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CHAPTER 1
INTRODUCTION

1.1 General

Ccnerete is one of the most widely used engineering materials. 1In
spite of its common use, the relationships between the behavior of concrete
and the behavior of its constituent materials, and the factors that control
the behavior of concrete under general types of loading are not well under-
stood. The ever widening applications of conerete as a structural material
make it increasingly important to improve both our understanding of the
behavior of concrete and our ability to accurately predict its response
under load,

Under various loading conditions, concrete exhibits a rate-~dependent
behavior. This phenomena is not well understood and explanations for it
have been limited to the role of water within the structure of cement paste
[45]. Complete explanations of rate dependency require an understanding of
the internal behavior of concrete. Concrete for special applications, such
as nuclear reactor pressure vessels, must meet striet performance standards,
These standards can only be adequately ensured if the basic behavior of the
material is well understood, Knowledge of the mechanisms which control the
benavior of concrete and 1ts constifuent materials will preovide a rational
basis for developing material behavior laws.

Conecrete 18 a highly heterogeneous material, Its response to loading
is inelastic. Even for a relatively homogeneous and isotropic material,
such as steel, external macroscopic cbservations do not provide sufficient
information to explain its behavior, especialiy at strains where its
response 1s inelastic. Thus, microscopic and submicroscopic dislocation
processes in ductile metals have been used to explain maecroscopic yvielding
£78]. An understanding of deformation mechanisms at the microscopic and
submicroscopic levels in concrete will enable constitutive models tco be
formulated based on structural changes which actuzlly take place.

The microscopic behavior of concrete under load has been studied during
the last twenty-five years. Microscopiec cracks {microcracks) exist in
concrete prior to loading and propagate with load
[17,27,32,42,60,76,77,78,82]. The term microcracking has, in general, been



limited to relatively large microcracks which are observed under low mag-
nifications of up to 50x at the paste—aggregate interface and in the mortar
constituent of concrete, The surface density of these microcracks has been
shown to increase from about 1 in./in.2 for nonicaded specimens up to abcut
3.5 in./in.2 for specimens loaded tec strains of 0.003 in uniaxial compres—
sion [17,42], 1t has become clear that the behavior of conerete under
compressive as well as tensile loads Is closely related to the formation of
micreoeracks.

During the early period of the microcracking studies, concrete was
considered to be made up of two brittle materials, paste and aggregate, with
the full nonlinearity being assigned to the microcracking [42,79]. More
recently, however, investigators [22,57,58,59,8%,86,87,88] have shown that
the nonlinearity of concrete subjected to compressive loading is highly
dependent upon the nonlinearity of its cement paste and mortar constituents.
Cement paste is not a linear elastic and brittle material as previously
thought [42,79], but is rather a nonlinear softening material that is
damaged continuously under load [85,87,88]. The process of damage in mortar
and concrete begins at very low strains and is also continuous
{22,56,59,86,87]. These recent studies strongly indicate that microeracking
does not fully explain the load-deformation behavior of concrete.
Microcracking now appears to have its greatest effect on lateral strain
[57].

The present study investigates, at the submicroscopic level (1250x
magnification), the internzl behavior of cement paste and mortar subjected
to unlaxial compressive loading. The origin, causes and significance of
cracks at the submicroscopic level in cement paste and mortar are explored.
A better understanding of the engineering properties of concrete can be
obtained if the behavior of its constituents 1s well understood. This could
lead to improvements in the properties as well as improved use of the
materials., The need for safe, economical concrete structures can best he

satisfied if the behavior of concrete can be more accurately predicted,

1.2 Previcus Work

1.2.1 Background
In 1963, Hsu, et al. [42] studied the formation and propagation of

microcracks in cohcrete subjected fto uniaxial compressive loading using



microscopic and x-ray techniques. One technique consisted of cutting a thin
slice (0.15 ineh thick) from a specimen and cbserving the cracks as shown in
an x—-ray photograph [81]. The other consisted of cutting the specimen,
filling the cracks with a red dye, and examining the c¢ross—section under an
optical microscope at U40x magnification [42]. Hsu, et al. found that prior
to loading, bond cracks at the interflace between coarse aggregate and mortar
exist in plain conerete. Above about 30% of the ultimate load, these bond
cracks begin to Increase appreciably in length, width and number with in-
ereasing strain. At this load, the stress—strain curve begins to deviate
appreciably from a straight line. At 70% to 90% of the ultimate load,
cracks through the mortar increase noticeably, and bridge between bond
cracks to form continuous crack patterns., Mortar c¢racking continues at an
accelerated rate until the material ultimately fails., They concluded that
the shape of the siress-strain curve of plain concrete under short-term
uniaxial compressive loading is related to microcracking.

Using the optical microscope technigque, Shah and Chandra [771 and
Mevers, Slate and Winter [60] have shown that miecrocracks inereass under the
effect of sustained and cyclic loading,

Carrasquillo,‘Slate and Nilson {17] found that the bond-mortar crack
classification system, useful in studying behavior of normal strength con-
crete, i3 not highly relevant for microcrack studies of high strength
concretes (fé Z 6000 psi). They suggested that the classification of
migrocracks into simple and combined coracks, and the distinction between
different types of combined cracks, is more appropriate for high strength
concretes.

Derucher [27] used a scanning electron microscope (SEM) to obtain a
somewhat different picture of the microscopic behavior of conarete, 1In
order to observe microcracks with the SEM withcut having to unload the
specimens (as did Hsu, et al.), he applied eccentric compressive loads to
concrete specimens. The specimens had to be dried for proper operation of
the SEM. 1In order to determine if the drying procedure caused additional
microcracking in the apecimens, Derucher used an optical microscope. He
concluded that no cracks were induced by drying, Using the SEM, he found
that bond cracks, with mortar microcrack extensions, exist in concrete prior
to loading. Under increasing compression, the bond cracks propagate by a

amall amount and widen. At a stress as low as 15% of the ultimate strength,



the mortar cracks widen and propagate to the point where they begin to
bridge bond cracks. Bridging of the bond cracks is about complete at U45% of
the ultimate strength. At 75% of the ultimate strengih, the mortar cracks
start to bridge one another.

The importance of interfacial paste-~aggregate bond strength on the
behavior of concrete under load has been studied in a number of investiga-
tions [23,41,71,76,79,90]. Darwin and Sliate [23] and Perry and Gillott [71]
found from thelr studies that a large reduction in interfacial strength
results in only about a2 10 percent reduction in the compressive strength, as
compared to similar concrete made with aggregate with normal interfacial
strength., These two studies indicate that the interfacial strength plays a
relatively minor role in controlling the stress—strain behavior and ultimate
strength of concrete.

When concrete and cement paste are tested in uniaxial compression,
conerete exhlbits a general pattern of interlaced microcracks near its peak
atress while cement paste fractures in an‘abrupt, even explosive, manner.
The eracks Iin cement paste are fewer in number but of much greater length.
This distinction between the modes of fracture of cement paste and concrete
is responsible for the previous pelief that cement paste is essentially a
linear elastic, brititle material [88]. A%t a2 time when cement paste was
thought to be linearly elastic, Spooner [85] proposed that the curvature of
the stress-strain curve of conerete at low stresses might be due to creep of
the cement paste and that cracking was responsinle for further curvature as
the stress was raised to failure. His attempt to calculate the uniaxial
compresslve stress—-strain curve for cement pastes from data obtained from
creep tests was only partially successful. The calculated curves were
stiffer than the experimental curves. He suggested that the poor agreement
between the calculated and experimental stress—strain curves might be at-
triputed te structural damage in the specimens, causing greater strains to
occur than accounted for by creep alone, He showed that cement paste is a
nonlinear material.

Using a cyelie loading procedure, Spconer, et al. [86,87,88]
demonstrated that both paste and concrete undergo measurable damage at
strains as low as 0.0004 and that both materials are damaged progressively,
Damage was measured in terms of the energy dissipated and changes in the

modulus of elasticity. Cook and Chindaprasirt [22] and Maher and Darwin



[58,59] showed that the process of degradaticn of mortar during monotonic as
well as cyclic compressive loading 18 continuous and begins at very low
loads. Maher and Darwin measured residual strains for applied strains as
low as 0.00027. When combined with the work of Derucher, in which he ob-
served that mortar c¢racks widen and propagate at a stress level as low as
15% of the ultimate strength of concrete, these studies Iindicate that the
nonlinear behavior of cement paste, mortar and concrete can be closely tied
to damage sustained by these materials, even at very low loads.

The importance of mertar in contrelling the stress-—sirain behavior of
concrete is iliustrated by the finite element work of Buyukozturk [186] and
Maher and Darwin {57)]. Maher and Darwin showed that by using a nonlinear
representation for mortar in a finite element model of concrete, the non-~
linear behavior of concrete can be closely matched, The finite element work
of Buyukozturk could not duplicate the nonlinear experimental behavior of
concrete using the formaticon of bond and mortar cracks as the only nonlinear
effect,

A number of investigators [22,77,97] have found that sustained lcading
increases the strength and initial modulus of elasticity of cement paste,
mortar and concrete. 8Shah and Chandra [77] showed that on reloading, paste
and concrete specimens loaded to stress—-strength ratios of 60% and 709 for
four hours, exhibit strength increases in comparison with the controls,
Cyclic loading [223 on other hand, results in decrease in strength and
gstiffness upon reloading. The structural changes due to cyclic loading may
be of a different nature than those due to creep.

The physical nature of the damage that cccurs in cement paste at the
submicroscopic level is not well understood. Velumetric strain measurements
by Spooner, et al. [88] indicate that a reduction in the rate of volume
decrease, implyling internal cracking, occurs in cement paste during compres-—
sive loading. Yoshimote, et al. [103,104] observed microcracks in the
cement matrix of concrete and mortar under flexural and compressive loading,
They examined thin slices of mortar and concrete {about 37 um thick) with an
optical microscope at 150x magnification. The technique of slicing was
similar to that of Slate and Olsefski [82] except that the slices were
ground until 1light could penetrate through. They suggested that "hair-
shaped" cracks occur at very low strains in the cement matrix of concrete.

When the length of the "halr-shaped" ¢racks reaches a certain value, the



cracks stop extending in length but change in shape from a halr to a void.
The "void-shaped" cracks propagate with the inereasing of strain, They
fTurther suggested that mortar cracks develop from the "veid-shaped" cracks,

because the "void-shaped” cracks are the largest flaws in the cement matrix,

1.2.2 Work that Impacts on this Study

The studies discussed in the last section show that conerete is a
nonlinear material, but only a small porticn of its nonlinearity is ex-
plained by microcracking. Cement paste and mortar are alsé nenlinear
materials. Thus, the nonlinearity of concrete can best be explained if the
nonlinearity of its paste and mortar constituents is well understood. Load-
induced changes in cement paste and mortar need to be studied in order to
obtain a clear understanding of the nonlinear behavior of these materials,

Hsau, et al. [42] studied microcracks in concrete loaded in uniaxial
compression using optical microscope and x-ray procedures, These two proce—
dures suffer from the limitatlon that only cracks of widths larger than
about 50 pm can be exanmined [633. The scanning electron microscope (SEM)
has a much higher degree of resolution than the optical microscope. In
addition, the SEM has a depth of focus that is 30 to 40 times greater than
that of the optical microscope [100]. Derucher [27] used the SEM to observe
that mortar cracks in concrete widen and propagate al a stress level lower
than that obtained by Hsu, et al. The superior resclution and depth of
focus of the SEM may have enabled Derucher to observe mortar cracks which
were finer than those observed by Hsu, et al.

Cracks have been observed in the cement matrix of mortar and concrete
by Yoshimoto, et al. [103,104] using an optical microscope. They suggested
that mortar cracks in concrete develop from the cracks they observed. The
study of very small cracks in cement paste requires the use of an SEM.

In order Lo observe cracks in saturated specimens of cement paste and
mortar, Mindess and Diamond [63] used an SEM equipped with an environmental
chamber or "wet cell", They used a loading device which enabled them to
subject the specimens to compressive loading within the SEM chamber. In
both the paste and mortar specimens, cracks were first noted at an applied
stress of about 5500 psi. These cracks were about the same size as those
observed with optical microscope and x—-ray procedures. From their

micrographs, it is observed that the resolutions they obtained were not as



high as c¢btained with a conventional SEM with dry specimens
(28,29,51,96,101]. It is therefore possible that cracks which might have
formed at lower stresses were not detected. A differsnt procedure is needed
if smaller cracks are to be observed.

The microstructure of cement paste has been studied for several years
with the aid of the SEM [19,28,29,51,62,89,96,97,101]. These studies have
been done using fractured surfaces of the hardened paste. Sawed and
polished surfaces are not recommended since the effects of émearing tend to
make the identification of microstructural features difficult [51]. The two
major products of hydration are calcium silicate hydrate (CSH) and calecium
hydroxide (CH). It is generally agreed among the various investigators that
calcium silicate hydrate gives cement paste most of its strength., Berger,
et al. [9] and Diamond [29] identified four structural types of calclun
silicate hydrate: Types I, II, III and IV, Flaws and stress concentrators
which exist in cement paste have been identified by Williamson [101].

Constitutive models have been used to determine the effects of cracks
on the stress-strain response of concrete [16,56,76,88]. Buyukozturk [16]
used a linear finite element representation of a physical model of concrete.
He could not duplicate the nonlinear experimentsl behavior of concrete using
the formation of interfacial bond cracks and mortar cracks as the oniy
nonlinearities. Testa and Stubbs [91] also used a linear representation of
mortar in a mathematical model to determine the effects of bond failure on
the stress-siraln response of concrete. Thelr model could not mateh the
behavior of concrete.

Shah and Winter [79] accounted fer the inability of their linear elas-
tic model to duplicate the nonlinear behavior of concrete by considering the
statistical variations in the lcecal strength of conerete. By the proper
selection of these variations, they were able to duplicate the bshavior of
concrete., However, the major nonlinear behavior of concrete can also be
matched by considering the nonlinearities of the mortar constituent, as
shown by Maher and Darwin {57] in their finite element model. Thus, an
understanding of the nonlinearities of mortar and cement paste should lead
to a better understanding of the stress—strain behavior of concrste.

The models discussed above do not conslder the three—dimensional crack

size and orientation distributions. A complete cracking model should in-



clude these distributions. Constitutive models based on the "self-
consistent method® {12,351 account for crack distributions and have been
used to estimate the elastic meduli of cracked solids [t4,38,40,67]. The
method considers changes in the strain energy of a solid due toc the forma-
tion of individual cracks. The changes in eéenergy are based on material
properties as they are modified by the cracks. Budiansky and C'Connell
(14,67) and Horii and Nemat—-Nasser [Y0] used the method to estimate the
elastic moduli of solids containing isctropie distributions of cracks.
Hoenig [38] estimated the elastic modull of solids iIn which cracks are
distributed with a single orientation.

Distributions of load-induced cracks in cement paste, mortar or con-
crete under uniaxial compressive loading should be symmetric about the
longitudinal or loading axis of the specimen. These crack distributions
would therefore render the material transversely isotropic with five inde-
pendent elastic moduli. The self-consistent model has yet to be applied to
such a transversely isotropic sclid.

The nature of damage at the submicroscopic level in cement paste sub-
jected tc uniaxial compressive loading and its relationship to the noniinear
behavior of paste, mortar and concrete remains to be adequately

investigated.

1.3 Techniques for Crack Studles

Two techniques have been used to study stress—induced microscoplic
cracks in concrete and its constituent materials.

In the firat technique, the optical microscope and x-ray photographs
are used to study the cracks [42,60,76,77,82,103,108]. Specimens of cement
paste, mortar or concrete are lcaded to predetermined stralins and then
unioaded., Sawed and polished surfaces of the specimens which are perpen-
dicular to the direction of loading (transverse surfaces) are studied under
low magnification (typically about 7x to 50x) using an optical microscope or
without magnification using x-rays. By this procedure, cracks have been
identified at the interface between coarse aggregate and mortar {bond
cracks) and within mortar {mortar cracks). A major disadvantage of this
procedure is that only cracks of widths larger than about 50 um can be

identified,.



In the second technique, small specimens of cement paste, mortar or
conorete are studied under load within an SEM [27,28,29,63]. Cracks are
recorded as they form. The viewing plane is limited to a polished surface
which is parallel to the loading direction (longitudinal surface).
Transverse surfaces cannot be viewed., Saturated specimens are viewed using
an SEM equipped with a "wet cell". The resclution obtained with saturated
specimens Is such that the magnification is limited to at most 500x. The
poor resolution is due to gas (water vapor) in the SEM chamber. Because of
the limited magnification, cracks observed in saturated specimens tend to be
about the same size as those observed with the optical microscope and x-
rays. Very high resclutions are obtained with the SEM when dry specimens
are used [28,29,51,96,1011. Therefore, observations of cracks which are
smaller than thdse observed in saturated specimens require the use of dry
specimens. Derucher [27] used dry specimens in the SEM but limited his
studies to s magnification of 100x. The cracks he studied were the same
size as those studied by Hsu, et al. with the optical microscope [#2]. High
resoclutions can be obtalned with the SEM at magnifications on the order of
10000x when dry specimens are used.

The two techniques described above have been limited to providingAa
two-dimensional picture of cracks in concrete and its constituent materials,
vased on crack trace lengths on either transverse or longitudinal surfaces.
A full understanding of material response to cracking requires a knowledge
of three-dimensional crack distributions within the material volume. Since
the materials are opague, the three-dimensional crack distributions cannot
be obtained direectly. An accurate estimation of these distributions using
stereological principles [9%,98] requires that surface crack data on both
transverse and longitudinal surfaces be obtained. This requirement suggests

nodifying the above technigues.

1.4 QObject and Scope

The purpose of this investigation is to study submicroscoplice cracking
of cement paste and mortar under uniaxial compressive loading and to corre-
late the observed cracks with the applied strain and load history.

Cement paste and mortar specimens are subjected to uniaxial compressive
loading. The cement pastes studied are representative of those found in

low, normal and high strength concretes. Mixes with water-cement ratiocs of
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G.7, C.5 and 0.3 are used. The mortar studied corresponds to concrete with
a water—cement ratio of 0.5. Tests on cement paste include "short-term"
monotonie, sustained and c¢yclic loading, while tests on mortar are limited
to "short—ferm" monotonic loading. Specimens are tested at ages of 27, 28
or 29 days.

Drying procedures are established to prepare nonloaded and prelocaded
specimens for viewing in the SEM. Cracking on transverse and longitudinal
surfaces of the specimens is studied at a magnification of 1250x.
Microstructural features in cement paste and mortar are also studied.

Statistical and sterecloglcal models are developed to convert the
surface crack distributions to three-dimensional distributions. The extent
of cracking in cement paste and mortar is compared.

A self-consistent model is developed for a transversely isotropic
cracked material, Submicrocracking is correlated with the reducticon in
stiffness and the shape of the stress—strain curves of cement paste and

mortar using the self-consistent model.
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CHAPTER 2
EXPERIMENTAL STUDY

2.1 General

The experimental program was designed to study submicroscopic cracking
of cement paste and mortar under uniaxial compression. Cement paste
specimens were subjected tc monotonic, sustained or cyelic loading. Mortar
specimens were subjected to monotonic loading.

The cement pastes studied were representative of those found in low,
normal and high strength concretes. Water—cement ratios (W/C) of 0.7, 0.5
and 0.3 were used. The mortar studied corresponded to conecreie with a W/C
of 0.5,

The test specimens were loaded in compression using a closed—loop
servo-hydraulic testing machine., The average axial strain was obtained
using a compressometer and the average lateral strain was obtained using an
extensometer,

After the specimens were loaded, slices were removed and dried for
viewing in a scanning electron microscope (SEM). This portion of the study
provided data on aracks at the submicroscople level in the materials,

In this report, the results of the experimental work are analyzed to
determine the surface and volumetric densities of cracks in cement paste and
mortar {(Chapters 2 and 3) and the effects of the submicroscopic cracks on

the load-deformation behavior of the materials {(Chapters 4 and 5).

2.2 Materials
Cement: Type I portland cement, Ashgrove Brand, of the following com-
8§ = 51.1%, CS = 22,3%, C,AF = 9.5%, and C_A = 8.6%.

3 4 3
Fine Aggregate: consists mainly of quartz, with 10% to 15% chert;

position was used: C

larger particles contain some limestone and dolomite. Fineness Modulus

1}

2.9. Bulk Specific Gravity (Saturated Surface Dry} = 2.62.‘ Apsorption
0.79%. Source: Kansas River, Lawrence, Kansas. The sand was passed through
a #4 sieve before use,

Cearse Aggregate: Crushed limestcne of 1/2 in. nominal size. Bulk
Specific Gravity (Saturated Surface Dry) = 2,52. Absorption = 3,2%.
Source: Hamm's Quarry, Perry, Kansas. The coarse aggregate was passed

through a 1/2 in. sieve befcre use.
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Concrete mixes were designed in order %o obtain the proportions of the
corresponding mertar constituent. Three water-cement ratios, 0.7, 0.5 and
0.3, were used for cement paste, A single mortar mix of W/C = 0.5 was used.

The mix designs are given in Table 2.1.

2.3 Test Procedure

2.3.1 Test Specimen

Prismatic test specimens, 2 in. scuare by 8 in. long, were prepared.
The paste and mortar specimens were mixed using a mechanical mixer following
ASTM C 305-70 [2]. Sand for the mortar specimens was oven—dried during the
twenty—four hour period prior to batching. The mix water was increased to
correct for absorption of the sand. The sand was allowed to cocol before
being placed in the mixer.

Batching was performed at room temperature, which ranged from 68° to
84°F., Six specimens were prepared from each batech. The steel molds (Fig.
2.1) were oiled and sealed with modeling clay. The specimens were cast in a
vertical position. The molds were filled in three equal layers. Each layer
was rodded twenty-five times using & three—eighths in. diameter rod and the
molds were then sealed at the top.

During the first twenty-four hours, the moelids were stored in the
laboratory in a horizontal position to reduce the effects of bleeding. The
specimens were then removed from the molds and stored in lime saturated
water until the time of test.

Prior to loading, the specimens were shortened to a length of 6 in. by
removing equal portions from each end using a high speed mascnry saw.
Specimens were tested 27 to 29 days after casting. In preparation for
testing, specimena were removed from the curing tank and wrapped in plastic

to insure that they would remain in a saturated condition during the teats.

2.3.2 Instron Testing Machine

A 110,000 pound capacity closed~1oop servo—hydraulic Instron testing
machine {Model No, 1334%) was used. The load was transmitted through flat
rigid platens to insure that the imposed displacement was the same at all

points across the width of the specimens. The testing machine allowed the
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test to be controlled by either strain or load. Strain control at a con-
stant strain rate was used for the monotcnic tests, while load contrel was
used for both the sustained and cyclic tests.

Alignment of the.specimens in the testing machine was achieved using
the following procedure, Both ends of the specimens were capped with a one-
eighth in. layer of high strength gypsum cement (Hydrostone). A steel plate
was fixed tc the lower platen of the testing machine by means of Hydrostone
and then ollad. Two layers of # mil polyethylene sheet were placed on this
steel plate to reduce friction between the specimen and the steel plate.
The specimen was then placed on the polyethylene sheets. Two more layers of
polyethylene sheet were placed on top of the specimen. A4 second oiled steel
plate was placed on top of these sheets. The surface of the upper platen
was oiled. A thin layer of Hydrostone was spread on the top plate. By
raising the lower platen, the specimen was slowly brought into contact with
the upper platen. Fifty to cne~hundred pounds of locad were applied. The
Hydrostone hardened in approximately thirty minutes, and then the load was

removed,

2.3.3 Measurement of Axial and Lateral Strains

A five-inch gage length compressometer was used to measure the averags
axial strain {Fig. 2.2). An MTS extensometer, Model 632.11B-20, was in-
stalled on the compressometer to measure the strain and to provide c¢losed-
loop control for the testing machine. The gage length of the extensometer
was 1.0 in., and the range of displacement was + 0.15 in. Measurement of
displacement over the five-inch gage length of the compressometer improved
the sensitivity of the closed-loop control.

The compressometer was attached to wood strips on the test specimen
using set-screws. The wood strips were attached to the specimen using a
cyanoacrylate adhesive immediately after blotting off surface water at the
selected locations on the specimen,

A second extensometer was mounted on each specimen tc measure the
average lateral strain, A one-inch gage extender was attached to the fixed
leg of the extensometer to enable measurements tc be made over a two-inch
gage length. A cyancacrylate adhesive was used fo attach the extensometer

to the specimen. A strong bond was obtained within one minute.
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2.3.4 Data Acquisition

Data on load, axial strain and lateral strain were obtained using a
Hewlett-Packard data acquisition system (3052B). A Hewlett-Packard desktop
computer (9825B) was used to coentrel the system and record the data.
Software tailored to each loading regime automatically acquired data at

apecified Lime intervals,

2.4 Leoading Regimes
2.4,1 General
The loading phase of the experimental work was designed to prepare

specimens with known stress-strain histories for submicroscopic study.
Specimens were subjected to monotonic, sustained or cyclic compressive load
at ages of 27, 28 or 29 days. 3Sixteen batches of cement paste and two
batches of mortar were tested. One specimen from each vatch was used as a
nonloaded control specimen for the submicroscopic studies.

The specimens are identified by batch and specimen number (e.g. 2-1),
type of specimen and water—cement ratic (e.g. P-0.5), and type of test (e.g.

M). A key to specimen identification is provided in Appendix A,

2.4,2 Monotonic Loading

This group of tests constituted the major thrust of the study. Cement
paste and mortar specimens were loaded monotonically in compression to a
specified strain and then immediately unloaded. The specinmens were loaded
and unlcoaded at a straln rate of 0.0000 per minute. The strain tec which
eagh specimen was loaded is shown in Tables 2.2-2.5.

Two batches of cement paste with & W/C = 0.7 and three batches each of
cement paste with W/C = 0.5 and 0.3 were tested. Two batches of mortar with
a W/C = 0,5 were also tested, Cement paste specimens were loaded to strains
of 0.0005, 0.001, 0.002, 0.004 and 0.006, while mortar spescimens were loaded
to strains of 0.000%, 0.001, £.002, 0.003 and 0.00%, In addition, three
specimens from each of the sustained and cyelic test batches were loaded
monotonically: one specimen to failure, and two specimens to strains of
0,004 and 0.006 for the sustalned bateh, 0,002 and 0,004 for the ecyeclic
batch.
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Data was recorded at four second time intervals. Typical stress—strain
curves for cement pastes with W/C = 0.7, 0.5 and 0.3 are shown in Fig. 2.3~
2.5, and in Fig. 2.6 for mortar with a W/C = (0,5, Lateral strains were not
measured for paste with a W/C = 0.7,

The stress—strain curves for cement paste and mortar are nonlinear
(Fig. 2.3-2.6). Fig. 2.4 and 2.5 show that cement paste has a higher strain
capacity than mortar with the same water—cement ratic. The stress-strain
curves of cement pastes with W/C = 0.5 and 0,3 which were loaded to falilure
{Specimens 14~6/P~0.5/M and 16-3/P-0.3/M) are shown together in Fig. 2.7.
This figure shows that cement paste with a W/C = 0.5 has a higher strain
capacity than paste with a W/C = 0.3.

The inltial modulus of elasticity, Ei’ for each specimen 1s also given
in Tables 2,2-2.5. In this study, Ei is the secant modulus obtained from

the first two sets of stress-strain data recorded.

2.4.2.1 Poisson's Ratio and Volumetric Strain

Poisson's ratio, v, is calculated as the ratio of transverse or lateral

strain, ¢ to longitudinal or axial strain, . Volumetric strain, €y is

t’
calculated using the relation

€, = €7 2¢, (2.1}
Relationships between Poisscon's ratic and axial strain, and batween
volumetrice strain and axial strain, are shown in Fig. 2.8-2,13 for monotoni-
cally loaded cement paste and mortar specimens (Specimens 14-6/P-0.5/M, 16-
3/P=0.3/M and 13-6/M-C.5/M).

Fig., 2.8 and 2.9 show that for cement pastes with W/C = 0.5 and 0.3,
Polsson's ratio rapidly attains a value of about 0.24 and then gradually
increases with increasing strain, For mortar with a W/C = 0.5 (Fig. 2.10),
Poisson's ratio rapidly attains a value of about 0.20 and then increases
more rapidly with inecreasing strain than for cemeni paste. The initial low
values of Poisson'’s ratio are attributed te initial seating problems of the
extensometer. It appears that some small load is required on the specimen
in order for the extensometer to become properly seated on the specimen.
Therefore, the values of 0,24 for the cement pastes and 0.20 for mortar are

probably the true initial Poisson's ratios. These values agree well with

values of 0.23-0.26 for cement paste and 0.19-0.21 for mortar obtained from
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previous studies [3,58,59,68,71,76]., The single value for the initial
Polsson's ratio of cement pastes with water—cement ratios of 0.5 and 0.3 is
consistent with the findings of Anson [3] and Parrott [68] that Poisson's
ratio does not vary with water—cement ratic for hardened cement pastes.

Fig. 2.11 and 2.12 show that vclume decreases continuously in cement
paste under uniaxial compressicon. At high applied strains, however, the
figures show that a reduction in the rate of volume decrease occurs, as
indicated by the increasing slope of the axial strain = volumeiric strain
curves. Fig. 2.13 shows that at-low strains, volume decreases continuously
in mortar under uniaxial compression, followed by an incremental volume
increase at higher strains. These observations imply that some type of
structural change takes place and opposes the normal reduction in volume
which occurs under a compressive loading. This structural change is likely

to be internal c¢racking.

2.4%4.3 Sustained Loading

In this group of tests, the stresa-strength ratios were selected %o
enable strains of about 0.004 and 0.006 to be reached in four hours.
Loading to the desired stress level took fifteen seconds. The stress-
strength ratio and strain for each specimen are provided in Table 2.6. The
data for a specimen with a W/C = 0,5 which failed in 2.5 hours at a strain
of 0.0075 is also provided,

Two batches each for cement paste with water-cement ratios of 0.5 and
0.3 were tested. In each batch, one specimen was loaded monétonioally to
failure to determine the compressive strength and two spescimens were sub-
jected to sustained loading. Two specimens were lcoaded monotonically to
strains of 0.004 and 0,Q06,

During the initial stage of loading, data was taken at one second
intervals., The intervals were gradually increased up to 5 minutes as the
test progressed., A typieal stress—strain curve is shown in Fig. 2.18. As
load Is increased to the specified stress level, the stress—strain curve is
nenlinear, Under constant stress, both the longitudinal and lateral strains

increase,
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2.4,3.1 Poisson's Ratic and Volumetric Strain

Fig, 2,15 and 2.16 show the Pgisscon's ratio versus axial strain
relationships for cement pastes subjected to sustained leoading. Fig. 2.17
and 2.18 show the corresponding volumetric strain versus axial strain
relationships, Fig. 2.15 and 2,17 are for a specimen with a W/C = 0.5
{Specimen 154-1/P-0.5/38) which failed at a strain of 0.0075 after a loading
duraticn of 3.5 hours, while Fig. 2.16 and 2.18 are for a specimen with a
W/C = 0.3 (Specimen 16—4/P-0.3/8) which was loaded for 4 hours tc a strain
of about 0.004, Fig. 2.15 and 2.16 show that during the initial stage of
loading to the specified stress level, Poisson's ratio increases with in-
creasing strain.  Under constant stress, Poisson's ratio decreases with
strain.

Parrott [68] subjected cement paste specimens to sustained loading for
durations up to 500 days and obtained a value of 0.13 for the c¢reep
Poisson's ratio. He points out that this low value may be related to the
porous nature of hardened cement paste, The decrease in Polisson's ratio
obtained from the short-term creep tests in this study suggests that con-
solidation or deformation of solid phases intc pores may occur, thus
allowing substantial axial strains to develop without large lateral strains,

Fig. 2.17 and 2.18 show that the volume of the paste specimens
decreases continuously for the stress levels used in this study. After the
specified stress level 1s reached, the rate of consolidation increases as
indicated by the decreased slope of each of the axial strain - volumetric

strain curves.

2.5, 4 Cyclie Loading

In this group of tests, the stress—sirength ratios used enabled strains
of 0.002 and 0.00H4 to be attained for specimens with a W/{ = 0.5, For
specimens with a W/C = 0,3, the selected stress—strength ratics enabled
strains of (0.002, 0.002% and 0.C03 tc be attained. Two attempts at loading
specimens with a W/C = 0.3 to a strain of 0.004 were not successful; the
specimens failed prior to reaching that strain. Each eycle (loading and
unlocading) took 30 seconds. The stress-strength ratio and strain for each
specimen are provided in Table 2.7. The data for a specimen with a W/C =

0.5 which failed at a strain of (0,005 is also provided,
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Two batches each for cement paste with W/C = 0.5 and 0.3 were tested.
One specimen from each batch was loaded monotonically to failure to deter-
mine the compressive strength and two specimens were subjected to cyclic
loading. Two specimens were loaded monotonically to strains of 0,002 and
0.00% for paste with a W/C = 0.5, and to strains of 0.002 and 0.003 for
paste with a W/C = 0,3.

Data was recorded for selected cycles at one second intervals, Fig,
2.19 shows that the stress—stirain curve for cyclic loading is nonlinear. As
the number of cycles to the specified stress level increases, both the

longitudinal and lateral strains increase,

2.4.4.1 Poisson's Ratio and Volumetrie Strain

Relaticnships between Poisson's ratio and axial strain, and between
volumetrie strain and axial strain, are shown in Fig. 2.20-2.25 for cement
pastes with W/C = 0.5 and 0.3. The relationships are shown for the loading
portions of the cycles indicated in the figures,

Figs. 2.20 and 2.21 show the Poisson's ratio versus axial strain and
volumetric strain versus axial strain relationships for a specimen with a
W/C = 0.5 which was loaded to a stress—strength ratio of 0,865 and failed on
the 3TSt eyele at an axial strain of 0.C05 (Specimen 194A-1/P-0.5/C). Fig,
2.20 shows that in each c¢cycle, Poisson's ratio increases with strain.
Poisson's ratio during the 29th cycle is larger than that during the Tst and
ITth cycles. As shown in Fig., 2.21, the increase in Poisson’'s ratlo from
the !7th to 29th cycles is accompanied by an incremental volume increase
beiween the twoe cycles, Also, reductions in the rate cf volume decrease
occur during the ETth and 29th cycles, as indicated by the increasing slope
of the axial strain - volumetric strain relationships for each of these
cycles,

The Poisson's ratic versus axial strain and velumetric strain versus
axlal straln relationships for a specimen with a wW/C = 0.5 loaded in 67
cycles (stress—-strength ratio = 0.725) to a strain of 0,004 (Specimen 18-
5/P-0.5/C) are shown in Fig. 2.22 and 2.23, With increasing strain within a
single cycle, Poisson's ratio increases (Fig., 2.22) while the rate of volume
decrease drops (Fig.2.23). Fig. 2.24 and 2.25 show the relationships be—
tween Polisson's ratio and axial strain and volumetric strain and axial

strain, respectively, for a specimen with a W/C = 0.3 loaded in 85 cyeles to
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a strain of 0.003 (Specimen 21-5/P-0.3/C). Fig. 2.2% shows that Poisson's
ratio is approximately constant during the 1St cycle and decreases during
later cycles, However, Poisson's ratio increases with increasing strain
during the &an and 85th cycles. Fig. 2.25 shows that the volume decreases

£

between the 1°° and 85th eycles.

2.5 Submiecrocracking Studies

2.5.1 Scanning Electron Microscope

A Philips 501 scanning electron microscepe {(SEM) [15] was used for the
submicrocracking studies. An SEM produces a primary electron beam or probe
which sweeps across the specimen, stimulating the emission of secondary
electrons. Non-metalliic materials, such as gement paste, must be coated
with a metallic substance (e.g. gold~palladium) in order for a satisfactory
guantity of secondary electrons to be emitted. The secondary electrons are
collected to produce a signal which is then amplified, The resulting image,
displayed on the viewing moniter, is similar to that obtained on a high
quality television screen.

Specimens were coated with 200 angstroms, A, (0.02 uym) of gold-
palladium using a Technies Hummer II sputter coater [15]. Specimens must be
dried in order for a high vacuum to be reached in both the sputter coater
and the SEM. A primary electron beam spot size of 2008 and an accelerating
voltage at the electron gun of 30kV were used. In order to insure close
proximity of the emitted secondary electrons to the detector, the specimens
were inclined at 45° to the primary beam by tilting the specimen stage [967.
A Polaroid camera attached to the SEM, with Polarcid type P/N 55 film,

enabled photomicrographs of the specimens to be taken,

2.5.2 Specimen Preparation

After the tTest specimens were loaded, they were submerged in lime
saturated water for a periocd of no longer than 24 hours. To prepare
specimens for viewing in the SEM, 2 in. wide by 6 in. long by 1/8 in. thick
slices were reméved along the longitudinal (or loading) directicn of the
test specimens using a high speed diamond masonry saw, utilizing saturated
caleium hydroxide solution as the lubricant. The middle portion of each
slice, approximately 1 in. square, was removed by breaking the four sides of

the slice with a pair of tongs. For proper identification during subseguent
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preparation of the slice for viewing in the SEM, the perpendicular and
parallel edges of the slice with respect to the directicon of loading were
labelled. The approximately 1 in. square by 1/8 in, thick slice was rinsed
with lime saturated water and dried using one of three procedures: oven
drying, solvent replacement drying, or silica gel drying. Of the three
procedures, oven drying was selected for the main portion of the study. The
latter two drying procedures saw limited use. They were used only for two
batches of monotonically lecaded paste specimens in order to compare the
effects of the different drying conditiocons.

A description of the drying methods and the procedure for obtaining

fractured surfaces for viewing in the SEM fecllow.

2.5.2.1 Qven Drying

The specimens was placed in an oven at a temperature of 217°F, A

constant welght was attained in 28 hours,

2.5.2.2 Solvent Replacement Drying

This drying procedure involved placing a cement paste specimen in
methanol, followed by placement in n-pentane and a vacuum desiccator
[56,70]. For each storage medium, the specimen was weighed daily,

First, the paste specimen was placed in 25 ml of methanocl. The
methanol slowly replaced the water In the specimen. The methancl was
changed every 3 days until the specimen weight began to increase instead of
decreasing. At this point, the replacement of water by methancl was
complete, The increase in weight 1is attributed to the polar nature of
methanol which causes packing in the pore spaces of the specimen at a den-
sity greater than that in the bulk liquid state [70]. A total of 7 days was
required for the complete replacemeni of water by methanol., Next, the
specimen was placed in 25 ml of n—pentane, The n-pentane slowly replaced
the methanol and was changed every 2 days. &8s in the case of the replace-
ment of water by methanol, the replacement of methancl by n-—pentane was
complete when the specimen weight began to increase. A total of 5 days was
required. Two days of continuous vacuum wWere required in order to reach
gonstant weight in the vacuum desicecator, The total duration of this drying

procedure was 14 days.
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2.5.2.3 B3ilica Gel Drying

The specimen was placed in a desiccator which contained silica gel. A

carpon dioxide absorbent (Ascarite) was alsc placed in the desiceator in
order to prevent carbonation of the specimens. A& constant weight was at-

tained in 106 days.

2.5.2.% Fracturing of the Specimens

After drying, the specimens were stored in & vacuum desicecator. One
day prior to viewing in the SEM, the specimens were removed from the desic-
cator and fractured so that edges which were either perpendicular or
parallel to the direction of loading (i.e., transverse or longltudinal
edges) might be viewed. The viewing surfaces were about 1/8 in. thick,

The fracturing procedure involved holding one side of the specimen with
a gloved hand and the opposite side with a pair of tongs so that a
transverse fractured surface would be produced. The tip of the pair of
tongs was positioned near the middle of the specimen and the specimen was
then broken, One of the two broken pieces was selected and trimmed by
glowly breaking off piegces of material from the sides. Care was taken so as
not to handle the tranaverse fractured surface to be viewed., A longitudinal
fractured surface was prepared in the same manner from the second broken
piece. The two final specimens had dimensions of about 1/8 in., thick by 1/2
in. long by 1/4 in. high and were mounted on a stud using Pelco colloidal
silver paste (Fig. 2.26).

The mounted specimens were stored in a vacuum desiccator to enable the
colloidal paste to dry. Just prior to viewing, the fractured surfaces were

coated with gold-palladium.

2.5.3 Crack Measurements

Within the SEM, each specimen was scanned at a magnification of 1250x
in ten preselected bands across the specimen thickness. The width of the
scanned area, w, was therefore equal to the specimen thickness; i.e., w =
1/8 in. The actual thickness of each specimen was measured with a pair of
galipers. The height of the fractured surface within each scanned area, h,
was 0.,0031 in., Fig. 2.27 shows a sketch of the specimen as positicned in
the SEM.
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To accurately select different bands for scanning, a grid was required.
This was obtained by marking two pieces of masking tape at 1/2 in. intervals
from 1 to 10, The marks corresponded to the ten bands to be viewed. The
two pieces of masking tape were placed at the left and right edges of the
SEM's viewing monitor, To select a particular vand for scanning, a mag-
nification of 10x was selected. At this magnification, the whole specimen
was visible on the viewing menitor. A ruler was placed across opposite
marks on the two pleces of masking tape to define the center of the band. A
distinct feature along the center of the band was selected and positioned in
the center of the viewing monitor. The magnification was increased to
1250x, and the selected feature was brought into clear view by an ap-
propriate adjustment of the focus. By this procedure, the band to be
scanned was clearly established. The left edge of the specimen was then
brought into view and the secanning proceeded horizontally to the right edge.
To select another band for scanning, the magnification was reduced to 10x
and the procedure was repeated.

Crack trace lengths, widths, angles, and microstructural features
through which cracks passed were recorded. Measurements were taken at a
magnification of 1250x, except crack widths below 2.5 um which were measured
at 2500x%. Only portions of cracks within the field of view were measured in
order to obtain an accurate estimate of the density of cracks within the
scanned areas. Crack trace lengths, %, and widths, wc, were measured on the
viewing monitor with a ruler. Markers having units of um were displayed on
the viewing monitor to serve as a scale for measuring the true dimensions of
objects. These markers were used to convert the ruler measurements to true
dimensions. For ease of recording data, crack irace lengths were recorded
in intervals of 1.5x10“nin. or 3.8 um {= 0.25 in. with the ruler). Crack
trace angles, 8, were measured by means of the rotation control on the SEM,
This control rotated the image appearing on the viewing monitor and was
initially set at the 0° position. After a crack angle was measured, the
control was resef to the 0° mark. For ease of recording data, the crack
angles were recorded in 5¢ intervals from 0° te 180¢ (i.e., 5° is 2.5°% to
7.5°, ete,).

The process of obtaining the c¢rack data was gquite tedious and required
about 2.5 hours per specimen. To maintain objectivity, crack surveys were

made at the same {ime each day and limited to a single specimen, To further
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insure objectivity, specimens were selected and surveyed using a double
blind coding system,

Table 2.8 illusirates the format used to record the data.

2.5.4 Results
2.5.4.1 Micrographs

Photomicrographs of key mic¢rostructural features are shown in Fig,
2.28-2.36 for cement paste, and in Fig, 2.37 and 2.38 for mortar. The
descriptions of the various calcium silicate hydrate (CLSH) structures follow
that given by Berger, et al., [9] and Diamond [28,29].

Fig. 2.28 and 2,29 show typlgal Type I CSH for oven dried and solvent
replacement dried specimens, respectively. The structure consists of
fibrous globular clusters. The clusters in Fig, 2.28 look denser than those
in Fig., 2.29. The different appearance of Type I C8H in Fig. 2.29 may
indicate that the chemicals used in the solvent replacement drying process
react with the hydration products of cement paste, as was found by Day [24],
Thus, the method of spec¢imen drying appears to affect the nature of
microstructural features, The balance of the micrographs represents oven
dried specimens.

Type II CSH 1Is shown in Fig, 2.30. This structure has a network-like
morpnology. It has been described by Diamond [28] as a "reticular network".

Fig. 2.31 shows the structure most commonly observed on the fractured
surfaces, This is the equant grain morphelogy of Type III CSH. A typieal
crack is seen in the structure.

Inner product morphology, designated as Type IV CSH, is shown in the
middle of the micrograph in Fig. 2.32.

Caleium hydroxide, CH, is shown in Fig. 2.33. This structure is
characterized by distinet parallel cleavage planes. A crack is observed to
have formed parallel to a cleavage plane., The total swuface area of CH on
the fractured surface of each of three paste specimens with a W/C = 0.5 was
determined by measuring the area of CH regions. CH occupied about 3% of the
fractured surface. A fundamental principle of stereology [94,98)] shows that
the area density of three-dimensional objects on a plane section through a
volume is equal to the volume density of the objects., Hence, the 3% area
density of CH converts to a 3% volume density. However, 15%-20% of the

volume of hydrated cement paste is CH [8,48]. This observation suggests
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that the fracture plane occurred preferentially through the softer CSH.
Thus, the fractured surfaces are not fully representative of hydrated cement
paste.

A crack through both Type 1II CSH and CH structures i1s shown in Fig.
2.34.

Fig., 2.35 shows an unhydrated cement grain, denoted in this study as
UHC. This morphology is observed mainly in pastes with a W/C = 0,3,
presumably because of the lower degree of hydration obtained at the low
water-cement ratic. At low water—cement ratios, insufficient space for the
hydration products and self-desiccation do not allow complete hydration to
take place [64,65,84],

The interconnected rod-like morphology in Fig. 2.36 is that of
ettringite. Ettringite is a reaction product of tricalcium aluminate and
gypsum. Its formation prevents the flash set of tricalcium aluminate during
the early hydration of cement [34]. The micrograph shown is for a i42-day
old paste. It is generally belleved that ettringite is completely converted
into a low-sulphate sulphoaluminate, also referred to as monosulphate, about
1 day after the beginning of hydration [84]. Contrary to this bellef, Fig.
2.36 shows that ettringite can remain in a hydrated cement paste as old as
42 days, Ettringite has alsoc been observed by Diamond [28] in paste
specimens at ages up to 28 days,

Fig., 2.37 and 2,38 are micrographs of mortar. 1In both miecreographs, a
sand grain, denoted in this study as SG, is observed adjacent to what is
most likely Type III CSH., The Type III CSH observed here locks different
than that observed in cement paste (Fig. 2.3% and 2.34). The Philips 5C1
SEM used in this study did not enable the composition of the Type III CSH in
mortar to be analyzed. An SEM equipped with an energy-dispersive X-ray
analyzer will enable the composition of this morphology to be determined.
Cracks are observed at the Interfaces between the sand grains and the Type

III CSH and also within the Type III CSH.

2.5.4,2 Cracks
The cracks observed in the SEM ranged in length from about 0.0004 in.
{10 um) to about 0.208 in., (200 pm}. Crack trace lengths and angles on the

transverse and longitudinai surfaces of monotonically loaded specimens of
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cement paste with a W/C = 0.5 (Batch #9) are given in Table 2.9 to ii-
lustrate the ecrack data obtained in the study. The tetal lenghth of the
cracks measured on each surface (transverse or longitudinal) is divided by
the total area scanned to obtain a crack density in inches per square inch;

i.e.,

Crack Density = Tﬁéé;ﬁ in./in.2
the denominator being the %total area of the ten bands scanned.

The crack densities obtained in this study are given in Tables 2,10~
2.17. The crack densities in cement paste range from about 20 in./in.2 to
about 50 in./in.a, which is one order of magnitude greater than obtained for
bond and mortar microcracking In concrete [17,421,

Crack Density versus Water—-Cement Ratio: Fig. 2,39 shows that the

erack density of oven dried nonloaded cement paste specimens varies in-
versely with water—cement ratio. Specimens with a W/C = 0.3 show greater
cracking at zero lcad than do specimens with a W/C = 0.5, whieh in turn is
greater than specimens with a W/C = 0.7. This cbservation is discussed in
Chapter 3.

Crack Density versus Strain: Fig., 2.40-2,47 show the variation in

crack density of oven dried specimens as a function of appiied compressive
strain for all lcading regimes, In all cases, c¢rack density increases with
strain,

The curves represent the least sqguares fit of the data. The equations
of the lines are given in the figures. For cement pastes with W/C = 0.7 and
0.5 {(Fig. 2.40-2.41), and mortar with a W/C = 0.5 (Fig. 2.43), the high
values of the correlation coefficient, R, indicate that the relationships
between crack density and applied strain are strongly linear.

Contrary to the linear trends exhibited by the other materials, cement
paste with a W/C = 0,3 has a crack density - strain relationship that is
curvilinear to the second order (Fig. 2.42)., 1In these figures, the crack
densities at strains of 0.0058 and 0.006 are from specimens which failed at
those strains. The failure of these specimens was explosive and large
surface cracks were seen just prior to fallure. The curves in Fig. 2,42
suggest that a large increase in submicroscopic crack density occurs as the

failure strain is reached.
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For all monctonically loaded specimens, crack density begins to in-
crease immediately, even for very small applied strains, suggesting that
even low strains will result in some damage Lo cement paste and mortar. For
sustained and cyclic loading, crack density increases with strain over the
range of strains used, as shown in Fig., 2.44-2.47,

The average c¢rack density at each applied strain in oven dried
specimens are given in Tables 2,18-2,23 for all loading regimes,

Crack Density Based on Microscopic Structure: Crack density for each

mieroscopic structure as a function of applied strain is shown in Tables
2.24-2,28 for cement pastes, and in Table 2.29 for mortar. The average
values at each applied strain for the transverse and leongitudinal surfaces
of all specimens under each loading regime are given. The percentage of
crack density for each structure in hoth cement paste and mortar remains
nearly congstant as the total density of cracking increases with strain.

For cement paste specimens, the dominant cracking on both the
{ransverse and longitudinal surfaces occurs through the Type III CSH struc—
ture, independent of locading regime, About 80% of the total crack density
cecurs through the Type III CSH structure. The balance of the cracking is
approximately evenly divided between CH and the CH-III boundary. About 1%
of the cracking in cemen% paste with a W/C = 0.3 occurs at the UHC-III
boundary.

The dominant cracking in mortar, about 70%, occcurs through the Type III
CSH structure (Table 2.29). About 18% of the cracking occurs at the SG-III
boundary. The balance of the cracking is approximately evenly divided
between CH and the CH~III beundary.

Crack Density versus Trace Angle: Typilcal relationships between crack

density and crack angle for nonloaded and loaded speeimens of paste and
mortar are illustrated in Fig. 2.48-2.5% for values of 6 from 0° to 90°. In
obtaining these relationships, crack angles of 8:A8/2 and 180° ~ 8zA8/2
(AB=5°) are grouped together. The crack density per degree is then calcu-

lated as

Crack Density for 8 and 180°-3
2 AB '

Crack Density per degree =

As 1llustrated by the fairly constant least squares fits cover the

middle eighty-five degree range in Fig. 2,48-2.51, crack densities are
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approximately equal at all angles for nonloaded gpecimensa, and for the
tranaverse surfaces of loaded specimens. The nearly uniform distributions
of crack density with respect to trace angle on the transverse surfaces of
loaded specimens suggest that cement paste and mortar under uniaxial com-
pression are transversely isotropic, as expected. Crack density
distributions on the longitudinal surfaces of loaded specimens are skewed
towards 6 = 90° (Fig. 2.49 and 2.51).

The larger crack densities within the ranges of & from 0°-2.5° and
87.5°~90° are attributed to the procedures used in preparing specimens for
viewing in the SEM and will be discussed in Chapter 3.

Crack Density Based on Drying Method: Crack density seems to depend

upon the drying method, as evidenced by the relationships shown in Fig,
2.52. The average results at each applied straln for the transverse sur~
faces of oven dried, solvent replacement dried and silica gel dried paste
specimens {W/C = 0.5} are shown. Fig. 2.52 indicates that the crack den-
sities of solvent replacement dried specimens are larger than these of
either oven dried or silica gel dried specimens. Oven drying, is z rapid
drying process that causes high moisture gradients within a specimen. Thus
it may cause drying cracks to initiate at weak locations at the surface as
well as within the material. Solvent replacement drying, on the other hang,
is a2 slow process that maintains a much more uniform moisture condition
throughout the specimen. This may allow cracks to initiate at many loca-
tions, resulting in a larger crack density as compared to coven drying.
Silica gel drying is a slow process, but th specimens are rapidiy subjected
to a high moisture gradient, and thus the effects of this method may be
closer to those of oven drying. The crack densities of oven dried and
silica gel dried specimens are about the same, The relative crack widths
obtained with the three drying procedures support these arguments.

Crack Widths: The average values of c¢rack width at each applied strain

for the transverse and longitudinal surfaces of all specimens under each
loading regime, are given in Tables 2.30-2.33. Crack widths increase with
applied strain, and vary with drying method. For each applied strain, crack
widths are largest in oven dried specimens and smallest in solvent replace-
ment dried specimens.

The c¢racks range in width from 0.15 um to 5.25 um for solvent replace-

ment dried pastes, from 0.20 um $o 6.25 um for silica gel dried pastes, and



28

from 0.20 um to 7.0 um for oven dried pastes. Crack widths range from 0.15%
um to 7.5 um for oven dried mortar. At the same strain level, mortar
speg¢imens have a larger average crack width than paste specimens.

If the total volume change due to drying is identical under different
drying conditions due to removal of equal volumes of free water, the average
crack width should decrease as the crack density increases. This observa-
tion is consistent with the measured crack wldths and crack densities

obtained with the three drying procedures.

2.5.5 Uniqueness of Submicroscopic Cracks

During preliminary studies, cracks were measured at magnifications up
£to 10000x, These studies showed that cracks which are visible at 10000x are
also visible at 1250x and that crack densities obtained at the two mag-
nifications are essentially the same., At the next lower magnification,
640x, some cracks are lost, and the crack density drops. A magnification of
1250x%x was used throughout this study since much more area c¢ould be covered
than at 10000x.

These observations indicate that the submicroscopic c¢racks are unique
to the particular level of microstructure studied. The uniqueness of these
¢racks also lies in the fact that magnification has to be Increased by fwo
orders of magnitude in order to observe cracks with a density one order of

magnitude higher than that of bond and mortar microcracks in concrete.

2.5.6 Surface versus Volumetric Crack Distributions

The ecrack data discussed in this chapter, crack length, crack angle,
and crack density, in fact, represent only the traces of three-dimensional
eracks on selected planes. Thus, this data does not directly provide ade-
quate information about cracking as it cccurs throughout the volume of each
specimen. Three—-dimensional c¢rack sizes and orientations, as opposed to
surface trace lengths and angles, are needed if a full understanding of
material response to cracking is to be obtained,

In the next chapter, the surface crack data is further analyzed to
obtain estimates of the three-dimensional c¢rack distributiona. These three-
dimensional distributions provide a clearer understanding of cracking as it

oceurs in cement paste and mortar under uniaxial compression, and are used
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in Chapter 5 to estimate the effects of the cracks on the stress—-strain

behavior of the materials.

2.6 Summary of Observations

1.

2.

i0.

11.

12.

The stress—strain curves of cement paste and mortar are highly
nonlinear,

Poisson's ratio increases continucusly in cement paste and mortar
under monotonic loading.

A reduction in the rate of volume decrease occurs in cement paste,
and incremental volume increase occurs in mortar under monctonic
loading.

For sustained loading, Poisson's ratio increases continuously in
cement paste during the initial stage of loading to the specified
stress level, and then decreases under constant stress,

For cyclic loading, Poisson's ratio increases continuously in
cement paste during the loading portion of each cycle.
Ineremental volume increase occurs in cement paste lcaded to
failure under cyelic loading.

The density and width of drying cracks in cement paste vary with
the method of specimen drying.

Crack density in cement paste varies inversely with water—cement
ratio for nonloaded specimens.

Crack density in cement paste and mortar increases with increasing
uniaxial compressive strain.

Crack density in cement paste is about ten times the density of
bond and mortar microcracks in conerete at the same value of com-
pressive strain.

The dominant cracking in cement paste occurs through fhe Type 1II
CS8H structure with the balance approximately equally divided be-
tween CH and the CH-III boundary.

The dominant cracking in mortar occurs through the Type ITI CSH
structure, followed by cracking at the sand grain - Type III CSH
boundary. The balance of the cracking is approximately evenly
divided between CH and the CH-III boundary.
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CHAPTER 3
EVALUATION AND DISCUSSION OF EXPERIMENTAL RESULTS

3.1 General

In this chapter, the surface crack data of trace lengths and trace
angles (examples in Table 2.9} are analyzed to (1) determine the effects of
specimen preparation prior to viewing in the SEM and (2) estimate three-
dimensional submicroscopic crack distributions in cement paste and mortar.
For a given load regime and applied strain, the average surface crack data
for all specimens loaded to that strain are used for the analyses which
follow,

The accurate estimation of three—dimensional crack distributions re-
quires that the surface crack distributions obtained with the SEM be
converted to true surface crack distributions. As described in Chapter 2,
only erack fraces within the field of view of the SEM are measured in order
to obtain an accurate estimate of the density of cracks within the scanned
areas. However, since segments of some crack traces project outside the
viewing area, their measured lengths are shorter than the true trace
lengths, causing the length distributien to be skewed towards low values, A
crack whose center is located outside the viewing area may have a portibn
within the field of view, A crack centered at the same point but at a lower
angle, 9, may lie completely outside the viewing area. The cbserved number
of ecracks at low angles will therefore be relatively lower than the number
at high angles, resulting in the angle distribution being skewed towards 8 =
90°. Thus, the observed or "apparent" distributions may not be good es-
timates of the true surface distributions. Since the fractured surfaces are
scanned horizontally, there is no limitation imposed by the width of the
viewing area on the measurement of cracks.

The true trace length and angle distributions are obtained from the
observed suface distributions using statistical procedures described in
Section 3.3, The detaliled derivations of these procedures are presented in
Appendix C. _

The surface crack distributions must be converted to three-dimensional
crack distributions in order to gain a full understanding of material

response to cracking. The statistical progedures for this conversion are
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described in Section 3.4, The detalled derivation of the procedures isg

presented in Appendix D.
The extent of cracking is compared for specimens with different water-

cement ratics and load regimes.

3.2 Effects of Specimen Preparation

Pricr to viewing in the 3EM, the specimens are dried and fractured, as
described in Section 2.5.2. Fig. 3.1 shows the variation of the number of
cracks per unit area with trace angle on the itransverse surface of nonloaded
cement paste with a W/C = 0.5. The increased number of cracks over the
ranges of 9 from O0° to 2.5° and from 87.5° to 90° are typical of the results
for all specimens.

The increased number of cracks over the range of 8 from 0° to 2.5° is
attributed to drying, since drying cracks form normal to the surface of the
specimen due to differential drying rates between the exterior and interior
of the specimen [5,6,71. The direction normal to the surface of the
specimen corresponds to 8 = 0°, as measured in the SEM (Fig. 2.27). Drying
can also cause randomly oriented oracks to form [6}, as will be discussed in
Section 3.5.1,

The increased number of cracks over the range of 6 from 87.5° to 90° is
attributed to fracturing of the specimen. The fracturing process induces
tensile stresses in a direction parallel to the fracture crack, resulting in
the formation of transverse cracks [54].

In order to reduce the effects cof specimen preparation on the surface
crack distributions, the specimen preparation cracks are removed from the
total crack distributions using procedures described in Sections 3.3.% and
3.4, The resulting surface distributions are used to estimate the three-

dimensional distributions.

3.3 Surface Crack Distributions

As pointed out in Section 3.1, the true surface crack distributions
cannot be obtained directly from the experimental data. In Sections 3.3.1
through 3.3.3, statistical procedures {(details in Appendix C) are used to
obtain the true surface crack distributions.

For uniaxially locaded paste and mortar specimens, trace length dis-

tributions of load-induced cracks on the transverse surface should be
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independent of trace angle. Deviations from an isotropic distripution are
attributed to specimen preparation. The mean lengths and variances of the
estimated true trace length distributions on the transverse surface must
therefcre be modiflied to obtain an 1sotropic distribution with respect to
trace angle. On the longitudinal surface, the mean trace length and
variance of the disiribution cof load-induced cracks may vary with trace
angle. The modifications for both the transverse and longitudinal surfaces
are described in Section 3.3.4.

3.3.1 True Trace Length Distribution

A relative frequency distribution is defined by its form, mean, and
variance. The form of the distribution, e.g. a normal or gamma distribu-
tion, describes its shape. An estimate of the true trace length
distribution for each trace angle, f(l]a), is obtained by determining its
form, mean, <Q.e>, and variance, var(ﬁ.e). The equation (derived in Appendix
C) relating the true trace length distribution to the apparent distribution

is

(h-tsing)r(2]e) + 2 sinefy £(2]8)aL

AL h+ <L >sing (3-1)

in which f(l[e)ac is the calculated apparent trace length distribution for
each trace angle, 98; & is the trace length, and h is the height of the
specimen surface within the regions viewed in the SEM (Section 2.5.3).

The experimental or known apparent trace length distribution for each

trace angle, f(ﬂs)a, is computed from the surface crack data as

r(a]e), - nzﬁg (3.2)
in which n is the number of cracks with measured lengths of & + AL/2 and
angles of 8 + A8/2, and n6 is the number of cracks with angles of 8 + Ag/2.
A% and A8 are the experimental increments used for trace length and trace
angle measurements, respectively; AL = 1.5:<1CJ*14 in., &and A8 = 5°, In com—
puting f{ﬁ.[e)a using Eq. (3.2), trace angles of & and 180°-8 are grouped
fogether, The distributions are obtained for values of 6§ from G° to 90° in

Tive-degree intervals., Typical experimental distributions of crack trace
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lengths for trace angles of 30°, 50°, 60° and 70° are representied by the
nistograms in Fig., 3.2, The data in this figure are obtained from the
longitudinal surface of cement paste (W/C = 0.5) lcaded monotonically to a
compressive strain of 0.004,

As shown in Appendix C, the true mean trace length, <Ee>, can he ex-—

pressed in terms of the apparent mean trace length, <28>a, as

h<5LB>a
Ae> = TS sind (3.3)
g a
The true variance, var(le), can be expressed as
Ly sin §,.»,3
var(ie) = zzg;avar(ie)a - <£e>(<le>—<le>a)+ —§H——IDE £(&]ayde (3.8)

in which var(le)a is the variance of the observed distribution.

<Ee> can be obtained directly from £q. {3.3) since h is known and <£.a>a
can be calculated from the measured crack data. The form and variance of
f(l[e), however, cannot be obtained directly, requiring the use of an itera-
tive procedure (described below) invelving Egs. (3.1), (3.3) and (3.%). The
objective of the procedure is to caleculate an apparent distribution based on
an assumed form of the true distribution., If a close match i3 obtained
between the known and calculated apparent distributions, then the assumed
form of the true distribution is the correct one.

A "goodness of fit" test, based on the chi—-square distribution [31], is
used to determine when & close match is obtained, In this test, a chi-
square statistic or value is computed from the experimental and calculated
apparent distributions. If this value Is less than the value obtained from
the chi-square distribution at a level of significance of 0.0%5, then a
"elose” matceh has been obtained. Further details of this test can be found
in Reference 31 and in most statistics books.

The procedure for determining the true trace length distribution is
outlined as follows:

1. Assume a form for £(&]8).
2. The mean and variance of f(i]e) are <£e> and var{le), respectively.

Caiculate <28> using BEq. (3.3). As an initial guess, assume that

var(ﬁe) = var(le)a.
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3. Calculate var(ls) using Eq. (3.4).

L, If the computed variance is not squal to the assumed variance, recom-
pute var(ie} from Eq. (3.4) using the variance calculated in Step 3.

5 Repeat Steps 3 and 4 until the assumed and computed variances are
equal.

6. Substitute £(Ll8), with parameters <£e> and var(ie), into Eq. (3.1} in
erder to calculate f(ﬂ!e)ac.

7. Use the "goodness of fit" test, based on the chi-square distribution to
determine if there is a close agreement between the known, f{£|8)a, and
calculated, f(lie)ac, apparent distributlons. A clese agreement im—
plies that a good estimate of f(i[e) has been obtained,

a, If the "goodness of fit" test fails, assume a true distrivution with a
different form. Repeat Steps 2 to 7.

Application of this procedure for the surface crack data in this study

indicates that the best form for the true trace length distribution is a

gamma distribution. This distribution is represented as

£(8]8) = —— 271 &M/ (3.5)
BT {a)

in which o and B are functions of the mean and the variance of the distribu—

ticn, in this case <26> and var(le).

. var(%.)
- var?l ) B = <& >8 (3.6)
0 &
f{a) is the gamma function and is defined as
rta) = Jg y* e Vay (3.7)

Gaussian quadrature with four integration points over the range of y from 0
to 50 is sufficient for the integration in Eq. (3.7). Also, four integra-
tiorn points over a length range of 0.0 to 0.006 in. are sufficient for
integrating Eq. (3.1) and (3.4).

f(x]e) and f{i[e)ac corresponding to the known apparent distributions,
f(2]8),, for cement paste with a W/C = 0.5, are shown in Fig. 3.2. s
expected, the estimated true frace length distributions are shifted to the
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right with respect to the apparent distributions, shéwing that the effect of

a finite height of the viewing area is to underestimate crack trace lengths,

2.3.2 True Trace Angle Distribution

The relationship (derived in Appendix C} between the true trace angle

distribution, f(8), and the apparent trace angle distribution is

{h + <£e>sin8)f(8)
f‘(a}ac = = (3.8)
h+ Jo <4.>sing £(9)do

in which f{e)ac is the calculated apparent distribution and <26> is the true
mean ftrace length obtained in Eq. (3.3).
The known apparent trace angle distribution, f(e)a, is computed from

the surface crack data as

n

&
f(B}a =—2m (3.9}

in which ne is5 the number of cracks with angles of 8 + A8/2, and N is the
total number of cracks (0° £ 8 £ 180°). As before, trace angles of 8 and
180°-8 are grouped together. A typical known apparent distribution of crack
trace angle is represented by the histogram in Fig. 3.2. As in the case of
the trace length distributions in Fig., 3.2, the distripbution in Fig, 3.3 is
obtained from the longitudinal surface of cement paste {W/C = 0.%5) loaded
menotonically to a strain of 0.004,

In Eg. {3.8), the true trace angle distribution, £(8), is the only
unknown on the right side ¢of the equation. An iterative procedure is used
to estimate f(8)., The objective of the procedure is similar to that in the
case of the trace length distribution. An apparent distribution iz caleu~
lated based on an assumed expression for the true angle distribution. If a
close match is obtained between the known and calculated apparent distriosu-
tions, then the assumed expression for the true distribution is the correct
estimate.

The procedure is outlined as follows:

1. Assume an expression for £(8).

2. Compute f(e)ac using Eq. {(3.8).
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3. Use the "goodness of fit" test, based on the chi-square distribution to
determine if there is close zgreement between the known, f(s)a, and
calculated, f(e}ac’ apparent distributions,

y, Repeat Steps 1 to 3 until the "goodness of fit" test in Step 3 is
successful. The true angle distribution whigh satisfies the test is
the correct estimate of £{8),

Fig. 3.3 shows that the known apparent trace angle distribution {(the
histogram) has spikes near 0° and 90°, As pointed out in Section 3.2, these
spikes are due to specimen preparation. The form of the known apparent
distribution suggests that constant functions should be assumed for £(8)
from 0° to 2.5°% and from 87.5° to 90°, while a quadratic function may be
assumed over the middle eighty-five degree range. This form of f(8) gives a

close match between f(s)ac and the histogram, as shown in Fig. 3.3.

3.3.3 True Number of Cracks per Unit Area

As explained in Section 3.1 and shown by the trace angle distributions
in Fig. 3.3, the apparent number of cracks at low angles is less than the
true number and the apparent number at high angles is greater than the true
number. The apparent number of cracks per unit area, Ma, should, therefore,
not be expected Lo equal the actual number of cracks per unit area, M.

The apparent number of cracks per unit area, Ma’ is given by

Ma=7—6:%5 {3.10)
in whieh N i3 the number of cracks observed on a surface, and the
denominator is the total area of surface observed. The expression (derived
in Appendix C) for the true number of cracks per unit area is

M o= N (3.11)

1ow[n + 13 <t >sins £(9)ds]

A compariscn of Eq. {3.10) and (3.11) shows that Ma > M. Hence, the effect
of the finite height of the viewing area ls to overestimate the number of
cracks per unit ares.

For the cement paste specimens (W/C = 0.5) loaded to a strain of 0.004,
Ma = 2U568 per in.2 and M = 19813 per in.2.
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3.3.4 Modification of Mean Trace Length and Variance

As pointed out earliesr, it is expected that the mean trace length and
variance should be the same for all trace angles on transverse surfaces cof
uniaxially loaded specimens. Examples of the mean trace length, <£8>, and
variance, var(is), corresponding tc the estimated true trace length dis-
trinutions are illusirated in Fig. 3.4 and 3.5 for the transverse surface of
cement paste (W/C = 0.5) loaded monotonically to a strain of 0.004. The
curves shown are least squares fits through the data points. These examples
are typical of the data obtained in this study.

Fig. 3.4 and 3.5 show that both the mean trace length and variance are
not constant over the full range of trace angles. However, fairly uniform
values are obtained for values of 6 from 25° to T75°. It is assumed that
these values of mean trace length and variance are not affected by specimen
preparation, while the lower values of mean and variance for § < 25° and the
higher values for 8 > 75° are the result of specimen preparation. The
uniform values cbtained from a least squares fit for 8 from 25¢ to 75° are
used for all & (0° 5 8 £ 90°), These "modified" mean trace lengths and
trace length variances, <&
Fig. 3.6 and 2.7.

In the current analysis, it is further assumed that the effects of

T and var <2>T, respectively, are illustrated in

specimen preparation on the crack distributions for the fransverse and
longitudinal surfaces are the same., Hence, as for the transverse surface,
the least squares fit for & from 25° to 75° on the longitudinal surface is
extrapolated to include all values of 8 to obtain "modified" mean trace
and var(RB)L. The linear varia-

L
tions with trace angle illustrated in Fig. 3.8 and 3.9 are typical of the

lengths and trace length variances <28>

results for longitudinal surfaces.

The modified experimental values of mean trace length and variance,
obtained for all loading regimes and applied strains using the procedure
described above, are given in Tables 3,1-3.6. These values, along with the
form of the true trace length distributions obtained in Sesection 3,3.1 (the
gamma distributicon), completely describe the crack frace length
distributions.

The trace length distributions on the transverse surface are denoted as
f(l)T, and those on the longitudinal surface are denoted as f(Z]e}L for each

trace angle, 6. The final trace length distribution for the transverse
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surface of cement paste (W/C = 0.5} loaded monctonically to a strain of
0.004 is illustrated in Fig. 3.10.

The crack trace length distributions obtained above are used in the
next section to estimate three—dimensional crack distributions in cement

paste and mortar.

3.4 Estimates of Three-Dimensional Crack Distributions from

Surface Crack Distributions

The procedure described here for obtaining estimates of three-
dimensional crack distributions from surface crack distributions is an
extended form of the procedure derived in Appendix D. The extension of the
procedure in Appendix D is necessary in order to modify the trace angle
distributions to reduce the effects of specimen preparation. These modified
trace angle distributions are used in conjunction with the modified trace
length distributions, calculated in the previous section, to obtain the
three~dimensional distributions.

In the following presentation, the method for obtaining the modified
trace angle distributions is described, the equations relating surface crack
distributions to three~dimensional distributions are presented, and the

overall procedure is ocutlined.

3.4,1 Modification of Trace Angle Distributions

The objective of this modification is to help remcve the effects of
specimen preparation from the trace angle distributicns.

The method described in Section 3.3.2 i3 used to obtaln trus trace
angle distributions on the transverse and longitudinal surfaces (as il-
lustrated in Fig 3.3). Multiplication of the ordinates of the true trace
angle distribution by the true number of cracks per unit area, M (obtained
in Section 3.3.3), gives the variation of the frue number of cracks per unit
area per degree with trace angle. An example is shown in Fig. 3.11 for the
transverse surface of cement paste (W/C = 0,5) loaded monctonically to a
strain of 0.004, The figure shows spikes in the number of cracks over the
ranges of 8 from 0° to 2.5° and from 87.5° to 809, These spikes are at-
tributed to specimen preparation, as explained in Section 3.2.

Specimen preparation effects on the distribution in Fig., 3.11 can be

reduced by removing the spikes and extrapolating the best fit {quadratic)
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distribution in the middie eighty-five degree range to include all values of
8. The resulting distribution is shown by the solid curve in Fig. 3.12.

On the longitudinal surface, the spikes are also removed, and the
middle eighty-five degree region of the distribution is alsc extrapolated to
inelude all values of 8, as shown by the solid curve in Fig., 3.13. Like the
transverse surface, the distribution on the longitudinal surface is also
quadratic,

The distribution on the transverse surface (Fig. 3.12) is not uniform,
as expected on the transverse surface of a uniaxially loaded specimen., This
deviation from uniformity is considered to be another effect of specimen
preparation. In order to reduce this specimen preparation effect, the
quadratic distribution is replaced by a uniform distribution, shown by the
dashed line in Fig. 3.12. The precise method for selecting this distribu-
tion is described in Section 3.4.3. The difference between the quadratic
and uniform distributions gives an estimate of the number of cracks due to
specimen preparation at each angle 8.

As stated in Section 3,.3.4, the effects of specimen preparation are
assumed to be the same on both the transverse and longitudinal surface crack
distributions. This assumption implies that the number of specimen prepara-
tion cracks at a given angle 8 is equal on the two surfaces. Thereforé,
once the uniform distribution is selected on the transverse surface, the
distribution on the longitudinal surface (Fig. 3.13) is modified by an equal
amount. If the assumed uniform distribution is lower than the measured
distribution on the transverse surface, the difference is subtracted fron
the distributicn on the longitudinal surface at the same angle 8. On the
other hand, if the uniform distribution is larger than the measured dis-
tribution on the fransverse surface, the difference is added to the
distribution on the longitudinal surface., The modified trace angle dis-
tribution on the longitudinal surface is shown by the dashed line in Fig,
3.13. As indicated earlier, the distributions over the range of & from S0°
to 180° are identical to those in Fig. 3.12 and 3,13, Inherent in this
procedures is the assumption that the trace length distributions, f(E)T and
f{l]e)L, need no further modification at this stage.

In order to obtain the correct estimates of the modified distributions

on the transverse and longitudinal surfaces, the modification process
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described above is tied to the iterative procedure used to estimate the
three—~dimensional crack distributions (Section 3.4.3).

The area under each of the distributicns In Fig. 3.12 and 3.13, over
the range 0° £ 8 £ 180°, gives the number of cracks per unit arsa. The
measured distributions for the transverse or longitudinal surfaces give the
number of c¢rack traces per unit area, ﬁT or EL' and include both load-
induced cracks and specimen preparation cracks, not counting the preparation
cracks removed when the spikes were excluded. The modified distribution for
each surface gives an estimate of the number of cracks per unit area, MT or
ML’ which have had additional specimen preparation cracks removed.

Each ordinate of the modified distribution in Fig., 3.13, me, is equal
to the number of c¢racks per unit area per degree. The corresponding rela-
tive frequency distribution, f(B}L {Fig. 3.18}), is obtained by dividing the
ordinates of the modified distribution by the number of cracks per unit
area, ML'

Mg
f(S}L = ﬁ; (3.12a)

0¢ £ 8 s 180°

Since transverse isotropy is expected for a uniaxially loaded spec¢imen, the
crack distributions should be symmetric with respect to the longitudinal or
loading axis. It is therefore sufficient to consider f(B}L over the range
0° £ 8 £ 90°. This requires that the right hand side of Eg. (3.12a) be
multiplied by 2; 1i.e.,

2m6
f(e}L = — (3.12b)

",

0° £ 8 5 90°

f(B)L’ def'ined over this condensed range, is used to estimate the three-

dimensional crack distributions (Section 3.4.3).

3.4.,2 Relationships between Surface and Three-Dimensional

Crack Distributions

To derive relationships between surface and three~dimensicnal crack

distributions {Appendix D), each crack is assumed to be elliptic with &
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length of its major axis, 2a, aspect ratio, r, and angular coordinates ¢, ¢
and n (Fig. D.1). The length of the major semi~axis, a, is designated as
the "characteristic crack size", Full descripticns of these parameters are
provided in Appendix D.

The parameters which describe the three-dimensional crack distributions
are the orientation distribution, f{y), the size distribution, f(alw), at

each orientation ¥, the mean and variance of f(a[w), <a_,> and var(a$), the

¢rack aspect ratio, r, the rotation of the crack abou? its normal, defined
by the angle n, and the number of cracks per unit volume, NV'

For the crack distributions obtalned in this study, the crack orienta-
tien distribution, f{¢), can be represented satisfactorily by a Marriott
distrivbution [983. This distribution describes the orientation of a
Lransversely isotropic system of cracks with a mild degree of anisotropy.

The Marriott distribution can be expressed as
1 .
£y = TR {1 + K cos 2y) sin ¥ (3.13)
-1 £ K £

The longlitudinal direction (or direction of applied stress) corresponds to ¥
= 90°, K is a measure of the degree of anisotropy. A4 negative value of K
indicates a system in which more cracks are oriented in the longitudinal
direction than in the transverse direction, while a positive value of K
Indicates a system in which mere cracks are oriented in the transverse
direction than in the longitudinal direction. K = 0 represents an isctropic
distribution.

K can be obtained from the surface crack densities on the transverse

and longitudinal surfaces as follows,

H[(ML<E>L/MT<£>T) - 1]

- Ed (3!11';)
2(M, 9> /M <) =

¥ =

in which MT<%>T and ML<2>L are the surface crack densities, i.e., total
crack trace length per unit area, on the transverse and longitudinal sur-

faces, respectively. MT and ML are obtained from the experimental data as

desceribed in Seection 3.4.1, while <1>? is obtained as described in Section
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3.3.4, <% the mean trace length on the longitudinal surface over all

>
trace angles, is computed as

T/2
A, = fe <18>Lf(e)Lde (3.15)

in which <ﬂ.e>L i3 the mean trace length for each trace angle on the lon-
gitudinal surface (See Section 3.3.4), and f(s)L i1s the Ttrace angle
distribution (Section 3.4,1).

Eg. {3.14) shows that an isotrople orlentation distribution (K = 0} is
indicated when the c¢rack densities on the transverse and longitudinal sur-
faces are equal. An orientation distribution skewed towards the
longitudinal direction (K < 0) is indicated when the crack density on the
transverse surface is larger than that on the leongitudinal surface, while a
distribution skewed towards the transverse direction (K > 0) is indicated
when the crack density on the transverse surface is lower than that on the
longitudinal surface.

The following equatlons relate the crack trace angle and length dis-
tributions to the three~dimensional crack size and orientation
distributions. Thess equations are used to establish the procedure for
estimating the three-~dimensional crack distributions., The equation
(Appendix D) relating the trace angle distribution on the longitudinal

surface to the three-dimensional distributions is

T
£(o) f,21 Iy tlwie,e)) I%%[ <Smax)w(e,¢} dedn 16
ke f-g: T2 ey <97 QVdBan

in which f(B}Lc is the calculated trace angle distribution on the lon-
gitudinal surface. f{y¢) 1is the orientation distribution defined in Eq.

{3.13). s is the distance between a crack centroid and a plane. Smax is

the largest value of s for which the crack will intersect the piane. The
expression relating 8, ¢ and ¢, as well as expressions for Shax and %%, are

given in Appnendix D.
The trace length distribution on the longitudinal surface 1s related to

the three~dimensional distributions as
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I*E: s fn o sla,ee,mfue,e)) £luie,e)) 129 gadpan

min
f~2: 15 IS elafute, ) £luce, )] s cadedn

efe), =

(3.17)

in which f(i]a}bc is the calculated trace length distribution on the lon-
gitudinal surface, and . in is the smallest crack size thaet gives a trace
: . 3s .
length of & on the plane. The expressions for amin, 8 ax and 5g 2re given
in Appendix D,
The trace length distribution on the transverse surface is related to

the three-~dimensional distributions as

I_E: 207 tlat,wm ) £ |82 dadyan
£(8),, = e (3.18)
Te f..z, fgle Jo £laly) £{w S ax dadydn

in which f(l)TC is the ealeculated trace length distribution on the

as . .
s and == are given in

transverse surface, The expressions for a_ .
¢ P min® "max a4

Appendix D,
The number of cracks per unit volume, NV’ l1s expressed as (Appendix D)

y
NV 5 e (M 0D

2 .2 T™T

+ 2M <> .) (3.19)
37 r<a > L L

in which <32> is the mean squared value of the characteristic crack size
over all orientations; i.e.

a® = [ /72 Pecaly) F(p)dyda (3.20)

If the distributions f(a]m) and (¢} are known, Eg. {(3.19) can be used to
estimate the number of cracks per unit volume. The procedure for determin-

ing distributions f(alw) and f(¥) is descrived in the following section,

3.4.3 Procedure For Estimating the Three-Dimensional Distributions

An iterative procedure is used to estimate the three—dimensional erack
parameters of the orientation distribution, f{¥), the size distribution,

f(a]w), the mean and variance of f(aly), <a > and var{aw), erack aspect

Y
ratio, r, and the range of the angie n., The procedure is set up in terms of
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Eq. (3.13)-(3.18) and is based on minimizing the differences between the
experimental trace distributions and the calculated trace distributions
obtained using Eq. {3.76)-(3.18). The procedures is first summarized and
then presented in detail,

The procedure begins by assuming a form for the c¢rack size distribu-
tion, f(aly). Values of <aw> and var(a‘p) are also assumed. A uniform
distribution with respect to trace angle of the number of cracks per unit
area per degree is assumed on the transverse surface. The experimental
trace angle distribution for the longitudinal surface, f(s)L, is then ob-
tained as desecribed in Section 3.4.1. The values of MT<Q.>? and ML<1>L are
used in Eq. (3.71%) to calculate the degree of anisotropy, K. The valus of K
enables the orilentation distribution, f(¥), to be determined using Eg.
{3.13). The calculated trace angle distribution on the longitudinal sur-
face, f(e)Lc’

The steps described above are repeated with different assumed uniform

is obtained using Eq. (3.16).

distributions on the f{ransverse surface until the sum of the squared dif-
ferences between the experimental, f‘(e)L, and calc‘ulated, f’(e)Lc, trace
angle distributions on the longitudinal swface i1s minimized; il.e. minlmize
12he (3.21)

T [f(ai)L = £,

A8 = 5°; B, = 2,5°, 7.5°, 12.5%.....,87.5°

The procedure then continues by determining the sum of the squared dif-

ferences between the experimental, f(E)T, and calceulated, (%) trace

’
length distributions for the transverse surface, as well as the Su‘fl"lc of the
squared differences between the expeérimental, f‘(i!s)L, and calculated,
f(l]e)Lc, trace length distributions for the longitudinal surface., These
sums are computed over the range of trace lengths, &, from 0.0 to 0.006 in.,
since the trace length distributions virtually diminish to zeroc at a value

of L = 0,006 (Fig, 3.2). For the transverse surface, the sum is

2
g [f(li)T f(li)Tc] A%, (3.22)
i
A = 0.00015 1in.; &, = 0.000075,0.000225,0.000375,.....,0.005925 in.

and for the lengitudinal surface, the sum is
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' 2
piz [reeloy, - reegfoy, Joasl (3.23)

& ﬁi

A% = 0,00015 in.; 21 = {,000075,0,000225,0,000375,.....,0.005925 in.
B =09 5° 10°,....., 90°

L

The whole procedure may be repeated with different forms of f(a[w) and with
different values of <a$> and var(aw) until the sums of the squared dif-
ferences between the experimental and calculated {race length distributions
on both surfaces are minimized. The three-dimensional crack paramseters
which enable the minimization process to attain a global minimum are the
desired estimates,

The details of the procedure follow:

1. Assume a form for the crack size distribution, f(alw}, such as a gamma
distribution.

2. Assume expressions for <aw> and var(aw) as functions of crack
orientation.

3. Assume a value for the uniform distribution of the number of cracks per
unit area per degree with respect to trace angle, 8, on the transverse
surface, me.

i, For each five~degree range, compute the difference in the areas under

the uniform distribution assumed in Step 3 and the measured distribu-

tion of number of cracks per unit area per degree, Ee, on the
transverse surface. This difference is expressed as

- o
(me me) X5 (3.24)

5. Modify the distribution of number of cracks per unlt area per degree
with respect to trace angle on the longitudinal surface by algebrai-
cally adding to it the differences obtained in step 4.

6. Compute the degree of anisotropy, K, using Eq. (3.14), and determine
the orientation distribution, £{¢) [Eq. (3.13)1.

T By varying the c¢rack aspect ratio, r, compute the trace angle distribu-
tion on the longitudinal surface, f(S)Lc, using Eq. (3.16), with n
uniformly distributed over the range -90° £ np € 90°. Determine the r
which minimizes the sum of the squared differences between the ex-

perimental, f(e)L, and calculated, f(e)Lc, trace angle distributions
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[Eq. (3.21)]. Reduce the range of 1 and again determine r which mini-
mizes Eq. (3.21). Continue this process until Eg. (3.21) cannot be
minimized further.

8. Repeat Steps 3-7 until the values computed using Eg. (3.21) reach a
glcbal minimum. The values of £{¢) and r, and the range of n for which
Eq. (3.21) 1s fully minimized, are the estimates to be used in the
following steps.

9. Use Eq. (3.18) to compute the trace length distribution on the
transverse surface, f{i)Tc. An improved estimate ¢of the variance of
f(aly) is obtained by assuming trial values for var(aw) until the sum
of the squared differences between the experimental, f(E)T, and calcu-
lated, f(l)Tc,

10. Compute the trace length distribution on the longitudinal surface,

trace length distributions is minimized [Eq. (3.22)].

f(ﬁle)LC, using Eq. (3.17). Calculate the sum of the squared dif-
ferences between the experimental, f(ilB}L, and calculated, f(2|8)Lc,
trace length distributions [Eq. (3.23)].

11. Return to Step 2 and repeat the process until the values computed from

Egq. (3.23) reach a global minimum. The parameters <a_ >, var(aw), r,

and the range of n whigh produce this giobal miniéim are the best

gstimates for the three-dimensional crack distributions based on tﬁe

form of f(a|y) assumed in Step 1.

12, The iterative process may be restarted at Step ' by assuming a dif-
ferent form for f{aly)., The form of f(aly), the values of K, <aw>,
var(aw) and r, and the range of n which minimize Eq. (3.23) are the
desired estimates.

In the current study, the optimum soluition for all loading regimes and
applied strains yielded a value of n = 0°. This means that the cracks are
predominantly oriented with the plane defined by the major axis of the crack
and the crack neormal parallel to the longitudinal (or loading) axis and
perpendicular to the transverse plane. The best form of the crack size
distribution, f{a[m), turns out to be a gamma distribution., This is the
same form of distributlon obtained for the trace length distribution

(Section 3.3.1). The size distribution is represented as

flal) = —1— " & ¥F (3. 25)
8" r'(o)
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<aw>2 var(aw)
in which o = m\{?; 8 = “*<““a-“w>““- (3.26)

I' is defined in Eq. (3.7).

As iliustrated in Fig. 3.15-3.17 for cement paste {(W/C = 0.5) loaded
monctonically to a straln of 0,004, the final calculated surface distribu-~
fions c¢losely mateh the medified experimental surface distributions, The
deviations that do exist between the calculated and experimental distribu-
t.ions may be due to a number of causes. Primary among these is the rather
pold assumpiion that the cracks are elliptic. In addition, all sources of
the specimen preparation cracks are not known and therefore cannot be dealt
with at this stage in the analysis, It should be noted that f(B)L used for
comparison in Step 7 [Eq. (3.21)] is itself a product of the iteration
sScheme,

The caliculated three-dimensional crack orientation and size distribu-
tions for a nonloaded specimen and for a specimen loaded to a strain of
0.00% are illustrated in Fig. 3.18 and 3.19. Fig. 3.18 shows that the
orientation distribution for the loaded specimen is skewed more towards the
direction of applied stress (¢ = 90°} than the corresponding distribution
for the nonloaded specimen., Fig. 3.19 shows that the mean crack size in the
loaded material is larger than that in the nonloaded material,

The final distributions obtained in Steps U4 and 5 of the iteration
scheme produce thes values of the modified numbers of cracks per unit area on

the transverse and longiftudinal surfaces, M, and M as well as the number

T L’
of specimen preparation cracks, not counting those removed when the spikes

were excluded, ﬁT*MT or HL"ML' These are summarized along with the values

of ET and ﬁLin Tables 3.7-3.12, The final surface crack densities, M <i>.

and ML<2>L, are given in Tables 3.13-3.16., The calculated three-dimensional
grack parameters for nonloaded specimens and for all loading regimes and

applied strains are presented in Tables 3,17-3.23. An additional parameter,

N <a3>, which is a measure of the volume density of the cracks, is added,

v
3
Nv<a

shown in Chapters 4 and 5.
The data presented in Tables 3.7-3.23 are discussed for each loading

> plays an important role in controlling material behavior, as will be

regime in Secticon 3.5,
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Effect of Averaging Surface Crack Data: As stated earlier, the average

surface crack data for all specimens loaded to a specified straln are used
to obtain the surface and three-dimensional crack parameters for each load-
ing regime.. It is of interest to compare the results obtained using the
average data with the extremes obtained in the tests. Monotonically loaded
cement paste with a W/C = 0,5 is used for the comparison. To establish
lower and upper bdounds of the number of cracks per unlt area on the
transverse and longitudinal surfaces, MT or ML’ and of the three-dimensicnal
crack size parameters, <aw> and var(aw), the surface crack data for in-
dividual specimens were analyzed. The results are presented in Tables 3.24
and 3.25. The values of the number of coracks per unit area, M. and ﬁb, are

T

also given in Table 3.24. The values of MT, ML’ <a¢>, and var(aw

Tables 3.8 and 3.19 based on the average surface crack data are within C.5%

) given in

of the results in Tables 3.2% and 3.25. This indicates that the average
data for all specimens are representative of the data for the individual
specimens.

The upper bounds for the number of cracks per unit area before
modification (ﬁT or ﬁL) are about 6% to 8% larger than the lower bounds
{Table 3.24). However, the upper bounds for the modified number of cracks
per unit area (MT or ML) are only about 0.8% larger than the lower bounds.
For specimens with the same strain, it is likely that the difference between
the lower and upper bcunds for ﬁT {or ﬁL) is due to specimen preparation.
Thus, the closeness of the lower and upper bounds for M., and ML suggests

T

that the procedure for estimating MT and ML does a gocd job of removing

specimen preparation cracks.
Multi-directional Crack Trace: In order for a multi-direction-al crack

trace (Fig. 3.20) to be recorded as a single uni-directicnal crack, the
differences in ftrace angle between the individual segments of the crack
trace were required to be no bigger than the increment of angle measurement,
he/2 = + 2.5°. Segments of & multi-directional crack trace which did not
satisfy this requirement were recorded as separate crack traces, Thus, the
recorded crack traces have a smaller mean length than would have been ob~
tained if the tetal length of & multi-directional e¢rack trace had been
recorded as a single guantity, or if a multi-directional crack trace had

been recorded as a single uni-directional crack.
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This point is of some concern since in Chapter U it will be shown that,
while material response depends on the number of cracks per unit volume, NV’
it depends on the average of the cube of the characteristic crack size,
<a3>. An overestimate of the number of surface cracks and corresponding
underestimate of surface crack trace length will result in an overestimate

3), which will substantially underestimate the

of NV and underestimate of <a
effect of the cracks.

To rectify this problem, two specimens were studied to obtain a cor-
relation between the multi—-directional crack traces and the individual
segments, For the current analysis a multi-directional crack trace must be
represented as a single uni-directional trace since the surface to three-
dimensional conversion procedure useéed in this study is based on linear
surface cracks. The equivalent uni-directional crack trace is obtained by
gonnecting the far ends of the attached segments (Fig., 3.20}.

Based on the information obtained from the two specimens, it is es-
timated that if all multi-directicnal crack traces had been recorded as
single cracks, the number of c¢racks per unit area would have been reduced by
about 23% and the mean trace length would have been increased by about 30%.
The variance of the trace lengths based on the large cracks is about 1%
larger than the variance based on the small cracks. '

To obtain an estimate of the c¢rack parameters based on the larger,
combined crack traces, the mean trace lengths and variances given in Tables
3.1-3.6 are increased by 30% and 1%, respectively, and the numbers of cracks
per unit area, M

T
The surface to three—-dimensional conversion procedure outlined above is then

and ﬁL’ given in Tables 3.7-3.12 are decreased by 23%.

used to obtain estimates of <a¢> which are larger than those given in Tables
3.17-3.23. The estimates of <aw>, Var(a$), Nv and Nv<a3

Tables 3.26-3.32. The affect of this conversion is substantial on the value
3
>

> are presented in
of the key parameter Nv<a , with increases ranging from 31% for mortar {(W/C
= 0.5} at a strain of 0.004 under monotonic loading to L44% for cement paste
{W/C = 0.3) at a strain of 0.003 under cyclic loading. The estimates of K
and r are unchanged from those given in Tables 3.17-3.23.

Unless stated otherwise, the discussions of three-dimensional crack
parameters in the next section are based on the results which correspond to

the larger estimate of <a¢>.
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3.5 Discussion of Results

In this section, the surface and three~dimensional crack parameters for
cement paste and mortar are discussed for nenloaded specimens and for
specimens under each loading regime., Crack densities and crack distribu-
tions are compared for specimens with different water—cement ratios and load
regimes., For each loading regime, the implications of the resulits are

discussed based on the three-dimensional crack parameters.

3.5.1 Nonloaded Specimens

Surface crack density, M?<2>T or ML<2>L {Table 3.13), as well as
3

"volumetric crack density", Nv<a > (Tables 3.17 and 3.26), vary inversely
with water—cement ratic for nonloaded cement paste specimens, as shown in
Fig. 3.21 and 3.22, respectively. Three reasons may be offered to explain
these relationships: (1) The higher the water-cement ratio, the greater will
be the degree of hydration at a given age. Therefore, upon drying, the
higher water—cement ratio paste may undergo less differential volume change
at the local ievel. (2) The more porous nature, and thus higher compliance,
of the higher water—cement ratic paste may allow the material to deferm with
less cracking during the drying process. {3) A portion of the cracking may
be due to self-desiccation, which will be higher for a lower water-cement
ratio,

The existence of internal drying coracks in cement paste and mortar
raises an interesting point about the significance of drying shrinkage
measurements. Drying shrinkage measurements are carried out as externzal
length measurements, and shrinkage values have been used as evidence in
support of contrasting models of the hydration of portland cement paste
[18,84]. If cracks form within the mabterial, the external length change
will be reduced, compared to the case without any cracks, by the total
projected crack width in the direction of measurement. Also, the larger the
crack density, the lower will be the externally measured shrinkage. Results
in this study show that both crack density (Tables 2,12, 2.16 and Fig. 2.52)
and crack width {(Tables 2.30-2.32) vary with the method of specimen drying.
Thus, shrinkage will be partly determined by the material and partly by the
method vsed in drying the specimen., Drying shrinkage is, therefore, not a

material property, but rather a composite or apparent property, and as such
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may not be of much significance in proving or disproving any particular
model of the hydration of cement paste.

Bazant, et al, [5,6,71 have shown analytically that due to differential
drying rates between the exterior and interior of cement paste and conecrets
specimens, diseontinuous random c¢racks, as well as a system of parallel
é¢rying ¢racks, form in the specimens. In this study, nearly uniform dis-
tributions of crack density with respect to trace angle have been obtained
for the nonloaded specimens, as shown in Fig. 2.53 and 2.55. These observed
crack distributions seem to support the formation of random drying cracks
due to differential drying rates between the exterior and interior of the
specimens, as proposed by Bazant, et al. However, some portion of the
¢racking can be due to differences in the properties of CH and CSH com-
ponents in the hydrated cement paste, Since CH does not change volume
during the drying process, and also has a higher stiffness than CSH [8,48],
CH can act as a rigid inclusion surrounded by a shrinking matrix. The
restraining effect of the CH can induce tensile stresses which are relaxed
by the formation of cracks, This suggests that some cracking will occur,
independent of the drying rate., An analytical study by Kawamura [487 sup-

ports this conclusion.

3.5.2 Monotonic Loading

For this loading regime, specimens were loaded to selected strains at a
constant strain rate and then immediately unloaded. Typical stress—strain

curves are shown in Fig. 2.3-2.6.

3.5.2,.1 Surface Crack Density

The c¢rack densities on the transverse and longitudinal surfaces of
cement paste and mortar increase with applied compressive strain {Table
3.1y, Fig. 3.23 and 3.2% show crack density on the transverse surfage as 2
function of applied compressive strain for cement pastes with W/C = 0.7, 0.5
and 0.3. In Fig. 3.23, the linear least squares fits through the data
pointas show that the average increase of surface ¢rack density with strain
is virtually the same for all the three cement pastes. However, if the data
points are connected with straight lines, as shown in Fig., 3.24, it is

observed that above a strain of 0.004, surface crack density increases more
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rapidiy in cement paste with a W/C = 0.3'than in pastes with W/C = 0.7 and
0.5,

Fig. 3.25 shows the transverse surface crack density - strain relation~
ships for cement paste and mortar with a W/C = 0.5. The figure shows that
surface crack density for nonloaded mortar specimens is lower than for
nonloaded paste specimens, With applied compressive strain, however, the
increase in surface crack density is more rapid in mertar than in cement
paste, Beginning a{ a strain of about 0.002, the surface crack density in
mortar exceeds the value for paste.

Specimen Preparation Cracks: The estimated number of specimen prepara-

tion cracks, not counting those removed when the spikes were excluded

{Section 3.4.1), MT—MT

applied strain., This relationship is {llusirated in Fig. 3.26 for cement

or HL”ML {Tables 3.7-3.10}, decreases with increasing

paste with a W/C = 0.5, The decrease in specimen preparation cracks with
increasing straln implies that load-induced cracks rellieve stresses due to
specimen preparation, and that the greater the density of load-induced

cracks the greater the relief.

3.5.2.2 Three-Dimensional Crack Parameters

The relationships between the mean characteristic crack size, <a¢>, and

strain, and between the coefficient of variation, £var(aw)}1/2/<a >, and

strain are illustrated in Fig. 3.27 and 3.28 for cement paste withlz W/C =
0.5. Crack orientaticns of 0°, 45° and G0° are used in these figures. The
lines shown are least squares fits through the data points. Fig. 3.27 shows
that <a,> inecreases with increasing strain and with increasing orientation

¥
angle, ¥ (Tables 3,18~3.21 and 3.27-3.30). The inecrease of <a, > with in-

creasing ¢ indicates that the oracks are larger the more their o?ientation
is skewed towards the directicn of applied stress. The coefficients of
variation are approximately constant, implying that crack sizes have the
same spread relative to their means for all applied strains and crack
orientations.

For nonloaded cement paste and meortar with a W/C = 0.5, the degree of
anisotropy, K, is 0.00, while for nonloaded cement pastes with W/C = 0.7 and
0.3, the value of K is -0.02 (Table 2.17). As pointed out in Section'B.&.Z,
a value of K = 0 indicates an isotropic orientation distribution. The value

of K = —-0.02 for the pastes with W/C = 0.7 and 0.3 gives an orientation
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distribution, f(¢), that is different from the distribution for K = 0 by
less than 1%. This indicates that fhe orientation distributions in all the
nonloaded materials are virtually isotropie.

The magnitude of K increases with increasing strain under monotonic
loading (Tables.3.i8—3.2%), indicating that the crack distribution becomes
skewed towards the direction of applied stress as strain increases. For
cement paste with a W/C = 0.5, values of K range from 0,00 for nonloaded
specimens to -0.30 for specimens at an applied strain of 0.006, while for
paste with W/C = 0.7 and 0.3, they range from —-0.02 for nonloaded specimens
to ~0.29 and —-0.3%1 for specimens at an applied strain of 0.006, For mortar
with a W/C = 0.5, the range of ¥ is 0.00 for nonloaded specimens to -0,24
for specimens loaded to a strain of 0,004,

At low stirains, the crack aspect ratio, r, is 1.0; i.e. the cracks are
girecular (Tables 3.18-3.21). At high applied strains, the cracks become
elliptic (i.e. r < 1.0). At an applied strain of 0.006, the values of r are
0.90, 0.87 and 0.85 for cement pastes with W/C = 0.7, 0.5 and 0.3,
respectively. At an applied strain of 0.004 in mortar with & W/C = 0,5, the
value of r is 0.90. These results imply that sach crack has a slightly
preferred direction of propagation (or characteristic direction) in its
plane, Since n = 0° for all load cases (Section 3.4.2), that direction is
parallel to the direction of loading.

The number of ¢racks per unit volume, NV’ decreases with increasing
applied strain (Tables 3.18-3.21 and 3.27-3.30, Fig. 3.29). For exanmple,

for paste with a W/C = 0.5, N, decreases from a value of 2.3x106 in.“3 in

v -3

nonloaded specimens to a value c¢f 0.7x10° in,

strain of 0.006. For mortar with a W/C = 0.5, N, decreases from a value of

v -
1.5x106 in, 3 in nonloadad specimens to a value of 0.6x106 in. 3 in

in specimens loaded to a

specimens loaded to a strain of 0.00%. While the number of cracks per unit
volume decreases with increasing applied strain (Fig. 3.29), the mean c¢rack
size increases (Fig. 3.27). The two results suggest that as the applied
strain increases, small cracks join into a smaller number of larger cracks.

3

The variation of the volume density of cracks, Nv<a >, with applied

strain is shown in Fig, 3.30 and 3.37 for cement pastes with W/C = 0.7, 0.5

and 0,3. Both figures show that N <a3> increases with increasing strain,

v
suggesting that the paste materials are damaged progressively during

loading, The linear least squares fits in Fig. 3.30, like the surface crack



54

density (Fig. 3.23), show that the average increase in Nv<a3> with strain is

virtually the same for all the three cement pastes. Fig. 3.31, in which the
data points are connected with straight lines, shows that below a strain of
0.004, N <a3

v
Above a strain of 0.004 Nv<a3>, the trend is reversed, and Nv<a3> increases

> increases more rapidly the higher the water-cement ratio,

most rapidly for cement paste with a W/C = 0.3, The larger rate of increase

of volumetric crack density, Nv<a3>, at high strains in cement paste with a

W/C = 0.3 may explain the lower strain capacity of this material when com-

pared to pastes with higher water-cement ratios (Fig, 2.7).
3

> and strain for

3

Fig. 3.32 compares the relationships between Nv<a

cement paste and mortar with a W/C = 0.5, The value of Nv<a

mortar is lower than that for nonloaded cement paste., This reflects the

> for nonloaded

lower percentage of paste in the cross—section of mortar and the restraint

3> increases more rapidly in

of shrinkage exerted by the sand grains. Nv<a
mertar than in cement paste. Under load, the sand appears to act as a
stress raiser, resulting in a larger value of volumetric crack density and a

lower strain capacity for mortar as compared to cement paste,

3.5.3 Sustained Loading

Under this loading regime, load was maintained at a specifiied stress

level for four hours, Stress levels were selected in order to cobtailn

specific strains. A typical stress-strain curve is shown in Fig, 2,14,

3.9.3.1 Surfage Crack Density
For sustained loading of cement past, surface crack density increases

with increasing applied strain, on both the transverse and longitudinal
surfaces (Table 3.15). Crack density on the transverse surface versus
strain is shown in Fig. 3.33 for cement pastes with W/C = 0.5 and 0.3.
Surface crack density is larger and increases more rapidly in paste with a
W/C = 0.3 than in paste with a W/C = 0.5.

The surface crack densities are compared at the same strain for
monotonic and sustained leoading regimes in Fig., 3.34. The figure shows that
for loading te a fixed strain, surface crack density Is larger under

monctonic leading than under sustained loading.
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3.5.342 Three-Dimensional Crack Parameters

The mean cgharacteristic crack size, <aw>, increases with increases in
strain and erack orientation under sustained loading (Tables 3,22 and 3.31}.
This relationship is illustrated in Fig. 3,35 for cement paste with a W/C =
0.5, and for crack corientations of 0°, H45° and 90°, Like the crack dis-
tributions for monotonic loading, the crack distributions for sustained
loading are skewed more towards the direction of applled stress the higher
the applied strain, as indicated by the increase in the magnitude of the
degree of anisotropy, K, with an inerease in strain (Table 3.22). For
example, for cement paste with a W/C = 0.5 loaded to strains of (.00l and
0.006, the values of K are —-0.17 and —-0.24, respectively., The c¢rack dis-
tributions under sustalned loading, however, are less skewed towards the
direction of applied stress than the distributions under monotonic loading
for which the corresponding values are -0.27 for a strain of 0.004 and -0.30
for a strain of 0.006.

The higher the strain under sustained loading, the smaller the number
of cracks per unit volume, NV (Fig. 3.36 and Table 3.31). The Ilncrease in
<aw> {Fig. 3.35) and the decrease in NV {Fig, 3.36) with increase in strain
suggest that small oracks join to form a smaller number of larger cracks in
cement paste at higher applied strains, as occurs under monotonic loading.'

3>, at each strain (Table 3.31) is
3

The volume density of cracks, Nv<a

shown in Fig. 3.37 for the cement pastes. Nv<a > is larger and increases

more rapidiy in paste with a W/C = 0.3 than in paste with a W/C = 0,5, This

result is similar to that obtained for the surface crack density (Fig.

3

3.33). The greater value of N, <a”> in the lower water-cement ratio paste is

. v
somewhat more extreme than the results obtained at high applied strains

under monotenic loading (Fig. 3.31).

Fig. 3.38 shows that for the same applied strain, the veolumetric ecrack

3>, under monotonic¢ loading ranges from 1,02 to 1.46 times

N <a3> under sustalined loading. The values of Nv<a3> are closef for paste

v
with a W/C = 0.3 than for paste with W/C = 0.5, This result indicates that

density, Nv<a

deformation mechanisms other than cracking play a reole, and that under
sustained loading at a lower stress, these mechanisms can reduce the amount
of cracking. At higher strain rates, cracking would be expected tc play an

inereasingly important role,
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3

Fig, 3.39 compares N, <&"> for sustained loading to that for monotonic

loading at the same stress~gtrength ratio. The data shown in this figure
for monotenic loading is obtained by determining the strain which cor-
responds to a given stress—strength ratio, and then estimating the wvalue of
Nv<a3> from the least squares fit shown in Fig. 3.30. Fig. 3.39 shows that
Nv<a3> is larger under sustalined loading than under monotonic loading. This
indicates the affect of the duration of loading. Under sustained loading,
formaticn of new cracks and/or propagation of existing cracks may occur,
resulting in a higher volumetric crack density for sustained loading as

compared to monotonic loading at the same stress—-strength ratio.

3.5.4 Cyeliec Loading

This loading regime consisted of subjecting specimens to cyclic loading
between stress levels of zero and a specified value until selected strains

were reached, A typlesl stress-strain curve 1s shown in Fig. 2.19.

3.5.4%.1 Surface Crack Density

Surface crack density is larger the higher the straln under cyelic
loading (Fig. 3.4C and Table 3.168). Surface crack density increases more
rapidiy in cement paste with a W/C = 0.3 than in paste with a W/C = 0.5,
This result is similar to results obtained for monotonic and sustained
loading regimes.

Surface crack densities for monotonic and cyclie loading are compared
at the same astrain in Fig., 3.41., The figure shows that surface c¢rack den-

sity is larger for cyclic loading than for monotonic loading.

3.5.4.2 Three-Dimensional Crack Parameters

For cyclic loading, as for monotonic and sustained loading, the mean

characteristic crack size, <a. >, increases with increasing strain and crack

orientation (Tables 3.23 a:B 3.32). This relationship is illustrated in
Fig. 3.42 for cement paste with a W/C = 0.5, and for crack orientations of
0°, 45° and 90°,

The magnitude of the degree of anisotropy, K (Table 3.23), also in-
creases with increasing strain, indicating that the crack distribvution is
skewed more towards the direction of applied stress the higher the strain

under cycilic leoading. For example, for cement paste with a W/C = 0.5 loaded
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to strains of (.002 and 0,004, the values of K are —-0.14 and -0.20, respec~—
tively, are somewhat less than the correspconding values under monotenic
loading of ~0.16 and -0.27. As with the crack distributicons obtained under
sustained loading, the c¢rack distributicns under c¢yclice loading are less
skewed towards the direction of applied stress than the distributions under
monotonic loading.

The number of oracks per unit volume, NV’ decreases with increase in
straln (Fig. 3.43 and Table 2.32). As in the case of monotonic and sus-

tained loading regimes, the increase in <a > {(Fig. 3.42) and the decrease in

¥

NV {Fig. 3.43) with increase in strain suggest that a smaller number of

larger cracks form at the higher applied strain.

3

The volumetric ¢rack density, N <a”>, increases with increased strain

under cyclie loading (Fig. 3.44). Aga‘l‘{n, in the case of monotonic loading
at high strains and sustained loading, Nv<a3> increases more rapidly in
cement paste with a W/C = 0.3 than in paste with a W/C = 0.5. Fig. 3.45
shows that for loading to a fixed strain, Nv<a3> is larger under cyclie
lcading than under monotcnic loading. Under cyclic loading, the repetitive
nature of loading may cause new cracks to form and/or existing cracks to
propagate in each cycle, resulting in a larger volumetric crack density for
eyclic loading as compared to moneotenic loading. This occurs even though a
lower stress level is used for cyeliec lcading to attazin the same strain,
The increasing density of cracks with cyclic loading may explain the ob-
served reduction in strength obtained for cyclically loaded cement past

speclmens upon reloading [221.

3.5.5 Expected Effects of Submicrocracking on Material Stiffness

In this section, the data of surface crack densities, MT<9'>’? and

3), and degree of anisotropy, K, which

ML<3L>L, volumetrie crack density, Nv<a
have been discussed in earlier sections are summarized in order fo point out
the expected effects of submicrocracking on material stiffness under dif-
ferent loading regimes, The data for monotonic loading of cement pastes
with W/C = 0.7, 0.5 and 0.3 are compared in Table 3.33, while those for
monotoniec leoading of cement paste and mortar with a W/C = 0.5 are compared
in Table 3.34, The data for sustained and cyeclic loading regimes are com-

pared to those for monotonic loading in Tables 3.35 and 3.36, respectively,
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Under monotonic loading, the surface crack densities of the three
cemant pastes are within 10% of each other at each strain (Table 3.33). The
volumetric crack densities are alsc within 10% of eacnh other, Linear least
squares fits shown In Fig. 3.30 indicate that the increase of volumetric
crack density with increasing strain is approximately the same for the three
cement pastes, The crack orientation distributions for the cement pastes,
f{¥), represented by the degrees of anisoctropy, K, differ by less than 2%
for most strains, The small differences in crack distributions indicated by
these results, suggest that the degree of softening caused by submicrocrack-
ing under monotonic¢ loading should be approximately the same for the cement
pastes,

Above a strain of 0,001, both the surface and volumetric crack den-—
sities are larger In mortar than in cement paste (Table 3.34). The larger
densities 1in mortar are associated with crack distributions which are less
skewed towards the direction of applied stress than crack distributions in
cement paste, as indicated by the degrees of anisotropy. The less skewed a
crack distribution is towards the direction of applied stress, the larger is
its effect on the stiffness modulus in that direction. Therefore, the
degree of softening caused by submicrocracking under monoteonic loading
should be larger for mortar than for cemeni paste.

The surface and volumetric crack densities at each strain are larger
for monotonic loading than for sustained loading (Table 3.35), suggesting a
larger effect of oracks on the stiffness modulus under monctonic lcading
than under sustained loading. However, as indicated by the degrees of
anisotropy, the crack distribubtions for sustained loading are less skewed
towards the direction of applied stress than the distributions for monoctonic
loading, indicating a larger effect of cracks on stiffness modulus under
sustained loading than under monotonic loading. Thus, the effect of the
cracks on materizl stiffness under monotonic loading should be smaller than
suggested by the values of volumetric crack density alone, while the effect
on stiffness under sustained loading should be larger than suggested by the
values of volumetric crack density alone,

The surface and volumetric crack densities at each strain are larger
for eyclic loading than for monctonie leoading {Table 3.36). The degrees of
anisotropy indicate that the crack distributions are less skewed towards the

direction of applied stress for cyclle loading than for monotonic loading,
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These results suggest that the degree of softening caused by submicrocrack-
ing should be larger under cyclic loading than under monotonic leading.

In Chapter 5, the three—dimensionzl crack distributions discussed in
this chapter are used in a material model to determine the effects of the
cracks on the elastic moduli of cement paste and mortar., The material model

is developed In the next chapter,

3.6 Summary of findings

The results discussed above can be summarized as follows., The term
"erack density"™ refers to both the surface and volumetric c¢rack densities.
1. The variations in crack density and crack width with the methed of

specimen drying suggest that drying shrinkage in cement paste is not a

material property, but rather a property of the total cement paste

composite.

2. Under monotonic loading, crack density increases more rapidly in mortar
than in cemeni paste.

3. At high strains under uniaxial compressive loading, c¢rack density seems
to increase moreg rapidly in a low water—-cement ratio paste {W/C = 0.3)
than in higher water-cement ratioc pastes {(W/C = 0.7, 0.5).

I, For loading to a fixed strain, crack density in cement paste is larger
under monotonic loading than under sustained loading, while at the
stress—strength ratios investigated, crack density is larger under
sustained loading than under monotonic loading.

5. For the same applied strain, crack density in cement paste under cyclic
loading is larger than under monotonic loading.

5. Under uniaxial compressive loading, the mean size of submicroscopic
gracks increases with increasing strain, while the number of cracks per
unit volume decreases.

7. Under monotonic leoading, the threse-dimensional crack distributions in
cement paste show only small variations with water-cement ratic; the
volumetric crack densities are within 10% of each other and the orien-
tation distributions are wvirtuzlly the same,

8. Under uniaxial compressive loading, three-dimensional distributions of
submicroscopic cracks become skewed towards the directicn of applied

stress as strain increases.
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Under monotenic loading, the c¢rack distributions in mortar are less
skewed towards the direction of applied stress than the crack distribu-
ticns in cement paste.

The crack distributions under sustained and ¢yelic Ioading of cement
paste are less skewed towards the directlon of applied stress than the

crack distributions under monotonic loading,
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CHAPTER 4
SELF-CONSISTENT MODEL FOR A TRANSVERSELY ISOTROPIC CRACKED SOLID

b,t Introduction

A model based on the self-consistent method is developed to estimate
the effective eslastic moduli of a transversely isotropic sclid containing
many cracks. Such a solid has one axis of elastic symmetry.

The self-ccnsistent method has been employed by various investigators
{12,13,14,30,33,34,35,38,50,43,50,52,53,67] to estimate the elastic moduli
of composite materials. The method accounts for inclusion interactions by
estimating the actual behavior of an inclusion in the composite body as that
of a single inclusion in an equivalent homogeneous body. There are two
egquivalent approaches for deriving the self-consistent equations., One
approach, by Hill [35], involves the direct averaging of the components of
stress and strain in the constituent phases of the solid. Average stress is
related to average strain in the solid through the effective elastic modull.
The othsr approach, by Budiansky [12], involves the computation of the
change in straln energy of the solid due to each representative inclusion.
The change In strain ensergy is summed over all inclusions, and the resuylt is
set equal to the energy change produced by modification of the elastic
moduli of the solid. Expliecit formulations of the self-consistent method in
the case of cracked sclids have been obtained by Budiansky and 0'Connell
[1%,6T], Hoenig [38], and Horii and Nemat-Nasser [L0].

Budiansky and C'Connell use the energy approach to estimate the elastic
moduli of an isotropic cracked body permeated by many randomly distributed
cracks. Hoenig considers non—randomly distributed cracks and semploys Hill's
approach to derive the self-consistent equations., He illustrates the
results of his formulation with two examples. In each of the two examples,
the cracked sclid is transversely isotropic. The cracks are assumed t¢ have
a single orientation with respect to the plane of isotropy. Budiansky and
C'Connell, and Hoenig, neglect the effects of erack closure in their
studies, Horli and Nemat-Nasser assume a random crack distribution and use
the self-consistent method to determine the effective meoduli of a cracked
solid when some cracks c¢lose, and when closed cracks undergo frictional

sliding.
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In this study, Budiansky's energy approach is used to formulate the
self-consistent equations for a cracked transversely isotropic solid con-
taining non-randomly distributed cracks. Crack closure effects are
neglected. The cracks are assumed to be elliptic with known size and orien-—
tation distributions, and crack centroids are assumed to be randomiy
distributed throughout the solid. Both dry and saturated cracks are
censidered. The uncracked material is assumed to be locally isotroplic and
homogeneous. The cracks modify the material properties, and anisotropic
distributions of crack size and orientation cause the cracked solid to
become transversely isotropic. For opaque solids, procedures are estab—
lished in Appendix D to estimate the three-dimensional c¢rack distributions
from crack trace distributions obtained on the exterior of the solid.

The results of the self-consistent formulations obtained in this study,
are checked against those of Budiansky and O'Connell [14,67] and Hoenig
[38]. Further, results are present‘ed for a transversely isctropic cracked
solid using assumed anisotropic crack distributions in which all orienta—~
tions are represented., Results are also presented to show the sensitivity

of the model to variations in three—dimensional crack parameters,

4,2 Overview of the Model

In the following presentation of the self-consistent model, the crack
and global cocrdinate systems are defined. Stresses are applied to the
cracked s0lid and the self-consistent equation is formulated for sach ap-
plied stress. The energy change of the body-load system due to a single
crack is expressed in terms of energy release rates for crack extension in
an anisotropic material. The change in strain energy of the cracked solid
due to all cracks is then obtazined, Each of the self-consistent equations
1s expresaed in a form which is appropriate for determining the effective
moduli of solids contzining either dry or saturated cracks.

The self-consistent equations are nonlinear in the unknown sffective
moduli. An iterative solution procedure is used. The solution process 1s

stopped when the computed moduli converge.

4,3 Crack and Global Coordinate Systems

In the self-consistent method, the material properties are required for

the directions associated with the individual crack orientations. The crack
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and material coordinate systems are defined in Fig. 4.1. The figure shows
an elliptic grack and a rectangular cartesian coordinate system in the
principal material directions, with the 1-2 plane bveing the plane of
isotropy., The 3—axis is the longitudinal axis of the oracked body, and it
is also the axis of elastic symmetry. ¢ is the orientaticn of the crack
with respect to the plane of isotropy. The elliptic crack has z major semi-
axis length of a and a minor semi—axis length of b, The length of the major
semi-axis, a, is designated as the "characteristic crack size". In generail,
the characteristic crack size is a function of ¢; l.e. a = a{yp) = anp' The
aspect ratio of the crack, r, is defined as the ratio b/a, and in this
analysis, its value is assumed to be the same for all cracks. The aspect
ratic varies between 0 and 1. A value of 1 indicates a circular crack. 9§
is the angle that the projection of the normal to the crack on a plane of
isotropy, makes with the principal 1-direction. ¢ varies in a full circle
about the axis of elastic symmetry. The angle n defines the degree of
rotation of the crack about its normal. For n = 08, the plane defined by the
major axis of the crack and the crack normal is parallel to the longitudinal
axis and perpendicular to the transverse plane, while n = 7/2 when the major
axis is parallel to the transverse plane. For a circular crack, n is not
defined since every axis of the crack is a major axis. The local reference
frame of the crack is represented by the x, vy and z axes, The x—y and y-z
planes are normal to the crack plane, while the x—2 plane i3 parallel to the
crack plane, The c¢rack displacements in the x, y and z directions are u, v
and w, respectively.

In reference to the global coordinate system in Fig. 4.1, the strain-

s3tress relations for a transversely isotropic material are
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in which E1 and E3 are stiffness moduli, Vi and u31 are Poisson's ratios,

and 612 and G31 are shear moduli. The material is described by five inde-

pendent elastic constants, These independent constants may be taken as E1,
E_, V.., V and G,,. v,.. is Poisson's ratio which characterizes the strain
3 Y127 31 3t ij

in the j direction produced by stress in the i direction. G12 is dependent

upon E1 and v through the relation

ie

g

1
Gg,. = —-— (4,2)
12 2{1 + v¥2)

L, Self-Consistent Scheme

The approach used in the self-consistent method to estimate the effec-
Tive elastic modull of a transversely isotroplic cracked solid, follows that
used by Budiansky and Q'Connell [18,67] to determine the effective moduli of
an isotropic cracked body. The change in strain energy due to each crack is
computed based on the elastic moduli as modified by the full crack
distribution. The strain energy change is summed over all cracks and the
result is set equal to the energy change cof the solid produced by the
nodification of the medull.

If & is the strain energy of the uncracked solid under a prescribed

loading and @c is the cerresponding quantity for the cracked body,
¢, =0 + A0 (4.3)

in which A% is the straln energy change due to the presence of cracks. The
effective elastic constants are determined by using various load cases to
obtain estimates for A®., For each lcad case, the self-consistent approxima-
tion is achieved by assuming that each crack contributes to A® as if it were
an isclated crack in an infinite matrix having the as yet unknown elastic
moduli of the cracked solid,

In order to determine the five independent elastic ccnstants of a
transversely isotropic solid in which cracks are distributed at all orienta-
tions (0° £ ¢ £ 90°), five load cases are needed. For example, the
stiffness modulus in the plane of isotropy, E?, is determined by applying a
normal stress in the global 1-directicn, The load cases are shown in Fig. -

4.2, s is an applied normal stress and v is an applied shear stress.



65

By writing the strain energy for each load case, five different equa-
tions are generated using Eq. {4.3). The elastic moduli of the uncracked
material are E, G and v; V is the material volume. For each load case, the
self-consistent equation and the resolived stresses, ¢ and 1, which are
normal and tangential to the plane of the crack, are obtained. In the

equations for the resclved siresses, T and T, are perpendicular components

of 1, 1, acts along a line defined by the intersection of the crack plane

1
and a plane defined by the crack normal and the longitudinal axis,. 12 acts

within the crack plane and is perpendicular to T,

Load case 1: E1

2
sV 52V
2E, © 2E * 4o, (8,4)

0= 8 cosz¢sin2¢

T, =S cosz¢sinwcosw (4.5}
T, = 5 singcosd
Load Case 2: E3
2 2
sV av

g = 8 cosg¢

s sinycosy (4.7

1
it

Logad case 3: v12

2 2
5V iy ) =2 (- uy » a0 (1.8)

EE 12 E 3

g = 8 sinZw
T = 5 sinvcosy . (4.9

Load case U: v31

2 E 2
sV - 3y _8%¥ -
EE; {1 2v31 + E1} = 5 (1 v) o+ A@u (4,10)
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g = 5 (cos2¢sin2w+c032¢)

T, =8 sinzésinwcosm (4.11)
T, = s singcosd
Load case 5: 631
2 2
vV vV
EOEET + A@S (4.12)
31
2 .2 .
g = 2 v {cos d—sin"¢)singcosy
T=v (cose¢—sin2¢}(cosgwﬂsinzw} (4.13)

For each load case, the energy change due to the cracks, A@i, depends
on the five independent elastic moduli of the cracked solid, and it is
obtained by determining the energy change assocliated with a single crack.
The energy change is affected by the presence of fluid in the c¢rack., Both

dry and saturated cracks are considered,

4,4,1 Dry Cracks
Budiansky and O'Connell [14] have shown that the energy change as-—

sociated with a dry crack of arbitrary shape is given by

1 %
= - p(J, + J_ + J.)dp (4,14)
3 crack 1 2 3

in which J1’ 32 and J3 are the energy release rates associated with the
three modes of crack deformation. These three modes are the opening mode
(Mode I), the forward shear mode {Mecde I1I), and the out-of-plane shear cor
tearing mode (Mode III} [73,81,102]. The expressiona for the energy release
rates for crack extension in an anisotropic material are given in a sub~
sequent section. ¢ is the perpendicular distance from the crack centroid to
a point on the crack perimeter, and p is a distance measured along the crack
perimeter (Fig. 4.3). The integration is carried out over the crack

perimeter, For an elliptic crack [14,37],

pdp = abdg (4.15)
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in which & and b are the lengths of the major and minor semi-axes,
respectively., The angle 8 defines a point on the perimeter of the crack.
For a crack aspect ratio b/a = r, the energy change associated with an

elliptic orack is obtained from Eg. (4.1%4) as

2
Yra™ w/2 )

£ = T fo (31 + J2 + JS)dB {4,163

In the special case of an isotropic cracked solid, Budiansky and

0'Connell {147 obtained the energy change due to an elliptic crack to be

2.3, =2 _ ~ A
£ = HEE(Ey(igﬁ~]{ﬂz * Tz[ﬁ(k,v)cosen+Q(k,v)sin2n]} (4.17a)
in which
R(k, %) = kECO [ (KZ-DIEMK) + 3(1-x2)K00) ]
(4.175)
Ak, V) = KEMO{[KE501-k3) JEG) - S(1-kA)K(0 ]

K(k) and E(k) are, respectively, the complete elliptic integrals of the

first and second kind with argument k = (1"r2}1/2.

K(k) = 321 - k®sin®g)" " 2ug
(4,17e)
B(Kk) = 17201 - Psin®a) ' 248

The expressions for the energy change due to the ecracks, A@i, which are
required in the self-consistent equations, are obtained as follows,

Define a crack energy parameter, wi(a,w), as

Wo(a,p) = = (4.18)
i 2
P,
i
in which a and ¢ are, respectively, the characteristic size and the orienta-
tion of the crack, £ is the esnergy change asscociated with the crack, and Pi
is the applied stress acting on the cracked solid; for load cases 1 through
4, Pi = 3, and for load case 5, Pi = v, (see Fig., U4,2). Substituting Eq,

{4.16) into (4.18),
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2
ra

3P
i=1,..,5.

ey

|

_ /2
W, (a,¥) = for "y v 3,0 % JB)dS (4.19)

e P

The expressions feor the energy release rates which are given in a subsequent
section, show that J1, J2 and J3 are proportional fo P?. Hence, the evalua-
tien of Eq. {4.19) does not require a knowledge of the magnitude of the
applied stress,

For load cases 1, 4 and 5, wi{a,w} is a function of the angle ¢ as
indicated by the resolved stresses [(see Eq. (4.5}, (4.11) and (4.13)],
Wi{a,¢) must be averaged over all values of ¢ for each of these load cases.

The change in stirain energy of the cracked solid due fto all cracks

within the volume is
Ad, = TE = P2 IW.(a,y) (4.20)
i i iv *

in which the summation is over all cracks. The final ferms of the self-
consistent equations are now obtalned,
Substituting Eg. (4.20) into Eq. (4.1), the self-consistent eguation

for the first load case is

Vv Vv
Eg; = SF + ZW1(a,w) {(K,21)

Iir NV is the number of cracks per unit volume and <W3> denctes the mean

value of W1(a,$) over all crack sizes and orientatlons, then
;wT(a,w} = N, V<> (4.22)

Eq. (4.21) becomes

1 1
25, " 2 ¢ Ny Wy o (k.23)

<w1> is expressed as

Gi,> = T W (2,01 (a,p)dady (4.20a)

or
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qip> = 17257 W (a,w)eal v ey dady (4., 24b)

05 Y g /2

in which f(a[w) and f{¥) are, respectively, the size and orientation dis-
tributions of the cracks. Substitution of Eq. (4.24b) into Eq. (4.23) gives
1 1 /2
§§: = gg= * Ny Jo T Wota,w)f(afy) fly)dady (4.25)
Multiplying Egq. (4.2%) through by 2155.l and rearranging, the self-consistent
equation for the first load case is
n/2 e

B, = E/ f1 42 Ny B L3S, w1(a,$)f(a]w)f(¢)dadw] (4.26)

Similarly, the formulations for load cases two through five are

By = E/ [1+ 2 N, E fﬁ/sz wa(a,¢}f<a|w)f(w)dadw] (4,27}
(1—v) /2 =
Vip = 1= By [ e Ny S50 Wgta, w0t (aludr(v)daay] (4.28)
vgy =3 - By [H22 - b+ wy VR0 wyta,we(al wey) daay] (¥.29)
1
Gy =0/ [1 a2 ¢ 2 Wo(a, )£ (a|v) £ (V) dady] (4.30)

Eq. (L4.26)-(4.3C) are nonlinear equations which can be solved for £, 53,
Voo Vgg' and 631 using an iterative scheme. The sclution procedure is
desecribed in section 4.6,

4.4,2 Saturated Cracks

The derivations for a transversely isotropic solid with saturated

cracks follow the procedure used by Budiansky and 0'Connell [14,67] for an
isotropic solid. The self-consistent equations are the same as for a body
containing dry cracks [Eq. {4.26)-(4.30)]. Only the crack energy parameter

for each leoad case, wi(a,w), needs to be modified.
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If the cracks are filled with a fluld of bulk modulus X the calecula-

'
tion of the change in strain energy due to the presence of tié cracks must
take into account the elastic energy of the fluid as well as the effect of
the fiuid on the elastic state of the surrounding materiasl. A3 noted dy
Budiansky and O'Connell, a basic assumption in the calculations that follow
is that the fiuid in each crack is considered to be isolated. Hence, the
effective moduli obtained here are only appropriate for stress changes that
oceur with sufficient rapidity so as to prevent ccommunication of fluid
pressure between cracks.

Due to the applied load, the fluid within the cracks will acquire a
ge Op affects the normal mode (Mode 1) deformation of
the crack. Other mcdes are not affected since the fluid cannot carry shear

hydrostatic stress, ¢

stress, Hence, the energy release rates for Modes II and III deformations,
J2 and JB’ are the same as in the case of dry cracks,
Following Eq. {(4.156), the increase in energy of the surrounding body-

load system due to the hydrostatic pressure within the cracks is

pE = i?zfi’e 5y a8 (1.31)
in which J{ is the energy release rate due to the hydrostatic stress, of.
The expression for J; is given in the next section,

The energy change assocliated with a saturated crack is obtalned by
subtracting the increase in energy of the body-load system due to the
presence of the flulid from the energy change for the dry~crack case,.
Subtracting Eq. {#.3%) from Eq. (4.16), the energy change due to a saturated

elliptic crack is

2
£ = Hga f§/2(J1 +J

o T I J1)d8 (4.32)

Defining the crack energy parameter, wi(a,w), as in section 4.4.1,

' 4ra® w/2
W, (a,9) = —-% i (3, + d, * dy = J1)a (4.33)
3P%

i= 1,--,5
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In the special case of an isotropic cracked solid, the energy change

due to a saturated elliptic crack is [5]

£ = E%%;S?(l%XEJ{TZ[R{k,;)GOSZQ+Q(k,G)sinen]} (4.34)
R{k,v), Q(k,v), and E{k) are defined in Eg. (4.17b) and (4.17c).

The evaluation of Eq. (4.33) requires that J; be expressed as a func-
tion of Pi' This can be accomplished by expressing the hydrostatic stress,
of, in terms of o, the normzl stress acting on the crack surface dus to the
applied stress Pi. an is expressed in terms of ¢ as follows.

The work done by the hydrostatic stress applied slowly to the crack

surface is

2
Oq VO/EKm (4.35)
in which vo is the volume of the c¢rack and Km is the bulk modulus of the
cracked material. The work done by of is equal to the increase in energy of
the body-load system. Thus eguating {4.31) and {,38),

G2
f

v 2 '
¢ ira f“/23; a8 (4.36)

Tar o
2Km 3

Since Vc and Km are, in general, dependent upon the size and the orientation
of the cracks, the ratio vc/Km in Eq., (4.36) can be represented as Wf(a,w).

Eq. {4.36) is rearranged to beccme

2
Wa(a,) = §3§ 2 5y a (4.37)
30f

As in the case of Eq. (4.19), the evaluation of Eg. (4.37) dces not require
a knowledge of the magnitude of the hydrostatic stress, since J; is propor-
tional to cg. The voclume change of the crack is

(¢ = o v /K (4.38a)
or

(0 = o)W, (a,p) (4.380)
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The volume change of the fluid is
ova/Kf (4.39)

The crack—velume c¢hange must be equal to the volume change of the fluid,
Therefore, aquating (4.38b) and (4.39) and resarranging, the desired

relationship between 9p and ¢ is obtained,

Wf(a,w}
£ v K+ W (a,0) g

(4,40)

If the crack opening is extremely small such that Wf(anw >> VC/Kf,‘Eq.
(4.80) yields Ip = O. Therefore in this case, wf(a,m) need not be
determined.

As in the case of bodies containing dry cracks, the effective elastic
modull of bodies containing saturated cracks are calculated using Eq.
{4.26)-(4.30). Here, the crack energy parameter, Wi(a,w), is computed using
Eq. (4.33).

4,5 FEnergy Release Rates

In this section, expressions are given for the snergy release rates J1,
J;, J2 and J3, which are required for the calculation of the crack energy
parameters, wi{a,w) [Eq. {4.20) and (4.3W)1,

The energy release rates for crack extension in an anisctropic material

have been derived by Sih, Paris and Irwin [81]. In the presence of all the

three modes of crack deformation, the energy release rates, Ji, are
J =—-K—I- el Im KI(M!.F Uz} +KII]
1 2 733 Myt
KII
o —— t

J2 5 ol Inm [KII(HE + u2} + KIquz] (4.41)
K2 Im (dy. + 1,4,

J = TiI §5 3755

32 dy9s5

in which Hes My and p., are complex functions of cij {i, j = 1,3,6) and d!.

3 ij
(i, J = 4,3), which are respectively elements of the constitutive compliance
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and stiffness matrices in crack coordinates, Im denotes the imaginary part
of the expression in brackets. KI’ KII and KIII are the siress—intensity
factors for Modes I, II and III, respectively. Stress—intensity factors
characterize stresses at crack tips [37,39,46,47,73,80,81]. Expressions are
given in the next section for determining these factors for elliptic ¢racks
and p, are determined asz follows.

2 3
For Modes I and II crack deformations, the eguilibrium and com-—

in an anisotropic material. Vys W

patibility equations of anisotropic elasticity [11,55,81] can be represented

in terms of Airy's stress functicon, U, as

sty 5% Rt 3ty sty

* (2e)gtogg)—g—s = 204 * T

=0
ax23y2 8x3y3 3y

Q) e = 20T ———
338xu 363x38y 13

(8.42)

The sclution of Eq. (4.42) for an anisotropic material containing a crack is
ohtained in terms of two analytic functions of two complex variables
[11,81,102]. The complex variables are defined as

Zy = X YWy, Z, = X * uy (4,23)

In Eq. (4,43), Uy and K, are the roots (with positive imaginary parts) of
the characteristic equation of (4.42). The characteristic equation of a
differential equation is the algebraic equation obtained by replacing the
differential operation with a variable [91]. The characteristic equation of
Eg. (b4.42) 1s

c! uLl - 2¢! u3 + (20! + ¢! )yz - 20l u+ ol =0 (4, 4%)

11 16 13 66 36 33 )
The four roots of Eq. (4.44) are always complex or purely imaginary and
oceur in conjugate pairs [10,55,81]. The roots with positive imaginary

parts, u, and Ho can be written in the form

1

Hy = @ + 18
(4.4%)

Mo
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in which aj, Bj (3 = 1,2) are real constants.

The elastic displacements associated with the tearing (Mode III) defor-—
mation of the c¢rack are such that u=v = 0, w = w(x,y) {81], B8inh, et al,
[81] have shown that the displacement w satisfies the following equation.

3% 3%y 52

dt — D! — ! e [ (u.l‘6}
yh xa us 3%3y 55 aya

=

The characteristic equation of (4,46) is

2
+ t
5u 24

i =0 (b.57)

utdyy

T
4
The two roots of Eq. (4.UT7) are complex conjugates [10,55,81]. The root

with a positive imaginary part can be expressed as
=0, t i8 (4,48)

in which «., and 8. are real constants.

3 3
Substitution of Eg. (4.845) and (#,48) into Eq. (4.41), gives the energy

release rates as

K. ¢f
I 33
J, = [K.(a, +a )(a B+ 8. ) -
1 2 Sohplogtas it 8y7esb,
2[(%&2“8182} + (31824“&281) ]
Kp(By+8,) (@ 0,78,8,) + Kppla,8,70,8,) ]
K
J, == ot (K. _(8.+8.) + K_(a 8.+a_8,)] (4. 49)
Y2 T 7 CqttpptByThy AR LU .
2
P
3771

iy

For a dry crack, the expressiocns for the energy release rates are
substituted into Eg. (#.20) in order to calculate Wi(a,w), the orack energy
parameter for each load case. For a saturated crack, the hydrostatic stress
affects only the normal mode deformation of the ¢rack. Therefore, the

energy release rate due to the hydrostatic stress, J!, is a function only of

1!
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the stress—intensity factor corresponding to Mode I deformation, KI. Hence,

from the expresslon given in Eq. (3.49) for J1,

[an V]

' (a1+a2}.(a182+a281) - (81+82)<a§a2“8182)

33

(4,50}

1!
ml =

_ 2 2
(a1a2 8382) + (u152+a281)
In the case of saturated cracks, therefore, Eq. (4.49) and (4.50) are sub-
stituted intc Eq. (4.33) in order to calculate the crack energy parameter.’
cij (i, 3 = 1,3,6) and déj (i, j = 4,%) which are required in Eq.

{4, 484) and (L.47) in order to determine Moo B and i3 (hence Gyy O and a.},

2 2 3
are cobtained as follows., IF [C'} is the compliance matrix in crack coor-
dinates, the two-dimensional strain-stress relations for plane defcrmations

{Modes T and II} of the crack are

£ °11 %13 C15] [%

- ' ' b, 51
ay 033 c36 cy (4.51)
ny (sym) ko Txy

In global coordinates, the two—dimensional compliance matrix for the

transversely isotropic materizl is

1 23t ]
11 %13 %15 E, E, 0
[c] - ¢33 Cyp| - = 0 (4,52)
3 1
{sym) Ce6 (sym) T
31
The relationship between [C'] and [C] is
[er1=[1 Jlc](r 1 (1.53)

in which [TE] igs the transformation matrix for strains and [Ts]T is its

transpose,

coszw singw cosPsiny
} = sin2¢ coszw ~cosysiny {#.58)

—~2cosysiny 2cosysimf coszw*sin2¢



76

Eq. (&,52) and (4.34) are substituted Into Eg. (L4.53) to obtain the elements
of [c'].

2v
ey = % cos&$ + (% - E31)51n2$ooszw + % Siﬂuw
1 31 3 3
0{3 ol (sin y+cos ) + (E ¥ T F ysin Yeos™ ¢
3 1 %3 Vi
1 2, 1 2 V34 1 2 2
cig = 2 sinycosy [E sin"y = 5 cos Y + (F— - 5z~ ){sin"y-cos v ]
3 1 N
LY
2v
chy = % sinuw + % cos”w - (5 31 - % ysinyeasy (4.55)
1 3 3 31
1 21 2 V31 1 > 2
el = 2 sinycosy [= cosy - = sin®p -~ (= - =— )(sin“Y-cos ) ]
36 E E E 2G
3 1 3 31
> o My 2 2 1 Y i
ety =2 (2 +% +3 - g JsinTpeos™h + w  (sin'yrcos y)
1 3 3 31 31

Ir [D'] is the stiffness matrix in crack coordinates, the stress-strain

relations for Mode III crack deformation are

sz dﬁﬂ dﬁS sz
- (4.58)
1 ¥
Tyz dMB d55 sz

In global cocrdinates, the corresponding stiffness matrix is



Ay dys 612 ©
[ D] = = (4.57)
dys 455 o G
The relationship between {D'] and [D] is
(o J=lz 1lo][1, 1 (1.58)

in which [Td] is the transformation matrix for stresses and [Tg]T is its

transpose.

coay siny
] - (4,59)

-siny  cosy

Eq. (4.57) and (4,.59) are substituted into Eq. (4.58) to obtain the elements
of [D'].

_ £ 2 2
diu = 63151n P oF G¥ecos ]
dﬁS = (631 - G1a}cos$sinw {(4.60)
v - 2 . 2
d55 = 631905 p o+ Glzsln ]

4,5.1 Stress-Intensity Factors

The stress-intensity factors required in the energy release rate ex-
pressions are given in this section.

Hoenig {37,391 derived the stress—intensity factors for an elliptic
crack in an anisotropic body. His results are in conflict with earlier
expreasions developed by Kassir and Sih [47] for the stress-intensity fac~-
tors for an elliptic erack in a transversely isotropiec body. In his
discussion, Hoenig [37] shows that the factors derived by Kassir and 8ih are
in error.

For a point on the perimeter of the crack wheose location is defined by

the angle B (Fig. 4.3}, the stress—intensity factors are given by [37]
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1/2 -1 @
ki = -{ma} Qinjkaicl (4,61}

in which Qij’ R,, and C are tensors of second order, following standard

Jk k&
summation nctation {(i,j,k,% = 1,2,3). a is the characteristic crack size.
KI is obtained by setting 1 = 2, KII
by setting i = 3, aZ represents the resolved stress acting sither normal or

is obtained by setting 1 = 1, and KIII’

tangential to the crack plane {(see Fig. 4.2 and 4.,4). & =1 for a resolved
stress acgting parallel to the major axis of the crack, L = 2 for a resoclved
stress acting parallel to the minor axis, and ¥ = 3 for a resolved stress

acting normal to the corack plane. KI corresponds £o a stress acting normal
)
3
putation of Ki' KII corresponds to a shear stress acting parallel to the
major axis of the crack, while KIII corresponds to & shear stress acting

parallel to the mincr axis. Hence, the component of the resclved stress in

to the crack plane. Therefore, o. = o (see Fig. 4.2 and 4.4} for the com—

the direction of the major axis is used for computing KII' while the com~
ponent in the direction of the minor axis is used for computing KIII' For
L]

example, in Fig. 4.4, cr:’ = 1 ¢osn for the computation of KII’ and Oy = 7

sinn for the computation of KIII'
~ Expansion of Eq. (4,61) in accordance with the range and summation
conventions of tensor notation [93], yields the complete expressions for KI’

KII and KIII .

o 1/2 = -1 -1 -1 -1
K, = =(7a) 3 53[ 11013 Q21f§2023 + Q%ch% +p1Q22R21CT3
UoRoolos ¥ WoRosCaz * QaRaiCig * QaRaaChg + QpafigqCyy

Q2¥RT

172 -1 1 1 -1

Kpp = ~(wa) _101[‘311“11_?11 * me‘_VCm " ?_11313{:31 +_1Q12R21CH
% R2aCa1 ¢ URa3Car * QafgiCry T aRaala * QygR3aCa)
(4.62)
o 1/2 = -1 -1 -1 -1
Kppp = ~(ra) » °2EQ31Rz_11C12 T %31 012%2 T 92975030 7 B3R Cp

UoRoobon ¥ Upfu3Can * QuaRaiCip + Qagfianlhy ¥ Qggfigalag

Cij is symmetric and represents a set of influence coefficients which
connect the cerack displacement magnitudes with the resclved stresses, Cij
is expressed as [37]

-1 %

C, , = wmmmme Q, ,R .R,.dB (4.63)

ij l\lr‘”z crack kKL kiR
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in which r is the aspect ratic of the crack, Expansion of Eg. (4.63) yields

_r~e/2f§/2

1y = [y Ry Ryy * QuoRy Ry * QpaRy Ry, U1 R By
QoRotBoy * Qpafy By = QgyRg Ry + QR Ry + QoRo Ry, a8
. m1/2.n/2
Cip ™ r o Ly Ry Ry, F QR Ry, Q3R Rap ¥ B Ro Ry
QoRoqRop * QpgRy Ray + Qo Ry Ry + QuoRo Ryo + Qo Ry R a8
o =1/2 /2
Cig = 71 £t el 1181 7 QR R v QR Ry Q5 R Ry
Qoo Rog * QuaRp Rog + Qo R R+ QRO Ry + QR R ]
_ -1/2 172
Cop = 7T Fo  Tlay RyaR 5 * QR LR,y + QuaRyoRay » O RoR,
QuoRooRop * QpgRoofan * QguRooRiy + QuoRoiR o, + QR R, Jds
(4.64)
-1/2 uw/2
Cog = 7T Sl Tla RygR g # QR R+ QR R+ QR R
QoRooRas * QpaRpofas + QuuRaoR o+ QuRy Ry v QuaR R ]d8
. m1/2 /2
Cq3 = 77 o TLQy RygRy s * QR aRys * QR Ry ¢ Oy RyR o
R_R , R_.R R R
QRogfag + QsRogRas * Qg Ragflig * QpoRoaRy s + QuoR ok, Jas

Qij is a symmetric set of six real constants which are functions of the

elastic meduli [37].

..-'! _
Qij = tikUkj + sikaj (4,65}

in which sik’ Ujk’ and tjk’ ij are, respectively, the real and the imagi-
nary components of two matrices, p and Njk’ which are expressed as

Jk
p., = s, + it

Jk Jk jk
{4,66)

N, = i
sk " Use T Vg
Eq. (4.65) is expanded to yield

-1
Quy = BgqUyy Bl * Byglyy m s Yy * sl ¥ o8y gV,



-1
Qo = Byqlin * Byl 7 byglsy

11742 * 810V * 313755

-1
13 = BqVig * Biolog ¥ Byglsg * 8y Vg 85000 + 8,0V 0g

it
ot
L=

Q

ol =t U+t U

20 7 ForUia t FoplUon o taglsn oS Vs Voo ¥

S5V 55 523\{32 (4.67)

-1
23 = PorUrg * ToolUng * o baglsg ¥ 95 Vg * S50 0

it
o
[

Q 823733

-1
U3

1t

BagUis ¥ Bgolng * Baglag + 85, Vg # 85,055 + 850705

The matrix pjk' which is expressed in Eq. (4.66), is defined in the

following manner [39].

>
- At 1 o ot
Piq = Cqqbqp T Cyg T Cgiy

Pyg = °§z“§ M ES c;guz

Pop = Cis ~ Crg/Mg

Pgy = Cyghy * 33/ T O3 (4.68)
P33 = Cig¥p T 933/Mp T O3

1}12:1321 =D23=D32=0

The elastic constants, cij, are expressed in Eqg. (L.55). Byo u2 and ;13,
the complex roots of Eq. {(4.44) and (4.47), were discussed in the last
section. Expressing Hyr ¥y and u3 as quantities with real and imaginary
parts [see Eq. (B,4%5) and {4.48)], Eq. {(U4.68) can be rewritten in the form

of Eq. (4.66) to yield

2 2
e ! - 1w At
Spp = oqqlaymBy) +epy 7 cppo
= 1 - T
Byp = By(2eqy0, — i)
2_2
- At - T om mt
813 7 0 (aymBy) ¥ gy = olgy
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-1
13

-1
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-1
31

-1
33
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52(2011a2

i

1 -— ]
®45 ~ %s5

1

mairix Njk

Y
Fo T My

81

';C."

16
o
(—3)
a2 + 82
3 3
)
2
53
o
1
:( ]...cv
3302 , g2 36
1 1
Cé3 )
@ + 8]
a4
2
v( )_c!
33+ 2 2 36
o, + 82
¥
33 )
+82
o 2
* 835 F byp Tty
iz defined as [39]

(4.69)

(4.70)
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N12 "

Expressing My and W, as in Eq. (4.4%), Eq.
form of Eq.

11

1%

13

13

22

22

31

31

33

33

12

1
No

-1
= N23 =

-1
N32 =

(L.66) to yield

ae(aeuaT) + 82(32“81)

0

-y V2 4 o 42
(o, )" + (8,73,)

82(u2*a1) - “2{32-31)

(az

-0,

., =& 0O

2

2 2
)7+ (8,78,)

_ 2 - 2
(a2 u1) + (82 81)

&

- B

2

(a2

a1(a1-a2) + 31(81“82)

- N
u¥) + (82 61}

- 2 - 2
(a1 “2) + (S} 82)

Bg(a1-a2) - a1(81*82)

- 2 _ 2
(a1 ug) + (81 82}

21

82

(4,70} can be rewritten in the

(4.71)
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Qij is obtained by substituting the expressicns in Egq. (4,69) and
{#.71) intc Eq. (4.67) and inverting the resulting matrix.
R,, is defined as [37]

ij
r cosf sing 0
Ri} = (singﬁ + recosas)_?/u 0 0 (sin28 + rzcos2s)1/2
~sing r cosB 0

(4.72)

With Q.., C,.
1] 1]
be determined using Eq. {(4.62)

and Rij defined above, the stress—intensity factors can

k.6 Solution of the Self-Consistent Equations

B,6.1 Transversely Isotropic Solid

For a transversely isotropic solid contalining either dry or saturated
cracks which are distributed at all orientations {(0° £ ¢ £ 90°), Eg. (4.26)-
(4,30) are the self-consistent equations from which the Tive independent
elastic meduli can be determined. The crack parameters which are required
in order to determine the moduli are the crack size and orientation dis-
tributions, f(a|¢) and f£(y), respectively, the number of cracks per unit
volume, NV’ the aspect ratic of the c¢racks, r, and the range of the angle n
which defines the characteristic directions of the cracks. These parameters
are three—dimensional in nature and are therefore not amenable to direct
measurements -for opaque bodies. Procedures are estabiished in Appendix D
for the estimation of the parameters from crack distributions on plane
sections.

The orientation distribution funectlion used in this study is that of the
Marriott distribution [98]. This distribution represents a mildly
anisotropic system of cracks,

() = 7‘:;%6;?(1 + K cos 2¢)sin ¥ (4.73)

-1 £ K&

in which X is a measure of the degree of anisotropy. Defining "high angles"

as angles, ¥, close to 90° and "low anglesa" as ¢ close to 0°, a negative K
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indicates a system in which more cracks are oriented at high angles than at
low angles, while a positive K indicates a system in which fewer cracks are
oriented at high angles than at iow angles, Further details of this dis-
tribution are presented in Appendix D.

A more general orientation distribution function, the Fisher distribu-
tion, allows for all degrees of anisotropy [98)]. This distribution is

expressed as

2
£p) = ! sin y e2RCos ¥ (4.74)

Eo (20 nl(2n+1)]

o (K ¢ @

As K » ==, the cracks are distributed such that their normals lie in planes
which are perpendicular to the longitudinal axis of the solid; i.e. the
crack orientation corresponds to ¢ = 90°, On the other hand, as K » =, the
cracks are distributed such that their normals are parallel to the lon-
gitudinal axils of the solid; i.e. the crack orlentation corresponds to ¢ =
0¢, Hoenig [38] describes the first distribution (K + -«} as cylindrical
transverse isotropy (CTI), while he describes the second (K + =) as planar
transverse isctropy {PTI).

The forms of the integrands in Eq. (4.26)~(4.30) do not allow direct
integration. A numerical integration scheme is therefore required for their
evaluation, Gaussian quadrature [72] is used for the examples presented in
a subsequent section.

Since Eq. (4.26)-(4.30) are nonlinear in the unknown moduli, an ltera-
tive solution scheme is required. Picard iteration with successive
displacements [72] is used; during each iteration, the newly computed value
of each of the moduli is immediately substituted into the remaining equa-
ticons for the computation of the cther moduli., In the current study,
convergence ls achieved when all five computed modull satisfy the ceriterion
that the values computed during the current iteration lie within 0,1% of the

values odbtained during the previous iteration.
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L,6.2 Speclal Cases

4.6.2.1 Cylindrical Transverse Isotropy

The self-consistent formulations can be simplified for the special case
of the transversely isotropic solid in which the distribution of cracks is
that of cylindrical transverse isctropy (K » =), Hecenig [38] obtained
results for this case. This type of crack distribution (¢ = 90° for all
eracks) affects three of the independent elastic moduli of the solid, E1,
and G while E.= E and v

V12 31° 3 317
equations are obtained from Eq. {(¥.26), (4.28) and (4.30) to be

v, The corresponding self-consistent

B, = E/ [1+2n,E I W (a)f(a)da] (4.75)
v, = 1" E, [ﬂ%ﬁ + Ny S5 wgta)f(a)da} (1,76)
Gyy = G/ [1+2n, I ws(a)f‘(a)da] (8.77)

in which £{(a) is the size distribution of the cracks. As In the case of
five independent moduli, the crack energy parameters, Wi(a) {i=1,3,5), are
obtained using Eq. (4.19) for dry cracks and Eq. (4.33) for saturated

cracks.

h,6,2,2 Isotroplc Solid
The self-consistent formulations obtained in this study can also be

simplified for the special case of the isotropic cracked solid. The moduli
for such a body have been obiained by Budiansky and O'Connell [14,673. An
isctropic material is described by two independent elastic constants., Thus,
two self~consistent eguations need to be solved toc obtalin the elastle
moduli. If E, G and v are the effective moduli of the isotropic cracked
solid, G may be taken az the dependent modulus. The moduli are related by

the standard elasticity relation

G = —--'"E—"m:“ (4.78)
2(1 + v)

Substituting E in place of E3 in Eq. (4.27) and v in place of v31 in Eq.

{4.29), the self-consistent equations reduce to
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§=5/ [+ 2n, B 17200 ta, w2 (v) dacy] (4.79)
VoL -E [ - Law 5T wyta,w1(a) 0 (v) dacy] (4.80)
2E

Here, the expressions for computing the energy change associated with a
single crack, £, are given by Eg. (4.17a) for dry cracks and Eq. {4.34) for
saturated cracks. The crack energy parameter, Wi(a,w) (i = 2,4), is defined
by Eq. (4.18).

The orientation distribution of an 1sotropic system i3 expressed as
(98]

£(4) = sin ¥ (4.81)

This distribution is used in Eq. {(4.79) and (4.80), Eq. (4,81} can be

obtained from the Marriott and Fisher distributions by setting K = 0,

4,6,3 Solution Procedure

The general method for solving the self-consistent equations numeri-
cally, is outlined as follows.

1. Assume values for the independent elastic moduli which are affected by
the presence of cracks.

2. lise these values to determine the crack energy parameter, Wi(a,w),
assoclated with each crack., For each load case, this computation may
have to be carried out many times corresponding to cracks of different
crientations.

3. Using an iterative acheme {(e.g. Piecard iteration), the self-consistent
equaticns are used to refine the Initial guesses for the effeciive
elastic moduli,

b, Test for convergence of gach modulus based upon an appropriate
tolerance,.

5. Return to Step 1 if any of the convergence tests fail,

4.7 Results
4.7.1 Isotropic Solid
Budiansky and O'Connell [14,67] obtained relationships between the

effective moduli of a cracked solid and a parameter representing the crack
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density. This c¢rack density parameter is Nv<a3>, in which NV is the number
3> is the mean cubed value of the charac-
3

of ¢racks per unit volume, and <a
teristic crack size. The variation of the effective modull with Nv<a >
implies that if small cracks join into a smaller number of larger cracks, a
substantial increase will og¢cur in N <a3> resulting in a corresponding
reduction in the effective modull, Nv<;g> is proportional to the volume of
cracks per unit volume of the material.

The relationships between effective moduli and Nv<a3> for an isotropic
cracked solid containing either dry or saturated circular cracks, obtained
from the current procedures, are compared to Budiansky and O0'Connell's
results in Fig. 4.5 and 4.6, The results match in each case, In the case
of dry cracks, the moduli decrease continuously with the increasing crack
density parameter. The reductions in E indicate continuous 1oss of
coherence of the material as caused by the cracks, For saturated cracks, E
decreases continucusly with increasing ¢rack density parameter, while v

increases to a limiting value of 0.5.

4.7.2 Transversely Isotropic Solid

4,7.2.1 Cylindrical Transverse Isotropy

The results for a transversely isotropic cracked sciid, in which the
distribution of circular cracks is that of cylindrical fransverse isotropy,
are shown in Fig. %.7-4.9 for dry and saturated cracks. These results match
those obtained by Hoenig [38] for this type of crack distribution, as shown
in the figures. In the case of dry cracks, all of the moduli decrease with

the increasing crack density parameter, N <a3>. v!2 reduces to zero at a

3 v

value of Nv<a > of about 0.65, but E1 and G31 do not vanish, even at a value
of N <a>> of 1.0.

For saturated cracks, Fig. 4.7 and 4.9 show that the effective moduli,
E1 and 631, decrease with the increasing crack density parameter, as in the
case of dry cracks. 9On the other hand, Poisson's ratio, v12, inereases with
Nv<a3>. As shown in Fig. ¥.8, the value of Vyo exceeds 0.5 at a value of
N <a®> of about 0.4, attaining a value of 0.813 at N <a®> of 1.0.

& comparison of the results for dry and saturated cracks indicates that
dry cracks cause greater reductions in the moduli than saturated cracks. In

a saturated crack, the effect of the flulid is fto prevent relative normal
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displacement of the crack faces. As a result, a saturated cracked solid is
stiffer than a dry so0lid with the same crack distribution.

As pointed out in Section 4.6.2.1%, E3 and v31 are unaffected by a
cylindrically transverse isotropic distribution of cracks (¢ = 90°
for all cracks). When materials like cement paste and mortar are loaded in
uniaxial compression, E3 and v31 change with increasing applied locad, while
eracks form at all orientations (Chapter 3). For these materials, it ap-
pears that cracks which form at orientations other than the direction of

applied compression play an important rc¢le in the material behavior.

4.7.2.2 Marriott Distribution with K = =0.3

The crack orilentation and size distributions used for the example

described in this section are typical of the spatial distributions ¢of cracks
in cement paste and mortar loaded in uniaxial compression {Chapter 3). Fig.
¥, 10-4,1% show the results for a transversely isotropic cracked solid in
which circular cracks are distributed according to a Marriott distribution
[Eq. (4.73)] with X = =0.3. The negative value of K implies that the orien-
tation distribution is skewed towards the longitudinal direction. The crack
size distribution at each orientation is assumed to have the form of a gamma

distribution. This distribution is represented as

flaly) = —5—1———— a1 88 (4.82)
B I (a)
with a = aw. o and 8 are functions of the mean and the variance of the
distribution, <aw> and var(aw).
<aw>2 var(a¢)
O = r—t— B = —o—mim (4,83}
£a >
var(aw) aw
r{a) is the gamma function and is defined as
Ma) = Jo y* e Yay (4.84)

Gaussian quadrature with four integrations points over the range of y from O
to 50 is sufficient for the integration in Eq. (4.84). For this exanmple,

the mean and the variance of the gamma distribution are, respectively,
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<ap - 1.0x10 2y + 5.0x10 °in., var(a) = 1.0x107 %y + 1.0x107%1n. 2,
Fig. 4,10 and 4,14 show that the effective modull, E1 and 63%, reduce
to zero at a value of Nv<a3> of about 0.44 for dry cracks. For saturated

cracks, E1 reduces to zero at a value of Nv<a3> of about C.46, For both dry

and saturated cracks, E, decreases continuously with increasing Nv<a3>, but

3
does not reduce to zerc (Fig. 4,11), At the values of NV<33> at which EE

reduces to zero, E. attains a2 value of 0.475E in the case of dry cracks and

3
a value of G.67%E in the case of saturated cracks.

Vio and v31 (Fig. 4.12 and 4,13), increase with

» for both dry and saturated cracks. For dry cracks,

The Poisson's ratios,

N <a3 and v

v
iicrease up to 0.833 and 0.368, respectively, while for saturalsd crackzi
Vio and v31 inerease up to 0.913 and 0.541, respectively. A& value of
Popisson's ratio above 0.5 for applied compressive loads indicates a volums
expansion of the solid due toc the internal cracking. Under uniaxial com-
pressive loading, volume increase has been observed in mortar and concrete,
and a reduction in the rate of volume decrease has been observed in cement
paste (Chapter 3 and [58,59,76,87,881).

A comparison of the results in Fig. 4.7-%.9 with those iIn Fig, 4.10-
4,14 indicates that a multi-orientation crack distribution {in this case a
Marriott distribution with K = =G.3), results in greater changes in effec~-

tive moduli, E, and G with inereasing crack densaity than obtained with

1 31
cracks distributed with a single orientation, In addition, there appears to
be less relative difference between dry and saturated cracks for the multi-

orientation distribution than for the single orientation distribution.

4.8 Sensitivity of the Moduli to Variations in Crack Parameters

This section i1llustrates the effects of crack parameters on the com-
puted effective moduli of a transversely isotropic solid. Variations In the

mean and variance of crack size distributions, <a, > and var(a,), the number

b b

of eracks per unit volume, N the aspeect ratio of the c¢racks, r, and the

range of orientation n, are c;isidered. The value of =sach paramster is
varied independently for a solid containing dry cracks which are distributed
according to a Marriott distrivpution with K = ~0,3. The crack size dis-
tribution has the form of a gamma distribution, and its mean and variance

are the same as those used for the example in Section 4,7.2.2, Both the
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Marriott and the gamma distributions are typical of spatial crack distribu-
tions found in cement paste and mortar.

The data used in the analysis, and the calculated values of E_/E are

3
given in Table 4,1, The values of E3/E are determined for 5%, 10%, 20% and
30% variations in <a¢>, var(aw), Nv and r, and for ranges of n of 20°, 90°

and 180° (assuming a uniform distribution within the range).

The results indicate that the modulus E_ is particularly sensitive to

3

variations in mean crack size, <a,>. For a 3(% increase in <aw>, EB/E

14

decreases by 35.8%. A 309 increase in N, results in only a 10.4% decrease

v
in E_/E., The greater sensitivity of the effective mcduli to crack size is

3
reflected in the variation of the effective moduli with Nv<a3>.

E./E decreases by 13.8% for a 30% increase in the variance, var(aw).

3

The effect of var(aw) on the moduli is a reflection of the sensitivity of
3

the value of <a’> to var(aw). A 30% decrease in aspect ratio, r, results in

a 10.5% inerease in EB/E' The increase in 83/E with decreasing aspect

ratio, r, indicates that the smaller the surface area of the c¢racks, the
smaller the change in the moduli of the solid. An increase in the range of

n from 0° to 180° resuylts in a 7.1% decrease in E3/E. This result is an

indication of the sensitivity of the effective moduli to the value of n.

As pointed ocut above, the effects of <a

> and var(aw) on the moduli are
3

¥

>. Therefore, for a transversely isotropic
3
>

accounted for in the value of <a
crack distribution, the four crack paramseters, K, Mv<a , r and the range of
n, determine the effective moduli, This implies that a single relationship
is obtained for the variation of the effective moduli with NV<a3>, if the
values of K, r and n are constant. If the value of K, r or n is changed, &
different relationship results. In the following section, the effects of

variations in K are demonstrated.

4,8,1 Degree of Anisotropy, K

In this section, the sensitivity of the effective moduli to variations
in the degree of anisotropy, K, is investigated. Transversely lsotropie
s0lids containing dry circular cracks distributed according to the Marriott
distribution are considered. Values of K of -1.0, -C.3, 0, +0.3 and +1.0
are used., The crack size distribution is uniform over all crack sizes

within a range of 0 to 0.0t in. and 1s independent of crack orientation.
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A spatial distribubtion with X = =1.0 is skewed more towards the lon-
gltudinal direction than a distripution with K= -0.3, and a distribution
with K = +1,0 is skewed more towards the plane of isotropy than one with X =
+0.3.

The relationships between the effective moduli and the crack density

3>, are shown in Fig., 4.15-4,19, As expected, Fig. 4,15

parameter, Nv<a
shows that cracks cause bigger changes in the stiffness modulus in the plane
of isotropy, E1, when the crack orientatiocn distribution is skewed towards
the longitudinal direction (K = -0,3, -1.0) than when the orientation is
skewed towards the plane of isotropy (K = +0.3, +1.0). 0On the other hand,
Fig. 4.16 shows that cracks cause blgger changes in the stiffness medulus in
3 for K values of +0.3 and +1.0 than for K

values of -0.3 and -1.0. For K values of -1.0 and -0.3, E1 reduyces to zero

the longitudinal direction, E

at values of Nv<a3> of about ¢.32 and 0.U44, respectively, while for K values

of +1.0 and +0.3, E_ reduces to zero at values of N <a3> of about 0.22 and

3 v
0.U47, respectively,
For solids contalning ¢racks distributed with negative values of K, the

fact that E1 vanishes while E_ does not implies that no additional locad can

be carried in the lateral digection, even though the longitudinal direction
can support additional load. This suggests that materials, such as cement
paste, mortar and concrete, in which crack distributions are skewed towards
the longitudinal direction due to uniaxial compression (negative K), are
greatly weakened for tensile leading in the lateral direction,

increase

Fig, #,17 and 4.18 show that Poisson's ratios, and v

V 1]
3 12 31

with increasing Nv<a > for K values of -1.0 and -0.3, and decrease for X
valueg of 0, +0.3 and +1.0. The increase in Poisson's ratio for the nega-
tive values of K implies that under uniaxial compressive loading, a volume
increase of the cracked solid could occur for a crack distribution that is
skewed towards the direction of applied compressicon, Such behavior has been

observed for cement paste and mortar (Chapter 3).

k,9  Summary and Conclusions

L,9.1 Summary
The self-consistent energy method is used to develop a model for deter-

mining the effective moduli of a transversely isotropic cracked solid. Both
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dry and saturated cracks are considered., To apply the technique, the three-
dimensional crack distributions must be known.

The modull for an isotropic cracked solid match the results obtained by
Budiansky and 0'Connell [14,67]. The results for a transversely isotropic
s0lid, in which the cracks are distributed with a single orientation, match
those obtained by Hoenig [38]. Results are also presented for a series of
transversely isctropic solids with mild degrees of anisotropy. The sen-

sitivity of the model to variations in crack parameters is discussed.

4,9.2 Coneclusions

1. The effective moduli of a cracked solid containing elliptic cracks
depend on the degree of anisotropy, X, the crack density parameter,

Nv<a3>, the aspect ratic, r, and the range of orientation, n. The
degree of anisotropy and the crack density parameter are dominant.

2. Dry cracks cause larger reductions in the moduli than saturated cracks.

3. For the same value of Nv<a3>, a multi-orientation crack distribution
affects the moduli of a solid more than a single-corientation
distribution.

b, In materials such as cement paste, mortar and concrete, cracks which
are oriented in directions other than the direction of applied compres-
sion influence material behavior,

5. Materials, such as cement paste, mortar and concrete, in which crack
distribubtions are skewed towards the direction of uniaxial compression

should exhiblt a reduced strength under lateral tensile loading.
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CHAPTER 5
APPLICATICN OF THE SELF-CONSISTENT MODEL

5.1 General

In Chapter 3, three-dimensional distributions of submieroscopic cracks
in cement paste and mortar were estimated from cobserved surface crack
distributions. In this Chapter, these three~dimensional crack distributions
are used in conjunction with the self-consistent model developed in Chapter
b to estimate the effect of the cracks on the elastic moduli of these
materials and to estimate the portion of the applied strain that can be
attributed to the ecracking. Material response under monotconic, sustained
and cyclie loading is investigated.

In applying the self-consistent model, both dry and saturated cracks
are considered. However, under the sloﬁ rates of loading used in this
study, there is likely to be sufficient time for water to diffuse out of
saturated cracks., Hence, a dry crack assumption seems to be more
appropriate.

For the initial appiication of the self-consistent model, it Is assumed
that the material between cracks {i,e. the matrix material) is homogeneous,
linearly elastic, isotropic, and unaffected by the load history. With these
assumptions, cracking is the only nonlinear effect.

If we further assume that the self-consistent model accurately accounts
for the cracks and that the submicroscopic cracking recorded in this study
is, in fact, the only nonlinear effect, then the experimental stress—-strain
curves should be duplicated exactly by the curves obtained using the self-
consistent model., If the curves cannc{ be duplicated, then one or more of
the assumptions is incorrect.

As we will see, the curves cannot be duplicated based on these assunmp-
tions, and only a porticn of the nonlinear behavior can be explained by
submicrescopice cracking.

Ls a second step, the assumptions are altered to allow the matrix
material to soften due to nonlinear effects that are not accounted for by
the submicrocracks. These other effects could inciude submicroscople cracks
that are not recorded, time dependent behavior, large microcracks, and
macrocracks. This altered assumption 1s then used tc obtain a closer es-

timate of the portion of inelastic strain that can be attributed to the



94

submicroscopic c¢racks. Before this step is taken, however, the results
obtained with the initial assumptions are carefully studied.

The initial assumptions alsc suggest that the self-consistent model
will be less valid for mortar than for cement paste, since the presence ¢f
sand grains makes mortar highly heterogeneous,.

The anisotropic crack distributions which are Induced in cement paste
and mortar by unilaxial compressive loading, render the materials
transversely isotropic. As discussed in Chapter 4, a transversely isotropic
material has five Independent elastic moduli: the stiffness modulus In the

plane of isotropy, E the stiffness modulus in the longitudinal direction

1!
which is alsc the direction of the applied stress, E3, the Poisson's ratio

in the plane of isotropy, the Peisson's ratio in a plane perpendicular

V12!
to the plane of isctropy, v31,

For a given three—-dimensional distribution of cracks, values

and the shear modulus in a longitudinal

plane, 631.
for these moduli are obtained using the self-consistent mocdel.

The parameters which describe the three-dimensional c¢rack distribution
are the crack size distribution at each orientation ¥, f(a]@), the mean and

variance of f(a[¢), <a_» and var(aw), respectively, the crack corientation

distribution, f£(u), ghe crack aspect ratio, r, the rotation of the c¢rack
about its normal as defined by the angle n, and the number of cracks per
unit veolume, NV' The details of these three-dimensional distributions and
how they are estimated from surface crack distributions are presented in
Chapter 3 and Appendix D. As described in Chapter 3, f(a]w) fer cement
paste and mortar can be approximated by a gamma distribution, and f£{v) by a
Marriott distribution, The crack parameters for cement paste and mortar are
summarized in Tables 3.17-3.2% and 3,26-3.32.

For the uniaxially loaded paste and meortar specimens, the effective
moduli of interest are E3 and v31. Values for these moduli are obtalned
corresponding to both the smaller and larger estimates of the mean charac-
teristiec erack sige, <aw>. 4s explained in Chapter 3 {Section 3.4.3), the

smaller estimate of <aw> is obtained when segments of a multi-directional
erack trace are recorded as separate crack traces, while the larger estimate
is obtained when a multi~directional crack trace 1s recorded as a single
uni-directional crack., For the swface to three-~dimensional crack distribu-
tion conversion procedure used in this study (Chapter 3 and Appendix D), the

larger estimate of <a > is more correct. Hence, discussions in subsequent

4
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secbions are based primarily on results which correspond to the larger

estimate of <a¢>.

5.2 Application of the Model

The work deseribed in this section and Section 5.3 is based on the

assumption that the material between the cracks remains unchanged by the
appllied stiresses.

In order to caleculate the effective moduli using the self-consistent
model, the stiffness modulus, E, and the Pcisson's ratico, v, of the un-
damaged material need to be known,

The moduli o¢of the undamaged material are estimated based on two
separate assumptions. These assumpiions are made with regards to whether or
not cracks exist in the cement paste and mortar specimens prior tc loading.
The two assumpltions involve two different approaches to calculating the
effective moduli, These approaches are described in Sections 5.2.1 and
5.2.2. It will be demonstrated that the effective moduli calculated using

the twoe approaches are virtually identical.

5.2.1 First Approach

In the first approach, we assume that the cracks observed in a non-
loaded specimen exist prior to loading. This assumption is not unreasonable
since self-desiccation occurs in hydrated cement paste and may lead to
internal cracking [18,84], Self-desicecation is the decrease in the water
content of the paste due to the ongoing hydration process. This zssumption
implies that the estimated three—-dimensional crack distribution within a
loaded specimen is due both to cracks which exist in the specimen prior to
loading and cracks which are induced by the loading. The calculation of the
effective modull of the lcaded material must account for both fypes of
cracks, This 138 accomplished by estimating the moduli of the completely
uneracked material, E and v, and using the full three-dimensjional crack
distribution at any stage of loading to calculate the effective moduli.

If cracks exist In & specimen prior to loading, then the stiffness
modulus and the Poisson's ratio prior to loading, Ei and v, are the effec~
tive moduli as influenced by the existing crack distribution. For the

uniaxially loaded specimens, E, and v, are taken equal to the experimental

i
values of the initial modulus of elasticity and Poisson's ratio. To obtain
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estimates of the moduli of the uncracked material, values of E and v are
selected which, when combined with the three-dimensional crack distribution
obtained for the nonlcaded specimen, produce the measured values of Ei and

v With the values of E and v obtained, the full three-dimensicnal crack

§*
distribution obtained for specimens loaded to a given axial strain is used

in the self-consistent model to calculate E3 and v31.

For each material, Ei and vi are taken as the average of the valuss og
the initial moduli given in Tables 2.2-2.7. The values of Ei are 1,78x10

psi, 2.5&x106 psi, and 3.31x106 psil for cement pastes with W/C = 0.7, 0.5,
and 0.3, respectively, and %.79x106 psil for mortar with a W/C = 0.5, vy is
0.24 for the cement pasfes, and 0.20 for mortar.

5.2.2 Second Approach

In this approach, the assumption is made that cracks do not exist in
the specimens prior to loading. Therefore, the moduli of the uncracked
material are equal to the modulil prior to loading; i.e. E = Ei and v = Vs

In Section 3.2, it was pointed out that the procedures used to prepare
the specimens for viewing in the scanning electron microscope introduced
additional cracks in the cement paste and mortar. If no ¢racks exist in the
specimens prior to loading, the crack density measured in a nonloaded
specimen is assumed Lo represent preparation cracks which are superimposed
on any load-induced cracks and which are not accounted for by the procedure
described in Section 3.U4.3, The estimated three-dimensional crack distribu-
tion in a loaded specimen is, therefore, due both to load-induced cracks and
specimen preparation cracks. The calceulation of the effective modull of the
loaded material must agcount for only the load-induced cracks. The load-
induced cracks are obtained here by subtracting the three-dimensional crack
distribution (gize, orientaticn and density) cbtained for the nonlcaded
specimen from the distribution obtained for the lcaded specimen, The al-
tered distribution is used to calculate E3 and v31 for each applied strain.

During the subtraction of the three-dimensional distributions, negatiive
values are obtained for the resulting distribution over those crack sizes
for which the distribution in the nonloaded specimen is larger than the
distribution in the loaded specimen. A value of zero is used for the dis-

trivution obtalned after subtraction wherever a negative value cccurs.
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5.3 Material Response Due to Submicrocracking

In the self-consistent model, the effective stiffness modulus, E3, is
the predicted secant modulus at an applied stress, o, at which the given

three~dimensional crack distribution is obtained, The strain, eec’ as-

sociated with E, and o includes a component due to elastic deformation and a

3

component due te submicrocracking. €ac is calculated as

[¢]
Sec=*E—3- {(5.1)

The portion of Eec due to submicroscopic cracking, ec, is

a g B, - By
¢ e feTE. TE T G(W] (5.2)
3 I i3

in which ee is the elastic strain., The total inelastic strain, e - Se’ is
the difference between the applied strain, e, and the elastic strain. For
monotonically loaded specimens with a given water—-cement ratio, the average
applied streas for all specimens loaded to a particular axial strain is used
as the value of ¢ in Eq. (5.1) and (5.2).

In the following section, the results obtained for monctonie loadiﬁg

are presented and discussed.

5.3.1 Monotonic Loading

The calculated values of the effective moduli and the axial strains
obtained from the self-consistent model are presented in Tables 5.1-5.8 for
cement pastes with W/C of 0.7, 0.5 and 0,3, and for mortar with a W/C of
0.5. These values are obtained using the assumption that cracks exist in
the materials prior to loading (first approach). The values obtained using
the assumption that cracks do not exist in the materials prior to loading
(second approach) are given in Tables 5.9-5.12. Tables 5.1-5.12 include
resuits for both the smaller and larger estimates of <a\u>. The results
indicate that submicrosconic eracks will cause a progressive s¢ftening of
the materials under increasing strain, but that submierocracks do not alone

account for the nonlinear behavior of the materials.
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Separate calculations based on dz:*y and saturated cracks are discussed.
Unless stated otherwise, the discussions are based on results which cor-
respond to the larger astimate of <aw>.

Dry Cracks: The results for the dry crack assumption using the first
approach (Tables 5.1-5.4) show that the calculated siiffness modulus, E3,
decreases with increasing applied strain. For example, for cement paste
Wwith a W/C = 0.5, E3 decreassés from a value of 2.53):106 pai at initial

loading to a value of 2.156x10° psi at an applied strain of 0.006. For

mortar with a W/C = 0.5, E3 decreases from a value of H.79x106 psi at ini-
tial loading to a value of :‘4.06>c106 psi at an applied strain of 0.004.
To compare the effect of the cracks on E_ for the different materials,

3

the normalized stiffness modulus, E /Ei, is also calculated for each applied

strain (Tables 5.1-5.4). The vaiiation of E3/Ei with applied strain is
shown in Fig. 5.1 for all three cement pastes.

Fig. 5.1 shows that the variation of ES/B}L with applied strain is
virtually identical for the three cement pastes. The calculated percentage
reduction in stiffness caused by the submicroscopic cracks appears to he
independent of water—-cement ratic. As discussed in Section 3.5.5, this
result is expected hecause of the nearly identical crack distributions
obtained in the cement pastes (Table 3.33). At the maximum applied strain
of 0.006, the calculated reduction in stiffness of each of the cement pastes
is 15%.

Fig. 5.2 compares the variation of E /Ei with applied strain for cement

paste and mortar with a W/C = 0.5. Thgs comparison indicates that the
caleculated percentage reduction in stiffness caused by the cracks is larger
in mortar than in cement naste. At the maximum applied strain of 0.004 in
mortar, the calculated reduction in stiffness of mortar is 15%, while at the
same strain in cement paste, the reduction is 11%. This result is consis—
tent with the crack density comparisons for cement paste and mortar In Table
3.34%., The larger density of cracks in mortar causes a larger percentage
reduction in the stiffness of mortar as compared to that of paste.

The calculated stress—strain (U,eec) curve due to submicrocracking is
gcompared with the experimental stress-strain (o,e) curve and the linear
elastic stress—-strain relationship based on the initial stiffness in Fig.
5.3-5.6., The curves illustrate that the submicroscopic cracks acccunt for

just a portion of the nonlinear response of the materials. The total strain

may be considered as consisting of elastic and inelastic components. The
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inelastic component ccnsists of a portion due to submicrocracking, €0 and a
portion due to ¢other causes, £ = €.~ e:c. This latter portion may be due to
mechanisms other than submicrocracking, such as macrocracking and deforma-
tion or ceonsolidation within the material between cracks,

For mortar (Fig. 5.6), unlike the appliied strain, the value of €ec
after the peak stress is smaller than the value at the peak stress, indicat-
ing that the material is unioading with a decreasing strain. This response
of the model is due in large part to the assumption that the material be-
tween the c¢racks remains unchanged by the applied strain. This point is
discussed further in Section 5.4.1 along with the results odbtained by allow-
ing the matrix material to scften.

Calculated values of the strain due to submicrccracking, Ec' are
presented in Tables 5.1 - 5.8, €, is also presented as a percentage cof
inelastic¢ strain, aC/(e - ae). €, increases with increasing applied strain
in both cement paste and mortar. As illustrated by cement paste with a W/C
= 5,5 (Table 5.2), the value of €, ingreases from 0.000005 at an applied
strain of 0.0005 to 0.000469 at an applied strain of 0.006. sc/(e - Ee)’ on
the other hand, decreases with increasing applied strain in both cement
paste and meortar. For cement paste with a W/C = 0.5, the value of €, is 18%
of the inelastic strain at an applied straln of 0.0005 and drops to 13% of
the inelastic strain at a strain of 9.006. Similar values are obtained for
paste with a W/€C = 0.7. For cement paste with a W/C = 0.3, the submicro-
scopic cracks acccocunt for as high as 86% of the inelastic sirain at an
applied strain of 0.0005. This value drops to 28% at a strain of 0.006.
The implicaticns of these observations are discussed under the alternate
application of the model in which the matrix material is allowed to soften
(Section 5.4},

The fact that the calculated strain due to submicroscepic cracking
accounts for only a porticn of the inelastic strain in cement paste and
mortar suggests that the initial assumption of a linear, elastic matrix
material is incorrect. Rather, the matrix ma%terial appears to become in-
elastic with inereasing appiied strain. The probable mechanisms and effects
of an inelastic matrix material are addressed in a subsequent gection.

The results illustrated s¢ far have been based on the larger estimate
of <a,>. A comparison of E /Ei obtained with the smaller estimate of <a_ >

v 3 v

for the cement paste with E3/E:i for the larger estimate {(Fig. 5.7) shows



100

that the calculated percentage reduction in stiffness caused by the sub-
microscopic cracks is lower for the smaller estimate of <a$>. As pointed
out in Section 5.1, the estimates of the elastic moduli obtained with the
larger estimates of <aw> are considered to he more realistic. This com
parison emphasizes that multi-directional crack traces must be properly
accounted for in order %o correctly estimate the effect of the cracks on
material behavior.

Fig, 5.8-5.10 show the variations of the experimental and calculated

Polsson's ratios, v with applied strain for cement pastes with W/C = 0.5

1
and 0.3, and for mogiar with a W/C = 0.5.

Both the experimental and calculated Peissont's ratios for the cement
pastes {Fig. 5.8 and 5.9) increase gradually with increasing compressive
strain, For paste with a W/C = (.5, the experimental Poisson's ratic starts
at a value of 0.28 and rises to a value of 0.27, while for paste with a W/C
= 0.3, the experimental Poisson's ratioc starts at a value of 0.28 and rises
to a value of 0.29. For both pastes, the calculated Poisson's ratio starts
at a value of 0.24 and rises just slightly to a value of aboui Q.25,

The experimental values differ from the calculated values most dis-
tinctly at strains above (.00#, particularly for paste with a W/C = 0.3
(Fig. 5.9). The experimental results illustrated in Fig. 5.9 are for a
specimen which faliled at a straln of 0.006 (Specimen 17-3/P-0.3/M), Just
prior to failure, macroscopic cracks (or macrocracks), which typically have
trace lengths in the order of 1 in. or more [953, were visible on the sur-
face of thnis specimen. Macrocracks are not accounted for in this study.
Since cracking seems to have its greatest effect on lateral strain as
reported by Maher and Darwin [57]}, the larger values of Polisson's ratio
obtained experimentally for the cement pastes are likely due to c¢racks
longer than those recorded with the scanning elsctron microscope.

For mortar (Fig. 5.10), the experimental Poisson's ratioc increases
rapidly with increasing compressive strain, while the calculated Poisson's
ratio increases gradually with increasing compressive strain, The ex-
perimental Poisson's ratio starts at a value of 0.20 and risses to a value of
0.48, while the calculated Poisson's ratio starts at a value of 0.20 and
rises to a value of about 0.22, As in the case of the cement pastes, the
experimental Poisson's ratio is clearly larger than the calculated Poisson's

ratio. The experimental results illustrated in Fig, 5.10 are for a mortar
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specimen which was loaded beyond the peak stress to a maximum strain of
0.004 {Specimen 13-6/M-0.5/M). Macrocracks were visible on the surface of
the specimen just beyond the peak stress, which corresponds to a strain of
0.003. Like the results for cement paste, the larger values of Polsson's
ratic obtained experimentally are attributed fo the cracks not acgcounted for
in the current study.

Saturated Cracks: The results obtained with the self-consistent model

for saturated cracks are presented in Tables 5.5-5.8, A comparison of the
calculated normalized stiffness moduli, E3/Ei’ for dry and saturated cracks
in cement pastes is shown in Fig. 5.11. This comparison shows that a
material containing saturated cracks is stiffer than one contzining dry
cracks., In a saturated crack, the fluld prevents relative normal displace~
ment of the crack faces, resulting in a smaller effect of the cracks on the
stiffness modulus, Fig., 5.11 also shows that for the saturated cracks, the
calculated effect of submicroscopic cracks on the stiffness of cement paste
is independent of water-cement ratio, as it was for the dry cracks.

The calculated Poisson's ratios based on saturated cracks are slightly
larger than those based on dry cracks, since the presence of fluid within
the cracks enables the orack faces to interact. For example, at an applied
strain of 0,006 in cement paste with a W/C = 0.5, the values of V3 are 0.25
and 0.26 based on assumptions of dry and saturated cracks, respectively,
compared to the experimental value of C.27.

Fig. 5.12-5.14 show that, as for dry cracks, the calculated Poisson's
ratios obtained with saturated cracks are smaller than the experimental
Poisson's ratios, demonstrating that the presence of fluid within the cracks
does not explain the increased Pocisson effect obtained experimentally.

Second Approach: The calculated effective moduli obtained with the

assumptlion that cracks do not exist in the materials prior to loading are
presented in Tables 5.86-5.12 for dry cracks. The values of the stiffness

modulus, E calculated with the first and second approaches are compared in

3!
Fig., 5.15 for cement paste with a W/C = 0.5. Fig. 5.15 shows that the

values of Ea are virtually the same for the two approaches. At the most,

the value of £, for the second approach is C.7% larger than the correspond-
ing value for the first apprecach. Fig. 5.16 shows that the calculated

Poissen's ratios, v s are the same for the two approaches.

3
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Based on the assumptions used in the two approaches, as described in
Sections 5.2,1 and 5.2.2, an analysis using the second approach starts with
a lower calculated stiffness for the matrix material, E. The fact that the
estimates of E3 and v3§ for the two approaches are virtually identical
indicates that the smaller number of c¢racks used in the second approach

compensates for the lower value of E.

5.3.2 0ther Inelastic Deformation

In the earlier discussions of Fig. 5.3-5.6 in Section 5.3.1, it was
pointed ocut that inelastic deformations in cement paste and mortar include
sizeahle strains that cannot be attributed to the recorded submicrocracking.
Fig. 5.3-5.6 show that the assumption of a linear elastic matrix, as used in
the self-consistent model, is not correct. If it were, and all sub-
microcracks were accounted for, then the calculated axial‘strain, €on’ would
be equal to the applied strain, g, The following discussion pinpolints the
probable sources of the inelastic deformation which i35 in excess of the
deformaticon calculated for submicroeracking.

It is possible that not all of the submlicroscopic c¢racks on the
specimen surfaces were seen. Since the microstructure of cement paste
consists of different features (e.g, calcium silicate hydrate and calcium
hydroxide), some cracks may be cbscured by the boundaries bdetween these
features, This may be even more so in mortar, which contains many sand
grains. The increased crack density due to these cracks would result in a
larger portion of the inelastic strain being due to submicrocracking.

Large microcracks and macgrocracks, which were visible on the surface of
some specimens at high stress levels, were not Iincluded in this study.
These cracks will make an important contribution at high stralins. As
demonstrated in Chapter #, large cracks are especially important since the
change in material properties depends on the average value of the cube of
the characteristic crack size, <a3>.

A study by Spconer [85] showed that some portion of the inelasticzc
strain in cement paste subjected to monctonic loading is due to flow or
creep of the material., Thus, the mechanism of creep may account for a
portion of the inelastic deformation that is not due to submicrocracking.

These observations should not ccme as a surprise., In fact, we should

sxpect that the properties of the matrix material should change under load.
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The resulting inelasticity of the matrix material and the effects of larger
cracks, need to be accounted for in order to understand the role of sub-
migrocracks In the nonlinear behavior of cement paste and mortar. These

peints are addressed in the next section,

5.4 Material Response with Inelastic Matrix Material

To obtain an improved estimate of the role of submicroscopic cracking
in the stress—-strain response of cement paste and mortar, the procedures
used in the previous section are altered t¢ allow the properties of the
matrix material to change. For simplicity, all of the nonlinear response of
cement paste and mortar that is not accounted for by submicrocracking is
considered to pe due to changes in the matrix, This is clearly a simplying
assumption since it lumps large microcracks and macrocracks Iin with flow or
creep. Although its properties may change, the matrix material is assumed
to remain isotropic.

Using these assumpiions, the self-consistent model is used Lo back-

calculate the stiffness modulus, E and Poisson's ratio, v of the

mat’ mat
matrix material that yield the experimentally measured strains when coupled

with the three dimensional crack distributions, In this ecase, the portion
of the stress—strain response of the material not due to the matrix is due
to the submicroscopic cracks.

To caleculate Em and v for a given distribution of submicroscopic

at mat,

cracks, the effective stiffness modulus of the eracked material, E is set

3!
equal to the measured secant modulus, which corresponds to the applied
stress, o, and strain, €, at which the crack distribution is obtained; i.e,

E_ = ¢/e. The effective Poisson's ratie, v is set equal to the measured

3 31!
Poisson's ratio. Values of Em and v are seliected which, when combined

with the full three*dimensionalagrack d?:zribution obtained for specimens
loaded to a gliven axial strain, produce the measured values of EB and v31.
This computation process is similar to the "first approach" procedure
described in Section 5.2,1. If, however, the computation process utilizes a
crack distribution equal to the difference tetween the three-dimensional
crack distributions in the loaded and nonloaded specimens, a procedure
similar to the "second approach" of Section 5.2.2 i3 obtained. The dis-

cussions that follow in Sections 5.4,1 through 5.4.3 follow the first



104

approach. The results for the second approach are presented in Section
5.4.4,
The strain, €nat’ asscclated with Em

at at
to elastic deformation and a2 component due t{o inelastic deformation within

and ¢ includes a component due

the matriy material.

nat = G/Emat (5.3)
As in the case of Eg. {5.1) and (5.2}, the value of o used in calculating
€nat for monotonic loading is the average applied stress for all specimens
with a given water-cement ratic which have been loaded to the particular
axial strain. For sustained or cyclic loading, ¢ is the stress which cor—
responds to the stress-—-strength ratio used in the test.

The component of the strain due to submicrocracking, €t is the dif-

ference between the applied strain, £, and e

mat

€% € 7 Epy (5.48)
The total inelastic strain, ¢ - €q is the difference between the applied
strain, ¢, and the elastic strain, €y = c/Ei.

In subsequent ssctions, the results cbtained for the modull of the
matrix material, Emat and Voat? and the strain due to submicrocracking, Eq
are presented and discussed for each loading regime. These results cor-

respond to the larger estimate of <a >, and the ¢racks are assumed to be

¥
ary.

5.4,1 Monotonic Loading

The calculated values of the moduli of the matrix materlal and the
strain due to submicrocracking are presented in Tables 5.13-5,16 for cement
paste and mortar. Softening within the mairix accounts for a significant
portion of the nonlinearity at all values of applied strain, Typical

changes in Em are iliustrated by cement paste with a W/C = 0.5; E

at mat
decreases from a value of 2.54x106 psl at initial loading to a value of
1,375xE05 psi at an applied strain of 0.006.

The calculated stress-strain (U’emat) curve due to softening within the

matrix material is compared with the experimental stress—strain (v,g) curve
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and the linear elastic stress—-strain relationship based on the initial
stiffness in Fig. 5.17-5.20. When compared with the stress-strain curves in
Fig. 5.3-5.6, the curves In Plg. 5.17-5.20 show the Ilmportance of including
the nonlinearity of the material bhetween the submicroscopic cracks. This
observation is similar to that of Maher and Darwin [57], who found from
their finite element study that the nonlinear behavior of concrete requires
an accurate representation for the nonlinear behavior of the mortar con-
stituent, in addition to nonlinearity caused by bond and mortar cracks.

A compariscon of the calculated stress—strain curves for mortar (Fig.
5.6 and 5,20) indicates that the increase in average strain obtained ex-
perimentally on the descending branch of the stress-strain curve, is due
largely to aspects other than submicrocracking. Macroscopic cracks which
form in a mortar specimen under uniaxial compression are visible on the
surface of the specimen during the descending branch of the stress—strain
curve. If the post-peak softening of the material is due to macrogracks
only, based on the concept of strain localization as proposed In an analyti-
cal study by Bazant [4] and an experimental study by Van Mier [95], then
categorizing all nonlinear responses other than submicrocracking as soften-
ing of the matrix material will overestimate the strain due to
submicrocracking (Fig. 5.20). '

From the concept of strain localization for materials which show
strain-softening in compression, the relatively undamaged portions of the
material should unload with a decreasing strain, while the average strain
continues to increase on the descending branch. Thus, the strain due to
submicrocracking on the descending branch should at most be equal to that at
the peak of the stress-strain curve. The unloading response of the model
shown in Fig., 5.6 is due in large part to the assumption that the mabterial
between the submicroscople cracks remains unchanged by the applied strain,
but it may suppert the existence of a region of localized deformation during
the post-peak softening of mortar.

The strain due to submiorocracking, Ec' is indicated on Fig. 5.17-5.20.
sc as a percentage of the Inelastic strain, sc/(e - se), is presented iIn
Tables 5,13-5.16 and Fig. 5.21. Fig. 5,21 and the data in Tables 5.13-5.15
show that for cement paste, ec/(e - z—:e) is the greatest at low strains,
accounting for as high as 85%% of the inelastic strain for 0.2 W/C paste at a

strain of 0.0005. ac/(e - Ee) decreases with increasing applied strain,
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dropping to values of 30%, 34%, and U5% at z strain of C.006 for pastes with
W/C = 0.7, 0.5 and 0.3, respectively. This indicates that while the con-
tribution of submicrocracking to the nonlinear response of cement paste is
significant at all levels of applied strain, the relative importance of
cther mechanisms, large microcracks, macrocracks, and ¢reep, inereases with
inereasing strain until they play a dominant role. The relative importance
of the submicrocracks increases with a decrease in water-cement ratio; the
majority of the nonlinear strain in 0.3 W/C paste is due to submicrocracking
at all strains except 0.006, at which strain presumably macrocracks play the
major role. This observation is in line with the cbservation by Ngab, et
al, [66] that, for specimens of the same age and at the same stress—strength
ratio, creep is lower the higher the compressive strength (i.e., the lower
the water-cement ratio),

For mortar, Fig. 5.21 and the data in Table 5.16 show that ec/(e - se)
decreases with increasing applied strain from ¥5% at a strain of 0.0005 to
17% at a strain of 0,0€3, the strain at the peak stress. At a strain of
0.004, which corresponds to the descending branch of the stress-strain
curve, the value of EC/(E - ae) inoreases to 22%, implying that the portion
of the inelastic strain due to submicroeracking is larger on the descending
branch of the stress—-strain curve than at the peak of the stress-strain
curve. However, as pointed out earlier, the strain due to submic¢rocracking
may have been overestimated on the descending branch. The smaller values of
éc/{s - Ee} for mortar as cgompared to those for cement paste may indicate
that large microcracks and macrcceracks play a more dominant role in mortar.

The variations of the experimental Poisson's ratio and the calculated
Poisson's ratio of the matrix material with applled strain are shown 1in Fig,
5.22~5,24. These figures demonstrate that aspects other than submierocrack-

ing control the Polsson effect in these materiais.

5.4.2 Sustained Loading

The calculated values of the moduli of the matrix material and the
straln due to submicrocracking are presenfed in Table 5.17 for cement pastes
with W/C = 0.5 and 0.3. As fof the monotonic teats, the stiffness modulus
of the matrix material, Emat' decreases with an inecrease in strain under

sustained loading. For example, for paste with a W/C = 0.5, Emat decreases
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from a value of 2.5ﬂx106 psi at initial loading to a value of O.975x106 psi
at an applied strain of 0,006.
The calculated strain (elastic and inelastic) within the matrix

material, € is plotted against the applied stress, along with the ex-

perimenta?aZtreSS"strain curve and the linear elastic stress-strain
relationship based on the initial stiffness, In Fig. 5.25-5,28. The figures
show that the applled axial strain is made up of components of elastic
strain, Ee’ inelastis strain due to submicroc¢racking, ec, and inelastic
strain within the matrix material, Emat - ee.

For the experimental results considered here, the percentage of
inelastic strain due to submicrocracking, ec/(a - ee), ranges from 20% to
34%, depending on the strain and the water—cement ratio. As for monotonic
loading, ec/{s - ee) decreases with an increase in strain under sustained
loading. For cement paste with a W/C = 0.5, sc/(e - ee) decreases from 249
at a strain of 0.004 to 20% at a strain of 0.006. For similar strains in
cement paste with a W/C = 0.3, aC/(s - ee) decreases from 34% to 29%. Also,
as for monotenic loading, the percentage of inelastic strain due to sub-
microcracking is larger for the lower water-cement ratio paste,

Fig., 5.29 and the data in Tables 5.14, 5,15 and 5.1T7 show that at a
strain of 0.00%4, € is virtually the same for monotonic and sustained
loading. However, at a strain of 0.006, €, ig greater for the monotonic
specimens. For cement paste with a W/C = 0.5 at an applied strain of 0.004,
ec is 0.000567 for monotonic loading and 0.000535 for sustained loading. At
a strain of 0.009, €q increases to 0.001137 for monotonic loading but only
to 0.000824 for sustained loading, For W/C = 0.3, the relative change in €,
is less, with €, = 0.0005604 and C.000547, respectively, for monotonic and
sustained loading to 0.00#, and €y = $¢.001132 and 0.001036, respectively,
for loading to 0.006. These obgservations parallel those based on crack
densities in Chapter 3 (Section 3.5.3.2).

At the same stress—strength ratio, Ec is notigeably greater for sus-
tained ioading than for monotonic loading (Fig. 5.30), with values of €. for
sustained loading ranging from 1.72 to 3.46 times the value of €, for
monotonic loading. For this comparison, the value of €, for monotonic
loading is cbtained by linear interpolation of the data In Tables 5.14 and
5.15. The higher value of ec for sustained loading indicates that the

strain due to submicrocracking increases with the duration of loading. This
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increzse in Ea corresponds to the observed increase in crack density
(Section 3.5.3.2).

The calculated and experimental Poisson's ratios are comparsd in Fig.
5.31 for cement pastes with W/C = 0.5 and 0.3, respectively. The calculated
values of Poisson's ratio for the matrix material zccount for most of the
observed changes, demonstrating that mechanlsms other than submicrocracking
control the Poisson effect in cement paste under sustained loading, as under
monotonic loading. As pointed out in Chapter 2 (Section 2.4.3.1), the
decrease in Poisson's ratio with an increase in applied strain under sus-
tained loading may be due to volume consolidation, with the development of

substantial axial strains but without corresponding large lateral strains,

5.48.3 Cyelic Loading
The calculated values of the modull of the matrix material and the

strain due to submicrocracking are presented in Tablz 5.18 for cement pastes
with W/C = 0.5 and 0.3. The calculated stiffness modulus of the matrix

material, E decreases with an increase in strain under cyclic leoading,

mat’
as it does under monctonic and sustained loading. For example, for paste

with a W/C = 0.5, Em deareasas from a value of 2.5ﬂx106 psi at initial

at
loading to z value of 1.&?3x106 psi at an applied strain of 0.004.
The caleoulated strain within the matrix material, Emat is plotted

against the peak stress, along with the experimental stress—strain curve and
the linear elastic stress—strain relationship based on the initial stiff-
ness, in Fig. 5.32-5.36. As for the monotonic and sustained tests, the
figures show that the applied axial strain for cyclic loading is made up of
components of elastic strain, g inelastic strain due to submicrocracking,
€y and inelastic strain due to other mechanisms, €nat ~ et Softening
Wwithin the matrix and submicrocracking both play major roles.
Submicrocracking is especially important for the higher strength paste,

As Tor monotonic and sustained loading, the portion c¢f inelastic strain
due Lo submicrocracking, ac/(s - se), decreases with an increase in strain
under cyelic loading. For cement paste with a W/C = 0.5, ec/(s - ee)
decreases from a value of 404 at a straln of 0.002 to a value of 25% at a
strain of 0.004. For strains of 0.002, 0.0025 and 0.003 in cemeni paste

with a W/2 = 0.3, the values of Ec/(s - EE) are 91%, 69% and 4149,
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respectively. At low strains, 0.002 and 0.0025, the major portion of the
nonlinegar strain in 0.3 W/C paste i3 due to submicrocracking.

Fig. 5.37 compares £, under cyeclic and monotonic loading regimes for
cement pastes with W/C = §.5 and 0.3, respectively., For the same applied
strain in paste with a W/C = 0.5, €5 is larger under c¢yclic loading than
under menotonic loading. The values of e, are 0.00025% and 0.00058 for
cyclic loading compared te 0.0001% and 0.00056 for monotonic loading, at
strains of 0.002 and 0.00%. At a strain of 0.002 in paste with a W/C = 0.3,
the values of Ec are 0.00007 for cyelic loading and 0.00013 for monctonice
loading. But at a strain of §.003, €, is larger for cyclic loading than for
monotonic loading, with values of 0.00038 and 0,00030, respectively. The
inelastic strain in the matrix, €nat ~ Ea? is alsc larger for cyclic loading
than for monotonie loading at all values of maximum strain {(Fig. 5.38).

As observed by Maher and Darwin [58,593, materizal degradation is
greater the greater the range of strain (lcading strain plus unloading
strain). 1If inelastic strains due to submic¢rocracking and other mechanisms
are presumed to be indicaters of damage, then Maher and Darwin's study
indicates that the larger values of these strains under cyclic loading
compared to monotonic loading (Fig., 5.37 and 5.38) are due to the fact that
the range of strain for cyclic loading is larger than for monotonic loading.

For eyellic loading, as for monotonic and sustained loading, the
decrease in the percentage of inelastic strain due t¢ submicrocracking,
ac/(e - ze}, with an increase in applied strain indicates that the relative
importance of other nonlinear responses increases with an increase in
strain., But clearly, the density of submicrocracks (Fig. 3.4%) and their
effect (Fig. 5.37) continue to increase with continuing cycles as suggested
by Maher and Darwin [58,59]. Also, the larger values of acl(a - ee) for the
lower water—-cement ratio paste Indicate that submicrocracks are relatively
more important for higher strength materlals than for lower strength
materials for virtually all uniaxial lcading regimes.

The calculated values of Poisson's ratio of the matrix material are
compared with the experimental values in Fig. 5.39% for cement pastes with
W/C = 0.5 and 0.3. The results show that the nonlinear responses other than

submicrocracking control the Poisson effect in cement paste,
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5.4%.4 Comparison of Caleulated Effects of Submiecrocracks for

First and Second Approaches

The calculated values of the moduli ¢f the matrix material and the
strain due to submicrccracking obtained with the second approach are
presented in Tables 5.19~5.24. For the second approach, the percentage of
inelastic straln due teo submicrocracking, EC/{€ - Ee), is lower than ob-
tained with the first approach. sc/(e - ae) or the second approach ranges
from 10% to 80% compared with 20% to 90% for the first approach. The fact
that the first and second approaches produce different results with an
inelastic matrix is in contrast to the results obtained for an elastic
matrix (Section 5.3.1). With an elastic matrix, both approaches produce the
same results.

In the computation process with an elastic matrix, the second approach
uses a lower value of matrix material stiffness, E, than the first approach
[Section 5.2.2]. This lower value of E compensates for the reduced soften—
ing obtained with the lower crack density, and as a result, the calculated
stiffness, E3, and strain due to submlerocracking, g are the same for both
approaches [Eq. (5.1) and (5.2)3. With an inelastic matrix, however, the
crack density is used to back-calculate the matrix stiffness at each strain.
As a result, the matrix stiffness and the strain due to submicrocracking,
€, [Eq. {5.3) and {(5.4)] are different for the two approaches,

The difference in €, obtained with the two apprcaches increases as the
applied strain increases. For example, for cement paste with W/C = 0,5
{Fig. 5.40), at a strain of 0.0005, £, for tne first apprecach is 1.08 times
the value for the second approach, while at a strain of 0.006, € for the
first approach is 1.26 times the value for the second approach, <Considering
the extreme assumptions used for the two approaches, these differences are
not large.

At this point, it is not clear which apprcach is correct. The correct
approach depends on the actual amount of ceracking that exists prior to
loading, a question not answered in the current study. As discussed in
Sections 3.5.,1 and 5.2.1, it 1s likely that some ¢racks do exist prior to
loading. However, 1t is also likely that all preparation cracks are not
removed by the procedure described in Section 3.4.3. Therefore, the true

effect of load-induced submicrcocracking should lie scmewhere between the
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results obtalined with the twe approaches. Future studies should continue to

explore this issue.

5.5
1.

Summary of Findings

Under uniaxial compressive loading of cement paste and mortar, sub-
microscopic cracks contribute to the decrease in the modulus of
elasticity with increasing applied strain.

For monotonic loading, if submlerocracking is the oniy nonlinear ef-
fect, then the calculated percentage reduction in the stiffness of
cement paste due to these cracks Is nearly independent of water—-cement
ratiao. The calculated percentage reduction in stiffness is larger for
mortar than for cement paste.

For menotoniec loading, the calculated stress—strain curves for cement
paste and mortar, based on submicrocracking as the only nonlinear
effect, are much stiffer than the experimental curves, The nonlinear
behavior of the materials is more closely matched by accounting for the
inelasticity of the material between the submicroscoplc cracks.

The increase in average strain on the descending branch of the stress-
strain curve of mortar is due largely to mechanisms other than
submicrocracking. .
Under uniaxial compressive loading of cement paste, the percentage of
inelastic strain due to submicrocracking decreases with increasing
applied strain. This indicates that other softening mechanisms, macro-
eracks and creep, play a larger role in the inelastic deformation of
cement paste the higher the applied strain.

For uniaxial compressive loading of cement pastes of the same age at a
given straln, the percentage of inelastiec strain due to submicrocrack-
ing is larger the lower the water—cement ratio.

Under uniaxial compression, the Poisson effect in cement paste and
mortar appears to be controlled by mechanisms other than
submicrocracking.

For uniaxzial compressive loading of cement paste to a fixed strain, a
greater portion of the total strain is due to submicroeracking for
monotoniec leoading than for sustained loading. Other nonlinear

responges play a larger role under sustained loading.
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At the same stress—-strength ratio in cement paste, the strain caused by
submicroscopic cracks ls larger for sustained loading than for
menotonie loading, implying that the degree of softening due to sub-
microcracking increases with the duration of locading.

For uniaxial compressive loading of cement paste to a fixed strain, the
strain caused by submicroscopic cracks 1s larger for cyclic loading
than for monotonic loading, implying that the degree of softening due
to submicrocracking increases with repetition of load. Inelastic
strain caused by other nonlinear mechanisms is also larger for cyelic

loading.
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CHAPTER 6
SUMMARY AND CONCLUSIONS

6.1 Summary

The purpose of this investigation is to study submicroscopic cracking
of cement paste and mortar under uniaxial compression and to correlate the
observed cracks with the applied strain and load history. Cement paste
specimens are subjected to monotonic, sustained or cyelic loading. Mortar
specimens are subjected to monotonic loading.

The cement pastes are representative of those found in low, normal and
high strength concretes. Mixes with water—cement ratios of 0.7, 0.5 and 0.3
are used., The mortar corresponds to concrete with a water-cement ratio of
0.5. One hundred and thirty (130) specimens are tested at ages ranging from
27 to 29 days.

Specimens are loaded in compression using a closed-locp servo-hydraulic
testing machine. Average axial strain Is cbtained using a compressometer
and average lateral strain is obtained using an extensometer. After the
specimens are loaded, slices are removed and dried for viewing in a scanning
electron microscope. Cracking on transverse and longitudinal surfaces is
studied at a magnification of 1250x.

Statistieal and stereclogical models are developed to convert the
surface c¢rack distributions to three-dimensional distrivutions. The extent
of cracking is compared in cement paste and mertar under different loading
regimes.

A self-consistent model is developed to estimate the elastic moduli of
transversely isotropic cracked materials. The model is used to correlate
submicrocracking with the reduction in stiffness and the shape <f the

stress—sirain curves of cement paste and mortar.

6.2 Conclusions

Based on the study presented in this report, the following conclusions
can be made. The term "crack density" refers to both surface and volumetric
submicroscopic crack densities.

1. The density and width of drying cracks in cement paste vary with

the method of specimen drying., This suggests that drying shrinkage
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in cement paste 1s not a material property, but rather a property
of the total cement paste composite.

Crack density in cement paste varies inversely with water-cement
ratio for nonlcaded specimens,

Crack density in cement paste and mortar increases with increasing
uniaxial compressive strain.

Surface crack density in cement paste is about ten times the den—
sity of bond and mortar microcracks in concrete at the same value
of compressive strain.

Abvout 80% of the surface crack density in cement paste occurs
through the Type I1I CSH structure, with the balance approximately
evenly divided between CH and the CH-III boundary.

About 70% of %the surface crack density in mortar occurs through the
Type III CSH structure, followed by about 18% at the sand grain -
Type III CSH boundary. The Balance of the c¢racking is ap-
proximately evenly divided between CH and the CH-III boundary.
Under uniaxial compressive loading, the mean size of submicroscople
cracks increases with increasing strain, while the number of cracks
per unit volume deereases, This suggests that as the applied
strain increasss, small cracks join into a smaller number of larger
cracks.

Under uniaxial compressive loading of cement paste and mortar,
three~dimensional orientation distributions of submicroscopic
cracks become skewed towards the direction of applied stress as
strain inecreases.

Under monotonic loading, the crack orientation distributions in
mortar are less skewed towards the direction of applied stress than
the creck distributions in cement paste.

The crack orientation distributions under sustazined and cyelic
loading of cement paste are less skewed towards the direction of
applied stress than the crack distributions under meonctonice
loading.

The effective modulil of a cracked 80lid depend primarily on the
orientation distribution of the cracks, represented by the degree
of anisotropy, K, and the measure of volumetric crack density,

3
NV<a >.
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In cement paste, mortar and concrete, cracks which are oriented in
directions other than the direction of applied compression in-
fluence material behavior.

Cement paste, mortar and conerete in which crack orientation dis-
trivutions are skewed towards the direction of uniaxial compression
should exhibit a reduced strength under lateral tensile loading.
Submiecrocracking accounts for a significant portion (20% to 90%) of
the nonlinear response of cement paste and mortar at all levels of
applied compressive strain. The role of submicrocracking decresases
in relation to other mechanisms, such as large microcracks, macro-
cracks, and c¢reep, with increasing applied strain,

For uniaxial compressive lcading of cement paste and mortar, sub-
microscopic cracks contribute to the decrease in the modulus of
elasticity with increesing strain.

Under monotonic loading, the submicroscopic crack distributions in
cement paste show conly small variations with water—-cement ratio.
As a result, if submicrocracking is the only nonlinear effect, then
the caleculated percentage reduction in the stiffness of cement
paste due to these cracks 1s nearly independent of wabter—cement
ratio, '
For uniaxial compressive loading of cement pastes of the same age
at a given strain, the percentage of inelastic strain due to sub-
microcracking is larger the lower the water-cement ratio. This
suggests that submicrocracks are relatively more important for
higher strength materials than for lower strength materials.

Under monotonic loading, crack density increases more rapidly in
mortar than in cement paste, resulting in a2 larger percentage
reduction in stiffness.

The ealculated stress—strain curves for cement paste and mortar,
based on submicrocracking as the only nonlinear effect, are much
stiffer than the experimental curves. The nonlinear behavior of
the materials is more closely matched by accounting for the inelas-
ticity of the material between the submicroscoplc cracks,

The increase in average stralin on the descending branch of the
stress-strain curve of mortar is due largely to mechanisms other

than submicrocracking.
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For uniaxial compressive loading of cement paste to a fixed straln,
both crack density and strain due te submicrocracking are larger
for monotonic loading than for sustained loading, Other nonlinear
responses play a larger role under sustained loading.

At the same stress-strength ratio, both c¢rack density and strain
due to submicrocracking are larger for sustained lcading than for
nmonotonie loading, implying that the degree of softening due %o
submicrocracking increases with the duration of loading.

For uniaxial compressive loading of cement paste to a fixed strain,
both crack density and strain due to submicrocracking are larger
for cyclic loading than for meonotonic leoading., This implies that
the degree of softening due to submicrocracking increases with
repetition of load.

Under uniaxial compression, the Polsson effect in cement paste and
mortar appears to be controlled by mechanisms other than

submierocracking.

5.3 Recommendations for Future Study

1.

The role of cracking in the rate-dependent behavior of concrete
should be investigated by studying submicroecracking in cement paste
and mortar at different strain rates. '

The relationship between submicrocracks and maérocracks in cement
paste and mortar under uniaxial compression should be investigated
using both experimental and analytical procedures. Such an inves-
tigation could provide a complete understanding of the mechanism of
load-induced cracking in concrete,

Techniques need to be developed for performing crack surveys with
saturated specimens in order to minimize cracking due to specimen
preparation,

The surface to three-dimensioral conversion procedure used in this
study can handle only crack distributions with mild degrees of
anlsotropy. The possinility of modifying the procedure to handle
crack distributions with more general degrees of anisotropy should

be investigated.
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5. The self-consistent method should be applied to solids containing
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frietional sliding.
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TABLE 2.4
MCNOTONIC LOADING TESTS,

CEMENT PASTE WITH A W/C = 0.3

Specimen* Age at Maximum Initial Mcdulus,
Testing, days Strain Ei, 1O6psi
5-2/P=-0,3/M 27 0.0005 3.22
5-3/P-0.3/M 28 0.001% 3.30
5~4/P~0.3/M 28 0.002 3.32
5-5/P~0.3/M 29 0.004 3.29
10-2/P-0.3/M 28 C.0005 3.24
10-3/P-0.3/M 28 0.001 3.32
i0-4/P-0,3/M 28 g.002 3.34
10-5/P-0.3/M 29 0.004 3.38
11-2/FP=-0.3/M 27 0.0005 3.32
11-3/P-0.3/M 27 0.001 2.99
t1-4/P-0.,3/M 28 0.002 3.27
11-5/P-0.3/M 28 0.004 3.32
16-2/P-0.3/M 28 0.004 3.34
16-~3/P-0.3/M 28 0.0058 - 3.37
17-2/P-0.3/M 27 0.004 3.27
17-3/FP-0.3/M 27 0.00% 3.32
20-2/P-0.3/M 28 0.002 3.00
20-3/P~0.3/M 28 0.003 3.35
20-6/P-0,3/M 28 0.0057 3.19
21-2/P-0.3/M 28 0.002 3.31
21-3/P-0.3/M 29 0.003 3.35

¥ See Appendix A



*
Specimen

12-2/M-0.5/M
12-3/M-0.5/M
12-8/M-0.5/M
12-5/M~0.5/M
13-2/M-0.5/M
13-3/M-0.5/M
13-U4/M-G.5/M
13-5/M-G.5/M
13=-6/M-0.5/M

*
Specimen

14-4/9-0.5/3
14-5/P~(,5/8
15-4/P-0,5/8
15-5/P~0.5/5
i5A-1/P-0.5/58
16-4/P~0.3/3
16-5/P~-0.3/S
17-4/P-0,3/5
17-5/P-0,3/8
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TABLE 2.5
MONOTONIC LOADING TESTS.

MORTAR WITH A W/C = 0.5

Age at Maximum Initial Modulus,
Testing, days Strain Ei’ 1O6psi
27 0.0005 4,84
27 0. 001 4.76
28 0.002 5.04
28 0.003 4,79
28 00,0005 4,55
28 ¢.001 L, g2
28 g.002 4.73
29 0.003 4,81
29 0.00% 4,77

* See Appendix A

TABLE 2.6
SUSTAINED LOADING TESTS,

CEMENT PASTES WITH W/C = 0.5, 0.3

Age at Maximum Stress/Strength Test Initial Modulus,
Testing, S8train Duration, Ei’ 106psi
days hours
28 0,0039 0.675 4 2.51
29 0.0062 0.725 4 2.80
28 0.00H0 0.675 Yy 2.37
29 0.0059 0.725 y 2.69
29 0.0075 0.8 3.5 2.54
28 0.0042 0.575 b 3.36
29 0. 0061 0.715 2.75 3.36
28 0.0039 0.E75 b .13
28 0.0059 0.71 2.25 3.34

* See Appendix A
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TABLE 2.7
CYCLIC LOADING TESTS.

CEMENT PASTES WITH W/C = 0.5, 0.3

* *%

Specimen Age at Maximum Stress/Strength No. of Initial Modulus,

Testing, Strain Cycles Ei’ EO6psi
days

18-4/P—0.5/C 28 0.002 0.5 75 2.36
18-5/P-0.5/C 28 0.004 0.725 67 2.55
19-4/P-0.5/C 27 0.002 0.5 72 2,48
19-5/7-0,.5/C 28 0.004 0.725 70 2.73
iGA-1/P-0.5/C 29 0.005 0.865 31 2,52
20-4/P-0.3/C 27 0,002 0.65 38 3.37
20-5/P~0.3/C 27 0.003 0.60 85 3.28
21-4/P-0.,3/C 28 0.002% 0.65 47 3.29
21-5/P-0.3/C 29 0.003 0,80 a1 3.33

#*
* ¥

See Appendix A _
Test duration in minutes is the number of cycles divided by 2.

TABLE 2.8

FORMAT FOR RECORDING CRACK DATA

Band No, Type of Data Crack data
Length, .0006 in. 0,75 1.5 1 2.25 3.5 0.5 ......
*
i Width, .00004 in. 0.2 0.25 0.2 1.5 1 0.75 «ousn
Angle, degrees 50 30 75 us 30 10 thnaene
%
Structure ITT IIT ci CE-IIT IIT WUHC-IIT ..
¥ :1i=1, 2, ..., 10
¥#% : [II = Type IIL Calcium Silicate Hydrate (CSH).
CH = Calcium Hydroxide.
UHC = Unhydrated Cement.

CH-III denctes a crack at the interface between CH and Type III CSH,
Similar interpretation for UHC-1II, See sectiorn 2.5.4.1 for full
descriptions of the microscopic structures.
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TABLE 2.9a
SURFACE CRACK DATA FOR MONOTONIC LOADING OF CEMENT PASTE WITH A

W/C = 0.5 {BATCH #9). TRANSVERSE SURFACE.

NONLOADED

Band No. Type of Data Crack Data
Trace Length, &, 0.0006 in.; Trace Angle, 6, deg.
(1 in. = 25400 um)

2 1 9.75 0.75% 1.5 1.25 3.75 3.5
1 8 106 0 165 140 35 130 90

% il 3 2.25 3 2 1 1

6 0 155 60 60 125 175 165

3 1 3 1.25 0.5 1.5 0.75 2.25
2 8 155 145 Q 80 65 175 0

& 1.2 0.7 1.5 1.25 0.5

8 0 £0 85 50 85

) .75 .75 5 2.5 0.7 2.5 3
3 9 160 90 10 120 140 90 40

& 2 1.25 2.5

8 120 75 o

& 2.5 1.26 2 1 1.25 1.5 3
i 8 55 0 110 30 55 14 25

|2 0.5 0.5 0.75 1.25 2 1.25 1.25

8 90 175 125 60 60 155 0

[ 1 1.5 3 L 2 2.75 1
5 8 90 130 35 140 165 0 100

% Q.75 1 0.5 2.5 0.75

B 25 140 55 30 110

2 1 2.75 1.5 2 1 2.5 3.25
6 8 0 55 G 75 120 ho 9c

|2 1 0.75 0.5 1 1 1.25

8 140 120 10 90 160 85

L 2 1.5 1 1 1.25 2.5 1.75
7 8 50 85 60 0 0 175 65

g 2 1 1.25 1

€ 90 0 145 155

% 1.75 2.25 4.5 1 2 3.7% 2.5
3 8 165 175 125 60 6C 155 o
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1 0.75 1.75 2 4,75 1 5.75
90 130 35 140 165 0 4o
2.25 1 2 3.25 1 2.75 2
120 55 30 110 0 25 80
2.5 1 1.5 3.25 2 1 .25
85 50 85 160 90 10 120
. 1 Q.75 2 1 2.5 2.75
140 90 155 Q 90 140 35

MAXIMUM STRAIN = 0.000%5

Crack Data
Trace Length, &, 2.0006 in.; Trace Angle, 9, deg.
(1 in. = 25400 um)

2 1.25  1.25 1.5 2.25 2 3
170 150 105 4o 70 90 80
2 2.25 2 2.5 2.25
115 100 0 0 155
2.5 1.5 2 1.25 1 2 5
50 130 40 110 125 130 155
2.5 1.25 2 3 1.75 1 1.5
85 0 50 95 25 100 55
2.75 3.5 1.25 2 1 1.75 1.5
100 70 120 90 50 20 5
1.5 3 2.5 2.25
20 45 75 65
5.5 2.5 1 0.7% 2 1.5 1.5
55 30 35 5 0 15 80
1.5 1 1.25 2.5 1.75 3 3
20 I5 25 125 115 35 30
1 2.5 1.75 3.25 2.7% 1.5 2
20 135 25 125 &5 30 T0
1.5 5 5 2.5 2 2 ?
15 70 105 65 5 6G 25
5 1.5 1.7% 3.5 0.75 1.25 1.25
20 5 155 140 90 120 70
1.5 1.5 3.5 1.5
100 55 80 85
1.25 3.5 1 1.25 2.5 3.75 1
50 130 25 0 100 0 65
1.25 2 3.5 0.75 1.5 2 1,75
i

8o 90 T0 40 105 50 20



L 3.5 2 1.5 2 1 t.25  3.75
G ] 170 T0 55 50 25 120 85
% 2 3 1.2% 1 2 2.25 4.5
8 0 50 25 50 7C 55 80
g 2.5 1 2.75 3.25 2 1.25 1
10 ) G0 10 85 150 30 35 45
[} 0.75 C.75 1 2.5 1.75% 1.5
g 65 55 25 45 20 a0
MAXIMUM STRAIN = 0,001
Band No. Type of Data Crack Data
Trace Length, &, 0.0006 in.; Trace Angle, 8, deg.
(1 in. = 254300 um)
A 3.5 2 3 3 k.5 2 1.5
8 55 55 90 150 65 0 85
1 L 1.5 2.5 2 1.75 0.75 1.5 1
8 30 a0 55 o 0 10 170
L 2 0.75 1 0.7% 3
B 120 50 0 70 45
) 2.5 1,26 2 ) 1.7% 1 1.5
3 85 0 50 95 25 100 55
2 [} 2.75 3.5 1.26 2 1 1.7% 1.5
8 100 70 120 80 50 20 5
% 1.5 3 2.5 2.25
8 20 U5 75 65
L 5.5 2.5 1 0.75 2 .5 1.5
3 6 55 30 35 5 0 15 80
2 1.5 1 1.25% 2.5 1.75 3 3
y 6 20 b5 25 125 11 35 30
2 1 2.5 1.7% 3.25 2.75 1.5 2
8 20 135 25 125 65 G0 70
5 1.5 5 5 2.5 2 2 2
5 8 15 70 105 65 5 60 25
3 5 1.5 1.7% 3.5 0.75 1.25 1,25
6 8 20 5 155 140 90 120 70
% 1.5 1.5 3.5 1.5
6 100 55 80 85
L 3.5 .5 2 1.25 1 3 5
7 8 50 130 40 110 125 130 155
% 1.26 3.5 1 1,25 2.5 3.75 1
8 ] 50 130 25 0 100 0 65
A 1.25 2 3.5 0.75 1.5 2 1.75
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Band No.

Type
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1.25
50

1

90

136

9c

70

1.5
55
1.25
25

1.75
120
1.25

MAXIMUM STRAIN =

0.75
160

120
2.5
55

0.5
a0

50
0.75

1.75
165

90

1.75
90
1.25
75

1.5
130

140

2.75
55
.75
120

2.25
175
0.75

130

{1 in.

1.25
165
2.25
60

40

2
50
1
60

z
85
1
45

0.002

105

a5
70

3.25
25
1.75
50

Crack Data
Trace Length, &, 0.0006 in.; Trace Angle, 9,

25400 um)
2.5  7.25
140 35
3 2
0 140
2.5 0,75
120 1L0
1 1.25
30 55
1.25 2
60 60
4 2
140 165
2.5  0.75
30 110
2 1
75 120
1 1
90 160
1 1.25
0
1
155
1 2
60 60
2 k.75
140 185

150

1.25
120
2.25
55

2.5
65

35

5.75
130
1

0

2.5
g0

1.5
150
1.25
155

2.5
4o
1.25
85

2.5
175

3.75
155

20

3.75
85
4.5
90

2.75
50
1.25
65

3.5
g0
1
165

3
4o

deg.
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'3 2.25 1 10.25 3.25 1 2.75 2
8 ] 120 55 30 110 0 25 80
'3 2.5 1 0.75% 2 1 2.5 2.75
8 140 90 155 0 90 140 35
1 1 3 1.25 0.5 1.5 0.75 2.25
9 8 155 145 0 90 65 175 0
2 1.25 0.75 1.5 .25 0.5
8 0 60 85 50 85
A 5.5 1 3.5 3.25 2 b3 1.25
10 ] 85 35 15 160 a0 10 120
MAXIMUM STRAIN = 0.004
Band No. Type of Data Crack Data
Trace Length, %, 0.0006 in.; Trace Angle, 0, deg.
{1 in. = 25400 um}
A 4,5 2 1.25 1.5 2.25 2 3
1 8 170 150 105 0 70 96 a0
L 2 2.25 2 2.5 2.25
8 115 20 5 8] 185
A 3.5 2.5 5 1.25 1 2 5
2 8 50 130 ity 148 125 130 155
L 2.5 1.25 2 6 1.75 1 1.5
8 85 0 50 95 25 100 55
3 A 2.75 3.5 1.25 2 1 1.75 1.5
8 90 10 85 150 30 35 is
2 1.5 3 2.5 2.25
8 20 45 75 65
L 5.5 2.5 1 0.7% 2 1.5 1.5
i 9 55 30 35 5 0 15 80
% 1.5 1 1.25 2.5 1.75 3 3
5 8 20 u5 25 125 115 35 30
2 1 2.5 .75 3.25 2.75 1.5 2
8 20 135 25 i2% 65 G0 T0
A 1.5 5 5 2.5 2 2 2
6 9 15 70 105 65 5 60 25
2 1.25 2 3.5 C.75 1.5 2 1.75
& 8o 90 70 40 105 150 20
g 5 1.5 1.75 3.5 0.75  1.25% 1.2%
T 8 20 5 155 140 30 120 70
2 1.5 1.5 6.5 1.5 '
8 100 55 80 85



L 1.25 3.5 1 1.25 2.5 3.75 1
8 8 50 130 25 ¢ 100C 6] 65
) 3.5 2 1.5 2 1 1.25 3.75
9 & 170 70 55 50 25 120 85
A 2 3 1.25 1 2 2.25 4,5
8 G 50 25 60 70 55 90
4 2.5 t 5.75 3.25 2 1.25 1
10 6 100 70 120 90 50 20 5
L 0.75 0.75 1 2.5 1.75 1.5
] 65 55 25 45 20 80
MAXIMUM STRAIN = 0.0086
Band No. Type of Data Crack Data
Trace Length, &4, 0.0006 in.; Trace Angle, 8, deg.
{1 in. = 25400 um)
% 1.5 Y 6 3 2.5 2 3.5
e 55 55 90 150 65 0 85
1 g 1.5 2.5 2 1.75 .75 1.5 1
8 20 90 L5 5 0 30 150
2 2 0.75 1 0.75 3 3.75 1.5
8 120 50 0 70 45 105 40
2 L 2.75 3.5 1.25 2 1 1.75 1.5
8 100 70 120 30 50 20 5
% . 3 2.5 2.25
8 20 45 75 65
L 5.5 2.5 1 0.75 2 1.5 1.5
3 8 55 30 35 5 0 15 80
2 2.5 1.25 2 6 1.75 1 1.5
& 85 Q 50 95 25 100 55
A 1.5 1 1.25 2.5 1.75 3 3
4 8 20 us 25 125 115 35 30
[ 1 2.5 1.75 3.25 2.75 1.5 2
8 20 135 25 125 65 30 TO
% 3.5 5 T 1.5 5 2 3
5 ] 35 70 105 65 5 55 25
) 5 1.5 1.75 3.5 0.75 1.25 1.25
6 6 20 5 155 140 g0¢ 120 70
A 1.5 1.5 3.5 1.5
8 100 55 80 85

P
L
wun
L]
n
n
—
.
N
w
Y
(8}
T

. 1
7 8 50 130 L1e 110 125 130 155
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1.25
50
1.25
80

170

0

3.25
50
5.5
90
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3.5
130
2
90

2
70
3
50

3.75
165
1

ho

1
25
3.5
70

1.5
55
1.25
25

2,75
120
1.25
0

8.25
85

45

2.5
100
1.5
105

25
(e
3.25
25

1.75
50

3.75

150

1.25
120
2.25
55

2.5
65

35

&5
1.75
20

3.75
85
4.5
90

2.75
50
2,25
35
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TABLE 2.9b
SURFACE CRACK DATA FOR MONOTONIC LOADING OF CEMENT PASTE WITH A

W/C = 0.5 {BATCH #9). LONGITUDINAL SURFACE.

NONLOADED

Band No. Type of Data Crack Data
Trace Length, %, 0.0006 in.; Trace Angle, o, deg,
{1 in. = 25400 um)

) 0.75 1.75 5 2.5 075 2.5 .3
1 8 95 5 135 20 25 100 85

2 4 3 2.25 3 2 1

6 0 155 60 60 125 175 165

g 1 3 1.25 0.5 1.5  0.75 2.25
2 9 155 145 0 90 65 175 0

g 1.25  0.75 1.5  1.25 0.5

8 0 60 85 50 85

g 2 0.75 ©.75 1.5 1.25 3.75 3.5
3 8 160 90 10 120 140 90 e

) 2 1.25 2.5

8 120 75 0]

% 3.5 1.25 2 1 1.25 1.5 3
4 9 65 0 110 30 55 14 25

L 0.5 0.5 0.75 1.25 2 1.25  1.25

8 90 175 125 60 60 155 0

A 3.5 1 1.5 3.25 2 1 1.25
5 9 85 130 35 146 165 0 100

g 1.75 1 0.5 2.5  0.75

9 25 140 55 30 110

5 2 2.75 1.5 2 1 2.5  3.25
6 8 ¢ 55 o 75 120 40 90

% 1 0.75 0.5 1 1 1.25

¢ 125 120 10 90 150 85

% 1.5 1 1 1.25 2.5 1.75
T 6 50 85 60 0 0 175 65

g 1 0.75 1.75 2 .75 1 5,75

e 90 130 35 140 165 0 ity

. 1.75  2.25 4.5 1 2 3.75 2.5
8 ¢ 165 175 125 60 60 155 0

g 1 3 1.25

0 90 0 145 155



g 2.25 1 2 3.25 1 2.75 2
9 8 85 55 30 110 0 25 80
A 1 1.5 3 i 2 2.75 1
10 8 5 Lo 85 160 20 10 120
% 1.5 2 .75 3 0.75 2.5 2.75
8 130 80 145 5 90 40 25
MAXIMUM STRAIN = 0.0005%
Band No. Type of Data Crack Data
Trace Length, &, 0.0006 in.: Trace Angle, 8, deg.
(1 in., = 25400 um)
& 2.5 1.25 2 6 1.75 1 1.5
1 ] 155 50 105 35 H S0 70
% 2 2.2 2 2.5 2.25
8 105 100 0 5 135
% 5.5 8.5 3 1.25 1 3 5
2 8 45 130 45 1G0 125 130 155
g 2.75 3.5 1.2 2 1 1.75 1.5
3 8 100 70 120 G0 50 20 5
A 1.5 3 2.5 2.25
8 20 45 75 65
% 1.5 2.5 3 .75 2 1.5 1.5
b 8 50 30 35 5 0 15 80
L 1.5 1 1.25 2.5 1.7 3 3
5 8 20 45 25 12 1158 35 30
) 1 2.5 .75 3.25 2.75 1.5 2
g 30 135 25 125 65 30 70
% 2 1.25 1.25 1.5 2.25 2 3
6 8 85 o 50 95 25 160 55
3 1.5 5 5 2.5 2 2 2
8 15 70 105 65 5 60 25
% i 1.5 1.75 2.5 1.75 1.25  1.2%
7 8 20 5 745 140 a0 120 T0
) 0.75 .75 1 2.5 1.75 1.5
¢ 65 45 25 45 20 80
% 3.25 1.5 1 1.25 2.5 3.75 1
8 g 50 130 25 0 100 0 65
L 1.25 2 3.5 0.75 1.5 2 1.75
8 80 G0 70 40 1¢ 150 20
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3.5 2 1.5 2 1 1.25 3.75
170 70 55 50 25 120 85

3 .25 1 2 2.25 4.5
0 50 25 60 70 55 90
1.5 2 3.25 3.2% 2 2.25 i
90 10 85 145 30 45 b5
1.5 1.5 3.5 1.5
100 55 80 85

MAXIMUM STRAIN = 0.001

Crack Data
Trace Length, &, 0.0006 in.; Trace Angle, &, deg.
{1 in. = 25400 um)

2.5 0.5 2 2.75  1.75 1.5 1
40 90 55 o 5 10 170
2 0.75 1 0.75 3

120 50 0 70 b5

3.5 1.25 1 6 1.75 1 1.5
75 o] 50 95 25 100 55
2.75 3.5 1.25 2 1 1.75 1.5
100 70 120 G0 50 20 5
1.5 3 2.5 2.25

20 45 75 65

3.5 2 3 3 h.5 2 1.5
55 55 90 150 55 0 85
5.5 2.5 1 .75 2 1.5 1.5
55 30 35 5 0 15 80
2.5 1 1.25 2.5 .75 3 3
30 15 25 125 115 35 30
3 1.5 1.75  3.25 2.7% 1.5 2
20 105 25 125 65 90 T0
1.5 5 3 2.5 2 2 2
15 60 105 &5 5 i 25
5 1.5 1.75 3.5 0.75 1.25 1.25
20 5 155 140 80 120 70
1.5 1.5 5 1.5

100 55 80 35

1.25 2.5 1.7% 2 3.25 2.5 2.75
50 165 120 85 25 65 50
3.5 1.5 2 1.25 1 3 5

50 130 4o 110 125 130 155



% t.25 3.5 1 1.25 2.5 3.75 1
8 8 50 130 25 0 100 0 65
L 1.2 2 3.5 0.75 1.5 2 1.75
8 8o 90 TC Lo 10 150 20
% 3.5 2 1.5 2 1 1.25 3.7%
9 ] 170 70 55 50 25 120 85
) 3 1.25 1 2 2.25 4.5
9 0 50 25 60 70 55 90
% 1 1 1.25 1 1.75 3 1.25
10 8 30 10 0 U5 50 35 65
MAXIMUM STRAIN = 0.002
Band No. Type of Data Crack Data
Trace Length, %, 0.0005 in.; Trace Angle, 6, deg.
{1 in. = 25400 um)
L 2.5 1.25 2 1 1.25 1.5 3
1 8 55 0 110 30 55 140 25
3 2 1 .25 3 2 3 1
8 5 0 30 Q 120 G0 165
A 1.75 2.75 3 2.5 0.7 2.5 3
2 8 60 90 10 120 140 gc bo
£ 3 1.25 1.5
8 110 75 0
L 2 2.5 1.25 2.5 7.25 5.75 3.5
8 100 0 165 140 35 130 90
3 Z 0.5 0.5 0.75 1.25 2 1.25 1.25
8 80 175 125 60 60 155 0
% 1.5 1.5 2 3 3 3.7 2
y ] 90 120 35 140 165 0 105
% 1.75 1 0.5 2.5 0.75
9 35 140 45 30 110
% 1 2.75 1.5 2 1 2.5 3.25
5 8 0 55 0 75 120 Ty} L
L 1 0.75 0.5 1 1 1.25
8 140 120 10 30 160 85
2 1 1.5 1 1 1.25 2.5 1.75
) ] B0 85 50 0 C 175 65
[ 2.5 1 1.25 1
8 90 0 145 155
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2 1.75 2,25 4,5 1 2 3.75 2.5
7 8 165 175 125 60 60 155 ¢

g 1 .75 1.7 2 k.75 1 5.75

8 S0 130 35 140 165 o 49

& 3.25 2 10.25 3.25 1 2.7 2
8 8 120 55 30 110 0 25 80

) 1.5 1 0.75 1 1 2.5 2.75

8 120 30 145 0 90 130 35

% 3.5 3 3.5 3.25 1 b 1.25
9 8 75 35 15 140 90 10 120

% 1 2 1.25 1.5 1.5 0.75 2.25
10 & 145 145 0 90 65 175 0

g 2.25 0.75 1.5 1.25 0.5

g 0 60 85 50 85

MAXTMUM STRAIN = 0,004
Band No. Type of Data Crack Data
Trace Length, 4, 0.0006 in,.,; Trace Angle, 8, deg.
(1 in. = 25400 um)

2 1.5 1.25 2 & .75 1 1.5
1 8 75 0 60 95 25 100 55

g 1 1.25 2 2.5 2.25

8 15 30 5 0 155

% 1.5 2 1.25 1.5 2.25 2 2
2 8 150 10 106 bo 80 90 80

2 3.5 2.5 5 1.25 1 2 5

& 50 20 4o 145 125 130 155

2 1.75 3.5 2.25 2 1 1.75 1.5
3 9 50 10 75 150 30 35 L5

% 2.5 2 2.5 2.25

8 20 45 75 65

A 4.5 2.5 1 0.7 2 1.5 1.5
i 8 65 30 35 5 o 15 80

& 2.5 1 2.25 2.5 1.7 3 3
5 8 30 k5 25 125 115 35 30

% 1 2.5 1.7%  3.25 2.75 1.5 2

8 20 135 25 125 65 20 70
6 L :

.25 2 3.5 0.75 1.5 2 1.78



L 6 2.5 1.75 3.5 0.75 1.25  1.25
T 8 20 5 155 140 90 120 70
% 2.5 1.5 6.5 1.5
8 90 55 80 85
[} 2.5 5 5 2.5 2 2 2
8 8 30 70 115 65 5 60 25
2 2.25 3.5 1 1.25 2.5 3.73 1
8 k5 120 25 0 100 0 65
L 2.5 1 5.7 3.25 2 1.25 1
9 B 100 70 120 90 50 20 5
% 2 3 1.2 1 2 2.25 4.5
8 0 50 25 60 70 55 90
% 3.5 2 1.5 2 1 1.25 3.75
10 8 170 70 55 50 25 120 85
2 0.75 0.75 1 2.5 1.75 1.5
8 65 55 25 5 20 80
MAXIMUM STRAIN = 0,006
Band No. Type of Data Crack Data
Trace Length, %, 0.0006 in.; Trace Angle, 9§, deg.
(1 in. = 25400 pm)
2 3.5 2,5 1 0.75 2 1.5 1.5
8 5 30 35 5 0 15 80
1 £ 2.5 3 6 3 2.5 2 3.5
8 65 s 90 150 65 0 85
% 1.5 1.5 1 1.75  C.75% 1.5 1
8 20 90 45 5 0 30 150
% 3.75 3.5 .25 2 1 1.7 1.5
2 8 90 70 126G 90 50 20 5
) 3.5 3 2.3 2.25
8 40 20 75 65
) 2.5 1.2 2 6 .75 1 1.5
3 8 95 0 50 95 35 100 55
% 2 1.75 1 c.7% 3 3.75 1.5
8 20 40 0 70 15 195 Lo
A 1.5 5 T 1.5 5 2 3
h 9 35 T0 105 €5 5 55 25
% 1.5 1 1.25 2.5 1.75 3 3
6 20 45 25 125 115 35 30

by

1 2.5 1.7%  3.25  2.75 1.5 2
5 8 20 135 25 125 65 90 70
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2,25
50
3.25
60

5
160
90

3.25
60

3'5
130

90

70
ko

3.75
125

50

1.75
135
3.5
90

2.75
120
1.25
25

1.25

8.25
85

60

0.75
90

126

2.5
100
1.5
10

25
1.75
50

3.25
35

70

1.25
120

2.25
55

1.25
70

155

65
1.75
20

3.75
85
2.25
35

2,75
50
L.5
90
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TABLE 2.170

CRACK DENSITY OF NONLOADED, OVEN DRIED CEMENT PASTE AND MORTAR SPECIMENS

Crack Density, in./in.2

Specimen* Transverse Longitudinal
Surface Surface
1-1/P-0.T/NL e 18.4
2-1/P-0.T7/NL - 19.9
2-2/P-0.7/NL - 16.9
3-1/P-0.T7/NL - 19.5
6-1/P-0.7/NL 20.2 19.4
T-1/P-0.7/NL 19.1 17.8
4-1/P-0.5/NL - 18.9
8-1/P-0.5/0L 22.7 20.6
9-1/P-0,5/KL 20.3 19.8
14-1/P~0.5/NL 21.2 19.1
15-1/P~0,5/NL 22.3 18.5
18-1/P-0.5/NL 21.1 20.8
19-1/P-0.5/NL 18.2 19.5
5=-1/P-0.,3/NL - 20.2
10-1/P-0.3/RL 23.7 20.6
11-1/P-0.,3/NL 21.2 22.3
16~1/P~0.3/NL 201 . 25.7
17-1/P-0.3/NL 23.3 20.3
20-1/P-0.3/NL 22.5 20.4
21-1/P-0.3/NL 20.3 24,7
12-1/M-0.5/NL 12.0 10.5
13-1/M-0.5/NL 15,2 14,6

# See Appendix A



MONOTONIC LOABING :

*
Specimen

1-1/P-0.7/KL
2-1/P~0,7/NL
2-2/P-0.7/NL
3-1/P-0.7/NL
6-1/P~0,7/NL
6-2/P-0.7/M
6-3/P-0.7/M
6-4/P-0.7/M
6-5/P-0,7/M
7-1/P-0.7/NL
7-2/P-0,7/M
7-3/P-0.7/M
T-U/P-0.7/M
T-5/P=0.7/M

T-6/P~0.7T/H

*

CRACK DENSITY COF OVEN DRIED SPECIMENS.

Maximum

Strain

0.

a.

See Appendix A

0

0

. 0005
. 001
.002

. 004

. 0005
. 0013
.002
.004

006
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TABLE 2.11

CEMENT PASTE WITH A W/C = 0.7

Crack Density, in./in.2

Transverse

Surface

24.0
25.2
28.3
36.5
19.1

Eﬂ.f
26.3

32.4

43,6

Longitudinal

Surface
18.4
19.9
16.9
19.5
19.4
22.5
23.1
29.2
35.9
17.8
23.2
24,6
29.5

- 37.6

50,9



MONOTONIC LOADING -

*
Specimen

k-1/P-0.5/NL
4-2/P-0.5/M
fe-3/P~0,.5/M
L-4/P-0.5/M
4-5/P-0.5/M
§-1/P-0.5/NL
8-2/P~0.5/M
8-3/P-0.5/M
8-4/P-0.5/M
B-5/P-0.5/M
8-6/P-0.5/M
9~1/P-0.5/NL
9-2/P~0.5/M
9-3/P-0.5/M
g-4/P~0.5/M
9-5/P-0,5/M
9-6/P-0.5/M
14-1/P-0.5/NL
14-2/P-0,5/M
14-3/P~0.5/M
15-1/P-0.5/NL
15-2/P~0.5/M
15-3/P-0.5/M
18-1/P=0.5/NL
18~2/P-0,5/M
18-3/P-0.5/M
16~1/P-0,5/NL
19-2/P~0.5/M
19-3/P~0.5/M

¥
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TABLE 2,12

CRACK DENSITY OF OVEN DRIED SPECIMENS.

Maximum
Strain

0.0
0.0005
0.001
0.002
0.004
0.0
0.0005
0.001
0.002
0.004
0.006
0.0
0.0005
0.6
0.0062
0,004
0.006
0.0
0.004
0.006
0.0C
0.004
0.006
0.0
0.002
0.004
0.0
0.062
0.004

See Appendix A

CEMENT PASTE WITH & W/C = 0.5

Crack Density, in./in.2

Transverse

Surface

Longitudinal
Surface

18.9
18.3
20.1
27.8
37.6
20.6
21.8
24.7
28.9
30.7
43,6
19.8
22.3
25.4
27.5
38.7
k2.3
19.1
29.8
k2.5
18.5
27.2
39.4
20.8
25.8
28.5
19.5
27.5
32.4



MONOTONIC LOADING :

*
Specimen

5-1/P=-0.3/NL
5-2/P-0.3/M

5-3/P-0,3/M

5-U4/P-0,3/M

5-5/P=0,3/M

10-1/P-0.3/3L
10~2/P=0.3/M
10-3/P-0.3/M
10-4/P~0.,3/M
10~5/P~0.3/M
11-1/P-0. 3/NL
11-2/P~0,3/M
11=-3/P~0.3/M
11-4/P-0.3/M
11-5/P=0.3/M
16-1/P=0.3/NL
16-2/P~0,3/M
16=3/P~0.3/M
17-1/P-0, 3/NL
17-2/P-0.3/M
17-3/P=0,3/M
20-1/P-0.3/NL
20-2/P-0,3/M
20-3/P=C.3/M
21-1/P=0.3/NL
21-2/P-0.3/M
21-3/P-0,3/M

*
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TABLE 2.13

CRACK DENSITY CF OVEN DRIED SPECIMENS.

Maximum
Strain

0.0
0.0005
¢.001
G¢.002
C.004
¢.0
0.0005
0.001
G.002
C.00H
0.0
0.0005
0.001
0.002
0.004
8.0
0.004
0.0058
0.0
0.00%
0.006
0.0
0.002
0.003
0.0
0.8025
0.003

See Appendix A

CEMENT PASTE WITH A W/C = 0.3

Crack Density, in./s‘.n.2

Transverse

Surface

Longitudinal
Surface

20.2
20.4
22.8
23.5
31.6
20.6
21.4
24.3
26.5
33.9
22.3
23.
27. 4
26.2
34.3
25.7
31.8
39.7
20.3
27.8
44,0
20,4
26.7
30.4
28,7
20.1
27.5



MONOTONIC LOADING :

*
Specimen

12-1/M-0.5/NL
12-2/M-0.5/M
12-3/M~0,5/M
12-4/M-0.5/M
12-5/M-0.5/M
13-1/M-0,5/NL
13-2/¥-0.,5/M
13=-3/M-0.5/M
13-4/M-0.5/M
13-5/M-0.5/M

13-6/M-0.5/M
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TABLE 2.14

CRACK DENSITY OF OVEN DRIED SPECIMENS.

Maximum

Strain
0.0
0.0005
a.001
0.002

0.003

0.0005
0.001
0.C02
0.003

0.004

¥ Zee Appendix A

MORTAR WITH A W/C = 0.5

Crack Density, in./in.2

Transverse

Surface
12.0
17.6
23.9
33.6
32.8
14,6
16.8
25.6
34.3
38.6

h7.7

Longitudinal
sSurface
10.5
17.1
22.1
29.3
29.6
15.2
27. %
28.3
26.7
35.6
43,4



SUSTAINED AND CYCLIC LOADING :

*
Specimen

14-4/P~0.5/3
14-5/P~0,5/5
15-4/P-0,5/8
15-5/P~0,5/8
16-4/P~0.3/3
16~5/P-0.3/8
17-4/P-0.3/8
17-5/P-0.3/8
18-4/pP-0.5/C
18-5/P~0.5/C
19-4%/P-0.5/C
19~5/P=0.5/C
20~-4/P-0.3/C
20-5/P~0,3/C
21-4/P-0,3/C

21~-5/P-0,3/C

CRACKX DENSITY OF OVEN DRIED SPECIMENS.
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TABLE 2.15

Maximum

Strain

0

0

*¥ See

.0039
. 0062
. 0040
.0059
L0642
. 0061
.0039
. 0059
.002
.0oh
.002
.004
002
.003

. 3025

Appendix A

CEMENT PASTE WITH W/C = 0.5, 0.3

Crack Density, in./in.2

Transverse

Surface
22.6
34,1
28.6
37.2
38.9
46.8
42,7
45,2
28.4
ko, 7

34.1

32.4
49.1
34.2

57.8

Longitudinal
Surface
27. 4
26.7
25.7
35.9
36.4
42.4
37.7
50.5
27.3
39.4
26.5
35.2
27.8
48.6
29.7

3.4
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TABLE 2.16

CRACK DENSITY OF SOLVENT REPLACEMENT DRIED SPECIMENS.

MONOTONIC LOADING :

Specimen* Maximum
Strain
8-1/P-0.5/NL 0.0
8§-2/P-0.5/M 0.0005
8-3/P-0.5/M ¢.001
8-4/P-0.5/M 0.002
8~5/P~0,5/M 0.004
8-6/P-0.5/M 0.0086
9-1/P-0.5/M .0
9-2/P~0.5/M 0.0005
9-3/P-0.5/M 0.001
9-4/P-0.5/M 0.002
9=-5/P~(3,5/M 0.004
9-5/P-0.5/M 0.008

*  See Appendix A

CEMENT PASTE WITH 4 W/C

0.5

Crack Density, in./in.2

Transverse
Surface

23.6
26.8
28.4
32.3
k1.7
53.4
22.9
26.2
ar.5
31.4
39.6
50.7

TABLE 2.17

Longitudinal
Surface

25.2
27.3
28.1
31.6
4o.5
hg b
22.5
25.8
27.2
31.7
38.2
49.8

CRACK DENSITY OF S8ILICA GEL DRIED SPECIMENS.

MONOTONIC LOADING :

%
Specimen Maximum
Strain
9-1/P-0.5/NL 0.0
9-2/P-0.5/M .00065
§-3/P-0,5/M 0.001
9-4/P-0,5/M 0,002
9-5/P-0.5/M 0.004
9-6/P-0.5/M 3.006

¥ See Appendix A

CEMENT PASTE WITH A W/C = 0.5

Crack Density,
Transverse
Surface

19.
25,
26,
27,
33.
40.

o Oh 0w O

in./in.2
Longitudinal

Surface

L o
o B B S AR BN B
« s s %
o= 00— O Qo
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TABLE 2,18
AVERAGE CRACK DENSITY COF CVEN DRIED SPECIMENS AT EACH STRAIN.
MONOTONIC LOADING : CEMENT PASTE WITH A W/C = 0.7

Crack Density, in./in.2

* *

Maximum Transverse Longitudinal
Strain Surface Surface

0.0 19.7 18.6

0.0005 241 22.8

0.001 25.8 23.9

0.002 30.4 29,4

0.004 38.9 36.3

0.006 43.6 40.9

¥ Fach value is an average of twoc specimens,

TABLE 2.19
AVERAGE CRACK DENSITY OF OVEN DRIED SPECIMENS AT EACHE STRAIN.
MCNOTONIC LOADING : CEMENT PASTE WITH A W/C = 0.5

Crack Density, in./in.2

% %
Maximum Transverse Longitudinal
Strain Surface Surface

0.0 20.6 19.7

Q.0005 22.4 22.1

0.0M 25.1 25.0

¢.002 28.1 27. 4

0.004 344 33.1

G.006 44,0 42.0

¥ Each value is an average of three specimens.
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TABLE 2.20
AVERACE CRACK DENSITY OF OVEN DRIED SPECIMENS AT EACH STRAIN.
MONOTONIC LOADING : CEMENT PASTE WITH 4 W/C = 0.3

Crack Density, in./in.2

* *

Maximum Transverse Longitudinal
Strain Surface Surface

0.0 22.5 22.3

0, 0005 22.7 22.6

0.001 24.9 25,2

0.002 26.2 25.9

0.203 28.9 30,4

0.004 33.2 32.7

0.006 46,1 a,3

¥ FEach value is an average of three specimens,

TABLE 2.21
AVERAGE CRACK DENSITY OF OVEN DRIED SPECIMENS AT EACH STRAIN,
MONOTONIC LOADING : MORTAR WITH A W/C = 0.5

Crack Density, in./in.2

% %
Maximum Transverse Longitudinal
Strain Surface Surface
0.0 13.3 12.9
0.0005 17.2 22.3
0.001 24,8 25.2
.00z 26,2 25.3
0.003 35.7 32.6
Q.00H4 b7,7 43,4

*¥ Each value 1ls an average of twe specimens.
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TABLE 2.22
AVERAGE CRACK DENSITY OF OVEN DRIED SPECIMENS AT EACH STRAIN.
SUSTAINED LOADING
Crack Density, in./in.2
*

*
Maximum Transverse Longitudinal

Strain Surface Surface

CEMENT PASTE WITH A W/C = 0.5
0.004 26.6 25.6
0.006 35.7 33.3

CEMENT PASTE WITH A W/C = 0.3
0.004 36.8 35.1
0.006 6.7 hg.5

¥ Eaech value is an average of two specimens.

TABLE 2.23
AVERAGE CRACK DENSITY OF OVEN DRIED SPECIMENS AT EACH STRAIN,
CYCLIC LOADING
Crack Density, in./in.2
*

*
Maximun Transverse Longitudinal

Strain Surface Surface

CEMENT PASTE WITH A W/C = 0.5
0,002 31.3 26.9
0.004 U119 37.3

CEMENT PASTE WITH A W/C = 0.3
0.002 33.3 28.8
£.003 53.5 46.0

# Each value is an average of two specimens.
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TABLE 2.24
AVERAGE CRACK DENSITY BASED ON MICROSCOPIC STRUCTURES.
MONOTONIC LOADING : TRANSVERSE AND LONCITUDINAL SURFACES OF

OVEN DRIED CEMENT PASTE WITH A W/C = C.7T

* €% ¥
Maximum Structure Crack Density, 4 of Total
Strain in./in.2 Crack Density
Transverse Longitudinal Transverse Longitudinal
III 15.2 14,5 7.2 78.2
0.0 CH-III 2.3 2.2 1M.7 11.4
CH 2.2 1.9 11.1 10.4
ITI 17.9 17.4% 3 76.3
0.0005 CH~ITI 3.7 3.1 15.3 13.5
CH 2.5 2.3 10.4 10.2
III 19.4 18,4 75.2 76.8
0.001% CH-IIT 3.5 2.8 13.6 11.9
CH 2.9 2.7 11.2 11.3
IIZ 25.3 24.9 B3.2 84,7
0.002 CH-III 2.7 2.4 8.9 g.2
CH 2.4 2.1 7.9 T.1
I1I 30.8 29.5 756.2 81.3
0,004 CH-IIZX b3 3.8 11.0 10.4
CH 3.8 3.0 3.8 8.3
11T 35.6 34,2 81.7 83.5
0.006 CH-IIT L 2 3.7 3.6 9.1
CH 3.8 3.0 8.7 Tl

* See Section 2.5.4,1 for descriptions of structures,
¥% Bach value is an average of two specimens.
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TABLE 2.25
AVERAGE CRACK DENSITY BASED ON MICROSCOPIC STRUCTURES.
MONOTONIC LOADING : TRANSVERSE AND LONGITUDINAL SURFACES OF

OVEN DRIED CEMENT PASTE WITH A W/C = 0,5

% ¥ * %
Maximum Structure Crack Density, % of Total
Strain in./in.2 Crack Density
Transverse Longitudinal Tranaverse Longitudinal
Iz 17.2 16.2 83.5 82.3
0.0 CH-III 2.1 2.0 10.2 9.9
CH 1.3 1.5 6.3 7.8
I1Z 17.4 16.8 Tt.T 75.9
0.0085 CE~ITZL 2.9 2.9 13.0 12.9
CH 2.1 2.5 9.3 11.2
- IIT 21.0 21.2 83.7 84.6
0.001% CH-III 2.0 1.9 8.0 7.6
CH 2.1 8.3 7.8
IIZ 23.9 23.3 85.0 85.1
0.002 CH-III 1.9 1.8 6.8 6.5
CH 2.3 2.3 8.2 8.4
III 27.1 25.7 78.8 77.6
0,004 CH-III 3.2 3.4 9.3 10.3
cH b 1 Lo 11.9 1241
11X 34,7 33.0 78.9 79.4
0.006 CH-III b,9 4.7 1.1 1.2
CH b,y 3.9 10. 9,4

# See Section 2.5,4.1 for descriptions of structures.
¥% Fach value is an average of three specimens,
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TABLE 2.26
AVERAGE CRACK DENSITY BASED ON MICROSCOPIC STRUCTURES.
MONOTONIC LOADING : TRANSVERSE AND LONGITUDINAL SURFACES OF

OVEN DRIED CEMENT PASTE WITH A W/C = 0.3

* ** E 33
Maximum Structure Crack Density, % of Total
Strain in./in.2 Crack Density
Transverse Longitudinal Transverse Longitudinal
TII 17.4 17.5 77.3 78.4
0.0 CHE-IXIT 2.2 1.9 9.8 8.6
CH 2.7 2.7 12.0 12.1
UHC-IXII 0.2 0.2 0.9 0.9
I1I 18.1 17.9 79.7 79.2
0.0005 CH-III 2.1 2.3 9.2 10.3
CH 2.0 2.1 8.8 9.4
UHC-III 0.3 0.2 1.3 1.1
I1I 19.8 21.0 79.5 83.4
0.001 CH-III 2.4 2.0 9.5 8.1
CH 2.3 1.9 9.3 7.6
UHC-I13Z 0.l 0.2 1.6 4.9
IiT 20.2 19.9 771 76.7
0.002 CH-III 3.0 3.2 11.4 12,4
CH 2.5 2.5 10.0 9.6
UHC-III Q. u 0.3 1.5 1.3
11T 27.5 26.5 82.9 81.1
0.004 CH-ITI 2.6 2.9 7.8 8.9
CH 2.6 2.8 7.8 8.7
UHC-III 0.5 o.U 1.5 1.3
111 37.0 35.4 80.2 79.8
0.006 CH-I1II 4,5 b7 9.8 10.5
CH b0 3.6 8.7 8.2
UHC-ITX 0.6 0.5 1.3 1.2

# See Section 2.5.8,1 for descriptions of structures,
¥*¥ FEach value 1s an average of three specimens.
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TABLE 2.27
AVERAGE CRACK DENSITY BASED ON MICROSCOPIC STRUCTURES.
SUSTAINED AND CYCLIC LOADING : TRANSVERSE AND LONGITUDINAL SURFACES OF

QVEN DRIED CEMENT PASTE WITH A W/C = 0.5

Leading Maximum Struoture* Crack Density,** % of Total**
Regime Strain in./in.2 Crack Density
Trans. Long. Trans. Long.
I1I 21.8 21.2 82.0 82.7
0.004 CH-III 2.5 2.6 9.8 10.1
CH 2.2 1.8 8.2 7.2
Sustained
IIT 27.6 264 77.3 79.4
0.0056 CH-III 4.3 3.8 12.0 1.3
CH 3.8 3.1 10.7 9.3
IIT 24,6 21.8 78.6 81.1
0.002 CH-III 3.3 2.4 10.5 8.8
CH 3.4 2.7 10.9 10.1
Cyelic
IIT 33.6 311 81.8 83.2
0.00% CH~III 3.9 3.5 8.5 9.5
CH 3.6 2.7 8.7 7.3

*¥ See Section 2.5.4.1 for descripticns of structures,

*¥%¥ Zach value is an average of twe specimens,
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TABLE 2,28
AVERACE CRACK DENSITY BASED ON MICROSCOPIC STRUCTURES.
SUSTAINED AND CYCLIC LOADING : TRANSVERSE AND LONGITUDINAL SURFACES CF

OVEN DRIED CEMENT PASTE WITH A W/C = 0.3

Loading Maxisum Structure* Crack Density,** % of Total**
Regime Strain in./in.2 Crack Density
Trans. Long. Trans. Long.
iIT 30.7 28.2 83.4 80.4
0.004 CH-III 3.4 3.9 9.2 1.2
CH 2.2 2.6 6.0 7.2
UHC-III 0.5 0.4 1.4 1.2
Sustained
IIT 38.9 38.9 - 83.3 83.6
0.006 CH-III 3.8 3.7 8.1 81
CH 3.5 3.4 7.5 7.3
UHC-IZIT 0.5 0.5 11 1.0
111 27.6 2h.0 82.9 83.2
0.002 CH-TII 2.9 2.6 8.7 9.1
CH 2.8 2.2 8.4 7.7
Cyelie
III 41,1 36.2 76.8 8.7
0.003 CH-IIT 6.2 5.2 11.6 11.2
CH 5.5 4.1 10.3 9.0
UHC-TII 0.7 0.5 1.3 1.1

¥ See Section 2.5.4,1 for descriptions of structures.
¥¥ Each wvalue 1s an average of two specimens.
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TABLE 2.29
AVERAGE CRACK DENSITY BASED ON MICROSCOPIC STRUCTURES,
MONOTONIC LOADING : TRANSVERSE AND LONGITUDINAL SURFACES OF

OVEN DRIED MORTAR WITH A W/C = 0,5

* *% #%
Mazximum Structure Crack Density, % of Total
Strain in./in.2 Crack Density
Transverse Longitudinal Transverse Longitudinal
11z 8.5 9.3 Ti.4 72.3
.0 SG~I1I 2.4 2.2 18.0 16,7
CH-III 0.8 0.8 6.0 6.1
CH 0.6 G.6 B8 4.9
IIZ 12.4 16.3 72.1 73.1
0.0005 SG-III 2.7 3.6 15.7 16,2
CH-III 1.0 1.2 5.8 5.3
CH 1.1 1.2 6.4 5.4
ITI 17.6 7.7 71.0 70.5
0.001 SG-III Hp 1.6 17.7 17.7
CH-III 1.6 1.7 6.5 6.9
CH 1.2 1.2 h.g 4.9
IiT 20.1 18.0 76.7 1.2
0.002 SG-ITI 2.5 4.0 9.5 15.8
CH-IIZ 1.9 1.9 7.3 7.4
CH 1.7 1.4 6.5 5.6
III 24,3 22.3 68.1 £8.3
0.003 S5G-I1I 6.7 5.9 18.8 18.1
CH-~ITI 2.5 2.3 7.0 T.2
CH 2,2 2.1 6.1 6.4
111 32.0 28.5 67.1 65.8
0.00% 3G-III g.4 8.9 19.7 20.4
CH-ITI 3.5 3.3 7.3 7.6
CH 2.8 2.7 5.9 €.2

¥ BSee Section 2.5.4.1 for descriptions of structures.
%% Pach value is an average of two specimens.
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TABLE 2.30

AVERAGE CRACK WIDTH AT EACH STRAIN FOR MONOTONIC, SUSTAINED AND

CYCLIC LOADING. OVEN DRIED CEMENT PASTE WITH A W/C = 0.5

Loading

Regime

Monotonic

Sustained

Cyelic

Maximum Avg. Crack Width, um* Width Range, um
Strain Trans, Surface Trans, Surface
{(Long. Surface) {Long. Surface)
0.0 1.01 0.20-5.50
(1.03) (0.20-5.50)
0.0005 0.94 0.20-5.75
{1.01) (0.20~6.00)
0.001 1.02 0.20-5.75
(1.02) (0.20-5.50)
0.002 1.02 0.20-5.75
(1.05) (0.20-5.75)
0.004 1.22 0.20-6.25
{1.21) (0.20-6.25)
0,006 1.38 0.20~7.00
(1.39) (0.20-6.50)
0.0¢H 1.23 0.20-6.00
{1.18) (0.20-6.00)
0.006 1.37 0.20-6.,50
{1.41) (0.20-6.00)
0.002 1.02 0.20-5.50
(1.01) {0.20~6.00)
0.004 1.22 0. 20-6.50
(1.193 {0.20-6.00)

¥ Each value is an average of three specimens for monotonic
loading, and two specimens for sustained and cyclic loading.

3

1 um = 0.04x10 ° in.
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TABLE 2, 31
AVERAGE CRACK WIDTH AT EACH STRAIN FOR MONOTCNIC, SUSTAINED AND

CYCLIC LOADING. OVEN DRIED CEMENT PASTE WITH 4 W/C = 0.3

Loading Maximum Avg, Crack Width, um* Width Range, um
Regime Strain Trans, Surface Trans. Surface
{(Long. Surface) (Long., Burface)
Monotonic 0.0 0.97 0.20~5,00
{1.01) (0.20-5,00)
0.0005 1.02 0.20-5,25%
(1.02) (0.20~5.25)
0.001 1.0 0.20-5.50
{1.03) (0.20-6.00)
0.902 1.02 0,20-6.00
(1.05) (0.20~6.00)
0.004 1.17 0.20-7.00
(1.14) {0.20-6.00)
0.006 1.36 0.20-6.75
{1.38) {0.20-6,50)
Sustained  0.00%4 1.21 0.20-6.25
{(1.23) {0.20-6.25)
0.006 1.35 0.20-7.00
{(1.34%) (0.20~7.00)
Cyeclic 0.002 1.04 0.20-6.25
(1.0%) (0.20~6.00)
0.003 1.15 0.20-6.25
(1.15)} (0.20-6.50)

¥ Fach value is an average of three specimens for monotonic
loading, and two specimens for sustained and cyclic loading.

3

1 um = 0.04x10 ° in.
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TABLE 2,32

AVERAGE CRACKX WIDTH AT EACH STRAIN FOR MONOTONIC, SUSTAINED AND

CYCLIC LOADING.

Drying

Method

Solvent
Replacement

Silica Gel

Maximum

Strain

0.0
0.0005
0.001
¢.002
0,004

0.006

0.0
0.0005
G.001
G6.002
0.004

0.006

PASTES WITH A W/C = 0.5

*
Avg. Crack Width, unm

Trans, Surface
(Long. Surface)

0.71
{0.75)
0.70
(0.75)
0.7
(0.81)
0.82
(0.82)
0,87
(0.85)
0.95
(0.95)

0.77
{0.70)
0.81
(0.81)
0.94
(0,95)
1.01
(1.0%)
1.10
(1.10)
1.21
(1.2%)

{Long.

SOLVENT REPLACEMENT AND SILICA GEL DRIED CEMENT

Width Range, um

Trans., Surface

0.15-5.00
(0.15-5,00)
0.20-5,00
(0.20-5.00)
0.15-5.25
(0.20-5.00)
0.15-5.00
(6.15-5.00)
0.15-5,25
(0.15-5.25)
0.15-5.25
(0.15-6,50)

0.25-5.25
(0. 25-6,00)
0.20-5.25%
{0.20-5.25)
0.20-5.50
(0.20-5,50)
0.20-5.75
(0.20-5,75)
0.25-6.25
{0,156, 25)
0.20-5.75
(0.20-6.25)

* Each value is an average of two specimens for solvent

replacement drying.

1 pm = 0.0Ux10

The values for silica gel drying
are from a single specimen at each sirain,

Surface)
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TABLE 2,33
AVERAGE CRACK WIDTH AT EACH STRAIN FOR MONOTONIC LOADING,

OVEN DRIED MORTAR WITH A W/C = 0.5

Maximum Avg. Crack Width, um* Width ﬁange, W
Strain Trans. Surface Trans. Surface
{Long. Surface) {Long. Surface)
0.0 1.04 0.15-5,00
(1.01) (0.15-5.00)
0.0005 1.03 0.15-5.00
(1.07) (0.15-5.00)
0.001 1.08 G.20-5,50
(1.11) (0.15-6.00)}
0.002 1.13 0.15-6,00
(1.09) (0.15-6.00)
0.003 1.25 0.15-7.50
(1.27) (0.15-7.00)
0,004 1.23 0.15-6.75
(1.28) (0.15-7.00)

¥ Each value is an average of two specimens.

1 um = 0.04x10"2 in.
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TABLE 3.1
MEAN TRACE LENGTH AND VARIANCE OF CRACK TRACE LENGTH DISTRIBUTION

FOR MONOTONIC LOADING OF CEMENT PASTE WITH A W/C = 0.7

Transverse Surface Longitudinal Surface
* *

Maximum <2>T, Var(E)T, <£e>L s var(QS)L ’
Strain 10 °in. 10 %in.? 10 310, 10781n.2
0.0 1.54 0. 47 1.52 0.67
0.0005 1.55 .72 1.52 0.59
0.001 1.63 0.54 1.69 -2 1.02 -3
0.002 2.07 1.21 0.68x10m28+2.02 1.21x10_38+1.07
0.004 2.24 1.15 0.73x€0”26+2.11 1.38x10&39*1.23
0.006 2.38 1.32 0.76x10 ~g+2.22 1.04x10 “8+1.65

TABLE 3.2
MEAN TRACE LENGTH AND VARIANCE OF CRACK TRACE LENGTH DISTRIBUTION

FOR MONCTONIC LOADING OF CEMENT PASTE WITH A W/C = 0.5

Transverse Surface Longitudinal Surface
. * *
Maximum <2>T, var(z)T, <Q.B>L , Var(le}L .
Strain 10 3in. 10 %in.? 10 31n, 10761n.2
0.¢C 1.49 0.64 1.50 .71
0.0005 1.49 0.78 1.51 0.68
0.001 1.51 0.66 1.58 -5 0.72 -3
0.002 2.¢1 1.37 9-?5x10,29+1-90 %.15x10_36+1.35
0.004 2.23 0.82 G.62x10_29+2.OT 1.20x10_36+1.58
0.806 2.3 1,48 0.65x10 "p+2.14 1.08x10 ~6+1,79

E3

g in degrees.
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TABLE 3.3
MEAN TRACE LENGTH AND VARIANCE OF CRACK TRACE LENGTH DISTRIBUTION

FOR MONOTONIC LOADING OF CEMENT PASTE WITH A W/C = 0.3

OO OO0 O0

Transverse Surface Longitudinal Surface
* %
Maximum <£>T, var(i)T, <£9>L , var(iB)L .
Strain 10 3in. 10 %1n.2 10 1n. 107%10.2
) 1,48 0.58 1.52 0.55
. 0005 1.51 0.82 1.5k 0.71
. 001 1.62 0.71 1.67 -2 0.77
002 1.94 0.9% O.6Hx10*28+1.?8 0.96 -3
. 003 1.98 0.91 O.67x10_28+1.86 1.OBX1O“36+1.25
.ool 2.11 1.33 0.59x10m28+1.92 1.09x10_38+1.27
L0086 2.h2 1.24 0.61x10 ~8+2.10 1.21=x10 “8+1.52
TABLE 3,1

MEAN TRACE LENGTH AND VARTANCE OF CRACK TRACE LENGTH DISTRIBUTION

FOR MONCTONIC LOADING OF MORTAR WITH & W/C = 0.5

Transverse Surface Longitudinal Surface
: % ¥

Maximum <2>T, var(E)T, <9.6>L . var(za)L R
Strain 10 3in.  107%in.? 10 3in. 107%1n.2
.0 1.21 .43 1.20 0. 47
. 0005 1.53 0.51 1.51 0.49
. 301 1.55 0,564 1.56 0.88
.002 1.98 1.32 2.13 _ 1.36 -3
. 003 2.06 1.35 O.GSXQO*28+2.05 1.05x1o_39+1.u1
.00H 2.25 1.5t 0.70x10 “8+2.08 1.22x10 “8+7.53

[eNoRsNeRNe]

g in degrees.



Maximum <>

FOR SUSTAINED LOADING OF CEMENT PASTE

Transverse Surface

T’
Strain 10 Jin.
0.004 1.98
0.006 2. 11
0.004 1.92
0.006 2.03

Maximum

Transverse Surface

<4

T,
Strain 10 2in.
0.002 2.03
0.004 2,27
0.002 1.91
0.0025  1.97
0.003 2.28

%

8 in degrees.
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TABLE 3.5

R
8L’

10 31n.

var{i)T,
6., 2

10" %in.
CEMENT PASTE WITH A W/C = 0.5

1.23 0.55x10_56+1.93
1.2k 0.50%10

CEMENT PASTE WITH 4 W/C = 0.3

1.22 0.67x10_26+1.89
1.25 0.73x10 2g+1.97
TABLE 3.6

FOR CYCLIC LOADING OF CEMENT PASTE

>
oL

10 31n.

var(&)T,

1076102

CEMENT PASTE WITH A& W/C = 0.5

0.80x10
C.72x10

8+1.95
g+2,11

0.73

-2
1.25 2

CEMENT PASTE WITH A W/C = §.3

0.80 2.13
0.75 217 _,
1.02 0.51x10 “8+2.23

8+1.96

MEAN TRACE LENGTH AND VARIANCE OF CRACK TRACE LENGTH DISTRIBUTION

Longitudinal Surface

*
var(%e)L ’

107%4n.2

1.21x10:§9+s.?7
1.36x10

5.18x10:ge+1.6u
1,27%10

MEAN TRACE LENGTH AND VARIANCE OF CRACK TRACE LENGTH DISTRIBUTION

Longitudinal Surface

#
var’(le)L .

107%1n.2

g8+1.65

8+1,72
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TABLE 3.7
NUMBER OF CRACKS PER UNIT AREA FOR MONOTONIC LOADING OF

CEMENT PASTE WITH &4 W/C = 0.7

Maximum Measured, MT or ML’ and Modified, Number of Specimen
Strain MT or ML, Number of Cracks Preparation Cracks
Transverse Surface Longitudinal Surface
= ., —2 . =2 = . =2 T2 oo = -2
MT’ in. MT’ in. ML’ in. ML’ in. MT MT or ML ML,in.
0.0 15584 9610 15564 95390 5974
0.0005 15756 10129 15921 10294 5627
0,001 15961 10491 15477 10007 BUTH
0.002 16349 11836 15167 10654 4513
0.004 16548 13393 15138 11983 3155
0.006 17684 15336 15671 13323 23148
TABLE 3,8

NUMBER OF CRACKS PER UNIT AREA FOR MONOQTONIC LOADING OF

CEMENT PASTE WITH A W/C = 0.5

Maximum Measured, MT or ﬁL, and Modified, Number of Specimen

Straln MT or ML’ Number of Cracks Preparation Cracks
Transverse Surface Longitudinal Surface
= -2 -2 = . 2 L2 = = .2
MT, in. MT’ in. ML, in. ML’ in. MT MT or ML ML,ln.

.0 17123 10811 17051 10739 6312

0.0005 17207 11012 17074 10879 6195

0.001 17434 11505 16765 10836 5929

0.002 17694 12017 17118 1141 5677

0.00%4 18509 13273 175803 13167 4736

0.006 18900 15887 17711 14698 3013
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TABLE 3.9
NUMBER OF CRACKS PER UNIT AREA FOR MONOTONIC LOADING OF

CEMENT PASTE WITH A W/C = 0.3

Maximum Measured, MT or EL’ and Modified, Number of Specimen
Strain MT or M, , Number of Cracks Preparation Cracks
Transverse Surface Longitudinal Surface
o= . =2 . T2 = s "2 P T2 = = L m2
MT’ in. MT’ in. M%, in, ML’ in. MT MT or ML ML,ln.
0.0 18497 11959 17825 11287 6538
0.0005 18103 11854 17661 11412 6249
0.001 17362 11235 16643 10516 6127
c.002 17178 11495 16140 10457 5683
0.003 17194 12727 16155 11688 4567
0.004 17016 13175 16090 12249 3811
0.006 19214 16198 18728 15712 3016
TABLE 3.10
NUMBER OF CRACKS PER UNIT AREA FCR MONOTONIC LOADING OF
MORTAR WITH 4 W/C = (0.5
Maximum Measured, ﬁT or ﬁi, and Modified, Number of Specimen
Strain MT or ML’ Number of Cracks Preparation Cracks
Transverse Surface Longltudinal Surface
= . =2 "2 = .o=2 L2 = = . =2
MT’ in. MT’ in. ML’ in, ML’ in. MT MT or ML ML,ln.
0.0 10931 7686 10923 7678 3245
0.0065 106979 8105 10953 8079 2874
G.001 13243 10710 12982 10449 2533
0.002 14959 12717 13684 11502 2182
0.003 17061 15194 14286 12419 1867
0.004 17449 16178 14286 15335 1271
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TABLE 3.11

NUMBER OF CRACKS PER UNIT AREA FOR SUSTAINED L.OADING OF CEMENT PASTE

Maximum Measured, MT or ML’ and Medified, Number of Specimen

Strain MT or ML’ Number of Cracks Preparation Cracks
Transverse Surface Longitudinal Surface
1 . =2 -2 = . -2 -2 = = . =2
M?, in. MT’ in. ML’ in. ML’ in. M? MT or ML ML,ln.
CEMENT PASTE WITH A W/C = (.5

0.004 13168 10303 AR 8849 2865
0.006 14829 12817 13619 11207 2412

CEMENT PASTE WITH A W/C = 0.3

0.004 17188 15167 16578 13557 3021
0.006 21040 18126 18256 15342 2914
TABLE 3.12

NUMBER OF CRACKS PER UNIT AREA FOR CYCLIC LOADING OF CEMENT PASTE

Maximum Measured, MT or ﬁt, and Modified, Number of Specimen
Strain MT or ML’ Number of Cracks Preparation Cracks
Transverse Surface Longitudinal Surface
Hr in.”? Mes in.7? i, in. 2 M, in.”% WM or ﬁL—ML,in.—a
CEMENT PASTE WITH A W/C = 0,5
0.002 15951 12167 13991 10207 3784
0.004 15836 13304 14304 11172 2532
CEMENT PASTE WITH A& W/C = 0.3
0.002 15708 11812 14025 10137 3887
0.0025 15721 11827 14036 10142 3894

0.003 19655 16930 19102 16377 2725
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TABLE 3.13
SURFACE CRACK DENSITY FOR NONLOADED SPECIMENS OF

CEMENT PASTE AND MORTAR

Material Water—Cement Trans. Surface Long. Surface
s .2 ; .2
Ratio MT<£>T, in./in.” ML<£>L’ in./in.
0.7 14,8 14.7
Cement Paste 0.5 16,2 16.2
0.3 7.7 17.6
Mortar 0.5 9.3 9.3

TABLE 3.14%
SURFACE CRACK DENSITY FOR MONOTONIC LOADING OF

CEMENT PASTE AND MORTAR

Maximum Transverse Surface Longitudinal Surface
. . L2 . L 2
Strain MT<E>T, in./in. ML<R>L, in./in.
Paste Paste Paste Mortar Paste Paste Paste Mortar

W/C=0.7 W/C=0.5 W/C=0.3 W/C=0.5 W/C=0.7 W/C=0.,5 W/C=0.3 W/C=0.5

0.0 14.8 16.2 17.7 9.3 14,7 16.2 17.6 g.3

0.0005 15.7 16.5 17.9 t2.4 15.5 16.3 7.7 12.2
0.001 17.1 17.3 18.2 16.6 16.8 16.9 17.8 16.3
¢.002 24.5 24.0 22.3 25.4 23.6 23.1 21.5 24,5
0.003 — - 25.2 31.3 - — 24,1 29.5
0.00% 30.0 29.6 27.8 36.1 28.3 27.9 26.8 34.2
0.006 36.5 36.7 39.2 - 34,2 34.3 36.6 -
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TABLE 3.15

SURFACE CRACK DENSITY FOR SUSTAINED LCADING COF CEMENT PASTE

Maximum

Strain

0.004

0.006

Transverse Surface

. L2
‘MT<£>T’ in,/in.
W/C=0.5 W/C=0.3
20.4 27.2
26.2 36.8
TABLE 3,16

Longitudinal Surface

s L2
ML<2>L, in./in.
W/C=0.5 W/C=0.3
19.6 26.1
24.8 3%.2

SURFACE {RACK DENSITY FOR CYCLIC LOADING OF CEMENT PASTE

Maximum

Strain

0.002

0.004

¢.002
0.0025

0.003

Transverse Surface

) L2
MT<£>T, in./in,

CEMENT PASTE WITH A W/C
24.7

30.2

CEMENT PASTE WITH A W/C
22.9
23.3
38.6

1}

Longitudinal Surface

. c 2
ML<E>L, in./in.

0.5
23.9
28.8
0.3
22.1
22.4
37.1



175

TABLE 3,17

THREE-DIMENSIONAL CRACK PARAMETERS FOR NONLGADED SPECIMENS OF

CEMENT PASTE AND MORTAR

Material Water Cement X r <aw>,
Ratio 10 34in

0.7 =-0.02 1.0 1.12

Cement Paste 0.5 0.0 1.0 1.03

0.3 ~0.02 1.0 1.05

Mortar 0.5 .0 1.0 0.95

TABLE 3.18

var(aw),

1078402

Ny

THREE-DIMENSIONAL CRACK PARAMETERS FQOR MONGTONIC LOADING OF

Maximum K

Strain

0.0 -0.02
0.00C05 -~0.05
0,001 -0.07
0.002 -0,16
0.004 ~0.26
0.006 -0.31

*# ¢ in degrees,

.0
.0
.0
.92
.95
.90

CEMENT PASTE WITH A

*
<a$> R
10 31n.

1.12

1.46
1.5x10_24+1.52
1.0x10_24+1.67
1.1x10_2¢+2, 43
1.0x10 “y+2.56

W/C = 0.7

*
var(aw) '

107%4n.2

0.70
0.62

0.90 _
1.3%10_Ju+ 1,21
1.7x10_J0+1.55
1.6x10 ~9+2.33

V’

101073

3.57
2.3
2.3k
2.4
1.23
1.12

3

<a

0.009
G.010
0.0t2

0.006

N,.,<a ">

G.009
0.013
0.014
0.025
0.057
0.068



Maximum

Strain

¢.0
0.0005
0.0
0.002
0.004
0.006

Maximunm

Strain

0.0
0.0005
0.001
0.002
0.003
0,004
0.006

¥ ¢ in
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TABLE 3.19
THREE-DIMENSIONAL CRACK PARAMETERS FOR MONOTONIZ
CEMENT PASTE WITH & W/C = 0.5
* *
K r- <a$> R var(aw) s
10 31n. 107%4n.2
0.C0 1.0 1.03 0.82
-0.07 1.0 1.43 0.77
-0.11 1.0 1.3%10_Jp+1.47 1.2t _
-0.16 0.9 1.0x10_59+1.69 1.6x1o_3w+1.k3
~0.27 0.85 1.0x10_Z9+2.35 1.5x1o_3m+1.71
-0.30  0.87 1.2x10 “y+2.50 1.8x10 “y+2.10
TABLE 3.20

THREE-DIMENSIONAL CRACK PARAMETERS FOR MONOTONIC LCADING COF

CEMENT PASTE WITH A W/C = 0.3

* *
K r <a$> , var(aw) '
10 34n. 1070%4n.2
—0.02 1.0 1.05 0.61
~0.05 1.0 1.36 0.81
-0.09 1.0 1,85 0.85
-0.15  0.95 0.9%10_p+1.68 1.32
~0.18  0.90 1.0x10_5y+2.08 1,57 o
~0.24  0.90 1.0%10_59+2.10 110 2yr1. 48
-0.31  0.85 1.1x10 2 p+2. 35 1.6x10 Sp+1.79

degrees.

LOADING OF

V,

10 3

in’

.63
.92
.02
.31
b2
.28

bl A LS L P — g

v!

10%1n 73

in

.89
i
.37
.62
.13
.67
A2

Sl A B LS T O Rt it

N <33>

.010
.013
015
022
.053
L0756

[ o T n Y o Y e Y e}

N <a3>

.012
.015
L0186
.021
.028
.0U7
.078

CO OO OoO0o
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TABLE 3.21

THREE-DIMENSIONAL CRACK PARAMETERS FOR MONOTONIC LOADING COF

Maximumn K r
Strain

0.0 0.00 1.0
0.0005 =0.07 1.0
0.001 -0.08 1.0
0.002 -0.18 0.95
0.003 -0.18 1.0
0.004 ~0.24 0.90

MORTAR WITH A W/C = 0.5

a> (a)"

a2 var(a,)

10 34n. 10%:n.2

0,95 0.51

1.27 0.49

1.42 0.78

.83 _, 113
0.9x10_Zy+2.27 1.2x10_74+0.88
1.0x10 Sy+2,. 46 1.4x10 2w+, 71

TABLE 3.22

v
10

- =N W

¥

in—

.22
.54
.49
.31
.33
.28

3

3
Nv<a >

0.006
g.010
0.01%
0.028
0.051
0.067

THREE-DIMENSIONAL CRACK PARAMETERS FOR SUSTAINED LOADING OF CEMENT PASTE

Maximum K r

Strain

0.004 -0.17 0.95
0.006 -0.24 0.90

g.oo04 -0.18 1.0
0.006 -0.19 0.92

¥ ¢ in degrees.

* *
<a.> , var(aw) ’

P
10 31n. 107%1n.2

CEMENT PASTE WITH A W/C = 0.%

0.9%10 5%+2.02 1.2x10:§¢*1

1.1x10 "¢+2,.37 T.2%x10 “¢+1
CEMENT PASTE WITH & W/C = 0.3
2 3

1.0x10_24+2.08 o.9x1o:3¢+1
1.0x10 <2, 31 1.2x10 1§+

57
.80

.79
.62

v
10

¥

in

3

3
Nv<a >

0.041
0,050

0.047
0,070
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TABLE 3.23
THREE-DIMENSIONAL CRACK PARAMETERS FCR CYCLIC LOADING OF CEMENT PASTE

# * 3
Maximum K r <aw> , var(aw) ) NV’ Nv<a >

Strain 10 34n. 10 01n.2 1085073

CEMENT PASTE WITH A W/C = 0.5

1.0x1o:§¢+1.65 0.70 1.71 0.031
1.2x10 2pr2,29 1.28 1.13 0.059

L0062  -0.14 1.
.00k =0,20 1.

oo
Low ¥ an

CEMENT PASTE WITH A W/C = 0.3

0.002 -0.15 1.0 0.6x1o:§m+2.05 0. 81 1.52 0.032
0.0025 =0.15 1.0 0.7x10_54+2.09 0.78 _, 1.50 0.034
0.003 =0.17 1.0 0.9x10 “y+2.38 1.1x10 “y+1.14  1.22 0.063
¥ y in degrees.

TABLE 3.2H4

BOUNDS ON NUMBER OF CRACKS PER UNIT AREA FOR MONOTONIC LCADING OF

CEMENT PASTE WITH A W/C = 0.5

Maximum Transverse Surface Longitudinal Surface
Strain Modified No. of Cracks, MT’ in._2 Modified No. of Cracks, ML’ in._2
(No. before Modification, ﬁf, in.”?) (No. before Modification, M., in. ?)
Lower Bound Upper Bound Lower Bound Upper Bound
0.00 10764 10839 10732 10788
{16238) (17548) (16206) (17495)
0.0005 10956 11048 10740 10832
{(16497) (17632) (16275) (174186)
0.001 11468 11566 10674 10752
(16856) (18002 {16062) {17188)
0.002 11969 12037 11508 11597
(16978) (18104 {16517) {1T7664)
0.004 14786 14885 13923 13995
(17883) (19046) {17020) (18156)
0.006 18262 18418 17113 17207

(21478) (22734) © {20329) {21523)
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TABLE 3.25

BOUNDS ON MEAN CHARACTERISTIC CRACK SIZE AND VARIANCE FOR

Maximum
Strain

0.00
$.0005
0.0
¢.002
0.004
0.006

Lower Bound

1
1
1
1
1
1

.03

A2
L3x10_
LOx10__y+1,66
LOx10_
L2x10 T2, 47

3

2w+1.45

,¥+2.33

¥ y in degrees,

THREE-DIMENSIONAL CRACK

, 10

2

3in.
Upper Bound
1.03
1.43 -3
1.3x10__y+1.,48
1.0x10__¢+1.03
1
1

TREATED AS

NONLOADED SPECIMENS OF CEMENT PASTE AND MCRTAR

Material Water Cement K

Cement Paste

Mortar

Ratio

(=)
Wl

PARAMETERS

L0x10_2¥+2.36
L2x10 “§+2.52

TABLE 3,26

MONOTONIC LOADING OF CEMENT PASTE WITH W/C = 0.5

* -6,
var(aw) , 10 Tin.

Lower Bound

0.82

0.87

1,05 _
1.6%10 Sy+1.38
1.5x10m3¢+1.70
1.8x10 Sy+2.08

SINGLE UNI-DIRECTIONAL TRACES.

<a,>,

10 3in

2

Upper Bound

0.82

0.8

1,25
1.6x10 Sy+1.145
1.5x10 Sps1.7h
1.8x10 3y+2. 30

: MULTI-DIRECTIONAL CRACK TRACES

3

var(aw), NV’ Nv<a >
10_6in2 Bin“3

0.73 1.73 0,014

0.84 2.32 0,015

0,63 2.1 0.917

0.55 1.5 0,008
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TABLE 3.27
THREE~DIMENSIONAL CRACK PARAMETERS : MULTI-DIRECTIONAL CRACK TRACES
TREATED AS SINGLE UNI-DIRECTIONAL TRACES.

MONOTONIC LOADING OF CEMENT PASTE WITH A W/C = 0.7

. # * 3
Maximum K r <aw> R var‘(aw) s Nv, Nv<a >
Strain 10 31n. 10701n.2 1084073
0.0 -Q.,02 1.0 1.58 0.73 1.73 0.014%
0.0005 -0.05 1.0 2,10  _ 0.64 1.40 0.020
0.001  =0.07 1.0 1.5x10_54#2.16 0.93 _, 1.12 0.021
0.002 -0.16 0.92 1.0x10“2w+2.23 1.3X10_3¢+1.26 1.19 0.036
0.004 -0.26 0.95 1.1x10_Z¢+3.47 1.7x10_2¢+1.58  0.63 0.082
0,006 =-0.31 0.90 1.0%x10 “¢y+3,68 1.6x10 ~“y+2.37 C.51 0,097

TABLE 3.28
THREE-DIMENSTONAL CRACK PARAMETERS : MULTI-DIRECTICNAL CRACK TRACES
TREATED AS SINGLE UNI-DIRECTIONAL TRACES,
MONCTONIC LOADING OF CEMENT PASTE WITH A W/C = 0.5

, * ¥ 3
Maximum K r <a¢> , var(aw) , NV’ N, <a >
Strain 10 31n. 10704n.2 1081073
0.0 ¢.00 1.0 1.50 0.84 2.32 0.015
¢.,0005 =-0.07 1.0 2.06 0.83 1.91 0.020
0.001 ~0.1% 1.0 1,3x10”2w+2.12 1.25 1.38 0.024
0.002 -0.16 0.9 T.OX1O_2¢+2.27 1.6x10“3w+1.ﬂ7 1.03 0.033
0.004 ~0.27 0.85 1.0x10_2¢+3.13 1.5x10"3¢+1.75 0.72 0.076
0,006 -0.30 0.87 1.2x10 “¢+3,60 1.8%10 “y+2,14 .68 0.105

¥y in degrees.
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TABLE 3,29
THREE-DIMENSIONAL CRACK PARAMETERS : MULTI-DIRECTIONAL CRACK TRACES
TREATED AS SINGLE UNI-DIRECTIONAL TRACES.

MONOTONIC LOADING OF CEMENT PASTE WITH A W/C = 0.3

. * # 3
Maximum X r <a1p> . var(aw) R NV’ NV<a >
Strain 10 31n, 10704n.2 1085073
0.0 -0.02 1.0 1.51 .63 2.41 0.017
0.0005 =0.05 1.0 1.96 0.85 1.93 0,021
0.001  -0.09 1.0 2,09 _, 0.92 1.4 0.024
c.00c2 ~0.15 0.95 O.QXiO_2¢+2.27 1.36 1.32 0.031
g.003 ~0.18 0.9 1.OXTO“2¢+2.TS 1.57 -3 1.1l 0.042
0.004 -0.24 0.80 1.0x10_2¢+3.01 T.&x10_3¢+1.53 0.92 0.071
G.006 ~0.31 0.85 1.1%x10 “9+3.56 1.6x10 “y+1.84 0.81 0.109

TABLE 3.30
THREE-DIMENSIONAL CRACK PARAMETERS : MULTI-DIRECTIONAL CRACK TRACES
TREATED AS SINGLE UNI-DIRECTIONAL TRACES.
MONOTONIC LOADING OF MORTAR WITH A W/C = 0.5

Maxi K i (a ) N N, <a>

aximum r <aw> R var aw R v v a~>
Strain 10 31n. 10704n.2 10%1n73
0.0 0.0 1.0 1.35 0.55 1.54 0.008
0.0005 -0,07 1.0 2.08 0.54 1.22 0.018
0.0M ~0.08 1.0 2.14 0.82 1.19 0.022
0.002 ~-0.15 0.95 2.54 -2 1.16 -3 1.13 ¢.040
0.003 -3.18 1.0 0.9x10_2¢+3.21 1.ZX1O_3w+G.92 0.71 0.072
0.004 -0, 24 0.90 1.0x10 "Yt+3,52 1.8x10 “¢+1.T7H 0.60 0.088

*

P in degrees.
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TABLE 3. 31
THREE-DIMENSIONAL CRACK PARAMETERS : MULTI-DIRECTIONAL CRACK TRACES
TREATED AS SINGLE UNI-DIRECTIONAL TRACES.

SUSTAINED LOADING OF CEMENT PASTE

% * 3
Maximum X r <a¢> R var(aw) . NV’ Nv<a >
Strain 10731n, 107%1n,2 10%4n73
CEMENT PASTE WITH A W/C = 0.5
0.004  -0.17  0.95 0.9%10_54+2.89 1.2x1o:§¢+1.61 0.62  0.063
0.006 -0.24  0.90 1.1x10 2y+3. 41 1.2x1072%+1.83  0.51 0.072
CEMENT PASTE WITH A W/C = 0.3
0.004 -0.18 1.0 1.0x10_51+2.89 . o.9x10:§w+1.82 0.84 0.070
0.G06 =0.19  0.92  1.0x10 2¢+3.32  1.2x10 S¢+1.64  0.73 0.099

TABLE 3.32
THREE-DIMENSIONAL CRACK PARAMETERS : MULTI-DIRECTIONAL CRACK TRACES
TREATED AS SINGLE UNI-DIRECTIONAL TRACES,
CYCLIC LOADING OF CEMENT PASTE

* *
Maximum K r <a¢> . var(aw) . NV’ Nv<a >

Strain 10 34in. 10781n.2 1001073

CEMENT PASTE WITH A W/C = 0.5

0.002 -0.14 1.0 1.0x10_59+2.39 0.73 0.91 0.0u4
0.004 -0.20 1.0 1.2x10 “¢+3.38 1.33 .52 0.083
CEMENT PASTE WITH A W/C = 0,3
0.002 =0.15 1.0 o.6x10:§w+2,97 0.85 0.74 0.045
0.0025 -0.15 1.0 0.7%10_5¥+3.01 0.84 __ 0.71 0.049
0.003 -0.,17 1.0 0.9x10 "¢9+3.39 1.81x10 “g9+e1,17 0.62 0.091

¥ ¢ in degrees.
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TABLE 3.33
COMPARISONS OF CRACK DENSITIES AND DECREE OF ANISOTROPY FOR CRACK
DISTRIBUTIONS IN CEMENT PASTES UNDER MONOTONIC LOADING.
RESULTS CORRESPOND TO LARCER ESTIMATE OF <aw>

Maximum Surface Crack Density, Volume Density, Degree of Anisotropy,

. . .2 3
Strain MT<2>T, in./in. Nv<a > K
(ML<E>L}
W/C W/C W/ C
0.7 8.5 0.3 6.7 0.5 0.3 0.7 0.5 0.3
0.0 14,8 16.2  17.7 018 (o018 L0177 -.02 0 -.02

(14.7) {?6.2) (17.6)

0.0005 15.7 16,5 17.9 .020 .020 .02! -.05 -.07 =.05
(15.5) (16.3) (17.7)

0.001 7.1 17.3  18.2 021 .024 024 -,07 ~-.11 -.09
(16.8) (16.9) (17.8)

0.002 24,5 24,0 22.3 .036 .033 .031 ~-.16 =.16 =.15
(23.6) (23.1) (21.5)

C.004 30.0 29.6 27.8 082 .076 .07T1  -.26 =.27 ~.24
(28.3) (27.9) (26.8)

0.006 6.5 36.7 39.2 .097 .105 109 -.2% -.30 ~-.31
(38.2) (34.3) (36.8)
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TABLE 3.34
COMPARISONS OF CRACK DENSITIES AND DEGREE OF ANISOTROPY FOR CRACK
DISTRIBUTIONS IN CEMENT PASTE AND MCRTAR WITH A W/C = 0.5,
MONOTONIC LOADING. RESULTS CORRESPOND TO LARGER ESTIMATE OF <aw>.

Maximum Surface Crack Density, Volume Density, Degree of Anisotropy,

Strain Mp<8>,, in./in.? N, <a>> K
(M, <2> )

Paste Mortar Paste Mortar Paste Mortar

0.0 16.2 9.3 .015 .C08 .G .G
(16.2) (9.3)

0.0005 16.5 12,4 . 020 018 -.07 -.07
(16.3) (12.2)

0,001 17.3 16.6 .02k 022 -, 11 ~.08
(16.9) (16.3)

0.002 24,0 25.4 .033 .00 ~.16 ~.15
(23.1) (24,5)

0.004 29.6 36.1 .076 .088 -.27 -.2h

(27.9) (34.2)
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TABLE 3.35
COMPARISONS COF CRACK DENSITIES AND DEGREE OF ANISOTROPY FOR CRACK
DISTRIBUTIONS IN CEMENT PASTE UNDER MONOTONIC AND SUSTAINED LOADING.

RESULTS CORRESPOND TO LARGER ESTIMATE CF <a,>.

p
Maximum Surface Crack Density, Volume Density, Degree of Anisotropy,
. . i 2 3
Strain MT<2>T, in./in. Nv<a > K
(ML<£>L}

Monotonic Sustained Monotonic Sustained Monotonie Sustained

CEMENT PASTE WITH A W/C = 0.5

0.0CH 29,6 20,4 .076 .063 - 27 -.17
(27.9) (19.8)
0.006 36.7 26.2 L1058 .0T2 -.30 -2k

(34.3) (24.8)

CEMENT PASTE WITH A W/C = 0.3

0,004 27.8 27.2 071 070 ~-. 24 ~.18
(26.8) (26.1)
0.006 38.2 36.8 .109 .099 -.31 -.1%

(36.6) (35.2)
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TABLE 3.36
COMPARISONS OF CRACK DENSITIES AND DECREE OF ANISOTROPY FOR CRACK
DISTRIBUTIONS IN CEMENT PASTE UNDER MONOTONIC AND CYCLIC LOADING,

RESULTS CORRESPOND TO LARGER ESTIMATE OF <a >.

14
Maximum  Surface Crack Density, Volume Density, Degree of Anisoctropy,
s s 2 3
Strain MT<2>T, in./in. Nv<a > K
(ML<2>L)
Monotonic Cyelice Monotonic Cyeclie Monotonic Cyelic
CEMENT PASTE WITH A W/C = 0.5
0.002 24,0 24.7 .033 LObd -.16 -l
(23.1) (23.9)
0.004 29.6 30.2 076 .083 -.27 ~.20
(27.9) (28.8)
CEMENT PASTE WITH A W/C = 0.3
0.002 22.3 23.3 031 L0L5 - 15 =.15
(21.5) (22.4)
0.003 25.2 38,6 042 .09 -.18 -7

(24,1) (37.1)
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TABLE 4.1
SENSITIVITY OF THE STIFFNESS MODULUS, 83, TO VARIATIONS IN

CRACK PARAMETERS.

5 3

<a,> = 1.0%x10 "y + 5.0x10 ~in. r = 0,9
var(a,) = 1,0x10 29 + 1.0x10 %in.° K = -0.3
Ny = 4x10%in, 3 n = 9°
Crack ' 4 Increase in Crack Parameter
Parameter 0 5 10 20 30
E./E
3
<a$> 0.827 0.779 0.731 0.650 0.531
var(aw) 0.827 0.818 0.784 0.740 0.713
NU 0.827 0.820 0.798 0.764 0.7u1
4 Decrease in Crack Parameter
0 5 10 20 30
E./E
3
r 0.827 0.849 0.875 0.893 0.914
Range of n
n=0° -10° £§n $ 10° -452 5 n & U5° -80¢ S n £ 90°
E./E
3

n 0.827 0.820 0.797 0.768



€

.0C05
. 001
.002
. 004

.006

. 0005
. 001
.002
. 004

. 006

¥ Cracks are assumed to sxist in the specimens prior to loading,
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TABLE 5.1

MONOTONIC LOADING OF CEMENT PASTE WITH A W/C = 0.7.

*
FIRST APPROACH ; DRY CRACKS,

Ei = 1.78x106 psi;

Es

g, psi E3,106psi o v

E, 31

v, = 0.24
1

EFFECTIVE MODULI AND AXTAL STRAIN DUE TO SUBMICROCRACKING FOR

RESULTS CORRESPONDING TO SMALLER ESTIMATE COF <a >,

E = 1.8$6x106 psi;
830 1.767 .9921 .280
1581 1.763 .989¢5 240
2657 1.752 .9837. . 241
3740 1.633 <9169 . 245
Lo70 1.564 .8782 . 248

RESULTS CORRESPONDING TO LARGER

E = 1.837x10° psi;

836 1.763 9899 241
1581 1.758 9871 . 241
2657  1.750 .9826 282
3740 1.578 .8860 246
4070 1.512 L8490 .249

v = 0,242
.000u69
000897
.001516
.0022%0

.002602

v = 0.243
. 000471
.000899
001518
.002370

.002692

ESTIMATE OF

E.-E €
13) C%
E.E g~ '

i™3 e

¥
. 00000k 11.1
LQ0G013 10.5
.000058 10.0
.000189 6.9
.000315 8.5
£ .
a¢>
. 000006 16.7
000016 t4.5
. 000061 12.0
.000269 14,2
.000k4Cs 10.9



€

,0005
Dot
.002
L0048

.006

. 0005
.001
.002
.00k

.006

¥ Cracks are assumed to exist in the specimens prior to loading.

g, psi E
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TABLE 5.2

MONOTCNIC LOADING OF CEMENT PASTE WITH A W/C = 0,5.

¥
FIRST APPROACH ; DRY CRACKS.

Ei = 2.5Ux106 psi;

E
6 .. .3
3,10 psi Ei v3T

v, = 0,24
i

RESULTS CORRESPONDING TO SMALLER ESTIMATE OF <a >,

E = 2.590:«106 psi;

1185 2.520 .9921 .2u0
2310 2.515 .9902 .2h0
4128 2,499 .9839 . 2u0
6036 2.328 L9165 .243
6687 2.230 .8780 .2h5

¥
v = 0,242
.0004T7Y .0000Ck
.000918 .000009
.001652 . 000027
002553 .000217
.002999 .000366

RESULTS CORRESPCONDING TO LARGER ESTIMATE OF <a_>.

E = 2.62Ox‘|06 psi;

1195 2,515 . 9894 .240
2310 2.507 .9862 .240
4128 2,490 .9795 .2
6036 2,309 8855 . 244
6687 2,156 .8482 .253

v
v o= £, 243
. 000475 .000005
. 000921 .000C12
.001658 .000033
.002614 .000238
.003102 000469

EFFECTIVE MODULI AND AXIAL STRAIN DUE TO SUBMICROCRACKING FCR

14,0
12.5

12.7

10.9

18.1
16.8
5.7
145.6

13.9
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TABLE 5.3
EFFECTIVE MODULI AND AXIAL STRAIN DUE TO SUBMICRCCRACKING FOR
MONOTONIC LOADING OF CEMENT PASTE WITH A W/C = 0.3.

*
FIRST APPRCACH ; DRY CRACKS.

Ei = 3.31x?06 psi; v, = 0.24

E E.-E €
3 v g = A l
i 31 ec E3 o] i3 e

€ g, psi E3,106psi

tea]

RESULTS CORRESPONDING TO SMALLER ESTIMATE OF <aw>.

E = 3.385x106 psi; v = 0,242

.0005 1581 3,294 9953 .240 .000U80 .000016 72.9
.001 3137  3.287 .9931 .239 000954 .000037 69.1
.002 6051  3.268 .9872 .239 .001851 000080 46.5
.003 8195  3.155 .9533 247 .002597 .000204 38.5
.004 9860  3.0u4 .9197 .24y .003239 .000360 35.2
. 006 11503  2.915 .8807 .2L6 003946 .000592 23.4
RESULTS CORRESPONDING TO LARGER ESTIMATE OF <a >.
E = 3.”23x106 pai; v = (.243
L0005 1581 3,288 . 9935 .2L0 .000U81 .000017 76.7
. 001 3137 3.280 .9910 .21 000956 .000039 72.3
.002 6051  3.264 .9860 L2471 .001854 .000083 48,2
.003 8195  3.105 .9380 242 .002639 .000248 46,8
.0CH 9860  2.942 .8890 245 .003351 .000UT6 46.6
.006 11503  2.819 .8518 . 254 .004080 .000605 28.9

*# Cracks are assumed to exlist in the specimens prior tc loading.
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TABLE 5.4
EFFECTIVE MODULI AND AXIAL STRAIN DUE TO SUBMICROCRACKING FOR
MONOTONIC LOADING QF MORTAR WITH A W/C = 0.5,

*
FIRST APPROACH ; DRY CRACKS.

Ei = ﬂ.79x106 psi; v, = .20

€ g, psi E 106psi EB v e = 2 e =ol
3 Ei 31 ec E3 a EiEB e

RESULTS CORRESPONDING TC SMALLER ESTIMATE OF <a_ >.

¥
E = &.838x106 psi; v = 0,201
. 0005 2205 4,731 9877 .198 .000466 .0C0006 14,5
.001 3697 4,698 .9808 .198 .000787 .0G0015 6.7
.002 5398 4,644 .9695 .199 .001162 .000035 41
.003 5804 4,403 9182 . 205 .001318 . 000106 5.9
.00k 4066 4,209 8787 .208 .0009656 L0001 7 3.7
RESULTS CORRESPONDING TO LARGER ESTIMATE OF <aw>.
E = H.87ux106 psi; v = 0.202
.0005 2205 k.78 .9844 .199 .000467 . 000007 17.7
. 0C1 3697 L.664 9737 .199 .000793 .000021 9.3
.002 5398 4.628 9656 . 200 .001166 .000039 8.9
.003 5804 k. 216 .8796 . 207 .CC1377 .000165 9.2
.00k 4066 4,060 BT .218 .0G1002 .000153 4.8

¥ Cracks are assumed to exist in the specimens prior to lcading.
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TABLE 5.5
EFFECTIVE MODULI AND AXTAL STRAIN DUE TO SUBMICROCRACKING FCR
MONCTONIC LOADING OF CEMENT PASTE WITH A W/C = C.7.
FIRST A?PROACH*; SATURATED CRACKS.
Ei = 1.78x106 psi; vy = 0.24
£ g, ps&i E3,106psi §3 v £ =

4
Ei 31 ec E3 iEq o

RESULTS CORRESPONDING TO LARGER ESTIMATE OF <a >.

]
E = 1.812x106 psi; v = 0.235
. 0005 830 1.768 .9927 .243 .000L69 .000004 11.1
.001 1581 1,764 . 9905 L2uy .000896 .000013 11.8
.002 2657 1.755 L9854 .2u8 .00151% .000057 11.2
. 004 3740 1.645 .9236 .262 .002274 .000173 9,1
.006 4070 1.600 .8984 L267 .00254Y . 000257 6.9

TABLE 5.6
EFFECTIVE MODULI AND AXIAL STRAIN DUE TO SUBMICROCRACKING FOR
MONOTONIC LOADING OF CEMENT PASTE WITH A W/C = 0.5.
FIRST AP?ROACH*; SATURATED CRACKS,

Ei = 2.5Hx106 pais v, = 0,24

6 ES 5 EiﬂE €
£ g, pal E_,10 psi = v £ = = - ——
3 Ei 31 =T¢! E3 c EiE3 £-g,

RESULTS CORRESPONDING TO LARGER ESTIMATE OF <aw>.

2;590::106 psi; v = 0.235

E =
. 0005 1195 2.528 .9945 2M .000473 .00003 10.9
. 001 2310 2.523 .9925 L2842 .000916 .000007 9.8
002 1128 2.512 .9882 .24l . 001643 .000020 9.5
.00Y 6036 2.352 .9253 .250 .002566 - 000170 9.4
.006 6687 2.287 .89%2 . 261 .002924 .000291 8.6

¥ Cracks are assumed Lo exist in the specimens orior to loading.
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TABLE 5.7
EFFECTIVE MCODULI AND AXIAL STRAIN DUE TO SUBMICROCRACKING FOR
MONOTCNIC LOADING OF CEMENT PASTE WITH A W/C = 0,3,
FIRST APPROACH*; SATURATED CRACKS,

6 .. i
Ei = 3.31x107 psi; vy = 0.24

3 o .
v £ = == 3 =0(
i 31 ec 83 ¢! 1E3

s |

£ g, psi E3,106psi

RESULTS CORRESPONDING TO LARGER ESTIMATE OF <a >.

v
E = 3.377x10° psi; v = 0.235
.00058 1581 3.297 L9960 242 . 000480 .000016 T2.9
. 001 3137 3.290 .9938 . 243 . 000954 . 000037 69.1
002 6051 3,276 . 9897 L2458 .001847 . 000076 R
. 003 8195 3.169 L9573 .248 .002586 . 000195 36.8
. 004 9860 3.067 L9265 . 256 003215 .00C340 33.32
006 11502 2.978 . 8997 263 .003863 .000388 18.5

TABLE 5.8
EFFECTIVE MODULI AND AXIAL STRAIN DUE TO SUBMICROCRACKING FOR
MONOTONIC LOADING OF MORTAR WITH A W/C = 0.5,
FIRST A?PROACH*; SATURATED CRACKS.

Ei = Q.TQX106 psi; v; = 0.20

. 6 . 3 g
€ o, psi E3:10 psi E, 31 ec E c ( E.E E-e

RESULTS CORRESPCNDING TO LARGER ESTIMATE OF <aw>.

E = 1.858x10° psi; v = 0.196

.00C5 2205 4.761 .9933 .203 .000463 . 000003 7.6
. 001 3697 4.731 L9871 .209 .000781 .000016 7.1
.002 5398 4.716 .9839 214 .001145 .000018 .1
.003 5804 L, 160 .3305 221 .001301 .000C8S 5.0
.00k k066 4,285 . 9051 .227 .000949 .000100 3.1

¥  Cracks are assumed to exist in the specimens prior to loading.
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TABLE 5.9
EFFECTIVE MODULI FOR MONOTONIC LOADING OF CEMENT PASTE, W/C = 0.7.

*
SECOND APPROACH ; DRY CRACKS.

E = Ei = 1.78x166 psl; v = vy = 0.24
: 6,
£ g, pal E3, 10 psl v31
RESULTS CORRESPCNDING TO LARGER ESTIMATE OF <aw>.
. 0005 830 1.766 .239
.00 1581 1.760 . 240
002 2657 1.752 201
004 3740 1.587 . 245
.006 BoT0 1.523 .2L8
TABLE 5,70

EFFECTIVE MODULI FOR MONOTONIC LCADING OF CEMENT PASTE, W/C = C,.5,
*
SECOND APPROACH ; DRY CRACKS.

E=-E = 2.54x166 psi; v = v, = 0,24

£ g, psi E3, TOépsi v31
RESULTS CORRESPONDING TO LARGER ESTIMATE OF <a¢>.
.0005 1195 2.518 L2lho
L0 2310 2.510 .250
.002 4128 2,498 . 241
.004 6036 2,322 . 243
. 006 6687 2,172 252

¥ {Cracks are assumed not to exist in the specimens prior to loading.
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TABLE 5.1
EFFECTIVE MODULI FOR MONOTONIC LOADING OF CEMENT PASTE, W/C = 0.3.
*
SECOND APPROACH ; DRY CRACKS.

E = Ei = 3.31x106 psi; v = v, = 0.24
6

£ ¢, psi E3, 107 psi v31
RESULTS CORRESPONDING TGO LARGER ESTIMATE OF <aw>.
0005 1581 3.289 . 280
001 3137 3.277 L2580
002 6051 3.259 .21
.003 8195 3.108 L2242
. 004 9860 2.950 .24
.006 11503 2.832 . 253

TABLE 5.12
EFFECTIVE MODULI FOR MONOTONIC LOADING CF MORTAR, W/C = 0,5,
*®
SECOND APPRCACH ; DRY CRACKS.

E = Ei = H.T9x106 psi; v = vy = .20

£ g, psi EB’ 106psi v31
RESULTS CORRESPONDING TO LARGER ESTIMATE OF <a,>.
.0005 2205 4,721 . 200
.001 3697 5,669 .200
.002 5398 4,635 .201
.003 5804 4,220 .205
.00l 4066 5112 214

* Cracks are assumed ncot to exist in the specimens prior to loading.
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TABLE 5.13

MODULI OF INELASTIC MATRIX AND STRAIN DUE TO SUBMICROCRACKING FOR

*
MONOTONIC LOADING OF CEMENT PASTE WITH A W/C = 0.7. FIRST APPROACH .

.0005
. 001
.002
.004
.006

g, pai

830
1581
2657
3740
5070

Emat’

1.725
1,654
1.450
1.094
0.835

10 psi

RESULTS CORRESPOND TO LARGER ESTIMATE OF <a_ > ;DRY CRACKS.

L

{ = 1.78x106 psi

€ =2 € = £-F < %
mat nat E ¢ mat e-g_°’
mat e
L2h2 Looongy .000019 55.9
242 . 000956 . 000044 39.4
.2i3 .001832 .000168 3.2
.2k6 003419 .000581 30.6
. 264 . 004875 L001125 30.2
TABLE 5,14

MODULI OF INELASTIC MATRIX AND STRAIN DUE TO SUBMICROCRACKING FOR

%
MONOTONIC LOADING OF CEMENT PASTE WITH A W/C = 0.5, FIRST APPROACH .

.00G65
.00
. 002
. 004
. 006

¥ Cracks are assumed to exist in the

¢, psi

1195
2310
4127
6036
6687

Emat,%o psi

2,485
2.4516
2.217
1.758
1.375

mat

.2u2
.24
242
246
.262

RESULTS CORRESPOND TO LARGER ESTIMATE OF <& > ;DRY CRACKS.

2.54x106 psi

L
£
£ =2 € = g—¢ g 4
mat E e mat g~e_ ?
mat e
000481 Q00019 4.6
.000954 00004, 48,6
.001842 .000138 36,7
.003433 .000567 34.9
.00U863 L.001137 33.8

specimens prior to loading.



197

TABLE 5.15
MODULE OF INELASTIC MATRIX AND STRAIN DUE TO SUBMICROCRACKING FOR
*
MONOTONIC LOADING OF CEMENT PASTE WITH A W/C = 0.3, FIRST APPRCACH .

RESULTS CORRESPOND TO LARGER ESTIMATE OF <a,>» ;DRY CRACKS.

Y
) .
Ei = 3.31x10" psi
€ g i E 106 31 v € .= o = £= e
s PS2 mat? P mat mat E o™ F Fmat E-e
mat &
0005 1581 3,286 .2hz .000L81 . 000019 85,4
. 001 3137 3.271 L2hu .000959 .Q000H1 78.5
. 002 6081 3.198 247 .001892 .000108 62.8
. 003 8195 3.034 .250 002701 000299 57.0
. 004 9860 2,870 - .258 .003436 000564 55.2
006 11503 2.363 . 289 L0004 868 001132 44,8
TABLE 5.156
MODULI OF INELASTIC MATRIX AND STRAIN DUE TCO SUBMICROCRACKING FOR
¥
MONOTONIC LOADING OF MORTAR WITH A W/C = 0,5, FIRST APPROACH .
RESULTS CORRESPOND TCO LARGER ESTIMATE OF <a¢> sDRY CRACKS,
6 .
Ei = §,79%x10" psi
o, psi  E___,10%psi e .= < = e~ e %
£ » PS “mat? P Ymat mat K o™ ®Cnat E-e ¢
mat e
L0005 2205 4,575 L2110 .0C00UB2 000018 5. k4
. 001 3697 3.855 . 249 000959 . 000041 18,0
.002 5398 2.919 . 290 .001880 000151 17.3
003 5804 2.150 . 352 L,002700 ., 000300 16,8
L0004 4066 1.231 LAl .003303 . 000687 22.1

¥ Cracks are assumed to exist in the specimens prior to loading.
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TABLE 5.17
MODULI OF INELASTIC MATRIX AND STRAIN DUE TO SUBMICROCRACKING FOR
#
SUSTAINED LOADING OF CEMENT PASTE. FIRST APPROACH .

RESULTS CORRESPOND TO LARGER ESTIMATE OF <a¢> ;DRY CRACKS.

g ¢

£ = = £ = g€
mat mat E e] mat e-e
mat e

. 6,
€ g, psi Emat’TO psi v

CEMENT PASTE WITH A W/C = 0.5; Ei = 2‘54x106 psi

.00% 4572 1.319 .229 .003465 .000535 24,3
.006 L884 0.943 165 .005176 .000824 20.2

CEMENT PASTE WITH & W/C = 0.3; Ei = 3=31x106 psl

.00k 7856 . 2.275 213 .003453 . 000547 33.6
.006 8091 1.630 75 .00Lg6L .001036 29.1
TABLE 5.18

MODULI OF INELASTIC MATRIX AND STRAIN DUE TO SUBMICROCRACKING FOR
*
CYCLIC LOADING CF CEMENT PASTE. FIRST APPROACH .

RESULTS CORRESPOND TO LARGER ESTIMATE OF <aw> ;DRY CRACKS.

106 si v £ - 2 £ = ETE
P mat mat B o mat e-€
mat e

£ ¢, psi Emat’

CEMENT PASTE WITH A& W/C = 0.5; Ei = E.SHX106 psi

.002 3017 1.725 212 .001749 . 000251 39.9
004 5033 1. 437 . 281 .003503 . 000583 24,6

CEMENT PASTE WITH A W/C = 0.3; Ei = 3.31x106 psi

.002 6383 3.302 . 149 .001933 . 000067 91.3
.0025 7285 3.177 .150 .002293 .060207 69.2
.003 6302 2,632 172 .002622 .000378 41.3

* Cracks are assumed to exist in the specimens prior to loading.
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TABLE 5.19
MODULI OF INELASTIC MATRIX AND STRAIN DUE TO SUBMICROCRACKING FOR
*
MONOTONIC LCADING OF CEMENT PASTE WITH A W/C = 0.7. SECOND APPRQACH .

RESULTS CCRRESPOND TO LARGER ESTIMATE COF <a > ;DRY CRACKS,

Y
6 :
Ei = 1,78x10" psi
£ g, psi E 106 si v £ =2 £ = g=g ec
' mat?’ P mat mat E s} mat eg-g_ !
mat &

0005 830 1.718 . 2H2 .D00H83 000017 50,2
001 1581 1,642 243 .000%63 . 000037 33.7
ooz 2657 1.428 L2uh .001861 .000139 27.4
00% 3740 1.054 . 248 .003548 000482 23.8
006 4070 0.790 .267 .005154 000846 22.7

TABLE 5.20
MODULI OF INELASTIC MATRIX AND STRAIN DUE TO SUBMICROCRACKING FOR
*
MONOTONIC LOADING OF CEMENT PASTE WITH A W/C = C.5. SECCND APPROACH .

RESULTS CORRESPOND TO LARGER ESTIMATE OF <a > ;DRY CRACKS.

P
h .
Ei = 2.5Ux10° psi
> 6, psi E 106psi \Y £ - Z € = g-¢g ~EE~
' mat’ mat mat E e mat g-e 7
mat e
0005 1195 2.474 L2h2 000483 000017 59.8
01 2310 2, Ho1 . 242 .000962 .000038 42,3
002 1127 2,789 . 243 .001885 LA00115 30.7
Cod 65036 1.703 248 . 003540 .000456 28.1
Q06 6687 1.313 . 265 .005093 .000907 26.9

Cracks are assumed not to exist in the specimens prior to loading.
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TABLE 5,21
MODULI OF INELASTIC MATRIX AND STRAIN DUE TO SUBMICROCRACKING FOR
%
MONCTONIC LOADING OF CEMENT PASTE WITH A W/C = 0.3, SECOND APPRCOACH .

RESULTS CORRESPOND TC LARGER ESTIMATE CF <a,> ;DRY CRACKS.

L]
6
E1 = 3.31x10° psi
€ g, psi E 106 si v g =2 € = e~¢ ~EEM %
' mat? P mat mat & C mat g-¢
mat e
L0005 1581 3.280 242 .0004882 000018 80.9
. 001 3137 3.268 .2kl 000950 . 000040 76.6
.00z 6051 3.168 .28 001910 . 003060 52.3
.003 8195 2.987 . 251 .002743 .000257 4g.1
.00 9860 2.808 . 260 .003512 .DCOCHE8 7,7
006 11503 2.251 .292 L005110 .000890 35.2
TABLE 5,22

.
.
.
-

*

MODULI OF INELASTIC MATRIX AND STRAIN DUE TO SUBMICROCRACKING FOR
*
MONOTONIC LOADING OF MORTAR WITH A W/C = (0.5, SECCOND APPROACH .

RESULTS CORRESPOND TO LARGER ESTIMATE OF <a > ;DRY CRACKS.

]
6 .
Ei = §,79x10° psi
€ ¢, psi E 106psi v e =2 £ = €-¢ "¢ %
! mab’ mat mat E ¢ mat g-g
mat e
0005 2205 4,556 214 . 000884 .000016 411
001 3697 3.819 250 . 000968 .000032 14,2
0oz 5398 2.858 . 292 .001889 L000111 12.7
003 5804 2.069 + 355 . 002805 000195 10,9
004 4066 1.198 TS . 003394 000606 19.2

Cracks are assumed not to exist in the specimens prior to loading.
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TABLE 5.23
MODULI OF INELASTIC MATRIX AND STRAIN DUE TO SUBMICROCRACKING FOR
¥
SUSTAINED LCADING OF CEMENT PASTE, SECOND APPROACH .

RESULTS CORRESPOND TO LARGER ESTIMATE OF <aw> ;DRY CRACKS.

£ I si E 106 si Y £ =2
» Psi mat’ p mat mat E o mat e£-¢

CEMENT PASTE WITH A W/C = 0.5; Ei = 2.5MX1O6 psi

.00k b572 1.278 .231 .003577 .000k23 19.2
. 006 488y 0.5%05 .168 . 005396 . 000604 14.8
CEMENT PASTE WITH A W/C = 0.3; Ei = 3.31*106 psi
.00k 7856 2,204 L 245 .003565 .000435 26.7
.006 8091 1.546 179 . 005235 .000765 21.5
TABLE 5.214

MODULI OF INELASTIC MATRIX AND STRAIN DUE TO SUBMICROCRACKING FOR
#
CYCLIC LOADING CF CEMENT PASTE., SECOND APPROACH .

RESULTS CORRESPOND TO LARGER ESTIMATE OF <am> ;DRY CRACKS,

. 6 _q o o
€ g, psi Emat’1o psi v £ = £ = g-g

mat mat E ¢ mat e~ !

CEMENT PASTE WITH 4 W/C = 0.5; E, = 2.SHX?06 psi

i

.002 3017 1.696 212 001779 000221 35.1
. 004 5033 1.425 .283 . 003531 . 000469 19.8

CEMENT PASTE WITH A W/C = 0.3; Ei = 3.31x106 psi

.002 6383 3.295 .+ 150 .001937 . 000063 86,2
0025 7285 3,148 .150 .002314 .000186 62.1
.003 6902 2.572 175 .002684 .000316 34.5

* Cracks are assumed not to exist in the specimens prior to loading.
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Stress versus Longitudinal Strain for Monotonic Loading of Cement with a W/C = 0.7: Specimen

Fig. 2.3,
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Fig. 2.4, Stress versus Longitudinal and Lateral Strains for Monotonic Loading of Cement
Paste with a W/C = 0,5: Specimen 14-6/P-0.5/M
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Fig. 2.5. Stresgs versus Longitudinal and Lateral Strains for Monotonic Loading of Cement
Paste with a W/C = 0.3: Specimen 16-3/P-0.3/M
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Fig. 2.6. Stress versus Longitudinal and Lateral Strains for Monotonic Loading of Mortar
with a W/C = 0.5: Specimen 13-6/M-0.5/M
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Fig. 2.9.

Poisson's Ratio versus Axial Strain for Monotonic Loading of Cement Paste with a W/C = 0.3:

Specimen 16-3/P-0.3/M



211

Onm

0.006

0.003

0.50¢

0I}DY §,U0SSIOd

0.00
0.000

Strain

Poisson's Ratio versus Axial Strain for Monotonic Loading of Mortar with a W/C = 0.5:

Specimen 13-6/M-0.5/M

Fig. 2.10.
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Fig. 2.11. Volumetric Strain versus Axial Strain for Monotonic Loading of Cement Paste with a W/C = 0.5:
Speciment 14-6/P-0.5/M
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Fig. 2.12. Volumetric STrain versus Axial Strain for Monotonic Loading of Cement Paste with a W/C = 0.3:

Specimen 16-3/P-0.3/H"
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Fig. 2.14. Stress versus Longitudinal and Lateral Strains for Sustained Loading of Cement
Paste with a W/C = 0.5: Specimen 13A~1/P-U.5/8
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Fig. 2.15. Poisson's Ratio versus Axial Strain for Susrained Loading of Cement Paste with a W/C = 0.5:

Specimen 15A-1/P-0.5/8
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Fig. 2.16. Poisson's Ratio versus Axial Strain for Sustained Loading of Cement Paste with a W/C = 0.3:
Specimen 16-4/P-0.3/8
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Fig., 2.17. Volumetric Strain versus Axial Strain for Sustained Loading of Cement Paste with a W/C = 0.5:

Specimen 154~1/P-0.5/8
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Fig. 2.19. Stress versus Longitudinal and Lateral Strains for Cyclic Loading of Cement Paste
with a W/C = 0.5: Selected Cycles: Specimen 18~5/P-0.5/C
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Fig. 2.20. Poisson's Ratio versus Axial Strain for Cyclic Loading: lst, 17th and 29th Cycles; Cement

Paste with a W/C = 0.5: Specimen 19A-1/P-0.5/C
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Fig. 2.21. Volumetric Strain versus Axial STrain for Cyclic Loading: lst, 17th and 29th Cycles; Cement

Paste with a W/C = 0.5: Specimen 19A-1/P-0.5/C
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Fig. 2.22. Poisson's Ratio versus Axial Strain for Cyclic Loading: lst and 67th Cycles; Cement Paste
with a W/C = 0.5: Specimen 18-5/P-0.5/C
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Fig. 2.23. Volumetric Strain versus Axial Strain for Cyelie Loading: lst and 67th Cycles; Cement Paste
with a W/C = 0.5: Specimen 18-5/P-0.5/C
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Fig. 2.24. Poisson's Ratio versus Axial Strain for Cyclic Loading: lst, 42nd and 85th Cycles; Cement
Paste with a W/C = 0.3: Specimen 21-5/P-0.3/C
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Fig. 2.26. Specimen as Mounted on Stud
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Fig. 2.27. Specimen as Positioned in SEM
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Fig. 2.28. Type I Calecium Silicate Hydrate (CSH); Oven Dried
Specimen; magnification = 5000x, W marker =0,9 um

Fig., 2.29. Type I Calecium Silicate Hydrate (CSH); Solvent
Replacement Dried Specimen; magnification = 5000x,
y marker = 0.9 um




Fig., 2,30, Type II Calecium Silicate Hydrate (CSH);
magnification = 5000x, u marker = 0.9 um

Fig., 2.31. Crack through type III Calcium Silicate Hydrate (CSH);
magnification = 5000%, W marker = 0.9 um
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i

Fig. 2.32. Type IV Calcium Silicate Hydrate (CSH} or Inner Product
Morphology (in center of micrograph);
magnification = 10000x, u marker = 0.9 um

b

Fig. 2.33. Calcium Hydroxide (CH) with Crack Parallel to Cleavage
Plane; magnification = 5000x, u marker = 0.9 um
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Fig. 2.34, Crack through type III CSH and CH Structures;
magnification = 1250x, u marker = 9,1 um

Fig. 2.35. Unhydrated Cement Grain (UHC); magnification = 2500%,
¥ marker = 0.9 um
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Fig...2.36.  Ettringite; magnification = 10000x, w marker = 0.9 um

Fig. 2.37. 8and Grain {(SG) Adjacent to type III CSH with Cracks at
the Interface and withing the CSH; magnification = 320x,
i marker = 90,9 um
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Fig. 2.38. Sand Grain (SG) Adjacent to type III CSH with Cracks at
the Interface and withing the CSH; magnification = 160x,
n marker = 9C.9 um '
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Fig. 2.39. Crack Density versus Water-Cement Ratio for Nonloaded Cement Paste Specimens
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Fig. 2.40. Crack Density versus Strain for Monotonic Loading of Cement
Paste with a W/C = 0.7; Transverse and Longitudinal Surfaces
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Fig. 2.41. Crack Density versus Strain for Monotomic Loading of Cement
Paste with a W/C = 0.5; Transverse and Lomgitudinal Surfaces
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Fig. 2.42, Crack Density versus Strain for Monotonic Loading of Cement
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APPENDIX A

KEY TO SPECIMEN IDENTIFICATION

The specimens are identified as follows:

Identifieation: i-j/X-R/L

in whieh
1 = pateh number
J = specimen number, in batech i
X = type of specimen
R = water—cement ratlo
L = type of load regime

Type of specimen - X

P

cement paste

M mnortar

1l

Type of load regime - L

NL nonloaded

M = monotonic loading

s sustained loading

C

eyclic loading
Example: 8-U/P-0.5/M
{——-monotonic loading
cement paste with a water-cement ratio = 0.5

yth specimen of Bth batch
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APPENDIX B
NOTATION

maior semi-axis of an elliptic ¢rack or "characteristic”
crack size

smallest characteristic crack size that gives a trace
length of & on a plane

projected length, on longitudinal plane, of the major
Ssemi-axis of an elliptic crack

projected length, on transverse plane, of the major semi-
axis of an elliptic arack

mean characteristic crack size for each crack orientation
]

minor semi—axis of an elliptic¢ crack

projected length, on longitudinal plane, of the minor
semi-axis of an elliptic crack

projected length, on transverse plane, of the minor semi-
axis of an elliptic crack

boundary length per unit area of traces of three-
dimenzsional objects on longitudinal plane

boundary length per unit area of traces of three-
dimensional objects on transverse plane

elements of compliance matrix in global coordinates
elements of compliance matrix in crack coordinates
compliance matrix in global coordinates
compliance matrix in crack coordinates

second corder tensor used in calculating stress—-intensity
factors

elements of stiffness matrix in global coordinates
elements of stiffness matrix in crack coordinates
stiffness modulus of uncracked material

stiffness modulus of an isotropic c¢racked material



flaly)
£(2),

f(i)Tc

£{s]8)
f(ile}a
f(i]e)ac
£(afe)
£eele),

£(8)
f(G)a
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f(B)L

£(e),
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G
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stiffness modulus prior to loading

stiffness modulus of matrix material (material between
submicroscopic cracks)

stiffness modulus in the plane of iscotropy, for a
transversely isotroplc oracked material

stiffness modulus in the direction of applied stress, for
a transversely isctropic cracked material

three-dimensional crack size distribution for each crack
orientation ¢

modified experimental crack trace length distribution on
transverse surface

caleoculated crack trace length distribution on transverse
surface

true crack trace length distribution for each trace angle
9

apparent crack trace length distribution for each trace
angle 6

calculated apparent crack trace length distribution for
each trace angle 6

modified experimental crack trace length distribution on
longitudinal surface for each trace angle 6

calculated erack trace length distribution on lon-
gitudinal surface for each trace angle 8

true crack trace angle distribution
apparent crack trace angle distribution
calculated apparent crack trace angle distribution

modified experimental crack trace angle distribution on
longitudinal surface

calculated ecrack trace angle distribution on longitudinal
surface

three—dimensional crack orientation distributicn
shear modulus of uncracked material

shear modulus of an lsotropic cracked material
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shear modulus in the plane of isotropy, for a
transversely isotropic cracked material

shear modulus in the direction of applied stress, for a
transversely isotropic cracked material

height of viewing area in SEM
energy release rates associated with Mode I crack defor—
mation in the case of dry and saturated cracks,

respectively

energy release rate associated with Mode II crack
deformation

energy release rate zssociated with Mode III crack
deformation

generalized notation for stress-intensity factors, KI’

K110 Kip1

measure of degree of anisotropy for three-dimensional
grack distributions

stress—intensity factors for Mede I crack deformation
stress-intensity factors for Mcode II crack deformation
stress—intensity factors for Mode II1 crack deformation
builk modulus of fluid in cracks

bulk modulus of cracked material

erack trace length

modified experimental mean ¢rack trace length con lon-
gitudinal surface

modified experimental mean crack trace length on
transverse surface

true mean crack trace length for each trace angle 8
apparent mean crack trace length for sach trace angle 8

modified experimental mean crack trace length on lon-
gitudinal surface for each trace angle §

modified experimental number of cracks per unit area per
degree
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measured number of cracks per unit area per degree
true number of cracks per unilt area
apparent number of cracks per unit area

apparent number of c¢racks per unit area for each trace
angle ©

modified experimental number of c¢racks per unit area on
longitudinal surface

modified experimental number of craks per unit area on
transverse surface

true number of cracks per unit area for each trace angle
9

nunber of cracks per unit area on longitudinal surface
before modification

number of cracks per unit area on transverse surface
before modification

crack density on longitudinal surface
crack density on transverse surface

number of c¢racks in viewing area with a given trace
length and trace angle

number of c¢racks that lie fully within the viewing area

number of cracks that lie partially within the viewing
area

number of cracks in viewing arez with a trace angle of 8
+ d8/2

total number of cracks in viewing area

second order tensor used in calculating stress—intensity
factors

number of c¢racks per unit volume
measure of volumetric crack density
distance measured along crack perimeter

second order tensor used in calculating stress—intensity
factors
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applied stress acting on cracked solid

second order tensor used in calculating stress—intensity
factors

crack aspect ratic = b/a

aspect ratio of crack projection on longitudinal plane
aspect ratic of crack projection on transverse plane
correlation coefficient

second order tensor used in calculating stress-intensity
factors

applied normal stress acting on coracked solid; also
distance between crack centroid and intersecting plane

maximum value of s for which a plane intersects a crack
real component of tensor pjk

imaginary component of tensor pjk

strain transformation matrix

transpose of strain transformation matrix

Stress transformation matrix

transpose of stress transformation matrix

crack displacement along major axis

Airy's stress function

real component of tensor Njk

applied shear stress acting on c¢racked sclid; also ¢rack
displacement normal te cerack plane

volume of crack

variance of crack size distribution for each crack orien-~
tation ¥

modified experimental variance of crack trace length
digtribution on transverse surface

true varlance of crack trace length distribution for each
trace angle 8
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apparent variance of crack trace length distribution for
gach trace angle 6
modified experimental variance of crack trace length
distribution on longitudinal surface for each trace angle
8
volume of cracked material
imaginary component of tensor Njk

width of viewing area in SEM; also crack displacement
along minor axis

crack width

crack energy parameter due to fluld within cracks

crack energy parameter for each load case

local reference frame of crack

coordinates of points at which longitudinal and
transverse planes intersect boundaries of crack
projections

distances of center of crack trace from center of viewing
area; &also coordinates of peints at which longitudinal
and transverse planes intersect boundaries of crack

projections

y, coordinate corresponding to smallest crack size that
has a given trace length on longitudinal plane

complex variable solutions for equilibrium and com-
patibility equations

parameters of gamma distribution

real parts of solutions for equilibrium and compatibility
equations

inmaginary parts of solutions for equilibrium and com—
patibiliity equations

shear strain associated with Mode Il crack deformation
shear stralins assceiated with Mode III crack deformation
shear strains in principal material directions

Interval at which crack trace lengths are recorded
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interval at which crack trace angles are recorded
strain energy change due to cracks

strain energy change due to cracks, for each load case
applied axial (longitudinal) strain
strain due to submicroscopic eracks .
strain due to elastic deformation = cr/Ei
elastic strain plus c¢racking strain = o/E

3

strain in matrix material = UXEmat
lateral strain
vyelumetrice strain = ¢ - Est

normal strains associated with Modes I and II crack
deformations

normal strains in principal material directions

angular rotation of crack about its normal

projection of angle n on longitudinal plane

projection of angle n on transverse plane

crack trace angle

complex roots of equilibrium and compatibility equations
Polsson's ratic of uncracked material

Poisson's ratio of an iscotropic cracked material
Poisson's ratio of matrix material

Poisson's ratio in the plane of isotropy, for a
transversely isotropic cracked material

Poisson's ratio in a plane perpendicular to the plane of
isotropy

energy change associated with a single crack

perpendicular distance from crack centroid to a point on
the crack perimeter
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stress normal to crack plane
hydrostatic¢ stress due to fluld within cracks

normal stiresses associated with Modes I and II e¢rack
deformations

normal stresses in principal material directions

stress tangential to c¢rack plane

Shear stress associated with Mode II crack deformation
shear stresses assoclated with Mode III erack deformation

perpendicular components of stress which acts tangential
to crack plans

shear stresses in principal material directions

crack angular coordinate which varies in a full eircle
about the longitudinal axis

strain energy of uncracked so0lid under a prescribed
loading

strain energy of cracked solid under a prescribed locading

three—-dimensional c¢rack orientation
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APPENDIX C
CORRECTION COF WINDOW SIZE DISTORTION OF CRACK DISTRIBUTIONS
ON PLANE SECTIONS

C.1t INTRODUCTION

The problem studied here deals with the estimation of true swface
distributions from measurements of lengbhs and angles of cracks (or straws,
needles, etec.) on a plane section, where only a portion of the plane section
is visible within the field of view, or window. This preoblem stems from a
scanning electron microscope study of lcoad—induced cracks in cement paste
and mortar.

The window width, w, is very large and has no effect on the problem
(Fig., €C.1). However, the window height, h, is finite, Segments of some
cracks will therefore lie ocutside the window, and hence their measured
lengths will be shorter than their true lengths, causing the length dis-
tribution to be skewed towards low values. A crack whose center 1s located
outside the viewing area may have a poriion within the field of view. A
grack centered at the same point, but at a lower angle, 9, may lie com-
pletely outside the viewing area. The observed or apparent number of cracks
at low angles will therefore be relatively lower than the number at high
angles, resulting in the angle distribution being skewed towards & = 90°,
This implies that the apparent number of cracks at low angles is less than
the true number and the apparent number at high angies 18 greater than the
true number, The true surface distributions of crack length and crack angle
on plane sections of opaque bodies are required in order to accurately
estimate crack distributions in three-dimensions.

In the following analysis, the concepts of mathematieal statistics [31]
and geometrical probability [U8] are used to establish relationships between
the observed or apparent distributions and the true distributions.
Procedures are established for estimating the true distributions. Examples
based on a study of load-induced cracks 1n cement paste and mortar are given
to illustrate the results of the procedures.

It is shown that the total length of cracks per unit area is unaffected
by the window height. A guideline is provided fto determine if the window

analysis is required for a given window height.
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C.2 ESTIMATES OF THE TRUE SURFACE DISTRIBUTICNS OF CRACK LENGTH
AND CRACK ANGLE

C.2.1t True Surface Distribution of Crack Length

The derivaticns that follow are aimed at establishing a relationship
between the apparent and true distributions of crack length. The form of
the true distribution, as well as its mean and variance, is required. An
iterative procedure is used to determine the true distribution.

If f{%,08) is the true Jjoint relative frequency density of a crack
length and angle on a plane, then f£(£,68)dRd® is the probability that a crack
has a true length of 4  di/2 and an angle of 8 + dg§/2. The true number of

such cracks Iin a unit area is
M f£{%,8)aida (c.n

in which M is the true number of cracks per unit area., The ranges of % and
6 are

0 <L <K=

0f8 s
such that

fo S5 £(8,8)dede = 1 (c.2)

The number of cracks, n, in the viewing area with a measured length of
li + d&/2 and an angle of & x d46/2 is the sum of two components, n, and n,.
n1 is the number of cracks that lie fully within the window and n2 is the
number that lie partially within the window.

In order for cracks with a length of %i + d&/2 and an angle of 8
d6/2 to lie fully within the viewing area, their centers must not be further
than a distance of = vy from the center of the viewing area (see the crack

labelled A in Fig. C.1).
1
v, =3 (h L,s1ng) (C.3)

in whieh 21 < h/sins,
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. From Eq. (C.1), n, = M f(ii,e)dlde W 2y1 =

Mw (h—lisine) f(li,e)dlde (C.1%)

H

Type B and C cracks {(Fig. €.1) contribute %o n,. Type B cracks are
those with a measured length equal to Qi + di/2 (Ei < h/sing) projecting
into the viewing area. Type C cracks are those with a true length of & 2
h/sind and a measured length exactly equal to h/sin® and which have centers
not further than a distance of % N from the window center. Fig. C.1 shows
a type C c¢rack which has its center at a distance of y2 above the window

center.

2sind - h/2 (C.5)

o=

y2=

The number of type B cracks that have a true length of & + d&/2 and an
angle of & + d6/2 and have tips within a region dising wide (i.e., tips
within the region Eisine + disine/2 from the edge of the window) is equal to
the number of cracks with centers within a region of the same width. This

number is
M £(%,6)d%de w disine (C.6)

for each edge of the viewing area,
To obtain the total number of type B cracks which contribute to n,, Eg.

{C.6) is integrated for all % 2 21 to give

2 M w sing di do IZ £(2,8)4d8 (c.7)
i

Type C cracks will contribute to n, only if cracks with a measured

2
length, li, exactly equal to h/sing are being considered. In this case, the

contribution to n2 of type C cracks with a true length of £ % d%/2 and an

angie of @ * d8/2 is
M f(L,8)ddo w 2y, (C.8)

The total number of type C cracks is obtained by integrating Eq. (C.8) for

all & 2 hsind to give
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Mwdo J. (2siné-n)f(%,8)ds (C.9)

h/sing

If h is not large enough in relation to the mean c¢rack length for a
particular angle, the number of %fype C c¢racks [given by Eq. (C.9)] will
appear as a spike at h/sinf in the measured length distribution for the
given angle {(Fig. C.2). A spike cannot be handled adequately with this
analysis. The absence of a spike (implying a negligible number of type C
cracks) 1s desirable and indicates that the window height is adequate for
the cracks being measured; {(i.e. few cracks have a length of & > h/sins).

In the absence of a significant number of type C cracks, the number of
cracks in the viewing area with a measured length of li + d&/2 and an angle

of 8 + 48/2 is obtained by summing Eq. (C.4) and (C.7).

n = Mw(h-2,sin8)f(1,0)dlde + 2Mwsin6d£d8f; £(8,8)dL (C.10a)
i
or

n = Mwde[(h-1 sine)f(%;,8) + 2sinef; £(2,8)dz]ds (C.10b)
i

Ir f(zje)a is the apparent relative freqguency density of a measured length
for a given angle, then f(lije)adi is the probability that a crack has a
measured length of Qi + di/2 for a given 8.

Number of oracks with Ei + d/2, 8 + d8/2

£8,e) dt = -

Number of cracks with 6 + d8/2 (C.1%)

Sis

The number of cracks for a particular angle is obialned by Integrating Eq.

(C.10b) for all L. The number of cracks with 8 + d8/2 is
ng = MW defs [(h-2sine)f(2,8) + 2 sine Sy £(1,0)de]ds (c.12)

Egq. (€.12) can be simplified using the following statistical relation [311].
£(%,8) = £(L]e) f£(8) (C.13)

in which f{lls} is the true relative frequency density of a crack length for

a given angle and £(6) is the true relative frequency density of a crack
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angle. Substituting Eq., (C.13) into Eq. (C.12), the number of cracks with 8
+ d8/2 is

ng = M w £(6) oSy [(h-8sine)f(%]e) + 2 sine /, £(2]8)dslas (C.14)

Eq. (C.14) can be further simplified by using the technigue of integration
by parts to show that

fo a(r]e)ds = fo Sy £(a}e)duds (C.15)
Substituting Eq. (C.15) into Eq. (C.14), the number of cracks with 8 *
ds/2 is

ng = Mw £(e)deln SSr(L]e)dR + sine S5 2£(2]e)dr] (C.16)

However in Eq. (C.16), I: f(2le)dt = 1, and f: Lf(2]8)dt is the true mean
crack length at 6; i.e. <Re> = f: zf(lle)di . Hence the number of cracks
with angle 8 + d8/2 is

n, = M w f(8)de{h + <2e>sine) {(C.17)

The statistical relation expressed in Eq. (C.13) is substituted into Eq.
(C.10b) to give

n=Mwr(e)as[(n-2,sine)r(e |8) + 2sinef, £(1]e)de]ar (C.18)
1

Substitution of Eq. (C.17) and {C.18) into Egq. (C.11) yields

(h~2,sin@)f(4 |8) + 2 sine [ f(2]e)as

1
f(%ile)a - h + <%.> sing (€.19)

In Eq. (C.19), & may be substituted in place of Ri, since the expression is

valid for any measured length.

(h~Lsine)r(2]e) + 2 sine J, £(2]8)ds

h + <Re> sineg (C.20)

£(afe), =
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The apparent mean crack length at 6 is given by

o
A =L zf(ile)adz (C.21)
By substituting Eq. (C.20) into Eq. (C.21) and evaluating the integral, the
true mean crack length at 8 can be determined in ferms of a measurable

quantity, <Re>a.

h<t >
Ae = {C A > ein 6 (c.22)

in which h must be greater than <9.6>a sin 8 .,
The variance of the apparent length distribution for a given 8 can be

expressed as
- o - 2
var(fp) = Jo (& - <> )% £(2]8) ax (€.23)

Substituting Eq. {C.20) into Eg. (C.23)} and evaluating the integral, the

variance of the true length distribution for a given 8 is

<& >
.- - - sin 8 & ,3
var(ie) = <£e>a var(ﬁs}a <£8>(<28> <£e>a} M Jo 27 f(a]a)ar

(C.24)

In Eq. {(C.24), <2.8>a and var(ie)a are respectively the mean and varianece of
the apparent length distribution and are therefore known quantities,

In order to estimate the true crack length distribution, f(i]e), the
form of f(ﬂ]e}, mean crack length, <£6>, and variance, var(le}, must be
known, <2e> can be obtained from Eq. (C.22), The form and variance of
f{lle), however, cannot be obtained directly, requiring the use of an itera-
tive procedure. The objective of the procedure is to calculate an apparent
distribution based on an assumed form of the true distribution. If a close
matech is obtained between the known {experimental) and ecalculated apparent
distributions, then the assumed form of the true distribution is the correct
one. Since only some of the irue crack lengths will be longer than their

corresponding measured lengiths, as an initial guess, it is reasonable to
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assume that the true length distribution, f(i]e), is similar in form to the

known apparent length distribution,

The procedure for estimating the true length distribution is outlined
as follows.

T, Assume that f(ﬁ]e} is similar in form tc the known apparent length
distribution.

2. The mear and variance of f(&[e) are <26> and var(ze), respectively.
<£e> is obtained from Eq. (C.22). As an initial guess, assume that
var(%e) = var(la)a .

3. Calculate the true variance, var(ze), using Eq. {C.24}.

L, If the computed variance is not equal to the assumed variance, recom—
pute var(la) from Eq. {C.24) using the variance calculated in Step 3.

5. Repeat Steps 3 and 4 until the assumed and computed variances are
equal.

6. Substitute f£(%]8), with parameters <£a> and var(le), into Eq. (C.20) in
order to calculate f(%|6)_.

T. A "goodness of fit" test, based on the chi-square distribution [31], is
used to determine if there is a close agreement between the known and
calculated apparent distributions. A close agreement implies that a
good estimate of f(&!e) has been obtalned. '

8. Iff the “"goodness of fit" test fails, assume a true distribution with a
different form. HRepeat Steps 2 to 7.

An example based on a study of load-induced cracks in cement paste and
mortar is presented in Section C.2.3 to illustrate the results of the above

procedure.

€.2.2 True Surface Distribution of Crack Angle

In the feollowing derivation, a relationship is established between the
apparent and true distributions of c¢rack angles. An iterative procedure is
described for determining the true distribution.

If f‘(B)a is the apparent relative frequency density of a measured
angle, then f(e)ade is the probability that an observed crack has a measured

angle of § x de/2 .

Number of cracks with 6 & de/2 _ s (c.25)
Number of cracks for all 8 N '

£{e) de =
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The number of cracks with an angle of 8 + d6/2 is given by Eq. (C.17) as
ne =M w f(8)de(h + <28>sin6) (C.26)
Integrating Eq. (C.26), the number of cracks for all 9 is
N = M ufg (h+ <L >sin@)f(8)do (c.27
By noting that IE f(8)de = 1, Eq. (C.27) is simplified to become:

No= M uln+ [T <o >sing £(8)de] | (C.28)

Substituting Eq. {C.26) and (C.28) into Eg. {(C.25),

{h + <£9>sine)f(e)
f{B)a = - (C.29)
h + [y <&, >sine £(6)de

In Eq. (£.29), the true angle distribution, £{(8), is the only unknowr.
An iterative procedure is used to estimate f(6)}. The objective of the
procedure is similar to that in the case of the length distribution. An
apparent distribution is caleculated based on an assumed expression for the
true angle distribution. If a close match is obtained between the known and
calculated apparent distributions, then the assumsd expression for the true
distribution 1s the correct sstimate.

The procedure for estimating the true angle distribution is cutlined as

follows.

1. Assume an expression for f{8). As described in the introduc—
tion, the true number of c¢racks at low angles will be greater fhan
the apparent number and the true number at high angles will be less

than the apparent number, This information serves as a guide in

determining an assumed expression for f(9).
2. Compute f(e)a using Rq. (C.29).
3. A "goocdness of fit" test, based on the chi-square distribution, is used

to determine if there is a close agreement between the known and calecu-

lated apparent distributions.
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iy, Repeat Steps 1 to 3 until the "goodness of fit" test in Step 3 is
successful. The trus angle distribution which satisfies the test is
the correct estimate of f(8).
In the following section, examples based on a study of load-induced
cracks in cement paste and mortar are presented in order to illustrate the
results of the procedures for obtaining the true length and angle

distributions.

C.2,3 Examples

The examples presented in this section are based on the results ob-
tained in a study of load—induced cracks in cement paste and mortar.

Cement paste and mortar specimens are loaded in compression to selected
stress levels and then unloaded. Fractured surfaces of the loaded specimens
are then viewed in a scanning electron microscope (SEM). Within the SEM,
the fractured surfaces are scanned horizontally, and c¢rack lengths and
angies are measured at a magnification of 1250x. Only the portions of
cracks within the field of view are measured in order to obtain an accurate
estimate of the density of cracks within the scanned areas. Apparent dis-
trivutions of crack length and crack angle are obtained from the data.
Typical apparent distributions are represented by the histograms in Fig. C;3
and C.H4. The particular length distribution illustrated represents cracks
measured at angles, 8, between 47.5° and 52.5°. Angles of 8 and 180°-5 are
grouped together. The data in the histograms, along with the results of the
analysis, are summarized in Tables C.1 and C.2.

The procedures described in Sections C.2.1 and C.2.2 are used to obtain
calculated apparent distributions. Calculations are performed using a
computer, and all integrals are numerically evaluated using Gaussian quadra-
ture [72]. Four integration points over a length range of 0.0 to 0.006 in.
are sufficient for these results. A level of significance of 0.05 is used
for the "goodness of fit" tests.

The calculated apparent length distribution, f‘(SL]e)a, is obtained by
assuming that the true length distribution, f(ile), has the form of a gamma
distribution. This form of distribution gives a close match between the
calculated apparent distribution and the histogram, as shown in Fig. C.3.
As expected, the estimated true length distribution is shifted to the right
of the apparent distribution.
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In Fig. €.4, it is observed that the known apparent angle distribution
(the histogram) has spikes near 09 and 90°. These spikes are mainly due to
specimen preparation {(sawing, drying, and fracturing) prior to viewing in
the SEM, In using the procedure desoribed in section C.2.2 to determine the
true angle distribution, f(8), trial expressions need to be agsumed for
f(9). Due tc the discontinuous form of the known apparent distribution,
constant functions are assumed for £(6) from C° to 2.5° and from 87.59 to
90°, while a quadratic function is assumed over the middle eighty-five
degree range. This form of £(8), as shown in Fig. C.%, gives a close match
between the calculated apparent distribution and the histogram. A com-
pariscn of the fLrue and the apparent angle distribputions in Fig. C.%4 shows
that, as expected, the true number of cracks at low angles is greater than
the apparent number and the true number at high angles is less than the

apparent number,

C.3 ESTIMATE OF THE TRUE NUMBER OF CRACKS PER UNIT AREA

As explained in the introduction and illiustrated in the example (Fig.
C.4), the apparent number of cracks at low angles is less than the true
number and the apparent number at high angles is greater than the true
number., The apparent number of cracks per unit area should, therefore, nét
be expected to equal the actual number of cracks per unit area. In the
following analysis, the true number of cracks per unit area is estimated.

The apparent number of cracks on a plane section is given by Eq. {C.28)

as
N=uuwuh+ /] <29>sin6f(8}de] (C.30)

Rearranging Eq. (C.30), the true number of cracks per unit area, M, is

M= il {C.31)

wlh + J§ <2,>sin6f(6)de]

The apparent number of cracks per unit area, Ma’ is given by

N
Ma v (C.32)
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By comparing Eq. {C.31) and {C.32), it is noted that Ma > M. This
observation may be intuitive by examination of Fig., C.1. It may also be
easily demonstrated by referring to Fig, C.5. In the figure, a plane sec~
tion of unit area is shown with eight cracks, i.e. M = 8 . If the hatched
area is not visible within the field of view, the two horizontal cracks in
this area will be completely invisible. The apparent number of cracks

within the window will be 6 and the apparent number per unit area will be

6

a = TG/ - 1@

Hence, Ma > M. The effect of a finite window size is therefore to oversas—

timate the number of cracks per unit area on a plane section,

C.4 TOTAL LENGTH OF CRACKS PER UNIT AREA

The following proof shows that the total length of ail cracks per unit
area is unaffected by the window height.

The number of cracks with an angle of & + d8/2 is given by Eg. (C.17)

as
n_ = Mw f{8)delh + <18>sine} {C.33)

8

The apparent number of cracks per unit area with an angle of & + d8/2 is
M o= —o (c.34)
Substituting Eq. (C.33) intoc Eq. (C.34%),

M= %[Mf(e)deih + <8 >sing) ] (C.35)

Eq. (C.22) for <£e> is substituted into Eq. (C.35) to obtain

<
h 29>

h - <%> sine)Sine] (€.36)
& a

[Mr(e)de(n +

a1
<&
i

Multiplying both sides of Eg. (C.36) by <16>a and simplifying, the apparent
total length per unit area of cracks with an angle of & + d6/2 is
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n<g >
8 a
h - <% > sin8g
8 a

M <&, > = Mf(e)de

agé "8’a (C.37)

The true total length per unit area of cracks with an angle of 8 + de/2
is
M, &> = ME(8)do <L > (C.38)

Substitution of Eq. (C,22) for <ze> into the right hand side of the above

equation gives

h<d >
&

h - <2a>a31ne

Me <£6> = Mf(8)de (C.39)

The right hand sides of Eq. (C.37) and (C.39} are identicazl. Hence,

Mae <Le>a e Ma <le> (C.10)
Since Eq. (C.40) i3 true for .all 8, it follows that the total length of all

cracks per unit area is unaffected by the window height.

C.5 DETERMINING IF TEE WINDOW ANALYSIS IS REQUIRED

The following discussion addresses the question of how big the window
height, h, must be so that the apparent and the true crack distriputions are
approximately the same. Eq. (C.22), which relates the apparent and the true
mean c¢rack lengths, provides a guide in answering this question.

The true mean crack length is expressed in Eq. (C.22) as

h<t >
Q> = TS SIng
8’a

(C.41)
in which h must be greater than <16>a sing., Eq. (C.#1) is rearranged to
becone

8 a _ -

A5 T T WRagy, sins (c.h2)
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The relationship expressed in Eg. {C.42} is shown in Fig. C.6, and it indic-
ates that for the apparent and the true mean crack lengths to be
approximately the same, the ratio of fhe window helght to the projiected
neight of the apparent mean crack length must be extremely large,

For the apparent and the true distributions to be exactly the same, the
total plane surface must be visible within the window. In practical situa-
tions involving the use of microscopes, the window height will be small in
comparison to the height of the plane surface under view, This is because
portions of the plane surface may have to be viewed at a high magnification
in order to obtain a good resolution., Hence, correction of the window size
distortion of the surface distributions may be reguired in most practical
situations. However, if the ratioc h/<£e>a ging is very large for zll 8, the
diff'erences between the apparent and the true crack parameters may be so0
small that the correction may not be needed. For example, as Eq. (C.U42)
indicates, if h/<28>a sing = 100, the difference between the apparent and
the true mean crack lengths is only 1%.

For a given window height and an apparent mean length of cracks with an
angle of 8, Eg. (C.42), therefore, provides a guide to determine if the
window size distortion needs to be corrected. In border line cases, it is
possible that a given window size, h, may be satisfactory for lower values

of 6, but may be too narrow for higher values.

C.6 SUMMARY

True distributions of cracks {(or straws, needles, etec.} on a plane
section may not be obtained directly if only a portion of the plane section
is visibple within the field of view. The procedures used to estimate the
true distributions are presented. These procedures are based on the con-
cepts of geometrical probability and statistics. Relationships are
established between the cobserved and the true distributions, and iterative
techniques are employed to estimate the true distributions, For a given
window height, a guideline is provided to determine if the window size
distortion needs to be corrected.

It is shown that the total length of c¢racks per unit area on a plane

section is not affected by the window size,
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True estimates of crack parameters on plane sections of opaque bodies
are required if crack parameters in three—dimensions are to be accurately

estimated.
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TABLE C.1

LENGTH DISTRIBUTION DATA FOR CRACK ANGLES, &, FROM 47.5° to 52.5°.

Observed Dist. : <&.> = 0.98x10'3in. var(do) = 2.80x10" in.2
True Dist. PA = 1.22¢10 3in, var(s,) = 2, 45x10  in.2
£(R]8) = 1.23x10°0 o7 79953

Length, Relative Frequency Density, in.
EG_3in. Observed Calculated Apparent True
0.00 0.0 310.9 0.0
0.15 0.0 313.7 by
0.30 555.6 357.3 67.7
0.45 555.6 5771 auk U
0.60 954.9 631.6 489.9
0.75 T40.T THY. T 711.3
0.90 740,7 788.8 841.9
1.05 555.6 Th7.8 865.7
1.20 720.7 650.9 802.9
1.35 341.6 528.4 688.3
1.50 505.6 %05.0 554.5
1.65 0.0 295.5 424.8
1.80 475.6 206.8 312.2
1,95 120.0 140.5 221.6
2.10 - 200.2 92,2 152,7
2.25 0.0 58.8 102.6

2.u40 170.2 36.5 67.4
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TABLE C,2, ANGLE DISTRIBUTION DATA.

1.85x10 2 : _ 005852, 59
£(8) = {-1.42x10756% + 1.07x1070 + 3.72x1070  2,5°50387,5°
1.50%10 : 87.5°£8590°
Angle, Relative Frequency Density, 1(3_2<:1eg.m1

degrees Observed Calculated Apparent True
1.25 1.429 1.428 1.850
5.00 0.275 0.273 0.422
10.00 0.385 0.337 0.465
15.00 0.220 0.354 0.5
20,00 0.495 0.443 0.529
25.00 0.330 0.486 0.551
36.00 0.549 0.521 0.565
35.00 0.549 0.550 0.573
40.00 0.604 3.5T1 0.573
45,00 0.533 0.585 0.566
50.00 0.659 0.592 0.552
55.00 0. 440 0.592 0.531
60.00 0.672 0.585 0.503
65.00 0. 604 0.571 0.468
70.00 0.385 0.549 0.425
75.00 0.549 0.521 0.376
80.00 0. 495 0,485 C.319
85.00 0.385 0.453 0.256

88.75 1.813 1.813 1.500
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APPENDIX D
CONVERSION OF CRACK DISTRIBUTIONS ON PLANE SECTIONS TO
SPATIAL DISTRIBUTIONS

D.,1 INTRODUCTION

The analysis presented here involves the conversion of c¢rack trace
distributions on plane sections of a transversely isotropic body to three-
dimensional crack distributions. In such a body, the orientation and size
distributions of ¢racks are symmetric about one axis of the bedy. The
cracked body is assumed to be opaque so that only c¢rack traces on the ex-
terior of the body can be obtained experimentaliy. This analysis was
developed as part of a study of ioad-induced cracks in cement paste and
mortar, in which an estimate of the three-dimensional crack distribution was
required to gain a full understanding of the material response.

A number of investigators [1,25,26,36,44,60,74,83,89] have used the
concepts of stereoclogy to develop methods for determining numerical den-
sities and size distributions of inclusions from information obtained on
plane seqtions of a structure. These methods are mainly applicable to
systems in which the orientation distributicns of the inclusions are
isotropic with respect to the structure space [98]. In an isotropic system
of inclusions or cracks, all orientations occur with equal likelihocd and
size distribution is independent of orientation., Weibel [98] has shown how
the orientation distribution of inclusions in a transversely isotrcepic bedy
can be esatimated from information obtained on two mutually perpendicular
plane sections of the body. Seaman, Curran and Crewdson [75] extended the
method of Kaechele and Tetelman [4U4] to establish a statistical procedure to
transform observed crack traces on a single plane section of a transversely
isotropic body to a spatial crack distribution. The procedure is limited to
circular cracks with a size distribution that is independent of crack
crientation.

The current study establishes an iterative procedure for estimating
spatial crack distributions for transversely isotroplc systems. The crack
size distribution can vary with orisntation. The cracks are assumed to have
a general elliptie planform. The analysis may alsc apply to similarly

shaped inclusions, An example based on a study of load—-induced cracks in
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cement paste and mortar is provided to illustrate the results of the proce-

dure.

D.2 OVERVIEW COF THE METHOD OF ANALYSIS

In this analysis, the concepts of mathematical statisties [31],
geometrical probability [48] and stereclogy [94,98] are used te establish
relationships between spatial distributions of crack size and orientation
and surface distributions of crack trace length and angle on plane sections.
First, each relationship is obtained in a form which is valid for a struc-
ture in which the size and the crientatlon distributions of the cracks are
generally anisotropic with respect to the structure space, Relevant assump-
tions are made to reduce the general relationships to simpler forms which
are valid for a transversely isotropic system of cracks., The derivations
are presented in terms of continuous frequency distribution functions. The
distribution functions of crack trace lengths and angles are those that
describe crack distributions on two mutually perpendicular plane secticns of
a cracked body. The plane sections are the longitudinal and the transverse
planes which are respectively parallel and perpendicular to the longitudinal
{or loading) axis of a cracked body (Fig. D.1). For a transversely
isotropic system, the longitudinal axis is the axis of symmetry for the
erack size and orientation distributions.

To obtain the three—-dimensional crack parameters for a transversely
isotropic system, the orientation distribution of the cracks must be
determined. In this regard, a Marriott distribution function [98], which
describes the orientation distribution of transversely isotropic systems
with mild degrees of anisotropy, is assumed., This distribution has the
property that it can be determined from a knowledge of the length of crack
traces on longitudinal and transverse plane sections., The solution proce-—
dure is not limited to any particular form of trace length or size
distribution.

The geometric expressions which are required to establish relationships

between spatial and surface distributions are derived in Appendix E,

D.3 RELATIONSHIPS BETWEEN 2-D AND 3-D CRACK DISTRIBUTIONS
In this study, each crack is assumed to be elliptic, as shown in Fig.

D.1, with a major semi-axis length of a and a minor semi-axis length of b,
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The size of an elliptic crack will be represented by the length of its
major axis. The length of the major semi—axis, a, is therefore designated
as the "characteristic crack size". The aspect ratio of the c¢rack, r, is
defined as the ratio b/a, and its value is assumed to be same for all
cracks, The aspect ratio varies between 0 and 1. A value of 1 indicates a
circular crack.

Y, ¢ and n are the angular coordinates of the crack. ¥ is the angle
between the plane of the crack and the transverse plane; it is alsoc the
angle that the normal to the crack surface makes with the longitudinal axis
of the body. ¢ is the angle between a plane defined by the projection, on a
transverse plane, of the normal to the crack and the longitudinal axis and a
selected longitudinal plane. ¢ varies in a full ecircle about the lon-
gitudinal axis. The angle n defines the degree of rotation of the crack
about its normal, For n = 0, the plane defined by the major axis of the
crack and the crack normal is parallel to the longitudinal axis and perpen-
dicular to the transverse plane, while n = w/2 when the major axis is
parallel to the fransverse plane. For a circular crack (r = 1), n is not
defined since every axis of the crack is a major axis.

When a plane intersects a crack, a crack trace length, £, and angle, 8,
are obtained, as shown in Fig. D.2 for a longitudinal plane intersecting an
elliptic e¢rack. The crack angle, 8, on a transverse plane is equal to ¢
w/2, as can be seen in Fig. D.3.

If f(a,¥,¢,n) is the joint relative frequency density of crack size and
orientation, then f(a,v¥,4,n)dadpdédn is the probability that a crack has a
major semi-axis length of a x da/2 and an orientation of ¢ % dy/2, ¢ + do/2,

n + dn/2. The number of such cracks in a unit volume is

NV f(a,¥,¢,n)dadpdedn (D.1)

in which NV is the total number of cracks per unit volume. The ranges of a,
¥, ¢ and n are
0 <z«
0 sy Sa/2
0 £¢ £ 2n
nsn

o

-t £

such that
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g e e

- f: f(a,¥,¢,n)dadpdedn = 1 (D.2)

In the discussions that follow, the relationship of spatial distribu-
tions to surface angle distributions are derived first, followed by
relationships to surface length distributions. Finally, the total number of
eracks per unit velume, N, is estimated from the total length of cracks per
unit area on longitudinal and transverse planes. In a subsequent section,
these relationships will be used to obtain an estimate of spatial distribu-

tions based on observed surface distributions,

D.3.1 Relationships between Spatial Distributions and Surface

Angle Distributions

D.2.1.1 Longitudinal Plane
For a crack which intersects a given plane, s is the distance between

the c¢rack centroid and the plane, and Spax is the maximum distance for which
an intersection can be obtained. smax is a function of a, ¥, ¢ and n; 1l.e,.
smax = smax(a,w,¢,n). The expression for smax is given later in this
section.

The number of cracks with given values of a, ¥, ¢ and n which intersect
a2 longitudinal plane of unit area and therefore lie within a distance of s-§
Shax from both sides of the plane is

2 Ny f(a,y,o,n)dadpdedn S pax {D.3)
For all a, ¥, ¢ and n, the number of cracks with an angle of 6 + d8/2 on the
plane is

00T 5% anyle(a,u(e,0),0,n)aw s, Jdadedn (D.1)

max
in which ¥ is defined over a range which limits the cracks to a trace angle
of 8 =+ de/2. Only cracks with ¥ 2 8 can glve a trace angle of 8 on the
plane. An expression which relates 6 to ¢ and ¢ is given later in this
section. The total number of cracks which intersect the plane is

/2

P A S ol I P ) ldadpdga (D.5)
_.ny ] [v] o V a:‘pn‘?:ﬂ Smax a ‘b {b n .
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If £(8) is the relative frequency density of a crack angle on the plane,
then f{8)ds is the probability that a crack interseets the plane with an
anglie of 8 % d8/2; 0 5 8 = 7/2,

Number of cracks with 8 & d468/2 (0.6)
Total number of cracks which intersect the plane °

f(9)de =

Substituting Eq. {(D.4) and (D.5) into Eq. (D.6),

' o
f_g. 55 15 Lela,vie,0),0,n)dy smax]dad¢dn
£(8)d0 =~ (D.7)
f_.n! J‘O fO IO f(asw’¢1r§) Smaxdad¢d¢)dn
Substituting dy = %% dg into Eq. (D.7),
! o
f_?]! f‘g fo f(a:¢(9,¢),¢.ﬂ) | 3‘-]3/38 I smaxdadq)dn )
£08) = —3 - (D.8
f....?}! f-:;r f.g/z fo f(a,‘f-’,qb,ﬂ) Smaxdadlﬂd(ﬁd'{}

The joint distrivuticn, fla,¥,9,n), 1s expressed in terms of conditional

distributions [31] as follows,
f(a,%¢.n) = f(a!%{b,ﬂ) f(‘b[d’,n) f(¢|n) f(ﬂ) (D.9)
Substituting Eq. (D.9) into Eq. (D.8),

f-?:fgf: f[alw(e,¢>,¢,n]f(w<e,¢)|¢,n)fC¢]n)f(n)l§§1 dadédn

I_E:IEIE’Z fo £(a]¥,0,mT]9, (4| n)E(n)s  dadydedn

s
max

f(e)=

{(D.10)

For a general anisotropic system of cracks, Eq. (D.10) gives the relation-
ship between the spatial distributions and the angle distribution on the
longitudinal plane.

In a transversely isctropic system, the ecrack size distribution is
independent of ¢, and the distribution in ¢ is uniform. It is assumed in
the current analysis that the distribution in n is uniform, Therefore, the
characteristic crack size, a, and the variance of the crack size distribu-

tion, var{a), are, in general, functicns of % only; i.e, a = a(y) = aw,
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var{a} = var(aw). f{¢) and f£(n) are constant functions and therefore Eq.

(D.10) becomes

r g flajwie, o)) £lvle,)) | d9/38 | s___dadédn
£(8) = =l X (D.11)
'r....::r fo Jo'° [y falw) £(¥) Sy 02dUdedn

As shown in Appendix E, the relationship between 8, ¥ and ¢ on the

longitudinal plane is given by

cos § = cos ¢ (1 - sinaw sin2¢)“1/2 (D.12)
Differentiation of Eq. {D.12) gives

9 cos ¢

ae = (D‘13)

1 - 00328 sin2¢

Also in Appendix E, s is expressed as

max

2
a. [rS cos(¢+n,.) + sin(e+n,) tan(e+n.}]

max EPZ . tan2(¢+n )]1/2
T T
in which ap = a (sinzn + coszn coszw)T/E
ten n, = tan n/cos U 3 ¢ v /2 (D.15)
cosgn + sinen cose$ 172
Lo =1 [ ]

. 2 2
sinn + co8 n coszw

ap is the projected length on a transverse plane of the major semi-axis of
the crack, Ny is the projection of the angle n on a transverse plane, and re
is the aspect ratio of the projection of the crack on a transverse plane.
The evaluation of Eg. (D.11) requires that the size distribution of the
cracks, f(a]w), be known. However, the equation can be simplified so that
its evaluation depends only on a knowledge of the mean size of the cracks,
In Eq. (D.11), since only f(a|¥) and Spay 20¢ functions of a, both the

numerator and the denominator can be simplified by noting that the mean



390

value of Spax for all cracks at a particular orlentaticn, ¢, 1s directly

dependent upon the mean crack size, <aw>. In the numerator,

Crap(e,0) = 1o Spaxflalv(e,9))aa (D.16a)
In the denominator,
<smax>w = 1o Smaxf(agw)da (D.16b)

Eq. (D.11) then becomes

n' o
cto) = Sgv 15 tlwte,9)) | dw/de | <s > o) dedn 5.17)
nt o w2 ‘
I_n, fo Jo' T 1Y) < S hax >lp dydédn

If the mean crack size, <a¢>, is known, <Smax> in the numerator and
denominator of Eq. (D.17) can be determined using Bg. (D.1%) and {(D.15).
Eq. (D.17) is therefore independent of f(z|¥). The numerator of Eq. (D.17)
is evaluated by using Egq. (D.12) to express ¥ in terms of # and ¢.

The evaluation of Eq. (D.17) is illustrated by considering the case of
an isotropic syatem of cracks. In this case, the use of polar coordinates

98] yields
£{Y) = sin ¢ {D.18)

Substitution of Eq. (D.18) into Eq. (D,17) should give a uniform distribu—
tion in @ since all orientations occur with equal likelihood, The result is
shown in Fig. D.#. ¢ and 6 have units of degrees. It is observed in Fig.
D.4 that a uniform distribution is computed over the range of 8 from about
10° to 90°. The non-uniform distribution over the range of 8 from 0° to
about 10° is due to the nature of Eq. (D.18). This eguation gives f(y) =
0 if ¥ = 0°. But ¢ = @¢° also corresponds to 8 = D° [see Eg. (D,12)].
Hence Eq. (D.17) is zero for 8 = 0° resulting in the non-uniform distribu-
tion over low angles, In evaluating Eq. (D.17), it is therefore recommended
that £{8) be computed over the range of 8 from 10° to 90° and the results
extrapclated to include the range from 0° to 10¢. The forms of the in-

tegrands in Eq. (D,17) do not allow direct integration. Gaussian guadrature
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[72] is therefore ussd for the numerical evaluation of Eq. (D.17). Four

integration points are sufficient for these results.

B.3.1.1.1% Marriott Distribution
The orientation distribution of a transversely isotropic system of

three-dimensional objects with a mild degree of anisotropy can be described

by a Marriott distribution [98]. This distribution is expressed as

1
f(y) = TTRS

3 (1 + X cos 2¢) sin ¥ (D.15)

7Y

-1 K =1

K is a measure of the degree of anisotropy and is given by

B[(BL/ET) - 1]

K = — {D.208)
2(B; /Bp) ~ 1
B
ioh 2<-T b
in which 3 %5 %%
BL and BT are the boundary lengths of the objects per unit area on lon-

gitudinal and transverse planes respectively. The bhoundary length of &
three—-dimensional object is the perimeter of the trace of the object ob-
tained on a plane section. If the object is a crack, the trace on a plane
section is a line., Hence, the boundary length of a crack is twice its trace
length on a plane section. BL and BT’ therefore, are respectively egual to
two times the total crack trace length per unit area on longitudinal and
transverse planes; i.e. BL = 2 ML<2>L, BT = 7 MT<£>T, in which ML and MT are
the number of c¢racks per unit area on longitudinal and transverse planes
respectively, and <52.>L and <9,>T are the mean crack trace lengths on lon-
gitudinal and transverse planes respectively. Eq. (D.20a) can therefore be

written in the following form:

u[(ML<2>L/MT<1>T) - 1]

- (D.20Db)
2(ML<2>L/MT<£>T) 1

K::

M. L8>

T T
in which — =
M <4>
3 L L

6
5
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Defining "high angies" as angles, ¥, close to 90° and "low angles" as ¢
close to 0°, a negative K indicates a system in which more cracks are
oriented at high angles than at low angles, while a positive K indicates a
system in which fewer cracks are orlented at high angles than at low angles.
For K = 0, Eq. (D.19) reduces to Eg. (D.18), the equation for an isotropic
distribution of orientations..

Fig. D.5 provides comparisons between the orientation, ¢, and the
surface angle, 9, distributions for an isotropic system of cracks (K = 0)
and those for a transversely iscotropic system in which K = -0.5. The sur-
face angle distributions are determined using Eq. (DP.17). The orientation
distribution of the transversely isotropic system 1s skewed more towards
high angles than the corresponding distribution for the isotropic system,
The computed surface angle distribution for the transversely isotroplc
system correctly indicates that more cracks are oriented at high angles than
at low angles,

If M<L> is obtained on longitudinal and transverse plane sections of a
cracked body, the Marriott distribution provides an estimate of the orienta-
tion distribution. It will be shown later how Eq. (D.17), (D.19) and
(D,20b) can be used with expressions relating spatial distributions and
surface length distributions, to establish a procedure for estimating the
crack size distribution, f(a]¢), aspect ratio, r, and the range of n for a

transversely isotropic system of cracks.

D,3.1.2 Transverse Plane

The trace angle, 8, on a transverse plane is equal to ¢ + w/2 (see Fig.

D.3). Hence, the distributions In 8§ and ¢ % 7/2 are equal,.

f(8) = £(¢ + w/2) {D.21)
For a transversely isotropic system of cracks, the distribution in ¢ is
equal to the distribution in ¢ 2 w/2. The distributions in 6 and ¢4 are

therefore equal.

£(8) = (o) (D.22}



393

D.3.2 Relationships between Spatial Distributions and Surface Length

Distributions

D.3.2.1 Longitudinal Plane.

For a general transversely isotropic system of cracks, the trace length
distribution on a longitudinal plane will vary with trace angle. For con-
venlence, the derivations that follow are in terms of the number of cracks
with given values of trace length and angle.

The number of cracks with given values of a, ¥, ¢ and n that have
centers within a distance of s + ds/2 from both sides of a longitudinal
plane of unit area and give a trace lengih of % + d%/2 and a trace angle of

8 + da8/2 on the plane is

2 Ny £(a(t,v,0,n),9(8,4),6,n)dadvdedn ds (D.23)

I+

in which a and ¢ are limited to those values that give a trace length of &
d%/2 and an angle of 8 + d6/2, respectively, on the plans. For all a, ¥, ¢
and n, the number of cracks that give a length of L + 4d&/2 and an angle of &
+ d8/2 on the plane is

oo

a 2Nv[f(a(ﬁﬂlf,¢m),\b(ﬁ,¢};¢,ﬂ]dw ds]dad@dn (D.Z}-‘)

1
)
min

in which 3Lin is the smallest characteristic crack size that gives a length
of L& on the plane and is a funetion of &, ¥, ¢ and n. The expression for

a 1s given later in this section. The total number of c¢racks which

min
intersect the plane with an angle of § + d6/2 is given by Eq. (D.4) as

P T2 on [e{a,u(e, 6),6,n)db s Jdadedn (D. 25)

__.ns [+ o v E] L] P max .
If f(2|e} is the relative frequency density of a crack length on the plane
for 2z given angle, then f(l[e)dl is the probability that a crack intersects
the plane with a length of & + d&/2 for a given 3.

Number of cracks with L + d&/2, 8 % d§/2
Number of cracks which intersect the plane with 6xde/2

F(ele)ay =
(D.26)

Substituting Eq. (D.24) and (D.25) into Eq. (D.26),
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! o
I_:rfgfa if(a(2:¢:¢,ﬂ),¢(9,¢).¢,n)d$ ds]dad@dn
£(2]8)d8 = ——mrn - (D.27)
j..nl‘rﬂfﬁ [f[a;¢(6,¢) s¢1n)d$ Smax]dad¢dn
Substituting ds = %% d4f into Eq. (D.27),

£ST e{a, v, 6,m,08,8),0,n) [52] dadean

rte) - e (D.28)
f_nrfo IG f(a:¢(9,¢).¢,ﬂJ 3 axdad¢dn

n

Eq. (D.9) is substituted into Eq. (D.28) to obtain

I*QZfEf: f(a(z,w,¢,n>1¢(e.¢),¢,n)f(w(e,¢)1¢,n}fc¢;n>f<n>1§§|ead¢dn
min

s 00557 £(alute, 0),0,n)e(0(0,9) [0, n) e M E(n)s,  dadean

£(2]9)
(D.29)
Eq. (D.29) is valid for a general anisotropic system of cracks.

For trénsverse isotropy and the assumption that the crack distribution

is uniform in n, Eq. (D.29) becomes

$N ST elats,e,m ] ue,0)) £luie,0)) 52| dadedn
min
£(e]e) = -
- Jo Lo tlalute,8)) £lw(e,)]) s dadedn

{D.30)

Eq., (D.30) is evaluated by using Eq. (D.12) to express ¥ in terms of 8 and
$. S, is given by Eq. (D.14). From the geometric relations derived in
Appendix E,

2 2
ym FT + tan (¢+nT) 1/2

%nin ~ ro tan{¢+ng) {D.31)

sinen + 0082n 0052 Y

% coss tan(¢+nT}[sin2(¢+nT) + r? c032(¢+n?)]

in which ym = 2
2 sin(4+n.) tan(¢+n,) + ro cos(é+n.,)
T T T T
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Np and rp are defined previously in Eq. (D.15). Since the numerator of Eg.
(D.30) requires an integration over crack sizes, %% needs to be expressed as
a function of the c¢haracteristic crack size. This is accomplished in
Appendix E by considering the projection of the crack on a transverse plane,

R
3¢ 1S expressed as

da
3s _ 35 T
3 " 33 30 (D.32)
T
in which ar is the projected length on a transverse plane of the major

semi-axis of the crack and is defined previously in Eq. (D.15). The
derivative on the right hand side of Eq. (D.32) are expressed in Eq. (E.63)
through (E.68) of Appendix E.

The nature of surfage trace length distributions obtained using Eq.
(D.30) can he illustrated using assumed spatial distributions. For an
orientation distribution in which the degree of anisotropy, K = -0.5 [Eq.
(D.19321, and for a crack size distribution which is independent of ¥ [i.e.
f(alm) = f(a)], Eq. (D.30) gives the distribution of erack trace length on
the longitudinal plane shown in Fig. D.6&. As expecied, the mean frace

length on the plane, <% >, is smaller than the mean crack size, <2a>.

g

D.3.2.2 Transverse Plane

For a transversely isotropic system of eracks, the trace length dis-
ftribution on a transverse plane will not vary with trace angle. Therefore
in the following derivations, the number of cracks with a given value of
trace length is summed over all trace angles,

The number of cracks with given values of a, ¥, ¢ and n that have
centers within a distance of s + ds/2 from both sides of a transverse plane

of unit area and give a trace length of % + d&/2 on the plane is
2 Ny t{alf,¥,n),¥,¢,n)dadpdedn ds (D.33)

in which a is limited to those values that give a length of & + ¢&4/2 on the
plane, For all &, ¥, ¢ and n, the number of cracks that give a length of i

+ di/2 on the plane is
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1
£ T T e [e(ale, v, m) ,u,6,m) ds]dadudedn (D.34)
n fmin v

in which 2 in is the smallest characteristic crack size that gives a length
of & on the plane and is a function of %, ¥ and n, The expression for 8 in
is derived in Appendix E and given later in this section. The total number
of cracks which intersect the plane is

r T TR g o e, 0, 6,0 s ]dadudgdn (D.35)

_nf 4] ] 0 V r¥Yr Yy may
If £{L) is the relative frequency density of a crack length on the plane,
then £{4)di is the probability that a crack intersects the plane with a

length of 4 = d&/2 .

Number of oracks with L + di/2 (0.36)
Total number of cracks which intersect the plane '

f(L)ds =

Substituting Eq. (D.3%) and (D.35) into Eq. (D.36),

s 0T sV 5 Le(at,9,m) 4,4, dsaadydedn

£(2)dR = —mr min (D.37)

/ w
f.-.:f ftr)r f'g 2 fo {f(a.ﬂl,d},n) Smax] dadypdedn
Substituting ds = g% d% into Eg. {D.37),
£ 0TV eate,un) ue,n) [35] dadudedn
min .
(L) = e (D.38)
S To fo7% Lo £layb,¢0m) s, dadbdedn

Eg. (D.9) is substituted into Eq. (D.38) to obtain
n' .t w/2,= 9s
Togdeds S, £lal, v, ) [, 9,n)E (0] 6, ME (6| n)F(n) 37| dadydedn

£ n' .w .w/2 wmin
[ tede "o £aly, ¢, e[ e,mMECe[ M (n)s  dadydédn

(D.39)

Eq. (D.39) is for a general anisotropic system of cracks.

For a transversely isotropic system of cracks, and the assumption that

the crack distribution is uniform in n, Eq. {D.39) is simplified %o become
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I_Tr‘}, fg/‘? f: flaa,w,n)|w) £() | 3s/3% | dadydn
min
- £ 20 el £y dadpd (0. 40)
-nt °° o flalv ¥ Spax n

The geometric relations in Appendix E give

Smax = 3L (1 + rs t;an‘gnL)“U2 (rE sin n tan n  + cos nL) {(D.h1)
in which a = a (sinen + cosgn sinzw)1/2
tan no= tan n/sin ¢ 3 ¢ = 0 (D.42)
cos2n + sinzn sinzw 172
ro=r

sin2n + cosen sinzw

aL is the projected length on a longitudinal plane of the major semi-axis of
the crack, n, is the projection of the angle n on a longitudinal plane, and
T is the aspect ratic of the projection of the crack on a longitudinal
plane. The smallest a that gives a length of & on the plane is derived in

Appendix E as

g (coszn + rgsinen y (1 + rztanzn )F/z
L L L L L
a ., = - {D.43)
min 2, 2 2 .2 ..1/2
2 rL(oosnL + rL31nn&tannL} {sin"n + cosn sinY)

The derivative, g%, in the numerator of Eq. (D.L0) needs to be expressed as
a funection of the characteristic crack size. 1In Appendix E, this relation-
ship is obtained by considering the projection of the crack on a

longitudinal plane. %% is expressed as

E]
2= 32 B (D, 4n)

The expressions for the derivatives on the right hand side of Eq. (D.4H) are
given by Eq. (E.70) through (E.75) of Appendix E.

The nature of the surface trace length distributions obtained using Eq.
{D.40) can be illustrated using the same assumed spatial distributions used

previously for the longitudinal plane [K = -0.5 and f{a[y) = f{a)]. Eq.
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{D.40) gives the distribution of crack lengths on the transverse plane shown
in Fig. D.7. As in the case of the longltudinal plane, the mean trace
length on the transverse plane, <>, is smaller than the mean c¢rack size,

<2a>.

D.3.3 Estimate of the Total Number of Cracks per Unit Volume.
Weibel [98] has shown that based on the Marriott distribution, the

surface area per unit volume of flattened structures can be expressad as

l
Sy = T (BT + 2 BL) (D.45z)

in which BT and BL are the boundary lengths per unit area of sections of the

structures on tranaverse and longitudinal planes, respectively. In the case

of cracks, BT and BL are respectively equal to two times the total crack

trace length per unit area on transverse and longitudinal planes (see sec-

tion D.3.1.1.1). Eq. (D.U45a) can therefore be written as

-1

SV 37T

(M <>, + 2 M <85 )) (D.45b)
in which MT<R,>T and ML<§L>L are, respectively, the total c¢rack trace length
per unit area on transverse and longitudinal planes.

If the elliptic cracks have a mean surface area of <{wab> over all

orientations, then

Sv = 2 NV {mab>

ar

2
S,“r = 2 var<a > {D.u46)

in which NV is the number of cracks per unit volume, r is the aspect ratio

of the cracks, and <a2> is the mean squared value of the characteristic
cerack size over all orientations; i.e.

w/2 2

% = £3 1172 2Pecalwe(y)duda (D.47)

{a

BEquating (D.45d) and (D.#6) and rearranging,
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y
Ny = —5——-

NEIER <9u>T + 2 ML<5L>L) (D.u8)

T

In Eq. {(D.U48), the total crack trace lengths per unit area (M<E>) om
transverse and longitudinal planes are measurable quantities. <32> can be
determined from Eq. {(D.L7) iFf the c¢crack size and orientation distributions
are known., For a transversely isotropic system of cracks, Eq. {(D.U8) can
therefore be used to estimate the number of cracks per unit volume., The
procedure for determining distributions f(aly) and £(y) is described in the

following section,

D.4 PROCEDURE FOR ESTIMATING 3-D CRACK PARAMETERS

The expressions relating spatial crack distributions to surface dis-
trivutions on longitudinal and transverse planes, can be used to estimate
the three-dimensional crack distributions for a transversely isotropic
system of cracks based on observations of surface crack traces.
Specifically, the procedure that follows provides estimates of the distribu-
tions of c¢rack orientation and size, f{¥) and f(afw}, the mean
characteristic size of cracks as a function of ¢, <aw>, the variance of the
crack size distribution, var(aw), the crack aspect ratio, r, and the range
of the angle n. It is assumed that crack trace distributions have been
obtained on longitudinal and transverse planes of the cracked body.

An iterative procedure is used in order to estimate the spatial crack
parameters. The procedure 1s set up in terms of the three equations
[{(p.17), (D.30}, and (D.80)] which relate spatial crack distributions to
surface distributions on longitudinal and transverse plane sections of a
cracked body. The Marriott distribution which is described in Section D.3.1
for a mildly anisotropic system, is assumed, In using this distribution,
the restriction on the degree of anisotropy (i.e. -1 £ K £ 1) must be
satisfied.

The procedure is based on minimizing the sum of the squared differences
between observed surface distributions and calculated distributions that are
obtained from assumed spatial distributions. As an initial guess, the
relationship between mean trace length and trace angle on the longitudinal
plane is used as & guide to the form of f(a|w} and the values of <a¢>.
Similarly, values of var(aw) may be assumed. The assumed spatial distribu-

tions which minimize the sum of the squared differences between the observed
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and calculated surface distributions are the correct estimates based on the

assumed form of f(alw). The procedure may be repeated with different forms

of f(ay)., The spatial distributions and the form of f(a]¥) which enable

the minimization process to attain a global minimum are the desired

estimates,

1.

The procedure is outlined as follows.

Determine the degree of anisotropy, K, from Eq. {D.20b) using the total
lengths of cracks per unit area, M<L>, obtained on lengitudinal and
transverse plane sections of the cracked body.f{¢) is then obtained
from Eq. (D.19).

Agsume a form for the c¢rack size distribution, f(a]w), such as a gamma
distribution,

Assume expressions for <a_,> and var{aw) as functions of ecrack

orientation. !
By varying the c¢rack aspect ratio, r, compute the trace angle distribu-
tion on the longitudinal plane, f(e)Lc’ using Eg. (D.17) with -w/2 £ 7
s w/2. Determine the r which minimizes the sum of the squared dif-

Terences between the observed, f(a)L, and computed, f{8) trace angle

Le?’
distributions, This sum 1s expressed as

2
g [f{e)L - f(e)Lc] A8 (D.49)

AB is the interval for recording the trace angles. Change the range of
n and again determine the r which minimizes Eq. (D.439)., Continue this
process until Eq. (D.H49) cannot be minimized further. The value of r
and the range of n for which Eq. (D.%9) is fully minimized, are the
estimates to be used in the fellowing steps.

Use Eg. (D.40) to compute the trace length distribution on the
fransverse plane, f(i)Tc. An improved estimate of the variance of
f(a{w) is obtained by assuming trial values for var(am) until the sum
of the squared differences between the observed, f(l}T, and computed,
()
as

To? trace length distributions is minimized. This sum is expressed

i {f(g)? f(E)Tc] A% (D.50)
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A% is the interval for recording the trace lengths.

6. Compute the trace length distribution on the longitudinal plane,
f(ﬂle)Lc, using Eq. (D.30). Calculate the sum, over all trace angles,
of the squared differences between the observed, f(2|e)L, snd computed,

f(k[e)Lc, trace length distributions, This sum is expressed as

p{z [£ee]e), - £eafe), 128} (D.51)
L Le

8 2

T Return to Step 3 and repeat the process until the values computed from

Eq. (D.51) reach a global minimum. The parameters <a_ >, var(aw), r,

and the range of n which produce this global minimuiiare the best
estimates for the three-dimensicnal crack distribution based on the
form of f{a}y) assumed in Step 2.

8. The iterative process may be restarted at Step 2 by assuming a dif-
ferent form for f(alw). The form of f(a[&) and the corresponding
values of <aw>, var(aw), r, and the range of 1 which minimize Eq.
(D.51) are the desired estimates.

If the c¢racks are assumed to bhe circular, the procedure becomes

simplified since Step 4 is no longer required.

D.,4.,1 Example

In order tc illustrate the results of the procedure described above, an
example based on a study of load-induced cracks in cement paste and mortar
i3 presented. In the example, angles have unlts of degrees. Computations
are performed on a computer, and all integrals are evaluated numerically
using Gaussian quadrature. Four integration points are sufficient for these
results,

Cement paste and mortar specimens are loaded in compression to selected
stress levels and then unloaded. Longitudinal and transverse fractured
surfaces of the loaded specimens are then viewed using a2 scanning electron
microscope {SEM). Crack trace lengths and angles are measured at a mag-
nification of about 1250x, Only portions of cracks within the field of view
are measured in order to obtain an accurate estimate of the density of
cracks within the scanned areas. As a result ¢f the finite size of the

viewing area, the trace length and angle distributions are distorted. These



no2

distortions are corrected as described in Appendix C. The trace distribu-
tions are also modified to account for the effects of specimen preparation
prior to viewing in the 3EM (see Chapter 3). The experimental trace dis-
tributions for a specimen of cement paste (age 28 days, water—cement ratio =
0.5) loaded to a strain of ©.002 are summarized in Tables D.1 and D.2 and
used in this example. The trace length distributions on both the transverse
and longitudinal planes are best described by the gamma distribution. This

distribution i3 represented as

_ 1 a=1 —&/8
f(zle)L = ;5;?;; % e (D.52)

in which o and B are functions of the mean and the variance of the distribu-
tion, in this case <&> or <26> and var(i) or var(la).

@>? var(d) (5.53)

&= JEr D) B = 8>

T{a) is the gamma function and is defined as

ey dy (D.54)

rla) = o y©
Gaussian quadrature with four integration points over the range of y from O
to 50 ia sufficient for the integration in Eq. (D.54).

For the longitudinal plane, representative values for the frace length
distributions are given in Table D.2 for trace angles of 15°, 30° and 60°,
Values of the relative frequency density for other trace angles can be
obtained using Eq. (D.52) and the values of <28>L and var(ie)L given in
Table D, 2,

In Fig. D.8, the experimental trace angle distribution indigates that
the orientations of the crack traces are skewed towards the longitudinal
direction. The degree of anisotropy also shows that the spatial distribu-
tion 1s skewed toward the longitudinal direction. K is -0.16 as determined
using Eq. (D.20b). The value of K falls within the required range of -1 to
1, indicating that the Marriott distribution is wvalid,

As observed Iin Fig. D.8-D.,10, the calculated surface distributions,
obtained from the converged solution for the spatial distributions, closely

mateh the distributions obtained from the experimental data. Selected
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values for the calculated surface distributions are also given in Tables D.1
and D.2,

For the spatial distributions, ¢rack size varies with crack
orientation. The best form of the size distribution, f(a]w}, turns ocut to
be a gamma distripution [Eg. (D.52)1.

a1 2271 a/8 (D.55)
B TI(a)

flajy) =

with a = a o, B and T are defined in Eq. (D.53) and (D.54). For this

@J‘
example, the values of the estimated crack parameters are:

r= 0.9 n' = 0°

3 9 2

{a. > = 1.0x1G_5w + 1.55%x10 “in. var(aw) = 1.6x10

-6
+ 1.4x10 “in.
¥ v 10 in

f{Y) = 0.95(1 - 0.1bcos 2¢¥)sin ¢

To obtain the total number of cracks per unit volume, NV’ the calculated
spatial distributions are used in Eg. (D.4T) to determine <a2>. The value
of Nv [Eq. (D.LE)] is 2.3x106 eracks per cuble in,

D,5 SENSITIVITY OF THE MODEL TO ERRORS IN TRACE LENGTH PARAMETERS

In this secticn, the sensitivity of the estimated three-dimensional
crack size parameters to errors in the surface c¢rack trace length parameters
is Investigated.

A trace length distribution of known form is adequately described by
its mean, <4>, and variance, var(i). The corresponding three-dimensional

parameters which describe a size distribution of known form are <aw> and

var(aw). For errors of 10%, 20% and 30% in the trace length parameters used

in the previous example, estimates of <a > and var(aw) are obtained.

)
Table D.3 illustrates the results, 4 30% overestimation of <i> results

in a 43.8% overestimation of <a_ >, while a 30% underestimation of <i>

4

results in a 39.2% underestimation of <a$>. Tnis implies that errcors made

in the nmeasurement of trace lengths can result in larger errors in estimated

crack sizes. The effect of an overestimation (or underestimation} of <> on
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var(a, ) 1s very small, as evidenced by the 2,.6% overestimation of var(aw)

U
for a 30% overestimation of <4>.

On the other hand, a 30% overestimation or underestimation of var(l)

) and & very small effect on <a,>. A 30% over-

¥ v

estimation of var(l) results in overestimations of var(aw) and <a¢> of 72.3%

and 1.4%, respectively, while & 30% underestimation of var{l) results in

has a large effect on var(a

underestimations of 68.4% and 1.0%, respectively.,
This example reinforces the fact that the data on surface c¢rack traces
must be obtained accurately in order fTo obtaln a close estimate of the

spatial erack distribution.

D.6 SUMMARY

The three-dimensional distributions of c¢racks or similarly shaped
inclusions in opagque bodies cannot be obtained directly from experimental
measurements. By using the concepts of statistics, geometrical probability,
and stereology, relationships have been obtained between spatial and surface
distributions of cracks. These relationships are used to establish an
iterative procedure for estimating three-dimensicnal crack parameters for a
transversely isctropic system of cracks, using crack trace distributions on
longitudinal and transverse sections of the cracked body.

Results from a study of load-induced cracks In cement paste and mortar

are provided to illustrate the use of the procedure,
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TABLE D.1
TRACE ANGLE DISTRIBUTIONS FOR THE LONGITUDINAL PLANE,

(CEMENT PASTE WITH A WATER-CEMENT RATIC = 0.5; STRAIN = ($,002)

Angle, Relative Frequency Density, 112}“2deg._1
degrees Experimental Calculated
0 0.97 0.91
5 0.99 0.94
10 1.00 0.97
15 1.02 0.99
20 1.03 1.02
25 1.05 1.04
30 1.06 1.07
35 1.08 1.09
Lo 1.10 1.1
45 1.1 1.13
30 1.13 1.15
55 1.14 1.16
60 1.16 1.18
65 1.17 1.19
70 1.19 1.21
5 1.21 1.22
80 1.22 1.23
85 T.24 1,23

90 1.25 1.24
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TABLE D.2
EXPERIMENTAL AND CALCULATED TRACE LENGIH DISTRIBUTIONS.

(CEMENT PASTE WITH A WATER-CEMENT RATIO = 0.5; STRAIN = 0.002)

Tranéverse Plane: <2,>T = 2.01x10_31n. var(E)T = 1.37x10“61n.2
Longitudinal Plane: <SLB>L = 0.75x10-58+1.90x10*31n.
var(l,), = 1.15%10 29+1.35x10 01n.
Length, Relative Freguency Density, in.—]
1G-3in. Tran. Plane Longitudinal Plane
B = 15° g = 30° 8 = 60°
Exp. Cal, Exp. Cal. Exp. Cal. Exp. Cal.
0.0 0 0 0 0 0 Q 0 0
0.5 202 156 89 110 76 95 59 65
1.0 374 381 254 242 238 232 212 212
1.5 396 364 315 319 33 317 325 310
2.0 333 343 346 329 349 332 350 336
2.5 24T 276 294 289 301 296 311 305
3.0 169 199 225 228 233 235 245 245
3.5 110 131 160 165 | 187 171 178 180
b0 68 81 108 112 113 117 121 124
4.5 41 a7 70 72 73 75 79 80
5.0 24 26 by Ly L6 u7 4g 50
5.5 14 14 27 26 28 28 30 30
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TABLE D.3
SENSITIVITY OF 3-D CRACK SIZE PARAMETERS TO ERRORS IN

TRACE LENCTH PARAMETERS.

Overestimation Resulting Resulting
{Underestimation) Overestimation Overestimaticn
of <&>, % {Underestimation) (Underestimation)
of <a¢>, ] of var(aw), %
10 14,1 0.7
20 28.6 1.8
30 3.8 2.6
(10) (12.5) (0.6)
(20) (25.3) (1.4
(30) (3%.2) (2.2)
Overestimation Resulting Resulting
(Underestimation) Overestimation Overestimation
of var(L}), % {Underestimation) {(Underestimation)
of <a¢>, 9 of var(aw), %
10 0.4 24,8
20 0.9 b9, 2
30 1.4 72.3
(10) (0.1} (22.7)
(20) (0.5} (56.5)
(30) (1.0} (68.4)
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APPENDIX E
GECMETRIC RELATIONS FOR CONVERTING CRACK DISTRIBUTIONS ON
PLANE SECTIONS TC SPATIAL DISTRIBUTIONS,

E.1 INTRODUCTION

The relationships established in Appendix D between spatial and surface
distributions of cracks require geometrical expressions relating crack slzes
and orientations to ecrack trace lengths and angles on longitudinal and
transverse plane sections of a ¢racked body. In this appendix, expressions
are derived that relate surface and spatial crack parameters for an elliptic
crack, The dimensions and the angular coordinates of the 3-D cracks and the
corresponding parameters for the crack traces are as defined in Appendix D.

In deriving relationships which involve the characteristic crack size,
projections of the elliptie crack on longitudinal and transverse planes are
considered. These projections are also ellipses. This fact is used in

crder to simplify the derivations.

B.2 DERIVATION OF GEOMETRIC RELATICNS

The relationships established in Appendix D between spatial and surface
distributions of cracks, require expressions for (1) the trace angle, 9, as
a funcﬁion of the angular coordinates, { and ¢, (2} the rate of change of ¥
with respect to 8, 9%v/88, (3) smax whieh is the maximum distance between a
crack centroid and a given plane for which the plane intersects the erack,
(#) a_ .
length of & on a plane, and (5) the rate of change of s with respect to &,
9s/9%.

Expressions relating the crack trace angle on a longitudinal plane, 8,

A which 1s the smallest characteristic crack size that gives a trace

to the angular coordinates ¢f the three-dimensional crack are derived first,

followed by derivations involving the characteristic crack size, a.

E.2.1 Relationship between Crack Trace Angle on a Longitudinal

Plane, 8, and Angular Coordinates of a 3-D Crack, ¥ and ¢

The crack trace angle on a longitudinal plane, 8, i8 related to the
angular coordinates of the three-dimensiconal crack, ¢ and ¢, by means of the
labelled triangles in Fig. E.1. Note that variations in n (Fig. D.1) d¢ not
affect 6.
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From triangles ACD and ABD,

AC sin ¥ = AB sin ©

AC sin 8
A8 T sin P (E.1)
BD = AB cos 8 {E.2)

From triangle BCD,

BC = BD sin ¢ {E.3)
Substituting Eq. (E.2) into Eq. (E.3) and rearranging,
%g = cos 6 sin ¢ (2.1

From triangle ABC,

BC

sin 8 = 1B (E.S)
AC

gos B = v {E.6)

Equating (E.H4) and (E.5),

sin ¢os 8 sin ¢ (E.T)

w
[

But cosgs 1 - sin28 (£, 8)

Substituting Eq. (E.7) into Eq. (E.8),

2

cos B = (1 - 00528 sin2¢)1/ {E.9)
Equating (E.1}, (E.6)} and (E.9),
sin 8 {1 - cosze Sin2¢)1/2 (E.10)

sin ¢
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Rearranging Eq. (E.10),

/2

cos B = cos ¥ (1 - sinzw sin2¢}_ (E.11)

058, ¥ £7/2
0S¢ s 2m

The rate of change of ¢ with respect to & is obtained by differentiating Eq.
{(E.11).

- 3 ¢ > (E.12)
1 - ¢cos 98 sin"d

sle

E.2.2 Relationships between Smax and crack parameters

For a crack that intersects a plane, the maximum distance between the

max’ can be

expressed in terms of the size and the angular coordinates of the crack.

crack centroid and the longitudinal or the transverse plane, s

Fig, E.2 shows an inelined elliptic crack with major semi-axis length a
and minor semi-axis length b. The c¢rack has been rotated through an angle n
about a normal to the crack plane. The expression for Spax with respect to
the longitudinal plane is obtained by considering the projection of the
inelined crack on a transverse plane, while the expression for Smax Wwith
respect to the transverse plane is obtained by considering the projection of
the crack on a longitudinal plane, Fig. E.3 and E.}4 show the projections of
the erack on transverse and longitudinal planes, respectively. The coor-
dinates of points on the boundary of each projected crack are defined 1In
terms of x-y axes, with the origin at the crack centroid. In both Fig, E.3
and E. U, OT is the distance between the c¢rack centroid and the plane; i.e.
0T = 3. For each plane, Spax iz obtained by expressing s in terms of the
coordinates of one of the points at which the plane intersects the boundary
of the projected crack,

In the derivations that follow, the lengths of the major and minor
semi-axes of the projeected cracks are determined in terms of the size and
the angular coordinates of the ineclined crack. The aspect ratios of the
projected cracks are then obtained. Finally, Smax is expressed as a func-
tion of the size, the aspect ratio, and the angular coordinates of the

projected cracks, The longitudinal plane is considered first.
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E.2.2.1 Longitudinal Plane
Consider triangle OAC of Filg. E.2 and its projection on a transverse

plane, triangle 0OEF, shown in Fig. E.5. In Fig. E.2,

OA = a
AC = a sin n (E.13)
OC = a cos n

In Fig. E.5,

EF

AC = a sin n
(E.14)

oF 0C cos8 ¥ = & cO3 11 cOS ¢

The right angle triangle NEF gives
a, = a2 (sinzn + ooszn cosew) {E.15)

in which aT is the projected length, on a transverse plane, cof the major

semi-axis of the c¢rack. Triangle OEF also gives

. EF _ tan n
tan np = 5z = o5 ¥ {E,16)

in which Ty is the projecticon of the angle n on a transverse plane,
Consider triangle OBD of Fig, E.2 and its projection on a transverse

plane, triangle OGD, as shown in Fig, E.6. In Fig. E.2,

OB = b
BD = b sin n {E.T)
CD = b cos n
In Fig. E.6,
GD = BD cos ¢ = b sin n cos ¢ (E.18)

The right angle triangle CGD gives
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b§ = b2 (coszn + sinzn coszw) {£.19)
Dividing Eq. (E.19) by Egq. {E.315), the aspect ratlo of the projection of the

crack on & transverse plane 1s

2 ;2 2
- p (S02.0.* 8ln n cos )1/2 (E.20)

sinzn + coszn coszw

In Fig. E.3, which shows the projection of the ineclined elliptiec ¢rack
on a transverse plane, if P(x1,y1) is one of the points at which the lon-
gitudinal plane intersects the boundary of the projected crack, the egquation

of the projection of the crack on a transverse plane i3

2 2
A
— o —— = 1 (E.21)
a2 b2
T T
. 2 2, 2
Since ry = bo/ay, Eq. (£.21) becomes
x° = a2 —y2/pl (E.22)

1 T ¥/

In order to obtaln an expression for smax’ s must be expressed in terms of

the coordinates of P. If OP = d in Fig. E.3, triangle AQOP gives

OP = d yi/cos o (E.23)
and tan o = XT/Y1 (E.2H)
Angle TOB = ¢+nT, hence

0T = s = d cos(¢+nT~a) (E.25)
Substituting Eq. (E.23) and (E.24) into Eq. (E.25),

s =, cos(¢+n?) * X, sin(¢+nT) {E.26)

Substituting Eq. (E.22) into Eq. (E.26),
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2 2)1/2

s =y, COS(¢+nT} + [ai - y¥/rT sin{¢+n.) (E.27)

T

The value of y1 which corresponds to Smax is obtained by differentiating Eg.

{8.27) with respect to ¥ and setting the resulting expression to zero.

¥, sin(é+np)

as
8y, cos(¢*n;) Z (2.2 ¢ (E.28)
 \&p T YT
Upon solving Eq. (E.28) for Yy
2 2.2 2 ~1/2
(yj}smax = ro a [rT + tan (¢+nT)] (E.29)

Eqg. (E.29) is subgtituted in place of ¥y in Eq. (E.27) to obtain s .

max
~ 2.2 -1/2; 2 .
Spax = aT[rT+tan (¢+n?)} {rTcos(¢+nT)+SLn(¢+nT)tan(¢+nT)] (£.30)
in which aps Ny and rp are given by Eq. (E.15), (E.16), and (E.20),
respectively.

E.2.2.2 Transverse Plane

Consider triangle CAC (Fig. E.2) and its projection on a leongitudinal

piane, triangle MAC, shown in Fig. E.7.

AC = a sin n
(E.31)
MC = 0C sin ¢ = a cos n sin ¢
The right angle triangle MAC gives
aE = a2 (sinzn + coszn sinzw) (E.32)

in which a, is the projected length, on a longitudinal plane, of the major

L
semi-axis of the crack. Triangle MAC also gives

A_C = Eg..r.l__n_ (E.33)

tan n =M~ sin



B2l

in which . is the projection of the angle n on & longitudinal plane,
Consider triangle OBD {Fig. E.2) and its projection cn a longitudinal

plane, triangle MBT, as shown in Fig. E.8.

MT = CD = b cos n
(E.3%}
BT = BD sin ¢ = b 8in n sin ¢
The right angle triangle MBT gives
bE = b2 (coszn + sinzn sinzw) {E.35)

Dividing Eq. {(E.3%) by Eq. (E.32), the aspect ratio of the projection of the

crack on a longitudinal plane 1Is

e .2 2
. (cos n + sinn sin w)T/Z (E.36)

singn + cosen sin2$

In Fig. E. 4, which shows the projection of the inclined elliptic crack

on a iongitudinal plane, if P(x } is one of the points at which the

2'¥2
transverse plane intersects the boundary of the projected crack, the equa-

tion of the projection of the crack on a longitudinal plane is

x2 y2
2.2 . (E.37)
a2 b2

L L

. 2 2, 2
Since re = bL/aL, Eq. (E.37) becomes
2 2,2
x5 = a; -y /rf (E.38)

In order to obtain an expression for Smax’ 8 must be expressed in terms of

the coordinates of P, If OP = d in Fig. E.4, triangle AOP gives

CP = d

#

y,/cos a (E.39)

and tan o xz/y {E. 40)

2
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Angle TOA = M s herice
OT = 8 = d cos[ﬂ/2—(nL+a)] (B.41)
Substituting Eq. (E.39) and (E.40) into Eq. (E.%1),
s =y, sin ny + X, cos n, (E.42)

Substituting Eq, (E.38) into Eq. (E.42),

2 2, 23172
s =y,sinn + [aL yzer] cos n, (E.43)
The value of Yo which corresponds to Smax is obtained by differentiating Eq.

(E.%43) with respect to Y5 and setting the resulting expression to zerc,

3s . Yo €08 My
3y, T ML T 2 (a2 = 2272 0 (. A44)
LYo, T YL
Upon solving Eq. (E.U44) for Yo
2 2 2 2 -1/2
(yz)smax =r 8 [rL + tan (¢+”L)] (E.45)

Eq. {E.45) is substituted in place of vy, in Eq. (E.U3) to obtain s .
2

max

2 2 -1/2 2 .
Srax = 2L {1 + v tan nL) (rL sin ng tan n; * cos ”L) {E.L6)
in which a,, Ny, and r_are given by Eq. (E.32), (E.33), and (E.36),

respectively.

E.2.3 Relationships between amin and crack parameters

For the smallest characteristic crack size, a , that gives a length

of % on a plane, the plane must pass through the c?ézk centroid; 1l.e. s = 0,
Relationships established in Section E.2.2 are used to obtain amin' First,
the characteristic crack size is expressed as & Tunction of crack trace
length on each plane. Then amin is obtained by setting s = 0 in the result-

ing expression.
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E.2.3.1 Lohgitudinal Plane

The characteristic crack size is expressed as a function of crack trace
length on the longitudinal plane through the relationship given by Eq.

(E.27).
Rearranging Eq. (E.27),

1/2

A

S TV, cos(¢+nT} 2y

ap = [( +

T sin(¢+nT) (E.17)

[ R

r

For a given trace length ¢ on the plane, ir y1 is expressed in terms of %,
Eq. (E.Y47) provides the relationship between the characteristic crack size

and . ¥y is expressed in terms of % as follows,
In Fig. E.3, let EF = t. Angle EPG = ¢+nT. The x-coordinate of E is

OA + AF, in which

CA

i
e

(E. 48)
AF

fl

PG = % cos § cos(¢+nT)

Thus the coordinates of E are [2 cos & COS(¢+nT} * X t]. With these

coordinates, Eg. (E.22) becomes
2 2
~ (% cos & cos(e+n.) + x.)°] (E,49)
T T 1
From triangle PEC of Fig. E.3,
t+y, =2%cos o sin(¢+nT) (E.50)
Rearranging and squaring both sides of Eq. (E.50)},

t2 = [2 cos 8 sin(¢+nT) - y1]2 (E.51)

Equating (E.H#9) and (E.51)} and substituting Eq. (E.22) and (E.%¥7) for X, and

aT, respectively,
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% cos8 tan{d+n )[sin2(¢+n ) o+ r20052(¢+n )] + 28 r2
T T T T T
YT = > (E.52)
2 sin(¢+n,) tan(¢+n.) + ro cos{¢*n,)
3 in is obtained by setting s = 0 in Eq. (E.47) and substituting the result-

ing expression into Eg. (E.15).

2 2
Yo [ Py * tan {¢+n?) 1/2

qnin ~ than(¢+nT)

(E.53)
sinan + coszn ooszw

in which Vi is obtained by setting s = 0 in Eq. (E.52).

% cosh tan(¢+nT)[sin2(¢+nT) + r% cosz(¢+nT)]
y_ = (E.54)
" 2 sin(¢+nT) tan(¢+nT) + rg cos(¢+nT)

E.2.3.2 Transverse Plane

In the case of the transverse plane, the relationship given by Eq.
{E.43) is used to express the characteristic crack size as a function of
crack trace length on the plane.

Rearranging Eq. (E.43),

: 2
s=-y.s8ilnn 2 ¥ 1/2
2 L 2
a, = [(——== - ) o+ 5] (E.55)
L rL

For a given length % on the plane, if Yy is expressed in terms of %, Eq.
{E.55) provides the relationship between the characteristic crack size and
%. Yy is expressed in terms of & as follows.

In Fig, E.4, EP = % and let EF = £, The x-coordinate of E is 0OA + AF,

in which

CA

it
e

(E.56)
AF

PG = % sin n

Thus the coordinates of E are {4 sin i3 + X t}. With these coordinates,

Eq. (E.38) becomes

2!
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2

£ = ri [ai - (& sin n, ¥ xe)e} ' (E.57)

From triangle PEG of Fig, E.U4,

by, = & cos n, (E.58)

Rearranging and squaring both sides of Eq. (E.583,

2 2

t" = (L cos g, yz) (E.59)
Equating (E.S7) and (E.59) and substituting Eq. (E.38) and (E.55) for X, and
aL respectively,

% (0082n + r2 sinzn Y+ 2 s r2 tan n
L L L L L
Yo = 5 (E.60)
2 (cos ng *rposinonp tan nL)
amin which gives a length of L on the transverse plane is obtained by set-

ting s = 0 in Egq. {E.55) and (E.60) and substituting the resulting
expression into Eq. (E.32).

% (coszn + r2sin2n Y(1 0+ retanan )W2
a . = L L L L L (E.61)
min z 2 2 /2 *

, . 2008
2 rL(cos i + r sin nLtan nL)(31n n + cos n sin"y)

L

E.2.4 Expressions for 3s/3%

Since the equations Ffor the relative frequency density of crack trace
lengths on longitudinal and transverse planes require integrations over
crack size (see Appendix D), 9s/3% needs to be expressed as a function of
grack size. In the following derivations, 3s/93% is expressed as the product
of two differentials which involve the characteristic crack size.
Expressions are then obtained for these differentials by differentiating

relationships established in Sections E.2,2 and E.2.3.

E.2.4.1 Longitudinal Plane

3s/93% is expressed in terms of the projected length, on a transverse

plane, of the major semi—axis of the crack, aT, as
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_8s T
3a,, ok | (E.62)

as/EaT in Eq. (E.62) is obtained by differentiating Bq. (E.27).

2
oy ¥, 9y yo -1/2
08 1 . 1 1 2 1
Yy = COS(@"‘T]T) ) + 31n(cb+nT) {aT - ‘“E T} aT - '-'2*) {E.62)
&1 aT rT &1 PT

By substituting Eq. (E.27) in place of s in Egq. (E.52), ¥, is expressed as a

function of aT.

[a + (a%2 - ;)79 (E.64)

-

i =

in whien A = 2 sin(¢+nT)

w ]
n

%L cos B [sin2(¢+nT) * r? cosz(¢+nT)]

C = A2 + U r cosz(¢+nT)

~1 N

] 2
Py €os (¢+nT)

2 2
b=RB i ar
dpy Mo and ro are defined previously in Eq. (E.15), (E.16), and (E.20),
respectively. By1/aaT in Eq. {(E.63) is obtained by differentiating Eg.
(E.b64),

a9y 2 _
aa1 " 2 ?Cy : B) (£.65)
A (&Y,
da, 3a,, oy
In Eq. (E.62), mb = =k ool (E.66)

ok ayT 1

Differentiating Eq., (E.47) with respect to Yqs

Efz 1 oos(¢+nT) (Y1006(¢+nT} - s) . fl] (5.67)
3y1 ar sin2(¢+nT) r?

in which s and ¥, are given by Eq. (E.27) and (E.6%), respectively.
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Differentiating Eq. (E.52) wilth respect to &,

3y1 cose tan(¢+n?} [sin2(¢+nf) * P% c052(¢*ﬂT)]
= (E.68)
ot 2 [sin(¢+nT) tan(¢+nT) + r? cos(¢+nT)

3s/9% 1s therefore obtained from Eq. (E.62) by evaluating Eq. (E.63) through
(E,68).

E.2.4,2 Transverse Plane

9s/0% is expressed in terms of the projected length, on a longitudinal

plane, of the major semi-axis of the crack, aL, as

o
w

oa
T (£.69)
L

2l
]
%]

Bs/BaL in Eq. (E,.69) is obtained by differentiating Eq. (E.U3).

2
3y y., 3y yo -1/2
as -2_'2 2.2
52, - sinn 5=+ cos (o - 5 577) (af - 3 (E.70)
L L rL L rL

By substituting Egq. (E.43) in place of s in Eq. (E.60), ¥y, is expressed as a

function of aL.

1/2]

v, = ¢ e+ (a%% - o) (E.71)

in which A = 2 cos n,
2 2 .. 2
B =1 [cos u'y + r, sin ”L]

C = A2 + Y4 r sinan

[\

2 2 4 2
D=8 4 aL PL sin .

a ;, are defined previously in Eq. (E.32), (E.33), and (E.36),
respectively. Hence Byz/BaL in Eq. (E.70) is obtained by differentiating
Eq. (E.71).

s nL and r
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9y 2 _
aa2 T a ?c [—)AB) (E.72)
L %L e
da da, 9y
L L U2
Differentiating Eq. (E.55) with respect to Yo
EaL 1 ain . (y2 sin N s) Y
L + ——] (8.7
ay2 aL 0052 r2
L L

in whieh s and y, are given by Eq. (E.43) and (E.71), respectively.
Differentiating Eg. {(E.60} with respect to %,

2 2 2
3y2 cos ' * ry sin g

(E.75)

r
oL 2 .
2 [cos n + rp sin my tan nL]

9s/3% is therefore obtained from Eq. (E.69) by evaluating Eq. {E.70} through
(E.75).
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Fig. E.l. Sketch for Determining the Relationship Between 2-D
and 3-D Angles
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Fig. E.2. Rotation of Crack about Normal through its
Centroid
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Fig. E.3. Projection of Crack on Tramnsverse Plane
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Fig. E.4. Projection of Crack on Longitudinal Plane
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Fig. E.5. Projection of Triangel OAC (Fig. E.2) on
Transverse Plane
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Fig. E.g.

g Projection of Tr

iangle OBb (Fig, E.2) on
Transverse Plane
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Fig. E.7. Projection of Triangle 0AC (Fig. E.2) on
Longitudinal Plane



Fig. E.8.
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ngle OBD (Fig. E.2) on





