)- (4.11e). The 

web-flange crossover occurs when g = sb - tf. Therefore, the squash 

load ratio at crossover, n~h' is 

F t (2tf -ywr w 
+ F A + F A ) 
~w ~s 

(4.27) 

Eq. (4.19a), (4.21a), (4.24) and (4.26) are quadratic equations 

inn. For any value of Mbh' the corresponding axial force, Pb = 

nP can be found. 
u 

4.4.3 Total Capacity 

Moment-axial force equations are developed by substituting Eq. 

(4.11a) or (4.15a) for Mbl and Eq. (4.19a), (4.21a), (4.24), or 

(4.26) for Mbh in Eq. (4.4c). The neutral axis may be located within 

one of two regions at the low moment end (Fig. 4.9a and 4.9b), while 

the neutral axis may be located within one of four regions at the 

high moment end (Fig. 4.10a-4.10d). Thus, a total of eight possible 

moment equilibrium relationships exist. The correct neutral axis 

locations at the low and high moment ends must be found by trial. 
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The procedure for establishing the neutral axis locations is 

described in Appendix C. 

Once the neutral axis locations are established, a moment-axial 

force equation (selected from Eq. (C,1)~(C,7)) is obtained. n is 

determined by solving the equation, which is a quadratic in terms of 

n. Mbl is then calculated using Eq. (4,11a) or (4,15a) and Mbh is 

calculated using Eq. (4,19a), (4.21a), (4.24), or (4.26). Finally, 

Pb is calculated using Eq. (4.7). 

4.5 TOP TEE 

The forces and moments acting in the top tee under a positive 

moment are shown in Fig, 4.3. As with the bottom tee, these include 

a shear force, an axial force, and secondary moments. 

Equilibrium for the top tee requires that 

(4.28a) 

(4.28b) 

(4.28c) 

in which Ptl = the low moment end axial force, Pth = the high moment 

end axial force, Vtl = the low moment end shear force, and Vth = the 

high moment end shear force. 

Shear can be carried by both the steel tee and the slab. 

v = v + v 
t c s (4.29) 
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in which V c the portion of the top tee shear carried by the con-

crete and Vs = the portion of the top tee shear carried by the web of 

the steel tee. 

The shear stress in the steel web, 's• is 

T = V /(stt ) (4.30) s s w 

in which st =the web stub depth (Fig. 4.11). F for the top tee ywr 

web and T are related by Eq. (4.2b) with T = T s s xy 

The concrete can carry shear in the compression zone at both 

ends of the opening. The concrete is assumed to be in compression at 

the bottom of the slab at the low moment end and at the top of the 

slab at the high moment end. As with Clawson and Darwin's model, the 

shear is carried in a width equal to 3 times the gross slab thickness 

(10, 11). The shear stress in the concrete is 

v c 
'c = 3T c 

s 
(4.31) 

in which Ts = the total (gross) slab thickness, and c = the distance 

from the neutral axis to the extreme compressive fiber in the 

concrete. The compressive stress in the concrete is carried over 

width b (2). e 

b < Span/4 e-



< Beam spacing 

<16Ts+bf 

< Slab width 
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(4.32) 

c is selected such that for given shear and normal forces, the 

concrete stresses comply with Eq. (4.3a) or (4.3b). It should be 

noted that, in general, c will not be the same at both ends of the 

opening. 

In the top tee, all of the shear is assumed to be applied to 

the steel web, if the applied shear is less than or equal to the 

plastic shear capacity of the web, Vpt 

shear in excess of Vpt" For the top tee, 

stt F 1/3 w y 

The concrete carries any 

(4.33a) 

The upper bound of the shear that can be applied to the top tee 

is the "pure shear" capacity for the top tee, V t ( sh). 

3.5/fl A c cv 
1000 

+ V , kips pt (4.33b) 

in which A = 3T t and t = the effective slab thickness. te is cv s e e 

dependent on the type of slab. For ribbed slabs with the ribs per-

pendicular to the beam, 
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te = ts = the minimum slab thickness 

For ribbed slabs with the ribs parallel to the beam, 

T +t s s 
2 

= the average of the maximum and 

minimum slab thicknesses 

For solid slabs, 

t = T the slab thickness 
e s 

(4.34a) 

(4.34b) 

(4.34c) 

Normal forces exist in the steel tee and in the slab. 

Equilibrium requires that 

P cl + p sl (4. 35a) 

= P ch + P sh (4.35b) 

in which P01 = the low moment end concrete force, Pch =the high 

moment end concrete force, Psl = the low moment end steel force, and 

Psh =the high moment end steel force. Pch is given by 



P h < NRQ c - n 

< p c 
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(4.36a) 

(4.36b) 

(4.36c) 

in which N = the number of studs between the high moment end of the 

opening and the support, R = the reduction factor for studs in ribbed 

slabs, Q = the nominal strength of one stud shear connector embedded 
n 

in a solid slab (3, 29), Pc =the crushing capacity of the slab 

(reduced for V ), and P = the maximum capacity of the top tee 
c smax 

steel (reduced for Vs). P
01 

is given by 

P = P - N RQ > 0 cl ch o n - (4.37) 

in which N = the number of shear connectors above the opening. 
0 

For slabs with transverse ribs, R is (2, 3, 20) 

R 
w H 

.85(.2:)(hs - 1.0) < 1.0 
IN hr r 

r 

(4.38) 

in which hr = the nominal rib height in inches, Hs = the length of 

the stud connector after welding in inches, N = the number of stud 
r 

connectors in one rib, and w = the average width of the concrete 
r 

rib. 

For slabs with ribs parallel to the steel beam, the reduction 

factor is (2, 3, 20) 
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compression. The top of the steel tee is in tension, while the 

bottom of the tee is in compression. 

From Eq. (4.35a), the force in the steel at the low moment end, 

Psl' is given by 

P sl = P t - P cl (4.46) 

The neutral axis in the steel tee is located at a distance g 

from the bottom of the tee (Fig. 4.13). The neutral axis can be 

located anywhere within the steel tee at the low moment end. 

When the neutral axis is in the web below the stiffener (Fig. 

4.13a), normal force equilibrium requires that 

-FyfAf - F t (s - 2g) - F A ywr w t ys s (4.47) 

The neutral axis crosses over from the web below the stiffener to the 

ts 
stiffener when g = ys - 2· The force in the steel at crossover, 

s 
P xl' is 

(4.48) 

s If P sl < P xl' the neutral axis is in the web below the stiff-

ener and 
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Moment equilibrium requires that 

- F A y - P y ys s s cl cl (4.58) 

f 
If Psl > Pxl' the neutral axis is in the flange (Fig. 4.13d) 

and 

g 
P81 + F (b - t )(2s - t ) + F A - F A yf f w t f ywr w ys s 

2(F f(bf - t ) + F t ) y w ywr w 
(4.59) 

Moment equilibrium requires that 

+ 
F t 

ywr w ( 2 
2 st 2g2) - F A y - P y ys s s cl cl (4.60) 

4.4.1.2 High moment end 

When the opening is subjected to a positive primary moment, the 

high moment end of the top tee is subjected to a compressive force 

and a positive secondary moment. At the maximum "mechanism" shear 

load, the top tee is subjected only to a positive secondary moment. 

In either case, the top of the concrete slab is in compression. 
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Also, the top of the steel tee is in compression while the bottom of 

the tee is in tension. 

From Eq. (4.35b), the force in the steel at the high moment 

end, P sh' is 

P sh = P t - P ch (4.61) 

The neutral axis is located a distance g from the bottom of the 

tee (Fig. 4.14). Unlike the low moment end, the neutral axis is 

assumed to be above the stiffener in one of only two regions. This 

is always true, if the area of the stiffener is no larger than the 

area of the flange. 

When the neutral axis is in the web (Fig. 4.14a), normal force 

equilibrium requires that 

The web-flange crossover occurs when g = st - tf" The force in the 

f 
steel at crossover, Pxh' is 

(4.63) 

f 
If Psh > Pxh' the neutral axis is in the web at the high moment end 

(Fig. 4.14a). Therefore, 
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g = 2F t 

If F = 0, then ywr 

g = s - t 
t f 

ywr w 

Moment equilibrium requires that 

F t ywr w 
2 

- F A ys s (4.64a) 

(4.64b) 

(4.65) 

f 
If P sh < P xh' the neutral axis is in the flange at the high moment 

end (Fig. 4.14b). The neutral axis location is given by 

g = 
-Psh + F f(bf ~ t )(2st - tf) + F A - F A y w ywr w ys s 

2(F f(bf - t ) + F t ) y w ywr w 

and the high moment end secondary moment is 

+ 
F t ywr w 

2 

(4.66) 

(4.67) 
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4.6 DETAILS OF INTERACTION PROCEDURE 

The initial step in developing an interaction diagram is to 

find the shear capacities of the bottom and top tees. 

The bottom tee shear strength, Vb(max), is calculated by vary­

ing the shear force in the tee (using bisection) until zero normal 

force exists in the tee. 

The top tee shear strength, Vtm' is the minimum of the 

"mechanism" strength, Vt(max), and the "pure shear" strength, Vt(sh). 

The "mechanism" strength is calculated by varying the shear force in 

the tee (using bisection) until moment equilibrium, Eq. (4.28c) is 

satisfied for the tee. Shear is applied to the slab only if the 

total shear required to satisfy moment equilibrium is greater than 

Vpt If the concrete forces are too high for moment equilibrium to 

be satisfied, the high moment end concrete force is incrementally 

reduced until Eq. (4.28c) is satisfied (The difference between P ch 

and P01 is maintained using Eq. (4.37)). The "shear" strength is 

found using Eq. (4.33b). 

The total shear strength, Vm, is the sum of Vb(max) and Vtm• 

The interaction diagram is developed by assigning to the opening 

incrementally larger values of shear from 0 to V • As the shear is 
m 

increased from 0 to 90 percent of Vtm' all of the shear is assigned 

to the top tee (Fig. 4.15). The top tee shear, Vt, is then varied 

linearly from 90 to 100 percent of Vtm [Vt = qVtm (0.9 < q ~ 1.0)] as 

the bottom tee shear, vb, is increased quadratically from 0 to 10 

percent of Vb(max). 
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0.10Vb(max)(1 - /1 - q') (4.68a) 

in which 

q' = 100(q- 0.9) 2 (4.68b) 

Additional shear is assigned to the bottom tee only (Fig. 4.15). 

This procedure was selected to provide a good match with test 

results, as well as a reasonable shape for the interaction diagram. 

Since the overall method is an equilibrium procedure, the interaction 

diagrams represent lower bound solutions. 

The axial force in the top and bottom tees is governed by the 

bottom tee. At an assigned value of bottom tee shear, an axial force 

and secondary bending moments are calculated. An axial force of 

equal magnitude but opposite direction is applied to the top tee. 

The top tee shear force is applied, and the high moment end secondary 

moment is calculated. 

The low moment end secondary moment is not calculated at top 

tee shears lower than Vtm• At these shears, the low moment end will 

not be completely plastic at the maximum high-moment-end secondary 

moment. 

The primary moment at the opening centerline (Eq. (4.1) and 

Fig. 4.3) is 

using z = h . 
0 

(4.69) 
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The shear capacities of the top and bottom tees are calculated 

at zero axial force. The point of contraflexure in the top tee, 

however, will not be at the opening centerline. Therefore, M . pr1mary 

will be greater than zero. In order to complete the interaction 

diagram, a value of total shear must be calculated for zero primary 

moment. This is done using the procedure used by Clawson and Darwin 

(10, 11). The top tee shear is held constant at Vtm' while the 

bottom tee shear is decreased slightly. A compressive axial force is 

then applied to the bottom tee, and a tensile axial force is applied 

to the top tee such that 

(4.70) 

4.7 COMPARISON WITH TEST RESULTS 

The model is used to predict the strength of the 15 tests in 

the current study along with the 22 prior tests. Ratios of test to 

calculated strength are tabulated in Table 4.1. Interaction curves 

for the model are compared with the test data from the current tests 

in Figs. 4.16 to 4.30. 

The interaction curves are calculated using the material 

strengths, beam geometries, and shear stud quantities summarized in 

Chapter 2 and Appendix 8. The experimental web, flange, and stiff-

ener yield strengths are used in the calculations. 

For the beams with solid slabs tested by Clawson and Darwin (9, 

11), the calculations indicate that the stud capacities are limited 
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by the tensile strength of the shear connectors ( Eq. ( 4. 41)). For 

these calculations, a strength of 60 ksi (a typical industry minimum) 

is used, since the actual strengths are not known. It is important 

to note that no stud failures were observed in any of the tests. 

In addition to the individual comparisons, Table 4.1 includes 

the means and standard deviations of the test/theory ratios for each 

test series, for each slab type (ribbed or solid), and for all of the 

tests. The ratios for Tests 4A and 4B for the current series are not 

included in these calculations. These tests had no shear connectors 

above the opening, but did have puddle welds in each rib. It was 

found that the puddle welds in the ribs above the openings trans­

ferred significant shear between the top tee steel and the slab. 

Since the tabulated ratios for Tests 4A and 4B are based on zero 

shear transfer above the openings, they do not provide a fair measure 

of model accuracy. 

The interaction diagrams emphasize a point that has been made 

before (9, 10, 14); that is, the interaction between moment and shear 

capacity at a web opening is rather weak. The moment capacity at a 

web ope~ng is largely unaffected by shear until the shear reaches 

the maximum shear capacity. 

The strength model provides exceptionally good agreement with 

the experimental results. For beams with ribbed slabs, the mean and 

standard deviation are 1.023 and 0.070, respectively. For beams with 

solid slabs, the mean and standard deviation are 1.074 and 0.060, 
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respectively. The overall mean and standard deviation fer the model 

are 1.042 and 0.071. 

The lowest individual test/theory ratio is 0.904 (Test RO), In 

addition to Test RO, Test 1 has a particularly low test/theory ratio 

(0.919). For both tests, the deviation may be the result of the load 

history of the tests. Both tests were loaded above initial yield, 

unloaded, and then reloaded to failure. In the initial cycle, sig­

nificant twisting of the beams was noted. In the model, however, 

cyclic effects and out of plane bending are not considered. 

Tests 8A, BB, and 9A also have relatively low test/theory 

ratios. These tests had relatively stiff slabs and had a low number 

of studs over the opening. The stiff slabs tended to pull away from 

the steel tees, resulting in bridging of the slab. As a result of 

the bridging, the failure point in the concrete slab was close to the 

to the load point, while the model assumes failure at the high moment 

end of the opening, Also, the studs over the opening may have failed 

primarily in tension, rather than in shear. The model does not 

include provisions for interaction between tension and shear in the 

studs above the opening. 

In general, tests with solid slabs have high test/theory 

ratios. In the tests conducted by Clawson and Darwin (9, 11), no 

stud failures were noted. The stud forces used in the model, 

however, are limited by the assumed tensile capacities of the studs. 

It is likely that the studs had higher tensile capacities than the 

assumed capacities. 
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Tests 3, R3, R4, and C3 had high M/V ratios. Three of these 

tests, R3, R4, and C3 failed at relatively high test/theory ratios. 

This is probably the result of the representation of the steel in the 

tees. In tests with high M/V ratios, the steel sections were sub­

jected to high tensile strains (well over 2 percent). The steel was, 

therefore, in the strain hardening range. The model, however, has no 

provisions for strain hardening. The effect of strain hardening in 

high shear tests will be lower, because of the high strain gradients 

in the steel tees. Test 3 had a relatively low test/theory ratio 

when compared with the other tests with high M/V ratios. This may be 

the result of cyclic loading during the test. Test 3 was loaded 

above initial yield, unloaded, and reloaded to failure (The initial 

cycle was terminated to allow adjustment of the load system). 

The following chapter presents practical design techniques that 

were developed based on lessons learned with the model. The model 

results are compared with the results obtained with the practical 

design techniques, as well as with the Redwood and Poumbouras (33) 

analysis procedure. 
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CHAPTER 5 

STRENGTH DESIGN PROCEDURES 

While the strength model presented in Chapter 4 provides good 

agreement with test results, it is not well suited for design. The 

"mechanism" shear capacity must be found by iteration, and the inter­

act ion diagram is calculated "point by point". Therefore, the model 

requires the use of a computer. A useful design procedure should 

require no more than a programmable calculator. 

A number of design procedures for composite beams with unrein­

forced openings have been proposed (11, 33, 34). In all cases, the 

maximum moment capacity is found using the standard strength proce­

dures developed by Slutter and Driscoll (35). The procedures differ 

in the methods used to find the maximum shear capacity at the opening 

and the methods used to construct moment-shear interaction curves. 

The methods used to establish the maximum shear capacity are 

based on local moment equilibrium (11, 33, 34). A four hinge 

mechanism is assumed at the opening, and moment equilibrium is en­

forced for the bottom and top tees. The methods differ in the 

simplifying assumptions used to reduce the complexity of the calcula­

tions and in the forces assumed in the concrete slab. The methods 

also differ in the limiting shear at the opening corresponding to a 

"pure" shear failure. 
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Clawson and Darwin (11) have proposed a design procedure which 

enforces local equilibrium but which requires iteration. In the top 

tee, the concrete is assumed to crush at the high moment end and to 

be fully cracked at the low moment end. The shear capacity is 

limited by the pure shear capacities of the webs and the concrete. 

The moment-shear interaction diagram is obtained by connecting the 

maximum shear and moment capacities with an ellipse. Clawson and 

Darwin (11) show that the design procedure provides reasonable agree­

ment with the results of tests of composite beams with solid slabs. 

Redwood and Wong (34) show that the procedure also gives reasonable 

agreement with the results of tests on composite beams with ribbed 

slabs. Because the procedure requires iteration, however, any prac­

tical applica~ion to design requires the use of a computer. 

Redwood and Wong (34) have proposed a procedure which does not 

enforce local equilibrium. The flange thicknesses are assumed to be 

small relative to the depths of the tee section webs above and below 

the opening. Equilibrium of normal forces in the tees is not 

enforced. The concrete force at the high moment end is limited by 

the shear capacity of the stud connectors above the opening. Zero 

force is assumed in the concrete at the low moment end. A closed 

form solution is obtained. The shear capacity is limited by the pure 

shear capacity of the top tee and bottom tee webs. 

The maximum shear and the maximum moment that can be sustained 

at the maximum shear are calculated, generating a vertical line on 

the right side of the interaction curve. The curve is closed with an 
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ellipse between the maximum moment at zero shear (found considering 

partial composite action) and the maximum moment at the maximum 

shear. Because the interaction curve is not continuous, calculation 

of the capacity for a given H/V ratio is somewhat cumbersome, The 

procedure is very conservative for openings with low H/V ratios in 

beams with either solid or ribbed slabs. The Redwood and Wong proce­

dure has been used by u.s. Steel (44) as the basis of a design aid. 

Redwood and Poumbouras (33) have proposed a modification of 

Redwood and Wong's procedure which provides a good match with test 

results on composite beams with ribbed slabs. The method includes 

provision for a compressive force in the concrete at the low moment 

end of the opening, which is set equal to the total shear connector 

capacity between the opening and the support. 

The interaction curve is similar to the curve used by Redwood 

and Wong. The maximum shear and the maximum moment that can be 

sustained at the maximum shear are calculated, generating a vertical 

line on the right side of the interaction curve. The curve is closed 

with an ellipse between the maximum moment at zero shear (assuming 

full composite action) and the maximum moment at the maximum shear. 

The maximum moment at zero shear (considering partial composite 

action) is calculated, generating a horizontal line between zero 

shear and the interaction curve. The calculation of the capacity for 

a given M/V ratio is, therefore, even more cumbersome than for the 

Redwood and Wong procedure. 
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The Redwood and Poumbouras procedure is the most accurate of 

the three existing procedures for beams with ribbed slabs. However, 

it is very conservative at high shears for beams with solid slabs. 

The existing design procedures have limitations. While the 

Clawson and Darwin procedure can produce good agreement with test 

results for beams with solid or ribbed slabs, it requires the use of 

a computer. The procedures proposed by Redwood and others are easier 

to apply, but they are very conservative when applied to solid slab 

construction. There is, therefore, a need for comprehensive design 

procedures which give consistent agreement with test results and are 

easily applied. 

5.2 OVERVIEW OF DESIGN PROCEDURES 

Three design procedures are presented which allow the rapid 

construction of moment-shear interaction diagrams for composite 

beams. The proposed methods require the calculation of the maximum 

moment capacity, M , and the maximum shear capacity, V , at a web m m 

opening in a composite beam. The calculation of these points and the 

application of an interaction equation are discussed in the following 

sections. 

The procedures are based on the following assumptions: 

1) The steel will yield in tension or compression. 

2) Shear forces can be carried in the steel and concrete at 

both ends of the opening. 

3) Shear forces in the steel are carried only in the webs. 
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4) Shear stresses are uniformly distributed over the stub 

depth. 

5) The normal forces in the concrete are applied over an area 

defined by the equivalent stress block (1). 

Fig. 5.1 illustrates openings in composite beams with a solid 

slab, a ribbed slab with the ribs transverse to the beam, and a 

ribbed slab with the ribs parallel to the beam. The openings are of 

length a and depth h and may have an eccentricity e (positive 
0 0 

upward) with respect to the centerline of the steel section. The 

slab thicknesses, Ts and ts, effective slab width, be' and steel 

section dimensions, d, bf, tf, tw' st' and sb, are as shown. 

5.3 INTERACTION CURVE 

Once M and V have been obtained, intermediate values of shear m m 

and moment are obtained using an interaction curve of the form 

M 3 
lM n) + 

m 
( 5. 1 ) 

in which Vn = the nominal shear capacity and Mn = the nominal moment 

capacity at a web opening in a composite beam (Fig. 5.2). The 

nominal capacities can be determined for a given ratio of moment to 

shear, M/V, as follows. From Eq. (5.1), 

M 3 V 3 
(...!!) (..1!.!) + 1 
M V (5.2) 

m n 
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Letting M /V = M/V and solving for v yields n n n 

(!:!)3 -1/3 

v = v v 
+ 1 (5.3) n m M 3 

(2!) v m 

and 

M v (!:!) ( 5. 4) n n v 

M 3 -1/3 
(2!) 

M v 
+ 1 (5.5) m m 

(!:!)3 v 

The complete interaction curve is described by a single 

function. This is conceptually sound since the interaction between 

moment and shear should be continuous. It also allows a single 

equation to be used to calculate the nominal shear capacity at a 

given M/V ratio. Thus, the application of the procedure is simple. 

As will be shown, Eq. (5.1) provides good agreement with test 

results. 

5.4 MAXIMUM MOMENT CAPACITY 

The maximum moment capacity, M , of a composite beam at a web 
m 

opening is obtained using the strength procedures developed by 

Slutter and Driscoll (35). Fig. 5.3 illustrates stress diagrams for 

sections in pure bending. The steel section is assumed to be fully 

plastic in both tension and compression, while the compressive force 
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in the concrete, Pch' is limited by 1) the crushing capacity of the 

slab, P , 2) the shear capacity of the stud connectors between the c 

high moment end of the opening and the support, Pstuds' and 3) the 

yield capacity of the net steel section, T'. 

p < p 
Ch - C 

< p 
- studs 

< T' 

(5.6a) 

(5.6b) 

(5.6c) 

The concrete stress is assumed to be at 0.85f' over the depth 
c 

of the equivalent stress block. 

The crushing capacity of the slab is 

P = o.85f'b t c c e e (5.7) 

in which f' = the compressive strength of the concrete in ksi, b = c e 

the effective slab width (2), and t = the effective slab thickness. 
e 

te is dependent on the type of slab. For ribbed slabs with the ribs 

perpendicular to the beam, 

t = t = the minimum slab thickness e s (5.8a) 

For ribbed slabs with the ribs parallel to the beam, 



t = e 

T +t 
s s 

2 
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= the average of the maximum and 

For solid slabs, 

t e 

minimum slab thicknesses. 

T = the slab thickness. s 

The shear capacity of the stud connectors is 

P = NRQ studs n 

(5.8b) 

(5.8c) 

(5.9) 

in which N = the number of studs between the high moment end of the 

opening and the support, R = the reduction factor for studs in ribbed 

slabs, and Qn = the nominal strength of one stud shear connector 

embedded in a solid slab (3, 29). 

For slabs with transverse ribs, R is (2, 3, 20) 

R = - 1.0) < 1.0 (5.10a) 

in which h = the nominal rib height in inches, H 
r s 

the length of 

the stud connector after welding in inches, N = the number of stud 
r 
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connectors in one rib, and w 
r 

the average width of the concrete 

rib. 

For slabs with ribs parallel to the steel beam, the reduction 

factor is (2, 3, 20) 

R = < 1.0 (5.10b) 

For solid slab construction, R = 1.0. 

Qn is given by 

Q = 0. 5A If' E n sc c c (5.11a) 

in which A = the cross-sectional area of a stud shear connector, sc 

f' = the compressive strength of the concrete in ksi, E = the c c 

modulus of elasticity of the concrete in ksi and is given by 

f' in psi c 

The product RQ is limited such that 
n 

RQ < A F n- sc u 

(5.11b) 

(5.12) 

in which F = the minimum tensile strength of a stud in ksi (2, 3, 
u 

29). 



75 

Under pure bending, the shear is zero; therefore, the web yield 

strength is not reduced. The yield capacity of the net steel section 

is 

T' ~ F (2(b - t )t + s t + s t ) y f w f t w b w (5.13) 

in which Fy = the yield strength of the section, bf ~ the flange 

width, tw ~ the web thickness, tf = the flange thickness, st = the 

top tee stub depth, and sb ~ the bottom tee stub depth (Fig. 5. 1). 

For solid slabs or for ribbed slabs with transverse ribs, the 

depth of the stress block is 

Pch 
a = ~=-=;:,:,--0.85f' b c e 

Pch acts at a distance dh from the top of the flange. 

(5.14) 

(5.15) 

-For ribbed slabs with longitudinal ribs, Eq. (5.15) will hold if a< 

ts. If a> ts' dh must be calculated by considering the concrete 

below the top of the steel deck. 

The expression used to calculate M depends on which of the 
m 

inequalities in Eq. (5.6) governs. If P ch = T' (Eq. (5.6c) and Fig. 

5.3(a)), the maximum moment capacity is 
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M = Pchdh + FY(bf- tw)tfd m 

2 2 
st - s b 

+ s d) + F t ( 
2 y w b (5.16) 

If P ch < T' (Eq. (5.6a) and (5.6b)), the neutral axis will be 

in the steel tee. The compressive force in the steel is 

T' - p 
ch c' = -~---=;:.: 

2 
(5.17) 

The neutral axis location in the top tee, x, is measured from the top 

of the steel section. If c• ~ Fybftf (Fig. 5.3(b)), x < tf and is 

given by 

(5.18) 

and 

(5.19) 

(5.20) 

and 



s 2 
+ F t ( t 

y w 

5.5 MAXIMUM SHEAR CAPACITY 
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(5.21) 

All current strength procedures for composite beams with web 

openings use a "mechanism" failure mode as one of the limits for the 

shear capacity ( 11, 33, 34). The "mechanism" mode is based on the 

formation of plastic hinges at both ends of the top and the bottom 

tees. Shear and normal stresses in the steel are limited by the von 

Mises yield criterion. Normal stresses in the concrete are limited 

to 0.85f~. 

A closed-form solution for the maximum shear capacity at a web 

opening requires the use of one or more simplifying assumptions. 

Some of these simplifications are: 

1) Using simplified versions of more detailed material models, 

2) Limiting the neutral axes locations in the steel tees to a 

specified range, and 

3) Ignoring local equilibrium within the tees. 

Three procedures for estimating the maximum shear capacity are 

presented in the following sections. Each procedure uses one or more 

simplifications. The three procedures share a common basis. 

Vm is found by assuming that 

( 5. 22) 
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in which Pt = the top tee force and Pb = the bottom tee force at the 

opening (Fig. 5.4). This approximates zero moment at the centerline 

of the opening. The moment is not exactly zero because the secondary 

bending moments in the top tee, Mth and Mtl' are not equal. 

Therefore, while the primary moment (= Pz) is zero, the total moment 

at the centerline of the opening has a small but finite value. 

The normal forces in the concrete at the ends of the opening, 

Pch and P01 , are limited by the shear stud capacities between the 

ends and the nearest support. The high moment end force, P ch' is 

located near the top of the slab, and the low moment end concrete 

force, P cl' is located near the bottom of the slab (Fig. 5.5). This 

assumption is also used by Redwood and Poumbouras (33). It agrees 

with test observations and, for given values of P ch and P cl' maxi­

mizes the calculated shear at a web opening. Normal stresses in the 

concrete are fixed at o.85f', and are represented using the equiv­c 

alent stress block. The effect of shear stress on the normal 

stresses in the concrete is ignored. 

The maximum force in the concrete at the high moment end of the 

opening is 

(5.23a) 

(5.23b) 

in which P and P t d are given by Eq. (5.7) and Eq. (5.9), 
c s u s 

respectively. 
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The force in the concrete at the low moment end of the opening 

is 

(5.24) 

in which N
0 

= the number of shear studs over the opening. R and Qn 

are given in Eq. (5.9)-(5.12). 

P ch acts at a distance dh from the top of the flange. dh is 

given by Eq. (5.14). P01 acts at a distance d1 from the top of the 

flange. For slabs with transverse ribs, d
1 

is given by 

0.5P01 
0.85f' b c e 

For solid slabs, d
1 

is given by 

0.5Pcl 

o.85f~ be 

(5.25a) 

(5.25b) 

For slabs with longitudinal ribs, d
1 

is the distance to the centroid 

of the concrete force in the trapezoidal ribs within be (Fig. 5.1). 

In the top tee, all of the shear is assumed to be applied to 

the web if the applied shear is less than or equal to the plastic 

shear capacity of the web, Vpt" The concrete carries any shear in 

excess of Vpt" For the top tee, 

stt F 1/3 w y (5.26) 
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The upper bound of the shear that can be applied to the top tee 

is the "pure shear" capacity for the top tee, Vt(sh). 

3. siF A c cv V t ( sh) = __ 1_0;;.00__::;.:. + vpt , kips 

in which A = 3T t and te is given by Eq. (5.8). cv s e 

(5.27) 

In the bottom tee all of the shear is assumed to be carried by 

the web. 

5.5. 1 Maximum Shear Capacity- Method I 

Fig. 5.5 illustrates the stress distributions at the opening 

for a mechanism failure. The steel section is assumed to be fully 

plastic in both tension and compression. In both the top and bottom 

steel tees, the neutral axis is assumed to be in the flange. The 

flange yield strength, Fyf' is not reduced for shear, since the shear 

is assumed co be carried by the web. The web yield strength, F ywr' 

is reduced for shear. F ywr is obtained using a linear approximation 

of the von Mises criterion (Fig. 5. 6). Normal force equilibrium is 

enforced in the top tee steel, but equilibrium is not necessarily 

enforced at the concrete-steel interface. 

The von Mises criterion (Eq. (4.2)) is 

(5.28a) 
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A dimensionless form of the von Mises surface, f(x), x = 

given by 

f(x) 
T 

= (_!l) = 
cr 

0 

_1 ( 1 -

13 

cr Ia , is 
X 0 

(5.28b) 

f(x) is quadratic. Several methods can be used to approximate 

f(x) with a straight line, including least squares, near minimax, and 

minimax approximations (12). The minimax approximation (also known 

as the best uniform approximation) provides a line, p(x), that is the 

same distance from f(x) at three locations for 0 < x < 1. The dis-

tance has alternate changes of sign in this interval (Fig. 5.6). 

p(x) minimizes the norm, J Jf - pJ J~, given by 

II f - PI I~ max I I 0 < x < 1 f(x) - p(x) 

In this case, p(x) is given by 

p(x) = 
T 

(_!l) = 
cr 

0 

.69692 

for which the norm on the interval 0 < x < 1 is 

!If- PI I .. = o.11957 

(5.29) 

(5.30) 

(5.31) 
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f(x) and p(x) are illustrated in Fig. 5.6. Eq. (5.30) can also be 

expressed as 

(5.32a) 

in which A= 1.207. 

Therefore, the reduced yield strength for the web due to shear, Fywr' 

is 

F = AF - /3T ywr yw xy (5.32b) 

in which F = the yield strength of the web in uniaxial tension. yw 

Eq. (5.28) limits Txy such that 

T < a
0
!/3 = 0.58a

0 
(5.33) xy -

compared to a maximum of 0.70a
0 

in Eq. (5.32). Eq. (5.33) is used as 

an upper bound on the application of Eq. (5.32), at the limit F = ywr 

0 (Fig. 5.6). 

Since Vm is found by assuming that Pt = 0, normal force equi­

librium between the steel tee and the slab requires that, in addition 

to the restrictions placed on Pch by Eq. (5.23), 

p < p 
ch- smax (5.34a) 
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in which P = the tensile capacity of the top tee. smax 

p 
smax (5.34b) 

It should be noted that the effect of shear stress on the normal 

stress in the web is not included in P • 
smax 

5.5.1.1 Bottom Tee 

The shear capacity of the bottom tee is obtained by finding the 

plastic moment and shear force that satisfy moment equilibrium for 

the bottom tee (Eq. (4.4c)). 

in which Vb = the bottom tee shear, Mbl = the secondary moment at 

the low moment end of the opening, and Mbh = the secondary moment at 

the high moment end of the opening. When Pb = 0, 

(5.36) 

and 

(5.37) 

in which Mb = the secondary moment at each end of the opening. 
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The neutral axis location is assumed to be in the flange, at a 

distance, g, from the bottom of the flange (Fig. 5.5). Normal force 

equilibrium (Pb = 0) results in 

(5.38) 

in which Fyf = the yield strength of the flange, bf = the flange 

width, tw = the web thickness, sb = the bottom tee stub depth, and tf 

= the flange thickness. Moment equilibrium requires that 

2 
tf 2 

t ) (- - g ) 
w 2 

s2 

+ 2F t ( .J2. - l) 
ywr w 2 (5.39) 

Substituting for g in Eq. (5.39) gives 

For design purposes, Fyf = 

the section. Using 'xy = 

F in Eq. (5.40) gives ywr 

(5.40) 

F = F , the specified yield strength of yw y 

Vb/(sbtw) and substituting Eq. (5.33) for 
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V b (max) F la - IS 2 
- 4aY) 

y 2a 
(5.41) 

a 
in which a= 3 + 2/3 __..2 

sb 

(b - t ) 
2 t 2) a 2/3 f w 

(sb - s t + + 2/3Atwsb = 
sb b f f 

+ 2a
0
((bf- t ) w + At ) w 

y (b -f 
t )2t 2 

w f 
+ A 2t 2s 2 

w b 

+ 2Atw(bf - tw)(sb 
2 - s t + t 2) 

b f f 

and A = 1 • 207. 

5.5.1.2 Top Tee 

The shear capacity of the top tee is governed by the smaller of 

the "shear" and "mechanism" failure loads. 

The "mechanism" capacity of the top tee is found by satisfying 

moment equilibrium for the top tee (Eq. (4.28c)). 

(5.42) 

in which Vt = the top tee shear (Fig. 5.5). 

The neutral axes in the steel tees are assumed to be in the 

flange at both ends of the opening. An analysis of the openings in 

Chapter 4 shows that this is by far the most common case. Because 

force is transferred from the concrete to the steel by the studs over 
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the opening, the neutral axes locations in the steel are not neces-

sarily the same at both ends of the opening (Fig. 5.5). 

The neutral axis locations, gh at the high moment end and g1 at 

the low moment end, are measured from the top of the flange (Fig. 

5.5). Based on normal force equilibrium, 

and 

- t )t + F t s w f ywr w t 
t ) + F t ) 

w ywr w 

Moment equilibrium requires that 

g2 + 2 
- F t (-'h"'-:::_g...::.l ) 

ywr w 2 

s - gh 
+ F t (s - gh)(gh + t 2 ) ywr w t 

in which Vt = the total top tee shear. 

(5.43a) 

(5.44b) 

(5.45) 
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Substitution for gh and g1 and consolidation of terms gives 

+ 4F F (b - t )t (s 2 + t 2) ywr yf f w w t f 

= 4Vta (F f(bf - t ) + F t ) oy w ywrw ( 5. 46) 

Again, for design purposes, F = F f = F . Y y yw 

The top tee steel is assumed to carry all of V t unless the top 

tee capacity exceeds Vpt (Eq. 5.26). Using 'xy = Vt/(sttw)' sub­

stituting Eq. (5.32b) for Fywr' and using Vt(max) = Vt: 

v (max) = F (8 - Ia• - 4aY) 
t y 2a ( 5. 47) 

in which a = 3 + 

a = 



+ /3 (P - p ) 
F ch cl 

y 

(P 2 + p 2) 
ch cl 

-==----=~- + 
2 F 

2 
y 

and A= 1.207. 
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((bf- tw)tf + Atwst) 

F 
y 

If Vt(max) > V t' then F reduces to zero in Eq. (5.46). - p ywr 

Thus, the normal force in the web reduces to zero. Normal force 

equilibrium requires that 

P h < F tf(bf - t ) c - y w 
(5.48) 

If Eq. (5.48) controls, instead of Eq. (5.23), a new value of 

P
01 

must be calculated using Eq. (5. 24). For F = 0, V (max) is 
ywr t 

given by 

V t(max) 
(Pchdh- Pcldl) 

+ 
tf(P ch - P ell 

= a 2a 
0 0 

2 
- t ) (P2 + ?2 ) Fyftf(bf w ch cl > vpt (5.49) + 

4a 4al yf(bf - tw) 0 
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5.5.1.3 Total Shear Capacity 

The total shear capacity, V , is found by adding the bottom tee 
m 

shear strength, Vb(max), and the smaller of the top tee strengths, 

Vt(sh) or Vt(max). 

5.5.2 Maximum Shear Capacity- Method II 

This procedure recognizes that the flange thicknesses in the 

top and bottom tees are small relative to the stub depths. Thus, the 

contribution of the normal stresses in the flanges to the secondary 

moments will be small if the moments are calculated about the extreme 

fibers of the flanges. Flange stresses are, therefore, not used to 

calculate the secondary moments, and the normal and shear stresses in 

the web are assumed to be uniform, to extend through the stub depth 

(Fig. 5.7), and to be limited using the von Mises yield criterion 

(Eq. (5.28a)). 

It should be noted that P chis not limited by Eq. (5.34), as 

with Method I. Application of Eq (5.34) to Method II is inconsistent 

with the simplified representation used for the steel tees and 

produces unconservative results. 

Although the approach used here is different from that used by 

Redwood and Poumbouras, the bottom and top tee "mechanism" capacities 

are identical to the capacities obtained by Redwood and Poumbouras 

(33) for cases in which Vt(max) < Vpt 
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5.5.2.1 Bottom Tee Shear Capacity 

The normal stress distributions in the bottom tee are shown in 

Fig. 5.7. The reduced yield strength in the web, Fywr' and the shear 

stress in the web, Tb' are related by the von Mises yield criterion 

(Eq. (5.28a)). 

(5.50) 

with 'b = 'xy 

The normal force in the bottom tee web is 

P = s t F wb b w ywr (5.51) 

The shear force in the bottom tee web is 

(5.52) 

From Eq. (5.50), the maximum shear stress in the bottom tee is 

T b = F 1/3 P yw 
(5.53) 

Substituting Tpb for 'xy in Eq. (5.50), the plastic shear capacity of 

the bottom tee, Vpb' is obtained 



sbt F 1/3 w yw 
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(5.54) 

Expressing Fywr' 'b' and Fyw in Eq. (5.54) in terms of Pwb' Vb, 

and Vpb allows the normal force in the web to be expressed as 

follows. 

(5.55) 

Pwb acts at a distance sb/2 from the bottom of the tee at each 

end of the opening. Therefore, taking moments about the bottom of 

the flange, moment equilibrium of the bottom tee will require that 

(5.56) 

The bottom tee shear capacity in terms of the normal force is 

P wb 8 b 
a 

0 

Substituting Eq. (5.55) into Eq. (5.57) gives 

v 2 
b 

(5.57) 

(5.58) 
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The maximum shear capacity of the bottom tee is found by solving Eq. 

(5.58) for vb. 

(5.59) 

in which ab = 3(sb2/a;). Eq. (5.59) is identical to the expression 

for the bottom tee capacity developed by Redwood and Wong (34) and 

Redwood and Poumbouras (33). 

5.5.2.2 Top Tee Shear Capacity 

The top tee capacity is found in much the same manner as the 

bottom tee capacity. The forces in the concrete, Pch and P01 , only 

slightly complicate the derivation. 

The normal stress distributions for the top tee are shown in 

Fig. 5.7. The reduced yield strength in the web, F , and the shear ywr 

stress in the web, Tt' are related by Eq. (5.50) with Tt = Txy' 

The normal force in the top tee web is 

P = s t F wt t w ywr (5.60) 

The shear force in the top tee is 

(5.61) 
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maximum top tee shear that can be calculated using Eq. (5.68) is 

Vt(max) = Vpt' when ~ = v. Therefore, when ~ > v, the steel is 

fully yielding in shear and Pwt = 0. In this case, Vt(max) is given 

by 

) v t - p (5. 70) 

Normal force equilibrium may require that P ch' P cl' dh, and d1 be 

recalculated using Eq. (5.48), (5.24), (5.14), and (5.25), respec-

tively, before applying Eq. (5.70). 

It is of interest to note that Eq. (5.70) is equivalent to the 

first term of Eq. (5.49) in Method I. 

5.5.2.3 Total Shear Capacity 

The total shear capacity, Vm, is found by adding the bottom tee 

shear strength, Vb(max), and the smaller of the top tee strengths, 

Vt(sh) or Vt(max). 

5.5.3 Maximum Shear Capacity- Method III 

This procedure follows the derivation for Method II, but uses 

the linear approximation to the von Mises yield surface of Method I 

(Eq. (5.32)) in place of Eq. (5.50). This procedure allows linear 

equations for the bottom and top tee shear capacities to be 

developed. 
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5.5.3.1 Bottom Tee Capacity 

Using the linear approximation to the von Mises surface, the 

reduced yield strength for the bottom tee web, Fywr' is given by 

F = AF - /31 ywr yw xy (5o32b) 

with 1b = 1 xy Substituting for Fywr' 1b' and Fyw in terms of Pwb 

(Eq. (5.51)), Vpb (Eq. (5.54)), and Vb (Eq. (5.52)), the following 

expression is obtained 

(5.71) 

Based on moment equilibrium (Eq. (5.56)), the bottom shear tee 

capacity in terms of Pwb is 

(5.57) 

Substituting Eq. (5.57) into Eq. (5.71) and solving for Vb gives 

A/3V b p (5.72) 
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5.5.3.2 Top Tee Capacity 

Using the linear approximation to the von Mises criterion, the 

normal force in the top tee web, Pwt' can be expressed as 

(5. 73) 

From moment equilibrium (Eq. ( 5. 42)), the top tee shear 

capacity is expressed in terms of P wt (using the same notation as 

Method II) as 

P wt JlV t 
V = + _P_ 

t v v (5.66) 

J1 and v are given in Eq. (5.64) and Eq. (5.65). 

Vt(max) is obtained by substituting Eq. (5.73) into Eq. (5.66) 

and solving for Vt. 

v t<Jl + x/3JJ 
pt (v + /3) 

(5.74) 

If Vt(max) > Vpt' then the quadratic von Mises criterion will 

give Fywr~ 0. Therefore, Pwt = 0 and as with Method II, 

) v t - p (5.70) 
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Normal force equilibrium may require that Pch' P01 , dh, and d1 be 

recalculatedusingEq. (5.48), (5.24), (5.14), and (5.25), respec-

tively, before applying Eq. (5.70). 

5.5.3.3 Total Shear Capacity 

The total shear capacity, V , is found by adding the bottom tee 
m 

shear strength, Vb(max), and the smaller of the top tee strengths, 

Vt(sh) or Vt(max). 

5.6 COMPARISON WITH TEST RESULTS 

Test strength to calculated strength ratios are tabulated in 

Table 5.1 for the Redwood and Poumbouras (33) design procedure, the 

strength model from Chapter 4, and the three design procedures 

(Methods I, II, and III). The interaction curves for the three 

design procedures are compared with test data in Figs. 5.8 to 5.10. 

The data points are found by calculating V (test)/V and M (test)/M n m n m 

for each opening. 

V and M are calculated for the model and all design proce-m m 

dures using the material strengths, beam geometries, and shear stud 

quantities summarized in Chapter 2 (Tables 2.1-2.4) and Appendix B. 

The web, flange, and (where applicable) stiffener yield strengths are 

used in all calculations for the strength model and for all moment 

calculations in the design procedures, including the Redwood and 

Poumbouras procedure. Only the web yield strengths are used in the 

shear calculations for the Redwood and Poumbouras design procedure, 

design Method II, and design Method III, while both the web and 
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flange yield values are used for design Method I. The expressions 

for the shear capacity in Method I that include both the web and 

flange yield strengths are presented in Appendix D. 

For the comparisons, the shear stud capacities are calculated 

using Eq. (5.11) and (5.12) in the strength model and in design 

Methods I, II, and III. Redwood and Poumbouras do not discuss stud 

capacity calculations (33), but Redwood and Wong (34) recommend that 

Eq. (5.11a) be used, with the modulus of elasticity for the concrete 

given by 

E = 5ooolf' c c MPa (5.71) 

Eq. (5.71) is therefore used in place of Eq. (5.11b) in Eq. (5.11a) 

to obtain Qn' the nominal strength of a shear connector, in the 

Redwood and Poumbouras procedure. Eq. (5.71) results in stud 

capacities that are approximately 3 percent greater than those ob-

tained using Eq. (5.11b). 

The test/theory ratios shown in Table 5.1 for the McGill 

University tests differ from those published by Redwood and 

Poumbouras (33). Redwood and Poumbouras did not publish the stud 

capacities used in their calculations. Stud capacities based on 

pushout test results were, however, published elsewhere (32, 34). 

Using the pushout capacities, the test/theory ratios for the McGill 

series more closely match, but do not coincide with, the ratios 
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published by Redwood and Poumbouras (33). The three sets of ratios 

are compared in Table 5.2. 

For the beams with solid slabs tested by Clawson and Darwin (9, 

11), the calculations indicate that the stud capacities are limited 

by the tensile strength of the shear connectors (Eq. (5.12)). For 

these calculations, a tensile strength of 60 ksi is used, since the 

actual strengths are not known. This is a typical industry minimum. 

It is important to note that no stud failures where observed in any 

of the tests. 

Means and standard deviations of test/theory ratios are 

presented in Table 5.1 for each test series, for each slab type 

(ribbed or solid), and for all of the tests. The ratios for Tests 4A 

and 4B are not included in these calculations. These tests had no 

shear connectors above the opening, but did have puddle welds in each 

rib. It was found that the puddle welds in the ribs above openings 

transferred significant shear between the top tee steel and the slab. 

Since the tabulated ratios for Tests 4A and 46 are based on zero 

shear transfer above the openings, they do not provide a fair measure 

of model or design procedure accuracy. 

Comparing the results, the strength model provides the best 

agreement with experimental results. For ribbed slabs and for solid 

slabs, the strength model has the best (closest to 1.0) mean and the 

lowest standard deviation of the five procedures considered. For 

beams with ribbed slabs, the mean and standard deviation are 1.023 

and 0.070, respectively. For beams with solid slabs, the mean and 
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standard deviation are 1.074 and 0.060. The model also has the best 

overall mean and standard deviation, 1.042 and 0.071. 

Of the design procedures, Method I provides the best agreement 

with test results. Overall, the mean and the standard for the 35 

tests is 1.065 and 0.082, respectively. These values compare to the 

respective values of 1.223 and 0.423 for the Redwood and Poumbouras 

Method, 1.076 and 0.102 for Method II, and 1.095 and 0.106 for Method 

III, 

On the average, the strength calculated using Method I is 

greater than the strength calculated using Method II, and the 

strength calculated using Method II is greater than the strength 

calculated using Method III, However, this is not the case for deep 

beams with thin slabs. For Tests 1-78, (d = 20.63 in. and ts = 2.0 

in.), the strength calculated using Method II is greater than the 

strength calculated using Method I, while Methods I and III provide 

roughly equivalent results. 

The results of the analyses indicate that, in general, the 

accuracy of the procedure is a function of the refinement of the 

assumptions. The most refined procedure is the strength model, with 

moment and normal force equilibrium enforced for each point on the 

interaction curve. The strength model provides the best agreement 

with test results. All of the design procedures are less refined and 

use empirical interaction curves. The design procedures provide 

somewhat poorer agreement with the test results than does the model. 

The most refined of the design procedures is Method I, which enforces 
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normal force equilibrium in the steel tees. Method I provides better 

agreement with test results than Method II, Method III, or the 

Redwood and Poumbouras procedure, which ignore normal force equi­

librium in the steel tees. 

Design Method II and the Redwood and Poumbouras procedure are 

similar. They do not, however, produce the same results. In terms 

of strength, the stud capacities used in the Redwood and Poumbouras 

procedure are approximately 3 percent higher than the stud capacities 

used in Method II. This difference has little affect on the results. 

Of much greater importance, Method II provides a higher upper bound 

for the shear that can be applied to the top tee by allowing the 

upper limit to include a concrete component. The shape of the 

interaction curves used in the two procedures is also different. 

Design Method II (as with Methods I and III) uses a cubic equation 

and is easily applied for a given M/V ratio. The Redwood and 

Poumbouras procedure, however, uses an interaction curve defined by 

three functions and is somewhat cumbersome to apply. 

The results obtained for solid slabs show the largest dif­

ference between Method II and the Redwood and Poumbouras procedure. 

The difference is primarily the result of the higher upper bound for 

the top tee shear capacity that can be obtained with Method II. 

Method II has a mean of 1.129 and a standard deviation of 0.102 for 

solid slabs. The Redwood and Poumbouras procedure has a mean of 

1.499 and a standard deviation of 0.596. 
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5.7 RECOMMENDATIONS 

Methods I, II, and III provide reasonable agreement with test 

results and can be applied using a calculator. 

Comparing the first two methods, Method I provides a better 

agreement with test results, while Method II is slightly simpler to 

implement. Both methods are recommended for design. The selection 

of one method over the other will depend on the availability of a 

computer or a micro-computer. Method I is recommended for design 

offices which have access to a computer. Method II is recommended 

only for design offices which do not have access to a computer. 

A comparison of Methods II and III favors Method II on accuracy 

and Method III (slightly) on ease of application. Since Method II is 

only slightly more complex than Method III, the greater accuracy of 

Method II makes it the more preferable of the two for design. 
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CHAPTER 6 

DESIGN OF COMPOSITE BEAMS 

WITH WEB OPENINGS 

6.1 GENERAL 

The design procedures presented in Chapter 5 provide good 

agreement with test results. For a given location, opening size, and 

beam geometry, the nominal shear and moment capacities of a composite 

beam at a web opening are easily determined. In the following sec-

tions, Design Methods I and II are summarized, and recommendations 

are made for applying the methods. Detailing recommendations are 

made. 

The deflection analysis of composite beams with web openings is 

also discussed in the following sections. Deflections are calculated 

using the stiffness method of matrix analysis, incorporating modeling 

assumptions verified by test data (Appendix E). 

6.2 STRENGTH DESIGN 

6.2.1 Summary of the Strength Design Procedures 

The strength methods presented in Chapter 5 allow the calcula-

tion of the nominal capacity of a composite beam at a web opening. 

The methods use identical procedures to calculate the maximum moment 

capacity, M , and have a common basis for the calculation of the m 

maximum shear capacity, V . The procedures differ only in the m 

simplifying assumptions used to a obtain closed-form solution for V • m 
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6.2.2 Load and Resistance Factors 

The proposed Load and Resistance Factor Design (LRFD) 

Specification for Structural Steel Buildings (3) defines the design 

flexural strength as 

Design Moment= ~bMn (6.2) 

where ~b = the resistance factor for bending. For compact composite 

sections, $b = 0.85. The design shear strength is defined as 

Design Shear = $ V (6.3) v n 

where ~ = the resistance factor for shear. The LRFD Specification v 

specifies ~v = 0.90 for composite design. This value is, however, 

based on the assumption that shear is carried only in the web of the 

steel section. For Design Methods I and II, V is dependent on 
n 

composite behavior at the opening. It is recommended, therefore, 

that the designer use ~v = ~b = 0.85. 

The required strength of a composite beam with a web opening is 

found using the critical combination of factored loads (3). 

Normally, the critical combination for a composite beam with a web 

opening is given by 

Factored Load= 1.2D + 1.6L (6.4) 
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in which D = the dead load due to the self-weight of the structural 

elements and the permanent features on the structure and L = the live 

load due to occupancy and moveable equipment. The factored load is 

used to calculate M and V • 
u u 

6.3 DETAILING 

The strength and performance of a composite beam with a web 

opening can be enhanced through detailing practice. A number of 

recommendations can be made, based on the available data. 

The tests conducted by Redwood and Poumbouras (30, 32) and the 

current tests (Chapter 3) indicate that the strength at an opening is 

highly dependent upon the shear connector capacity above the opening 

and between the opening and the support. Thus, increasing the number 

of shear connectors and using the maximum possible length of shear 

studs in ribbed slabs will increase the strength at an opening. The 

design procedures reflect this. 

All tests indicate that the slab carries a significant portion 

of the shear at the opening. For ribbed slabs, this tends to result 

in bridging in the slabs (Chapter 3). An increased density of shear 

connectors adjacent to the high moment end of the opening is war-

ranted to resist the bridging effect. It would be good practice to 

use at least two studs per foot for a distance equal to the depth of 

the section, d, or the length of the opening, a
0

, whichever is 

greater from the high moment end of the opening toward the direction 

of increasing moment. 
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The tendency of the slabs to crack both transversely and lon­

gitudinally suggests the need to increase the reinforcing steel in 

the slab over the opening. The increased reinforcing steel will net 

prevent the cracks from forming, but will limit the crack widths. 

Transverse and longitudinal reinforcement ratios of 0.0025, based on 

the gross area of the slab, in the vicinity of the opening (that is, 

within a distance d > a0) are suggested. 

Beams with longitudinal ribs tend to fail due to a shear 

failure between the rib and the surrounding deck (Chapter 3). This 

type of failure has been noted in the current study, as well as in 

tests of stub girders (4, 6, 22). The nature of the failure suggests 

that transverse reinforcing steel that crosses the crack surface will 

improve the post-crack performance. Additional transverse reinforce­

ment, with a shape that drops down into the rib over the beam, will 

intersect the crack plane at about 90 degrees and limit slip along 

the plane. While this type of reinforcement is not considered in 

American codes, it is in British standards (5, 47). 

6.4 DEFLECTION 

The stiffness method of matrix analysis is routinely applied to 

deflection analysis using general purpose structural analysis 

programs. It is particularly attractive for the analysis of beams 

with web openings since it can automatically enforce compatibility of 

displacement and rotation at the ends of an opening. 
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A composite beam with a web opening is illustrated in Fig. 

6. 1a. The beam can be modeled using uniform beam elements and rigid 

links (Fig. 6.1b). The uniform beam elements representing the com-

posite section away from the opening (elements 1, 4, and 5) are 

modeled using the effective moment of inertia, Ieff' and the effec­

tive area for shear stress, AY. Ieff (Eq. (E.7ll is given by 

(6.5a) 

(6.5b) 

in which Is = the moment of inertia of the steel beam, Itr = the 

moment of inertia of the transformed composite section, Vh = the sum 

of the shear stud capacities between the point of maximum moment and 

the nearest point of zero moment, and Vh is the minimum of the ten­

sile yield capacity of the gross steel section or the crushing 

strength of the concrete slab. A (Eq. (E.8)) is given by 
y 

(6.6) 

in which t = the web thickness of the steel section. The uniform w 
beam elements representing the top and bottom tees at the opening 

(elements 2 and 3, respectively) are connected to beam elements 1 and 

4 using 4 rigid links. The top and bottom tees are modeled using 
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moments of intertia, It and Ib; effective areas for shear stress, Ayt 

and Ayb; and effective areas for axial stress, At and Ab. 

It and Ib are calculated using the web and flange for each 

steel tee (the concrete is not considered for It). Ayt and Ayb (Eq. 

(E.9)) are given by 

and 

(6.7b) 

in which st = the top tee stub depth and sb = the bottom tee stub 

depth. At is the transformed area of the top tee, and Ab is the area 

of the bottom tee. The application of the stiffness method to com-

posite beams with web openings is discussed in greater detail in 

Appendix E. 

6. 5 DESIGN EXAMPLE 

The AISC Manual of Steel Construction (2) provides 3 examples 

of composite beam design. The beam from Example 2 is used in this 

section to illustrate the design of composite beams with web 

openings. 
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6.5.1 Problem Statement 

A simply-supported composite beam is part of a floor system of 

an office building. The center-to-center beam spacing is 8 ft. (Fig. 

6.2). The beam span is 36ft. An 11 x 22 in. opening is required at 

the span quarter point. The slab is 4 in. thick and will be placed 

on metal decking with 2 in. ribs on 6 in. centers. The concrete is 

normal weight, with a nominal compressive strength of 3000 psi. A36 

steel will be used. 

Limit deflection during construction to 1-1/2 in. and during 

service to L/360. 

The loads are specified as follows: 

Live load = 100 psf 

Partition load = 20 psf 

Ceiling load = 8 psf 

4 in. slab = 41 psf 

Steel (assumed)= 7 psf 

A W21 x 44 steel section is selected in the AISC example. 

6.5.2 Solution 

Section Properties: 

For the W21 x 44 steel section with an 11 x 22 in. concentric 

opening, the section properties are 

bf = 6.50 

tf=0.45 

tw = 0.35 

d = 20.66 

st = 4.83 

sb = 4.83 

T = 4 s 

t = 2 s 
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in which bf = the flange width, Ts = the gross slab thickness and ts 

= the slab thickness above the ribs. 

The effective slab width, be' is given by 

b < Span/4 e- = 1/4(36)(12) = 108 in. 

<Beam spacing= 8(12) = 96 in. 

= 16(4) + 6.5 70.5 in. <== Controls 

The cross-section at the web opening is shown in Fig. 6.3. 

Design Loads: 

The factored load (Eq.(6.4)) is given by 

Factored Load= 1.20 + 1.6L 

= 1.2(0.020 + 0.008 + 0.041 + 0.007) 

+ 1.6(0.100) 

= 0.091 + 0.160 = 0.251 ksf 

Therefore, the uniform load on the section, w, is 

w = 0.251(8) = 2.008 kips/ft 

At the opening centerline, the factored shear and moment are 

and 

v 
u 

= 

wl 
4 
2.008(36) 

4 = 18.07 kips 
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= 244,0 ft-kips = 2928 ln.-kips 

Stud Parameters: 

Try 3/4 x 3-112 in. studs (Note: The maximum allowable height 

is used to obtain the maximum capacity per stud). The parameters for 

the shear capacity of the studs are obtained using Eq. (5.10a), 

(5.11a), and (5.11b). 

2 2 (0.75) rr/4 = 0.44 in. 

E = 571fT c c 

= 57/3000 = 3122 ksi 

Q = 0. 5A If' E n sc c c 

= 0.5(0.44)/3(3122) = 21.3 kips 

Assume 1 stud· per rib (Nr = 1) and a rib width, wr, of 2.5 in. 

w H 
R= • 85 (hr)(2- 1.0) < 1.0 

IN" r hr 
r 

= ~5<225)(325- 1.0) = 0.797 
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Maximum Moment Capacity: 

The crushing capacity of the slab (Eq. (5.7)) is given by 

p = 0.85 f'b t 
c c e e 

= 0.85(3)(70.5)(2) = 360 kips 

The opening is to be located 9'-0" from the support. A minimum 

of 19 studs will be located between the high moment end of the open-

ing and the support. Therefore, the shear stud capacity between the 

high moment end of the opening and the support (Eq. (5.9)) is 

P = NRQ studs n 

= 19(.797)(21.3) = 323 kips 

The yield capacity of the net steel section (Eq. (5.13)) is 

T' = Fy(2(bf- tw)tf + sttw + sbtw) 

= 36(2(6.50- 0.35)(0.45) + 4.83(0.35) + 4.83(0.35) 

= 321 kips 

Finally, the compressive force in the concrete is given by Eq. (5.6). 

p h < p = 360 c - c 

< p = 323 - studs 

< T' 321 <== Controls 
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P ch acts at a distance, dh, from the top of the flange. dh is 

obtained using Eq. (5.14) and (5.15). 

Pch 
a=.,...-,,-;::.:;::::,...-

0.85f'b c e 
321 

= = 0.85(3)(70.5) 

d=T-a/2 
h s 

1.79 in. 

= 4- 1.79/2 = 3.10 in. 

Since P
0
h = T', the moment capacity (Eq. (5.16)) is 

Mm = Pchdh + Fy(bf- tw)tfd 
2 2 

st - sb 
+ Fytw ( 2 + sbd) 

321(3.10) + 36(6.5- 0.35)(0.45)(20.66) 

4 83
2 

4.83
2 

+ 
+ 36(0.35)( • - 4.83(20.66)) 

2 

= 995 + 2058 + 1257 = 4310 in,-kips 

Maximum Shear Capacity: 

The "pure shear" capacities at the web opening are found using 

Eq. (5.54), (5.26), and (5.27). 

V = sbt F 1/3 pb w y 

= 4.83(0.35)(36)1/3 = 35.1 kips 
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= 4.83(0.35)(36)1/3 = 35.1 kips 

A = 3T t cv s e 

= 3(4)(2) = 24 in2 

3. 51fT A 
C CV 

Vt( sh) = --:-:::~..:::..:. 1000 

= 
3.513060(24) 

1000 

+ v pt 

+ 35. 1 = 39.7 kips 

Bottom Tee Shear Capacity: 

Method I 

For Method I, the bottom tee shear capacity is given by Eq. 

(5.41). 

a 
Cl = 3 + 2/3 _2 

sb 

= 3 + 2/3 ~:~~ = 18.8 

(bf - t ) 
a= 2/3 w (sb2- sbtf + tf2) 

sb 

+ 2/3Atwsb + 2a
0

((bf - tw) + Atw) 

= 2/3 ( 6 • 5 4~8~· 35 ) (4.83
2

- 4.83(0.45) + 0.45
2

) 

+ 2/3(1.207)(0.35)(4.83) 

+ 2(22)((6.5- 0.35) + 1.207(0.35)) 

= 94.2 + 7.0 + 289.2 = 390.4 
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Y = (b - t )2t 2 
+ A2t 2s 2 

f w f w b 

+ 2Atw(bf- tw)(sb2- sbtf + tf2) 

= (6.5 - 0.35) 2(0.45) 2 
+ 1.2072(0.35 2)(4.83 2) 

+ 2(1.207)(0.35)(6.5 - 0.35)(4.83 2 

- 4.83(0.45) + 0.452 ) 

= 7.7 + 4.1 + 111.0 = 122.8 

Vb(max) = F (8 - 182 - 4aY) 
y 2a ·~~~--~~~~~"' 

= 36(390.4- 1390.4 2 
- 4(18.8)(122.8)) 11 5 

2(18.8) . 

Method II 

For Method II, the shear capacity of the bottom tee is given by 

Eq. (5.59). 

a = 
b 

0.145 

Vb(max) = vpb/ab/(1 + ab) 

= 35.1/0.145/1.145 = 12.5 kips 
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Top Tee Shear Capacity: 

Method I 

For Method I, the top tee shear capacity is given by (Eq. 

(5.47). Using Eq. (5.34b), the concrete force at the high moment end 

is limited to the tensile capacity of the top tee. 

p 
smax Fytf(bf- tw) 

= 36(0.45)(6.5 

+ F t s 
y w t 

- 0.35) + 36(0.35)(4.83) 

= 100 + 61 = 161 kips 

p Ch ~ p C = 360 

.S. Pstuds = 323 

< Psmax = 161 <==Controls 

a = 161 .90 0.85(3)(70.5) 

~ = 4 - ·~0 = 3.55 in. 

The deck ribs are on 6 in. centers. With a 22 in. opening, a 

minimum of 3 ribs will be above the opening. The concrete force and 

location at the low moment end are obtained using Eq. (5.24) and 

(5.25a). 

P h- N RQ c o n 

= 161 - 3( .797)(21.3) 110 kips 
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0.5Pcl 
ct

1 
= T - t + s s 0.85f' b c e 

0.5(110) 
= 4 - 2 + 0.85(3)(70.5) = 2.30 in. 

The top tee "mechanism" capacity is given by Eq (5.47). 

a 
a=3+2f3..2 

st 

= 3 + 2/3 l4~~3) 18.8 

+ 2/3 (1.207)(0.35)(4.83) 

+ 2(22)((6.5- 0.35) + 1.207(0.35)) 

2/3 
+ 4.83(36) l 161(3.55) - 110(2.30)) 

+ ~ (161 - 110) 

= 94.2 + 7.1 + 289.2 + 6.3 + 2.5 = 399.3 

y = 
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(Pch2 + Pcl2) (Cbf - tw)tf + ltwst) 

2 
F 2 + F ( P ch - P cl) 

y y 

= (6.5 - 0.35) 2(0.45) 2 
+ 1.2072(0.35) 2(4.83 2) 

+ 2(1.207)(6.5- 0.35)(0.35)(4.83 2) 

- 4.83(0.45) + 0.45 2) 

+ 2((6.5- 0.35~6· 1.207(0.35))(161(3.55)- 110(2.30)) 

~ (161 2 
+ 1102) 

2(36) 2 

+ ((6.5- 0.35)(0.45) 3~ 1.207(0.35)(4.83)) (161 - 110) 

= 7.7 + 4.2 + 111.0 + 116.3- 14.7 + 6.8 = 231.3 

= 21.5 kips< vpt 

Method II 

For Method II, P
0

h is limited only by Eq. (5.23). 

p < p = 360 
Ch- C 

< P = 323 <== Controls - studs 

- 323 
a= 0.85{3)(70.5) = 1"80 

d 4 - 1.80 = 3.10 . h = 2 ln. 
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P
01 

= 323- 3(.797)(21.3) = 272 

0.5(272) 
dl = 4 - 2 + 0.85(3)(70.5) 

= 2.76 in. 

The maximum shear capacity is found using Eq. (5.64), (5.65), and 

(5.68). 

( P ch dh - P cl dl) 

stV pt 

= (323(3.10)- 272(2.76)) 
4.83(35.1) 

4.55 

= 1. 48 

= V (2uv + /12v 2 
- 12u 2 

+ 36) 
Vt(max) pt 2(3 + v2) 

= 
3 5 1 

( 2 c 1. 48 l c 4 • 55 l + 1,.,..1-=-2 <'""4,....-=5-=-5 ""'2 l.--_-.,.-1 2"'<'""'1-. ""'48""2""')-+ ...,3=6 l 
• 2(3 + 4.55 2 ) 

= 21.9 kips< vpt 

Total Capacity: 

Method I 

= 11.5 + 21.5 

= 33.0 kips 



Method II 

Vm = Vb(max) + Vt(max) 

= 12.5 + 21.9 

= 34.4 kips 

Strength Check: 

The M/V ratio is 

M 
- = v 

Method I 

2928 
18.07 

= 162 in. 
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The nominal capacity is given by Eq. (6.1). 

v = n [ (~)3 l-1/3 
v -- + 1 

m M 3 
( .2!) v 

m 

= 33.0 [(1623) + 1] -1/3 
( 4310)3 
33.0 

= 23.1 kips 

M = V (!::!) 
n n V 

= 23.2(162) = 3745 in.-kips 

Using Eq. ( 6. 3) and (6.2), the shear and moment capacities at 

the web opening are found. 
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Shear Capacity = ~vvn 

0.85(23.1) 

= 19.6 > V = 18.1 ok 
u 

Moment Capacity= $bMn 

Method II 

= 0.85(3745) 

= 3183 > M 
u 

Shear Capacity = 19.9 ok 

Moment Capacity = 3227 ok 

2928 ok 

The selected section has adequate strength with an 11 x 22 in. 

web opening at the span quarter point. In the event that a section 

is not adequate with the required opening, several alternatives are 

available to the designer, The material strengths can be increased, 

the section weight or depth can be increased, or the deck configura-

tion may be changed. Although an increase in section depth will 

increase the height of a story, the total depth will normally be less 

than the depth obtained if utilities are routed below, rather than 

through the section. 
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Deflections: 

The beam deflections are calculated for construction and serv-

ice loads considering shear deformations throughout the span. The 

beam is modeled as shown in Fig. 6.1b. 

Before the concrete has hardened, the loads will consist of the 

weight of the slab and the weight of the steel section. The load, 

therefore, is 

Construction load 0.041 + 0.007 

= 0.048 ksf 

and the uniform load on the beam, w, is 

w = 0.048(8) = 0.384 kips/ft 

At this stage, the beam is modeled using the properties of the 

steel section only, Elements 1, 4, and 5 (Fig. 6.1b) are modeled 

using Is = 843 in. 4 and AY = 7.23 in. 2. The top tee (element 2) is 

modeled using It= 8.32 in. 4, At= 4.46 in. 2, andAyt = 1.69 in.
2

, 

while the bottom tee (element 3) is modeled using Ib = 8.32 in. 
4

, Ab 

= 1.69 in. 2, and Ayt = 1.69 in. 2 . The eccentricities for the top and 

bottom tees are 9.27 in. and -9.27 in., respectively. 

After the concrete has hardened, additional loads will include 

the live load, the partition load, and the ceiling load. The addi-

tional load is 
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Service load= 0.100 + 0.020 + 0.008 = 0.128 ksf 

and the uniform load is 

w = 0.128(8) 1.024 kips/ft 

The beam is now modeled using the composite properties. Elements 1, 

4, and 5 are modeled using Ieff = 2044 in.
4 

and AY = 7.23 in.
2

• The 

top tee is modeled using It 8.32 in. 
4

, At= 18.56 in. 2, and Ayt = 

1.69 in. 2• The bottom tee is modeled using Ib = 8.82 in. 4, Ab = 4.46 

in. 2 , and Ayb = 1.69 in. 2• The eccentricities for elements 2 and 3 

are 2.32 in. and -16.23 in., respectively. 

The deflections are obtained using the general purpose finite 

element program POLO-FINITE (24). 

The respective increments in deflection at the point of maximum 

moment are 0.614 and 0.703 in. under construction and service loads, 

while the respective deflections across the opening are 0.086 and 

0.095. 

Comparing the deflections to the specified limits: 

0.614 < 1-112 in. ok 

0.703 < L/360 = 36(12)/360 = 1.20 in. ok 
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It is worthwhile to compare these deflections with those ob-

tained using a more traditional approach. Considering only flexural 

deformations in the beam and ignoring the web opening, the respective 

increments in deflection at the point of maximum moment are 0.59 and 

0.65 in. under construction and service loads. The deflections are 

close because the beam used in this example has a long span and a 

short opening relative to its length. The effects of shear deforma-

tion and of the web opening on the overall deflections are, 

therefore, relatively small. 

Detailing: 

In addition to the studs required over the opening and between 

the opening and the support, studs should be placed in the four ribs 

adjacent to the high moment end of the opening (d = 21 

in., use 22 in.). 

in., a = 22 
0 

The slab above the opening requires additional reinforcing. 

A = 0.0025(12)T r s 

= 0.0025(12)(4) 0.12in~/ft 

Use #3 bars on 10 in. centers in both directions. Since a
0 

> d, the 

transverse reinforcement should extend 22 in. on each side of the 

section, and the longitudinal reinforcement should extend 22 in. on 

each end of the opening. 
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6.6 SUMMARY 

Design Methods I and II allow rapid calculation of the nominal 

shear and moment capacities of a composite beam with a web opening. 

The nominal capacities are applied to design using LRFD procedures. 

It is recommended that the designer increase the number and the 

length of shear connectors, if possible, to take advantage of the 

increased capacity at the opening afforded by increased shear connec­

tor capacity. Additional shear connectors near the high moment end 

of the opening and additional reinforcing steel in the slab are also 

recommended. The stiffness method of matrix analysis is recommended 

for estimating the deflections of composite beams with web openings. 

A design example is provided, 



7.1 SUMMARY 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

This study consists of laboratory tests and detailed analyses 

leading to a comprehensive design procedure for composite beams with 

web openings. 

Fifteen tests to failure were carried out on composite beams 

with web openings. All specimens were full scale beams with ribbed 

slabs using formed steel deck. The ribs were oriented either perpen­

dicular to or parallel to the steel section. The key parameters of 

the study included moment-shear ratio at the opening, partial com­

posite behavior, deck rib orientation, slab thickness, opening shape, 

opening eccentricity, and modification of the deck over the opening. 

A strength model is developed for both unreinforced and rein­

forced openings and members with either solid or ribbed slabs. Three 

versions of a practical strength design technique for unreinforced 

openings are also presented. The strength model and the design 

techniques are compared with all experimental work on composite beams 

with web openings. A comprehensive design procedure, including both 

strength and serviceability criteria is developed. 

7.2 CONCLUSIONS 

Based on the study presented in this report, the following 

conclusions can be made: 
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1) The peak loads attained by composite beams with ribbed slabs 

at web openings are governed by the failure of the concrete slab. 

For slabs with transverse ribs, rib failure around the shear connec­

tors occurs. For slabs with longitudinal ribs, a longitudinal shear 

failure occurs. 

2) As the number of shear connectors above the opening and 

between the opening and the support increases, the failure load 

increases. 

3) As the ratio of moment to shear at an opening decreases, 

deflections across the opening increase and transverse cracking 

occurs at lower loads. 

4) The failure of composite beams with ribbed slabs at web 

openings is, in general, quite ductile. Failure is preceded by major 

cracking in the slab, yielding of the steel, and large deflections in 

the member. 

5) First yield in the steel around an opening does not give an 

accurate measure of the section capacity. 

6) The strength of composite beams with web openings can be 

calculated with reasonable accuracy using equilibrium methods. The 

strength model provides an accurate prediction of the test results 

from this study and from previous investigations. 

7) Relatively simple strength design procedures, based on 

equilibrium methods, also give a good prediction of test results. 

8) The analyses using the strength model and the strength 

design procedures clearly indicate the importance of considering 
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partial composite action in determining the strength of composite 

beams with web openings. 

9) Beam deflections can be estimated, with reasonable accuracy, 

using the stiffness method of matrix analysis. The opening is modeled 

as two uniform beam elements, each connected to the beam by two rigid 

links. The most accurate estimates are obtained using a model which 

considers shear deflections (model V). Similar results can, however, 

be obtained by multiplying the deflections obtained with model V by a 

correction factor. 

10) The effect of a web opening on beam deflection increases as 

both the shear at the opening and the relative size of the opening 

increase. 

7.3 FUTURE WORK 

Only two composite beams with reinforced openings have been 

tested (8). Additional testing, particularly of partially reinforced 

openings (openings with reinforcement at only one tee), is required. 

The test results can be used to confirm the accuracy of the strength 

model, which accounts for reinforcement at the opening. 

An extension of the current simplified design procedures which 

accounts for reinforcement at the opening is required. 

Stability considerations were outside the scope of this 

project. While elastic buckling was not observed in any of the 

reported tests of composite beams with web openings, no stability 

criterion have been developed for composite beams with web openings. 
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An investigation of buckling at web openings in composite beams is 

required. 

The contribution of the slab to the strength of composite beams 

at web openings is well documented. Additional work is required, 

however, to investigate modifications of the slab that will provide 

inexpensive reinforcement at the opening. 

To date, no tests of adjacent openings in composite beams have 

been conducted. An investigation of the interaction between adjacent 

openings in composite beams is, therefore, highly desirable. 

The deflection analysis of composite beams with web openings 

can be simplified by the development of design aids which allow the 

designer to apply factors, based on opening size and location, to the 

bending deflection of a beam without an opening. 
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Table 2.1 Steel Strength, ksi. 

TOP FLANGE BOTTOM FLANGE 
Static Tensile Static Tensile 

Beam Yield Yield Yield Yield 

54.6 50.6 71.9 52.3 50.7 71 • 9 

2 52.3 49.2 71.2 51.2 48.8 71.4 

3 52.6 50.6 71.6 51.7 49.6 71.5 

4 52.6 50.0 71.9 53.6 50.2 71.8 

5 53. 1 50.4 72.4 54.7 49.5 72.2 

6 53.6 50.8 71.7 52.7 49.7 72.4 

7 40.6 38.4 68.6 41.1 38.5 68.7 

8 47.6 45.0 69.4 47.7 45. 1 69.9 

9 41 . 1 38.5 68.7 40.6 38.4 68.6 

WEB (HORIZ.) WEB (VERT.) 
Static Tensile Static Tensile 

Beam Yield Yield Yield Yield 

55.4 51.8 72.8 55.9 53.0 73.4 

2 53.1 50.7 73.5 55.5 53.2 74.2 

3 52.5 50.4 73.4 54.9 53.3 74.1 

4 53.7 50.7 74.1 56. 1 53.4 74.4 

5 52.7 50.0 72.0 55.9 52.9 73.2 

6 52.7 50.2 73.9 57.0 54.7 75.9 

7 41.2 38.8 70.1 42.4 39.7 68.7 

8 50.8 47.7 72. 1 

9 41 . 2 38.8 70. 1 42.4 39.7 68.7 
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Table 2.2 Concrete Properties. 

Slump Cement Factor Age at Test f' 
Test in . sacks/yd' (da;t:sl % Air pgi .,.- 3-3/4 6 8 2 4470 

2 1-1/4 5 7 4 4850 

3 3/4 5 7 2-3/4 5400 

4A 2-3/4 5 18 3 4740 

48 33 5280 

5A 2-3/4 5 12 1-1/2 4740 

58 21 5090 

6A 4 5 12 5-1/2 4020 

68 23 4300 

7A 3-1/2 5 47 6-1/2 4190 

7B 66 4300 

8A 4-1/4 5 15 N.A. 3940 

8B 120 4990 

9A 4-1/4 5 41 6-1/2 4170 

98 48 4360 
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Table 2.3 Section and Opening Dimensions, in. 

bf(Top) tf(Top) 
+ 

Test Section d t st sb w 

1 W21 X 44 20.63 6.51 0.440 0.358 4. 178 4.101 
2 6.50 0.427 0.357 4. 094 4.094 
3 6.57 0.423 0.358 4.105 4.097 
4A 6.50 0.435 0.357 4. 1 00 4.100 
4B 6.50 0.435 0.357 4. 125 4.125 
5A 6.51 0.440 0.358 4.168 4. 11 0 
5B 6.57 0.440 0.358 4.110 2.123 
6A 6.58 0.440 0.357 4. 120 4.115 
6B 6.58 0.440 0.357 4. 120 4.115 
7A 6.66 0.409 0.360 4.025 4. 150 
7B 6.66 0.409 0.360 4.075 4.188 
8A W10 X 15 10. 13 3.98 0.268 0.231 2.090 2. 090 
8B 3.98 0.268 0.231 2.025 1 • 725 
9A W21 X 44 20.63 6.67 0.425 0.365 2.960 2.960 
9B 6.67 0.427 0.369 3. 075 2.812 

Test bf(Bot) tf(Bot) b b * t T Opening Size cone e s _s_ 

1 6.50 0.430 48.0 48.0 2.0 5.0 12.38 X 24.75 
2 6.51 0.448 48.0 48.0 2.0 5.0 12.38 X 24.75 
3 6.56 0.435 48.0 48.0 2.0 5.0 12.38 X 24.75 
4A 6.57 0.440 48.0 48.0 2.0 5.0 12.38 X 24.75 
4B 6.57 0.440 48.0 48.0 2.0 5.0 12.38 X 24.75 
5A 6.50 0.430 48.0 48.0 2.0 5.0 12.38 X 24.75 
5B 6.45 0.430 48.0 48.0 2.0 5.0 14.39 X 24.75 
6A 6.57 0.432 48.0 48.0 2.0 5.0 12.38 X 24.75 
6B 6.57 0.432 48.0 48.0 2.0 5.0 12.38 X 24.75 
7A 6.59 0.412 48.0 48.0 2.0 5.0 12.38 X 24.75 
7B 6.59 0.412 48.0 48 .o 2.0 5.0 12.38 X 24.75 
8A 4.02 0.280 39.4 36.0 2.5 5.5 5.95 X 11 • 82 
8B 4.02 0.280 39.4 36.0 2.5 5.5 6.38 X 18.63 
9A 6.61 0.429 48.0 48.0 4.0 7.0 14.75 X 24.75 
9B 6.61 0.427 48.0 48.0 4.0 7.0 1 4. 75 X 1 4, 75 

+ Opening eccentricity = e 
e = 0 for Tests 1 through 5A, 6A through 8A, and 9A 
e = -1 .oo in. for Test 5B 
e = -0.15 in. for Test 8B 
e = -0. 1 3 in. for Test 9B 

* b = effective slab width e 
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Table 2.4 Stud and Rib Properties. 

Stud 
+ h t tt * ** Test Diameter H w N N 

3 r r 0 

in. in. in. in. 

1 3/4 4.5 3.0 6.0 2*2 5*2 
2 2*2 5*2 + 3*4 
3 2*2 10*2 
4A 0*2 5*1 
48 0*2 5*2 + 3*4 
5A 2*1 7*1 
58 2*2 8*2 
6A 2*2 6*2 
68 8 20 
7A 1 0 22 
78 6 22 
8A 5/8 5.0 1 *2 4*2 
88 1*2 3*2 
9A 3/4 5.5 2*2 5*2 
98 1*2 4*2 

+ 
H stud height after welding s 

t h = rib height r 
tt average rib width w = r 
* N no. of studs over opening -- For transverse ribs = no. of 

0 ribs * of studs/rib no. 

** 
N = no. of studs between high moment end of the opening and the 

support -- For transverse ribs = no. of ribs * no. of 
studs/rib 
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Table 3.1 Test Behavior. 

First Appearance of First Crack 
+ 

M Yield Transverse Longitudinal Diagonal v 
Test (ft) % Ult 

+ 
% Ult+ % Ult+ % Ult + 

1 3.50 36 44 92 67 
2 6.50 32 65 80 80 
3 45.20 44 96 76 81 
4A 6.50 32 69 95 69 
4B 6.50 19 O* 88 51 
5A 6.50 31 58 93 93 
5B 6.50 30 0* 47 70 
6A 0.00 36 21 70 70 
6B 3.50 34 0* 65 94 
7A 3.50 35 40 80 N.A. 
7B 6. 50 25 66 66 N. A. 
SA 3.30 25 93 93 93 
8B 2.50 52 42 87 71 
9A 3.50 27 25 91 53 
9B 3.00 38 38 70 70 

+ Applied Load 
* Crack appeared when opening was cut 



Table 3.2 Test Results. 

Maximum Total 

Applied Load Total Load Total Load Load at Opening 

Test ~ at Opening M Vat opening ~d at opening M v Failure 

(ft) (ft) (in. kips) (kips) Mode 

3.50 3.54 2.06 1606 47.8 Rib Failure 

2 6.50 6.61 3.85 3095 39 .o Rib Failure 

3 45.20 44.80 26.07 6075 11.3 Crushing at 
Failure 

4A 6.50 6.63 3.86 2603 32.7 Rib Failure 

4B 6.50 6.62 3.85 3096 39.0 Rib Failure ..,.. 
5A 6.50 6.67 3.88 2768 34.6 Rib Failure "' 
5B 6.50 6.65 3.87 2568 32.2 Rib Failure 

6A o.oo 0.00 o.oo o.o 41 .o Rib Failure 

6B 3.50 3.53 2.05 2070 48.9 Rib Failure-
Diag. Tension 

7A 3.50 3.53 2.05 1845 43.5 Long. Shear 

7B 6.50 . 6.61 3.85 3379 42.6 Long. Shear 

8A 3.28 3.32 3.93 774 19.4 Rib Failure-
Diag. Tension 

8B 2.45 2.49 2.95 427 14.3 Rib Failure-
Diag. Tension 

9A 3.50 3.56 2.07 1474 34.5 Rib Failure 

9B 3.00 3. 13 1.82 1775 47.3 Rib Failure 
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Table 3.3 Relative Deflection at Failure. 

Applied 
M * + -t 
v 0 0 0 m 0 

Test (ft) (in.) (in.) 

1 3.50 0.72 0. 77 1.07 
2 6;50 0;74 0.60 0.81 
3 45.20 4.00 0.1 0 0;03 
4A 6.50 0.58 0. 71 1 .22 
4B 6.50 1. 31 1.27 0.97 
5A 6.50 1.95 1.88 0.96 
5B 6.50 1.04 1.26 1 • 21 
6A 0.00 1.05 2.38 2.27 
6B 3.50 1.36 1. 43 1.05 
7A 3.50 0.88 0.82 0.93 
7B 6.50 0.99 0.51 0.52 
SA 3.30 0.61 0.42 0.69 
8B 2.50 0.55 0.70 1.27 
9A 3.50 0.96 1. 61 1. 68 
9B 3. 00 0.98 1.27 1.30 

* 0 Deflection at point of maximum moment. 
m 

+ 0 
0 

Deflection across web opening. 

t 0 = o lo o m 
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Table 4.1 Ratios of Test to Calculated Strength for the Strength 
Model. 

Test Test 

t Test 
Shear Moment Test/Theory 

kips in.-kips Ratio Testt 
Shear Moment Test/Theory 
kips in.-kips Ratio 

1 37. 8 
2 39.0 
3 11.3 
4A 32.7 
4B 39.0 
5A 34.6 
58 32.2 
6A 41.0 
6B 48.9 
7A 43.5 
7B 42.6 
8A 19.4 
8B 14.3 
9A 34.5 
9B * 47.3 
Mean * 
Std. Dev. 

RO 18.2 
R1 26.0 
R2 28.7 
R3 16. 4 
R4 13.1 
R5 27.6 
R6 21.2 
R7 30.5 
R8 28.9 
Mean 
Std. Dev. 

1606.0 
3095.0 
6075.0 
2603.0 
3096.0 
2768.0 
2568.0 

0.0 
2070.0 
1845.0 
3379.0 

774.0 
427.0 

1474.0 
1755.0 

752.0 
978.0 

2904.0 
3993.0 
3212.0 
1038.0 
786.0 

1134.0 
1075.0 

Ribbed slab summary: 

* Mean * 
Std. Dev. 

t G- Granade (19) 

0.919 
0.993 
1. 060 
1.128 
1. 314 
0.949 
0.995 
1. 118 
1. 027 
1. 092 
1. 128 
0.942 
0.947 
0.962 
1. 006 
1. 011 
0.070 

0.904 
1. 059 
1. 089 
1. 135 
1. 102 
0.995 
1. 076 
1. 001 
1. 001 
1. 040 
0.071 

1. 023 
0.070 

C- Clawson and Darwin (9, 11) 
CHO - Cho (8) 
R - McGill Tests (32, 34) 

C1 
C2 
C3 
C4 
C5 
C6 
G1 
G2 
Mean 
Std. Dev. 

CH03 
CH04 
CH05 
CH06 
CH07 
Mean 
Std. Dev. 

33.4 
36.8 
14.0 
47.6 
48. 1 
40.4 
32.7 
26.5 

35.7 
46.7 
17.9 
40.6 
20.6 

2886.0 
4107.0 
5468.0 
1723.0 
3511.0 
1471.0 
791.0 

1 296. 0 

634.0 
1477.0 
2319.0 
721.0 

2664.0 

Solid slab summary: 

Mean 
Std. Dev. 

Overall summary: 

* Mean 
Std. Dev.* 

* Tests 4A and 4B excluded from calculations. 

1. 095 
1. 114 
1. 118 
1.093 
1. 129 
1. 079 
1 . 164 
1. 018 
1 . 101 
0.043 

1. 126 
0.999 
1. 013 
1. 064 
0.960 
1. 032 
0.064 

1.074 
0.060 

1.042 
0.071 
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Table 5. 1 Ratios of Test to Calculated Strength for the Redwood and 
Poumbouras (33) Procedure, the Strength Model (Chapter 4), 
and Strength Design Methods I, II, and III. 

Test/Theory Ratio 
Test Redwood-

Test Shear Moment Poumbouras Design Method 
IF kips in.-kips Procedure Model I II III 

1 37.8 1606.0 0.895 0.919 0.968 0.913 0.967 
2 39.0 3095.0 0.986 0.993 1. 053 1.026 1. 080 
3 11.3 6075.0 1. 014 1. 060 1. 027 1. 027 1. 028 
4A 32.7 2603.0 1. 046 1. 128 1. 157 1. 083 1 • 1 32 
48 39.0 3096.0 1. 212 1 . 31 4 1.360 1. 238 1. 298 
5A 34.6 2768.0 0.919 0.949 1. 009 0.960 1. 009 
58 32.2 2568.0 0.977 0.995 1. 058 1. 020 1. 074 
6A 41.0 0.0 1.137 1. 118 1.135 1. 132 1 • 199 
6B 48.9 2070.0 1. 016 1. 027 1. 080 1.044 1. 093 
7A 43.5 1845.0 0.984 1. 092 1.035 1. 000 1. 005 
7B 42.6 3379.0 1. 030 1. 128 1.093 1. 087 1. 097 
8A 19.4 774.0 1. 081 0.942 0.971 0.985 0.990 
8B 14.3 427.0 0.918 0.947 0.926 0.934 0.928 
9A 34.5 1474.0 1 . 116 0. 962 0.937 0.976 o. 973 
9B 

* 
47.3 1755.0 1. 362 1. 006 0.987 1 • 0 11 1. 018 -- --Mean 
* 

1. 033 1 • 011 1. 021 1.009 1. 035 
Std. Dev. 0.123 0.070 0.063 0.059 o. 072 

RO 18.2 752.0 0.976 0.904 o. 941 0.950 0.955 
R1 26.0 978.0 1. 090 1. 059 1. 100 1. 114 1. 163 
R2 28.7 2904.0 1. 234 1. 089 1 • 191 1. 326 1.384 
R3 16.4 3993.0 1. 126 1. 135 1. 080 1. 084 1. 084 
R4 1 3. 1 3212.0 1. 068 1. 102 1. 118 1. 113 1. 118 
R5 27.6 1038.0 1 • 171 0.995 1. 031 1. 040 1. 081 
R6 21.2 786.0 1. 111 1. 076 1. 127 1. 124 1 • 191 
R7 30.5 11 34.0 1.017 1. 001 1. 022 1. 043 1. 040 
R8 28.9 1075.0 1. 091 1. 001 1. 015 1. 092 1. 098 
Mean 1.098 1. 040 1. 069 1. 098 1. 124 
Std. Dev. 0.077 0.071 0.075 0. 101 o. 119 

Ribbed slab summary: 

* Mean 
* 

1. 060 1. 023 1. 041 1. 045 1. 072 
Std. Dev. o. 109 0.070 0.070 0.089 0.102 

*Tests 4A and 4B excluded from calculations. 
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Table 5.1 Continued. 

Test/Theory Ratio 
Test Redwood-

Test Shear Moment Poumbouras Design Method 
IF kips in.-kips Procedure Model I II III --
C1 33.4 2886.0 1. 417 1. 095 1. 143 1. 187 1. 192 
C2 36.8 4107.0 1. 115 1. 114 1. 138 1. 123 1. 128 
C3 14.0 5468.0 1. 156 1 • 118 1 • 1 39 1. 139 1. 139 
C4 47.6 1723.0 1. 037 1. 093 1. 056 1. 051 1. 056 
C5 48.1 3511 • 0 1. 087 1. 129 1. 127 1. 128 1 • 1 34 
C6 40.4 1 471 • 0 1. 294 1. 079 1. 055 1. 122 1. 128 
G1 32.7 791 • 0 1. 865 1 . 164 1.198 1. 284 1. 300 
02 26.5 1296.0 1. 511 1. 018 1. 087 1 • 1 43 1. 153 
Mean 1. 310 1 • 101 m 1.147 1 • 154 
Std. Dev. 0.279 0.043 0.049 0.067 0.070 

CH03 35.7 634.0 2.573 1. 126 1.160 1 • 191 1. 199 
CH04 46.7 1477.0 1. 513 0.999 1. 064 1. 061 1. 071 
CH05 17.9 2319.0 1. 019 1. 01 3 0.978 0.978 0.979 
CH06 40.6 721.0 2.856 1. 064 1. 276 1. 311 1. 320 
CH07 20.6 2664.0 1. 046 0.960 0.954 0.958 o. 959 --Mean 1. 801 1. 032 1. 086 1. 100 1. 106 
Std. Dev. 0.862 0.064 0.133 0.149 0.153 

Solid slab summary: 

Mean 1. 499 1. 07 4 1. 105 1 • 1 29 1. 135 
Std. Dev. 0.596 0.060 0.087 0. 103 0.106 

Overall summary: 

* Mean 1. 223 1. 042 1. 065 1. 076 1. 095 
Std. Dev.* 0.423 0.071 0.082 o. 102 0.106 

* Tests 4A and 4B excluded from calculations. 



148 

Table 5.2 Ratios of Test to Calculated Strength for the Redwood and 
Poumbouras (33) Procedure. 

Published Calculated Calculated 
Test Ratios (33) Ratios* Ratios** 

RO 0.995 0.976 0.976 
R1 1. 129 1 • 1 31 1. 090 
R2 1.163 1. 158 1. 234 
R3 1. 126 1. 126 1. 126 
R4 1. 108 1. 095 1. 068 
R5 1. 169 1 . 171 1 • 171 
R6 1. 116 1. 112 1. 111 
R7 1. 017 1. 014 1 .017 
R8 1. 098 1. 091 1 • 091 
Mean 1. 102 1. 097 1. 098 
Std. Dev. 0.060 0.064 0.077 

* Based on stud capacities from pushout tests (30, 32, 34, 46). 
** Based on stud capacities calculated using E = 5000/f' MPa. c c 
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Fig. 3.1 Failure at Web Opening with Low M/V Ratio. 

Fig. 3.2 Failure at Web Opening with High M/V Ratio. 
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Fig. 3.33 Cracking in the Slab Above the Opening. 

Fig. 3.34 Longitudinal Rib Failure. 
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Fig. 3.35 Rib Failure in Slab with Transverse Ribs • 

• 
Fig. 3.36 Bridging of Slab at Opening. 
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Fig. 5.4 Forces Acting at Web Opening. 

Fig. 5.5 Stress Distributions for Design Method I. 
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Fig. 6.1 Composite Beam with Web Opening. (a) Schematic. 
(b) Deflection Model. 
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Fig. 6.2 Composite Beam in Floor System. 
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APPENDIX A 

NOTATION 

of the stress block in the 
a concrete stress of o.85f' c 

concrete calculated 

depth of the stress block in the slab at the high moment 
end of the opening 

depth of the stress block in the slab at the low moment 
end of the opening 

opening length 

effective area for axial stress in the bottom tee 

effective area for shear stress in the slab 

flange area 

area of reinforcing steel suggested to control crack 
size in the slab above the opening 

stiffener area 

effective area for axial stress in the top tee 

web area 

effective area for shear stress in a beam away from a 
web opening 

effective area for shear stress in the top tee 

effective area for shear stress in the bottom tee 

total width of slab on test beam 

effective width of slab 

flange width 

total stiffener width, including web thickness 

distance from the neutral axis to the extreme compres­
sive fiber in the slab at the high moment end of the 
opening 
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c . 1=1-4 
Wl' 

D 

e 

e xi' 1=1-2 
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f' c 
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distance from the neutral axis to the extreme compres­
sive fiber in the slab at the low moment end of the 
opening 

compressive force in the steel section 

constants in the bottom tee moment-axial force equations 
for the case when the neutral axis is in the web above 
the stiffener 

constants in the bottom tee moment-axial force equations 
for the case when the neutral axis is in the flange 

constants in the bottom tee moment-axial force equations 
for the case when the neutral axis is in the stiffener 

constants in the bottom tee moment-axial force equations 
for the case when the neutral axis is in the web below 
the stiffener 

coefficient of variation 

steel section depth 

distance from the top of the flange of the top tee to 
the centroid of the concrete force at the high moment 
end of the opening 

distance from the top of the flange of the top tee to 
the centroid of the concrete force at the low moment end 
of the opening 

dead load 

opening eccentricity 

local x eccentricities at node i for a beam element with 
two rigid links 

local y eccentricities at node i for a beam element with 
two rigid links 

modulus of elasticity 

modulus of elasticity for concrete 

normal stress in concrete 

concrete strength 
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1eff 
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[Kg] 
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Kij 
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tensile strength of shear connector 

yield strength of the steel section 

yield strength of the flange in uniaxial tension 

yield strength of the stiffener in uniaxial tension 

yield strength of the web in uniaxial tension 

the reduced longitudinal yield strength in the web due 
to shear 

distance to the neutral axis in the top or bottom tee 

distance to the neutral axis in the top tee at the high 
moment end of the opening 

distance to the neutral axis in the top tee at the low 
moment end of the opening 

shear modulus 

opening height 

rib height 

stud height after welding 

effective moment of inertia for the gross section 

moment of inertia of a steel beam 

moment of inertia of the transformed composite section 

element stiffness matrix for tee 

global stiffness matrix for tee 

global stiffness matrix for web opening element 

elements of global stiffness matrix for web opening 
element 

length of rigid links connecting beam element to the 
bottom tee element 

length of rigid links connecting beam elements to the 
top tee element 
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live load or length of a uniform beam element 

distance from a beam support to the centerline of a web 
opening 

beam span 

primary moment at the opening centerline 

secondary moment at each end of the bottom tee 

secondary moment in the bottom tee at the high moment 
end of the opening 

secondary moment in the bottom tee at the low moment end 
of the opening 

maximum moment capacity 

nominal moment capacity at a web opening 

total moment at failure for test opening 

primary moment at the opening centerline 

secondary moment in the top tee at the high moment end 
of the opening 

secondary moment in the top tee at the low moment end of 
the opening 

factored moment at the opening centerline 

squash load ratio 

squash load ratio at crossover of the neutral axis from 
the web to the flange the high moment end of the bottom 
tee 

squash load ratio at crossover of the neutral axis from 
the stiffener to the web below the stiffener at the high 
moment end of the bottom tee 

squash load ratio at crossover of the neutral axis from 
the web above the stiffener to the stiffener at the high 
moment end·of the bottom tee 

squash load ratio at crossover of the neutral axis from 
the flange to the web at the low moment end of the 
bottom tee 
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number of studs between the high moment end of the 
opening and the support 

number of stud shear connectors above the web opening 

number of studs per rib 

axial force in tee 

bottom tee axial force 

bottom tee axial force at low moment end of opening 

bottom tee axial force at high moment end of opening 

crushing capacity of slab 

concrete force at high moment end of web opening 

concrete force at low moment end of web opening 

steel force at high moment end of web opening 

maximum capacity of top tee steel 

steel force at low moment end of opening 

top tee axial force 

top tee axial force at high moment end of opening 

top tee axial force at low moment end of opening 

normal force in the bottom tee web 

normal force in the top tee web 

normal force in the steel tee at crossover of the 
neutral axis from the web to the flange at high moment 
end of opening 

normal force in steel tee at crossover of the neutral 
axis from the web to the flange at low moment end of 
opening 

normal force in steel tee at crossover of the neutral 
axis from the web below the stiffener to the stiffener 
at low moment end of opening 
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normal force in steel tee at crossover of the neutral 
axis from the stiffener to the web above the stiffener 
at low moment end of opening 

percentage of maximum top tee shear capacity applied to 
top tee 

parameter for distribution of shear between top and 
bottom tees 

nominal strength of one stud shear connector embedded in 
a solid slab 

coefficient of correlation 

reduction factor for studs in ribbed slabs 

web stub depth for bottom tee 

web stub depth for top tee 

effective slab thickness for shear stress 

flange thickness 

minimum slab thickness 

web thickness 

yield capacity of net steel section at web opening 

maximum slab thickness 

global degree of freedom in the x direction at node i 

local degree of freedom in the x direction at node i 

global degrees of freedom for beam element 

local degrees of freedom for beam element 

global degree of freedom in the y direction at node i 

local degree of freedom in the y direction at node i 

shear force acting at opening centerline 

shear assigned to the bottom tee 

maximum shear capacity of bottom tee 
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smaller of the tensile yield capacity of the gross steel 
section or the crushing strength of the concrete slab 

sum of shear stud capacities between the point of maxi­
mum moment and the nearest point of zero moment 

maximum shear capacity at web opening 

nominal shear capacity at web opening 

plastic shear capacity of the bottom tee web 

plastic shear capacity of the top tee web 

"pure shear" capacity for the top tee 

"mechanism" shear capacity of top tee 

shear due to secondary moment from the concrete 

top tee shear strength, smaller of Vt(max) and Vt(sh) 

total shear at failure for web opening test 

uniform load ~pplied to beam 

average rib width 

neutral axis location in the top tee 

global coordinate x axis 

local coordinate x axis for bottom tee 

local coordinate x axis for top tee 

distance from bottom of top tee to centroid of concrete 
force at high moment end of opening 

distance from bottom of top tee to centroid of concrete 
force at low moment end of opening 

distance from bottom of top tee to centroid of stiffener 

distance between the axial forces in the top and bottom 
tees 

parameters for maximum shear capacity calculation 
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parameter for bottom tee maximum shear capacity 
calculation 

element stiffness matrix parameters for the bottom tee 

element stiffness matrix parameter for the top tee 

normalized opening deflection at failure 

eccentricity transformation matrix 

deflection across web opening at failure 

deflection at point of maximum moment at failure 

calculated deflection considering bending only 

calculated deflection considering shear only 

global degree of freedom for rotation at node i 

local degree of freedom for rotation at node i 

coefficient in linear approximation to von Mises 
criterion 

factors for maximum shear capacity of top tee 

yield stress obtained from uniaxial tension test 

normal stress, reduced for shear 

shear stress in the slab 

shear stress in the bottom tee web 

shear stress in the top tee web 

shear stress 

flexural strength reduction factor 

shear strength reduction factor 
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APPENDIX B 

SUMMARY OF PREVIOUS EXPERIMENTAL WORK 

A number of experimental investigations of composite beams with 

rectangular web openings have been conducted (8, 9, 11, 19, 32, 34, 

37, 41). Granade ( 19), Clawson and Darwin (9, 11), and Cho (8) 

tested composite beams with solid, or flat-soffit slab construction. 

Redwood and others at McGill University (32, 34, 46) tested com­

posite beams with ribbed slab construction with the ribs oriented 

transverse to the steel section. Prototype tests were conducted in 

Illinois (37) and Australia (41). The test configurations used in 

previous investigations are summarized in Tables B.1 - B.3. The 

test results for the previous investigations are summarized in Table 

B.4. The two prototype tests are not included in the tables. The 

beam tested by Wiss, Janney, and Elstner Associates (37) failed by 

longitudinal shearing of the slab near a support, and the failure 

was not related to the web opening. The test conducted by Thompson 

and Ainsworth (41) was not continued to failure. 
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Table B.1 Material Strengths for Previous Investigations 

Yield Strengths, ksi 

Top Bottom F ** f' u c 
Test* Flange Flange Web Stiffener ksi psi 

01 43.8 43.8 47.9 N.A. 3970 
02 43.8 43.8 47.9 3990 
C1 39.4 40.4 38.5 N.A. 7000 
C2 39.3 39.9 42.4 4200 
C3 39.3 39.9 42.4 4930 
C4 46.4 44.9 52.0 4460 
C5 43.9 45. 1 44.2 4680 
C6 42.9 43.5 49.8 4020 
CH03 44. 1 43. 4 50.8 60.3 3270 
CH04 54.0 50.7 64.6 60.3 3040 
CH05 54.0 50.7 64.6 60.3 3270 
CH06 44.1 43.4 50.8 50.8 60.3 3270 
CH07 54.0 50.7 64.6 50.8 60.3 3170 
RO 50.6 50.6 56.1 N. A. 3830 
R1 40. 1 40. 1 45.1 --- 3190 
R2 43.8 43.8 47.3 2830 
R3 42.2 42.2 47.2 4290 
R4 43.7 43.7 48. 1 3960 
R5 40. 1 40. 1 45. 1 3190 
R6 43.7 43.7 47.2 2610 
R7 43.7 43.7 47.2 2610 
R8 44. 1 44. 1 44.0 2480 

* G- Granade (19) 
C - Clawson and Darwin (9, 11 ) 
CHO - Cho (8) 
R - McGill Tests (32, 34) 

** Stud tensile strength 
N.A. indicates data not available 
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Table 8.2 Section and Opening Dimensions for Previous 
Investigations, in. 

t bf(Top} tf(Top} tw Test d st sb 
G1 8.00 6.5ii 0.463 o. 285 1.630 1:63'0 
G2 8.00 6.54 0.463 0.285 1 .630 1.630 
C1 14.00 6.75 0.453 0.287 3.003 3.003 
C2 17.88 7.50 o. 475 0.356 3.475 3. 710 
C3 7.50 0. 475 0.356 3.605 3.650 
C4 7.50 o. 485 0.343 3.485 3.555 
C5 18.13 6.00 0.623 0.380 3.683 3.745 
C6 14.00 6.69 0. 475 0.296 2.855 2.803 
CH03 7.87 5.91 0.354 0.236 1.500 1. 500 
CH04 11.81 5.91 0.354 0.256 2.360 2.400 
CH05 11 • 81 5.91 0.354 0.256 2.400 2.320 
CH06 7.87 5.91 0.354 0.236 1.540 1. 500 
CH07 11 .81 5.91 0.354 0.256 2. 360 2.360 
RO 9.98 4.02 0.256 0.228 2.039 2.039 
R1 14.01 6.87 0.448 0. 293 2.810 2.810 
R2 14.05 6.74 o. 441 0.309 2.830 2.830 
R3 14.03 6.74 0.444 o. 313 2.820 2.820 
R4 14.04 6.86 o. 436 0.313 2.835 2.835 
R5 14.01 6.87 0.448 o. 293 1. 410 4.210 
R6 14.05 6.75 0.437 0.305 2.835 2.835 
R7 14.05 6.75 0.437 0.305 2.835 2.835 
R8 13.98 6.69 0.450 o. 292 2.795 2. 795 

Testt bf(Bot} tf(Bot} boone b * t T Opening Size 
e s s 

G1 6.54 0.463 24.0 24.0 3.6 3.6 4.80 X 7.20 
G2 6.54 0.463 24.0 24.0 3.6 3.6 4.80 X 7.20 
C1 6.75 0.453 48.0 48.0 4.0 4.0 8.00 X 16.00 
C2 7.50 0.520 48.0 48.0 4.0 4.0 10.81 X 21.63 
C3 7.50 0.520 48.0 48.0 4.0 4.0 10.81 X 21.63 
C4 7.50 0.495 48.0 45.0 4.0 4.0 10.81 X 21.63 
C5 6.00 0.615 48.0 48.0 4.0 4.0 10.81 X 21.63 
C6 6.69 0.423 48.0 45.0 4.0 4.0 8.00 X 16.00 
CH03 5.91 0.354 21.6 21.6 5.3 5.3 4. 72 X 7. 28 
CH04 5.91 0.354 23.8 23.8 5.4 5.4 7.05 X 10.63 
CH05 5.91 0.354 23.8 23.8 5.3 5.3 7.09 X 10.63 
CH06+ 5.91 0.354 23.8 23.8 5.3 5.3 4.61 X 7.13 
CH07+ 5.91 0.354 23.8 23.8 5.3 5.3 7.09 X 14.37 
RO 4.02 0.256 39.4 39.4 2.6 5.6 5.91 X 11.81 
R1 6.87 o. 448 47.2 39.4 2.6 5.6 8.39 X 16.77 
R2** 6.74 0.441 47.2 47.2 2.6 5.6 8.39 X 16.77 
R3** 6.74 0.444 47.2 47.2 2.6 5.6 8,39 X 16.75 
R4** 6.86 0.436 47.2 47.2 2.6 5.6 8,39 X 16.75 
R5 6.87 0. 448 47.2 39.4 2.6 5.6 8.39 X 16.77 
R6 6.75 0. 437 39.4 39.4 2.6 5.6 8.39 X 16.75 
R7 6.75 0.437 39.4 39.4 2.6 5.6 8. 39 X 16.75 
RS 6.69 0.450 39.4 39.4 2.6 5.6 8. 39 X 16.75 

t G ~Granade (19}, C- Clawson and Darwin (9, 11 ) 
CHO- Cho (8), R- McGill Tests (32, 34) 

* b • effective slab width (as per Reference 2) 
e 

+ stiffeners on top and bottom tees: t
5 

= 0.236, b = 4.170, y = 0.374 s s 

** cover plates of unknown thickness and width were welded to the bottom 
flange away from the opening. 
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Table 8.3 Stud and Rib Properties for Previous Investigations. 

Stud 
+ h t tt * ** Test Diameter H w N N s r r 0 

in. in. in. in. 

G1 5/8 2.5 2 10 
G2 2 16 
C1 3/4 3.0 _:,:._ 4 14 
C2 2 16 
C3 2 16 
C4 4 10 
C5 4 16 
C6 4 10 
CH03 1/2 3.94 4 12 
CH04 4 18 
CH05 4 20 
CH06 4 12 
CH07 4 20 
RO 3/4 4.84 3.0 6.0 1 * 1 4*1 
R1 1*1 4*1 
R2 1*2 9*2 
R3 2*2 11 *2 
R4 1*0 5*1 
R5 1 * 1 4*1 
R6 2*0 2*2 
R7 2*2 4*2 
R8 2*2 4*2 

+ H stud height after welding s 
t h rib height = r 

tt 
= average rib width w r 

* 
N = no. of studs over opening -- For ribbed slabs = no. of ribs * 

0 of studs/rib no. 

** N = no. of studs between high moment end of opening and support --
For ribbed slabs = no. of ribs * no. of studs/rib 
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Table B.4 Test Results for Previous Investigations. 

Reported 
Maximum Load 

Applied Load Total Load at Opening 
* M M t . M v Test V at Opening Vd a opemng 

(ft) (in.-kips) (kips) 

G1 2.00 3.02 791 32.7 
G2 4.00 6. 11 1296 26.5 
C1 7.00 6.17 2886 33.4 
C2 9.00 6.24 4107 36.8 
C3 33.00 21.84 5468 14.0 
C4 3.00 2.02 1723 47.6 
C5 6.00 4.03 3511 48. 1 
C6 3.00 2.60 1471 40.4 
CH03 1. 48 2. 26 634 35.7 
CH04 2.63 2.68 1477 46.7 
CH05 10.83 10.97 2319 17.9 
CH06 1.48 2. 26 721 40.6 
CH07 10.83 11.95 2664 20.6 
RO 3.28 4. 14 752 18. 2 
R1 3. 10 2.69 978 26.0 
R2 8.20 7. 20 2904 28.7 
R3 19.68 17.36 3995 16.4 
R4 19.68 17.49 3217 13. 1 
R5 3.10 2.68 1037 27.6 
R6 3. 10 2.65 788 21.2 
R7 3.10 2.64 1133 30.5 
R8 3.10 2.66 1075 28.9 

* G - Granade (19) 
c - Clawson and Darwin (9, 11) 
CHO - Cho (8) 
R - McGill Tests (32, 34) 
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APPENDIX C 

DETERMINATION OF NEUTRAL AXES LOCATIONS 
IN THE BOTTOM TEE 

In the bottom tee, the neutral axis may be located within one 

of two regions at the low moment end and within one of four regions 

at the high moment end. The following procedure is used to establish 

the neutral axis location at each end of the opening. 

The moment-axial force equations for the bottom tee are given 

below. The neutral axis at the low moment end of the opening is 

initially assumed to be in the flange. The four possible neutral 

axis locations at the high moment end of the opening are then checked 

for a valid solution. If no solution is obtained, the neutral axis 

at the low moment end of the oper.ing is assumed to be in the web. 

The four possible locations at the high moment end are then checked 

for a valid solution. 

C.1 NEUTRAL AXIS IN THE FLANGE AT THE LOW MOMENT END 

When the neutral axis is above the stiffener at the high moment 

end of the opening, moment equiliprium requires that 

2 2 2 
= (Cf1cf3 + ca1ca3ln 

+ 2(Cf1cf2cf3- ca1ca2ca3ln 

+ c~2cf3+ c~2ca3 + cf4 + ca4 (c. 1) 
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in which cf 1' cf2 , cf
3

, and Cf4 are given by Eq. (4.11a)-(4.11e) and 

Ca 1' ca2 ' ca3 ' and ca4 are given by Eq. (4.19a)-(4.19e). 

The crossover shear at the high moment end, Vxh' is obtained by 

substituting n~h (Eq. (4.23)) for n in Eq. (C.1). The crossover 

shear at the low moment end, Vxl' is obtained by substituting n~1 
(Eq. (4.17)) for n in Eq. (C.1). If vb .S. vxh and vb .S. vxl' Eq. (C.1) 

is valid for Vb and is solved for n. 

When the neutral axis is in the stiffener at the high moment 

end, moment equilibrium requires that 

= cci1cf3+ c;1cs3)n2 

+ 2(Cf1cf2cf3 - cs1cs2cs3)n 

+ ci2cf3 + c!2cs3 + Cf4+ cs4 (c. 2) 

in which cs 1, cs 2 ' cs
3

, and cs 4 are given by Eq. (4.21a)-(4.21e). 

Vxh is obtained by substituting n~h (Eq. (4.25)) for n in Eq. 

(C.2), while Vxl is obtained by substituting n~1 (Eq. (4.17)) for n 

in Eq. (C.2). If vb .S. Vxh and vb .S. vxl' Eq. (C.2) is valid for vb 

and is solved for n. 

When the neutral axis is in the web at the high moment end, 

moment equilibrium requires that 
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?. 2 2 
= ccf,cf3+ cw,cw3)n 

+ 2(Cf1cf2cf3 - cw,cw2cw3ln 

+ c~2cf3 + c!2cw3 + Cf4+ cw4 (C.3) 

in which Cwl' cw2' cw
3

, and cw4 are given by Eq. (4.15a)-(4.15e). 

Vxh is obtained by substituting n~h (Eq. (4.27)) for n in Eq. 

(C.3), while Vxl is obtained by substituting n~1 (Eq. ( 4.17)) for n 

in Eq. (C.3). If vb i vxh and vb i vxl' Eq. (C.3) is valid for vb 

and is solved for n. 

When the neutral axis is in the flange at the high moment end, 

moment equilibrium requires that 

f 
Vxl is obtained by substituting nxl for n in Eq. (C.4). If Vb i Vxl' 

Eq. (C.4) is valid for Vb and is solved for n. 

C.2 NEUTRAL AXIS IN THE WEB AT THE LOW MOMENT END 

When the neutral axis is above the stiffener at the high moment 

end of the opening, moment equilibrium requires that 
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(C.5) 

Vxh is obtained by substituting n~h (Eq. (4.23)) for n in Eq. 

(C.5). If Vb ~ Vxh , Eq. (C.5) is valid for Vb and is solved for n. 

When the neutral axis is in the stiffener at the high moment 

end, moment equilibrium requires that 

2 2 2 
= (Cw1cw3+ cs1cs3)n 

+ 2(Cw1cw2cw3 - cs1cs2cs3)n 
2 2 

+ cw2cw3 + cs2cs3 + cw4+ cs4 (C.6) 

Vxh is obtained by substituting n~h (Eq. (4.25)) for n in Eq. 

(C.6). If Vb ~ Vxh' Eq. (C.6) is valid for Vb and is solved for n. 

When the neutral axis is in the web at the high moment end, 

moment equilibrium requires that 

(C.7) 
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f Vxh is obtained by substituting nxh (Eq. (4.27)) for n in Eq. 

(C.7). If Vb ~ Vxh' Eq. (C.7) is valid for Vb and is solved for n. 

When the neutral axis is in the flange at the high moment end, 

Vxh is obtained by substituting n~h (Eq. (4.27)) for n in Eq. (C.3). 

If Vb ~ Vxh' Eq. (C.3) is valid for Vb and is solved for n. 
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APPENDIX D 

MECHANISM SHEAR CAPACITIES OF TOP AND BOTTOM TEES 

FOR COMPARISON WITH TEST DATA 

For comparison with test data, the bottom and top tee shear 

capacities are calculated using separate values for the web and 

flange yield strengths, as follows: 

BOTTOM TEE 

in which a = 3 + 

a - Ia' - 4aY 
2a 

F (b -
2/3 yf f 

sb 

+ 2/3 A F t sb + 2a [F f(bf - t ) + AF t ) yw w o y w yw w 

and A= 1.207. 

(D. 1 ) 

Fyf = flange yield strength and Fyw =web yield strength for 

the bottom tee. 



TOP TEE 

in which a. = 3 + 

235 

a - la 2 
- 4aY 

2a 

+ /§"(P - p ) 
ch cl 

(D. 2) 

+ 2 /§"(P d 
st ch h 

F yf = flange yield strength and- F yw = web yield strength for 

the top tee. 
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APPENDIX E 

DEFLECTIONS 

The introduction of a web opening in a composite beam can have 

a significant affect on the beam deflection. The reduced stiffness 

at the opening will cause both an increased maximum deflection and a 

differential deflection across the opening. In some cases, these 

increased deflections may be unacceptable. Thus, there is a need for 

an analysis procedure which predicts the total and local deformations 

due to web openings. 

Deflection analysis procedures that consider the effects of web 

openings in steel and in composite beams have been proposed ( 16, 17, 

26, 27, 38) . Whi 1 e one of these procedures ( 16) has been shown to 

provide reasonable agreement with data for steel beams, no com­

parisons have been made with data for composite beams. Procedures do 

exist for obtaining the deflection of composite sections without 

openings (19, 34). 

The deflection analysis procedures for steel beams with web 

openings (16, 17, 26, 27, 38) require that the deflected shape of the 

unperforated section be calculated. Deflections due to the web 

opening are then added to those found for the unperforated section. 

The Subcommittee on Beams with Web Openings of the Task 

Committee on Flexural Members of the Structural Division of the ASCE 

(38) has proposed an approximate procedure which models the portions 
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of the beam above and below the web opening as cantilevered tees with 

the low moment end fixed. One half of the shear at the opening is 

applied as a concentrated load to the free end of each tee, The 

deflection of the beam from the high moment end of the opening to the 

support is found by enforcing compatibility of vertical displacement 

and rotation at the high moment end of the opening. The deflection 

of the beam from the low moment end of the opening to the other 

support is ignored. Only the bending deflection of the tees is 

considered. Also, no consideration is made for slope compatibility 

at the low moment end of the opening or for axial deformation of the 

tees. While no comparisons with test results have been published, 

the subcommittee reports that the procedure is conservative. 

McCormick has proposed an approximate procedure in which points 

of contraflexure are assumed to be at the opening centerline (26, 

27). Bending and shear deformations of the tees are considered, but 

compatibility at the opening ends is not enforced. McCormick sug­

gests that no composite action should be considered at the web 

opening in composite beams. No comparisons with experimental results 

are made. 

Dougherty considers the bending and shear deformation of the 

tees and enforces compatibility of vertical displacement and slope at 

ends of the opening (16, 17). Axial deformation of the tees is 

neglected. Dougherty also proposes an empirical procedure for find­

ing the inelastic deformation of steel beams with openings. 
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Both McCormick and Dougherty assign shear to the tees in 

proportion to their relative flexural and shear stiffnesses. 

Dougherty's procedures give good results when compared with ex­

perimental work (16). 

Granade (19) and Redwood and Wong (34) compare calculated 

deflections of unperforated composite beams with measured deflections 

of composite beams with web openings. Granade considers only bending 

of the gross section, while Redwood and Wong consider both bending 

and shear deformations. In both cases, the analyses are too stiff, 

and the predicted total deflections are slightly low. 

Obviously, the introduction of a web opening will have an 

effect on the stiffness of a beam. A web opening will reduce the 

beam stiffness by: 

1) Lowering the gross moment of inertia at the opening, 

2) Eliminating strain compatibility between the tees at the 

opening, and 

3) Reducing the amount of material available to transfer shear 

at the opening. 

While the first reduction will result in increased curvature at 

openings subjected to bending, the second and third reductions will 

result in Vierendeel (differential) deflections across openings 

subjected to shear. 

To correctly calculate the deflection of a beam, equilibrium, 

compatibility, and material properties must be satisfied throughout 

the span. A complete analysis will consider both bending and shear 
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deformation. Although classical methods incorporating all of these 

requirements can be developed, it is possible to obtain equivalent 

results (within the accuracy of any assumptions) using matrix 

methods. The matrix approach is particularly attractive since it can 

automatically enforce compatibility of displacement and rotation at 

the ends of an opening. 

In the following sections, the stiffness method of matrix 

analysis is applied to beams with web openings. Experimental data 

are used in a parametric study to determine the importance of includ-

ing shear deformation in the analysis. Recommendations for the 

practical application of the procedure are made. 

E.2 ANALYSIS PROCEDURE 

Fig. E.1 illustrates a web opening in a composite beam. The 

opening is of length a
0 

and depth h
0

• The beam span and the opening 

location are L and L , respectively. Section dimensions at the s 0 

opening are as shown (Fig. E. 1b). The web adjacent to an isolated 

opening is considered to be infinitely rigid. If the portions of the 

beam above and below the opening, the top and bottom tees, are 

modeled as uniform beam elements, a web opening element consisting of 

two beam elements connected by rigid links can be developed. 

A web opening element (Fig. E.2) is constructed using four 

rigid links and two beam elements. The nodes of the web opening 

element are connected to the ends of the top and bottom tee elements 

by rigid links of length lt and lb, respectively. 
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Nodes 1 and 2 of the web opening element are located so that 

the positive global coordinate x axis, x , passes through the nodes. 
g 

The local coordinate x axes for the tee elements, xt and xb, pass 

through the centroids of the respective tees. The web opening ele-

ment stiffness matrix is developed using an eccentricity 

transformation (13). 

A beam element with two rigid links, representing a top tee, is 

shown in Fig. E.3. The local and global x axes are parallel, and 

eccentricities in both x and y directions exist at each node (Fig. 

E.3a). The local degrees of freedom for the beam element, {Ut}, are 

given by 

(E.1) 

.and the global degrees of freedom for nodes 1 and 2, \U J, are given 
g 

by 

{Ug}T = [ug1' vg1' eg1' ug2' vg2' eg2} 

as shown in Fig. E.3b. 

(E.1a) 

An eccentricity transformation matrix, [6], relates the local 

element degrees of freedom and global degrees of freedom of nodes 1 

and 2. 

= [6]{U } 
g 

(E.2) 
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0 -e y1 0 0 0 

0 ex1 0 0 0 

0 0 0 0 0 (E.3) 
[6] = 

0 0 0 0 -e y2 

0 0 0 0 ex2 

0 0 0 0 0 

in which ey 1 and ey2 are the local y eccentricities and ex 1 and ex2 

are the local x eccentricities for nodes 1 and 2, respectively (Fig. 

E. 3a). 

For the web opening element, ex1 = ex2 = 0 for each tee. ey1 = 

ey 2 = lt for the top tee, while ey1 = ey2 = - lb for the bottom tee 

(Fig, E.2). 

The global stiffness matrix for each tee is 

(E.4) 

in which [Ke] is the element stiffness matrix for a tee. The global 

stiffness matrix for the web opening element, [K ] , is the sum of 
g wo 

the global stiffness matrices for the top and bottom tee elements, 
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[K ], the stiffness matrix for a uniform beam element incor­
e 

porating both shear and axial deformation, is (13) 

A/8 0 0 -AlB 0 0 

1 L/2 0 -1 L/2 

(L 213 + n) 0 -L/2 (L2/6 - n) 
[K ] = ES/L (E.5) e AlB 0 0 

SYM, -L/2 

(L213 + n) 

in which E = the modulus of elasticity, B = II(L 2/12 + n), n = 

EI/(A G), A = the effective shear area, A= the gross transformed y y 

area for axial deformation, L = the element length, and I = the 

moment of inertia for the transformed section. 

The tee elements in the web opening element are of length a • 
0 

Therefore, substituting for L and adding the global stiffness 

matrices for the top and bottom tee elements gives [K ] . 
g WO 

K11 K12 K13 K14 K15 K16 

K22 K23 K24 K25 K26 

[Kg]wo = E/a K33 K34 K35 K36 0 

K44 K45 K46 

SYM. K55 K56 

K66 

(E.6) 
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Away from the opening, the web of the steel section carries all 

of the shear. Thus, 

in which d 

E.1b). 

A = dt 
y w 

the steel section depth and t w 

(E. B) 

the web thickness (Fig. 

Moments of inertia for the individual tees at the opening are 

calculated considering the steel tees only. The concrete is not 

considered to be effective for the top tee moment of inertia. Web 

openings subjected to moderate or high amounts of shear display 

cracking of the concrete over the opening at relatively low loads. 

Also, it is likely that only limited composite action develops over 

the opening at service loads (low slip). The concrete slab will, 

therefore, add only a small amount to the bending stiffness of the 

top tee. 

The effective area of the top tee, At, is calculated using the 

area of the top tee steel plus the transformed area of the concrete 

at the opening. Thus, the centroid of the top tee element is the 

centroid of the transformed section of the top tee. 

At the opening, the webs of the steel tees carry the shear. 

Thus, 

(E.9a) 
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and 

in which st = the top tee stub depth and sb 

depth (Fig. E.1b). 

(E.9b) 

the bottom tee stub 

ksi. 

Steel sections are modeled using E = 29,000 ksi and G = 11,150 

Concrete is modeled using E = 57/fl ksi; f' in psi. c c 

E.4 PARAMETRIC STUDY 

E.4.1 General 

In this section, the proposed deflection analysis procedures 

are compared with the results of twenty-five tests. The calculated 

deflections are compared with measured deflections at 30 and 60 

percent of the ultimate load. The analyses are made using POLO-

FINITE (24). 

To study the importance of shear deformation on beam deflec-

tion, the beam deflections are calculated either 1) considering shear 

deformations throughout the span (V) or 2) ignoring shear deforma-

tions throughout the span (NV), 

As a preliminary step in the study, the analysis procedure was 

tested for its sensitivity to the number of elements used to model a 

beam. A single beam was analyzed using 5, 9, and 11 elements, repre-

senting models with 3 gross section and 2 web opening elements; 7 

gross section and 2 web opening elements; and 7 gross section and 4 

web opening elements, respectively (Fig. E.4). The maximum variation 
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in deflection at the maximum moment location was 0.2%. Because the 

analyses were not sensitive to the number of elements, most models 

use 5 elements. The single exception is Test 6A from the current 

study, which requires 6 elements. 

The test beams are modeled using rigid links at the supports in 

addition to the rigid links at the web opening (Fig. E.4). The links 

at the supports connect the node at the bottom flange of the beam to 

the centroid of the transformed section. All openings are modeled 

with two eccentric beam elements (Fig. E.4a), with one element for 

each tee. This combination is equivalent to the single web opening 

element defined in Eq. (E.6). 

The deflection data used in the parametric study include 13 

tests from the current study, 6 tests by Clawson and Darwin (9, 11), 

2 tests by Granade (19), and 4 tests by Redwood and Wong (34). Two 

of the beams tested by Redwood and Wong had cover plates. The width 

and thickness of these plates was not published; a cover plate of the 

same thickness and width as the beam flange is assumed. The data for 

4 tests conducted at McGill and for Cho's tests were not published in 

a useable form. Two openings in the current study (Beams 4A and 4B) 

and the fourth opening tested by Redwood and Wong had no studs over 

the opening and are excluded from the parametric study. 

The comparisons that follow should be prefaced by a comment on 

a built-in bias of the test results. The tests were designed 

primarily to obtain data on the strength at web openings; the beams 

were relatively short and opening locations in high shear regions 
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predominated. For this reason, the relative importance of shear 

deformation and deflection through the opening will be greater than 

for longer beams in which flexural deformation plays a greater role. 

E.4.2 Comparison with Test Data 

The following comparisons are based on deflections under ap­

plied load (i.e., dead load deflections are not considered). 

Calculated and measured deflections at the point of maximum moment 

and through the opening are compared for the two models (V and NV) in 

Fig. E.5-E.8. The measured and calculated deflections for each test 

are also presented in Tables E.1 and E.2, along with the ratios of 

calculated to measured deflection for the models. The tables include 

the mean ratios of the calculated to measured deflection, along with 

the standard deviation and the coefficient of variation for the two 

models. The deflections across the opening are compared with the 

total deflections, both for the test and calculated results, in Table 

E.3. 

Overall, both models provide reasonable agreement with test 

results for total deflections at the point of maximum moment. The 

models provide somewhat poorer agreement with test results for 

deflections through the opening. In most cases, model V provides 

better agreement with test results for total deflections, while model 

NV provides better agreement with test results for deflections across 

the opening. The ratios of calculated to measured deflection 



decrease as the load is increased from 30 to 60 percent of the ap-

plied load at ultimate, reflecting the relatively early onset of 

yield at the openings (Chapter 3). 

At both 30 and 60 percent of the ultimate load, on the average 

model V provides good agreement with test results for total deflec-

tions, while model NV is too stiff (Fig. E.5 and E.6 and Tables E.1 

and E.2). However, some individual tests deviate appreciably from 

the calculated deflections. At 30 percent of ultimate load, the 

average ratios of calculated to measured deflection for models V and 

NV are 1.155 (coefficient of variation, C = 26.1 percent) and 0.996 v 

(C = 26.6 percent), respectively. At 60 percent of ultimate load, 
v 

the average ratios of calculated to measured deflection are 1.025 (C 
v 

= 20.8 percent) and 0.882 (C = 2>.3 percent), respectively. 
v 

For total deflections, model V is stiff when compared with test 

results for openings with high shear-span to depth ratios, M/Vd. At 

30 percent of ultimate load, the ratios of calculated to measured 

deflection are 0.951, 0.741, and 0.991, for Tests 3 (M/Vd = 26.30), 

R3 (M/Vd = 16.83), and C3 (M/Vd = 22.14), respectively. These repre-

sent the lowest ratios of calculated to measured deflection for each 

of the respective test series. However, model V is very flexible 

when compared with test results for openings with relatively stiff 

slabs and low M/Vd ratios. Tests 8A, 88, 9A, and 9B had relatively 

stiff slabs as compared to the steel tees at the opening. The ratios 

of calculated to measured deflection for the four tests are 1.652, 

1.713, 2.069, and 1.624. 
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Both models exhibit large scatter when compared with the 

deflection across the opening (Fig. E. 7 and E. 8). At 30 percent of 

ultimate load, both models are too flexible when compared with most 

test data (Table E.1). At 60 percent of ultimate load, the models 

are better, but on the average are still flexible when compared with 

test results (Table E.2). Six of the tests were considerably stiffer 

than the models (88, 9A, 98, RO, C1, and C4). Tests 8A-98 had rela­

tively stiff slabs as compared to the steel tees at the opening. 

Tests RO, C1, and C4 had very small measured deflections across the 

openings (less than 0.062 in. at 60 percent of ultimate load), al­

though they had relatively low M/Vd ratios. Low deflections tend to 

amplify the effects of other factors, such as measurement errors and 

seating errors in the beam. These six tests tend to skew the data, 

resulting in mean ratios of calculated to measured relative deflec­

tion that indicate a flexible model. 

These comparisons with test results suggest that in some cases 

the models may be improved by the addition of partial composite 

action at the opening. However, sizeable improvement will likely 

require the consideration of non-linear materi·al response. 

The relative importance of the deflection across the opening to 

the total deflection is considered in Table E.3. Ratios of the 

deflection across the opening to the total deflection are summarized 

for the measured deflections at 30 and 60 percent of ultimate load 

and for the calculated deflections. In most cases, the ratios for 

measured deflection are relatively constant as the load increases 
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from 30 to 60 percent of ultimate, while the ratios obtained for the 

two models compare well with each other. Also, in most cases, the 

ratios for the calculated deflections agree with the ratios for the 

measured deflections. Noteable exceptions are Tests 8B, 9B, and C4, 

three tests for which the models greatly overestimate the deflection 

across the opening. 

As would be expected, the relative importance of the deflection 

across the opening tends to decrease with increasing M/Vd ratio. 

Tests 3, R3, and C3 have the highest M/Vd ratios for their respective 

test groups and have the lowest ratios of deflection across the 

opening to total deflection. 

E.4.3 Case Study 

The deflection analysis procedures generally provide good 

agreement with test results for total beam deflection. However, the 

test results were obtained from beams which were not typical of beams 

used in buildings. Most of the test beams had relatively short spans 

and all of the test beams were loaded using point loads. 

A limited study of composite beams with uniform loads is con­

ducted to determine the effects of web openings on uniformly loaded 

beams. W21 x 44 steel beams with a 6 in. composite ribbed deck (3 

in. ribs) are modeled. The beams are spaced at 8 ft and are loaded 

with a uniform load of 1.52 kips/ft (equivalent to a live load of 

0.128 kips/ft2 and a dead load of 0.062 kips/ft 2). Two spans, 40 ft 

and 20 ft, are considered. The beams are modeled assuming E = 29,000 
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ksi, G= 11,150 ksi, AY= 7.32 in~, andieff= 2936 in? A 12-3/8 x 

24-3/4 in. opening is placed in the beam. The distance of the open-

ing centerline from the support, L
0

, is varied from 4 to 20 ft for 

the beams with span length Ls = 40 ft and is varied from 4 to 10 ft 

for the beams with L =20ft (Fig. E.1a). Shear deflections through s 

the span are considered and ignored in separate analyses. Similar 

beams with no openings are also modeled. 

The results of the analyses are summarized in Table E.4. As 

the table indicates, the effect of the opening on the centerline 

deflection is relatively small for the beams with 40 ft spans, but is 

somewhat higher for the beams with 20 ft spans. The greater relative 

effect of the openings on the shorter beams is due to the fact that 

the opening represents a greater portion of the span. 

For the beams with 40 ft spans, the ratio of the centerline 

deflection with an opening to the centerline deflection without an 

opening decreases from 1. 054 to 1. 044 (model V) as the opening is 

moved from 4 ft from the support to midspan. In this case, the 

effect of shear deformation through the span is nearly independent of 

opening location. The ratio of the centerline deflection considering 

shear to the centerline deflection ignoring shear varies from 1.048 

to 1.043 as the opening moves from 4ft from the support to midspan, 

while the calculated ratio for the beam without an opening is 1.046. 

For the beams with 20 ft spans, the ratio of the centerline 

deflection with an opening to the centerline deflection without an 

opening decreases from 1.286 to 1.058 (model V) as the opening is 
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moved from 4 ft from the support to midspan. The ratio of centerline 

deflection considering shear to the centerline deflection ignoring 

shear drops from 1.179 to 1.164 as the opening moves from 4ft from 

the support to midspan, while the ratio for the beam without an 

opening is 1.203. 

The maximum deflection for the beams with a 40ft span is 1.136 

in. and occurs when the opening is 4 ft from the support. This 

deflection is equivalent to L /423 and is well within the limit set 
s 

by the Uniform Building Code (43) for live load plus dead load 

deflection (L /240). Since the beams are over-designed for the 20ft s 

span, the deflections are so small under the given loads as to be of 

no consequence. 

Using classical beam theory for a uniformly loaded beam, the 

ratio of maximum deflection considering bending and shear to the 

maximum deflection considering only bending, (6b + 6s)/6b, can be 

shown to be 

= 1 + 
48Eieff 

5A G L2 
y s 

(E.10) 

This ratio is 1.044 and 1.174 for the beams with 40 and 20 ft spans, 

respectively. The ratios compare well with the results obtained from 

the matrix analysis, suggesting a practical alternative to model V; 

to include the effect of shear deflection, the total deflection of 
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beams with web openings can be obtained by multiplying the deflec­

tions obtained with model NV by Eq. (E.10). The ratios also show 

that the error caused by ignoring shear deflection is about the same, 

with or without a web opening. 

One more comparison is in order. That is a comparison of an 

accurate estimate of true total deflection (model V) with the deflec­

tion obtained by ignoring both the opening and the effects of shear 

deflection. The latter case is, of course, the standard used in 

building design. 

In the case of the 40 ft span, the ratio of the V model deflec­

tion with an opening to the NV model deflection without an opening 

ranges between 1.09 and 1.10. For the 20ft span, the ratio ranges 

from 1.28 to 1.55. For long spans, the contribution of the two 

effects still represents only a small portion of the total 

deflection. However, for shorter spans or long spans with multiple 

openings, these effects can be significant and should be included in 

the analysis. 

This comparison suggests some useful future research: The 

development of a design aid with factors, based on opening size and 

location, that would be applied to the bending deflection of a beam 

without an opening to obtain an accurate estimate of total deflection 

with an opening. 
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E.5 RECOMMENDATIONS 

Model V provides reasonable results when compared with the test 

results for total deflection, while model NV is about 12 percent too 

stiff when compared to total deflections at 60 percent of ultimate. 

Neither model provides a good correlation with test results for the 

deflection across the opening. However, both models are, on the 

average, more flexible through the opening than the test specimens 

and are therefore conservative for design applications. 

The case study indicates that a web opening has an increasing 

effect on deflection as both the shear at the opening and the rela­

tive size of the opening are increased. The case study also 

indicates that the deflections obtained with model NV can be modified 

to include shear effects by multiplying by Eq. (E.10). 

Based on this limited study, a number of practical alternatives 

for estimating total deflection exist. The most accurate estimates 

can be obtained with the model V. Similar results, with little loss 

in accuracy, can be obtained by multiplying the. deflections obtained 

with model NV by Eq. (E.10). Ignoring both shear deflections and the 

opening can lead to significant errors in estimates of total 

deflections. 



Table E. 1 Measured and calculated deflections at 30 percent of ultimate load. 

Deflection at 
Point of Maximum Moment Deflection across Oeenins 

Calculated- Calculated-
Deflection, in. Measured Deflection, in. Measured 

• Calculated Ratio Calculated Ratio 
Test M/Vd Measured v NV v NV Measured v NV v NV 
-1- :G)~ 0,116 O.l28 0. 110 1.l06 o-:91!5 0.065 0.071 o:06li 1.098 0.987 
2 3.78 0.137 0.137 o. 117 0.997 0.853 0.060 0.066 0.058 1. 103 0.966 
3 26.30 0.211 0.201 o. 175 0.951 0.829 0.052 0.027 0.025 0.517 0.1!77 
5A 3.78 0. 111 0.132 o. 116 1. 193 1. 0~11 0.052 0.059 0.052 1.134 0.995 
58 3.78 o. 128 0.132 o. 115 1. 034 0.897 0.081 0.084 0.073 1. 034 0.907 
6A 0.00 0.048 0.01!9 0.035 1.013 0.733 0.047 0.052 0.01!6 1 • 1 01 0.968 
68 2.04 0.108 0.123 0.104 1. 140 0.967 0.066 0.083 0.073 1. 251! 1. 106 
7A 2.01! 0.11!7 o. 171! 0. 1511 1. 182 1. 01!9 0.061 0.089 o. 081 1.458 1. 323 
78 3.78 0. 199 o. 211 o. 189 1.060 0. 951 0.061 0,081! 0.076 1.371! 1. 238 N 

\J1 8A 3.89 0.062 0.102 0.087 1. 652 1.402 0.033 0.046 0.038 1. 379 1.160 "' 8B 2.90 0. 06!1 0.110 0.091 1.713 1. 519 0.028 0. 101 0.094 3.621 3.362 
9A 2.04 0.057 0. 118 o. 101 2.069 1. 779 0.055 0. 115 o. 106 2.088 1. 918 
98 1. 75 o. 100 0.162 o. 141 1.624 1 • 1!07 0.01!6 0. 159 0.11!6 3.1!63 3.171 
RO 3.94 0.153 0.144 0.124 0.940 0.811 0.031 0.053 0.01!8 1 .702 1.535 
R1 2.66 0.100 0.081 0.066 0.807 0.662 0.038 0.050 0.01!3 1. 307 1. 143 
R2 7.00 0.233 o. 173 o. 157 0.741 0.675 0.047 0.039 0.034 0.836 0.726 
R3 16.83 0.272 0.279 0.252 1.027 0.928 0.017 0.024 0.020 1. 400 1.156 
C1 6.00 0.329 0.344 0.319 1. 047 0.968 0.051 0.070 0.062 1. 379 1. 217 
C2 6.04 o. 274 0. 276 0.252 1.008 0.921 0.060 0.068 0.061 1. 138 1.017 
C3 22.15 0.285 0.282 0.256 0.991 0.897 0.028 0.036 0.034 1. 293 1. 219 
C4 2. 01 0.091 0.112 0.092 1. 228 1. 01 2 0.023 0.081 0.070 3.508 3.058 
C5 3.97 0.186 0.209 0. 186 1. 123 1. 001 0.059 0.079 0.069 1. 333 1. 175 
C6 2.57 0.124 o. 148 0.124 1. 193 1.001 0.048 0.072 0.062 1.509 1. 293 
Gl 3.00 o. 108 0.107 0.086 0.987 0.795 Mean 1. 566 1. 292 
G2 6.00 0.128 0.136 0. 110 1.059 0.857 Std. Dev. 0.833 0.763 
Mean 1. 155 0.996 Coeff. of Variation 53.2% 59.1% 
Std. Dev. 0.302 0.265 
Coeff. of Variation 26. 1% 26.6% 

• Based on applied load 



Table E. 2 Measured and calculated deflections at 60 percent of ultimate load. 

Deflection at 
Point of Maximum Moment Deflection across OEenin~ 

Calculated- Calculated 
Deflection, in. Measured Deflection, in. Measured 

• Calculated Ratio Calculated Ratio 
Test M!Vd Measured v NV v NV Measured v NV v NV 
-1-2:04 0.256 0.257 o:-:?19 1.002 0:857 0.170 0.142 0.127 0.834 0.748 
2 3. 78 o. 305 0. 272 0.233 0.892 o. 763 o. 161 o. 132 0.116 0.822 0.720 
3 26.30 0.447 0.400 0.350 0.896 0.782 0.088 0.053 0.049 0.600 0.553 
5A 3.78 0.244 0.264 0.231 1. 081 0.945 0. 127 0. 118 0.103 0.929 0.815 
58 3.78 0.303 0.264 0.229 0.871 0.755 0.214 o. 167 0.146 o. 778 0.682 
6A o.oo o. 107 0.096 0.070 0.899 0.657 o. 149 0. 103 0.090 0.694 0.895 
68 2.04 0.246 0.245 0.208 0.997 0.845 0.162 0.166 0.145 1.022 0.453 
7A 2.04 0.321 0.348 0.308 1.083 0.960 0.150 o. 177 o. 160 1. 179 1. 069 
7B 3. 78 0.409 0.421 0.378 1.029 0.923 0.130 0.167 0.150 1. 281 1. 154 N 
8A 3.89 0.159 0. 192 0. 160 1. 210 1. 008 0.090 0.087 0.077 0.966 0.851 'Vl 

" 88 2.90 0. 146 0. 218 o. 193 1.495 1. 325 0.102 0.202 o. 187 1. 978 1.836 
9A 2.04 0.152 0.236 0.203 1. 552 1. 334 0. 174 0.230 0.210 1. 320 1. 207 
.9B 1. 75 0.223 0.325 0.280 1.457 1. 257 0.130 o. 319 0.292 2.451 2. 244 
RO 3.94 0.272 0.287 0.248 1.053 0.913 0.062 0.104 0.093 1.685 1.502 
R1 2.66 0.230 0.161 0.131 0.702 0.571 0.115 0.098 0.085 0.855 0.738 
R2 7.00 0.453 0.344 0.313 0.760 0.692 0.096 0.078 0.068 0.808 0. 711 
R3 16.83 0.585 0.558 0.504 0.953 0.861 0.033 0.048 0.039 1. 442 1 • 191 
C1 6.00 0.836 0.689 0.637 0.824 0.762 0.034 0. 1110 0.124 4.108 3.651 
C2 6.04 0.643 0.552 0.504 0.859 o. 7811 0.154 o. 137 0.122 0.887 0.793 
C3 22. 15 0.679 0.5611 0.511 0.830 o. 753 0.073 0.072 0.067 0.992 0.921 
C4 2.01 0.216 0.223 0.183 1. 034 0.8118 0.058 o. 161 o. 141 2. 782 2.426 
C5 3.97 0.403 0. 417 0.371 1.034 0.922 0.139 0. 157 0.139 1 • 131 0.997 
C6 2.57 0.277 0. 295 o. 248 1.064 0.896 0.116 0.145 0.124 1. 249 1.070 
G1 3.00 0.216 0.213 o. 171 0.987 0.790 Mean 1.339 1.189 
G2 6.00 o. 255 0.270 0.218 1. 059 0.856 Std. Dev. 0.816 o. 729 
Mean 1.025 0.882 Coeff. of Variation 60.9% 61.3% 
Std. Dev. 0.213 0.188 
Coeff. of Variation 20.8% 21.3% 

• Based on applied load 
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Table E.3 Ratios of Deflection across the Opening to 
to Deflection at the Point of Maximum Moment. 

Ratios for Ratios for 
Measured Calculated 

* 
Deflection Deflection 

Test M/Vd 30% 60% v NV 
1 2.04 0.560 0.664 0.555 0.582 
2 3.78 0.438 0.528 0.482 0.496 
3 26.30 0.246 0. 197 o. 134 0.143 
5A 3.78 0.468 0.520 0.447 0.448 
58 3.78 0.633 0.706 0.636 0.635 
6A 0.00 0.979 1 • 393 1 • 061 1 • 314 
68 2.04 0. 611 0.659 0.675 0.701 
7A 2.04 0.415 0.467 0. 511 0.526 
78 3.78 0.307 0.318 0.398 0.402 
8A 3.89 0.532 0.566 0.451 0.437 
88 2.90 0.438 0.699 0.918 0.969 
9A 2.04 0.965 1 • 1 45 0.975 1. 050 
98 1. 75 0.460 0.583 0.981 1. 035 
RO 3.94 0.203 0.228 0.368 0.387 
R1 2.66 0.380 0.500 0.617 0.652 
R2 7.00 0.202 0.212 0.225 0.217 
R3 1 6. 83 0.063 0.056 0.086 0.079 
C1 6.00 0.155 0. 041 0.203 0. 194 
C2 6.04 0.219 0.240 0.246 0.242 
C3 22. 1 5 0.098 0. 1 08 0.128 o. 133 
C4 2.01 0.253 0.269 0.723 0. 761 
C5 3.97 0.317 0.345 0.378 0.371 
c6 2.57 0.387 0.419 0.486 0.500 

* Based on applied load 
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TableE.4 Effect of a 12-3/8 x 24~3/4 in. Web Opening on the 
Deflection of a W21 x 44 Composite Beam. 

40 ft Span 
Centerline 

Opening- Across Opening 
Opening Deflection V-NV No Opening Deflection V NV 

Location Model in. Ratio Ratio in. Ratio 
4 v 1. 136 1. 048 1. 054 0.271 1.063 
4 NV 1. 084 1. 051 0.255 

6.5 v 1. 133 1. 047 1. 051 0.240 1. 062 
6.5 NV 1. 082 1. 049 0. 226 

9 v 1 • 131 1. 045 1. 049 0.204 1. 068 
9 NV 1. 082 1. 049 0. 191 

14 v 1. 132 1. 044 1. 050 o. 117 1. 054 
1 4 NV 1. 084 1. 051 0. 111 
20 v 1. 125 1. 043 1. 044 o.ooo 
20 NV 1. 079 1. 047 0.000 

No Opening v 1. 078 1. 046 
No Opening NV 1. 031 

20 ft SEan 
Centerline 

Opening- Across OEenin~ 
Opening Deflection V-NV No Opening Deflection V-NV 

Location Model in. Ratio Ratio in. Ratio 
4 v 0.099 1. 179 1. 286 0.056 1.120 
4 NV 0.084 1. 313 0.050 

10 v 0.082 1. 164 1. 058 o.ooo 
10 NV 0.070 1. 094 o.ooo 

No Opening v 0.077 1. 203 
No Opening NV 0.064 
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Fig. E.1 Composite Beam with Web Opening. (a) Schematic of Beam. 
(b) Detail of Opening. 
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Fig. E.3 Beam Element with Two Rigid Links. (a) Global and Local Axes. 
(b) Global and Local Degrees of Freedom. 
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Fig, E.~ Deflection Analysis Model for Beam with Web Opening. 
(a) 5 Element Model. (b) 9 Element Model. (c) 11 Element 
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Fig. E.5 Calculated versus Measured Total Deflection at 30 Percent of 
Ultimate Load. (a) Model Y. (b) Model NY. 
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Fig. E.7 Calculated versus Measured Deflection across the Opening at 
30 Percent of Ultimate Load. (a) Model V. (b) Model NV. 
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Fig. E.8 Calculated versus Measured Deflection across the Opening at 
60 Percent of Ultimate Load. (a) Model V. (b) Model NV. 




