
SUBMICROSCOPIC CRACKING Oe CEMENT PASTE 

AND MORTAR IN COMPRESSION 

by 

Emmanuel K. Attiogbe 

David Darwin 

A Report on Research Sponsored by 

THE NATIONAL SCIENCE FOUNDATION 

Research Grants 

CME-7918414 

CEE-8116349 

AND 

THE AIR eORCE OFFICE OF SCIENTIFIC RESEARCH 

Research Grant 

AFOSR-85-0194 

UNIVERSITY OF KANSAS 

LAWRENCE, KANSAS 

November 1985 



50272 ·1nl 

REPORT DOCUMENTATION I'· REPORT NO. I'· l. Recipient's Aeeeulon Ho. 

PAGE 
-4. Title and Subtitle $. Re~rt Oate 
Submicroscopic Cracking of Cement Paste and ovember 1985 
Mortar in Compression .. 

7. Author(s) 8. Perlormin& OrJanlzation Rapt. No. 

Emmanuel K. Attiogbe and David Darwin SM Report No. 16 
9. Performlna: Or&anlntion Name and Address 10. Project/Task/Work Unit No. 

University of Kansas Center for Research, Inc. 
2291 Irving Hill Drive, West Campus 11. Contraet(C} or Gnnt(G) No. 

Lawrence, KS 66045 NSF CME-7918414 
(G) NSF CEE-8116349 

AFOSR 85-0194 
1Z. Sponsorinc Orgeniz:atlon Name and Address 13. Type of Report & Period Covered 

National Science Foundation Air Force Office of 
Washington, D.C. 20550 Scientific Research 

Bolling AFB ... 
Washington, D.C. 20332 

15. Supplementary Notes 

16. Abstract (Limit: 200 words) 
Submicroscopic cracking of cement paste and mortar under uniaxial compression is 

measured and correlated with applied strain and load history. Cement paste specimens with 
water-cement ratios of 0.7, 0.5 and 0.3 were subjected to monotonic, sustained or cyclic 
loading, while mortar specimens with a water-cement ratio of 0.5 were subjected to 
monotonic loading. One hundred and thirty ( 130) specimens were tested at ages ranging 
from 27 to 29 days, using a closed-loop servo-hydraulic testing machine. After loading, 
slices of material were removed for study at a magnification of 1 250x in a scanning 
electron microscope. Cracking on transverse and longitudinal surfaces was measured. 

Statistical and stereological models are developed to convert the surface crack 
distributions to three-dimensional distributions. A self-consistent model is developed tc 
estimate the elastic moduli of transversely isotropic cracked materials. These models are 
used to correlate submicrocracking with the reduction in stiffness and the shape of the 
stress-strain curve. 

The surface crack densities in cement paste and mortar are about ten times the den-
sity of bond and mortar microcracks in concrete at the same value of compressive strain. 
Submicrocracking accounts for a significant portion (20% to 90%) of the nonlinear respons 
of cement paste and mortar at all levels of applied compressive strain. As compressiVE 
strain increases, other mechanisms, such as large microcracks, macrocracks, and creep, 
play an increasingly greater role. 

17. Document Analysis a. Cesc.rlptors 

cement paste, compression, concrete, cracks (cracking), crack distribution, cyclic, en 
gineering materials, engineering mechanics, microcracks, microstructure, monotonic 
mortar, scanning electron microscope (SEM), self-consistent model, statistics, stereology 
strains, stresses, stress-strain curve, submicrocracks, sustained, transverse isotropy 

b. Identifiers/Open-Ended Terms 

c. COSATI Fl•ld/Qroup 

11. Availability Stattment 

Release Unlimited 

(S .. ANSI-Z39.18) 

lJ, Security Clus CThls Report) 

Unclassified 
20. Security Class (This Pa&e) 

TTn~loqqJf'l<>rl 

See ln•tructions on R•verse 

21. No. of Pain 

--
22. Price 

OPTIONAL FORM 272 (4-77) 
(Form•rly NTI$-35) 
Department of Commerce 



ii 

ACKNOWLEDGMENTS 

This report is based on a thesis submitted by Emmanuel K. Attiogbe to 

the Department of Civil Engineering of the University of Kansas in partial 

fulfillment of the requirements for the Ph.D. degree. 

The research was supported by the National Science Foundation under 

grants CME-7918414 and CEE-8116349 and the Air Force Office of Scientific 

Research under grant AFOSR-85-0194. 

Cement was donated by the Ash Grove Cement Company. Crack studies were 

carried out on the Philips 501 Scanning Electron Microscope of the 

University of Kansas Electron Microscope Facility. Numerical calculations 

were performed on the Harris 500 and 800 computer systems operated by the 

Computer Aided Engineering Laboratory at the University of Kansas. 



iii 

TABLE OF CONTENTS 

Page 

ABSTRACT............................. . . • . . . • • • . • . . . . . • . • . . • • . i 

ACKNOWLEDGMENTS ••.•.•••••.•.•••••••••.•...••.•••••.•.• ,...... ii 

LIST OF TABLES .••.•••••••.•.••••••••...••..•. , • . . . . • • • . • • • • . • vii 

LIST OF FIGURES •.•••..• , •.•••••.. , • • • • • • . . • • • . . • • • . • . • • . • • . . • xv 

CHAPTER INTRODUCTION ••• , •.•••••••...•..•••••.•..•.••..••.• 

1.1 General ...................................... . 

1. 2 Previous Work....... . . • . • • . . . • • . • . • • • • • . • . . • • 2 

1.3 Techniques for Crack Studies................. 8 

1 • 4 Object and Scope. . • . • . • • • • • . • • • . • • . • • • • • • • . . • 9 

CHAPTER 2 EXPERIMENTAL STUDY................................ 11 

2.1 General...................................... 11 

2. 2 Materials.................................... 11 

2.3 Test Procedure............................... 12 

2. 4 Loading Regimes.............................. 1 4 

2.5 Submicrocracking Studies..................... 19 

2.6 Summary of Observations...................... 29 

CHAPTER 3 EVALUATION AND DISCUSSION OF EXPERIMENTAL RESULTS. 30 

3. 1 General................... • . • • • • . • . . • • . • • . • • • 30 

3.2 Effects of Specimen Preparation.............. 31 

3.3 Surface Crack Distributions.................. 31 

3.4 Estimates of Three-Dimensional Crack Distri-

butions from Surface Crack Distributions..... 38 

3.5 Discussion of Results........................ 50 

3.6 Summary of Findings.......................... 59 



iv 

TABLE OF CONTENTS (continued) 

CHAPTER 4 SELF-CONSISTENT MODEL FOR A TRANSVERSELY ISOTROPIC 

CRACKED SOLID........................... . • • • • • • • . • 61 

4.1 Introduction................................. 61 

4. 2 Overview of the Model........................ 62 

4.3 Crack and Global Coordinate Systems.......... 62 

4.4 Self-Consistent Scheme .•...•••..•••.•••• ,.... 64 

4, 5 Energy Release Rates......................... 72 

4.6 Solution of the Self-Consistent Equations.... 83 

4.7 Results...................................... 86 

4.8 Sensitivity of the Moduli to Variations in 

Crack Parameters .. ,.~.......................... 89 

4.9 Summary and Conclusions...................... 91 

CHAPTER 5 APPLICATION OF THE SELF-CONSISTENT MODEL.......... 93 

5. 1 General. • • • • • • . • • • • • • • • • . • • • • • • • • • • . • • • • • • • • • 93 

5. 2 Application of the Model..................... 95 

5.3 Material Response Due to Submicrocracking.... 97 

5.4 Material Response with Inelastic Matrix 

Material..................................... 103 

5. 5 Summary of Fin dings.......................... 111 

CHAPTER 6 SUMMARY AND CONCLUSIONS........................... 113 

6.1 Summary ••.•••••••••••••.•..•.••.••.•.•.•••••• 113 

6.2 Conclusions.................................. 113 

6.3 Recommendations for Future Study............. 116 

REFERENCES ••••••••••••••.•••.•.•.••••••••••• , . . • • • • . • • • • • • • . • 118 



v 

TABLE OF CONTENTS (continued) 

Page 

APPENDIX A KEY TO SPECIMEN IDENTIFICATION................... 353 

APPENDIX B NOTATION .•••. , •.•••. , ••••.. ,., •••. , ••.••.•• ,..... 354 

APPENDIX C CORRECTION OF WINDOW SIZE DISTORTION OF CRACK 

DISTRIBUTIONS ON PLANE SECTIONS,.................. 362 

C .1 Introduction................................ 362 

C.2 Estimates of the True Surface Distributions 

of Crack Length and Crack Angle............. 363 

C.3 Estimate of the True Number of Cracks per 

Unit Area....... • . • • . . • . • • . . • . . • . . . • . . . • . . • • 371 

C.4 Total Length of Cracks per Unit Area........ 372 

C.5 Determining if the Window Analysis is 

required. • . • • • • . . • . • • • • • • • . . • • . . . . . • • . . • • . • . 373 

C.6 Summary..................................... 374 

APPENDIX D CONVERSION OF CRACK DISTRIBUTIONS ON PLANE 

SECTIONS TO SPATIAL DISTRIBUTIONS................ 384 

D. 1 Introduction................................ 384 

D.2 Overview of the Method of Analysis.......... 385 

D.3 Relationships between 2-D and 3-D 

Distributions............................... 385 

D.4 Procedure for Estimating 3-D Crack 

Parameters.................................. 399 

D.5 Sensitivity of the Model to Errors in Trace 

Length Parameters.................... . . . • • • . 403 

D. 6 Summary. . • • • • . . • . • • . • • • . . • • . • • • . . • • • . . . • • • . • 404 



vi 

TABLE OF CONTENTS (continued) 

APPENDIX E GEOMETRIC RELATIONS FOR CONVERTING CRACK 

DISTRIBUTIONS ON PLANE SECTIONS TO SPATIAL 

DISTRIBUTIONS................... . • . • . • • . • • • • . • • . • 418 

E. 1 Introduction................................ 418 

E.2 Derivation of Geometric Relations........... 418 



vii 

LIST OF TABLES 

Table No. 

2. 1 Mix Designs ......•..................•......•..... 128 

2.2 Monotonic Loading Tests. Cement Paste with a 
W/C=0.7 ..•...•.........•..•.................... 128 

2.3 Monotoni0 Loading Tests. Cement Paste with a 
W/C = 0.5. ..• • . •. .. . . . . . . . .. . . . . . . . . .. . .. . . •. •. . . 129 

2.4 Monotonic Loading Tests. Cement Paste with a 
W/C = 0.3.... .... .. .. .. .. .. .. .. . • .. .. .. .. .. .. .. .. 130 

2.5 Monotonic Loading Tests. Mortar with a W/C = 0.5 .. 131 

2.6 

2.7 

2.8 

2.9 

2.10 

2. 11 

2. 12 

2. 13 

2. 14 

2. 15 

2.16 

2. 17 

Sustained Loading Tests. Cement Pastes with 
W/C = 0.5, 0.3 .................................. • 

Cyclic Loading Tests. Cement Pastes with 
W/C = 0.5, 0.3 .................................. . 

Format for Recording Crack Data •..••••.••.••••••• 

Surface Crack Data for Monotonic Loading of 
Cement Paste with a W/C = 0.5 (Batch #9) .••••.••• 

Crack Density of Nonloaded, Oven Dried Cement 
Paste and Mortar Specimens .•.••.••..•.••••.••..•• 

Crack Density of Oven Dried Specimens. Monotonic 
Loading of Cement Paste with a W/C = 0.7 •..•••..• 

Crack Density of Oven Dried Specimens. Monotonic 
Loading of Cement Paste with a W/C = 0.5 •.••••••• 

Crack Density of Oven Dried Specimens. Monotonic 
Loading of Cement Paste with a W/C = 0.3 •••..•.•• 

Crack Density of Oven Dried Specimens. Monotonic 
Loading of Mortar with a W/C = 0.5 •••••••••••••.• 

Crack Density of Oven Dried Specimens. Sustained 
and Cyclic Loading of Cement Paste with 
W/C = 0.5, 0.3 .................................. . 

Crack Density of Solvent Replacement Dried 
Specimens. Monotonic Loading of Cement Paste 
with a W/C = 0. 5 •••..•••••.• , •. , .• , ••. , , •.••.•••• 

Crack Density of Silica Gel Dried Specimens. 
Monotonic Loading of Cement Paste with a 
W/C = 0.5 ................. • · .. · .. · .... • · · • · .. · • · · 

131 

132 

132 

133 

147 

148 

149 

150 

151 

152 

153 

153 



Table No. 

2. 18 

2.19 

2.20 

2. 21 

2. 22 

2.23 

2. 24 

2.25 

2. 26 

2. 27 

2. 28 

viii 

LIST OF TABLES (continued) 

Average Crack Density of Oven Dried Specimens at 
each Strain. Monotonic Loading of Cement Paste 
withaW/C=0.7 .............. ~~·················· 154 

Average Crack Density of Oven Dried Specimens at 
each Strain. Monotonic Loading of Cement Paste 
with a W/C = 0.5 •.•••••.••••••.•••••••.••••..•••• 

Average Crack Density of Oven Dried Specimens at 
each Strain. Monotonic Loading of Cement Paste 
with a W/C = 0.3 ••••••.•••••••••...••••.••••••••• 

Average Crack Density of Oven Dried Specimens at 
each Strain. Monotonic Loading of Mortar with 
a W/C = 0.5 ••• ••.••.•.••.•••••••..••• •• •• · ·• · ••• • 

Average Crack Density of Oven Dried Specimens at 
each Strain. Sustained Loading of Cement Pastes 
with W/C = 0.5, 0 .. 3 .......•...... ~ .............. . 

Average Crac~Density of Oven Dried Specimens at 
each Strain. Cyclic Loading of Cement Pastes 
with W/C = 0,5, 0.3 ............................. . 

Average Crack Density Based on Microscopic 
Structures. Monotonic Loading: Transverse and 
Longitudinal Surfaces of Oven Dried Cement Paste 
with a W/C = 0.1 ............................... .. 

Average Crack Density Based on Microscopic 
Structures. Monotonic Loading: Transverse and 
Longitudinal Surfaces of Oven Dried Cement Paste 
with a W/C = 0.5 ............................... .. 

Average Crack Density Based on Microscopic 
Structures. Monotonic Loading: Transverse and 
Longitudinal Surfaces of Oven Dried Cement Paste 
with a W/C = 0.3 •• s•·••·························· 

Average Crack Density Based on Microscopic 
Structures. Sustained and Cyclic Loading: 
Transverse and Longitudinal Surface of Oven 
Dried Cement Paste with a W/C = 0.5 ••••••.•..••.• 

Average Crack Density Based on Microscopic 
Structures. Sustained and Cyclic Loading: 
Transverse and Longitudinal Surface of Oven 
Dried Cement Paste with a W/C = 0.3 ••••••••.•.•.• 

154 

155 

155 

156 

156 

157 

158 

159 

160 

161 



Table No. 

2. 29 

2.30 

2. 31 

2.32 

2.33 

3. 1 

3.2 

3.3 

3.4 

3.5 

3.6 

ix 

LIST OF TABLES (continued) 

Average Crack Density Based on Microscopic 
Structures. Monotonic Loading; Transverse and 
Longitudinal Surfaces of Oven Dried Mortar with 
a W/C = 0.3 .•••••.•••••• · • •• · •• •· · · · •· •· · ••• · · · • • 

Average r.rack Width at each Strain for Monotonic, 
Sustained and Cyclic Loading. Transverse and 
Longitudinal Surfaces of Oven Dried Cement Paste 
with a W/C = 0. 5 •.•.••••..••••••••••.•••.•.•.•... 

Average Crack Width at each Strain for Monotonic, 
Sustained and Cyclic Loading. Transverse and 
Longitudinal Surfaces of Oven Dried Cement Paste 
with a W/C = 0. 3 •.•••..••...•••.......•.••.•..•.• 

Average Crack Width at each Strain for Monotonic 
Loading. Transverse and Longitudinal Surfaces of 
Solvent Replacement and Silica Gel Dried Cement 
Pastes with a W/C = 0.5 •••.••••.•.•••••.•••••.•.. 

Average Crack Width at each Strain for Monotonic 
Loading. Transverse and Longitudinal Surfaces of 
Oven Dried Mortar with a W/C = 0.5 •.•••..•••••.•• 

Mean Trace Length and Variance of Crack Trace 
Length Distribution for Monotonic Loading of 
Cement Paste with a W/C = 0.1 .••••••••••..•..•.•• 

Mean Trace Length and Variance of Crack Trace 
Length Distribution for Monotonic Loading of 
Cement Paste with a W/C = 0.5 .•••.••.••••..•.•••• 

Mean Trane Length and Variance of Crack Trace 
Length Distribution for Monotonic Loading of 
Cement Paste with a W/C = 0.3 ••...•••...•..•••••• 

Mean Trace Length and Variance of Crack Trace 
Length Distribution for Monotonic Loading of 
Mortar with a W/C = 0.5 .••••••••..••••.•••••.••.• 

Mean Trace Length and Variance of Crack Trace 
Length Distribution for Sustained Loading of 
Cement Pastes with W/C = 0. 5, 0. 3 •..•••.•.••••••• 

Mean Trace Length and Variance of Crack Trace 
Length Distribution for Cyclic Loading of Cement 
Pastes with W/C = 0.5, 0.3 .•..•••••.••••...•.•.•. 

162 

163 

164 

165 

166 

167 

167 

168 

168 

169 

169 



Table No. 

3.7 

3.8 

3.9 

3. 10 

3. 11 

3.12 

3.13 

3. 14 

3. 15 

X 

LIST OF TABLES (continued) 

Number of Cracks per Unit Area for Monotonic 
Loading of Cement Paste with a W/C = 0.1 .•....... 

Number of Cracks per Unit Area for Monotonic 
Loading of Cement Paste with a W/C = 0.5 •••••••.• 

Number of Cracks per Unit Area for Monotonic 
Loading of Cement Paste with a W/C = 0.3 •.•.••••• 

Number of Cracks per Unit Area for Monotonic 
Loading of Mortar with a W/C = 0.5 •••••••.•••.••• 

Number of Cracks per Unit Area for Sustained 
Loading of Cement Pastes with W/C = 0.5, 0.3 ••••• 

Number of Cracks per Unit Area for Cyclic 
Loading of Cement Pastes with W/C = 0.5, 0.3 ••••• 

Surface Crack Density for Nonloaded Specimens 
of Cement Paste and Mortar ••••••••••••.•••••.•••• 

Surface Crack Density for Monotonic Loading 
of Cement Paste and Mortar •.•.••••.•.•••••••.•.•• 

Surface Crack Density for Sustained Loading 
of Cement Pastes with W/C = 0.5, 0.3 •.•..•.•.•••• 

170 

170 

171 

171 

172 

172 

173 

173 

174 

3.16 Surface Crack Density for Cyclic Loading of 
Cement Pastes with W/C = 0.5, 0.3.. .... .. .. .. .. .. 174 

3.17 Three-Dimensional Crack Parameters for Nonloaded 

3. 18 

3. 19 

3. 20 

3. 21 

3.22 

Specimens of Cement Paste and Mortar............. 175 

Three-Dimensional Crack Parameters for Monotonic 
Loading of Cement Paste with a W/C = 0.7 ......... 

Three-Dimensional Crack Parameters for Monotonic 
Loading of Cement Paste with a W/C = 0. 5 ......... 

Three-Dimensional Crack Parameters for Monotonic 
Loading of Cement Paste with a W/C = 0.3 ......... 

Three-Dimensional Crack Parameters for Monotonic 
Loading of Mortar with W/C = 0.5 ................ . 

Three-Dimensional Crack Parameters for Sustained 
Loading of Cement Pastes with W/C = 0.5, 0.3 ••••• 

175 

176 

176 

177 

177 



Table No. 

3.23 

3. 24 

3. 25 

xi 

LIST OF TABLES (continued) 

Three-Dimensional Crack Parameters for Cyclic 
Loading of Cement Pastes with W/C = 0.5, 0.3 ••••. 

Bounds on Number of Cracks per Unit Area for 
Monotonic Loading of Cement Paste with a 
W/C = 0.5 ....................................... • 

Bounds on Mean Characteristic Crack Size and 
Variance for Monotonic Loading of Cement Paste 
with a W/C = 0.5 ............................... .. 

3.26 Three-Dimensional Crack Parameters: Multi­
Directional Crack Traces Treated as Single Uni­
Directional Traces. Nonloaded Specimens of 

178 

178 

179 

Cement P'lste and Mortar.......................... 179 

3. 27 Three-Dimensional Crack Parameters: Multi­
Directional Crack Traces Treated as Single Uni­
Directional Traces. Monotonic Loading of Cement 
Paste with a W/C = 0.7 .......................... . 

3.28 Three-Dimensional Crack Parameters: Multi­
Directional Crack Traces Treated as Single Uni­
Directional Traces. Monotonic Loading of Cement 

180 

Paste with a W/C = 0.5.. ..... ...... ... .. ... .... .. 180 

3.29 Three-Dimensional Crack Parameters: Multi­
Directional Crack Traces Treated as Single Uni­
Directional Traces. Monotonic Loading of Cement 
Paste with a W/C = 0.3.. ... .. .. .... .... ... .. .. .. • 181 

3.30 

3. 31 

Three-Dimensional Crack Parameters: Multi­
Directional Crack Traces Treated as Single Uni­
Directional Traces. Monotonic Loading of Mortar 
with a W/C = 0.5 ................................ . 

Three-Dimensional Crack Parameters: Multi­
Directional Crack Traces Treated as Single Uni­
Directional Traces. Sustained Loading of Cement 
Pastes with W/C = 0.5, 0.3 .•..•.•••.•••••.••.••.• 

3.32 Three-Dimensional Crack Parameters: Multi­
Directional Crack Traces Treated as Single Uni­
Directional Traces. Cyclic Loading of Cement 

181 

182 

Pastes with W/C = 0.5, 0.3.......... ..... .. .. .. .. 182 



Table No. 

3.33 

3.35 

4. 1 

xii 

LIST OF TABLES (continued) 

Comparisons of Crack Densities and Degree of 
Anisotropy for Crack Distributions in Cement 
Pastes under Monotonic Loading •••••.•.•..•••••••• 

Comparisons of Crack Densities and Degree of 
Anisotropy for Crack Distributions in Cement 
Paste and Mortar with a W/C = 0.5; Monotonic 
Loading ••••••••.••.•.••••••.•••..•••..•••••.••••• 

Comparisons of Crack Densities and Degree of 
Anisotropy for Crack Distributions in Cement 
Pastes under Monotonic and Sustained Loading .•••. 

Comparisons of Crack Densities and Degree of 
Anisotropy for Crack Distributions in Cement 
Pastes under Monotonic and Cyclic Loading ••••.••• 

Sensitivity of Stiffness Modulus, E
3

, to 
Variations in Crack Parameters ••••.•••••••••••••• 

5.1 Effective Moduli and Axial Strain Due to 
Submicrocracking for Monotonic Loading of 
Cement Paste with a W/C = 0.7. First Approach; 

183 

184 

185 

186 

187 

Dry Cracks............ . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 

5.2 Effective Moduli and Axial Strain Due to 
Submicrocracking for Monotonic Loading of 
Cement Paste with a W/C = 0.5. First Approach; 
Dry Cracks .•.....•...... o........................ 189 

5.3 Effective Moduli and Axial Strain Due to 
Submicrocracking for Monotonic Loading of 
Cement Paste with a W/C = 0.3. First Approach; 
Dry Cracks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . 190 

5.4 Effective Moduli and Axial Strain Due to 
Submicrocracking for Monotonic Loading of 
Mortar with a W/C = 0.5. First Approach; 
Dry Cracks....................................... 191 

5.5 Effective Moduli and Axial Strain Due to 
Submicrocracking for Monotonic Loading of 
Cement Paste with a W/C = 0.7. First Approach; 
Saturated Cracks .••.••••••••••••.••.•.••.•• ,.,... 192 



Table No. 

5.6 

xiii 

LIST OF TABLES (continued) 

Effective Moduli and Axial Strain Due to 
Submicrocracking for Monotonic Loading of 
Cement Paste with a W/C = 0.5. First Approach; 
Saturated Cracks................................. 192 

5.7 Effective Moduli and Axial Strain Due to 
Submicrocracking for Monotonic Loading of 
Cement Paste with a W/C = 0.3. First Approach; 
Saturated Cracks ..•.••.••.••••••..••.••••.•.•.••• 

5.8 Effective Moduli and Axial Strain Due to 
Submicrocracking for Monotonic Loading of 
Mortar with a W/C = 0.5. First Approach; 

193 

Saturated Cracks................................. 193 

5.9 Effective Moduli for Monotonic Loading of Cement 
Paste with a W/C = 0.7. Second Approach; Dry 
Cracks........................................... 194 

5. 10 Effective Moduli for Monotonic Loading of Cement 
Paste with a W/C = 0.5. Seco~d Approach; Dry 
Cracks ........................................... . 

5.11 Effective Moduli for Monotonic Loading of Cement 
Paste with a W/C = 0.3. Second Approach; Dry 

194 

Cracks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 

5.12 

5. 13 

5. 14 

5. 15 

5.16 

Effective Moduli for Monotonic Loading of Mortar 
with a W/C = 0.5. Second Approach; Dry Cracks •.. 

Moduli of Inelastic Matrix and Strain Due to 
Submicrocracking for Monotonic Loading of Cement 
Paste with a W/C = 0.7. First Approach •••••••..• 

Moduli of Inelastic Matrix and Strain Due to 
Submicrocracking for Monotonic Loading of Cement 
Paste with a W/C = 0.5. First Approach •..••••••• 

Moduli of Inelastic Matrix and Strain Due to 
Submicrocracking for Monotonic Loading of Cement 
Paste with a W/C = 0.3. First Approach •••••.••.• 

Moduli of Inelastic Matrix and Strain Due to 
Submicrocracking for Monotonic Loading of Mortar 
with a W/C = 0.5. First Approach .............. .. 

195 

196 

196 

197 

197 



Table No. 

5. 17 

xiv 

LIST OF TABLES (continued) 

Moduli of Inelastic Matrix and Strain Due to 
Submicrocracking for Sustained Loading of Cement 
Pastes with W/C = 0.5, 0.3. First Approach...... 198 

5. 18 Moduli of Inelastic Matrix and Strain Due to 
Submicrocracking for Cyclic Loading of Cement 
Pastes with W/C = 0.5, 0.3. First Approach •.•••• 

5.19 Moduli of Inelastic Matrix and Strain Due to 
Submicrocracking for Monotonic Loading of Cement 

198 

Paste with a W/C = 0.7. Second Approach......... 199 

5.20 Moduli of Inelastic Matrix and Strain Due to 
Submicrocracking for Monotonic Loading of Cement 
Paste with a W/C = 0. 5. Second Approach......... 199 

5.21 Moduli of Inelastic Matrix and Strain Due to 
Submicrocracking for Monotonic Loading of Cement 
Paste with a W/C = 0. 3. Second Approach......... 200 

5.22 Moduli of Inelastic Matrix and Strain Due to 
Submicrocracking for Monotonic Loading of Mortar 
with a W/C = 0.5. Second Approach............... 200 

5.23 Moduli of Inelastic Matrix and Strain Due to 
Submicrocracking for Sustained Loading of Cement 
Pastes with W/C = 0.5, 0.3. Second Approach .•.•• 

5.24 Moduli of Inelastic Matrix and Strain Due to 
Submicrocracking for Cyclic Loading of Cement 

201 

Pastes with W/C = 0.5, 0.3. Second Approach..... 201 

c. 1 Length Distribution Data for Crack Angles, 8, 
from 47.5° to 52.5° ............................ .. 

C,2 Angle Distribution Data •••••••••••••••••••.•••..• 

D.1 Trace Angle Distributions for the Longitudinal 

376 

377 

Plane.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 405 

D.2 

D.3 

Experimental and Calculated Trace Length 
Distributions •••.•••••.•••...••••••.••..•••...•.• 

Sensitivity of 3-D Crack Size Parameters to 
Errors in Trace Length Parameters .•••.....•.....• 

406 

407 



Figure No. 

2. 1 

2.2 

2.3 

2.4 

2.5 

2.6 

2.7 

2.8 

XV 

LIST OF FIGURES 

Steel Mold ••••.•••.••••••.•..•.••..•.•.••.•.••..• 

Compressometer and Extensometers as Mounted on 
Test Specimen ................................... . 

Stress versus Longitudinal Strain for Monotonic 
Loading of Cement with a W/C = 0.7: Specimen 
7-6/P-O. 7/M, •••••••..••••..•••.•.••.•..••.•..••.• 

Stress versus Longitudinal and Lateral Strains 
for Monotonic Loading of Cement Paste with a 
W/C = 0.5: Specimen 14-6/P-0.5/M, •••.••.••...•••• 

Stress versus Longitudinal and Lateral Strains 
for Monotonic Loading of Cement Paste with a 
W/C = 0.3: Specimen 16-3/P-0.3/M ••.••...•••.....• 

Stress versus Longitudinal and Lateral Strains 
for Monotonic Loading of Mortar with a W/C = 0.5: 
Specimen 13-6/M-0.5/M ••.• , •• , .••.•.•••.••.•••.••• 

Stress-Strain Curves for Cement Pastes with 
W/C = 0.5 and 0.3 ............................... . 

Poisson's Ratio versus Axial Strain for Monotonic 
Loading of Cement Paste with a W/C = 0.5: 
Specimen 14-6/P-0. 5/M, .••...••••.•••••..•••.••..• 

2.9 Poisson's Ratio versus Axial Strain for Monotonic 
Loading of Cement Paste with a W/C = 0.3: 

202 

203 

204 

205 

206 

207 

208 

209 

Specimen 16-3/P-O. 3/M............................ 210 

2.10 Poisson's Ratio versus Axial Strain for Monotonic 
Loading of Mortar with a W/C = 0.5: Specimen 
13-6/M-0.5/M ....................................... 211 

2. 11 Volumetric Strain versus Axial Strain for 
Monotonic Loading of Cement Paste with a 
W/C = 0.5: Specimen 14-6/P-0.5/M •••••..•.••••••.• 

2.12 Volumetric Strain versus Axial Strain for 
Monotonin Loading of Cement Paste with a 

212 

W/C = 0.3: Specimen 16-3/P-0.3/M................. 213 

2.13 Volumetric Strain versus Axial Strain for 
Monotonic Loading of Mortar with a W/C = 0.5: 
Specimen 13-6/M-0.5/M ••..••.••.••..•••.•• , ••.•.•• 21 4 



Figure No. 

2.14 

2. 15 

2.16 

xvi 

LIST OF FIGURES (continued) 

Stress versus Longitudinal and Lateral Strains 
for Sustained Loading of Cement Paste with a 
W/C = 0.5: Specimen 15A-1/P-0.5/S •••.•.•••.•.•.•• 

Poisson's Ratio versus Axial Strain for Sustained 
Loading of Cement Paste with a W/C = 0.5: 
Specimen 15A-1 /P-O. 5/S .......................... . 

Poisson's Ratio versus Axial Strain for Sustained 
Loading of Cement Paste with a W/C = 0.3: 
Specimen 16-4/P-0. 3/S, •••••.•••.••••..•••.••••.•. 

2.17 Volumetric Strain versus Axial Strain for 
Sustained Loading of Cement Paste with a 

215 

21 6 

217 

W/C = 0.5: Specimen 15A-1/P-0.5/S.. ... .. .... .. ... 218 

2. 18 

2. 19 

2. 20 

2. 21 

2.22 

2. 23 

2.24 

2.25 

Volumetric Strain versus Axial Strain for 
Sustained Loading of Cement Paste with a 
W/C = 0.3: Specimen 16-4/P-0.3/S .•••.•..••••••••• 

Stress versus Longitudinal and Lateral Strains 
for Cyclic Loading of Cement Paste with a W/C = 
0.5; Selected Cycles: Specimen 18-5/P-0.5/C ••••.• 

Poisson's Ratio versus Axial Strain for Cyclic 
Loading: 1st, 17th and 29th Cycles; Cement Paste 
with a W/C = 0.5: Specimen 19A-1/P-0.5/C .••..•..• 

Volumetric Strain versus Axial Strain for Cyclic 
Loading: 1st, 17th and 29th Cycles; Cement Paste 
with a W/C = 0.5: Specimen 19A-1/P-0.5/C •..•..••• 

Poisson'.~ Ratio versus Axial Strain for Cyclic 
Loading: 1st and 67th Cycles; Cement Paste with 
a W/C = 0.5: Specimen 18-5/P-0.5/C .............. . 

Volumetric Strain versus Axial Strain for Cyclic 
Loading: 1st and 67th Cycles; Cement Paste with 
a W/C = 0.5: Specimen 18-5/P-0.5/C .............. . 

Poisson's Ratio versus Axial Strain for Cyclic 
Loading: 1st, 42nd and 85th Cycles; Cement Paste 
with a W/C = 0.3: Specimen 21-5/P-0.3/C •..••••.•• 

Volumetric Strain versus Axial Strain for Cyclic 
Loading: 1st, 42nd and 85th Cycles; Cement Paste 
with a W/C = 0.3: Specimen 21-5/P-0.3/C •••.•..••• 

219 

220 

221 

222 

223 

224 

225 

226 



Figure No. 

2.26 

2. 27 

2.28 

2. 29 

2.30 

2. 31 

2.32 

2.33 

2.34 

2.35 

2.36 

2.37 

2.38 

2.39 

2.40 

xvii 

LIST OF FIGURES (continued) 

Specimen as Mounted on Stud ••.....•...•....•..•.. 

Specimen as Positioned in SEM ................... . 

Type I Calcium Silicate Hydrate (CSH); Oven Dried 
Specimen; magnification = 5000x, ~ marker =0.9 ~m 

Type I Calcium Silicate Hydrate (CSH); Solvent 
Replacement Dried Specimen; magnification = 5000x 
ll marker = 0.9 \lm .............................. .. 

Type II Calcium Silicate Hydrate (CSH); 
magnification= 5000x, ~marker= 0.9 ~m ...•..••• 

Crack through type III Calcium Silicate Hydrate 
(CSH); magnification= 5000x, ~marker= 0.9 \lm •• 

Type IV Calcium Silicate Hydrate (CSH) or Inner 
Product Morphology (in center of micrograph); 
magnification= 10000x, ~marker= 0.9 \lm .•..••.. 

Calcium Hydroxide (CH) with Crack Parallel to 
Cleavage Plane; magnification = 5000x .•••..•..•.• 

Crack through type III CSH and CH Structures; 
magnification= 1250x, ~marker= 9.1 \lm .••....•• 

Unhydrated Cement Grain (UHC); magnification= 
2500x, ll marker= 0.9 ~m .•.•...•••..•.•....•.•.•• 

Ettringite; magnification= 10000x •.••.••..•••.•. 

Sand Grain (SG) Adjacent to type III CSH with 
Cracks at the Interface and withing the CSH; 
magnification= 320x, ll marker= 90.9 \lm ••••••.•. 

Sand Grain (SG) Adjacent to type III CSH with 
Cracks at the Interface and withing the CSH; 
magnification= 160x, ll marker= 90.9 \lm ••.•.•••. 

Crack Density versus Water-Cement Ratio for 
Nonloaded Cement Paste Specimens ••.••.••.•.••••.. 

Crack Density versus Strain for Monotonic Loading 
of Cement Paste with a W/C = 0.7; Transverse and 
Longitudinal Surfaces •.••..••.•••••...•••••••..•• 

227 

228 

229 

229 

230 

230 

231 

231 

232 

232 

233 

233 

234 

235 

236 



Figure No. 

2. 41 

2.42 

2.43 

xviii 

LIST OF FIGURES (continued) 

Crack Density versus Strain for Monotonic Loading 
of Cement Paste with a W/C ~ 0.5; Transverse and 
Longitudinal Surfaces •...•..••••..•..•••••..••..• 

Crack Density versus Strain for Monotonic Loading 
of Cement Paste with a W/C ~ 0.3; Transverse and 
Longitudinal Surfaces ........................... . 

Crack Density versus Strain for Monotonic Loading 
of Mortar with a W/C ~ 0.5; Transverse and 
Longitudinal Surfaces ..•...••••••..•••.•••••••••• 

2.44 Crack Density versus Strain for Sustained Loading 
of Cement Paste with a W/C ~ 0.5; Transverse and 

237 

238 

239 

Longitudinal Surfaces ...... ~........................ 240 

2.45 Crack Density versus Strain for Sustained Loading 
of Cement Paste with a W/C ~ 0.3; Transverse and 
Longitudinal Surfaces............................ 241 

2.46 

2.47 

2.48 

2.49 

2.50 

2. 51 

2.52 

Crack Density versus Strain for Cyclic Loading 
of Cement Paste with a W/C ~ 0.5; Transverse and 
Longitudinal Surfaces •••••••.•••.•..••••••••.•••• 

Crack Density versus Strain for Cyclic Loading 
of Cement Paste with a W/C ~ 0.3; Transverse and 
Longitudinal Surfaces ••••.•••••••..•••....•.••••. 

Crack Density versus Trace Angle for Transverse 
and Longitudinal Surfaces of Nonloaded Cement 
Paste with a W/C = 0.5 ............................ . 

Crack Density versus Trace Angle for Transverse 
and Longitudinal Surfaces of Monotonically Loaded 
Cement Paste with a W/C ~ 0.5; Strain~ 0.006 •••• 

Crack Density versus Trace Angle for Transverse 
and Longitudinal Surfaces of Nonloaded Mortar 
with a W/C ~ 0.5 ................................ . 

Crack Density versus Trace Angle for Transverse 
and Longitudinal Surfaces of Monotonically Loaded 
Mortar with a W/C ~ 0.5; Strain~ 0.004 •••••••.•. 

Crack Density versus Strain for Transverse 
Surfaces of Oven Dried, Solvent Replacement 
Dried, and Silica Gel Dried Cement Paste 
Specimens with a W/C ~ 0.5; Monotonic Loading •.•• 

242 

243 

244 

245 

246 

247 

248 



Figure No. 

3. 1 

3.2 

3.3 

3.5 

3.6 

3.7 

xix 

LIST OF FIGURES (continued) 

Variation of Number of Cracks per Unit Area per 
Degree with Trace Angle; Transverse Surface of 
Nonloaded Cement Paste with a W/C = 0.5 •••••...•• 

Apparent and True Trace Length Distributions 
for Cement Paste with a W/C = 0.5; Monotonic 
Loading: Strain= 0.004 •••.•.•.•..••.•...••...••. 

Apparent and True Trace Angle Distributions 
for Cement Paste with a W/C = 0.5; Monotonic 
Loading: Strain= 0.004 ........................ .. 

Mean Trace Length versus Trace Angle for Trans­
verse Surface of Cement Paste with a W/C = 0.5; 
Monotoni~ Loading: Strain= 0.004 •••..•••••••••.. 

Variance of Trace Length Distribution versus 
Trace Angle for Transverse Surface of Cement 
Paste with a W/C = 0.5; Monotonic Loading: 
Strain= 0.004 .................................. . 

Modified Experimental Mean Trace Length, <DT, 
versus Trace Angle for Transverse Surface of 
Cement Paste with a W/C = 0.5; Monotonic Loading: 
Strain 0.004 •.••••••...••••••••.••••••...•••.•.•• 

Modified Experimental Variance of Trace Length 
Distribution, var(~)T' versus Trace Angle for 
Transverse Surface or Cement Paste with a 
W/C = 0.5; Monotonic Loading: Strain= 0.004 ••••• 

3.8 Modified Experimental Mean Trace Length, <~>L' 
versus Trace Angle for Longitudinal Surface of 
Cement Paste with a W/C = 0.5; Monotonic Loading: 

249 

250 

251 

252 

253 

254 

255 

Strain 0.004..... •• ••• •••. •• . • •••• ••• • • . •• ••••..• 256 

3.9 

3. 1 0 

Modified Experimental Variance of Trace Length 
Distribution, var(~ 9 )L' versus Trace Angle for 
Longitudinal Surface of Cement Paste with a 
W/C = 0.5; Monotonic Loading: Strain= 0.004 ••••• 

Modified Experimental Trace Length Distribution, 
f<~>T, for Transverse Surface of Cement Paste 
with a W/C = 0.5; Monotonic Loading: Strain 
= 0. 004 . ................. 0 •••• 0 •• 0 •• 0 0 •••••• 0 • 0 •• 0 

257 

258 



Figure No. 

3. 11 

3. 12 

3. 13 

3.14 

3.15 

3. 16 

3. 17 

3. 18 

3. 19 

3. 20 

XX 

LIST OF FIGURES (continued) 

Variation of Number of Cracks per Unit Area per 
Degree with Trace Angle; Transverse Surface of 
Cement Paste with a W/C = 0.5; Monotonic Loading: 
Strain= 0.004................................... 259 

Distributions of Measured, me, and Modified, me, 
Numbers of Cracks per Unit Area per Degree on 
Transverse Surface of Cement Paste with a W/C 
= 0.5; Monotonic Loading: Strain= 0.004......... 260 

Distributions of Measured, me, and Modified, me, 
Numbers of Cracks per Unit Area per Degree on 
Longitudinal Surface of Cement Paste with a W/C 
= 0.5; Monotonic Loading: Strain= 0.004......... 261 

Modified Experimental Trace Angle Distribution 
of Cracks, f(e) , for Longitudinal Surface of 
Cement Paste wi~h a W/C = 0.5; Monotonic Loading: 
Strain=0.004.o••••••••••••••·•••••·•·•••••••••• 262 

Modified Experimental and Calculated Trace Angle 
Distributions for Longitudinal Surface of Cement 
Paste with a W/C = 0.5; Monotonic Loading: 
Strain = 0. 004..................................... 263 

Modified Experimental and Calculated Trace Length 
Distributions for Transverse Surface of Cement 
Paste with a W/C = 0.5; Monotonic Loading: 
Strain= 0.004.. ... • .. .. .. .. ..... .... . ..... ...... 264 

Modified Experimental and Calculated Trace Length 
Distributions for Longitudinal Surface of Cement 
Paste wit.h a W/C = 0. 5; Monotonic Loading: 
Strain= 0.004..... ... . .. .. . • ... .. . .... .. . . . . .... 265 

Crack Orientation Distributions, f(~). for 
Nonloaded and Loaded (Strain= 0.004) Cement 
Pastes with a W/C = 0. 5.......................... 266 

Crack Size Distributions, f(al~l. for Nonloaded and 
Loaded (Strain= 0.004) Cement Pastes with a 
W/C = 0.5, ~=60°....... .... ... .. .... .... .. ...... • 267 

Multi- and Uni-Directional Crack Traces.......... 268 



Figure No. 

3. 21 

3.22 

3. 23 

3.24 

3. 25 

3. 26 

3. 27 

3. 28 

3. 29 

3.30 

3. 31 

3.32 

xxi 

T,IST OF FIGURES (continued) 

Surface Crack Density versus Water-Cement Ratio 
for Nonloaded Cement Paste ........•••.•.••••••..• 

Measure of Volumetric Crack Density, N <a3>, 
versus Water-Cement Ratio for Nonloade~ Cement 

269 

Paste............................................ 270 

Surface Crack Density, MT<i>T' versus Strain for 
Monotonic Loading of Cement Pastes with W/C ~ 

0.7, 0.5 and 0.3... .• . •. . • ••• •• • . . •• .• . • • •• ••. . • . 271 

Surface Crack Density, OMT<i>T' versus Strain for 
Monotonic Loading of Cement Pastes with W/C ~ 

0.7,0.5and0.3 .••••••••.•..••.•...•.•••.•.•..•• 272 

Surface Crack Density, Kr<i>T' versus Strain for 
Monotonic Loading of Cement Paste and Mortar 
with a W/C = 0. 5................. • . .. .. .. .. .. • • • • 273 

Number of Specimen Preparation Cracks per Unit 
Area versus Strain for Monotonic Loading of 
Cement Paste with a W/C = 0.5......... .• .. • •• .. .. 274 

Mean Cha~acteristic Crack Size, <aw>, versus 
Strain for Monotonic Loading of Cement Paste 
with a W/C = 0.5.... ... • ••••• ... • ... .. .. . • . •. .... 275 

Coefficient of Variation versus Strain for 
Monotonic Loading of Cement Paste with a 
W/C = 0.5...... .... .. ... .. .... . • ••• • .......... ... 276 

Number of Cracks per Unit Volume, NV, versus Strain 
for Monotonic Loading of Cement Paste and Mortar 
with a W/C = 0.5... .•• ••• .... • •• •• ... .. ... •• .. ... 277 

Measure of Volumetric Crack Density, Nv<a3>, 
versus Strain for Monotonic Loading of Cement 
Pastes with W/C = 0.7, 0.5 and 0.3............... 278 

Measure of Volumetric Crack Density, Nv<a3>, 
versus Strain for Monotonic Loading of Cement 
Pastes with W/C = 0.7, 0.5 and 0.3............... 279 

Measure of Volumetric Crack Density, Nv<a3>, 
versus Strain for Monotonic Loading of Cement 
Paste and Mortar with a W/C = 0.5 •.•••••..••••.•. 280 



Figure No. 

3.33 

3.35 

3.36 

3. 37 

3.39 

3.40 

3. 41 

3.42 

xxi i 

LIST OF FIGURES (continued) 

Surface Crack Density, MT<~>T' versus Strain 
for Sustained Loading of Cement Pastes with 
W/C = 0.5 and 0.3 •••••••••..•••.••••.•••.•••.•••. 

Surface Crack Density, MT<i>T, versus Strain 
for Monotonic and Sustained coacting of Cement 
Pastes with W/C = 0.5 and 0.3 ................... . 

Mean Characteristic Crack Size, <aili>, versus 
Strain for Sustained Loading of Cement Paste 
with a W/C = 0.5 ................................ . 

Number of Cracks per Unit Volume versus Strain 
for Sustained Loading of Cement Pastes with 
W/C = 0.5 and 0.3 •••••••••.••••.••••.•.•••••.••.• 

Measure of Volumetric Crack Density, Nv<a3>, 
for Sustained Loading of Cement Pastes with 
W/C = 0.5 and 0.3 ............................... . 

Measure of Volumetric Crack 
versus Strain for Monotonic 
of Cement Pastes with W/C = 

Density, Nv<a3>, 
and Sustained Loading 
0.5 and 0.3 .•..•••••• 

Measure of Volumetric Crack Density, Nv<a3>, 
versus Stress-Strength Ratio for Monotonic and 
Sustained Loading of Cement Pastes with W/C 
= 0.5 and 0.3 ••••••••••.•••..•••••.••..•••..••.• • 

Surface Crack Density, ~<i>T, versus Strain 
for Cyclic Loading of Cement Pastes with W/C = 

0.5and0.3 ..................................... . 

Surface Crack Density, Mr<i>T, versus Strain 
for Monotonic and Sustained Goading of Cement 
Pastes with W/C = 0.5 and 0.3 ................... . 

Mean Characteristic Crack Size, <a >, versus 
Strain for Cyclic Loading of Cemen~ Paste with 

281 

282 

283 

284 

285 

286 

287 

288 

289 

a W/ C = 0. 5. • • • • • • .. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 290 

3.43 Number of Cracks per Unit Volume, NV' versus Strain 
for Cyclic Loading of Cement Pastes with W/C = 
0.5 and 0.3... •• •••• •• . •• . . • ••• • . •••.•. •• •• •• . . .. 291 



Figure No. 

3.44 

3.45 

4. 1 

4.2 

4.3 

4.4 

4.5 

4.6 

4.7 

4.8 

4.9 

xxiii 

LIST OF FIGURES (continued) 

Measure of Volumetric Crack Density, Nv<a3>, 
versus Strain for Cyclic Loading with W/C = 

0.5 and 0.3 .................................... .. 

Measure of Volumetric Crack 
versus Strain for Monotonic 
of Cement Pastes with W/C = 

Density, Nv<a3>, 
and Cyclic Loading 
0.5 and 0.3 .......... 

Elliptic Crack and Principal Material Directions. 

Applied Stresses for Determining Effective Moduli 

Crack-based Coordinates ••••.••••.••••...••••••••• 

Elliptic Crack and Resolved Stresses ••.•••••.•..• 

Effective Stiffness Modulus; Dry or Saturated 
Circular Cracks in an Isotropic Solid ••...••••••• 

Effective Poisson's Ratio; Dry or Saturated 
Circular Cracks in an Isotropic Solid •.•••.••.••• 

Effective Stiffness Modulus; Dry or Saturated 
Circular Cracks in a Cylindrically Transverse 
Isotropic Solid (CTI) ••.••••••••••.•.•..••.••.••• 

Effective Poisson's Ratio; Dry or Saturated 
Circular Cracks in a Cylindrically Transverse 
Isotropic Solid (CTI) •••..••••••.••.•.•••••••.•.• 

Effective Shear Modulus; Dry or Saturated 
Circular Cracks in a Cylindrically Transverse 
Isotropic Solid (CTI) •••••.••••••••.•••.•••••••.• 

4.10 Effective Stiffness Modulus; Dry or Saturated 
Circular Cracks in a Transversely Isotropic 

292 

293 

294 

295 

296 

297 

298 

299 

300 

301 

302 

Solid; K = -0.3...... ...... .. .. .......... ...... .. 303 

4.11 Effective Stiffness Modulus; Dry or Saturated 
Circular Cracks in a Transversely Isotropic 
Solid; K = -0.3... .. . .•...... ... . . ... .. . . .. ... .. . 304 

4.12 Effective Poisson's Ratio; Dry or Saturated 
Circular Cracks in a Transversely Isotropic 
Solid; K = -0.3..... .. . .... .. . . ... . . ... . . . .. ... . . 305 



xxiv 

LIST OF FIGURES (continued) 

Figure No. Page 

4.13 Effective Poisson's Ratio; Dry or Saturated 
Circular Cracks in a Transversely Isotropic 
Solid; K = -0.3.... .... .. .. .. .. .. ........ ........ 306 

4.14 

4. 15 

4. 16 

4. 17 

4.18 

4. 19 

5. 1 

5.2 

5.3 

5.4 

Effective Shear Modulus; Dry or Saturated 
Circular Cracks in a Transversely Isotropic 
Solid; K = -0.3 ................................ .. 

Effective Stiffness Modulus; Dry Circular Cracks 
in a Transversely Isotropic Solid; K = -0.3 •••••• 

Effective Stiffness Modulus; Dry Circular Cracks 
in a Transversely Isotropic Solid; K = -o. 3 •••••. 

Effective Poisson's Ratio; Dry Circular Cracks 
in a Transversely Isotropic Solid •••.••..••••.••• 

Effective Poisson's Ratio; Dry Circular Cracks 
in a Transversely Isotropic Solid •••••...•••••..• 

Effective Shear Modulus; Dry Circular Cracks 
in a Transversely Isotropic Solid •••.....•••..••• 

Normalized Stiffness Modulus versus Applied 
Strain for Monotonic Loading of Cement Pastes 
with W/C = 0.7, 0.5 and 0.3; Dry Cracks ......... . 

Normalized Stiffness Modulus versus Applied 
Strain for Monotonic Loading of Cement Paste 
and Mortar with a W/C = 0.5; Dry Cracks •.•.•••••• 

Experimental and Calculated Stress-Strain 
RelationRhips for Monotonic Loading of Cement 
Paste with a W/C = 0.7. (Calculated Stress­
Strain Relationship is Based on an Elastic 
Matrix; Dry Cracks) ••••••••••.••.•••••••••.••.••• 

Experimental and Calculated Stress-Strain 
Relationships for Monotonic Loading of Cement 
Paste with a W/C = 0.5. (Calculated Stress­
Strain Relationship is Based on an Elastic 
Matrix; Dry Cracks) •.•...••••.••••..•••.•••.•...• 

307 

308 

309 

31 0 

311 

31 2 

31 3 

31 4 

31 5 

31 6 



Figure No. 

5.5 

5.6 

5.7 

XXV 

LIST OF FIGURES (continued) 

Experimental and Calculated Stress-Strain 
Relationships for Monotonic Loading of Cement 
Paste with a W/C = 0.3. (Calculated Stress­
Strain Relationship is Based on an Elastic 
Matrix; Dry Cracks) ••.••••••.•••..•.•..••.••••••. 

Experimental and Calculated Stress-Strain 
Relationships for Monotonic Loading of Mortar 
with a W/C = 0.5. (Calculated Stress-Strain 
Relationship is Based on an Elastic Matrix; 
Dry Cracks) .•.•..•.•...••••...•.•.••..••.•.•••••• 

Comparison of Values of Normalized Stiffness 
Modulus Corresponding to the Smaller and Larger 
Estimates of Mean Crack Size; Monotonic Loading 
of Cement Pastes with W/C = 0.7, 0.5 and 0.3; 
Dry Cracks •.••.•••..•.•.••••••••...•.•••.•..•...• 

5.8 Experimental and Calculated Poisson's Ratios 
versus Applied Strain for Monotonic Loading of 
Cement Paste with a W/C = 0.5. (Calculated 
Poisson's Ratios are Based on an Elastic Matrix; 

317 

31 8 

31 9 

Dry Cracks)......... . • • . • • • • • . • . . . . . • • • . . . . . . . . • • 320 

5.9 Experimental and Calculated Poisson's Ratios 
versus Applied Strain for Monotonic Loading of 
Cement Paste with a W/C = 0.3. (Calculated 
Poisson's Ratios are Based on an Elastic Matrix; 
Dry Cracks) • • . • • • • • • • • . • • • • • • . . • • • • . • . . • • . • • . . . . • 321 

5.10 Experimental and Calculated Poisson's Ratios 
versus Applied Strain for Monotonic Loading of 
Mortar with a W/C = 0.5. (Calculated Poisson's 
Ratios are Based on an Elastic Matrix; Dry 
Cracks)............................. . . . . . . . . . . . . . 322 

5.11 Comparison of Values of Normalized Stiffness 
Modulus Dry and Saturated Cracks; Monotonic 
Loading of Cement Pastes with W/C = 0.7, 0.5 
and a. 3.......................................... 323 

5.12 Experimental and Calculated Poisson's Ratios 
versus Applied Strain for Monotonic Loading of 
Cement Paste with a W/C = 0.5. (Calculated 
Poisson's Ratios are Based on an Elastic Matrix; 
Saturated Cracks)................................ 324 



xxvi 

LIST OF FIGURES (continued) 

Figure No. Page 

5.13 Experimental and Calculated Poisson's Ratios 
versus Applied Strain for Monotonic Loading of 
Cement Paste with a W/C ~ 0.3. (Calculated 
Poisson's Ratios are Based on an Elastic Matrix; 
Saturated Cracks)................................ 325 

5.14 Experimental and Calculated Poisson's Ratios 
versus Applied Strain for Monotonic Loading of 
Mortar with a W/C = 0.5. (Calculated Poisson's 
Ratios are Based on an Elastic Matrix; Saturated 
Cracks).......................................... 326 

5.15 Comparison of Values of Stiffness Modulus 
Calculated in Accordance with the First and 
Second Arproaches; Monotonic Loading of Cement 
~aste with a W/C ~ 0.5; Dry Cracks............... 327 

5.16 Comparison of Values of Poisson's Ratios 
Calculated in Accordance with the First and 
Second Approaches; Monotonic Loading of Cement 
Paste with a W/C = 0.5; Dry Cracks............... 328 

5. 17 

5. 18 

5.19 

5. 20 

5. 21 

Experimental and Calculated Stress-Strain Rela­
tionships for Monotonic Loading of Cement Paste 
with a W/C = 0.1. (Calculated Stress-Strain 
Relationship is Based on an Inelastic Matrix) ..•• 

Experimental and Calculated Stress-Strain Rela­
tionships for Monotonic Loading of Cement Paste 
with a W/C = 0.5. (Calculated Stress-Strain 
Relationship is Based on an Inelastic Matrix) •••• 

Experimental and Calculated Stress-Strain Rela­
tionships for Monotonic Loading of Cement Paste 
with a W/C = 0.3. (Calculated Stress-Strain 
Relationship is Based on an Inelastic Matrix) •••• 

Experimental and Calculated Stress-Strain 
Relationships for Monotonic Loading of Mortar 
with a W/C ~ 0.5. (Calculated Stress-Strain 
Relationship is Based on an Inelastic Matrix) •••• 

Percentage of Inelastic Strain Due to Submicro­
cracking versus Applied Strain for Monotonic 
Loading of Cement Paste with W/C ~ 0.7, 0.5 and 
0.3, and Mortar with a W/C = 0.5 .•••••.•••....••. 

329 

330 

331 

332 

333 



xxvii 

LIST OF FIGURES (continued) 

Figure No. Page 

5.22 Experimental and Calculated Poisson's Ratios 
versus Applied Strain for Monotonic Loading of 
Cement Paste with a W/C = 0.5. (Calculated 
Poisson's Rations are Based on an Inelastic 
Matrix)........................................... 334 

5.23 Experimental and Calculated Poisson's Ratios 
versus Applied Strain for Monotonic Loading of 
Cement Paste with a W/C = 0.3. (Calculated 
Poisson's Ratios are Based on an Inelastic 
Matrix).......................................... 335 

5.24 

5. 25 

5. 26 

5. 27 

Experimental and Calculated Poisson's Ratios 
versus Applied Strain for Monotonic Loading of 
Mortar with a W/C = 0.5. (Calculated Poisson's 
Ratios are Based on an Inelastic Matrix) .....•..• 

Experimental Stress-Strain Curve and Calculated 
Strain in Inelastic Matrix Material for Sustained 
Loading of Cement Paste with a W/C = 0.5; Applied 
Strain= 0.004 .................................. . 

Experimental Stress-Strain Curve and Calculated 
Strain in Inelastic Matrix Material for Sustained 
Loading of Cement Paste with a W/C = 0.5; Applied 
Strain = 0. 006 .................................. . 

Experimental Stress-Strain Curve and Calculated 
Strain in Inelastic Matrix Material for Sustained 
Loading of Cement Paste with a W/C = 0.3; Applied 
Strain = 0.004 ••..••••••.••••.•••.••.•••.•••.••.• 

5.28 Experimental Stress-Strain Curve and Calculated 
Strain in Inelastic Matrix Material for Sustained 
Loading of Cement Paste with a W/C = 0.3; Applied 

336 

337 

338 

339 

Strain= 0.006........................ .... .. .. .. . 340 

5. 29 Comparison of Calculated Strains Due to Sub­
microcracking for Monotonic and Sustained Loading 
of Cement Pastes (W/C = 0.5 and 0.3) at the same 
Applied Strain. (Calculated Strains are Based on 
an Inelastic Matrix) ... , ...... , ..... , ........... . 341 



Figure No. 

5. 30 

xxviii 

LIST OF FIGURES (continued) 

Comparison of Calculated Strains Due to Sub­
microcracking for Monotonic and Sustained Loading 
of Cement Pastes (W/C = 0.5 and 0.3) at the same 
Stress-Strength Ratio. (Calculated Strains are 
Based on an Inelastic Matrix) •.•.......•..••••..• 

5. 31 Experimental and Calculated Poisson's Ratios 
versus Applied Strain for Sustained Loading of 
Cement Pastes (W/C = 0.5 and 0.3). (Calculated 
Poisson's Ratios are Based on an Inelastic 

342 

Matrix).......................................... 343 

5. 32 

5.33 

Experimental Stress-Strain Curve and Calculated 
Strain in Inelastic Matrix Material for Cyclic 
Loading of Cement Paste with a W/C = 0.5; 
Applied Strain= 0.002 •••.•••••.•...••••.••....•• 

Experimental Stress-Strain Curve and Calculated 
Strain in Inelastic Matrix Material for Cyclic 
Loading of Cement Paste with a W/C = 0.5; 
Applied Strain= 0.004 .••...••..•••••..•.••••••.• 

5.34 Experimental Stress-Strain Curve and Calculated 
Strain in Inelastic Matrix Material for Cyclic 
Loading of Cement Paste with a W/C = 0.3; 

344 

345 

Applied Strain= 0.002........................... 346 

5.35 

5.36 

5. 37 

Experimental Stress-Strain Curve and Calculated 
Strain in Inelastic Matrix Material for Cyclic 
Loading of Cement Paste with a W/C = 0.3; 
Applied Strain= 0.0025 •••••••••..•.•.•.••..••••• 

Experimental Stress-Strain Curve and Calculated 
Strain in Inelastic Matrix Material for Cyclic 
Loading of Cement Paste with a W/C = 0.3; 
Applied Strain= 0.003 ••.••••.••••..••....•••...• 

Comparison of Calculated Strains Due to Sub­
microcracking for Monotonic and Cyclic Loading 
of Cement Pastes (W/C = 0.5 and 0.3) at the Same 
Applied Strain. (Calculated Strains are Based 
on an Inelastic Matrix) ........................ .. 

348 

349 



xxix 

f.IST OF FIGURES (continued) 

Figure No. 

5.38 Comparison of Inelastic Strains in Matrix for 
Monotonic and Cyclic Loading of Cement Pastes 
(W/C = 0.5 and 0.3) at the Same Applied Strain. 
Calculated Strains are Based on an Inelastic 
Matrix)e•••••·••·•·•••••••••••••••••••••••••••••• 350 

5.39 Experimental and Calculated Poisson's Ratios 
versus Applied Strain for Cyclic Loading of 
Cement Pastes (W/C = 0.5 and 0.3). (Calculated 
Poisson's Ratios are Based on an Inelastic 
Matrix) ••••••.•••••••.••.••••..••.•.•..•.•••••••• 351 

5.40 

c. 1 

C.2 

C.3 

c. 4 

C.5 

C.6 

D. 1 

D.2 

D.3 

D.4 

Calculated Stress-Strain Relationships for First 
and Second Approaches (based on an Inelastic 
Matrix) Compared with Experimental Curves. Mono­
tonic Loading of Cement Paste with a W/C = 0.5 ... 

Cracks Viewed Through Window ••.•••••••.••.••••••• 

Measured Length Distribution for a Given 6, 
Where the Window Height is Too Small •.••••.•.••.• 

Apparent and True Length Distributions ••••••.•••• 

Apparent and True Angle Distributions ••...••••••• 

Cracks on a Plane Section •••.••••••••.•...••••••• 

Variation of Apparent Mean Length with Window 
Height .•..•••••.••••.••••.•••••...•.••.•••..••••• 

Elliptic Crack and Intersecting Planes •.••••...•• 

Longitudinal Plane Intersecting an Elliptic Crack 

Transverse Plane Intersecting an Elliptic Crack •• 

Orientation and Surface Angle Distributions for 
an Isotropic System of Cracks •..••••.•.•••.•.•••• 

D.5 Orientation and Surface Angle Distributions for 
Isotropic and Transversely Isotropic Systems of 

352 

378 

379 

380 

381 

382 

408 

409 

41 0 

411 

Cracks............................ . . . . . . . . . . . . . . . 41 2 

D.6 Crack Size, 2a, and Longitudinal Surface Length, 
!<, Distributions; e = 30° •.••••••.•..••••••••••.• 413 



XXX 

LIST OF FIGURES (continued) 

Figure No. Page 

D.7 Crack Size, 2a, and Transverse Surface Length, 

D.8 

D.9 

D. 10 

E. 1 

1, Distributions ............ ~···o•••······~······ 414 

Comparison of Experimental, f(6) , and 
Calculated, f(6) , Trace Angle bistributions on 
a Longitudinal P~~e ••••••.•••••••••••.•••••••.•• 

Comparison of Experimental, f(6)T' and 
Calculated, f(e) , Trace Length Distributions 
on a Transverse Plane •••••••••••••••..•••.••••••• 

Comparison of Experimental, f(t!eJL' and 
Calculated, f(t!eJ , Trace Length Distributions 
on a Longitudinal ~Iane ........................ .. 

Sketch for Determining the Relationship Between 
2-D and 3-D Angles ••••••••..••••••••..••••••..••• 

41 5 

41 6 

417 

432 

E.2 Rotation of Crack about Normal through its 
Centroid ................................... o••••• 433 

E.3 Projection of Crack on Transverse Plane •••••••••• 

E.4 Projection of Crack on Longitudinal Plane •••.•••• 435 

E.5 Projection of Triangle OAC (Fig. E.2) on 
Transverse Plane •.•..•••.••••.••••.•.••.•.••••.•• 436 

E.6 Projection of Triangle OBD (Fig. E.2) on 
Transverse Plane ................................ . 437 

E.7 Projection of Triangle OAC (Fig. E.2) on 
Longitudinal Plane .............................. . 438 

E.8 Projection of Triangle OBD (Fig. E.2) on 
Longitudinal Plane................................ 439 



1.1 General 

CHAPTER 1 

INTRODUCTION 

Concrete is one of the most widely used engineering materials. In 

spite of its common use, the relationships between the behavior of concrete 

and the behavior of its constituent materials, and the factors that control 

the behavior of concrete under general types of loading are not well under­

stood. The ever widening applications of concrete as a structural material 

make it increasingly important to improve both our understanding of the 

behavior of concrete and our ability to accurately predict its response 

under load. 

Under various loading conditions, concrete exhibits a rate-dependent 

behavior. This phenomena is not well understood and explanations for it 

have been limited to the role of water within the structure of cement paste 

[45]. Complete explanations of rate dependency require an understanding of 

the internal behavior of concrete. Concrete for special applications, such 

as nuclear reactor pressure vessels, must meet strict performance standards. 

These standards can only be adequately ensured if the basic behavior of the 

material is well understood. Knowledge of the mechanisms which control the 

behavior of concrete and its constituent materials will provide a rational 

basis for developing material behavior laws. 

Concrete is a highly heterogeneous material. Its response to loading 

is inelastic. Even for a relatively homogeneous and isotropic material, 

such as steel, external macroscopic observations do not provide sufficient 

information to explain its behavior, especially at strains where its 

response is inelastic. Thus, microscopic and submicroscopic dislocation 

processes in ductile metals have been used to explain macroscopic yielding 

[78]. An understanding of deformation mechanisms at the microscopic and 

submicroscopic levels in concrete will enable constitutive models to be 

formulated based on structural changes which actually take place. 

The microscopic behavior of concrete under load has been studied during 

the last twenty-five years. Microscopic cracks (microcracks) exist in 

concrete prior to loading and propagate with load 

[17,27,32,42,60,76,77,78,82]. The term microcracking has, in general, been 
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limited to relatively large microcracks which are observed under low mag­

nifications of up to 50x at the paste-aggregate interface and in the mortar 

constituent of concrete. The surface density of these microcracks has been 

shown to increase from about 1 in./in. 2 for nonloaded specimens up to about 

3.5 in,/in. 2 for specimens loaded to strains of 0.003 in uniaxial compres­

sion [17,42]. It has become clear that the behavior of concrete under 

compressive as well as tensile loads is closely related to the formation of 

microcracks. 

During the early period of the ~icrocracking studies, concrete was 

considered to be made up of two brittle materials, paste and aggregate, with 

the full nonlinearity being assigned to the microcracking [42,79]. More 

recently, however, investigators [22,57,58,59,85,86,87,88] have shown that 

the nonlinearity of concrete subjected to compressive loading is highly 

dependent upon the nonlinearity of its cement paste and mortar constituents. 

Cement paste is not a linear elastic and brittle material as previously 

thought [42,79], but is rather a nonlinear softening material that is 

damaged continuously under load [85,87,88]. The process of damage in mortar 

and concrete begins at very low strains and is also continuous 

[22,58,59,86,87]. These recent studies strongly indicate that microcracking 

does not fully explain the load-deformation behavior of concrete. 

Microcracking now appears to have its greatest effect on lateral strain 

[57]. 

The present study investigates, at the submicroscopic level (1250x 

magnification), the internal behavior of cement paste and mortar subjected 

to uniaxial compressive loading. The origin, causes and significance of 

cracks at the submicroscopic level in cement paste and mortar are explored. 

A better understanding of the engineering properties of concrete can be 

obtained if the behavior of its constituents is well understood. This could 

lead to improvements in the properties as well as improved use of the 

materials. The need for safe, economical concrete structures can best be 

satisfied if the behavior of concrete can be more accurately predicted. 

1.2 Previous Work 

1. 2.1 Background 

In 1963, Hsu, et al. [42] studied the formation and propagation of 

microcracks in concrete subjected to uniaxial compressive loading using 
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microscopic and x-ray techniques. One technique consisted of cutting a thin 

slice (0.15 inch thick) from a specimen and observing the cracks as shown in 

an x-ray photograph [81 ]. The other consisted of cutting the specimen, 

filling the cracks with a red dye, and examining the cross-section under an 

optical microscope at 40x magnification [42]. Hsu, et al. found that prior 

to loading, bond cracks at the interface between coarse aggregate and mortar 

exist in plain concrete. Above about 30% of the ultimate load, these bond 

cracks begin to increase appreciably in length, width and number with in­

creasing strain. At this load, the stress-strain curve begins to deviate 

appreciably from a straight line. At 70% to 90% of the ultimate load, 

crpcks through the mortar increase noticeably, and bridge between bond 

cracks to form continuous crack patterns. Mortar cracking continues at an 

accelerated rate until the material ultimately fails. They concluded that 

the shape of the stress-strain curve of plain concrete under short-term 

uniaxial compressive loading is related to microcracking. 

Using the optical microscope technique, Shah and Chandra [77] and 

Meyers, Slate and Winter [60] have shown that microcracks increase under the 

effect of sustained and cyclic loading, 

Carrasquillo, Slate and Nilson [17] found that the bond-mortar crack 

classification system, useful in studying behavior of normal strength con­

crete, is not highly relevant for microcrack studies of high strength 

concretes (f' ~ 6000 psi). They suggested that the classification of c 
microcracks into simple and combined cracks, and the distinction between 

different types of combined cracks, is more appropriate for high strength 

concretes. 

Derucher [27] used a scanning electron microscope (SEM) to obtain a 

somewhat different picture of the microscopic behavior of concrete. In 

order to observe microcracks with the SEM without having to unload the 

specimens (as did Hsu, et al.), he applied eccentric compressive loads to 

concrete specimens. The specimens had to be dried for proper operation of 

the SEM. In order to determine if the drying procedure caused additional 

microcracking in the specimens, Derucher used an optical microscope. He 

concluded that no cracks were induced by drying. Using the SEM, he found 

that bond cracks, with mortar microcrack extensions, exist in concrete prior 

to loading. Under increasing compression, the bond cracks propagate by a 

small amount and widen. At a stress as low as 15% of the ultimate strength, 
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the mortar cracks widen and propagate to the point where they begin to 

bridge bond cracks. Bridging of the bond cracks is about complete at 45% of 

the ultimate strength. At 75% of the ultimate strength, the mortar cracks 

start to bridge one another. 

The importance of interfacial paste-aggregate bond strength on the 

behavior of concrete under load has been studied in a number of investiga­

tions [23,41,71 ,76,79,90]. Darwin and Slate [23] and Perry and Gillott [71] 

found from their studies that a large reduction in interfacial strength 

results in only about a 10 percent reduction in the compressive strength, as 

compared to similar concrete made with aggregate with normal interfacial 

strength. These two studies indicate that the interfacial strength plays a 

relatively minor role in controlling the stress-strain behavior and ultimate 

strength of concrete. 

When concrete and cement paste are tested in uniaxial compression, 

concrete exhibits a general pattern of interlaced microcracks near its peak 

stress while cement paste fractures in an abrupt, even explosive, manner. 

The cracks in cement paste are fewer in number but of much greater length. 

This distinction between the modes of fracture of cement paste and concrete 

is responsible for the previous belief that cement paste is essentially a 

linear elastic, brittle material [88]. At a time when cement paste was 

thought to be linearly elastic, Spooner [85] proposed that the curvature of 

the stress-strain curve of concrete at low stresses might be due to creep of 

the cement paste and that cracking was responsible for further curvature as 

the stress was raised to failure. His attempt to calculate the uniaxial 

compressive stress-strain curve for cement pastes from data obtained from 

creep tests was only partially successful. The calculated curves were 

stiffer than the experimental curves. He suggested that the poor agreement 

between the calculated and experimental stress-strain curves might be at­

tributed to structural damage in the specimens, causing greater strains to 

occur than accounted for by creep alone. He showed that cement paste is a 

nonlinear material. 

Using a cyclic loading procedure, Spooner, et al. [86,87,88] 

demonstrated that both paste and concrete undergo measurable damage at 

strains as low as 0.0004 and that both materials are damaged progressively. 

Damage was measured in terms of the energy dissipated and changes in the 

modulus of elasticity. Cook and Chindaprasirt [22] and Maher and Darwin 
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[58,59] showed that the process of degradation of mortar during monotonic as 

well as cyclic compressive loading is continuous and begins at very low 

loads. Maher and Darwin measured residual strains for applied strains as 

low as 0.00027. When combined with the work of Derucher, in which he ob­

served that mortar cracks widen and propagate at a stress level as low as 

15% of the ultimate strength of concrete, these studies indicate that the 

nonlinear behavior of cement paste, mortar and concrete can be closely tied 

to damage sustained by these materials, even at very low loads. 

The importance of mortar in controlling the stress-strain behavior of 

concrete is illustrated by the finite element work of Buyukozturk [16] and 

Maher and Darwin [57]. Maher and Darwin showed that by using a nonlinear 

representation for mortar in a finite element model of concrete, the non­

linear behavior of concrete can be closely matched. The finite element work 

of Buyukozturk could not duplicate the nonlinear experimental behavior of 

concrete using the formation of bond and mortar cracks as the only nonlinear 

effect. 

A number of investigators [22,77,97] have found that sustained loading 

increases the strength and initial modulus of elasticity of cement paste, 

mortar and concrete. Shah and Chandra [77] showed that on reloading, paste 

and concrete specimens lo'!ded to stress-strength ratios of 60% and 70% for 

four hours, exhibit strength increases in comparison with the controls. 

Cyclic loading [22] on other hand, results in decrease in strength and 

stiffness upon reloading. The structural changes due to cyclic loading may 

be of a different nature than those due to creep. 

The physical nature of the damage that occurs in cement paste at the 

submicroscopic level is not well understood. Volumetric strain measurements 

by Spooner, et al. [88] indicate that a reduction in the rate of volume 

decrease, implying internal cracking, occurs in cement paste during compres­

sive loading. Yoshimoto, et al. [103,104] observed microcracks in the 

cement matrix of concrete and mortar under flexural and compressive loading, 

They examined thin slices of mortar and concrete (about 37 ~m thick) with an 

optical microscope at 150x magnification. The technique of slicing was 

similar to that of Slate and Olsefski [82] except that the slices were 

ground until light could penetrate through. They suggested that "hair­

shaped" cracks occur at very low strains in the cement matrix of concrete. 

When the length of the "hair-shaped" cracks reaches a certain value, the 
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cracks stop extending in length but change in shape from a hair to a void. 

The "void-shaped" cracks propagate with the increasing of strain. They 

further suggested that mortar cracks develop from the "void-shaped" cracks, 

because the "void-shaped" cracks are the largest flaws in the cement matrix. 

1.2.2 Work that Impacts on this Study 

The studies discussed in the last section show that concrete is a 

nonlinear material, but only a small portion of its nonlinearity is ex­

plained by microcracking. Cement paste and mortar are also nonlinear 

materials. Thus, the nonlinearity of concrete can best be explained if the 

nonlinearity of its paste and mortar constituents is well understood. Load­

induced changes in cement paste and mortar need to be studied in order to 

obtain a clear understanding of the nonlinear behavior of these materials. 

Hsu, et al. [42] studied microcracks in concrete loaded in uniaxial 

compression using optical microscope and x-ray procedures. These two proce­

dures suffer from the limitation that only cracks of widths larger than 

about 50 ~m can be examined [63]. The scanning electron microscope (SEM) 

has a much higher degree of resolution than the optical microscope. In 

addition, the SEM has a depth of focus that is 30 to 40 times greater than 

that of the optical microscope [100]. Derucher [27] used the SEM to observe 

that mortar cracks in concrete widen and propagate at a stress level lower 

than that obtained by Hsu, et al. The superior resolution and depth of 

focus of the SEM may have enabled Derucher to observe mortar cracks which 

were finer than those observed by Hsu, et al. 

Cracks have been observed in the cement matrix of mortar and concrete 

by Yoshimoto, et al. [103,104] using an optical microscope. They suggested 

that mortar cracks in concrete develop from the cracks they observed. The 

study of very small cracks in cement paste requires the use of an SEM. 

In order to observe cracks in saturated specimens of cement paste and 

mortar, Mindess and Diamond [63] used an SEM equipped with an environmental 

chamber or "wet cell". They used a loading device which enabled them to 

subject the specimens to compressive loading within the SEM chamber. In 

both the paste and mortar specimens, cracks were first noted at an applied 

stress of about 5500 psi. These cracks were about the same size as those 

observed with optical microscope and x-ray procedures. From their 

micrographs, it is observed that the resolutions they obtained were not as 
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high as obtained with a conventional SEM with dry specimens 

[28,29,51 ,96,101 ]. It is therefore possible that cracks which might have 

formed at lower stresses were not detected. A different procedure is needed 

if smaller cracks are to be observed. 

The microstructure of cement paste has been studied for several years 

with the aid of the SEM [19,28,29,51,62,89,96,97,101]. These studies have 

been done using fractured surfaces of the hardened paste. Sawed and 

polished surfaces are not recommended since the effects of smearing tend to 

make the identification of microstructural features difficult [51]. The two 

major products of hydration are calcium silicate hydrate (CSH) and calcium 

hydroxide (CH). It is generally agreed among the various investigators that 

calcium silicate hydrate gives cement paste most of its strength. Berger, 

et al. [9] and Diamond [29] identified four structural types of calcium 

silicate hydrate: Types I, II, III and IV. Flaws and stress concentrators 

which exist in cement paste have been identified by Williamson [101]. 

Constitutive models have been used to determine the effects of cracks 

on the stress-strain response of concrete [16,56,76,88]. Buyukozturk [16] 

used a linear finite element representation of a physical model of concrete. 

He could not duplicate the nonlinear experimental behavior of concrete using 

the formation of interfacial bond cracks and mortar cracks as the only 

nonlinearities. Testa and Stubbs [91] also used a linear representation of 

mortar in a mathematical model to determine the effects of bond failure on 

the stress-strain response of concrete. Their model could not match the 

behavior of concrete. 

Shah and Winter [79] accounted for the inability of their linear elas­

tic model to duplicate thP. nonlinear behavior of concrete by considering the 

statistical variations in the local strength of concrete. By the proper 

selection of these variations, they were able to duplicate the behavior of 

concrete. However, the major nonlinear behavior of concrete can also be 

matched by considering the nonlinearities of the mortar constituent, as 

shown by Maher and Darwin [57] in their finite element model. Thus, an 

understanding of the nonlinearities of mortar and cement paste should lead 

to a better understanding of the stress-strain behavior of concrete. 

The models discussed above do not consider the three-dimensional crack 

size and orientation distributions. A complete cracking model should in-
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elude these distributions. Constitutive models based on the "self­

consistent method" [12,35] account for crack distributions and have been 

used to estimate the elastic moduli of cracked solids [14,38,40,67]. The 

method considers changes in the strain energy of a solid due to the forma­

tion of individual cracks. The changes in energy are based on material 

properties as they are modified by the cracks. Budiansky and O'Connell 

[14,67] and Horii and Nemat-Nasser [40] used the method to estimate the 

elastic moduli of solids containing isotropic distributions of cracks. 

Hoenig [38] estimated the elastic moduli of solids in which cracks are 

distributed with a single orientation. 

Distributions of load-induced cracks in cement paste, mortar or con­

crete under uniaxial compressive loading should be symmetric about the 

longitudinal or loading axis of the specimen. These crack distributions 

would therefore render the material transversely isotropic with five inde­

pendent elastic moduli. The self-consistent model has yet to be applied to 

such a transversely isotropic solid. 

The nature of damage at the submicroscopic level in cement paste sub­

jected to uniaxial compressive loading and its relationship to the ~onlinear 

behavior of paste, mortar and concrete remains to be adequately 

investigated. 

1.3 Techniques for Crack Studies 

Two techniques have been used to study stress-induced microscopic 

cracks in concrete and its constituent materials. 

In the first technique, the optical microscope and x-ray photographs 

are used to study the cracks [42,60,76,77,82,103,104]. Specimens of cement 

paste, mortar or concrete are loaded to predetermined strains and then 

unloaded. Sawed and polished surfaces of the specimens which are perpen­

dicular to the direction of loading (transverse surfaces) are studied under 

low magnification (typically about 7x to 50x) using an optical microscope or 

without magnification using x-rays. By this procedure, cracks have been 

identified at the interface between coarse aggregate and mortar (bond 

cracks) and within mortar (mortar cracks), A major disadvantage of this 

procedure is that only cracks of widths larger than about 50 urn can be 

identified. 
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In the second technique, small specimens of cement paste, mortar or 

concrete are studied under load within an SEM [27,28,29,63]. Cracks are 

recorded as they form. The viewing plane is limited to a polished surface 

which is parallel to the loading direction (longitudinal surface). 

Transverse surfaces cannot be viewed. Saturated specimens are viewed using 

an SEM equipped with a "wet cell". The resolution obtained with saturated 

specimens is such that the magnification is limited to at most 500x. The 

poor resolution is due to gas (water vapor) in the SEM chamber. Because of 

the limited magnification, cracks observed in saturated specimens tend to be 

about the same size as those observed with the optical microscope and x­

rays. Very high resolutions are obtained with the SEM when dry specimens 

are used [28,29,51 ,96,101]. Therefore, observations of cracks which are 

smaller than those observed in saturated specimens require the use of dry 

specimens. Derucher [27] used dry specimens in the SEM but limited his 

studies to a magnification of 100x. The cracks he studied were the same 

size as those studied by Hsu, et al. with the optical microscope [42]. High 

resolutions can be obtained with the SEM at magnifications on the order of 

10000x when dry specimens are used. 

The·two techniques described above have been limited to providing a 

two-dimensional picture of cracks in concrete and its constituent materials, 

based on crack trace lengths on either transverse or longitudinal surfaces. 

A full understanding of material response to cracking requires a knowledge 

of three-dimensional crack distributions within the material volume. Since 

the materials are opaque, the three-dimensional crack distributions cannot 

be obtained directly. An accurate estimation of these distributions using 

stereological principles [94,98] requires that surface crack data on both 

transverse and longitudinal surfaces be obtained. This requirement suggests 

modifying the above techniques. 

1.4 Object and Scope 

The purpose of this investigation is to study submicroscopic cracking 

of cement paste and mortar under uniaxial compressive loading and to corre­

late the observed cracks with the applied strain and load history. 

Cement paste and mortar specimens are subjected to uniaxial compressive 

loading. The cement pastes studied are representative of those found in 

low, normal and high strength concretes. Mixes with water-cement ratios of 
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0.7, 0.5 and 0.3 are used. The mortar studied corresponds to concrete with 

a water-cement ratio of 0.5. Tests on cement paste include "short-term" 

monotonic, sustained and cyclic loading, while tests on mortar are limited 

to "short-term" monotonic loading. Specimens are tested at ages of 27, 28 

or 29 days. 

Drying procedures are established to prepare nonloaded and preloaded 

specimens for viewing in the SEM. Cracking on transverse and longitudinal 

surfaces of the specimens is studied at a magnification of 1250x. 

Microstructural features in cement paste and mortar are also studied. 

Statistical and stereological models are developed to convert the 

surface crack distributions to three-dimensional distributions. The extent 

of cracking in cement paste and mortar is compared. 

A self-consistent model is developed for a transversely isotropic 

cracked material. Submicrocracking is correlated with the reduction in 

stiffness and the shape of the stress-strain curves of cement paste and 

mortar using the self-consistent model. 
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CHAPTER 2 

EXPERIMENTAL STUDY 

The experimental program was designed to study submicroscopic cracking 

of cement paste and mortar under uniaxial compression. Cement paste 

specimens were subjected to monotonic, sustained or cyclic loading. Mortar 

specimens were subjected to monotonic loading. 

The cement pastes studied were representative of those found in low, 

normal and high strength concretes. Water-cement ratios (W/C) of 0.7, 0.5 

and 0.3 were used. The mortar studied corresponded to concrete with a W/C 

of 0.5. 

The test specimens were loaded in compression using a closed-loop 

servo-hydraulic testing machine. The average axial strain was obtained 

using a compressometer and the average lateral strain was obtained using an 

extensometer. 

After the specimens were loaded, slices were removed and dried for 

viewing in a scanning electron microscope (SEM). This portion of the study 

provided data on cracks at the submicroscopic level in the materials. 

In this report, the results of the experimental work are analyzed to 

determine the surface and volumetric densities of cracks in cement paste and 

mortar (Chapters 2 and 3) and the effects of the submicroscopic cracks on 

the load-deformation behavior of the materials (Chapters 4 and 5). 

2.2 Materials 

Cement: Type I portland cement, Ashgrove Brand, of the following com­

position was used: c
3
s = 51.1%, c2s = 22.3%, c4AF = 9.5%, and c

3
A = 8.6%. 

Fine Aggregate: consists mainly of quartz, with 10% to 15% chert; 

larger particles contain some limestone and dolomite. Fineness Modulus 

2.9. Bulk Specific Gravity (Saturated Surface Dry) = 2.61. Absorption 

0.79%. Source: Kansas River, Lawrence, Kansas. The sand was passed through 

a #4 sieve before use. 

Coarse Aggregate: Crushed limestone of 1/2 in. nominal size. Bulk 

Specific Gravity (Saturated Surface Dry) = 2.52. Absorption= 3.2%. 

Source: Hamm's Quarry, Perry, Kansas. The coarse aggregate was passed 

through a 1/2 in. sieve before use. 
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Concrete mixes were designed in order to obtain the proportions of the 

corresponding mortar constituent. Three water-cement ratios, 0.7, 0.5 and 

0.3, were used for cement paste. A single mortar mix of W/C = 0.5 was used. 

The mix designs are given in Table 2.1. 

2.3 Test Procedure 

2.3.1 Test Specimen 

Prismatic test specimens, 2 in. square by 8 in. long, were prepared. 

The paste and mortar specimens were mixed using a mechanical mixer following 

ASTM C 305-70 [2]. Sand for the mortar specimens was oven-dried during the 

twenty-four hour period prior to batching. The mix water was increased to 

correct for absorption of the sand. The sand was allowed to cool before 

being placed in the mixer. 

Batching was performed at room temperature, which ranged from 68° to 

84°F. Six specimens were prepared from each batch. The steel molds (Fig. 

2.1) were oiled and sealed with modeling clay. The specimens were cast in a 

vertical position. The molds were filled in three equal layers. Each layer 

was rodded twenty-five times using a three-eighths in. diameter rod and the 

molds were then sealed at the top. 

During the first twenty-four hours, the molds were stored in the 

laboratory in a horizontal position to reduce the effects of bleeding. The 

specimens were then removed from the molds and stored in lime saturated 

water until the time of test. 

Prior to loading, the specimens were shortened to a length of 6 in. by 

removing equal portions from each end using a high speed masonry saw. 

Specimens were tested 27 to 29 days after casting. In preparation for 

testing, specimens were removed from the curing tank and wrapped in plastic 

to insure that they would remain in a saturated condition during the tests. 

2.3.2 Instron Testing Machine 

A 110,000 pound capacity closed-loop servo-hydraulic Instron testing 

machine (Model No. 1334) was used. The load was transmitted through flat 

rigid platens to insure that the imposed displacement was the same at all 

points across the width of the specimens. The testing machine allowed the 
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test to be controlled by either strain or load. Strain control at a con­

stant strain rate was u.qed for the monotonic tests, while load control was 

used for both the sustained and cyclic tests. 

Alignment of the.specimens in the testing machine was achieved using 

the following procedure. 

eighth in. layer of high 

Both ends of the specimens were capped with a one­

strength gypsum cement (Hydrostone). A steel plate 

was fixed to the lower platen of the testing machine by means of Hydrostone 

and then oiled. Two layers of 4 mil polyethylene sheet were placed on this 

steel plate to reduce friction between the specimen and the steel plate. 

The specimen was then placed on the polyethylene sheets. Two more layers of 

polyethylene sheet were placed on top of the specimen. A second oiled steel 

plate was placed on top of these sheets. The surface of the upper platen 

was oiled. A thin layer of Hydrostone was spread on the top plate. By 

raising the lower platen, the specimen was slowly brought into contact with 

the upper platen. Fifty to one-hundred pounds of load were applied. The 

Hydrostone hardened in approximately thirty minutes, and then the load was 

removed. 

2.3.3 Measurement of Axial and Lateral Strains 

A five-inch gage length compressometer was used to measure the average 

axial strain (Fig. 2.2). An MTS extensometer, Model 632.11B-20, was in­

stalled on the compressometer to measure the strain and to provide closed­

loop control for the testing machine. The gage length of the extensometer 

was 1.0 in., and the range of displacement was ± 0.15 in. Measurement of 

displacement over the five-inch gage length of the compressometer improved 

the sensitivity of the closed-loop control. 

The compressometer was attached to wood strips on the test specimen 

using set-screws. The wood strips were attached to the specimen using a 

cyanoacrylate adhesive immediately after blotting off surface water at the 

selected locations on the specimen, 

A second extensometer was mounted on each specimen to measure the 

average lateral strain. A one-inch gage extender was attached to the fixed 

leg of the extensometer to enable measurements to be made over a two-inch 

gage length. A cyanoacrylate adhesive was used to attach the extensometer 

to the specimen. A strong bond was obtained within one minute. 
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2.3.4 Data Acquisition 

Data on load, axial strain and lateral strain were obtained using a 

Hewlett-Packard data acquisition system (30528), A Hewlett-Packard des~top 

computer (98258) was used to control the system and record the data. 

Software tailored to each loading reg.ime automatically acquired data at 

specified time intervals. 

2.4 Loading Regimes 

2.4.1 General 

The loading phase of the experimental work was designed to prepare 

specimens with known stress-strain histories for submicroscopic study. 

Specimens were subjected to monotonic, sustained or cyclic compressive load 

at ages of 27, 28 or 29 days. Sixteen batches of cement paste and two 

batches of mortar were te~ted. One specimen from each batch was used as a 

nonloaded control specimen for the submicroscopic studies. 

The specimens are identified by batch and specimen number (e.g. 2-1), 

type of specimen and water-cement ratio (e.g. P-0.5), and type of test (e.g. 

M), A key to specimen identification is provided in Appendix A. 

2.4.2 Monotonic Loading 

This group of tests constituted the major thrust of the study. Cement 

paste and mortar specimens were loaded monotonically in compression to a 

specified strain and then immediately unloaded. The specimens were loaded 

and unloaded at a strain rate of 0.0004 per minute. The strain to which 

each specimen was loaded is shown in Tables 2.2-2.5. 

Two batches of cement paste with a W/C = 0.7 and three batches each of 

cement paste with W/C = 0.5 and 0.3 were tested. Two batches of mortar with 

a W/C = 0.5 were also tested. Cement paste specimens were loaded to strains 

of 0.0005, 0.001, 0.002, 0.004 and 0.006, while mortar specimens were loaded 

to strains of 0.0005, 0.001, 0,002, 0.003 and 0.004. In addition, three 

specimens from each of the sustained and cyclic test batches were loaded 

monotonically: one specimen to failure, and two specimens to strains of 

0.004 and 0.006 for the sustained batch, 0.002 and 0.004 for the cyclic 

batch. 
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Data was recorded at four second time intervals. Typical stress-strain 

curves for cement pastes with W/C = 0.7, 0.5 and 0.3 are shown in Fig. 2.3-

2.5, and in Fig. 2.6 for mortar with a W/C = 0.5. Lateral strains were not 

measured for paste with a W/C = 0.7. 

The stress-strain curves for cement paste and mortar are nonlinear 

(Fig. 2.3-2.6). Fig. 2.4 and 2.6 show that cement paste has a higher strain 

capacity than mortar with the same water-cement ratio. The stress-strain 

curves of cement pastes with W/C = 0.5 and 0.3 which were loaded to failure 

(Specimens 14-6/P-0.5/M and 16-3/P-0.3/M) are shown together in Fig. 2.7. 

This figure shows that cement paste with a W/C = 0.5 has a higher strain 

capacity than paste with a W/C = 0.3. 

The initial modulus of elasticity, Ei, for each specimen is also given 

in Tables 2.2-2.5. In this study, Ei is the secant modulus obtained from 

the first two sets of str~ss-strain data recorded. 

2.4.2.1 Poisson's Ratio and Volumetric Strain 

Poisson's ratio, v, is calculated as the ratio of transverse or lateral 

strain, Et' to longitudinal or axial strain, E. Volumetric strain, Ev' is 

calculated using the relation 

E = E- 2E (2,1) 
v t 

Relationships between Poisson's ratio and axial strain, and between 

volumetric strain and axial strain, are shown in Fig. 2.8-2.13 for monotoni­

cally loaded cement paste and mortar specimens (Specimens 14-6/P-0.5/M, 16-

3/P-0.3/M and 13-6/M-0.5/M). 

Fig. 2.8 and 2.9 show that for cement pastes with W/C = 0.5 and 0.3, 

Poisson's ratio rapidly attains a value of about 0.24 and then gradually 

increases with increasing strain. For mortar with a W/C = 0.5 (Fig. 2.10), 

Poisson's ratio rapidly attains a value of about 0.20 and then increases 

more rapidly with increasing strain than for cement paste. The initial low 

values of Poisson's ratio are attributed to initial seating problems of the 

extensometer. It appears that some small load is required on the specimen 

in order for the extensometer to become properly seated on the specimen. 

Therefore, the values of 0.24 for the cement pastes and 0.20 for mortar are 

probably the true initial Poisson's ratios. These values agree well with 

values of 0.23-0.26 for cement paste and 0.19-0.21 for mortar obtained from 
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previous studies [3,58,59,68,71 ,76]. The single value for the initial 

Poisson's ratio of cement pastes with water-cement ratios of 0.5 and 0.3 is 

consistent with the findings of Anson [3] and Parrott [68] that Poisson's 

ratio does not vary with water-cement ratio for hardened cement pastes. 

Fig. 2.11 and 2.12 show that volume decreases continuously in cement 

paste under uniaxial compression. At high applied strains, however, the 

figures show that a reduction in the rate of volume decrease occurs, as 

indicated by the increasing slope of the axial strain - volumetric strain 

curves. Fig. 2.13 shows that at·low strains, volume decreases continuously 

in mortar under uniaxial compression, followed by an incremental volume 

increase at higher strains. These observations imply that some type of 

structural change takes place and opposes the normal reduction in volume 

which occurs under a compressive loading. This structural change is likely 

to be internal cracking. 

2.4.3 Sustained Loading 

In this group of tests, the stress-strength ratios were selected to 

enable strains of about 0.004 and 0.006 to be reached in four hours. 

Loading to the desired stress level took fifteen seconds. The stress­

strength ratio and strain for each specimen are provided in Table 2.6. The 

data for a specimen with a W/C = 0.5 which failed in 3.5 hours at a strain 

of 0.0075 is also provided. 

Two batches each for cement paste with water-cement ratios of 0.5 and 

0. 3 were tested. In each batch, one specimen was loaded monotonically to 

failure to determine the compressive strength and two specimens were sub­

jected to sustained loading. Two specimens were loaded monotonically to 

strains of 0.004 and 0.006. 

During the initial stage of loading, data was taken at one second 

intervals. The intervals were gradually increased up to 5 minutes as the 

test progressed. A typical stress-strain curve is shown in Fig. 2.14. As 

load is increased to the specified stress level, the stress-strain curve is 

nonlinear. Under constant stress, both the longitudinal and lateral strains 

increase. 
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2.4.3.1 Poisson's Ratio and Volumetric Strain 

Fig. 2.15 and 2.16 show the Poisson's ratio versus axial strain 

relationships for cement pastes subjected to sustained loading. Fig. 2.17 

and 2.18 show the corresponding volumetric strain versus axial strain 

relationships. Fig. 2.15 and 2.17 are for a specimen with a W/C = 0.5 

(Specimen 15A-1/P-0.5/S) which failed at a strain of 0.0075 after a loading 

duration of 3.5 hours, while Fig. 2.16 and 2.18 are for a specimen with a 

W/C = 0.3 (Specimen 16-4/P-0.3/S) which was loaded for 4 hours to a strain 

of about 0.004. Fig. 2.15 and 2.16 show that during the initial stage of 

loading to the specified stress level, Poisson's ratio increases with in­

creasing strain. Under constant stress, Poisson's ratio decreases with 

strain. 

Parrott [68] subjected cement paste specimens to sustained loading for 

durations up to 500 days and obtained a value of 0.13 for the creep 

Poisson's ratio. He points out that this low value may be related to the 

porous nature of hardened cement paste. The decrease in Poisson's ratio 

obtained from the short-term creep tests in this study suggests that con­

solidation or deformation of solid phases into pores may occur, thus 

allowing substantial axial strains to develop without large lateral strains. 

Fig. 2.17 and 2.18 show that the volume of the paste specimens 

decreases continuously for the stress levels used in this study. After the 

specified stress level is reached, the rate of consolidation increases as 

indicated by the decreased slope of each of the axial strain - volumetric 

strain curves. 

2.4.4 Cyclic Loading 

In this group of tests, the stress-strength ratios used enabled strains 

of 0.002 and 0.004 to be attained for specimens with a W/C = 0.5. For 

specimens with a W/C = 0.3, the selected stress-strength ratios enabled 

strains of 0.002, 0.0025 and 0.003 to be attained. Two attempts at loading 

specimens with a W/C = 0.3 to a strain of 0.004 were not successful; the 

specimens failed prior to reaching that strain. Each cycle (loading and 

unloading) took 30 seconds. The stress-strength ratio and strain for each 

specimen are provided in Table 2. 7. The data for a specimen with a W/C = 

0.5 which failed at a strain of 0.005 is also provided. 
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Two batches each for cement paste with W/C = 0. 5 and 0. 3 were tested. 

One specimen from each batch was loaded monotonically to failure to deter­

mine the compressive strength and two specimens were subjected to cyclic 

loading. Two specimens were loaded monotonically to strains of 0.002 and 

0.004 for paste with a W/C = 0.5, and to strains of 0.002 and 0.003 for 

paste with a W/C = 0.3. 

Data was recorded for selected cycles at one second intervals. Fig. 

2.19 shows that the stress-strain curve for cyclic loading is nonlinear. As 

the number of cycles to the specified stress level increases, both the 

longitudinal and lateral strains increase. 

2.4.4.1 Poisson's Ratio and Volumetric Strain 

Relationships between Poisson's ratio and axial strain, and between 

volumetric strain and axial strain, are shown in Fig. 2.20-2.25 for cement 

pastes with W/C = 0.5 and 0.3. The relationships are shown for the loading 

portions of the cycles indicated in the figures. 

Figs. 2.20 and 2.21 show the Poisson's ratio versus axial strain and 

volumetric strain versus axial strain relationships for a specimen with a 

W/C = 0.5 which was loaded to a stress-strength ratio of 0.865 and failed on 
st the 31 cycle at an axial strain of 0.005 (Specimen 191-1/P-0.5/C). Fig. 

2.20 shows that in each cycle, Poisson's ratio increases with strain. 

Poisson's ratio during the 29th cycle is larger than that during the 1st and 
th 17 cycles. 

the 17th to 

As shown in 
th 29 cycles 

Fig. 2.21, the increase in Poisson's ratio from 

is accompanied by an incremental volume increase 

between the two cycles. Also, reductions in the rate of volume decrease 
. th th occur dur1ng the 17 ano 29 cycles, as indicated by the increasing slope 

of the axial strain- volumetric strain relationships for each of these 

cycles. 

The Poisson's ratio versus axial strain and volumetric strain versus 

axial strain relationships for a specimen with a W/C = 0.5 loaded in 67 

cycles (stress-strength ratio= 0.725) to a strain of 0.004 (Specimen 18-

5/P-0.5/C) are shown in Fig. 2.22 and 2.23. With increasing strain within a 

single cycle, Poisson's ratio increases (Fig. 2.22) while the rate of volume 

decrease drops (Fig.2.23). Fig. 2.24 and 2.25 show the relationships be­

tween Poisson's ratio and axial strain and volumetric strain and axial 

strain, respectively, for a specimen with a W/C = 0.3 loaded in 85 cycles to 
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a strain of 0.003 (Specimen 21-5/P-0.3/C). Fig. 2.24 shows that Poisson's 

ratio is approximately constant during the 1st cycle and decreases during 

later cycles. However, Poisson's ratio increases with increasing strain 
. nd th dur1ng the 42 and 85 cycles. Fig. 2.25 shows that the volume decreases 

st th between the 1 and 85 cycles. 

2.5 Submicrocracking Studies 

2.5.1 Scanning Electron Microscope 

A Philips 501 scanning electron microscope (SEM) [15] was used for the 

submicrocracking studies. An SEM produces a primary electron beam or probe 

which sweeps across the specimen, stimulating the emission of secondary 

electrons. Non-metallic materials, such as cement paste, must be coated 

with a metallic substance (e.g. gold-palladium) in order for a satisfactory 

quantity of secondary electrons to be emitted. The secondary electrons are 

collected to produce a signal which is then amplified. The resulting image, 

displayed on the viewing monitor, is similar to that obtained on a high 

quality television screen. 

Specimens were coated with 200 angstroms, A, (0.02 ~m) of gold­

palladium using a Technics Hummer II sputter coater [15]. Specimens must be 

dried in order for a high vacuum to be reached in both the sputter coater 

and the SEM. A primary electron beam spot size of 200A and an accelerating 

voltage at the electron gun of 30kV were used. In order to insure close 

proximity of the emitted secondary electrons to the detector, the specimens 

were inclined at 45° to the primary beam by tilting the specimen stage [96]. 

A Polaroid camera attached to the SEM, with Polaroid type P/N 55 film, 

enabled photomicrographs of the specimens to be taken. 

2.5.2 Specimen Preparation 

After the test specimens were loaded, they were submerged in lime 

saturated water for a period of no longer than 24 hours. To prepare 

specimens for viewing in the SEM, 2 in. wide by 6 in. long by 1/8 in. thick 

slices were removed along the longitudinal (or loading) direction of the 

test specimens using a high speed diamond masonry saw, utilizing saturated 

calcium hydroxide solution as the lubricant. The middle portion of each 

slice, approximately 1 in. square, was removed by breaking the four sides of 

the slice with a pair of tongs. For proper identification during subsequent 
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preparation of the slice for viewing in the SEM, the perpendicular and 

parallel edges of the slice with respect to the direction of loading were 

labelled. The approximately 1 in. square by 1/8 in. thick slice was rinsed 

with lime saturated water and dried using one of three procedures: oven 

drying, solvent replacement drying, or silica gel drying. Of the three 

procedures, oven drying was selected for the main portion of the study. The 

latter two drying procedures saw limited use. They were used only for two 

batches of monotonically loaded paste specimens in order to compare the 

effects of the different drying conditions. 

A description of the drying methods and the procedure for obtaining 

fractured surfaces for viewing in the SEM follow. 

2.5.2.1 Oven Drying 

The specimens was placed in an oven at a temperature of 217°F. A 

constant weight was attained in 24 hours. 

2.5.2.2 Solvent Replacement Drying 

This drying procedure involved placing a cement paste specimen in 

methanol, followed by placement in n-pentane and a vacuum desiccator 

[56,70]. For each storage medium, the specimen was weighed daily. 

First, the .paste specimen was placed in 25 ml of methanol. The 

methanol slowly replaced the water in the specimen. The methanol was 

changed every 3 days until the specimen weight began to increase instead of 

decreasing. At this point, the replacement of water by methanol was 

complete. The increase in weight is attributed to the polar nature of 

methanol which causes packing in the pore spaces of the specimen at a den­

sity greater than that in the bulk liquid state [70]. A total of 7 days was 

required for the complete replacement of water by methanol. Next, the 

specimen was placed in 25 ml of n-pentane. The n-pentane slowly replaced 

the methanol and was changed every 2 days. As in the case of the replace­

ment of water by methanol, the replacement of methanol by n-pentane was 

complete when the specimAn weight began to increase. A total of 5 days was 

required. Two days of continuous vacuum were required in order to reach 

constant weight in the vacuum desiccator. The total duration of this drying 

procedure was 14 days. 
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2.5.2.3 Silica Gel Drying 

The specimen was placed in a desiccator which contained silica gel. A 

carbon dioxide absorbent (Ascarite) was also placed in the desiccator in 

order to prevent carbonation of the specimens. A constant weight was at­

tained in 106 days. 

2.5.2.4 Fracturing of the Specimens 

After drying, the specimens were stored in a vacuum desiccator. One 

day prior to viewing in the SEM, the specimens were removed from the desic­

cator and fractured so that edges which were either perpendicular or 

parallel to the direction of loading (i.e., transverse or longitudinal 

edges) might be viewed. The viewing surfaces were about 1/8 in. thick. 

The fracturing procedure involved holding one side of the specimen with 

a gloved hand and the opposite side with a pair of tongs so that a 

transverse fractured surface would be produced. The tip of the pair of 

tongs was positioned near the middle of the specimen and the specimen was 

then broken. One of the two broken pieces was selected and trimmed by 

slowly breaking off pieces of material from the sides. Care was taken so as 

not to handle the transverse fractured surface to be viewed. A longitudinal 

fractured surface was prepared in the same manner from the second broken 

piece. The two final specimens had dimensions of about 1/8 in. thick by 1/2 

in. long by 1/4 in. high and were mounted on a stud using Pelco colloidal 

silver paste (Fig. 2.26). 

The mounted specimens were stored in a vacuum desiccator to enable the 

colloidal paste to dry. Just prior to viewing, the fractured surfaces were 

coated with gold-palladium. 

2.5.3 Crack Measurements 

Within the SEM, each specimen was scanned at a magnification of 1250x 

in ten preselected bands across the specimen thickness. The width of the 

scanned area, w, was therefore equal to the specimen thickness; i.e., w ~ 

1/8 in. The actual thickness of each specimen was measured with a pair of 

calipers. The height of the fractured surface within each scanned area, h, 

was 0.0031 in. Fig. 2.27 shows a sketch of the specimen as positioned in 

the SEM. 
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To accurately select different bands for scanning, a grid was required. 

This was obtained by marking two pieces of masking tape at 1/2 in. intervals 

from 1 to 10. The marks corresponded to the ten bands to be viewed. The 

two pieces of masking tape were placed at the left and right edges of the 

SEM's viewing monitor. To select a particular band for scanning, a mag­

nification of 10x was selected. At this magnification, the whole specimen 

was visible on the viewing monitor. A ruler was placed across opposite 

marks on the two pieces of masking tape to define the center of the band. A 

distinct feature along the center of the band was selected and positioned in 

the center of the viewing monitor. The magnification was increased to 

1250x, and the selected feature was brought into clear view by an ap­

propriate adjustment of the focus. By this procedure, the band to be 

scanned was clearly established. The left edge of the specimen was then 

brought into view and the scanning proceeded horizontally to the right edge. 

To select another band for scanning, the magnification was reduced to 10x 

and the procedure was repeated. 

Crack trace lengths, widths, angles, and microstructural features 

through which cracks passed were recorded. Measurements were taken at a 

magnification of 1250x, except crack widths below 2.5 ~m which were measured 

at 2500x. Only portions of cracks within the field of view were measured in 

order to obtain an accurate estimate of the density of cracks within the 

scanned areas. Crack trace lengths, ~. and widths, w
0

, were measured on the 

viewing monitor with a ruler. Markers having units of ~m were displayed on 

the viewing monitor to serve as a scale for measuring the true dimensions of 

objects. These markers were used to convert the ruler measurements to true 

dimensions. For ease of recording data, crack trace lengths were recorded 

in intervals of 1.5x10-4in. or 3.8 ~m (= 0.25 in. with the ruler). Crack 

trace angles, e, were measured by means of the rotation control on the SEM. 

This control rotated the image appearing on the viewing monitor and was 

initially set at the o• position. After a crack angle was measured, the 

control was reset to the 0° mark. For ease of recording data, the crack 

angles were recorded in 5° intervals from o• to 180° (i.e., 5° is 2.5° to 

7.5°, etc.). 

The process of obtaining the crack data was quite tedious and required 

about 2.5 hours per specimen. To maintain objectivity, crack surveys were 

made at the same time each day and limited to a single specimen. To further 
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insure objectivity, specimens were selected and surveyed using a double 

blind coding system. 

Table 2.8 illustrates the format used to record the data. 

2.5.4 Results 

2.5.4.1 Micrographs 

Photomicrographs of key microstructural features are shown in Fig. 

2.28-2.36 for cement paste, and in Fig. 2.37 and 2.38 for mortar. The 

descriptions of the various calcium silicate hydrate (CSH) structures follow 

that given by Berger, et al. [9] and Diamond [28,29]. 

Fig. 2.28 and 2.29 show typical Type I CSH for oven dried and solvent 

replacement dried specimens, respectively. The structure consists of 

fibrous globular clusters. The clusters in Fig. 2.28 look denser than those 

in Fig. 2.29. The different appearance of Type I CSH in Fig. 2.29 may 

indicate that the chemicals used in the solvent replacement drying process 

react with the hydration products of cement paste, as was found by Day [24]. 

Thus, the method of specimen drying appears to affect the nature of 

microstructural features. The balance of the micrographs represents oven 

dried specimens. 

Type II CSH is shown in Fig. 2.30. This structure has a network-like 

morphology. It has been described by Diamond [28] as a "reticular network". 

Fig. 2.31 shows the structure most commonly observed on the fractured 

surfaces. This is the equant grain morphology of Type III CSH. A typical 

crack is seen in the structure. 

Inner product morphology, designated as Type IV CSH, is shown in the 

middle of the micrograph in Fig. 2.32. 

Calcium hydroxide, CH, is shown in Fig. 2.33. This structure is 

characterized by distinct parallel cleavage planes. A crack is observed to 

have formed parallel to a cleavage plane. The total surface area of CH on 

the fractured surface of each of three paste specimens with a W/C = 0.5 was 

determined by measuring the area of CH regions. CH occupied about 3% of the 

fractured surface. A fundamental principle of stereology [94,98] shows that 

the area density of three-dimensional objects on a plane section through a 

volume is equal to the volume density of the objects. Hence, the 3% area 

density of CH converts to a 3% volume density. However, 15%-20% of the 

volume of hydrated cement paste is CH [8,48]. This observation suggests 
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that the fracture plane occurred preferentially through the softer CSH. 

Thus, the fractured surfaces are not fully representative of hydrated cement 

paste. 

A crack through both Type III CSH and CH structures is shown in Fig. 

2.34. 

Fig. 2.35 shows an unhydrated cement grain, denoted in this study as 

UHC. This morphology is observed mainly in pastes with a W/C = 0.3, 

presumably because of the lower degree of hydration obtained at the low 

water-cement ratio. At low water-cement ratios, insufficient space for the 

hydration products and self-desiccation do not allow complete hydration to 

take place [64,65,84]. 

The interconnected rod-like morphology in Fig. 2.36 is that of 

ettringite. Ettringite is a reaction product of tricalcium aluminate and 

gypsum. Its formation prevents the flash set of tricalcium aluminate during 

the early hydration of cement [34]. The micrograph shown is for a 42-day 

old paste. It is generally believed that ettringite is completely converted 

into a low-sulphate sulphoaluminate, also referred to as monosulphate, about 

1 day after the beginning of hydration [84]. Contrary to this belief, Fig. 

2.36 shows that ettringite can remain in a hydrated cement paste as old as 

42 days. Ettringite has also been observed by Diamond [28] in paste 

specimens at ages up to 28 days. 

Fig. 2.37 and 2.38 are micrographs of mortar. In both micrographs, a 

sand grain, denoted in this study as SG, is observed adjacent to what is 

most likely Type III CSH. The Type III CSH observed here looks different 

than that observed in cement paste (Fig. 2.31 and 2.34). The Philips 501 

SEM used in this study dirt not enable the composition of the Type III CSH in 

mortar to be analyzed. An SEM equipped with an energy-dispersive X-ray 

analyzer will enable the composition of this morphology to be determined. 

Cracks are observed at the interfaces between the sand grains and the Type 

III CSH and also within the Type III CSH. 

2.5.4.2 Cracks 

The cracks observed in the SEM ranged in length from about 0.0004 in. 

(10 ~m) to about 0.008 in. (200 ~m). Crack trace lengths and angles on the 

transverse and longitudinal surfaces of monotonically loaded specimens of 
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cement paste with a W/C = 0.5 (Batch #9) are given in Table 2.9 to il­

lustrate the crack data obtained in the study. The total length of the 

cracks measured on each surface (transverse or longitudinal) is divided by 

the total area scanned to obtain a crack density in inches per square inch; 

i.e. , 

Crack Density H . ;· 2 
1 Oxwxh ln. ln. 

the denominator being the total area of the ten bands scanned. 

The crack densities obtained in this study are given in Tables 2.10-

2.17. The crack densities in cement paste range from about 20 in. lin. 2 to 

about 50 in./in. 2, which is one order of magnitude greater than obtained for 

bond and mortar microcracking in concrete [17,42]. 

Crack Density versus Water-Cement Ratio: Fig. 2.39 shows that the 

crack density of oven dried nonloaded cement paste specimens varies in­

versely with water-cement ratio. Specimens with a W/C = 0.3 show greater 

cracking at zero load than do specimens with a W/C = 0.5, which in turn is 

greater than specimens with a W/C = 0.1. This observation is discussed in 

Chapter 3. 

Crack Density versus Strain: Fig. 2.40-2.47 show the variation in 

crack density of oven dried specimens as a function of applied compressive 

strain for all loading regimes. In all cases, crack density increases with 

strain. 

The curves represent the least squares fit of the data. The equations 

of the lines are given in the figures. For cement pastes with W/C = 0.7 and 

0.5 (Fig. 2.40-2.41), and mortar with a W/C = 0.5 (Fig. 2.43), the high 

values of the correlation coefficient, R, indicate that the relationships 

between crack density and applied strain are strongly linear. 

Contrary to the linear trends exhibited by the other materials, cement 

paste with a W/C = 0.3 has a crack density- strain relationship that is 

curvilinear to the second order (Fig. 2.42). In these figures, the crack 

densities at strains of 0.0058 and 0.006 are from specimens which failed at 

those strains. The failure of these specimens was explosive and large 

surface cracks were seen just prior to failure. The curves in Fig. 2. 42 

suggest that a large increase in submicroscopic crack density occurs as the 

failure strain is reached. 
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For all monotonically loaded specimens, crack density begins to in­

crease immediately, even for very small applied strains, suggesting that 

even low strains will result in some damage to cement paste and mortar. For 

sustained and cyclic loading, crack density increases with strain over the 

range of strains used, as shown in Fig. 2.44-2.47. 

The average crack density at each applied strain in oven dried 

specimens are given in Tables 2.18-2.23 for all loading regimes. 

Crack Density Based 0n Microscopic Structure: Crack density for each 

microscopic structure as a function of applied strain is shown in Tables 

2.24-2.28 for cement pastes, and in Table 2.29 for mortar. The average 

values at each applied strain for the transverse and longitudinal surfaces 

of all specimens under each loading regime are given. The percentage of 

crack density for each structure in both cement paste and mortar remains 

nearly constant as the total density of cracking increases with strain. 

For cement paste specimens, the dominant cracking on both the 

transverse and longitudinal surfaces occurs through the Type III CSH struc­

ture, independent of loading regime. About 80% of the total crack density 

occurs through the Type III CSH structure. The balance of the cracking is 

approximately evenly divided between CH and the CH-III boundary. About 1% 

of the cracking in cement paste with a W/C = 0.3 occurs at the UHC-III 

boundary. 

The dominant cracking in mortar, about 70%, occurs through the Type III 

CSH structure (Table 2.29). About 18% of the cracking occurs at the SG-III 

boundary. The balance of the cracking is approximately evenly divided 

between CH and the CH-III boundary. 

Crack Density versus Trace Angle: Typical relationships between crack 

density and crack angle for nonloaded and loaded specimens of paste and 

mortar are illustrated in Fig. 2.48-2.51 for values of e from 0° to 90°, In 

obtaining these relationships, crack angles of 6±A6/2 and 180° - 6±A6/2 

(A9=5°) are grouped together. The crack density per degree is then calcu­

lated as 

Crack Densit er d r e Crack Density for e and 180°-6 
Y P eg e = 2 A9 

As illustrated by the fairly constant least squares fits over the 

middle eighty-five degree range in Fig. 2.48-2.51, crack densities are 
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approximately equal at all angles for nonloaded specimens, and for the 

transverse surfaces of lo8ded specimens. The nearly uniform distributions 

of crack density with respect to trace angle on the transverse surfaces of 

loaded specimens suggest that cement paste and mortar under uniaxial com-

pression are transversely isotropic, as expected. Crack density 

distributions on the longitudinal surfaces of loaded specimens are skewed 

towards e = 90° (Fig. 2.49 and 2.51). 

The larger crack densities within the ranges of 9 from 0°-2.5° and 

87.5°-90° are attributed to the procedures used in preparing specimens for 

viewing in the SEM and will be discussed in Chapter 3. 

Crack Density Based on Drying Method: Crack density seems to depend 

upon the drying method, as evidenced by the relationships shown in Fig. 

2.52. The average results at each applied strain for the transverse sur­

faces of oven dried, solvent replacement dried and silica gel dried paste 

specimens (W/C = 0.5) are shown. Fig. 2.52 indicates that the crack den­

sities of solvent replacement dried specimens are larger than those of 

either oven dried or silica gel dried specimens. Oven drying, is a rapid 

drying process that causes high moisture gradients within a specimen. Thus 

it may cause drying cracks to initiate at weak locations at the surface as 

well as within the materi8l, Solvent replacement drying, on the other hand, 

is a slow process that maintains a much more uniform moisture condition 

throughout the specimen. This may allow cracks to initiate at many loca­

tions, resulting in a larger crack density as compared to oven drying. 

Silica gel drying is a slow process, but th specimens are rapidly subjected 

to a high moisture gradient, and thus the effects of this method may be 

closer to those of oven drying. The crack densities of oven dried and 

silica gel dried specimens are about the same. The relative crack widths 

obtained with the three drying procedures support these arguments. 

Crack Widths: The average values of crack width at each applied strain 

for the transverse and longitudinal surfaces of all specimens under each 

loading regime, are given in Tables 2.30-2.33, Crack widths increase with 

applied strain, and vary with drying method. For each applied strain, crack 

widths are largest in oven dried specimens and smallest in solvent replace­

ment dried specimens. 

The cracks range in width from 0.15 ~m to 5.25 ~m for solvent replace­

ment dried pastes, from 0.20 ~m to 6.25 ~m for silica gel dried pastes, and 
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from 0.20 ~m to 7.0 ~m for oven dried pastes. Crack widths range from 0.15 

~m to 7.5 ~m for oven dried mortar. At the same strain level, mortar 

specimens have a larger average crack width than paste specimens. 

If the total volume change due to drying is identical under different 

drying conditions due to removal of equal volumes of free water, the average 

crack width should decrease as the crack density increases. This observa­

tion is consistent with the measured crack widths and crack densities 

obtained with the three drying procedures. 

2.5.5 Uniqueness of Submicroscopic Cracks 

During preliminary studies, cracks were measured at magnifications up 

to 10000x. These studies showed that cracks which are visible at 10000x are 

also visible at 1250x and that crack densities obtained at the two mag­

nifications are essenti~lly the same. At the next lower magnification, 

640x, some cracks are lost, and the crack density drops. A magnification of 

1250x was used throughout this study since much more area could be covered 

than at 10000x. 

These observations indicate that the submicroscopic cracks are unique 

to the particular level of microstructure studied. The uniqueness of these 

cracks also lies in the fact that magnification has to be increased by two 

orders of magnitude in order to observe cracks with a density one order of 

magnitude higher than that of bond and mortar microcracks in concrete. 

2.5.6 Surface versus Volumetric Crack Distributions 

The crack data discussed in this chapter, crack length, crack angle, 

and crack density, in fact, represent only the traces of three-dimensional 

cracks on selected planes. Thus, this data does not directly provide ade­

quate information about cracking as it occurs throughout the volume of each 

specimen. Three-dimensional crack sizes and orientations, as opposed to 

surface trace lengths and angles, are needed if a full understanding of 

material response to cracking is to be obtained. 

In the next chapter, the surface crack data is further analyzed to 

obtain estimates of the three-dimensional crack distributions. These three­

dimensional distributions provide a clearer understanding of cracking as it 

occurs in cement paste and mortar under uniaxial compression, and are used 
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in Chapter 5 to estimate the effects of the cracks on the stress-strain 

behavior of the materials. 

2.6 Summary of Observations 

1. The stress-strain curves of cement paste and mortar are highly 

nonlinear. 

2. Poisson's ratio increases continuously in cement paste and mortar 

under monotonic loading. 

3. A reduction in the rate of volume decrease occurs in cement paste, 

and incremental volume increase occurs in mortar under monotonic 

loading. 

4. For sustained loading, Poisson's ratio increases continuously in 

cement paste during the initial stage of loading to the specified 

stress level, and then decreases under constant stress. 

5. For cyclic loading, Poisson's ratio increases continuously in 

cement paste during the loading portion of each cycle. 

6. Incremental volume increase occurs in cement paste loaded to 

failure under cyclic loading. 

7. The density and width of drying cracks in cement paste vary with 

the method of specimen drying. 

8. Crack density in cement paste varies inversely with water-cement 

ratio for nonloaded specimens. 

9. Crack density in cement paste and mortar increases with increasing 

uniaxial compressive strain. 

10. Crack density in cement paste is about ten times the density of 

bond and mortar microcracks in concrete at the same value of com­

pressive strain. 

11. The dominant cracking in cement paste occurs through the Type III 

CSH structure with the balance approximately equally divided be­

tween CH and the CH-III boundary. 

12. The dominant cracking in mortar occurs through the Type III CSH 

structure, followed by cracking at the sand grain - Type III CSH 

boundary. The balance of the cracking is approximately evenly 

divided between CH and the CH-III boundary, 
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CHAPTER 3 

EVALUATION AND DISCUSSION OF EXPERIMENTAL RESULTS 

3. 1 General 

In this chapter, the surface crack data of trace lengths and trace 

angles (examples in Table 2.9) are analyzed to (1) determine the effects of 

specimen preparation prior to viewing in the SEM and (2) estimate three­

dimensional submicroscopic crack distributions in cement paste and mortar. 

For a given load regime and applied strain, the average surface crack data 

for all specimens loaded to that strain are used for the analyses which 

follow. 

The accurate estimation of three-dimensional crack distributions re­

quires that the surface crack distributions obtained with the SEM be 

converted to true surface crack distributions. As described in Chapter 2, 

only crack traces within the field of view of the SEM are measured in order 

to obtain an accurate estimate of the density of cracks within the scanned 

areas. However, since segments of some crack traces project outside the 

viewing area, their measured lengths are shorter than the true trace 

lengths, causing the length distribution to be skewed towards low values. A 

crack whose center is loc~ted outside the viewing area may have a portion 

within the field of view. A crack centered at the same point but at a lower 

angle, 9, may lie completely outside the viewing area. The observed number 

of cracks at low angles will therefore be relatively lower than the number 

at high angles, resulting in the angle distribution being skewed towards 9 = 

90°. Thus, the observed or "apparent" distributions may not be good es­

timates of the true surface distributions. Since the fractured surfaces are 

scanned horizontally, there is no limitation imposed by the width of the 

viewing area on the measurement of cracks. 

The true trace length and angle distributions are obtained from the 

observed surface distributions using statistical procedures described in 

Section 3.3. The detailed derivations cf these procedures are presented in 

Appendix c. 

The surface crack distributions must be converted to three-dimensional 

crack distributions in order to gain a full understanding of material 

response to cracking. The statistical procedures for this conversion are 
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described in Section 3.4. The detailed derivation of the procedures is 

presented in Appendix D. 

The extent of cracking is compared for specimens with different water­

cement ratios and load regimes. 

3.2 Effects of Specimen Preparation 

Prior to viewing in the SEM, the specimens are dried and fractured, as 

described in Section 2.5.2. Fig. 3.1 shows the variation of the number of 

cracks per unit area with trace angle on the transverse surface of nonloaded 

cement paste with a W/C = 0.5. The increased number of cracks over the 

ranges of e from 0° to 2.5° and from 87.5° to goo are typical of the results 

for all specimens. 

The increased number of cracks over the range of e from 0° to 2.5° is 

attributed to drying, since drying cracks form normal to the surface of the 

specimen due to differential drying rates between the exterior and interior 

of the specimen [5,6,7]. The direction normal to the surface of the 

specimen corresponds toe= o•, as measured in the SEM (Fig. 2.27). Drying 

can also cause randomly oriented cracks to form [6], as will be discussed in 

Section 3.5.1. 

The increased number of cracks over the range of e from 87.5° to goo is 

attributed to fracturing of the specimen. The fracturing process induces 

tensile stresses in a direction parallel to the fracture crack, resulting in 

the formation of transverse cracks [54]. 

In order to reduce the effects of specimen preparation on the surface 

crack distributions, the specimen preparation cracks are removed from the 

total crack distributions using procedures described in Sections 3.3.4 and 

3.4. The resulting surface distributions are used to estimate the three­

dimensional distributions. 

3.3 Surface Crack Distributions 

As pointed out in Section 3.1, the true surface crack distributions 

cannot be obtained directly from the experimental data. In Sections 3.3.1 

through 3.3.3, statistical procedures (details in Appendix C) are used to 

obtain the true surface crack distributions. 

For uniaxially loaded paste and mortar specimens, trace length dis­

tributions of load-induced cracks on the transverse surface should be 
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independent of trace angle. Deviations from an isotropic distribution are 

attributed to specimen preparation. The mean lengths and variances of the 

estimated true trace length distributions on the transverse surface must 

therefore be modified to obtain an isotropic distribution with respect to 

trace angle. On the longitudinal surface, the mean trace length and 

variance of the distribution of load-induced cracks may vary with trace 

angle. The modifications for both the transverse and longitudinal surfaces 

are described in Section 3.3.4. 

3.3.1 True Trace Length Distribution 

A relative frequency distribution is defined by its form, mean, and 

variance. The form of the distribution, e.g. a normal or gamma distribu-

tion, describes its shape. An estimate of the true trace length 

distribution for each trace angle, fCil8l, is obtained by determining its 

form, mean, <~ 8 >, and variance, var(~ 8 ). The equation (derived in Appendix 

C) relating the true trace length distribution to the apparent distribution 

is 

® 

(h-~sin8)fC~I8l + 2 sin8!i fC~I8ld~ 

h + <~ 8>sin8 
( 3. 1 ) 

in which f(il8l is the calculated apparent trace length distribution for ac 
each trace angle, 8; ~ is the trace length, and h is the height of the 

specimen surface within the regions viewed in the SEM (Section 2.5.3). 

The experimental or known apparent trace length distribution for each 

trace angle, fC~I8la' is computed from the surface crack data as 

n 
net.~ 

( 3. 2) 

in which n is the number of cracks with measured lengths of~ ± t.i/2 and 

angles of e ± t.8/2, and n
8 

is the number of cracks with angles of 8 ± t.e/2. 

t.~ and t.8 are the experimental increments used for trace length and trace 
-4 angle measurements, respectively; t.~ = 1.5x10 in., and t.8 = 5°. In com-

puting fC~I8l using Eq. (3.2), trace angles of 8 and 180°-8 are grouped a 
together. The distributions are obtained for values of 8 from 0° to 90° in 

five-degree intervals. Typical experimental distributions of crack trace 



33 

lengths for trace angles of 30°, 50°, 60° and 70° are represented by the 

histograms in Fig. 3.2. The data in this figure are obtained from the 

longitudinal surface of cement paste (W/C ~ 0.5) loaded monotonically to a 

compressive strain of 0.004. 

As shown in Appendix C, the true mean trace length, <£ 8>, can be ex­

pressed in terms of the apparent mean trace length, <£ 9>a' as 

(3.3) 

The true variance, var(£
9
), can be expressed as 

(3. 4) 

in which var(£ 9)a is the variance of the observed distribution. 

<t 8> can be obtained directly from Eq. (3.3) since his known ·and <£ 8>a 

can be calculated from the measured crack data. The form and variance of 

f(£!9), however, cannot be obtained directly, requiring the use of an itera­

tive procedure (described below) involving Eqs. (3.1), (3.3) and (3.4). The 

objective of the procedure is to calculate an apparent distribution based on 

an assumed form of the true distribution. If a close match is obtained 

between the known and calculated apparent distributions, then the assumed 

form of the true distribution is the correct one. 

A "goodness of fit" test, based on the chi-square distribution [31], is 

used to determine when a close match is obtained. In this test, a chi­

square statistic or value is computed from the experimental and calculated 

apparent distributions. If this value is less than the value obtained from 

the chi-square distribution at a level of significance of 0.05, then a 

"close" match has been obtained. Further details of this test can be found 

in Reference 31 and in most statistics books. 

The procedure for determining the true trace length distribution is 

outlined as follows: 

1. Assume a form for f(ti9). 

2. The mean and variance of f(ti e) are <£ 8> and var(£ 9), respectively. 

Calculate <t 8> using Eq. (3.3). As an initial guess, assume that 

var(t
9

) = var(t
9
)a. 
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3. Calculate var(~ 9 ) using Eq. (3.4). 

4. If the computed variance is not equal to the assumed variance, recom­

pute var(~ 9 ) from Eq. (3.4) using the variance calculated in Step 3. 

5. Repeat Steps 3 and 4 until the assumed and computed variances are 

equal. 

6. Substitute f(~lel, with parameters <~e> and var(~ 6 ), into Eq. (3.1) in 

order to calculate f(~lelac· 

7. Use the "goodness of fit" test, based on the chi-square distribution to 

determine if there is a close agreement between the known, f(~lel , and 
a 

calculated, fC~Iel , apparent distributions. A close agreement im­ac 
plies that a good estimate of f(~lel has been obtained. 

8. If the "goodness of fit" test fails, assume a true distribution with a 

different form. Repeat Steps 2 to 7. 

Application of this procedure for the surface crack data in this study 

indicates that the best form for the true trace length distribution is a 

gamma distribution. This distribution is represented as 

f(~lel 
s"r(a) 

(3.5) 

in which a and S are functions of the mean and the variance of the distribu­

tion, in this case <~e> and var(~ 6 ). 

(3. 6) 

r(a) is the gamma function and is defined as 

r(a) (3.7) 

Gaussian quadrature with four integration points over the range of y from 0 

to 50 is sufficient for the integration in Eq. (3.7). Also, four integra­

tion points over a length range of 0.0 to 0.006 in. are sufficient for 

integrating Eq. (3.1) and (3.4). 

f(~lel and f(~lel corresponding to the known apparent distributions, ac 
f(~lela' for cement paste with a W/C = 0.5, are shown in Fig. 3.2. As 

expected, the estimated true trace length distributions are shifted to the 
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right with respect to the apparent distributions, showing that the effect of 

a finite height of the viewing area is to underestimate crack trace lengths. 

3.3.2 True Trace Angle Distribution 

The relationship (derived in Appendix C) between the true trace angle 

distribution, f(8), and the apparent trace angle distribution is 

f(8) ac 

(h + <~ 8>sin8)f(8) (3. 8) 

in which f(8) is the calculated apparent distribution and <~ 8> is the true 
ac 

mean trace length obtained in Eq. (3.3). 

The known apparent trace angle distribution, f(e)a, is computed from 

the surface crack data as 

(3. 9) 

in which n
8 

is the number of cracks with angles of e ± /!,8/2, and N is the 

total number of cracks (0° ~ e ~ 180°). As before, trace angles of e and 

180°-8 are grouped together. A typical known apparent distribution of crack 

trace angle is represented by the histogram in Fig. 3.3. As in the case of 

the trace length distributions in Fig. 3.2, the distribution in Fig. 3.3 is 

obtained from the longitudinal surface of cement paste (W/C = 0.5) loaded 

monotonically to a strain of 0.004. 

In Eq. (3.8), the true trace angle distribution, f(8), is the only 

unknown on the right side of the equation. An iterative procedure is used 

to estimate f(B). The objective of the procedure is similar to that in the 

case of the trace length distribution. An apparent distribution is calcu­

lated based on an assumed expression for the true angle distribution. If a 

close match is obtained between the known and calculated apparent distribu­

tions, then the assumed expression for the true distribution is the correct 

estimate. 

The procedure is outlined as follows: 

1. Assume an expression for f(8). 

2. Compute f(8) using Eq. (3.8). ac 
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3. Use the "goodness of fit" test, based on the chi-square distribution to 

determine if there is close agreement between the known, f(B) , and a 
calculated, f(B) , apparent distributions. ac 

4. Repeat Steps 1 to 3 until the "goodness of fit" test in Step 3 is 

successful. The true angle distribution which satisfies the test is 

the correct estimate of f(B). 

Fig. 3.3 shows that the known apparent trace angle distribution (the 

histogram) has spikes near 0° and goo. As pointed out in Section 3.2, these 

spikes are due to specimen preparation. The form of the known apparent 

distribution suggests that constant functions should be assumed for f(B) 

from 0° to 2.5° and from 87.5° to goo, while a quadratic function may be 

assumed over the middle eighty-five degree range. This form of f(B) gives a 

close match between f(B) and the histogram, as shown in Fig. 3.3. ac 

3.3.3 True Number of Cracks per Unit Area 

As explained in Section 3.1 and shown by the trace angle distributions 

in Fig. 3.3, the apparent number of cracks at low angles is less than the 

true number and the apparent number at high angles is greater than the true 

number. The apparent number of cracks per unit area, M , should, therefore, 
a 

not be expected to equal the actual number of cracks per unit area, M. 

The apparent number of cracks per unit area, M , is given by 
a 

M = a 
N 

10xwxh (3.10) 

in which N is the number of cracks observed on a surface, and the 

denominator is the total area of surface observed. The expression (derived 

in Appendix C) for the true number of cracks per unit area is 

N 
M = ----------~------------

10w[h + J! <2
6
>sine f(e)de] 

A comparison of Eq. (3.10) and (3.11) shows 

of the finite height of the viewing area 

cracks per unit area. 

(3.11) 

that M > M. Hence, the effect a 
is to overestimate the number of 

For the cement paste specimens (W/C = 0.5) loaded to a strain of 0.004, 

M = 24568 per in. 2 and M = 1g813 per in. 2• a 
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3.3.4 Modification of Mean Trace Length and Variance 

As pointed out earliP.r, it is expected that the mean trace length and 

variance should be the same for all trace angles on transverse surfaces of 

uniaxially loaded specimens. Examples of the mean trace length, <~ 8 >, and 

variance, var(~ 8 ), corresponding to the estimated true trace length dis­

tributions are illustrated in Fig. 3.4 and 3.5 for the transverse surface of 

cement paste (W/C ~ 0.5) loaded monotonically to a strain of 0.004. The 

curves shown are least squares fits through the data points. These examples 

are typical of the data obtained in this study. 

Fig. 3.4 and 3.5 show that both the mean trace length and variance are 

not constant over the full range of trace angles. However, fairly uniform 

values are obtained for values of e from 25 ° to 75 °. It is assumed that 

these values of mean trace length and variance are not affected by specimen 

preparation, while the lower values of mean and variance for e < 25° and the 

higher values for e > 75° are the result of specimen preparation. The 

uniform values obtained from a least squares fit for e from 25° to 75° are 

used for all 8 (0° ~ 8 :£ 90°), These "modified" mean trace lengths and 

trace length variances, <~>T and var <~>T' respectively, are illustrated in 

Fig. 3.6 and 3.7. 

In the current analysis, it is further assumed that the effects of 

specimen preparation on the crack distributions for the transverse and 

longitudinal surfaces are the same. Hence, as for the transverse surface, 

the least squares fit for e from 25° to 75° on the longitudinal surface is 

extrapolated to include all values of e to obtain "modified" mean trace 

lengths and trace length variances <~e>L and var(~e)L. The linear varia­

tions with trace angle illustrated in Fig. 3.8 and 3.9 are typical of the 

results for longitudinal surfaces. 

The modified experimental values of mean trace length and variance, 

obtained for all loading regimes and applied strains using the procedure 

described above, are given in Tables 3.1-3.6. These values, along with the 

form of the true trace length distributions obtained in Section 3. 3.1 (the 

gamma distribution), completely describe the crack trace length 

distributions. 

The trace length distributions on the transverse surface are denoted as 

f(~)T, and those on the longitudinal surface are denoted as f(~lelL for each 

trace angle, 8. The final trace length distribution for the transverse 
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surface of cement paste (W/C ~ 0.5) loaded monotonically to a strain of 

0.004 is illustrated in Fig. 3.10. 

The crack trace length distributions obtained above are used in the 

next section to estimate three-dimensional crack distributions in cement 

paste and mortar. 

3.4 Estimates of Three-Dimensional Crack Distributions from 

Surface Crack Distributions 

The procedure described here for obtaining estimates of three­

dimensional crack distributions from surface crack distributions is an 

extended form of the procedure derived in Appendix D. The extension of the 

procedure in Appendix D is necessary in order to modify the trace angle 

distributions to reduce the effects of specimen preparation. These modified 

trace angle distributions are used in conjunction with the modified trace 

length distributions, calculated in the previous section, to obtain the 

three-dimensional distributions. 

In the following presentation, the method for obtaining the modified 

trace angle distributions is described, the equations relating surface crack 

distributions to three-dimensional distributions are presented, and the 

overall procedure is outlined. 

3.4.1 Modification of Trace Angle Distributions 

The objective of this modification is to help remove the effects of 

specimen preparation from the trace angle distributions. 

The method described in Section 3.3.2 is used to obtain true trace 

angle distributions on the transverse and longitudinal surfaces (as il­

lustrated in Fig 3.3). Multiplication of the ordinates of the true trace 

angle distribution by the true number of cracks per unit area, M (obtained 

in Section 3.3.3), gives the variation of the true number of cracks per unit 

area per degree with trace angle. An example is shown in Fig. 3.11 for the 

transverse surface of cement paste (W/C ~ 0.5) loaded monotonically to a 

strain of 0.004. The figure shows spikes in the number of cracks over the 

ranges of e from o• to 2.5" and from 87.5" to 90". These spikes are at­

tributed to specimen preparation, as explained in Section 3.2. 

Specimen preparation effects on the distribution in Fig. 3.11 can be 

reduced by removing the spikes and extrapolating the best fit (quadratic) 



39 

distribution in the middle eighty-five degree range to include all values of 

e. The resulting distribution is shown by the solid curve in Fig. 3.12. 

On the longitudinal surface, the spikes are also removed, and the 

middle eighty-five degree region of the distribution is also extrapolated to 

include all values of e, as shown by the solid curve in Fig. 3.13. Like the 

transverse surface, the distribution on the longitudinal surface is also 

quadratic. 

The distribution on the transverse surface (Fig. 3.12) is not uniform, 

as expected on the transverse surface of a uniaxially loaded specimen. This 

deviation from uniformity is considered to be another effect of specimen 

preparation. In order to reduce this specimen preparation effect, the 

quadratic distribution is replaced by a uniform distribution, shown by the 

dashed line in Fig. 3.12. The precise method for selecting this distribu­

tion is described in Section 3.4.3. The difference between the quadratic 

and uniform distributions gives an estimate of the number of cracks due to 

specimen preparation at each angle e. 

As stated in Section 3.3.4, the effects of specimen preparation are 

assumed to be the same on both the transverse and longitudinal surface crack 

distributions. This assumption implies that the number of specimen prepara­

tion cracks at a given angle e is equal on the two surfaces. Therefore, 

once the uniform distribution is selected on the transverse surface, the 

distribution on the longitudinal surface (Fig. 3.13) is modified by an equal 

amount. If the assumed uniform distribution is lower than the measured 

distribution on the transverse surface, the difference is subtracted from 

the distribution on the longitudinal surface at the same angle e. On the 

other hand, if the uniform distribution is larger than the measured dis­

tribution on the transverse surface, the difference is added to the 

distribution on the longitudinal surface. The modified trace angle dis­

tribution on the longitudinal surface is shown by the dashed line in Fig. 

3.13. As indicated earlier, the distributions over the range of 8 from 90' 

to 180' are identical to those in Fig. 3.12 and 3.13. Inherent in this 

procedures is the assumption that the trace length distributions, f(~)T and 

f(~je)L' need no further modification at this stage. 

In order to obtain the correct estimates of the modified distributions 

on the transverse and longitudinal surfaces, the modification process 
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described above is tied to the iterative procedure used to estimate the 

three-dimensional crack di.stributions (Section 3.4.3). 

The area under each of the distributions in Fig. 3.12 and 3.13, over 

the range 0° ~ 6 ~ 180 °, gives the number of cracks per unit area. The 

measured distributions for the transverse or longitudinal surfaces give the 

number of crack traces per unit area, MT or ML' and include both load­

induced cracks and specimen preparation cracks, not counting the preparation 

cracks removed when the spikes were excluded. The modified distribution for 

each surface gives an estimate of the number of cracks per unit area, MT or 

ML, which have had additional specimen preparation cracks removed. 

Each ordinate of the modified distribution in Fig. 3.13, m
6

, is equal 

to the number of cracks per unit area per degree. The corresponding rela­

tive frequency distribution, f(e)L (Fig. 3.14), is obtained by dividing the 

ordinates of the modified distribution by the number of cracks per unit 

area, ML. 

me 
f(S) =­

L ~ 
oo ~ e :;; 180° 

(3.12a) 

Since transverse isotropy is expected for a uniaxially loaded specimen, the 

crack distributions should be symmetric with respect to the longitudinal or 

loading axis. It is therefore sufficient to consider f(9\ over the range 

0° ~ 9 ~goo. This requires that the right hand side of Eq. (3.12a) be 

multiplied by 2; i.e., 

2m
6 f(eJ =- (3.12bl 

L ~ 
0° ~ e ~ goo 

f(e)L' defined over this condensed range, is used to estimate the three­

dimensional crack distributions (Section 3.4.3). 

3.4.2 Relationships between Surface and Three-Dimensional 

Crack Distributions 

To derive relationships between surface and three-dimensional crack 

distributions (Appendix D), each crack is assumed to be elliptic with a 
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length of its major axis, 2a, aspect ratio, r, and angular coordinates ¢, ~ 

and n (Fig. 0.1). The length of the major semi-axis, a, is designated as 

the "characteristic crack size". Full descriptions of these parameters are 

provided in Appendix D. 

The parameters which describe the three-dimensional crack distributions 

are the orientation distribution, f(~). the size distribution, f(a)¢l, at 

each orientation~. the mean and variance of f(a)¢), <a¢> and var(a¢), the 

crack aspect ratio, r, the rotation of the crack about its normal, defined 

by the angle n, and the number of cracks per unit volume, NV. 

For the crack distributions obtained in this study, the crack orienta­

tion distribution, f(¢), can be represented satisfactorily by a Marriott 

distribution [98]. This distribution describes the orientation of a 

transversely isotropic system of cracks with a mild degree of anisotropy. 

The Marriott distribution can be expressed as 

f( ¢) 1 ( 1 + K cos 2¢) sin ¢ 
- K/3 

(3. 13) 

The longitudinal direction (or direction of applied stress) corresponds to ¢ 

= 90°. K is a measure of the degree of anisotropy. A negative value of K 

indicates a system in which more cracks are oriented in the longitudinal 

direction than in the transverse direction, while a positive value of K 

indicates a system in which more cracks are oriented in the transverse 

direction than in the longitudinal direction. K = 0 represents an isotropic 

distribution. 

K can be obtained from the surface crack densities on the transverse 

and longitudinal surfaces as follows. 

K = 
4[(ML<i>L/MT<i>T) - 1] 

2(ML<i>LIMT<i>T)-
(3.14) 

in which My<i>T and ML <i>L are the surface crack densities, i.e., total 

crack trace length per unit area, on the transverse and longitudinal sur­

faces, respectively. MT and ML are obtained from the experimental data as 

described in Section 3.4.1, while <i>T is obtained as described in Section 
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3.3.4. <£>L' the mean trace length on the longitudinal surface over all 

trace angles, is computed as 

(3.15) 

in which <£
6

>L is the mean trace length for each trace angle on the lon­

gitudinal surface (See Section 3.3.4), and f(e)L is the trace angle 

distribution (Section 3.4.1). 

Eq. (3.14) shows that an isotropic orientation distribution (K = 0) is 

indicated when the crack densities on the transverse and longitudinal sur­

faces are equal. An orientation distribution skewed towards the 

longitudinal direction (K < 0) is indicated when the crack density on the 

transverse surface is larger than that on the longitudinal surface, while a 

distribution skewed towards the transverse direction (K > 0) is indicated 

when the crack density on the transverse surface is lower than that on the 

longitudinal surface. 

The following equations relate the crack trace angle and length dis­

tributions to the three-dimensional crack size and orientation 

distributions. These equations are used to establish the procedure for 

estimating the three-dimensional crack distributions. The equation 

(Appendix D) relating the trace angle distribution on the longitudinal 

surface to the three-dimensional distributions is 

(3.16) 

in which f(e)Lc is the calculated trace angle distribution on the lon­

gitudinal surface. f(w) is the orientation distribution defined in Eq. 

(3.13). s is the distance between a crack centroid and a plane. s max 
is 

the largest value of s for which the crack will intersect the plane. The 
aw expression relating e, w and $, as well as expressions for smax and as• are 

given in Appendix D. 

The trace length distribution on the longitudinal surface is related to 

the three-dimensional distributions as 
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(3. 17) 

in which f(~j 8\c is the calculated trace length distribution on the lon-

gitudinal surface, and amin 

length of ~ on the plane. 

in Appendix D. 

is the smallest crack size that gives a trace 
as The expressions for a . s and" are given m1n, max aN 

The trace length distribution on the transverse surface is related to 

the three-dimensional distributions as 

!~12 f; f(aj~) f(~) s dad~dn max 

(3.18) 

in which f(~)Tc is the calculated trace length distribution on the 
as 

transverse surface. The expressions for amin' smax and a~ are given in 

Appendix D. 

The number of cracks per unit volume, NV' is expressed as (Appendix D) 

(3.19) 

in which <a2> is the mean squared value of the characteristic crack size 

over all orientations; i.e. 

(3. 20) 

If the distributions f(aj~) and f(~) are known, Eq. (3.19) can be used to 

estimate the number of cracks per unit volume. The procedure for determin­

ing distributions f(aj¢) and f(¢) is described in the following section. 

3.4.3 Procedure For Estimating the Three-Dimensional Distributions 

An iterative procedure is used to estimate the three-dimensional crack 

parameters of the orientation distribution, f(~), the size distribution, 

f(aj¢), the mean and variance of f(aj~), <a¢> and var(a¢), crack aspect 

ratio, r, and the range of the angle n. The procedure is set up in terms of 
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Eq. (3.13)-(3.18) and is based on minimizing the differences between the 

experimental trace distributions and the calculated trace distributions 

obtained using Eq. (3.16)-(3.18). The procedures is first summarized and 

then presented in detail. 

The procedure begins by assuming a form for the crack size distribu­

tion, f(aj•). Values of <a•> and var(a$) are also assumed. A uniform 

distribution with respect to trace angle of the number of cracks per unit 

area per degree is assumed on the transverse surface. The experimental 

trace angle distribution for the longitudinal surface, f(B)L' is then ob­

tained as described in Section 3.4.1. The values of MT<~>T and ML<~>L are 

used in Eq. (3.14) to calculate the degree of anisotropy, K. The value of K 

enables the orientation distribution, f(•), to be determined using Eq. 

(3.13). The calculated trace angle distribution on the longitudinal sur­

face, f(B)Lc' is obtained using Eq. (3.16). 

The steps described above are repeated with different assumed uniform 

distributions on the transverse surface until the sum of the squared dif­

ferences between the experimental, f(e)L' and calculated, f(e)Lc' trace 

angle distributions on the longitudinal surface is minimized; i.e. minimize 

r [fCe1 JL- f(ei)Lc] 2~e (3.21) 
ei 
~e- 5"; ei = 2.5", 7.5", 12.5", •••.• ,87.5" 

The procedure then continues by determining the sum of the squared dif­

ferences between the experimental, f(~)T' and calculated, f(~)Tc' trace 

length distributions for the transverse surface, as well as the sum of the 

squared differences between the experimental, f(~je)L' and calculated, 

f(~je)Lc' trace length distributions for the longitudinal surface. These 

sums are computed over the range of trace lengths, ~. from 0.0 to 0.006 in., 

since the trace length distributions virtually diminish to zero at a value 

of~= 0.006 (Fig. 3.2). For the transverse surface, the sum is 

r [fC~ 1 lT- f(~i)Tc] 2~~ (3.22) 
~i 

~~ 0.00015 in.; ii = 0.000075,0.000225,0.000375, ••••• ,0.005925 in. 

and for the longitudinal surface, the sum is 
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2

a&} 
e &i 
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6& 0.00015 in.; &i = 0.000075,0.000225,0.000375, ...•. ,0.005925 in. 

8 = oo, 5o, 10o, •.... , goo 

(3.23) 

The whole procedure may be repeated with different forms of f(alwl and with 

different values of <aw> and var(aw) until the sums of the squared dif­

ferences between the experimental and calculated trace length distributions 

on both surfaces are minimized. The three-dimensional crack parameters 

which enable the minimization process to attain a global minimum are the 

desired estimates. 

The details of the procedure follow: 

1. Assume a form for the crack size distribution, f(alwl, such as a gamma 

distribution. 

2. Assume expressions for <aw> and var(aw) as functions of crack 

orientation. 

3. Assume a value for the uniform distribution of the number of cracks per 

unit area per degree with respect to trace angle, e, on the transverse 

surface, me. 

4. For each fi ve~degree range, compute the difference in the areas under 

the uniform distribution assumed in Step 3 and the measured distribu­

tion of number of cracks per unit area per degree, me, on the 

transverse surface. This difference is expressed as 

5. Modify the distribution of number of cracks per unit area per degree 

with respect to trace angle on the longitudinal surface by algebrai­

cally adding to it the differences obtained in step 4. 

6. Compute the degree of anisotropy, K, using Eq. (3.14), and determine 

the orientation distribution, f(wl [Eq. (3.13)]. 

7. By varying the crack aspect ratio, r, compute the trace angle distribu­

tion on the longitudinal surface, f(e)Lc' using Eq. (3.16), with n 

uniformly distributed over the range -90° ~ n ~ 90°. Determine the r 

which minimizes the sum of the squared differences between the ex­

perimental, f(e)L' and calculated, f(e)Lc' trace angle distributions 
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[Eq. (3.21 )]. Reduce the range of nand again determiner which mini­

mizes Eq. (3.21). Continue this process until Eq. (3. 21) cannot be 

minimized further. 

8. Repeat Steps 3-7 until the values computed using Eq. (3. 21) reach a 

global minimum. The values of f(¢) and r, and the range of n for which 

Eq. (3.21) is fully minimized, are the estimates to be used in the 

following steps. 

9. Use Eq. (3.18) to compute the trace length distribution on the 

transverse surface, f(i)Tc" An improved estimate of the variance of 

fCalwl is obtained by assuming trial values for var(a¢) until the sum 

of the squared differences between the experimental, f(i)T' and calcu­

lated, f(i)Tc' trace length distributions is minimized [Eq. (3.22)]. 

10. Compute the trace length distribution on the longitudinal surface, 

fCilelLc' using Eq. (3.17). Calculate the sum of the squared dif­

ferences between the experimental, fCilelL' and calculated, fCilelLc' 

trace length distributions [Eq. (3.23)]. 

11. Return to Step 2 and repeat the process until the values computed from 

Eq. (3.23) reach a global minimum. The parameters <a¢>, var(aw), r, 

and the range of n which produce this global minimum are the best 

estimates for the three-dimensional crack distributions based on the 

form of fCalwl assumed in Step 1. 

12. The iterative process may 

ferent form for f(alwl. 

be restarted at Step 

The form of fCalwl, 

1 by assuming a dif-

the values of 

and r, and the range of n which minimize Eq. (3.23) 

estimates. 

K, <aw>, 

are the 

In the current study, the optimum solution for all loading regimes and 

applied strains yielded a value of n = o•. This means that the cracks are 

predominantly oriented with the plane defined by the major axis of the crack 

and the crack normal parallel to the longitudinal (or loading) axis and 

perpendicular to the transverse plane. The best form of the crack size 

distribution, f(a I wl. turns out to be a gamma distribution. This is the 

same form of distribution obtained for the trace length distribution 

(Section 3.3.1). The size distribution is represented as 

fCalwl = --'--­
Ba rCa) 

a-1 
a 

-alB 
e (3. 25) 
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in which a (3. 26) 

r is defined in Eq. (3.7). 

As illustrated in Fig. 3.15-3.17 for cement paste (W/C = 0.5) loaded 

monotonically to a strain of 0.004, the final calculated surface distribu­

tions closely match the modified experimental surface distributions. The 

deviations that do exist between the calculated and experimental distribu­

tions may be due to a number of causes. Primary among these is the rather 

bold assumption that the cracks are elliptic. In addition, all sources of 

the specimen preparation cracks are not known and therefore cannot be dealt 

with at this stage in the analysis. It should be noted that f(e)L used for 

comparison in Step 7 [Eq. (3.21 )] is itself a product of the iteration 

scheme. 

The calculated three-dimensional crack orientation and size distribu­

tions for a nonloaded specimen and for a specimen loaded to a strain of 

0.004 are illustrated in Fig. 3.18 and 3.19. Fig. 3.18 shows that the 

orientation distribution for the loaded specimen is skewed more towards the 

direction of applied stress (1jl = 90°) than the corresponding distribution 

for the nonloaded specimen. Fig. 3.19 shows that the mean crack size in the 

loaded material is larger than that in the nonloaded material. 

The final distributions obtained in Steps 4 and 5 of the iteration 

scheme produce the values of the modified numbers of cracks per unit area on 

the transverse and longitudinal surfaces, MT and ML' as well as the number 

of specimen preparation cracks, not counting those removed when the spikes 

were excluded, MT-~ or ML -ML. These are summarized along with the values 

of MT and MLin Tables 3.7-3.12. The final surface crack densities, MT<i>T 

and ~<~>L' are given in Tables 3.13-3.16. The calculated three-dimensional 

crack parameters for nonloaded specimens and for all loading regimes and 

applied strains are presented in Tables 3.17-3.23. An additional parameter, 

Nv<a3>, which is a measure of the volume density of the cracks, is added. 

Nv<a3> plays an important role in controlling material behavior, as will be 

shown in Chapters 4 and 5. 

The data presented in Tables 3.7-3.23 are discussed for each loading 

regime in Section 3.5. 
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Effect of Averaging Surface Crack Data: As stated earlier, the average 

surface crack data for all specimens loaded to a specified strain are used 

to obtain the surface and three-dimensional crack parameters for each load­

ing regime .. It is of interest to compare the results obtained using the 

average data with the extremes obtained in the tests. Monotonically loaded 

cement paste with a W/C = 0.5 is used for the comparison. To establish 

lower and upper bounds of the number of cracks per unit area on the 

transverse and longitudinal surfaces, MT or ML' and of the three-dimensional 

crack size parameters, <a~> and var(a~), the surface crack data for in­

dividual specimens were analyzed. The results are presented in Tables 3.2~ 

and 3.25. The values of the number of cracks per unit area, MT and ML' are 

also given in Table 3.2~. The values of MT, ML' <a~>, and var(a~) given in 

Tables 3.8 and 3.19 based on the average surface crack data are within 0.5% 

of the results in Tables 3.24 and 3.25. This indicates that the average 

data for all specimens are representative of the data for the individual 

specimens. 

The upper bounds for the number of cracks per unit area before 

modification (MT or ML) are about 6% to 8% larger than the lower bounds 

(Table 3.24). However, the upper bounds for the modified number of cracks 

per unit area (MT or ML) are only about 0.8% larger than the lower bounds. 

For specimens with the same strain, it is likely that the difference between 

the lower and upper bounds for MT (or ML) is due to specimen preparation. 

Thus, the closeness of the lower and upper bounds for MT and ML suggests 

that the procedure for estimating MT and ML does a good job of removing 

specimen preparation cracks. 

Multi-directional Crack Trace: In order for a multi-direction-al crack 

trace (Fig. 3.20) to be recorded as a single uni-directional crack, the 

differences in trace angle between the individual segments of the crack 

trace were required to be no bigger than the increment of angle measurement, 

~S/2 = ± 2.5°. Segments of a multi-directional crack trace which did not 

satisfy this requirement were recorded as separate crack traces. Thus, the 

recorded crack traces have a smaller mean length than would have been ob­

tained if the total length of a multi-directional crack trace had been 

recorded as a single quantity, or if a multi-directional crack trace had 

been recorded as a single uni-directional crack. 
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This point is of some concern since in Chapter 4 it will be shown that, 

while material response depends on the number of cracks per unit volume, NV' 

it depends on the average of the cube of the characteristic crack size, 

<a3>. An overestimate of the number of surface cracks and corresponding 

underestimate of surface crack trace length will result in an overestimate 

of NV and underestimate of <a3>, which will substantially underestimate the 

effect of the cracks. 

To rectify this problem, two specimens were studied to obtain a cor­

relation between the multi-directional crack traces and the individual 

segments. For the current analysis a multi-directional crack trace must be 

represented as a single uni-directional trace since the surface to three­

dimensional conversion procedure used in this study is based on linear 

surface cracks. The equivalent uni-directional crack trace is obtained by 

connecting the far ends of the attached segments (Fig. 3.20). 

Based on the information obtained from the two specimens, it is es­

timated that if all multi-directional crack traces had been recorded as 

single cracks, the number of cracks per unit area would have been reduced by 

about 23% and the mean trace length would have been increased by about 30%. 

The variance of the trace lengths based on the large cracks is about 1% 

larger than the variance based on the small cracks. 

To obtain an estimate of the crack parameters based on the larger, 

combined crack traces, the mean trace lengths and variances given in Tables 

3.1-3.6 are increased by 30% and 1%, respectively, and the numbers of cracks 

per unit area, MT and ML, given in Tables 3.7-3.12 are decreased by 23%. 

The surface to three-dimensional conversion procedure outlined above is then 

used to obtain estimates of <a>P> which are larger than those given in Tables 

3.17-3.23. The estimates of <a>P>, var(a>P), NV and Nv<a\ are presented in 

Tables 3.26-3.32. The effect of this conversion is substantial on the value 

of the key parameter Nv<a3>, with increases ranging from 31% for mortar (W/C 

= 0.5) at a strain of 0.004 under monotonic loading to 44% for cement paste 

(W/C = 0.3) at a strain of 0.003 under cyclic loading. The estimates of K 

and rare unchanged from those given in Tables 3.17-3.23. 

Unless stated otherwise, the discussions of three-dimensional crack 

parameters in the next section are based on the results which correspond to 

the larger estimate of <aljl>. 
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3.5 Discussion of Results 

In this section, the surface and three-dimensional crack parameters for 

cement paste and mortar are discussed for nonloaded specimens and for 

specimens under each loading regime. Crack densities and crack distribu­

tions are compared for specimens with different water-cement ratios and load 

regimes. For each loading regime, the implications of the results are 

discussed based on the three-dimensional crack parameters. 

3.5.1 Nonloaded Specimens 

Surface crack density, MT<~>T or ML<~>L (Table 3.13), as well as 

"volumetric crack density", Nv<a3> (Tables 3.17 and 3.26), vary inversely 

with water-cement ratio for nonloaded cement paste specimens, as shown in 

Fig. 3. 21 and 3. 22, respectively. Three reasons may be offered to explain 

these relationships: (1) The higher the water-cement ratio, the greater will 

be the degree of hydration at a given age. Therefore, upon drying, the 

higher water-cement ratio paste may undergo less differential volume change 

at the local level. (2) The more porous nature, and thus higher compliance, 

of the higher water-cement ratio paste may allow the material to deform with 

less cracking during the drying process. (3) A portion of the cracking may 

be due to self-desiccation, which will be higher for a lower water-cement 

ratio. 

The existence of internal drying cracks in cement paste and mortar 

raises an interesting point about the significance of drying shrinkage 

measurements. Drying shrinkage measurements are carried out as external 

length measurements, and shrinkage values have been used as evidence in 

support of contrasting models of the hydration of portland cement paste 

[18,84]. If cracks form within the material, the external length change 

will be reduced, compared to the case without any cracks, by the total 

projected crack width in the direction of measurement. Also, the larger the 

crack density, the lower will be the externally measured shrinkage. Results 

in this study show that both crack density (Tables 2.12, 2.16 and Fig. 2.52) 

and crack width (Tables 2.30-2.32) vary with the method of specimen drying. 

Thus, shrinkage will be partly determined by the material and partly by the 

method used in drying the specimen. Drying shrinkage is, therefore, not a 

material property, but rather a composite or apparent property, and as such 
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may not be of much significance in proving or disproving any particular 

model of the hydration of cement paste. 

Bazant, et al. [5,6,7] have shown analytically that due to differential 

drying rates between the exterior and interior of cement paste and concrete 

specimens, discontinuous random cracks, as well as a system of parallel 

drying cracks, form in the specimens. In this study, nearly uniform dis­

tributions of crack density with respect to trace angle have been obtained 

for the nonloaded specimens, as shown in Fig. 2.53 and 2.55. These observed 

crack distributions seem to support the formation of random drying cracks 

due to differential drying rates between the exterior and interior of the 

specimens, as proposed by Bazant, et al. However, some portion of the 

cracking can be due to differences in the properties of CH and CSH com­

ponents in the hydrated cement paste. Since CH does not change volume 

during the drying process, and also has a higher stiffness than CSH [8,48], 

CH can act as a rigid inclusion surrounded by a shrinking matrix. The 

restraining effect of the CH can induce tensile stresses which are relaxed 

by the formation of cracks. This suggests that some cracking will occur, 

independent of the drying rate. An analytical study by Kawamura [48] sup­

ports this conclusion. 

3.5.2 Monotonic Loading 

For this loading regime, specimens were loaded to selected strains at a 

constant strain rate and then immediately unloaded. Typical stress-strain 

curves are shown in Fig. 2.3-2.6. 

3.5.2.1 Surface Crack Density 

The crack densities on the transverse and longitudinal surfaces of 

cement paste and mortar increase with applied compressive strain (Table 

3.14). Fig. 3.23 and 3.24 show crack density on the transverse surface as a 

function of applied compressive strain for cement pastes with W/C = 0.7, 0.5 

and 0.3. In Fig. 3.23, the linear least squares fits through the data 

points show that the av~rage increase of surface crack density with strain 

is virtually the same for all the three cement pastes. However, if the data 

points are connected with straight lines, as shown in Fig. 3.24, it is 

observed that above a strain of 0.004, surface crack density increases more 



rapidly in cement paste with a W/C 

0.5. 
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0.3 than in pastes with W/C 0.7 and 

Fig. 3.25 shows the transverse surface crack density- strain relation­

ships for cement paste and mortar with a W/C = 0.5. The figure shows that 

surface crack density for nonloaded mortar specimens is lower than for 

nonloaded paste specimens. With applied compressive strain, however, the 

increase in surface crack density is more rapid in mortar than in cement 

paste. Beginning at a strain of about 0.002, the surface crack density in 

mortar exceeds the value for paste. 

Specimen Preparation Cracks: The estimated number of specimen prepara­

tion cracks, not counting those removed when the spikes were excluded 

(Section 3.4.1), MT-MT or ML-ML (Tables 3.7-3.10), decreases with increasing 

applied strain. This relationship is illustrated in Fig. 3.26 for cement 

paste with a W/C = 0.5. The decrease in specimen preparation cracks with 

increasing strain implies that load-induced cracks relieve stresses due to 

specimen preparation, and that the greater the density of load-induced 

cracks the greater the relief. 

3.5.2.2 Three-Dimensional Crack Parameters 

The relationships between the mean characteristic crack size, <aw>, and 

strain, and between the coefficient of variation, [var(aw)J
112

!<aw>' and 

strain are illustrated in Fig. 3.27 and 3.28 for cement paste with a W/C = 

0.5. Crack orientations of 0°, 45° and 90° are used in these figures. The 

lines shown are least squares fits through the data points. Fig. 3.27 shows 

that <a~> increases with increasing strain and with increasing orientation 

angle, ~ (Tables 3.18-3.21 and 3.27-3.30). The increase of <a~> with in­

creasing ~ indicates that the cracks are larger the more their orientation 

is skewed towards the direction of applied stress. The coefficients of 

variation are approximately constant, implying that crack sizes have the 

same spread relative to their means for all applied strains and crack 

orientations. 

For nonloaded cement paste and mortar with a W/C = 0.5, the degree of 

anisotropy, K, is 0.00, while for nonloaded cement pastes with W/C = 0.7 and 

0.3, the value of K is -0.02 (Table 3.17). As pointed out in Section 3.4.2, 

a value of K = 0 indicates an isotropic orientation distribution. The value 

of K = -0.02 for the pastes with W/C = 0.7 and 0.3 gives an orientation 
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distribution, f(o/), that is different from the distribution forK= 0 by 

less than 1%. This indinates that the orientation distributions in all the 

nonloaded materials are virtually isotropic. 

The magnitude of K increases with increasing strain under monotonic 

loading (Tables 3.18-3.21), indicating that the crack distribution becomes 

skewed towards the direction of applied stress as strain increases. For 

cement paste with a W/C = 0.5, values of K range from 0.00 for nonloaded 

specimens to -0.30 for specimens at an applied strain of 0,006, while for 

paste with W/C = 0.7 and 0.3, they range from -0.02 for nonloaded specimens 

to -0.29 and -0.31 for specimens at an applied strain of 0.006. For mortar 

with a W/C = 0.5, the range of K is 0.00 for nonloaded specimens to -o. 24 

for specimens loaded to a strain of 0.004. 

At low strains, the crack aspect ratio, r, is 1.0; i.e. the cracks are 

circular (Tables 3.18-3.21). At high applied strains, the cracks become 

elliptic (i.e. r < 1.0). At an applied strain of 0.006, the values of rare 

0.90, 0.87 and 0.85 for cement pastes 

respectively. At an applied strain of 0.004 

with W/C = 0.7, 0.5 and 0.3, 

in mortar with a W/C 0. 5, the 

value of r is 0.90. These results imply that each crack has a slightly 

preferred direction of propagation (or characteristic direction) in its 

plane. Since n = 0° for all load cases (Section 3.4.2), that direction is 

parallel to the direction of loading. 

The number of cracks per unit volume, NV' decreases with increasing 

applied strain (Tables 3.18-3.21 and 3.27-3.30, Fig. 3.29). For example, 

for paste with a W/C 0.5, NV decreases from a value of 2.3x106 in.-3 in 

nonloaded specimens to a value of 0.7x106 in.-3 in specimens loaded to a 

strain of 0.006. For mortar with a W/C 

1.5x1o6 in.-3 in nonloaded specimens 

specimens loaded to a strain of 0.004. 

0.5, NV decreases from a value of 

to a value of o.6x10 6 in.-3 in 

While the number of cracks per unit 

volume decreases with increasing applied strain (Fig. 3.29), the mean crack 

size increases (Fig. 3.27). The two results suggest that as the applied 

strain increases, small cracks join into a smaller number of larger cracks. 

The variation of the volume density of cracks, Nv<a3>, with applied 

strain is shown in Fig. 3.30 and 3.31 for cement pastes with W/C = 0.7, 0.5 

and 0. 3. Both figures show that Nv<a3> increases with increasing strain, 

suggesting that the paste materials are damaged progressively during 

loading. The linear least squares fits in Fig. 3.30, like the surface crack 
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density (Fig. 3.23), show that the average increase in Nv<a3> with strain is 

virtually the same for all the three cement pastes. Fig. 3.31, in which the 

data points are connected with straight lines, shows that below a strain of 

0.004, Nv<a3> increases more rapidly the higher the water-cement ratio. 

Above a strain of 0.004 Nv<a3>, the trend is reversed, and Nv<a3> increases 

most rapidly for cement paste with a W/C = 0.3. The larger rate of increase 

of volumetric crack density, Nv<a3>, at high strains in cement paste with a 

W/C = 0.3 may explain the lower strain capacity of this material when com­

pared to pastes with higher water-cement ratios (Fig. 2.7). 

Fig. 3.32 compares the relationships between Nv<a3> and strain for 

cement paste and mortar with a W/C = 0.5. The value of Nv<a3> for nonloaded 

mortar is lower than that for nonloaded cement paste. This reflects the 

lower percentage of paste in the cross-section of mortar and the restraint 

of shrinkage exerted by the sand grains. Nv<a3> increases more rapidly in 

mortar than in cement paste. Under load, the sand appears to act as a 

stress raiser, resulting in a larger value of volumetric crack density and a 

lower strain capacity for mortar as compared to cement paste. 

3.5.3 Sustained Loading 

Under this loading regime, load was maintained at a specified stress 

level for four hours. Stress levels were selected in order to obtain 

specific strains. A typical stress-strain curve is shown in Fig. 2.14. 

3.5.3.1 Surface Crack Density 

For sustained loading of cement past, surface crack density increases 

with increasing applied strain, on both the transverse and longitudinal 

surfaces (Table 3.15). Crack density on the transverse surface versus 

strain is shown in Fig. 3.33 for cement pastes with W/C = 0.5 and 0.3. 

Surface crack density is larger and increases more rapidly in paste with a 

W/C = 0.3 than in paste with a W/C = 0.5. 

The surface crack densities are compared at the same strain for 

monotonic and sustained loading regimes in Fig. 3.34. The figure shows that 

for loading to a fixed strain, surface crack density is larger under 

monotonic loading than under sustained loading. 



55 

3.5.3.2 Three-Dimensional Crack Parameters 

The mean characteristic crack size, <aljJ>, increases with increases in 

strain and crack orientation under sustained loading (Tables 3.22 and 3.31). 

This relationship is illustrated in Fig. 3.35 for cement paste with a W/C = 

0.5, and for crack orientations of 0°, 45° and 90°. Like the crack dis­

tributions for monotonic loading, the crack distributions for sustained 

loading are skewed more towards the direction of applied stress the higher 

the applied strain, as indicated by the increase in the magnitude of the 

degree of anisotropy, K, with an increase in strain (Table 3.22). For 

example, for cement paste with a W/C = 0.5 loaded to strains of 0.004 and 

0.006, the values of K are -0.17 and -0.24, respectively. The crack dis­

tributions under sustained loading, however, are less skewed towards the 

direction of applied stress than the distributions under monotonic loading 

for which the corresponding values are -0.27 for a strain of 0.004 and -0.30 

for a strain of 0.006. 

The higher the strain under sustained loading, the smaller the number 

of cracks per unit volume, NV (Fig. 3.36 and Table 3.31). The increase in 

<aljJ> (Fig. 3.35) and the decrease in NV (Fig. 3.36) with increase in strain 

suggest that small cracks join to form a smaller number of larger cracks in 

cement paste at higher applied strains, as occurs under monotonic loading. 

The volume density of cracks, Nv<a3>, at each strain (Table 3.31) is 

shown in Fig. 3. 37 for the cement pastes. Nv<a3> is larger and increases 

more rapidly in paste with a W/C = 0.3 than in paste with a W/C = 0.5. This 

result is similar to that obtained for the surface crack density (Fig. 

3.33). The greater value of Nv<a3> in the lower water-cement ratio paste is 

somewhat more extreme than the results obtained at high applied strains 

under monotonic loading (Fig. 3.31). 

Fig. 3.38 shows that for the same applied strain, the volumetric crack 

density, Nv<a3>, under monotonic loading ranges from 1.02 to 1.46 times 

Nv<a3> under sustained loading. The values of Nv<a3> are closer for paste 

with a W/C = 0.3 than for paste with W/C = 0.5. This result indicates that 

deformation mechanisms other than cracking play a role, and that under 

sustained loading at a lower stress, these mechanisms can reduce the amount 

of cracking. At higher strain rates, cracking would be expected to play an 

increasingly important role. 



56 

Fig. 3.39 compares Nv<a3> for sustained loading to that for monotonic 

loading at the same stress-strength ratio. The data shown in this figure 

for monotonic loading is obtained by determining the strain which cor­

responds to a given stress-strength ratio, and then estimating the value of 

Nv<a3> from the least squares fit shown in Fig. 3.30. Fig. 3.39 shows that 

Nv<a3> is larger under sustained loading than under monotonic loading. This 

indicates the effect of the duration of loading. Under sustained loading, 

formation of new cracks and/or propagation of existing cracks may occur, 

resulting in a higher volumetric crack density for sustained loading as 

compared to monotonic loading at the same stress-strength ratio. 

3.5.4 Cyclic Loading 

This loading regime consisted of subjecting specimens to cyclic loading 

between stress levels of zero and a specified value until selected strains 

were reached. A typical stress-strain curve is shown in Fig. 2.19. 

3.5.4.1 Surface Crack Density 

Surface crack density is larger the higher the strain under cyclic 

loading (Fig. 3.40 and Table 3.16). Surface crack density increases more 

rapidly in cement paste with a W/C = 0.3 than in paste with a W/C = 0.5. 

This result is similar to results obtained for monotonic and sustained 

loading regimes. 

Surface crack densities for monotonic and cyclic loading are compared 

at the same strain in Fig, 3.41. The figure shows that surface crack den­

sity is larger for cyclic loading than for monotonic loading. 

3.5.4.2 Three-Dimensional Crack Parameters 

For cyclic loading, as for monotonic and sustained loading, the mean 

characteristic crack size, <a$>, increases with increasing 

orientation (Tables 3.23 and 3.32). This relationship 

strain and crack 

is illustrated in 

Fig. 3.42 for cement paste with a W/C = 0.5, and for crack orientations of 

0°, 45° and 90°. 

The magnitude of the degree of anisotropy, K (Table 3.23), also in­

creases with increasing strain, indicating that the crack distribution is 

skewed more towards the direction of applied stress the higher the strain 

under cyclic loading. For example, for cement paste with a W/C = 0.5 loaded 
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to strains of 0.002 and 0.004, the values of K are -0.14 and -0.20, respec­

tively, are somewhat less than the corresponding values under monotonic 

loading of -0.16 and -0.27. As with the crack distributions obtained under 

sustained loading, the crack distributions under cyclic loading are less 

skewed towards the direction of applied stress than the distributions under 

monotonic loading. 

The number of cracks per unit volume, NV' decreases with increase in 

strain (Fig. 3.43 and Table 3.32). As in the case of monotonic and sus­

tained loading regimes, the increase in <a~> (Fig. 3.42) and the decrease in 

NV (Fig. 3.43) with increase in strain suggest that a smaller number of 

larger cracks form at the higher applied strain. 

The volumetric crack density, Nv<a3>, increases with increased strain 

under cyclic loading (Fig. 3.44). Again, in the case of monotonic loading 

at high strains and sustained loading, Nv<a3> increases more rapidly in 

cement paste with a W/C = 0.3 than in paste with a W/C = 0.5. Fig. 3.45 

shows that for loading to a fixed strain, Nv<a3> is larger under cyclic 

loading than under monotonic loading. Under cyclic loading, the repetitive 

nature of loading may cause new cracks to form and/or existing cracks to 

propagate in each cycle, resulting in a larger volumetric crack density for 

cyclic loading as compared to monotonic loading. This occurs even though a 

lower stress level is used for cyclic loading to attain the same strain. 

The increasing density of cracks with cyclic loading may explain the ob­

served reduction in strength obtained for cyclically loaded cement past 

specimens upon reloading [22]. 

3.5.5 Expected Effects of Submicrocracking on Material Stiffness 

In this section, the data of surface crack densities, MT<2>T and 

ML <~>L' volumetric crack density, Nv<a3>, and degree of anisotropy, K, which 

have been discussed in earlier sections are summarized in order to point out 

the expected effects of submicrocracking on material stiffness under dif­

ferent loading regimes. The data for monotonic loading of cement pastes 

with W/C = 0.7, 0.5 and 0.3 are compared in Table 3.33, while those for 

monotonic loading of cement paste and mortar with a W/C = 0.5 are compared 

in Table 3.34. The data for sustained and cyclic loading regimes are com­

pared to those for monotonic loading in Tables 3.35 and 3.36, respectively. 
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Under monotonic loading, the surface crack densities of the three 

cement pastes are within 10% of each other at each strain (Table 3.33). The 

volumetric crack densities are also within 10% of each other. Linear least 

squares fits shown in Fig. 3.30 indicate that the increase of volumetric 

crack density with increasing strain is approximately the same for the three 

cement pastes. The crack orientation distributions for the cement pastes, 

f(l)J), represented by the degrees of anisotropy, K, differ by less than 2% 

for most strains. The small differences in crack distributions indicated by 

these results, suggest that the degree of softening caused by submicrocrack­

ing under monotonic loading should be approximately the same for the cement 

pastes. 

Above a strain of 0.001, both the surface and volumetric crack den­

sities are larger in mortar than in cement paste (Table 3. 34). The larger 

densities in mortar are associated with crack distributions which are less 

skewed towards the direction of applied stress than crack distributions in 

cement paste, as indicated by the degrees of anisotropy. The less skewed a 

crack distribution is towards the direction of applied stress, the larger is 

its effect on the stiffness modulus in that direction. Therefore, the 

degree of softening caused by submicrocracking under monotonic loading 

should be larger for mortar than for cement paste. 

The surface and volumetric crack densities at each strain are larger 

for monotonic loading than for sustained loading (Table 3.35), suggesting a 

larger effect of cracks on the stiffness modulus under monotonic loading 

than under sustained loading. However, as indicated by the degrees of 

anisotropy, the crack distributions for sustained loading are less skewed 

towards the direction of applied stress than the distributions for monotonic 

loading, indicating a larger effect of cracks on stiffness modulus under 

sustained loading than under monotonic loading. Thus, the effect of the 

cracks on material stiffness under monotonic loading should be smaller than 

suggested by the values of volumetric crack density alone, while the effect 

on stiffness under sustained loading should be larger than suggested by the 

values of volumetric crack density alone. 

The surface and volumetric crack densities at each strain are larger 

for cyclic loading than for monotonic loading (Table 3.36). The degrees of 

anisotropy indicate that the crack distributions are less skewed towards the 

direction of applied stress for cyclic loading than for monotonic loading. 
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These results suggest that the degree of softening caused by submicrocrack­

ing should be larger under cyclic loading than under monotonic loading. 

In Chapter 5, the three-dimensional crack distributions discussed in 

this chapter are used in a material model to determine the effects of the 

cracks on the elastic moduli of cement paste and mortar. The material model 

is developed in the next chapter. 

3.6 Summary of findings 

The results discussed above can be summarized as follows. The term 

"crack density" refers to both the surf ace and volumetric crack densities. 

1. The variations in crack density and crack width with the method of 

specimen drying suggest that drying shrinkage in cement paste is not a 

material property, but rather a property of the total cement paste 

composite. 

2. Under monotonic loading, crack density increases more rapidly in mortar 

than in cement paste. 

3. At high strains under uniaxial compressive loading, crack density seems 

to increase more rapidly in a low water-cement ratio paste (W/C = 0.3) 

than in higher water-cement ratio pastes (W/C = 0.7, 0.5). 

4. For loading to a fixed strain, crack density in cement paste is larger 

under monotonic loading than under sustained loading, while at the 

stress-strength ratios investigated, crack density is larger under 

sustained loading than under monotonic loading. 

5. For the same applied strain, crack density in cement paste under cyclic 

loading is larger than under monotonic loading. 

6. Under uniaxial compressive loading, the mean size of submicroscopic 

cracks increases with increasing strain, while the number of cracks per 

unit volume decreases. 

7. Under monotonic loading, the three-dimensional crack distributions in 

cement paste show only small variations with water-cement ratio; the 

volumetric crack densities are within 10% of each other and the orien­

tation distributions are virtually the same. 

8. Under uniaxial compressive loading, three-dimensional distributions of 

submicroscopic cracks become skewed towards the direction of applied 

stress as strain increases. 
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9. Under monotonic loading, the crack distributions in mortar are less 

skewed towards the direction of applied stress than the crack distribu­

tions in cement paste. 

10. The crack distributions under sustained and cyclic loading of cement 

paste are less skewed towards the direction of applied stress than the 

crack distributions under monotonic loading. 
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CHAPTER 4 

SELF-CONSISTENT MODEL FOR A TRANSVERSELY ISOTROPIC CRACKED SOLID 

4.1 Introduction 

A model based on the self-consistent method is developed to estimate 

the effective elastic moduli of a transversely isotropic solid containing 

many cracks. Such a solid has one axis of elastic symmetry. 

The self-consistent method has been employed by various investigators 

[12,13,14,30,33,34,35,38,40,43,50,52,53,67] to estimate the elastic moduli 

of composite materials. The method accounts for inclusion interactions by 

estimating the actual behavior of an inclusion in the composite body as that 

of a single inclusion in an equivalent homogeneous body. There are two 

equivalent approaches for deriving the self-consistent equations. One 

approach, by Hill [35], involves the direct averaging of the components of 

stress and strain in the constituent phases of the solid. Average stress is 

related to average strain in the solid through the effective elastic moduli. 

The other approach, by Budiansky [12], involves the computation of the 

change in strain energy of the solid due to each representative inclusion. 

The change in strain energy is summed over all inclusions, and the result is 

set equal to the energy change produced by modification of the elastic 

moduli of the solid. Explicit formulations of the self-consistent method in 

the case of cracked solids have been obtained by Budiansky and O'Connell 

[14,67], Hoenig [38], and Horii and Nemat-Nasser [40]. 

Budiansky and O'Connell use the energy approach to estimate the elastic 

moduli of an isotropic cracked body permeated by many randomly distributed 

cracks. Hoenig considers non-randomly distributed cracks and employs Hill's 

approach to derive the self-consistent equations. He illustrates the 

results of his formulation with two examples. In each of the two examples, 

the cracked solid is transversely isotropic. The cracks are assumed to have 

a single orientation with respect to the plane of isotropy. Budiansky and 

O'Connell, and Hoenig, neglect the effects of crack closure in their 

studies. Horii and Nemat-Nasser assume a random crack distribution and use 

the self-consistent method to determine the effective moduli of a cracked 

solid when some cracks close, and when closed cracks undergo frictional 

sliding. 
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In this study, Budiansky's energy approach is used to formulate the 

self-consistent equations for a cracked transversely isotropic solid con­

taining non-randomly distributed cracks. Crack closure effects are 

neglected. The cracks are assumed to be elliptic with known size and orien­

tation distributions, and crack centroids are assumed to be randomly 

distributed throughout the solid. Both dry and saturated cracks are 

considered. The uncracked material is assumed to be locally isotropic and 

homogeneous. The cracks modify the material properties, and anisotropic 

distributions of crack size and orientation cause the cracked solid to 

become transversely isotropic. For opaque solids, procedures are estab­

lished in Appendix D to estimate the three-dimensional crack distributions 

from crack trace distributions obtained on the exterior of the solid. 

The results of the self-consistent formulations obtained in this study, 

are checked against those of Budiansky and O'Connell [14,67] and Hoenig 

[38]. Further, results are presented for a transversely isotropic cracked 

solid using assumed anisotropic crack distributions in which all orienta­

tions are represented. Results are also presented to show the sensitivity 

of the model to variations in three-dimensional crack parameters. 

4.2 Overview of the Model 

In the following presentation of the self-consistent model, the crack 

and global coordinate systems are defined. Stresses are applied to the 

cracked solid and the self-consistent equation is formulated for each ap­

plied stress. The energy change of the body-load system due to a single 

crack is expressed in terms of energy release rates for crack extension in 

an anisotropic material. The change in strain energy of the cracked solid 

due to all cracks is then obtained. Each of the self-consistent equations 

is expressed in a form which is appropriate for determining the effective 

moduli of solids containing either dry or saturated cracks. 

The self-consistent equations are nonlinear in the unknown effective 

moduli. An iterative solution procedure is used. The solution process is 

stopped when the computed moduli converge. 

4.3 Crack and Global Coordinate Systems 

In the self-consistent method, the material properties are required for 

the directions associated with the individual crack orientations. The crack 
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and material coordinate systems are defined in Fig. 4.1. The figure shows 

an elliptic crack and a rectangular cartesian coordinate system in the 

principal material directions, with the 1-2 plane being the plane of 

isotropy. The 3-axis is the longitudinal axis of the cracked body, and it 

is also the axis of elastic symmetry. lj! is the orientation of the crack 

with respect to the plane of isotropy. The elliptic crack has a major semi­

axis length of a and a minor semi-axis length of b. The length of the major 

semi-axis, a, is designated as the "characteristic crack size". 

the characteristic crack size is a function of lj!; i.e. a a(lj!) 

aspect ratio of the crack, r, is defined as the ratio bla, 

analysis, its value is assumed to be the same for all cracks. 

In general, 

= alJ!. The 

and in this 

The aspect 

ratio varies between 0 and 1. A value of 1 indicates a circular crack. ~ 

is the angle that the projection of the normal to the crack on a plane of 

isotropy, makes with the principal 1-direction. ~varies in a full circle 

about the axis of elastic symmetry. The angle n defines the degree of 

rotation of the crack about its normal. For n = 0, the plane defined by the 

major axis of the crack and the crack normal is parallel to the longitudinal 

axis and perpendicular to the transverse plane, while n = n/2 when the major 

axis is parallel to the transverse plane. For a circular crack, n is not 

defined since every axis of the crack is a major axis. The local reference 

frame of the crack is represented by the x, y and z axes. The x-y and y-z 

planes are normal to the crack plane, while the x-z plane is parallel to the 

crack plane. The crack displacements in the x, y and z directions are u, v 

and w, respectively. 

In reference to the global coordinate system in Fig. 4.1, the strain­

stress relations for a transversely isotropic material are 

1 v12 v31 
0 0 0 "1 "E, ~ E3 a1 

1 v31 
0 0 0 "2 "E, E3 a2 

1 
0 0 0 "3 E3 cr3 
1 ( 4. 1) 

y12 012 
0 0 '12 
1 

y 23 
c31 

0 '23 
1 

y31 (symmetrical) 0
31 

1 31 
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in which E
1 

and E
3 

are stiffness moduli, v12 and v
31 

are Poisson's ratios, 

and o
12 

and o
31 

are shear moduli. The material is described by five inde­

pendent elastic constants. These independent constants may be taken as E1 , 

E
3

, v12 , v
31 

and o
31

. vij is Poisson's ratio which characterizes the strain 

in the j direction produced by stress in the i direction. o12 is dependent 

upon E1 and v
12 

through the relation 

( 4. 2) 

4.4 Self-Consistent Scheme 

The approach used in the self-consistent method to estimate the effec­

tive elastic moduli of a transversely isotropic cracked solid, follows that 

used by Budiansky and O'Connell [14,67] to determine the effective moduli of 

an isotropic cracked body. The change in strain energy due to each crack is 

computed based on the elastic moduli as modified by the full crack 

distribution. The strain energy change is summed over all cracks and the 

result is set equal to the energy change of the solid produced by the 

modification of the moduli. 

If ~ is the strain energy of the uncracked solid under a prescribed 

loading and ~ is the corresponding quantity for the cracked body, 
c 

~ c 
(4.3) 

in which fi~ is the strain energy change due to the presence of cracks. The 

effective elastic constants are determined by using various load cases to 

obtain estimates for fi~. For each load case, the self-consistent approxima­

tion is achieved by assuming that each crack contributes to fi~ as if it were 

an isolated crack in an infinite matrix having the as yet unknown elastic 

moduli of the cracked solid. 

In order to determine the five independent elastic constants of a 

transversely isotropic solid in which cracks are distributed at all orienta­

tions (0° :> 1Ji;;: 90°), five load cases are needed. For example, the 

stiffness modulus in the plane of isotropy, E
1

, is determined by applying a 

normal stress in the global 1-direction. The load cases are shown in Fig. 

4.2. s is an applied normal stress and v is an applied shear stress. 
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By writing the strain energy for each load case, five different equa­

tions are generated using Eq. (4.3). The elastic moduli of the uncracked 

material are E, G and v; V is the material volume. For each load case, the 

self-consistent equation and the resolved stresses, cr and t, which are 

normal and tangential to the plane of the crack, are obtained. In the 

equations for the resolved stresses, t 1 and t 2 are perpendicular components 

of t. t 
1 

acts along a line defined by the intersection of the crack plane 

and a plane defined by the crack normal and the longitudinal axis. t 2 acts 

within the crack plane and is perpendicular to t
1

• 

Load case 1: E1 

Load 

Load 

Load 

cr = s cos 2<J>sin 21J! 

Case 

s 2
V 

2E
3 

cr = 

t = 

case 

s 2v 
E, 

cr = 

t = 

case 

s 2v 
2E

3 

s cos2q,sin1J!cos1J! 

s sinq,cosq, 

2: E3 

s 2v 
M2 -- + 2E 

S cos21J! 

s sin1J!cos1J! 

3: v12 

( 1 - v1 2) 
s 2v 
E 

2 s sin 1/J 

s sin1J!cos1J! 

4: v31 

( 1 - 2v31 
E3 

+ -) 
E1 

(4.4) 

(4.5) 

( 4. 6) 

(4.7) 

( 1 - v) + L\<!i 
3 

(4.8) 

(4.9) 

s 2
V ( 1 - v) + 1\4>4 E 

(4.10) 



2 2 2 a = s (cos ¢sin ~+cos ~) 
2 

T1 s sin ¢sin~cos~ 

,
2 

s siMcos¢ 

Load case 5: G
31 

a = 

T = 

+ M! 
5 

2 v (cos 2¢-sin 2¢)sin~cos~ 
v (cos2¢-sin2¢)(cos2~-sin2~) 
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(4.11) 

( 4. 12) 

( 4. 13) 

For each load case, the energy change due to the cracks, ~~i' depends 

on the five independent elastic moduli of the cracked solid, and it is 

obtained by determining the energy change associated with a single crack. 

The energy change is affected by the presence of fluid in the crack. Both 

dry and saturated cracks are considered. 

4. 4.1 Dry Cracks 

Budiansky and O'Connell [14] have shown that the energy change as­

sociated with a dry crack of arbitrary shape is given by 

~ = l f p(J + 
3 crack 1 

(4.14) 

in which J
1

, J
2 

and J
3 

are the energy release rates associated with the 

three modes of crack deformation. These three modes are the opening mode 

(Mode I), the forward shear mode (Mode II), and the out-of-plane shear or 

tearing mode (Mode III) [73,81 ,102]. The expressions for the energy release 

rates for crack extension in an anisotropic material are given in a sub­

sequent section. p is the perpendicular distance from the crack centroid to 

a point on the crack perimeter, and p is a distance measured along the crack 

perimeter (Fig. 4.3). The integration is carried out over the crack 

perimeter. For an elliptic crack [14,37], 

pdp abdS (4.15) 
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in which a and b are the lengths of the major and minor semi-axes, 

respectively. The angle S defines a point on the perimeter of the crack. 

For a crack aspect ratio b/a = r, the energy change associated with an 

elliptic crack is obtained from Eq. (4.14) as 

2 
4ra f~/2(J + J + J )d" 
3 ° 1 2 3 p 

(4.16) 

In the special case of an isotropic cracked solid, Budiansky and 

O'Connell [14] obtained the energy change due to an elliptic crack to be 

2 3 -2 
4~r a ( 1-v )! 2 
3E(k) E 0 

2[ - 2 - 2 l + T R(k,v)cos n+Q(k,v)sin nJ (4.17a) 

in which 

R c k. v) 
(4.17b) 

K(k) and E(k) are, respectively, the complete elliptic integrals of the 

first and second kind with argument k = (1-r2)112 . 

(4.17c) 

The expressions for the energy change due 

required in the self-consistent equations, are 

to the cracks, 6~ .• which 
1 

obtained as follows. 

are 

Define a crack energy parameter, W.(a,¢), as 
1 

(4.18) 

in which a and ¢ are, respectively, the characteristic size and the orienta-

tion of the crack, ~ is the energy 

is the applied stress acting on the 

change associated with the crack, and P. 
1 

cracked solid; for load cases 1 through 

4, Pi= s, and for load case 5, Pi= v, (see Fig. 4,2). Substituting Eq. 

(4.16) into (4.18), 
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2 
W.(a,~) = 4ra2 f~/2(J1 + J + J )dB 

l 3p. 2 3 
1 

(4.19) 

i = 1, •• ,5. 

The expressions for the energy release rates which are given in a subsequent 

section, show that J 1, J 2 and J
3 

are proportional toP~. Hence, the evalua­

tion of Eq. (4.19) does not require a knowledge of the magnitude of the 

applied stress. 

For load cases 1, 4 and 5, W. (a,~) is a function of the angle~ as 
l 

indicated by the resolved stresses [see Eq. (4.5), (4.11) and (4.13)]. 

Wi(a,~) must be averaged over all values of$ for each of these load cases. 

The change in strain energy of the cracked solid due to all cracks 

within the volume is 

(4.20) 

in which the summation is over all cracks. The final forms of the self­

consistent equations are now obtained. 

Substituting Eq. (4.20) into Eq. (4.4), the self-consistent equation 

for the first load case is 

If NV is 

value of 

the number of cracks per unit volume and <W
1
> denotes 

w1 (a,~) over all crack sizes and orientations, then 

Eq. ( 4. 21 ) becomes 

<W1> is expressed as 

or 

( 4. 21 ) 

the mean 

(4.22) 

( 4. 23) 

(4.24a) 
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(4.24b) 

0 < a < ~ 

in which fCal~l and f(~) are, respectively, the size and orientation dis­

tributions of the cracks. Substitution of Eq. (4.24b) into Eq. (4.23) gives 

- 1--- + N !1112 !~ w
1 
(a,~)fCal~lf(~)dad~ 2E

1 
- 2E V 0 0 (4.25) 

Multiplying Eq. (4.25) through by 2E
1 

and rearranging, the self-consistent 

equation for the first load case is 

(4.26) 

Similarly, the formulations for load cases two through five are 

(4.27) 

(4.28) 

(4.29) 

[ -rr/2~ J G I 1 + 2 NV G ! 0 ! 0 W5 (a,~)fCa!~)f(~)dad~ (4.30) 

Eq. (4.26)-(4.30) are nonlinear equations which can be solved for E1 , E
3

, 

v
12

, v
31

, and G
31 

using an iterative scheme. The solution procedure is 

described in section 4.6. 

4.4.2 Saturated Cracks 

The derivations for a transversely isotropic solid with saturated 

cracks follow the procedure used by Budiansky and O'Connell [14,67] for an 

isotropic solid. The self-consistent equations are the same as for a body 

containing dry cracks [Eq. (4.26)-(4.30)]. Only the crack energy parameter 

for each load case, W.(a,~), needs to be modified. 
1 
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If the cracks are filled with a fluid of bulk modulus Kf' the calcula­

tion of the change in strain energy due to the presence of the cracks must 

take into account the elastic energy of the fluid as well as the effect of 

the fluid on the elastic state of the surrounding material. As noted by 

Budiansky and O'Connell, a basic assumption in the calculations that follow 

is that the fluid in each crack is considered to be isolated. Hence, the 

effective moduli obtained here are only appropriate for stress changes that 

occur with sufficient rapidity so as to prevent communication of fluid 

pressure between cracks. 

Due to the applied load, the fluid within the cracks will acquire a 

hydrostatic stress, af. af affects the normal mode (Mode I) deformation of 

the crack. Other modes are not affected since the fluid cannot carry shear 

stress. Hence, the energy release rates for Modes II and III deformations, 

J
2 

and J
3

, are the same as in the case of dry cracks. 

Following Eq, ( 4.16), the increase in energy of the surrounding body­

load system due to the hydrostatic pressure within the cracks is 

2 
4ra !"12 J' dB 

3 ° 1 
( 4. 31) 

in which Ji is the energy release rate due to the hydrostatic stress, af. 

The expression for Jl is given in the next section, 

The energy change associated with a saturated crack is obtained by 

subtracting the increase in energy of the body-load system due to the 

presence of the fluid from the energy change for the dry-crack case. 

Subtracting Eq. (4.31) from Eq. (4.16), the energy change due to a saturated 

elliptic crack is 

2 
4ra J"/2(J 
3 ° 1 

(4.32) 

Defining the crack energy parameter, Wi(a,~), as in section 4.4.1, 

(4.33) 

i 1, •• ,5 
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In the special case of an isotropic cracked solid, the energy change 

due to a saturated elliptic crack is [5] 

41Tr
2

a3(1-\;2){ 2[ - 2 - . 2 1 
~ ~ 

3
E(k) -E--- 1 R(k,v)cos n+Q(k,v)sln n]r (4.34) 

R(k,v), Q(k,v), and E(k) are defined in Eq. (4.17b) and (4.17c). 

The evaluation of Eq. (4.33) requires that Ji be expressed as a func­

tion of Pi. This can be accomplished by expressing the hydrostatic stress, 

af, in terms of a, the normal stress acting on the crack surface due to the 

applied stress Pi. af is expressed in terms of a as follows. 

The work done by the hydrostatic stress applied slowly to the crack 

surface is 

2 
af v /2K c m (4.35) 

in which v is the volume of the c 
crack and K 

m 
is the bulk modulus of the 

cracked material. The work 

the body-load system. Thus 

done by crf is equal 

equating (4.31) and 

to the increase in energy of 

(4.35), 

(4.36) 

Since v and K are, in general, dependent upon the size and the orientation c m 
of the cracks, the ratio v /K in Eq. (4.36) can be represented as Wf(a,*). 

c m 
Eq. (4.36) is rearranged to become 

J' dB 
1 

(4.37) 

As in the case of Eq. (4.19), the evaluation of Eq. (4.37) does not require 

a knowledge of the magnitude of the hydrostatic stress, since Ji is propor-
2 tional to crf. The volume change of the crack is 

or 

(a - crf)v /K c m (4.38a) 

(4.38b) 
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The volume change of the fluid is 

The crack-volume change must be equal to the volume change of the fluid. 

Therefore, equating (4.38b) and (4.39) and rearranging, the desired 

relationship between of and o is obtained. 

(4.40) 

If the crack opening is extremely small such that Wf(a,~) >> vc/Kf' Eq. 

(4.40) yields of • o. Therefore in this case, Wf(a,~) need not be 

determined. 

As in the case of bodies containing dry cracks, the effective elastic 

moduli of bodies containing saturated cracks are calculated using Eq. 

(4.26)-(4.30). Here, the crack energy parameter, Wi(a,~), is computed using 

Eq. (4.33). 

4.5 Energy Release Rates 

In this section, expressions are given for the energy release rates J 1, 

J;, J 2 and J
3

, which are required for the calculation of the crack energy 

parameters, W.(a,~) [Eq. (4.20) and (4.34)]. 
1 

The energy release rates for crack extension in an anisotropic material 

have been derived by Sih, Paris and Irwin [81]. In the presence of all the 

three modes of crack deformation, the energy release rates, Ji, are 

KI (r<~1+ ~2l + KII 

2 c33 Im l 
~1~2 

KII 
c;1 Im [Krr(~1 + ~2) + KI~1~zl (4.41) 

2 

2 
KIII Im (d45 + ~3d55) 
2 d44d55 

in which ~ 1 , ~ 2 and 

( i , j • 11, 5) , which 

~ 3 are complex functions of c~. ( i, j = 1, 3, 6) and di' . 
lJ J 

are respectively elements of the constitutive compliance 
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and stiffness matrices in crack coordinates. Im denotes the imaginary part 

of the expression in brackets. K
1

, K
11 

and K
111 

are the stress-intensity 

factors for Modes I, II and III, respectively. Stress-intensity factors 

characterize stresses at crack tips [37,39,46,47,73,80,81]. Expressions are 

given in the next section for determining these factors for elliptic cracks 

in an anisotropic material. ~ 1 , ~ 2 and ~ 3 are determined as follows. 

For Modes I and II crack deformations, the equilibrium and com­

patibility equations of anisotropic elasticity [11,55,81] can be represented 

in terms of Airy's stress function, U, as 

a4u 
2c' --- + 

36ax3ay 
= 0 

( 4. 42) 

The solution of Eq. (4.42) for an anisotropic material containing a crack is 

obtained in terms of two analytic functions of two complex variables 

[11,81 ,102]. The complex variables are defined as 

X + (4.43) 

In Eq. (4.43), ~ 1 and ~ 2 are the roots (with positive imaginary parts) of 

the characteristic equation of (4.42). The characteristic equation of a 

differential equation is the algebraic equation obtained by replacing the 

differential operation with a variable [91]. The characteristic equatiop of 

Eq. (4.42) is 

c' ~ 4 - 2c' ~ 3 + (2c' + c' )~ 2 - 2c' ~ + c' = 0 11 16 1 3 66 36 33 
(4.44) 

The four roots of Eq. (4.44) are always complex or purely imaginary and 

occur in conjugate pairs [10,55,81]. The roots with positive imaginary 

parts, ~ 1 and ~ 2 • can be written in the form 

(4.45) 
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in which a., B. (j = 1 ,2) are real constants. 
J J 

The elastic displacements associated with the tearing (Mode III) defor-

mation of the crack are such that u v = 0, w = w(x,y) [81 ]. Sih, et al. 

[81] have shown that the displacement w satisfies the following equation. 

a2w a2w a2w 

d44 2 + 2d' --+ d' -- = 0 
3x 45 3x3y 55 a/ 

(4.46) 

The characteristic equation of (4.46) is 

d' ~ 2 + 2d' ~ + d4'4 = 0 (4.47) 55 45 

The two roots of Eq. (4.47) are complex conjugates [10,55,81 ]. The root 

with a positive imaginary part can be expressed as 

in which a
3 

and s
3 

are real constants. 

Substitution of Eq. (4.45) and (4.48) into Eq. (4.41), gives the energy 

release rates as 

(4.49) 

For a dry crack, the expressions for the energy release rates are 

substituted into Eq. (4.20) in order to calculate Wi(a,w), the crack energy 

parameter for each load case. For a saturated crack, the hydrostatic stress 

affects only the normal mode deformation of the crack. Therefore, the 

energy release rate due to the hydrostatic stress, J;, is a function only of 
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the stress-intensity factor corresponding to Mode I deformation, KI. Hence, 

from the expression given in Eq. (4.49) for J 1, 

J' 
1 

(4.50) 

In the case of saturated cracks, therefore, Eq. (4.49) and (4.50) are sub­

stituted into Eq. (4.33) in order to calculate the crack energy parameter.· 

ci.j (i, j = 1,3,6) and di.j (i, j = 4,5) which are required in Eq. 

(4.44) and (4.47) in order to determine ~ 1 , ~ 2 and ~ 3 (hence a1, a
2 

and a
3

), 

are obtained as follows. If [c•] is the compliance matrix in crack coor­

dinates, the two-dimensional strain-stress relations for plane deformations 

(Modes I and II) of the crack are 

= 
[

c; 1 

(sym) 

( 4. 51) 

In global coordinates, the two-dimensional compliance matrix for the 

transversely isotropic material is 

1 - "31 0 c11 c1 3 c16 E1 E3 
[ c l 1 

0 c33 c36 E3 
1 ( sym) c66 (sym) 0

31 

(4.52) 

The relationship between [ c' l and [c] is 

[ C' ]=[T ][c] 
£ 

[ T JT 
£ 

(4.53) 

in which [T ] is the transformation matrix for strains and [T ]T is its 
£ £ 

transpose. 

T ] 
£ [ 

cos 2w 
sin2w 

-2cosljlsinlj! 

sin2w 
cos2w 
2cosljlsinlj! 

(4.54) 
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Eq. (4.52) and (4.54) are substituted into Eq. (4.53) to obtain the elements 

of [c•]. 

c; 1 
1 4 1 

= - cos lji + (-
E1 G31 

2"31 2 2 
- -E-)sin ljicos lji + 

3 

c' = 1 3 

2 sinljicoslji 

' 1 . 4 c
33 

= E
1 
s1n lji 

1 4 
+ 'E cos lJi 

3 

2 sinljicoslji 

1 2 - - cos lji + 
E1 

1 2 - - sin </1 
E1 

c.S. + £ 4v31 1 )sin2ljicos 2
</l + 1 

c66 2 + --
- 'G31 'G31 E1 E3 E3 

If [D'] is the stiffness matrix in crack 

relations for Mode III crack deformation are 

Cl 

(4.55) 

4 4 (sin </J+cos </1) 

coordinates, the stress-strain 

(4.56) 

In global coordinates, the corresponding stiffness matrix is 
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[ D ] (4.57) 

The relationship between [o•] and [o] is 

( D' ) =( T ] ( D ] ( T ]T a a 
(4.58) 

in which (Ta] is the transformation matrix for stresses and (Ta]T is its 

transpose. 

( T ] a [

cos¢ 

-sin¢ 

sin¢] 

cos¢ 

(4.59) 

Eq. (4.57) and (4.59) are substituted into Eq. (4.58) to obtain the elements 

of [o• ]. 

(4.60) 

4.5.1 Stress-Intensity Factors 

The stress-intensity factors required in the energy release rate ex­

pressions are given in this section. 

Hoenig [37,39] derived the stress-intensity factors for an elliptic 

crack in an anisotropic body. His results are in conflict with earlier 

expressions developed by Kassir and Sih [47] for the stress-intensity fac­

tors for an elliptic crack in a transversely isotr9pic body. In his 

discussion, Hoenig [37] shows that the factors derived by Kassir and Sih are 

in error. 

For a point on the perimeter of the crack whose location is defined by 

the angleS (Fig. 4.3), the stress-intensity factors are given by [37] 
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summation 
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(4.61) 

Qij' Rjk and Ck~ are tensors of second order, following standard 

notation (i,j,k,~ 1,2,3). a is the characteristic crack size. 

K
1 

is obtained by setting i 2, K
11 

is obtained by setting i = 1, and KIII' 
~ 

by setting i = 3. cr~ represents the resolved stress acting either normal or 

tangential to the crack plane (see Fig. 4.2 and 4.4). ~ = 1 for a resolved 

stress acting parallel to the major axis of the crack, ~ = 2 for a resolved 

stress acting parallel to the minor axis, and ~ = 3 for a resolved stress 

acting normal to the crack plane. K
1 

corresponds to a stress acting normal 
~ 

to the crack plane. Therefore, cr
3 

= cr (see Fig. 4.2 and 4.4) for the com-

putation of K
1

. K
11 

corresponds to a shear stress acting parallel to the 

major axis of the crack, while K
111 

corresponds to a shear stress acting 

parallel to the minor axis. Hence, the component of the resolved stress in 

the direction of the major axis is used for computing K
11

, while the com­

ponent in the direction of the minor axis is used for computing K
111

. For 
~ ~ 

example, in Fig. 4.4, cr 1 = t cosn for the computation of K
11

, and cr 2 = t 

sinn for the computation of K
111

• 

Expansion of Eq. (4,61) in accordance with the range and summation 

conventions of tensor notation [93], yields the complete expressions for K
1

, 

KII and KIII. 

K = 
I 

c .. is symmetric and represents a set of influence coefficients which 
lJ 

connect the crack displacement magnitudes with the resolved stresses. Cij 

is expressed as [37] 

(4.63) 
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in which r is the aspect ratio of the crack. Expansion of Eq. (4.63) yields 

Qij is a symmetric set of six real constants which are functions of the 

elastic moduli [37]. 

in which sjk' ujk' 
nary components of 

and tjk' Vjk are, respectively, the real and the 

two matrices, o.k and N.k, which are expressed as 
• J J 

pjk = sjk + i tjk 

Njk ujk + iV jk 

Eq. (4.65) is expanded to yield 

( 4. 65) 

imagi-

(4.66) 
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-1 
Q1 2 t11 u 1 2 + t12u22 + t13u32 + s

11
v

12 
+ s12v22 + 313v32 

-1 
Q1 3 t

11
u

13 
+ t12u23 + t13u33 + 311 v 13 + s1 2v 23 + s1 3 v 33 

-1 
Q22 t21u12 + t22u22 + t23u32 + s21 v12 + s22v 22 + s23v 32 (4.67) 

-1 
t21u13 + t22u23 + t23u33 + s21v13 + s22v23 + s23v33 Q23 = 

-1 
Q33 = t31u13 + t32u23 + t33u33 + s31v13 + s32v23 + s33v33 

The matrix pjk' which is expressed in Eq. (4. 66), is defined in 

following manner [39]. 

the 

p11 
1 2 + c1 - c; 6ll1 c 11 ll 1 13 

p13 
1 2 + c1 - cj6ll2 0 11ll2 1 3 

p22 c1 -
45 c5s1ll3 

p31 c; 3ll1 + 0 3lll1 - c1 
36 

p33 c; 3ll2 + c3lll2 - c1 
36 

p12 = p21 = p = 
23 

The elastic constants, 

the complex roots of 

p32 = 0 

cij' areexpressedinEq. (4.55). ll 1 , v
2 

Eq. (4.44) and (4.47), were discussed in 

(4.68) 

and v
3

, 

the last 

section. Expressing v
1

, ll
2 

and ll
3 

as quantities with real and imaginary 

parts [see Eq. (4.45) and (4.48)], Eq. (4.68) can be rewritten in the form 

of Eq. (4.66) to yield 

s11 
1 ( 2 2) 

c11 "1-a1 + c1 
13 - c; 6"1 

t11 = a1C2cj 1a1 
- c1 ) 

16 

s1 3 = c; 1 ca;-a~l + 0 i3 - c;6"2 
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(4.69) 

0 33( 2 
"'1 

c; 3"'1 + ) - c' 
+ 82 36 

"1 1 

81(c;3-
cb ) 

2 + 82 
"'1 1 

0 33( 2 
"2 

0 13"2 + 2) - c' 36 
"'2 + 82 

82(cb 
c:b 

2 2) 
Cl2 + 82 

0 

-1 
The matrix Njk is defined as [39] 

-1 !12 
N11 !12 - !11 

-1 
N13 !12 - !11 

-1 
N22 = -1 

-1 !11 
N31 = -

!12 - !11 
(4.70) 

-1 
N33 = -

!12 - !11 

• 
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0 

Expressing p1 and p 2 as in Eq. (4.45), Eq. (4.70) can be rewritten in the 

form of Eq. (4.66) to yield 

u,1 

v 11 
a

2
Ca

2
-a

1
)- a

2
Ca

2
-s

1
l 

( a2 -a, ) 2 + ( B 2 -a 1 ) 2 

- B 
2 

( 4. 71 ) 
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Qij is obtained by subs~ituting the expressions in Eq. (4.69) and 

(4. 71) into Eq. (4.67) and inverting the resulting matrix. 

Rij is defined as [37] 

sinB 
. 2 2 2 -1/4 (s1n 8 + r cos B) 0 

r cos.B 

(4.72) 

With Qij, cij 
be determined using 

and R .. defined 
lJ 

above, the stress-intensity factors can 

Eq. (4.62) 

4.6 Solution of the Self-Consistent Equations 

4.6.1 Transversely Isotropic Solid 

For a transversely isotropic solid containing either dry or saturated 

cracks which are distributed at all orientations (0' ~ w ~ 90°), Eq. (4.26)­

(4.30) are the self-consistent equations from which the five independent 

elastic moduli can be determined. The crack parameters which are required 

in order to determine the moduli are the crack size and orientation dis­

tributions, f(alwl and f(w), respectively, the number of cracks per unit 

volume, NV, the aspect ratio of the cracks, r, and the range of the angle n 

which defines the characteristic directions of the cracks. These parameters 

are three-dimensional in nature and are therefore not amenable to direct 

measurements ·for opaque bodies. Procedures are established in Appendix D 

for the estimation of the parameters from crack distributions on plane 

sections. 

The orientation distribution function used in this study is that of the 

Marriott distribution [98]. This distribution represents a mildly 

anisotropic system of cracks. 

f( wl 
1 

1 _ K/
3

(1 + K cos 2wlsin w (4.73) 

in which K is a measure of the degree of anisotropy. Defining "high angles" 

as angles, w, close to 90' and "low angles" as w close to 0°, a negative K 
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indicates a system in which more cracks are oriented at high angles than at 

low angles, while a positive K indicates a system in which fewer cracks are 

oriented at high angles than at low angles. Further details of this dis­

tribution are presented in Appendix D. 

A more general orientation distribution function, the Fisher distribu­

tion, allows for all degrees of anisotropy [98]. This distribution is 

expressed as 

f( \jl) (4.74) 

As K ~ -~, the cracks are distributed such that their normals lie in planes 

which are perpendicular to the longitudinal axis of the solid; i.e. the 

crack orientation corresponds to \jl = 90°. On the other hand, as K ~ ~. the 

cracks are distributed such that their normals are parallel to the lon­

gitudinal axis of the solid; i.e. the crack orientation corresponds to \jl = 

0°, Hoenig [38] describes the first distribution (K ~ -~) as cylindrical 

transverse isotropy (CTI), while he describes the second (K ~~)as planar 

transverse isotropy (PTI). 

The forms of the integrands in Eq. (4.26)-(4.30) do not allow direct 

integration. A numerical integration scheme is therefore required for their 

eval ua ti on. Ga.ussian quadrature [72] is used for the examples presented in 

a subsequent section. 

Since Eq. (4.26)-(4.30) are nonlinear in the unknown moduli, an itera­

tive solution scheme is required. Picard iteration with successive 

displacements [72] is used; during each iteration, the newly computed value 

of each of the moduli is immediately substituted into the remaining equa­

tions for the computation of the other moduli, In the current study, 

convergence is achieved when all five computed moduli satisfy the criterion 

that the values computed during the current iteration lie within 0.1% of the 

values obtained during the previous iteration. 
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4.6.2 Special Cases 

4.6.2.1 Cylindrical Transverse Isotropy 

The self-consistent formulations can be simplified for the special case 

of the transversely isotropic solid in which the distribution of cracks is 

that of cylindrical transverse isotropy (K ~ ro), Hoenig [38] obtained 

results for this case. This type of crack distribution (~ = 90° for all 

cracks) affects three of the independent elastic moduli of the solid, E1 , 

v12 and G
31

, while E
3

= E and v
31

= v. The corresponding self-consistent 

equations are obtained from Eq. (4.26), (4.28) and (4.30) to be 

E
1 

= E I (1 + 2 NV E !: W1(a)f(a)da] 

1 - E [( 1-v) + NV !: w
3

(a)f(a)da] 
1 E 

(4.75) 

(4.76) 

in which f(a) is the size distribution of the cracks. As in the case of 

five independent moduli, the crack energy parameters, w
1

Ca) (i = 1,3,5), are 

obtained using Eq. (4.19) for dry cracks and Eq. (4.33) for saturated 

cracks. 

4.6.2.2 Isotropic Solid 

The self-consistent formulations obtained in this study can also be 

simplified for the special case of the isotropic cracked solid. The moduli 

for such a body have been obtained by Budiansky and O'Connell [14,67]. An 

isotropic material is described by two independent elastic constants. Thus, 

two self-consistent equations need to be solved to obtain the elastic 

moduli. If E, G and v are the effective moduli of the isotropic cracked 

solid, G may be taken as the dependent modulus. The moduli are related by 

the standard elasticity relation 

G = (4.78) 
2c1 + v) 

Substituting E in place of E
3 

in Eq. (4.27) and v in place of v
31 

in Eq. 

(4.29), the self-consistent equations reduce to 
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E E I ( 1 + 2 N v E J~/2!: w2(a,w)f(a)f(W)dadw] (4.79) 

1 [ ( 1-v) _ 1!/2 00 J (4.80) \) = 
2 

- E + NV f 0 fo w4(a,¢)f(a)f(W)dad¢ 
E 

2E 

Here, the expressions for computing the energy change associated with a 

single crack,~. are given by Eq. (4.17a) for dry cracks and Eq. (4.34) for 

saturated cracks. The crack energy parameter, Wi(a,¢) (i = 2,4), is defined 

by Eq. ( 4. 1 8) • 

The orientation distribution of an isotropic system is expressed as 

[98] 

f(¢) sin ¢ ( 4. 81) 

This distribution is used in Eq. (4.79) and (4.80). Eq. (4.81) can be 

obtained from the Marriott and Fisher distributions by setting K = 0. 

4.6.3 Solution Procedure 

The general method for solving the self-consistent equations numeri­

cally, is outlined as follows. 

1. Assume values for the independent elastic moduli which are affected by 

the presence of cracks. 

2. Use these values to determine the crack energy parameter, W. (a,¢), 
1 

associated with each crack. For each load case, this computation may 

have to be carried out many times corresponding to cracks of different 

orientations. 

3. Using an iterative scheme (e.g. Picard iteration), the self-consistent 

equations are used to refine the initial guesses for the effective 

elastic moduli. 

4. Test for convergence of each modulus based upon an appropriate 

tolerance. 

5. Return to Step 1 if any of the convergence tests fail. 

4.7 Results 

4.7.1 Isotropic Solid 

Budiansky and O'Connell [14,67] obtained relationships between the 

effective moduli of a cracked solid and a parameter representing the crack 



87 

density. This crack density parameter is Nv<a3>, in which NV is the number 

of cracks per unit volume, and <a3> is the mean cubed value of the charac­

teristic crack size. The variation of the effective moduli with Nv<a3> 

implies that if small cracks join into a smaller number of larger cracks, a 

substantial increase will occur in N <a3> resulting in a corresponding 

reduction in the effective moduli. Nv<a~> is proportional to the volume of 

cracks per unit volume of the material. 

The relationships between effective moduli and Nv<a3> for an isotropic 

cracked solid containing either dry or saturated circular cracks, obtained 

from the current procedures, are compared to Budiansky and O'Connell's 

results in Fig. 4.5 and 4.6. The results match in each case. In the case 

of dry cracks, the moduli decrease continuously with the increasing crack 

density parameter. The reductions in E indicate continuous loss of 

coherence of the material as caused by the cracks, For saturated cracks, E 

decreases continuously with increasing crack density parameter, while v 

increases to a limiting value of 0.5. 

4.7.2 Transversely Isotropic Solid 

4.7.2.1 Cylindrical Transverse Isotropy 

The results for a transversely isotropic cracked solid, in which the 

distribution of circular cracks is that of cylindrical transverse isotropy, 

are shown in Fig. 4.7-4.9 for dry and saturated cracks. These results match 

those obtained by Hoenig [38] for this type of crack distribution, as shown 

in the figures. In the case of dry cracks, all of the moduli decrease with 

the increasing crack density parameter, Nv<a3>. v12 reduces to zero at a 

value of Nv<a3> of about 0.65, but E1 and o
31 

do not vanish, even at a value 
3 of Nv<a >of 1.0. 

For saturated cracks, Fig. 4.7 and 4.9 show that the effective moduli, 

E1 and o
31

, decrease with the increasing crack density parameter, as in the 

case of dry cracks. 
3 Nv<a >. As shown in 

Nv<a3> of about 0.4, 

On the other hand, Poisson's ratio, v12, increases with 

Fig. 4.8, the value of v12 exceeds 0.5 at a value of 

attaining a value of 0.813 at Nv<a3> of 1.0. 

A comparison of the results for dry and saturated cracks indicates that 

dry cracks cause greater reductions in the moduli than saturated cracks. In 

a saturated crack, the effect of the fluid is to prevent relative normal 
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displacement of the crack faces. As a result, a saturated cracked solid is 

stiffer than a dry solid with the same crack distribution. 

As pointed out in Section 4. 6. 2.1, E
3 

and v
31 

are unaffected by a 

cylindrically transverse isotropic distribution of cracks (w ~ 90° 

for all cracks). When materials like cement paste and mortar are loaded in 

uniaxial compression, E
3 

and v
31 

change with increasing applied load, while 

cracks form at all orientations (Chapter 3). For these materials, it ap­

pears that cracks which form at orientations other than the direction of 

applied compression play an important role in the material behavior. 

4.7.2.2 Marriott Distribution with K = -0.3 

The crack orientation and size distributions used for the example 

described in this section are typical of the spatial distributions of cracks 

in cement paste and mortar loaded in uniaxial compression (Chapter 3). Fig. 

4.10-4,14 show the results for a transversely isotropic cracked solid in 

which circular cracks are distributed according to a Marriott distribution 

[Eq. (4.73)] with K = -0.3. The negative value of K implies that the orien­

tation distribution is skewed towards the longitudinal direction. The crack 

size distribution at each orientation is assumed to have the form of a gamma 

distribution. This distribution is represented as 

- -''-- a-1 -ala a e 
ear( a) 

(4.82) 

with a = a$. a and S are functions of the mean and the variance of the 

distribution, <aw> and var(aw). 

a = (4.83) 

r(a) is the gamma function and is defined as 

r(a) (4.84) 

Gaussian quadrature with four integrations points over the range of y from o 
to 50 is sufficient for the integration in Eq. (4.84). For this example, 

the mean and the variance of the gamma distribution are, respectively, 
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-5 -3 ~ -6 2 1 .Ox10 w + 5.0x10 in., var(aW) = 1 .Ox10 w + 1 ,Ox10 in •. 

Fig. 4.10 and 4.14 show that the effective moduli, E1 and G
31

, reduce 

to zero at a value of Nv<a3> of about 0.44 for dry cracks. For saturated 

cracks, E
1 

reduces to zero at a value of Nv<a3> of about 0.46. For both dry 

and saturated cracks, E
3 

decreases continuously with increasing Nv<a3>, but 

does not reduce to zero (Fig. 4.11). At the values of Nv<a3> at which E1 
reduces to zero, E

3 
attains a value of 0.475E in the case of dry cracks and 

a value of 0.675E in the case of saturated cracks. 

The Poisson's ratios, v12 and v
31 

(Fig. 4,12 and 4.13), increase with 

Nv<a3> for both dry and saturated cracks. For dry cracks, v12 and v31 
increase up to 0.833 and 0.368, respectively, while for saturated cracks, 

v12 and v
31 

increase up to 0.913 and 0.541, respectively. A value of 

Poisson's ratio above 0.5 for applied compressive loads indicates a volume 

expansion of the solid due to the internal cracking. Under uniaxial com­

pressive loading, volume increase has been observed in mortar and concrete, 

and a reduction in the rate of volume decrease has been observed in cement 

paste (Chapter 3 and [58,59,76,87,88]). 

A comparison of the results in Fig. 4.7-4.9 with those in Fig. 4.10-

4.14 indicates that a multi-orientation crack distribution (in this case a 

Marriott distribution with K = -0.3), results in greater changes in effec­

tive moduli, E1 and G
31

, with increasing crack density than obtained with 

cracks distributed with a single orientation. In addition, there appears to 

be less relative difference between dry and saturated cracks for the multi­

orientation distribution than for the single orientation distribution. 

4.8 Sensitivity of the Moduli to Variations in Crack Parameters 

This section illustrates the effects of crack parameters on the com­

puted effective moduli of a transversely isotropic solid. Variations in the 

mean and variance of crack size distributions, <aw> and var(a$), the number 

of cracks per unit volume, NV, the aspect ratio of the cracks, r, and the 

range of orientation n, are considered. The value of each parameter is 

varied independently for a solid containing dry cracks which are distributed 

according to a Marriott distribution with K = -0.3. The crack size dis­

tribution has the form of a gamma distribution, and its mean and variance 

are the same as those used for the example in Section 4, 7. 2. 2. Both the 



90 

Marriott and the gamma distributions are typical of spatial crack distribu­

tions found in cement paste and mortar. 

The data used in the analysis, and the calculated values of E
3

/E are 

given in Table 4.1. The values of E
3

/E are determined for 5%, 10%, 20% and 

30% variations in <a.>, var(a.), NV and r, and for ranges of n of 20", 90" 

and 180° (assuming a uniform distribution within the range). 

The results indicate that the modulus E
3 

is particularly sensitive to 

variations in mean crack size, <a.>. For a 30% increase in <a.>, E
3

/E 

decreases by 35.8%. A 30% increase in NV results in only a 10.4% decrease 

in E/E· 

reflected 

The greater sensi ti vi ty of the effective moduli to crack 

in the variation of the effective moduli with Nv<a3>. 

size is 

E
3

/E decreases by 13.8% for a 30% increase in the variance, var(a.). 

The effect of var(a•) on the moduli is a reflection of the sensitivity of 

the value of <a3> to var(a.). A 30% decrease in aspect ratio, r, results in 

a 10.5% increase in E/E· The increase in E/E with decreasing aspect 

ratio, r, indicates that the smaller the surface area of the cracks, the 

smaller the change in the moduli of the solid. An increase in the range of 

n from o• to 180" results in a 7.1% decrease in E/E· This result is an 

indication of the sensitivity of the effective moduli to the value of n. 

As pointed out above, the effects of <a•> and var(a•) on the moduli are 

accounted for in the value of <a3>. Therefore, for a transversely isotropic 

crack distribution, the four crack parameters, K, Nv<a3>, r and the range of 

n, determine the effective moduli. This implies that a single relationship 

is obtained for the variation of the effective moduli with Nv<a3>, if the 

values of K, r and n are constant. If the value of K, r or n is changed, a 

different relationship results. In the following section, the effects of 

variations in K are demonstrated. 

4.8.1 Degree of Anisotropy, K 

In this section, the sensitivity of the effective moduli to variations 

in the degree of anisotropy, K, is investigated. Transversely isotropic 

solids containing dry circular cracks distributed according to the Marriott 

distribution are considered. Values of K of -1.0, -0.3, 0, +0.3 and +1.0 

are used. The crack size distribution is uniform over all crack sizes 

within a range of 0 to 0.01 in. and is independent of crack orientation. 
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A spatial distribution with K ~ -1.0 is skewed more towards the lon­

gitudinal direction than a distribution with K~ -0.3, and a distribution 

with K ~ +1 .0 is skewed more towards the plane of isotropy than one with K = 

+0.3. 

The relationships between the effective moduli and the crack density 

parameter, Nv<a3>, are shown in Fig. 4.15-4.19. As expected, Fig. 4.15 

shows that cracks cause bigger changes in the stiffness modulus in the plane 

of isotropy, E1, when the crack orientation distribution is skewed towards 

the longitudinal direction (K ~ -0.3, -1.0) than when the orientation is 

skewed towards the plane of isotropy (K ~ +0.3, +1.0). On the other hand, 

Fig. 4.16 shows that cracks cause bigger changes in the stiffness modulus in 

the longitudinal direction, E
3

, for K values of +0.3 and +1 .o than for K 

values of -0.3 and -1.0. ForK values of -1.0 and -0.3, E1 reduces to zero 

at values of Nv<a3> of about 0.32 and 0.44, respectively, while for K values 

of +1 .0 and +0.3, E
3 

reduces to zero at values of Nv<a3> of about 0.22 and 

0.47, respectively. 

For solids containing cracks distributed with negative values of K, the 

fact that E1 vanishes while E
3 

does not implies that no additional load can 

be carried in the lateral direction, even though the longitudinal direction 

can support additional load. This suggests that materials, such as cement 

paste, mortar and concrete, in which crack distributions are skewed towards 

the longitudinal direction due to uniaxial compression (negative K), are 

greatly weakened for tensile loading in the lateral direction. 

Fig. 4.17 and 4.18 show that Poisson's ratios, v12 and v
31

, increase 

with increasing Nv<a3> for K values of -1.0 and -0.3, and decrease forK 

values of 0, +0.3 and +1,0. The increase in Poisson's ratio for the nega­

tive values of K implies that under uniaxial compressive loading, a volume 

increase of the cracked solid could occur for a crack distribution that is 

skewed towards the direction of applied compression. Such behavior has been 

observed for cement paste and mortar (Chapter 3). 

4.9 Summary and Conclusions 

4 • 9 • 1 Summary 

The self-consistent energy method is used to develop a model for deter­

mining the effective moduli of a transversely isotropic cracked solid. Both 
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dry and saturated cracks are considered. To apply the technique, the three­

dimensional crack distributions must be known. 

The moduli for an isotropic cracked solid match the results obtained by 

Budiansky and O'Connell [14,67]. The results for a transversely isotropic 

solid, in which the cracks are distributed with a single orientation, match 

those obtained by Hoenig [38]. Results are also presented for a series of 

transversely isotropic solids with mild degrees of anisotropy. The sen­

sitivity of the model to variations in crack parameters is discussed. 

4.9.2 Conclusions 

1. The effective moduli of a cracked solid containing elliptic cracks 

depend on the degree of anisotropy, K, the crack density parameter, 

Nv<a3>, the aspect ratio, r, and the range of orientation, n. The 

degree of anisotropy and the crack density parameter are dominant. 

2. Dry cracks cause larger reductions in the moduli than saturated cracks. 

3. For the same value of Nv<a3>, a multi-orientation crack distribution 

affects the moduli of a solid more than a single-orientation 

distribution. 

4. In materials such as cement paste, mortar and concrete, cracks which 

are oriented in directions other than the direction of applied compres­

sion influence material behavior. 

5. Materials, such as cement paste, mortar and concrete, in which crack 

distributions are skewed towards the direction of uniaxial compression 

should exhibit a reduced strength under lateral tensile loading. 
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CHAPTER 5 

APPLICATION OF THE SELF-CONSISTENT MODEL 

5.1 General 

In Chapter 3, three-dimensional distributions of submicroscopic cracks 

in cement paste and mortar were estimated from observed surface crack 

distributions. In this Chapter, these three-dimensional crack distributions 

are used in conjunction with the self-consistent model developed in Chapter 

4 to estimate the effect of the cracks on the elastic moduli of these 

materials and to estimate the portion of the applied strain that can be 

attributed to the cracking. Material response under monotonic, sustained 

and cyclic loading is investigated. 

In applying the self-consistent model, both dry and saturated cracks 

are considered. However, under the slow rates of loading used in this 

study, there is likely to be sufficient time for water to diffuse out of 

saturated cracks, Hence, a dry crack assumption seems to be more 

appropriate. 

For the initial application of the self-consistent model, it is assumed 

that the material between cracks (i.e. the matrix material) is homogeneous, 

linearly elastic, isotropic, and unaffected by the load history. With these 

assumptions, cracking is the only nonlinear effect. 

If we further assume that the self-consistent model accurately accounts 

for the cracks and that the submicroscopic cracking recorded in this study 

is, in fact, the only nonlinear effect, then the experimental stress-strain 

curves should be duplicated exactly by the curves obtained using the self­

consistent model. If the curves cannot be duplicated, then one or more of 

the assumptions is incorrect. 

As we will see, the curves cannot be duplicated based on these assump­

tions, and only a portion of the nonlinear behavior can be explained by 

submicroscopic cracking. 

As a second step, the assumptions are altered to allow the matrix 

material to soften due to nonlinear effects that are not accounted for by 

the submicrocracks. These other effects could include submicroscopic cracks 

that are not recorded, time dependent behavior, large microcracks, and 

macrocracks. This altered assumption is then used to obtain a closer es­

timate of the portion of inelastic strain that can be attributed to the 
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submicroscopic cracks. Before this step is taken, however, the results 

obtained with the initial assumptions are carefully studied. 

The initial assumptions also suggest that the self-consistent model 

will be less valid for mortar than for cement paste, since the presence of 

sand grains makes mortar highly heterogeneous. 

The anisotropic crack distributions which are induced in cement paste 

and mortar by uniaxial compressive loading, render the materials 

transversely isotropic. As discussed in Chapter 4, a transversely isotropic 

material has five independent elastic moduli: the stiffness modulus in the 

plane of isotropy, E1, the stiffness modulus in the longitudinal direction 

which is also the direction of the applied stress, E
3

, the Poisson's ratio 

in the plane of isotropy, v12 , the Poisson's ratio in a plane perpendicular 

to the plane of isotropy, v
31

, and the shear modulus in a longitudinal 

plane, G
31

• For a given three-dimensional distribution of cracks, values 

for these moduli are obtained using the self-consistent model. 

The parameters which describe the three-dimensional crack distribution 

are the crack size distribution at each orientation¢, fCai¢), the mean and 

variance of fCai¢), <a¢> and var(a¢)' respectively, the crack orientation 

distribution, f(¢), the crack aspect ratio, r, the rotation of the crack 

about its normal as defined by the angle n, and the number of cracks per 

unit volume, NV. The details of these three-dimensional distributions and 

how they are estimated from surface crack distributions are presented in 

Chapter 3 and Appendix D. As described in Chapter 3, f(ai¢) for cement 

paste and mortar can be approximated by a gamma distribution, and f(¢) by a 

Marriott distribution. The crack parameters for cement paste and mortar are 

summarized in Tables 3.17-3.23 and 3.26-3.32. 

For the uniaxially loaded paste and mortar specimens, the effective 

moduli of interest are E
3 

and v31 • Values for these moduli are obtained 

corresponding to both the smaller and larger estimates of the mean charac­

teristic crack size, <a¢>. As explained in Chapter 3 (Section 3.4.3), the 

smaller estimate of <a¢> is obtained when segments of a multi-directional 

crack trace are recorded ~s separate crack traces, while the larger estimate 

is obtained when a m~lti-directional crack trace is recorded as a single 

uni-directional crack. For the surface to three-dimensional crack distribu­

tion conversion procedure used in this study (Chapter 3 and Appendix D), the 

larger estimate of <a¢> is more correct. Hence, discussions in subsequent 
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sections are based primarily on results which correspond to the larger 

estimate of <ao/>. 

5.2 Application of the Model 

The work described in this section and Section 5.3 is based on the 

assumption that the material between the cracks remains unchanged by the 

applied stresses. 

In order to calcul8te the effective moduli using the self-consistent 

model, the stiffness modulus, E, and the Poisson's ratio, v, of the un­

damaged material need to be known. 

The moduli of the undamaged material are estimated based on two 

separate assumptions. These assumptions are made with regards to whether or 

not cracks exist in the cement paste and mortar specimens prior to loading. 

The two assumptions involve two different approaches to calculating the 

effective moduli. These approaches are described in Sections 5.2.1 and 

5. 2. 2. It will be demonstrated that the effective moduli calculated using 

the two approaches are virtually identical. 

5.2.1 First Approach 

In the first approach, we assume that the cracks observed in a non­

loaded specimen exist prior to loading. This assumption is not unreasonable 

since self-desiccation occurs in hydrated cement paste and may lead to 

internal cracking [18,84]. Self-desiccation is the decrease in the water 

content of the paste due to the ongoing hydration process. This assumption 

implies that the estimated three-dimensional crack distribution within a 

loaded specimen is due bot.h to cracks which exist in the specimen prior to 

loading and cracks which are induced by the loading. The calculation of the 

effective moduli of the loaded material must account for both types of 

cracks. This is accomplished by estimating the moduli of the completely 

uncracked material, E and v, and using the full three-dimensional crack 

distribution at any stage of loading to calculate the effective moduli. 

If cracks exist in a specimen prior to loading, then the stiffness 

modulus and the Poisson's ratio prior to loading, E. and v., are the effec-
1 1 

tive moduli as influenced by the existing crack distribution. For the 

uniaxially loaded specimens, Ei and vi are taken equal to the experimental 

values of the initial modulus of elasticity and Poisson's ratio. To obtain 
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estimates of the moduli of the uncracked material, values of E and v are 

selected which, when combi.ned with the three-dimensional crack distribution 

obtained for the nonloaded specimen, produce the 

vi. With the values of E and v obtained, the full 

measured values of E. and 
l 

three-dimensional crack 

distribution obtained for specimens loaded to a given axial strain is used 

in the self-consistent model to calculate E
3 

and v
31 

. 

For each material, E. and v. are taken as the average of the 
l l 

the initial moduli given in Tables 2.2-2.7. TM values of E. are 

values of 
6 1.78x10 

6 psi, 2.54x10 psi, 
6 l 

and 3.31x10 psi for cement pastes with W/C = 0.7, 0.5, 

and 0.3, respectively, and 4.79x10 6 psi for mortar with a W/C = 0.5. vi is 

0.24 for the cement pastes, and 0.20 for mortar. 

5.2.2 Second Approach 

In this approach, the assumption is made that cracks do not exist in 

the specimens prior to loading. Therefore, the moduli of the uncracked 

material are equal to the moduli prior to loading; i.e. E Ei and v =vi. 

In Section 3.2, it was pointed out that the procedures used to prepare 

the specimens for viewing in the scanning electron microscope introduced 

additional cracks in the cement paste and mortar. If no cracks exist in the 

specimens prior to loading, the crack density measured in a nonloaded 

specimen is assumed to represent preparation cracks which are superimposed 

on any load-induced cracks and which are not accounted for by the procedure 

described in Section 3.4.3. The estimated three-dimensional crack distribu­

tion in a loaded specimen is, therefore, due both to load-induced cracks and 

specimen preparation cracks. The calculation of the effective moduli of the 

loaded material must account for only the load-induced cracks. The load­

induced cracks are obtained here by subtracting the three-dimensional crack 

distribution (size, orientation and density) obtained for the nonloaded 

specimen from the distribution obtained for the loaded specimen. The al­

tered distribution is used to calculate E
3 

and v
31 

for each applied strain. 

During the subtraction of the three-dimensional distributions, negative 

values are obtained for the resulting distribution over those crack sizes 

for which the distribution in the nonloaded specimen is larger than the 

distribution in the loaded specimen. A value of zero is used for the dis­

tribution obtained after subtraction wherever a negative value occurs. 
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5.3 Material Response Due to Submicrocracking 

In the self-consistent model, the effective stiffness modulus, E
3

, is 

the predicted secant modulus at an applied stress, a, at which the given 

three-dimensional crack distribution is obtained. The strain, eec' as­

sociated with E3 and a includes a component due to elastic deformation and a 

component due to submicrocracking. eec is calculated as 

e ec 

The portion of e due to submicroscopic cracking, e
0

, is ec 

(5.1) 

(5.2) 

in which e is the elastic strain. The total inelastic strain, e - e , is 
e e 

the difference between the applied strain, e, and the elastic strain. For 

monotonically loaded specimens with a given water-cement ratio, the average 

applied stress for all specimens loaded to a particular axial strain is used 

as the value of a in Eq. (5.1) and (5.2). 

In the following section, the results obtained for monotonic loading 

are presented and discussed. 

5.3.1 Monotonic Loading 

The calculated values of the effective moduli and the axial strains 

obtained from the self-consistent model are presented in Tables 5.1-5.8 for 

cement pastes with W/C of 0.7, 0.5 and 0.3, and for mortar with a W/C of 

0.5. These values are obtained using the assumption that cracks exist in 

the materials prior to loading (first approach). The values obtained using 

the assumption that cracks do not exist in the materials prior to loading 

(second approach) are given in Tables 5.9-5.12. Tables 5.1-5.12 include 

results for both the smaller and larger estimates of <a~>. The results 

indicate that submicroscoric cracks will cause a progressive softening of 

the materials under increasing strain, but that submicrocracks do not alone 

account for the nonlinear behavior of the materials. 
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Separate calculations based on dry and saturated cracks are discussed. 

Unless stated otherwise, the discussions are based on results which cor­

respond to the larger estimate of <a~>. 

Dry Cracks: The results for the dry crack assumption using the first 

approach (Tables 5.1-5.4) show that the calculated stiffness modulus, E
3

, 

decreases with increasing applied strain. For example, for cement paste 

with a W/C = 0.5, E
3 

decreases from a value of 2.54•10 6 psi at initial 

loading to a value of 2.156x1o 6 psi at an applied strain of 0.006. For 

value of 4.79x10 6 psi at ini-mortar with a W/C = 0.5, E
3 

decreases from a 

tial loading to a value of 4.06x106 psi at an applied strain of 0.004. 

To compare the effect of the cracks on E
3 

for the different materials, 

the normalized stiffness modulus, E
3
/Ei' is also calculated for each applied 

strain (Tables 5.1-5.4). The variation of E/Ei with applied strain is 

shown in Fig. 5.1 for all three cement pastes. 

Fig. 5.1 shows that the variation of E
3
/Ei with applied strain is 

virtually identical for the three cement pastes. The calculated percentage 

reduction in stiffness caused by the submicroscopic cracks appears to be 

independent of water-cement ratio. As discussed in Section 3.5.5, this 

result is expected because of the nearly identical crack distributions 

obtained in the cement pastes (Table 3.33). At the maximum applied strain 

of 0.006, the calculated reduction in stiffness of each of the cement pastes 

is 1 5%. 

Fig. 5.2 compares the variation of E
3
/Ei with applied strain for cement 

paste and mortar with a W/C = 0.5. This comparison indicates that the 

calculated percentage reduction in stiffness caused by the cracks is larger 

in mortar than in cement paste. At the maximum applied strain of 0.004 in 

mortar, the calculated reduction in stiffness of mortar is 15%, while at the 

same strain in cement paste, the reduction is 11%. This result is consis­

tent with the crack density comparisons for cement paste and mortar in Table 

3.34. The larger density of cracks in mortar causes a larger percentage 

reduction in the stiffness of mortar as compared to that of paste. 

The calculated stress-strain (cr,E ) curve due to submicrocracking is 
ec 

compared with the experimental stress-strain (cr,E) curve and the linear 

elastic stress-strain relationship based on the initial stiffness in Fig. 

5. 3-5.6. The curves illustrate that the submicroscopic cracks account for 

just a portion of the nonlinear response of the materials. The total strain 

may be considered as consisting of elastic and inelastic components. The 
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inelastic component consists of a portion due to submicrocracking, 

portion due to other caus8s, E - Ee - Ec. This latter portion may 

E , and a c 
be due to 

mechanisms other than submicrocracking, such as macrocracking and deforma­

tion or consolidation within the material between cracks. 

For mortar (Fig. 5.6), unlike the applied strain, the value of E ec 
after the peak stress is smaller than the value at the peak stress, indicat-

ing that the material is unloading with a decreasing strain. This response 

of the model is due in large part to the assumption that the material be­

tween the cracks remains unchanged by the applied strain. This point is 

discussed further in Section 5.4.1 along with the results obtained by allow­

ing the matrix material to soften. 

Calculated values of the strain due to submicrocracking, e , are c 
presented in Tables 5. 1 - 5. 8. 

inelastic strain, E /(s- e ). c e 
in both cement paste and mortar. 

sc is also presented as a percentage of 

s
0 

increases with increasing applied strain 

As illustrated by cement paste with a W/C 

= 0.5 (Table 5.2), the value of sc increases from 0.000005 at an applied 

strain of 0.0005 to 0.000469 at an applied strain of 0.006. sc/(s- se), on 

the other hand, decreases with increasing applied strain in both cement 

paste and mortar. For cement paste with a W/C = 0.5, the value of sc is 18% 

of the inelastic strain at an applied strain of 0,0005 and drops to 13% of 

the inelastic strain at a strain of 0.006. Similar values are obtained for 

paste with a W/C = 0.7. For cement paste with a W/C = 0.3, the submicro­

scopic cracks account for as high as 86% of the inelastic strain at an 

applied strain of 0.0005. This value drops to 29% at a strain of 0.006. 

The implications of these observations are discussed under the alternate 

application of the model in which the matrix material is allowed to soften 

(Section 5.4). 

The fact that the calculated strain due to submicroscopic cracking 

accounts for only a portion of the inelastic strain in cement paste and 

mortar suggests that the initial assumption of a linear, elastic matrix 

material is incorrect. Rather, the matrix material appears to become in­

elastic with increasing applied strain. The probable mechanisms and effects 

of an inelastic matrix material are addressed in a subsequent section. 

The results illustrated so far have been based on the larger estimate 

A com pari son 

cement paste 

of E
3
/E. obtained with the smaller estimate of <a > 

1 1jJ 

with E/Ei for the larger estimate (Fig. 5. 7) shows 
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that the calculated percentage reduction in stiffness caused by the sub­

microscopic cracks is lower for the smaller estimate of <a~>. As pointed 

out in Section 5.1, the estimates of the elastic moduli obtained with the 

larger estimates of <a~> are considered to be more realistic. 

parison emphasizes that multi-directional crack traces must be 

This com-

properly 

accounted for in order to correctly estimate the effect of the cracks on 

material behavior. 

Fig. 5.8-5.10 show the variations of the experimental and calculated 

Poisson's ratios, v
31

, with applied strain for cement pastes with W/C = 0.5 

and 0.3, and for mortar with a W/C = 0.5. 

Both the experimental and calculated Poisson's ratios for the cement 

pastes (Fig. 5.8 and 5.9) increase gradually with increasing compressive 

strain. For paste with a W/C = 0.5, the experimental Poisson's ratio starts 

at a value of 0.24 and rises to a value of 0.27, while for paste with a W/C 

= 0.3, the experimental Poisson's ratio starts at a value of 0.24 and rises 

to a value of 0.29. For both pastes, the calculated Poisson's ratio starts 

at a value of 0.24 and rises just slightly to a value of about 0.25. 

The experimental values differ from the calculated values most dis­

tinctly at strains above 0.004, particularly for paste with a W/C = 0.3 

(Fig. 5.9). The experimental results illustrated in Fig. 5.9 are for a 

specimen which failed at a strain of 0.006 (Specimen 17-3/P-0.3/M). Just 

prior to failure, macroscopic cracks (or macrocracks), which typically have 

trace lengths in the order of 1 in. or more [95], were visible on the sur­

face of this specimen. Macrocracks are not accounted for in this study. 

Since cracking seems to have its greatest effect on lateral strain as 

reported by Maher and Darwin [57], the larger values of Poisson's ratio 

obtained experimentally for the cement pastes are likely due to cracks 

longer than those recorded with the scanning electron microscope. 

For mortar (Fig. 5.10), the experimental Poisson's ratio increases 

rapidly with increasing compressive strain, while the calculated Poisson's 

ratio increases gradually with increasing compressive strain. The ex­

perimental Poisson's ratio starts at a value of 0.20 and rises to a value of 

0.48, while the calculated Poisson's ratio starts at a value of 0.20 and 

rises to a value of about 0.22. As in the case of the cement pastes, the 

experimental Poisson's ratio is clearly larger than the calculated Poisson's 

ratio. The experimental results illustrated in Fig. 5.10 are for a mortar 
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specimen which was loaded beyond the peak stress to a maximum strain of 

0.004 (Specimen 13-6/M-0.5/M). Macrocracks were visible on the surface of 

the specimen just beyond the peak stress, which corresponds to a strain of 

0. 003. Like the results for cement paste, the larger values of Poisson's 

ratio obtained experimentally are attributed to the cracks not accounted for 

in the current study. 

Saturated Cracks: The results obtained with the self-consistent model 

for saturated cracks arP. presented in Tables 5.5-5.8. A comparison of the 

calculated normalized stiffness moduli, E
3
/Ei, for dry and saturated cracks 

in cement pastes is shown in Fig. 5.11. This comparison shows that a 

material containing saturated cracks is stiffer than one containing dry 

cracks. In a saturated crack, the fluid prevents relative normal displace­

ment of the crack faces, resulting in a smaller effect of the cracks on the 

stiffness modulus. Fig. 5.11 also shows that for the saturated cracks, the 

calculated effect of submicroscopic cracks on the stiffness of cement paste 

is independent of water-cement ratio, as· it was for the dry cracks. 

The calculated Poisson's ratios based on saturated cracks are slightly 

larger than those based on dry cracks, since the presence of fluid within 

the cracks enables the crack faces to interact. For example, at an applied 

strain of 0.006 in cement paste with a W/C = 0.5, the values of v
31 

are 0.25 

and 0.26 based on assumptions of dry and saturated cracks, respectively, 

compared to the experimental value of 0.27. 

Fig. 5.12-5.14 show that, as for dry cracks, the calculated Poisson's 

ratios obtained with saturated cracks are smaller than the experimental 

Poisson's ratios, demonstrating that the presence of fluid within the cracks 

does not explain the incrP.ased Poisson effect obtained experimentally. 

Second Approach: The calculated effective moduli obtained with the 

assumption that cracks do not exist in the materials prior to loading are 

presented in Tables 5.9-5.12 for dry cracks. The values of the stiffness 

modulus, E
3

, calculated with the first and second approaches are compared in 

Fig. 5.15 for cement paste with a W/C = 0.5. Fig. 5.15 shows that the 

values of E
3 

are virtually the same for the two approacr,es. At the most, 

the value of E
3 

for the second approach is 0.7% larger than the correspond­

ing value for the first approach. Fig. 5.16 shows that the calculated 

Poisson's ratios, v
31

, are the same for the two approaches. 
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Based on the assumptions used in the two approaches, as described in 

Sections 5.2.1 and 5.2.2, an analysis using the second approach starts with 

a lower calculated stiffness for the matrix material, E. The fact that the 

estimates of E
3 

and v
31 

for the two approaches are virtually identical 

indicates that the smaller number of cracks used in the second approach 

compensates for the lower value of E. 

5. 3. 2 Other Inelastic Deformation 

In the earlier discussions of Fig. 5.3-5.6 in Section 5.3.1, it was 

pointed out that inelastic deformations in cement paste and mortar include 

sizeable strains that cannot be attributed to the recorded submicrocracking. 

Fig. 5.3-5.6 show that the assumption of a linear elastic matrix, as used in 

the self-consistent model, is not correct. If it were, and all sub­

microcracks were accounted for, then the calculated axial strain, Eec' would 

be equal to the applied strain, E. The following discussion pinpoints the 

probable sources of the inelastic deformation which is in excess of the 

deformation calculated for submicrocracking. 

It is possible that not all of the submicroscopic cracks on the 

specimen surfaces were seen. Since the microstructure of cement paste 

consists of different features (e.g. calcium silicate hydrate and calcium 

hydroxide), some cracks may be obscured by the boundaries between these 

features. This may be even more so in mortar, which contains many sand 

grains. The increased crack density due to these cracks would result in a 

larger portion of the inelastic strain being due to submicrocracking. 

Large microcracks and macrocracks, which '"ere visible on the surface of 

some specimens at high stress levels, were not included in this study. 

These cracks will make an impor"ant contribution at high strains. As 

demonstrated in Chapter ~. large cracks are especially important since the 

change in material properties depends on the average value of the cube of 

the characteristic crack size, <a3>. 

A study by Spooner [85] showed that some portion of the inelastic 

strain in cement paste subjected to monotonic loading is due to flow or 

creep of the material. Thus, the mechanism of creep may account for a 

portion of the inelastic deformation that is not due to submicrocracking. 

These observations should not come as a surprise. In fact, we should 

expect that the properties of the matrix material should change under load. 
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The resulting inelasticity of the matrix material and the effects of larger 

cracks, need to be accounted for in order to understand the role of sub­

microcracks in the nonlinear behavior of cement paste and mortar. These 

points are addressed in the next section. 

5.4 Material Response with Inelastic Matrix Material 

To obtain an improved estimate of the role of submicroscopic cracking 

in the stress-strain response of cement paste and mortar, the procedures 

used in the previous section are altered to allow the properties of the 

matrix material to change. For simplicity, all of the nonlinear response of 

cement paste and mortar that is not accounted for by submicrocracking is 

considered to be due to changes in the matrix. This is clearly a simplying 

assumption since it lumps large microcracks and macrocracks in with flow or 

creep. Although its propP.rties may change, the matrix material is assumed 

to remain isotropic. 

Using these assumptions, the self-consistent model is used to back­

calculate the stiffness modulus, E t' and Poisson's ratio, v t' of the ma rna 
matrix material that yield the experimentally measured strains when coupled 

with the three dimensional crack distributions. In this case, the portion 

of the stress-strain response of the material not due to the matrix is due 

to the submicroscopic cracks. 

To calculate E t 
rna 

cracks, the effective 

and v t for a given distribution of submicroscopic ma 
stiffness modulus 

equal to the measured secant modulus, 

of the cracked material, E
3

, is set 

which corresponds to the applied 

stress, a, and strain, <, at which the crack distribution is obtained; i.e. 

E
3 

= al<. The effective Poisson's ratio, v
31

, is set equal to the measured 

Poisson's ratio. Values of E t and v tare selected which, when combined 
ma rna 

with the full three-dimensional crack distribution obtained for specimens 

loaded to a given axial strain, produce the measured values of E
3 

and v
31

• 

This computation process is similar to the "first approach" procedure 

described in Section 5.2.1. If, however, the computation process utilizes a 

crack distribution equal to the difference between the three-dimensional 

crack distributions in the loaded and nonloaded specimens, a procedure 

similar to the "second approach" of Section 5. 2. 2 is obtained. The dis­

cussions that follow in Sections 5.4.1 through 5.4.3 follow the first 
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approach. The results for the second approach are presented in Section 

5. 4. 4. 

The strain, s t' associated withE t and a includes a component due 
ma ma 

to elastic deformation and a component due to inelastic deformation within 

the matrix material. 

€ mat (5.3) 

As in the case of Eq. (5.1) and (5.2), the value of a used in calculating 

s t for monotonic loading is the average applied stress for all specimens ma 
with a given water-cement ratio which have been loaded to the particular 

axial strain. For sustained or cyclic loading, a is the stress which cor­

responds to the stress-strength ratio used in the test. 

The component of the strain due to submicrocracking, sc' is the dif­

ference between the applied strain, s, and Emat' 

(5.4) 

The total inelastic strain, s - s , is the difference between the applied 
e 

strain, €, and the elastic strain, ee = a/E 1. 

In subsequent sections, the results obtained for the moduli of the 

matrix material, E t and v t' and the strain due to submicrocracking, sc, ma ma 
are presented and discussed for each loading regime. These results cor-

respond to the larger estimate of <a~>, and the cracks are assumed to be 

dry. 

5.4.1 Monotonic Loading 

The calculated values of the moduli of the matrix material and the 

strain due to submicrocracking are presented in Tables 5.13-5.16 for cement 

paste and mortar. Softening within the matrix accounts for a significant 

portion of the nonlinearity at all values of applied strain. Typical 

changes in Emat are illustrated by cement paste with a W/C = 0.5; Emat 
6 decreases from a value of 2.54x10 psi at initial loading to a value of 

1.375x106 psi at an applied strain of 0.006. 

The calculated stress-strain (a,s t) curve due to softening within the 
rna 

matrix material is compared with the experimental stress-strain (a,s) curve 
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and the linear elastic stress-strain relationship based on the initial 

stiffness in Fig. 5.17-5.<0. When compared with the stress-strain curves in 

Fig. 5.3-5.6, the curves in Fig. 5.17-5.20 show the importance of including 

the nonlinearity of the material between the submicroscopic cracks. This 

observation is similar to that of Maher and Darwin [57], who found from 

their finite element study that the nonlinear behavior of concrete requires 

an accurate representation for the nonlinear behavior of the mortar con­

stituent, in addition to nonlinearity caused by bond and mortar cracks. 

A comparison of the calculated stress-strain curves for mortar (Fig. 

5.6 and 5.20) indicates that the increase in average strain obtained ex­

perimentally on the descending branch of the stress-strain curve, is due 

largely to aspects other than submicrocracking. Macroscopic cracks which 

form in a mortar specimen under uniaxial compression are visible on the 

surface of the specimen during the descending branch of the stress-strain 

curve. If the post-peak softening of the material is due to macrocracks 

only, based on the concept of strain localization as proposed in an analyti­

cal study by Bazant [4] and an experimental study by Van Mier [95], then 

categorizing all nonlinear responses other than submicrocracking as soften­

ing of the matrix material will overestimate the strain due to 

submicrocracking (Fig. 5.?0). 

From the concept of strain localization for materials which show 

strain-softening in compression, the relatively undamaged portions of the 

material should unload with a decreasing strain, while the average strain 

continues to increase on the descending branch. Thus, the strain due to 

submicrocracking on the descending branch should at most be equal to that at 

the peak of the stress-strain curve. The unloading response of the model 

shown in Fig. 5.6 is due in large part to the assumption that the material 

between the submicroscopic cracks remains unchanged by the applied strain, 

but it may support the existence of a region of localized deformation during 

the post-peak softening of mortar. 

The strain due to submicrocracking, 8c' is indicated on Fig. 5.17-5.20. 

8c as a percentage of the inelastic strain, sc/(8- se)' is presented in 

Tables 5.13-5.16 and Fig. 5.21. Fig. 5.21 and the data in Tables 5.13-5.15 

show that for cement paste, 8 /(8 - 8 ) is the greatest at low strains, 
c e 

accounting for as high as 85% of the inelastic strain for 0.3 W/C paste at a 

strain of 0.0005. 8 /(8- 8 ) decreases with increasing applied strain, 
c e 
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dropping to values of 30%, 34%, and 45% at a strain of 0.006 for pastes with 

W/C = 0.7, 0.5 and 0.3, respectively. This indicates that while the con­

tribution of submicrocracking to the nonlinear response of cement paste is 

significant at all levels of applied strain, the relative importance of 

other mechanisms, large microcracks, macrocracks, and creep, increases with 

increasing strain until they play a dominant role. The relative importance 

of the submicrocracks increases with a decrease in water-cement ratio; the 

majority of the nonlinear strain in 0.3 W/C paste is due to submicrocracking 

at all strains except 0.006, at which strain presumably macrocracks play the 

major role. This observation is in line with the observation by Ngab, et 

al. [66] that, for specimens of the same age and at the same stress-strength 

ratio, creep is lower the higher the compressive strength (i.e., the lower 

the water-cement ratio). 

For mortar, Fig. 5.21 and the data in Table 5.16 show that 

decreases with increasing applied strain from 45% at a strain 

e !(e - £ ) 
c e 

of 0.0005 to 

17% at a strain of 0.003, the strain at the peak stress. At a strain of 

0.004, which corresponds to the descending branch of the stress-strain 

curve, the value of £ !(e - e ) increases to 22%, implyi'1g that the portion c e 
of the inelastic strain due to submicrocracking is larger on the descending 

branch of the stress-strain curve than at the peak of the stress-strain 

curve. However, as pointed out earlier, the strain due to submicrocracking 

may have been overestimated on the descending branch. The smaller values of 

e
0
/(e - ee) for mortar as compared to those for cement paste may indicate 

that large microcracks and macrocracks play a more dominant role in mortar. 

The variations of the experimental Poisson's ratio and the calculated 

Poisson's ratio of the matri-x material with applied strain are shown in Fig. 

5.22-5.24. These figures demonstrate that aspects other than submicrocrack­

ing control the Poisson effect in these materials. 

5.4.2 Sustained Loading 

The calculated values of the moduli of the matrix material and the 

strain due to submicrocra~king are presented in Table 5.17 for cement pastes 

l<ith W/C = 0.5 and 0.3. As for the monotonic tests, the stiffness modulus 

of the matrix material, E t' decreases with an increase in strain under 
rna 

sustained loading. For example, for paste with a W/C = 0.5, E t decreases 
rna 
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from a value of 2.54x106 psi at initial loading to a value of 0.975x106 psi 

at an applied strain of 0.006. 

The calculated strain (elastic and inelastic) within the matrix 

material, smat' is plotted against the applied stress, along with the ex­

perimental stress-strain curve and the linear elastic stress-strain 

relationship based on the initial stiffness, in Fig. 5.25-5.28. The figures 

show that the applied axial strain is made up of components of elastic 

strain, s , inelastic strain due to submicrocracking, s , and inelastic 
e c 

strain within the matrix material, s t - s . 
rna e 

For the experimental results considered here, the percentage of 

inelastic strain due to submicrocracking, s /(s- s ), ranges from 20% to c e 
34%, depending on the strain and the water-cement ratio. As for monotonic 

loading, s /(s - s ) decreases with an increase in strain under sustained 
c e 

loading. For cement paste with a W/C = 0.5, s /(s­
c s ) decreases from 24% e 

at a strain of 0.004 to 20% at a strain of 0.006. For similar strains in 

cement paste with a W/C = 0.3, s /(s- s ) decreases from 34% to 29%. Also, c e 
as for monotonic loading, the percentage of inelastic strain due to sub-

microcracking is larger for the lower water-cement ratio paste. 

Fig. 5.29 and the data in Tables 5.14, 5.15 and 5.17 show that at a 

strain of 0.004, sc is virtually the same for monotonic and sustained 

loading. 

specimens. 

However, at a strain of 0.006, s is greater for the monotonic c 
For cement paste with a W/C = 0.5 at an applied strain of 0.004, 

s is 0.000567 for monotonic loading and 0.000535 for sustained loading. c At 

a strain of 0.006, € c increases to 0.001137 for monotonic loading but only 

to 0.000824 for sustained loading. For W/C = 0.3, the relative change ins c 
is less, with s = 0.0005n4 and 0.000547, respectively, for monotonic and c 
sustained loading to 0.004, and s = 0.001132 and 0.001036, respectively, c 
for loading to 0.006. These observations parallel those based on crack 

densities in Chapter 3 (Section 3.5.3.2). 

At the same stress-strength ratio, s is noticeably greater 
c 

tained loading than for monotonic loading (Fig. 5.30), with values 

for sus-

of s for c 
sustained loading ranging from 1.72 to 3.46 times the value of sc for 

monotonic loading. For this comparison, the value of "c for monotonic 

loading is obtained tJy linear interpolation of the data in Tables 5.14 and 

5.15. The higher value of s for sustained loading indicates that the c 
strain due to submicrocracking increases with the duration of loading. This 
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increase in s
0 

corresponds to the observed increase in crack density 

(Section 3.5.3.2). 

The calculated and experimental Poisson's ratios are compared in Fig. 

5.31 for cement pastes with W/C = 0.5 and 0.3, respectively. The calculated 

values of Poisson's ratio for the matrix material account for most of the 

observed changes, demonstrating that mechanisms other than submicrocracking 

control the Poisson effect in cement paste under sustained loading, as under 

monotonic loading. As pointed out in Chapter 2 (Section 2.4.3.1), the 

decrease in Poisson's ratio with an increase in applied strain under sus­

tained loading may be due to volume consolidation, with the development of 

substantial axial strains but without corresponding large lateral strains. 

5.4.3 Cyclic Loading 

The calculated values of the moduli of the matrix material and the 

strain due to submicrocracking are presented in Table 5.18 for cement pastes 

with W/C = 0.5 and 0.3. The calculated stiffness modulus of the matrix 

material, Emat' decreases with an increase in strain under cyclic loading, 

as it does under monotonic and sustained loading. For example, for paste 

with a W/C = 0.5, E t decreases from a value of 2.54x1o 6 psi at initial 
rna 6 loading to a value of 1,473x10 psi at an applied strain of 0.004. 

The calculated strain within the matrix material, s t' is plotted 
rna 

against the peak stress, along with the experimental stress-strain curve and 

the linear elastic stress-strain relationship based on the initial stiff­

ness, in Fig. 5.32-5.36. As for the monotonic and sustained tests, the 

figures show that the applied axial strain for cyclic loading is made up of 

components of elastic strain, s , inelastic strain due to submicrocracking, e 
s , and inelastic strain due to other mechanisms, s t - s • 

c rna e 
Softening 

within the matrix and submicrocracking both play major roles. 

Submicrocracking is especially important for the higher strength paste. 

As for monotonic and sustained loading, the portion of inelastic strain 

due to submicrocracking, s /(s- s ), decreases with an 
c e 

increase in strain 

under cyclic loading. For cement paste with a W/C = 0.5, E /(s - E ) c e 
decreases from a value of 40% at a strain of 0. 002 to a value of 25% at a 

strain of 0.004. For strains of O.OC•2, 0.0025 and 0.003 in cement paste 

with a W/C = 0.3, the values of s /(s- s ) are 91%, 69% and 41%, 
c e 
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respectively. At low strains, 0.002 and 0.0025, the major portion of the 

nonlinear strain in 0.3 W/C paste is due to submicrocracking. 

Fig. 5.37 compares E under cyclic and monotonic loading regimes for 
c 

cement pastes with W/C 0.5 and 0.3, respectively. For the same applied 

strain in paste with a W/C = 0.5, E is larger under cyclic loading than 
c 

under monotonic loading. The values of Ec are 0.00025 and 0.00058 for 

cyclic loading compared to 0.00014 and 0.00056 for monotonic loading, at 

strains of 0.002 and 0.004. At a strain of 0.002 in paste with a W/C = 0.3, 

the values of E are 0.00007 for cyclic loading and 0.00013 for monotonic 
c 

loading. But at a strain of 0.003, 

monotonic loading, with values of 

E is larger for cyclic loading than for c 
0.00038 and 0.00030, respectively. The 

inelastic strain in the matrix, E t - E , is also larger for cyclic loading 
rna e 

than for monotonic loading at all values of maximum strain (Fig. 5.38). 

As observed by MahAr and Darwin [58,59], material degradation is 

greater the greater the range of strain (loading strain plus unloading 

strain). If inelastic strains due to submicrocracking and other mechanisms 

are presumed to be indicators of damage, then Maher and Darwin's study 

indicates that the larger values of these strains under cyclic loading 

compared to monotonic loading (Fig. 5.37 and 5.38) are due to the fact that 

the range of strain for cyclic loading is larger than for monotonic loading. 

For cyclic loading, as for monotonic and sustained loading, the 

decrease in the percentage of inelastic strain due to submicrocracking, 

E /(E - E ), with an increase in applied strain indicates that the relative c e 
importance of other nonlinear responses increases with an increase in 

strain. But clearly, the density of submicrocracks (Fig. 3.45) and their 

effect (Fig. 5.37) continue to increase with continuing cycles as suggested 

by Maher and Darwin [58,59]. Also, the larger values of E/(E- Ee) for the 

lower water-cement ratio paste indicate that submicrocracks are relatively 

more important for higher strength materials than for lower strength 

materials for virtually all uniaxial loading regimes. 

The calculated values of Poisson's ratio of the matrix material are 

compared with the experimental values in Fig. 5.39 for cement pastes with 

W/C = 0.5 and 0.3. The results show that the nonlinear responses other than 

submicrocracking control the Poisson effect in cement paste. 
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5.4.4 Comparison of Calculated Effects of Submicrocracks for 

First and Second Approaches 

The calculated values of the moduli of the matrix material ~nd the 

strain due to submicrocracking obtained with the second approach are 

presented in Tables 5.19-5.24. For the second approach, the percentage of 

inelastic strain due to submicrocracking, E /(E - E ) , is lower than ob-c e 
tained with the first approach. E /(s- E ) for the second approach ranges c e 
from 10% to 80% compared with 20% to 90% for the first approach. The fact 

that the first and second approaches produce different results with an 

inelastic matrix is in contrast to the results obtained for an elastic 

matrix (Section 5.3.1). With an elastic matrix, both approaches produce the 

same results. 

In the computation process with an elastic matrix, the second approach 

uses a lower value of matrix material stiffness, E, than the first approach 

[Section 5. 2. 2]. This lower value of E compensates for the reduced soften­

ing obtained with the lower crack density, and as a result, the calculated 

stiffness, E
3

, and strain due to submicrocracking, e
0

, are the same for both 

approaches [Eq. (5.1) and (5.2)]. With an inelastic matrix, however, the 

crack density is used to back-calculate the matrix stiffness at each strain. 

As a result, the matrix stiffness and the strain due to submicrocracking, 

s
0

, [Eq. (5.3) and (5.4)] are different for the two approaches. 

The difference in e obtained with the two approaches increases as the c 
applied strain increases. For example, for cement paste with W/C = 0.5 

(Fig. 5.40), at a strain of 0.0005, E for the first approach is 1.08 times c 
the value for the second approach, while at a strain of 0.006, ec for the 

first approach is 1.26 times the value for the second approach. Considering 

the extreme assumptions used for the two approaches, these differences are 

not large. 

At this point, it is not clear which approach is correct. The correct. 

approach depends on the actual amount of cracking that exists prior to 

loading, a question not answered in the current study. As discussed in 

Sections 3.5.1 and 5.2.1, it is likely that some cracks do exist prior to 

loading. However, it is also likely that all preparation cracks are not 

removed by the procedure described in Section 3.4.3. Therefore, the tr·ue 

effect of load-induced submicrocracking should lie somewhere between the 
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results obtained with the two approaches. Future studies should continue to 

explore this issue. 

5.5 Summary of Findings 

1. Under uniaxial compressive loading of cement paste and mortar, sub­

microscopic cracks contribute to the decrease in the modulus of 

elasticity with increasing applied strain. 

2. For monotonic loading, if submicrocracking is the only nonlinear ef­

fect, then the calculated percentage reduction in the stiffness of 

cement paste due to these cracks is nearly independent of water-cement 

rat.io. The calculated percentage reduction in stiffness is larger for 

mortar than for cement paste. 

3. For monotonic loading, the calculated stress-strain curves for cement 

paste and mortar, based on submicrocracking as the only nonlinear 

effect, are much stiffer than the experimental curves, The nonlinear 

behavior of the materials is more closely matched by accounting for the 

inelasticity of the material between the submicroscopic cracks. 

4. The increase in average strain on the descending branch of the stress­

strain curve of mortar is due largely to mechanisms other than 

submicrocracking. 

5. Under uniaxial compressive loading of cement paste, the percentage of 

inelastic strain due to submicrocracking decreases with increasing 

applied strain. This indicates that other softening mechanisms, macro­

cracks and creep, play a larger role in the inelastic deformation of 

cement paste the higher the applied strain. 

6. For uniaxial compressive loading of cement pastes of the same age at a 

given strain, the percentage of inelastic strain due to submicrocrack­

ing is larger the lower the water-cement ratio. 

7. Under uniaxial compression, the Poisson effect in cement paste and 

mortar appears to be controlled by mechanisms other than 

submicrocracking. 

8. For uniaxial compressive loading of cement paste to a fixed strain, a 

greater portion of the total strain is due to submicrocracking for 

monotonic loading than for sustained loading. Other nonlinear 

responses play a larger role under sustained loading. 
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9. At the same stress-strength ratio in cement paste, the strain caused by 

submicroscopic cracks is larger for sustained loading than for 

monotonic loading, implying that the degree of softening due to sub­

microcracking incr•eases with the duration of loading. 

10. For uniaxial compressive loading of cement paste to a fixed strain, the 

strain caused by submicroscopic cracks is larger for cyclic loading 

than for monotonic loading, implying that the degree of softening due 

to submicrocracking increases with repetition of load. Inelastic 

strain caused by other nonlinear mechanisms is also larger for cyclic 

loading. 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

The purpose of this investigation is to study submicroscopic cracking 

of cement paste and mortar under uniaxial compression and to correlate the 

observed cracks with the applied strain and load history. Cement paste 

specimens are subjected to monotonic, sustained or cyclic loading. Mortar 

specimens are subjected to monotonic loading. 

The cement pastes are representative of those found in low, normal and 

high strength concretes. Mixes with water-cement ratios of 0.7, 0.5 and 0.3 

are used. The mortar corresponds to concrete with a water-cement ratio of 

0.5. One hundred and thirty (130) specimens are tested at ages ranging from 

27 to 29 days. 

Specimens are loaded in compression using a closed-loop servo-hydraulic 

testing machine. Average axial strain is obtained using a compressometer 

and average lateral strain is obtained using an extensometer. After the 

specimens are loaded, slices are removed and dried for viewing in a scanning 

electron microscope. Cracking on transverse and longitudinal surfaces is 

studied at a magnification of 1250x. 

Statistical and stereological models are developed to convert the 

surface crack distributions to three-dimensional distributions. The extent 

of cracking is compared in cement paste and mortar under different loading 

regimes. 

A self-consistent model is developed to estimate the elastic moduli of 

transversely isotropic cracked materials. The model is used to correlate 

submicrocracking with the reduction in stiffness and the shape of the 

stress-strain curves of cement paste and mortar. 

6.2 Conclusions 

Based on the study presented in this report, the following conclusions 

can be made. The term "crack density" refers to both surface and volumetric 

submicroscopic crack densities. 

1. The density and width of drying cracks in cement paste vary with 

the method of specimen drying. This suggests that drying shrinkage 
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in cement paste is not a material property, but rather a property 

of the total cement paste composite. 

2. Crack density in cement paste varies inversely with water-cement 

ratio for nonloaded specimens. 

3. Crack density in cement paste and mortar increases with increasing 

uniaxial compressive strain. 

4. Surface crack density in cement paste is about ten times the den­

sity of bond and mortar microcracks in concrete at the same value 

of compressive strain. 

5. About 80% of the surface crack density in cement paste occurs 

through the Type III CSH structure, with the balance approximately 

evenly divided between CH and the CH-III boundary. 

6. About 70% of the surface crack density in mortar occurs through the 

Type III CSH strncture, followed by about 18% at the sand grain -

Type III CSH boundary. The balance of the cracking is ap-

proximately evenly divided between CH and the CH-III boundary. 

7. Under uniaxial compressive loading, the mean size of submicroscopic 

cracks increases with increasing strain, while the number of cracks 

per unit volume decreases. This suggests that as the applied 

strain increases, small cracks join into a smaller number of larger 

cracks. 

8. Under uniaxial compressive loading of cement paste and mortar, 

three-dimensional orientation distributions of submicroscopic 

cracks become skewed towards the direction of applied stress as 

strain increases. 

9. Under monotonic loading, the crack orientation distributions in 

mortar aPe less skewed towards the direction of applied stress than 

the crack distributions in cement paste. 

10. The crack orientation distributions under sustained and cyclic 

loading of cement paste are less skewed towards the direction of 

applied stress than the crack distributions under monoton'c 

loading. 

11. The effective moduli of a cracked solid depend primarily on the 

o~ientation distribution of the cracks, represented by the degree 

of anisotropy, K, and the measure of volumetric crack density, 
3 Nv<a >. 
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12. In cement paste, mortar and concrete, cracks which are oriented in 

directions other than the direction of applied compression in­

fluence material behavior. 

13. Cement paste, mortar and concrete in which crack orientation dis­

tributions are skewed towards the direction of uniaxial compression 

should exhibit a reduced strength under lateral tensile loading. 

14. Submicrocracking accounts for a significant portion (20% to 90%) of 

the nonlinear response of cement paste and mortar at all levels of 

applied compressive strain. The role of submicrocracking decreases 

in relation to other mechanisms, such as large microcracks, macro­

cracks, and creep, with increasing applied strain. 

15. For uniaxial compressive loading of cement paste and mortar, sub­

microscopic cracks contribute to the decrease in the modulus of 

elasticity with increasing strain. 

16. Under monotonic loading, the submicroscopic crack distributions in 

cement paste show only small variations with water-cement ratio. 

As a result, if submicrocracking is the only nonlinear effect, then 

the calculated percentage reduction in the stiffness of cement 

paste due to these cracks is nearly independent of water-cement 

ratio. 

17. For uniaxial compressive loading of cement pastes of the same age 

at a given strain, the percentage of inelastic strain due to sub­

microcracking is larger the lower the water-cement ratio. This 

suggests that submicrocracks are relatively more important for 

higher strength materials than for lower strength materials. 

18. Under monotonic loading, crack density increases more rapidly in 

mortar than in cement paste, resulting in a larger percentage 

reduction in stiffness. 

19. The calculated stress-strain curves for cement paste and mortar, 

based on submicrocracking as the only nonlinear effect, are much 

stiffer than the experimental curves. The nonlinear behavior of 

the materials is more closely matched by accounting for the inelas­

ticity of the material between the submicroscopic cracks. 

20. The increase in average strain on the descending branch of the 

stress-strain curve of mortar is due largely to mechanisms other 

than submicrocracking. 
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21. For uniaxial compressive loading of cement paste to a fixed strain, 

both crack densit.y and strain due to submicrocracking are larger 

for monotonic loading than for sustained loading. Other nonlinear 

responses play a larger role under sustained loading. 

22. At the same stress-strength ratio, both crack density and strai~ 

due to submicrocracking are larger for sustained loading than for 

monotonic loading, implying that the degree of softening due to 

submicrocracking increases with the duration of loading, 

23. For uniaxial compressive loading of cement paste to a fixed strain, 

both crack density and strain due to submicrocracking are larger 

for cyclic loading than for monotonic loading. This implies that 

the degree of softening due to submicrocracking increases with 

repetition of load. 

24. Under uniaxial compression, the Poisson effect in cement paste and 

mortar appears to be controlled by mechanisms other than 

submicrocracking. 

6.3 Recommendations for Future Study 

1. The role of cracking in the rate-dependent behavior of concrete 

should be investigated by studying submicrocracking in cement paste 

and mortar at different strain rates. 

2. The relationship between submicrocracks and macrocracks in cement 

paste and mortar under uniaxial compression should be investigated 

using both experimental and analytical procedures. Such an inves­

tigation could provide a complete under·standing of the mechanism of 

load-induced cracking in concrete. 

3, Techniques need to be developed for performing crack surveys with 

saturated specimens in order to minimize cracking due to specimen 

preparation. 

4. The surface to three-dimensional conversion procedure used in this 

study can handle only crack distributions wi t.h mold degrees of 

anisotropy. The possioility of modifying the procedure to handle 

crack distributions with more general degrees of anisotropy should 

be investigated. 
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TABLE 2.4 

MONOTONIC LOADING TESTS, 

CEMENT PASTE WITH A W/C = 0.3 

* Specimen Age at Maximum Initial Modulus, 

Testing, days Strain Ei, 
6 1 o psi 

5-2/P-0.3/M 27 0.0005 3. 22 
5-3/P-0. 3/M 28 0.001 3.30 
5-4/P-0.3/M 28 0.002 3.32 
5-5/P-0.3/M 29 0.004 3. 29 
1 0-2/P-O. 3/M 28 0.0005 3.24 
1 0-3/P-O. 3/M 28 0. 001 3.32 
1 0-4/P-O. 3/M 2il 0.002 3.34 
1 0-5/P-O. 3/M 29 0.004 3. 38 
11-2/P-0. 3/M 27 0.0005 3.32 
11-3/P-O. 3/M 27 o. 001 2.99 
11-4/P-O. 3/M 28 0.002 3.27 
11-5/P-0. 3/M 28 0.004 3.32 
1 6-2/P-0. 3/M 28 0.004 3.34 
1 6-3/P-O. 3/M 28 0.0058 3.37 
1 7-2/P-O. 3/M 27 0.004 3.27 
1 7-3/P-0. 3/M 27 0.006 3.32 
20-2/P-0.3/M 28 0.002 3.00 
20-3/P-0.3/M 28 0.003 3.35 
20-6/P-O. 3/M 28 0.0057 3. 19 
21-2/P-O. 3/M 28 0.002 3. 31 
21-3/P-0.3/M 29 0.003 3.35 

* See Appendix A 
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TABLE 2. 5 

MONOTONIC LOADING TESTS. 

MORTAR WITH A W/C = 0.5 

* Specimen Age at Maximum Initial Modulus, 

Testing, days Strain E i, 106psi 

1 2-2/M-O. 5/M 27 0.0005 4.84 
1 2-3/M-O. 5/M 27 0.001 4.76 
1 2-4 /M-0. 5/M 28 0.002 5.04 
1 2-5/M-O. 5/M 28 0.003 4.79 
1 3-2/M-O. 5/M 28 0.0005 4.55 
13-3/M-0.5/M 28 0. 001 4.82 
13-4/M-0.5/M 28 0.002 4.73 
13-5/M-0.5/M 29 0.003 4. 81 
1 3-6/M-O. 5/M 29 0.004 4.77 

* See Appendix A 

TABLE 2.6 

SUSTAINED LOADING TESTS. 

CEMENT PASTES WITH W/C = 0.5, 0.3 

* Specimen Age at Maximum Stress/Strength Test Initial Modulus, 

Testing, Strain Duration, Ei, 106psi 

days hours 

1 4-4 /P-O. 5/S 28 0.0039 0.675 4 2. 51 
1 4-5/P-O. 5/S 29 0.0062 0.725 4 2.80 
1 5-4/P-0. 5/S 28 0.0040 0.675 4 2. 37 
15-5/P-0.5/S 29 0.0059 0.725 4 2.69 
1 5A-1 /P-O. 5/S 29 0.0075 0.8 3.5 2.54 
1 6-4/P-O. 3/S 28 0.0042 0.675 4 3.36 
16-5/P-O. 3/S 29 0.0061 0.715 2.75 3.36 
17-4/P-0.3/S 28 0.0039 0.675 4 3. 13 
17-5/P-O. 3/S 28 0.0059 0.71 2.25 3.34 

* See Appendix A 
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TABLE 2.7 

CYCLIC LOADING TESTS. 

CEMENT PASTES WITH W/C = 0.5, 0.3 

* ** Specimen Age at Maximum Stress/Strength No. of Initial Modulus, 

Testing, Strain Cycles !;' 106psi ..... i, 

days 

18-4/P-0.5/C 28 0.002 0.5 75 2.36 
18-5/P-0.5/C 28 0.004 0.725 67 2.55 
1 9-4/P-0. 5/C 27 0.002 0.5 72 2.48 
1 9-5/P-0. 5/C 28 0.004 0.725 70 2.73 
19A-1 /P-0.5/C 29 0.005 0.865 31 2.52 
20-4/P-0.3/C 27 0.002 0.65 38 3.37 
20-5/P-0.3/C 27 0.003 0.60 85 3. 28 
21-4/P-0.3/C 28 0.0025 0.65 47 3. 29 
21-5/P-0. 3/C 29 0.003 0.60 81 3.33 

* See Appendix A 

** Test duration in minutes is the number of cycles divided by 2. 

TABLE 2.8 

FORMAT FOR RECORDING CRACK DATA 

Band No. Type of Data Crack data 

Length, .0006 in. 0.75 1.5 2.25 3.5 0.5 ...... 

* i Width, .00004 in. 0.2 0.25 0.2 1.5 0.75 ..... 
Angle, degrees 50 30 75 45 30 1 0 ••••••• 

** Structure III III CH CH-III III UHC-III ... 
* : i = 1, 2, •.• , 10 
** III Type III Calcium Silicate Hydrate (CSH). 

CH = Calcium Hydroxide. 
UHC = Unhydrated Cement. 
CH-III denctes a c~ack at the interface between'CH and Type III CSH. 
Similar interpretation for UHC-III. See section 2.5.4.1 for full 
descriptions of the microscopic structures. 
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TABLE 2. 9a 

SURFACE CRACK DATA FOR MONOTONIC LOADING OF CEMENT PASTE WITH A 

W/C ~ 0.5 (BATCH #9). TRANSVERSE SURFACE. 

NONLOADED 

Band No. Type of Data Crack Data 
Trace Length, £, 0.0006 in.; Trace Angle, 9, de g. 

( 1 in. ~ 25400 )lffi) 

t 1 0.75 0.75 1.5 1. 25 3.75 3.5 
e 100 0 165 1 40 35 130 90 
t 4 3 2.25 3 2 1 1 
e 0 1 55 60 60 1 25 175 1 65 

t 1 3 1. 25 0.5 1.5 0.75 2.25 
2 e 1 55 1 45 0 90 65 175 0 

t 1.25 0.75 1.5 1. 25 0.5 
6 0 60 85 50 85 

t 0.75 1. 75 5 2.5 0.75 2.5 3 
3 e 160 90 10 1 20 1 40 90 40 

~ 2 1. 25 2.5 
e 120 75 0 

£ 2.5 1 . 25 2 1 1. 25 1 • 5 3 
4 6 55 0 11 0 30 55 1 40 25 

t 0.5 0.5 0.75 1. 25 2 1 . 25 1. 25 
e 90 175 1 25 60 60 155 0 

t 1 1.5 3 4 2 2.75 
5 e 90 130 35 1 40 165 0 1 00 

t 0.75 0.5 2.5 0.75 
6 25 1 40 55 30 11 0 

t 1 2.75 1 • 5 2 1 2.5 3.25 
6 6 0 55 0 75 1 20 40 90 

t 1 0.75 0.5 1 1. 25 
6 1 40 120 10 90 160 85 

t 2 1 . 5 1 1. 25 2.5 1 . 75 
7 6 50 85 60 0 0 1 75 65 

t 2 1 1. 25 1 
e 90 0 1 45 155 

t 1. 75 2.25 4.5 1 2 3. 75 2.5 
8 6 1 65 175 1 25 60 60 1 55 0 
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~ 1 0.75 1. 75 2 4.75 1 5.75 
6 90 1 30 35 140 165 0 40 

~ 2.25 1 2 3.25 2.75 2 
9 6 1 20 55 30 11 0 0 25 80 

~ 2.5 1 1.5 3.25 2 1 1. 25 
10 6 85 50 85 160 90 10 120 

~ 2.5 1 0.75 2 1 2.5 2.75 
6 1 40 90 155 0 90 1 40 35 

MAXIMUM STRAI~ = 0.0005 

Band ~o. Type of Data Crack Data 
Trace Length, ~. 0.0006 in.; Trace Angle, 6, deg. 

( 1 in. = 25400 \lffi) 

~ 2 1. 25 1. 25 1.5 2.25 2 3 
9 170 1 50 105 40 70 90 80 
~ 2 2. 25 2 2.5 2.25 
6 115 1 00 0 0 155 

~ 3.5 1 • 5 2 1. 25 1 3 5 
2 e 50 130 40 11 0 1 25 130 155 

~ 2.5 1. 25 2 6 1. 75 1.5 
e 85 0 50 95 25 100 55 

3 ~ 2.75 3.5 1. 25 2 1 1. 75 1.5 
e 100 70 1 20 90 50 20 5 
~ 1.5 3 2.5 2. 25 
e 20 45 75 65 

~ 5.5 2.5 1 0.75 2 1.5 1.5 
4 e 55 30 35 5 0 15 80 

~ 1.5 1 1. 25 2.5 1. 75 3 3 
5 e 20 45 25 1 25 11 5 35 30 

~ 1 2.5 1. 75 3.25 2.75 1.5 2 
e 20 135 25 1 25 65 90 70 

~ 1 '5 5 5 2.5 2 2 2 
6 6 15 70 105 65 5 60 25 

~ 5 1.5 1. 75 3.5 0.75 1. 25 i.25 
7 e 20 5 155 1 40 90 1 20 70 

~ 1.5 1.5 3.5 1 . 5 
e 100 55 80 85 

.~ 1.25 3.5 1 1.25 2.5 3.75 
8 6 50 130 25 0 1 00 0 65 

9, 1.25 2 3.5 0.75 1.5 2 1. 75 
e 80 90 70 40 1 05 150 20 
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~ 3-5 2 1.5 2 1 1. 25 3.75 
9 e 170 70 55 50 25 1 20 85 

~ 2 3 1. 25 1 2 2.25 4.5 
e 0 50 25 60 70 55 90 

~ 2.5 1 2.75 3.25 2 1. 25 1 
1 0 e 90 1 0 85 150 30 35 45 

~ 0.75 0.75 1 2.5 1. 75 1.5 
e 65 55 25 45 20 80 

MAXIMUM STRAIN 0. 001 

Band No. Type of Data Crack Data 
Trace Length, ~. 0.0006 in.; Trace Angle, e, de g. 

( 1 in. 25400 )Jffi) 

~ 3-5 2 3 3 4.5 2 1.5 
e 55 55 90 150 65 0 85 
9. 1.5 2.5 2 1. 75 0.75 1.5 1 
e 30 90 55 0 0 10 170 
~ 2 0.75 1 0.75 3 
e 1 20 50 0 70 45 

9. 2.5 1.25 2 6 1. 75 1 • 5 
e 85 0 50 95 25 100 55 

2 ~ 2.75 3.5 1. 25 2 1 1. 75 1.5 
e 1 00 70 1 20 90 50 20 5 
9. 1.5 3 2.5 2.25 
e 20 45 75 65 

9. 5.5 2.5 1 0.75 2 1.5 1.5 
3 e 55 30 35 5 0 15 80 

~ 1.5 1 1.25 2.5 i. 75 3 3 
4 e 20 45 25 1 25 115 35 30 

~ 1 2.5 1. 75 3.25 2.75 1.5 2 
e 20 135 25 1 25 65 90 70 

~ 1 . 5 5 5 2.5 2 2 2 
5 6 15 70 105 65 5 60 25 

9. 5 1.5 1. 75 3.5 0.75 1.25 1. 25 
6 6 20 5 155 1110 90 1 20 70 

~ 1.5 1.5 3.5 1.5 
6 1 00 55 80 85 

~ 3.5 1.5 2 1. 25 3 5 
7 e 50 130 40 11 0 1 25 130 155 

~ 1. 25 3.5 1 1. 25 2.5 3 .1'5 1 
8 6 50 1 30 25 0 100 0 65 

9. 1. 25 2 3.5 0.75 1.5 2 1.75 
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e 80 90 70 40 1 05 150 20 

!/_ 3.5 2 1 . 5 2 1 1. 25 3.75 
9 e 170 70 55 50 25 1 20 85 

~ 2 3 1. 25 1 2 2.25 4.5 
e 0 50 25 60 70 55 90 

~ 1.25 2.5 1. 75 2 3.25 2.5 2.75 
1 0 e 50 165 1 20 85 25 65 50 

!/_ 1 1 1. 25 1 1. 75 3 1 . 25 
8 90 40 0 45 50 35 65 

MAXIMUM STRAIN 0.002 

Band No. Type of Data Crack Data 
Trace Length, ~. 0.0006 in.; Trace Angle, 8, de g. 

( 1 in. = 25400 l!ffi) 

!/_ 2 2.5 1 • 25 2.5 7.25 5.75 3.5 
8 100 0 165 1 40 35 1 30 90 
!/_ 4 3 2.25 3 2 1 1 
8 5 0 60 0 1 40 90 165 

!/_ 0.75 1. 75 5 2.5 0.75 2.5 3 
2 e 160 90 10 1 20 1 40 90 40 

~ 2 1.25 2.5 
e 1 20 75 0 

~ 2.5 1. 25 2 1 1. 25 1.5 3 
3 e 55 0 11 0 30 55 1 40 25 

!/_ 0.5 0.5 0.75 1. 25 2 1. 25 1. 25 
8 90 175 1 25 60 60 1 55 0 

~ 1 1.5 3 4 2 2.75 
4 8 90 130 35 1 40 1 65 0 100 

~ 0.75 1 0.5 2.5 0.75 
8 25 140 55 30 11 0 

!/_ 1 2.75 1 . 5 2 2.5 3.25 
5 e 0 55 0 75 1 20 40 90 

9, 1 0.75 0.5 1 1 1.25 
8 1 40 1 20 1 0 90 160 85 

9, 2 1.5 1 1 1.25 2.5 1. 75 
6 8 50 85 60 0 0 175 65 

9, 2 1 1. 25 1 
e 90 0 145 155 

!/_ 1. 75 2.25 4.5 1 2 3.75 2.5 
7 e 1 65 175 125 60 60 155 0 

~ 1 0.75 1. 75 2 4.75 1 5.75 
e 90 130 35 1 40 165 0 40 
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£ 2.25 1 1 0. 25 3.25 1 2.75 2 
8 e 1 20 55 30 11 0 0 25 80 

£ 2.5 1 0.75 2 1 2.5 2.75 
e 1 40 90 155 0 90 1 40 35 

£ 1 3 1.25 0.5 1.5 0.75 2.25 
9 e 155 145 0 90 65 175 0 

£ 1 • 25 0.75 1.5 1. 25 0.5 
e 0 60 85 50 85 

£ 5.5 1 3.5 3.25 2 4 1.25 
10 e 85 35 15 160 90 10 1 20 

MAXIMUM STRAIN = 0.004 

Band No. Type of Data Crack Data 
Trace Length, £, 0.0006 in.; Trace Angle, e, cteg. 

( 1 in. = 25400 llffi) 

£ 4.5 2 1.25 1. 5 2.25 2 3 
e 170 150 105 40 70 90 80 
£ 2 2.25 2 2.5 2.25 
e 11 5 20 5 0 155 

£ 3.5 2.5 5 1. 25 1 2 5 
2 e 50 130 40 145 125 130 155 

£ 2.5 1.25 2 6 1. 75 1 1.5 
e 85 0 50 95 25 100 55 

3 £ 2.75 3.5 1. 25 2 1 1. 75 1.5 
e 90 10 85 150 30 35 45 
£ 1 • 5 3 2.5 2.25 
e 20 45 75 65 

£ 5.5 2.5 1 0.75 2 1.5 1.5 
4 e 55 30 35 5 0 1 5 80 

£ 1 • 5 1.25 2.5 1. 75 3 3 
5 e 20 45 25 1 25 11 5 35 30 

£ 1 2.5 1. 75 3. 25 2.75 1.5 2 
e 20 135 25 125 65 90 70 

£ 1.5 5 5 2.5 2 2 2 
6 e 15 70 105 65 5 60 25 

£ 1. 25 2 3.5 0.75 1.5 2 1. 75 
e 80 90 70 40 105 ~50 20 

£ 5 1.5 1. 75 3.5 0.75 1 • 25 1.25 
7 e 20 5 155 1 40 90 120 70 

£ 1 . 5 1 • 5 6.5 1.5 
e 100 55 80 85 
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9. 1.25 3.5 1 1. 25 2.5 3.75 1 
8 e 50 1 30 25 0 100 0 65 

9. 3.5 2 1 . 5 2 1 1. 25 3.75 
9 e 170 70 55 50 25 1 20 85 

9. 2 3 1.25 1 2 2.25 4.5 
e 0 50 25 60 70 55 90 

9. 2.5 1 5.75 3.25 2 1. 25 1 
1 0 e 1 00 70 1 20 90 50 20 5 

9. 0.75 0.75 1 2.5 1. 75 1.5 
e 65 55 25 45 20 80 

MAXIMUM STRAIN = 0.006 

Band No. Type of Data Crack Data 
Trace Length, 9., 0.0006 in.; Trace Angle, e, de g. 

( 1 in. 25400 )lffi) 

9. 1.5 4 6 3 2.5 2 3.5 
e 55 55 90 1 50 65 0 85 
9. 1.5 2.5 2 1. 75 0.75 1.5 1 
e 20 90 45 5 0 30 150 
9. 2 0.75 1 0.75 3 3.75 1.5 
e 120 50 0 70 45 105 40 

2 9. 2.75 3.5 1. 25 2 1 1. 75 1.5 
e 100 70 120 90 50 20 5 
9. 1 • 5 3 2.5 2.25 
e 20 45 75 65 

9. 5.5 2.5 1 0.75 2 1.5 1 • 5 
3 e 55 30 35 5 0 15 80 

9. 2.5 1. 25 2 6 1 . 75 1 1.5 
6 85 0 50 95 25 100 55 

9. 1.5 1 1 • 25 2.5 1. 75 3 3 
4 e 20 45 25 125 11 5 35 30 

9. 1 2.5 1. 75 3. 25 2.75 1.5 2 
e 20 135 25 1 25 65 90 70 

9. 3.5 5 7 1.5 5 2 3 
5 e 35 70 105 65 5 55 25 

9. 5 1.5 1. 75 3.5 0.75 1. 25 1. 25 
6 e 20 5 155 1 40 90 120 70 

9. 1 u 5 1.5 3.5 1.5 
6 100 55 80 85 

~ 3.5 1.5 2 1. 25 1 3 5 
7 e 50 130 40 11 0 125 1 30 155 
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!l. 1 • 25 3.5 1 1. 25 2.5 3.75 1 
8 e 50 130 25 0 1 00 0 65 

!l. 1.25 2 3.5 0.75 1 . 5 2 1 . 75 
e 80 90 70 40 105 150 20 

!l. 3.5 2 1.5 2 1 1. 25 3.75 
9 e 170 70 55 50 25 1 20 85 

!l. 2 3 1.25 1 2 2.25 4.5 
e 0 50 25 60 70 55 90 

!l. 3. 25 3.75 2. 75 8.25 3. 25 2.5 2.75 
10 e 50 165 1 20 85 25 65 50 

!l. 5.5 1 1.25 4 1. 75 3 2.25 
e 90 40 0 45 50 35 35 
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TABLE 2. 9b 

SURFACE CRACK DATA FOR MONOTONIC LOADING OF CEMENT PASTE WITH A 

W/C = 0.5 (BATCH #9). LONGITUDINAL SURFACE. 

NONLOADED 

Band No. Type of Data Crack Data 
Trace Length, ~. 0.0006 in.; Trace Angle, e, cteg. 

( 1 in. 25400 l!ffi) 

~ 0.75 1. 75 5 2.5 0.75 2.5 .3 
e 95 5 1 35 20 25 100 85 
~ 4 3 2.25 3 2 1 1 
a 0 155 60 60 1 25 175 1 65 

~ 1 3 1. 25 0.5 1.5 0.75 2.25 
2 a 155 145 0 90 65 175 0 

~ 1. 25 0.75 1.5 1. 25 0.5 
e 0 60 85 50 85 

~ 2 0.75 0.75 1.5 1 . 25 3.75 3.5 
3 a 1 60 90 1 0 1 20 1 40 90 40 

~ 2 1.25 2.5 
e 1 20 75 0 

~ 3.5 1.25 2 1 1. 25 1.5 3 
4 e 65 0 11 0 30 55 1 40 25 

~ 0.5 0.5 0.75 1. 25 2 1.25 1. 25 
a 90 175 125 60 60 155 0 

~ 3.5 1 1.5 3.25 2 1 1. 25 
5 e 85 1 30 35 1 40 1 65 0 100 

£ 1. 75 1 0.5 2.5 0.75 
e 25 140 55 30 11 0 

~ 2 2.75 1.5 2 2.5 3.25 
6 a 0 55 0 75 1 20 40 90 

~ 1 0.75 0.5 1 1. 25 
a 1 25 1 20 10 90 160 85 

~ 2 1 • 5 1 1. 25 2.5 1. 75 
7 e 50 85 60 0 0 175 65 

~ 1 0.75 1. 75 2 4.75 1 5.75 
a 90 1 30 35 1 40 165 0 40 

~ 1. 75 2.25 4.5 1 2 3.75 2.5 
8 e 1 65 175 1 25 60 60 155 0 

~ 1 3 1 . 25 
e 90 0 1 45 155 
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~ 2.25 1 2 3.25 2.75 2 
9 e 85 55 30 11 0 0 25 80 

~ 1 1.5 3 4 2 2.75 1 
1 0 e 75 40 85 160 90 1 0 120 

~ 1 • 5 2 0.75 3 0.75 2.5 2.75 
e 130 80 1 45 5 90 40 25 

MAXIMUM STRAIN = 0.0005 

Band No. Type of Data Crack Data 
Trace Length,~. 0.0006 in.; Trace Angle, e, deg. 

( 1 in. = 25400 )lffi) 

~ 2.5 1. 25 2 6 1. 75 1 1. 5 
e 155 50 105 35 75 90 70 
~ 2 2. 25 2 2.5 2.25 
e 105 1 00 0 5 1 35 

~ 5.5 0.5 3 1. 25 1 3 5 
2 e 45 1 30 45 1 00 125 130 155 

~ 2.75 3.5 1.25 2 1 1. 75 1.5 
3 e 100 70 1 20 90 50 20 5 

i 1.5 3 2.5 2.25 
e 20 45 75 65 

i 4.5 2.5 3 0.75 2 1.5 1 . 5 
4 e 50 30 35 5 0 15 80 

i 1.5 1 1. 25 2.5 1. 75 3 3 
5 e 20 45 25 125 11 5 35 30 

i 1 2.5 1. 75 3.25 2.75 1 . 5 2 
e 30 1 35 25 1 25 65 90 70 

~ 2 1. 25 1.25 1. 5 2.25 2 3 
6 e 85 0 50 95 25 1 00 55 

i 1.5 5 5 2.5 2 2 2 
a 15 70 105 65 5 60 25 

1', 4 1.5 1. 75 2.5 1. 75 1. 25 1 • 25 
7 a 20 5 145 140 80 120 70 

i 0.75 0.75 2.5 1. 75 1.5 
a 65 45 25 45 20 80 

i 3. 25 1.5 1. 25 2.5 3.75 1 
8 a 50 1 30 25 0 100 0 65 

i 1.25 2 3.5 0.75 1.5 2 1. 75 
a 80 90 70 40 105 1 50 20 
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!1. 3.5 2 1.5 2 1 1. 25 3.75 
9 e 170 70 55 50 25 1 20 85 

!1. 2 3 1 • 25 1 2 2.25 4.5 
e 0 50 25 60 70 55 90 

!1. 1.5 2 3.25 3.25 2 2.25 1 
10 e 90 10 85 1 45 30 45 45 

!1. 1.5 1.5 3.5 1.5 
e 100 55 80 85 

MAXIMUM STRAIN 0.001 

Band No. Type of Data Crack Data 
Trace Length, !1., 0.0006 in.; Trace Angle, e, cteg. 

( 1 in. = 25400 ].Jffi) 

!1. 2.5 0.5 2 2.75 1. 75 1.5 1 
e 40 90 55 0 5 10 170 
!1. 2 0.75 1 0.75 3 
e 120 50 0 70 45 

!1. 3.5 1. 25 1 6 1. 75 1 1 • 5 
e 75 0 50 95 25 100 55 

2 !1. 2.75 3.5 1.25 2 1 1. 75 1.5 
e 100 70 120 90 50 20 5 
!1. 1.5 3 2.5 2.25 
e 20 45 75 65 

!1. 3.5 2 3 3 4.5 2 1 • 5 
3 e 55 55 90 1 50 65 0 85 

!1. 5.5 2.5 1 0.75 2 1 • 5 1.5 
e 55 30 35 5 0 15 80 

!1. 2.5 1 1.25 2.5 1. 75 3 3 
4 e 30 45 25 1 25 11 5 35 30 

i 3 1.5 1. 75 3.25 2.75 1 • 5 2 
e 20 105 25 125 65 90 70 

!1. 1.5 5 3 2.5 2 2 2 
5 e 15 60 105 65 5 IJ5 ?~ 

-:J 

i 5 1.5 1. 75 3.5 0.75 1.25 1. 25 
6 e 20 5 155 140 90 120 70 

!1. 1.5 1.5 3.5 1.5 
e 100 55 80 85 

i 1.25 2.5 1. 75 2 3. 25 2.5 2.75 
7 e 50 165 1 20 85 25 65 50 

!1. 3.5 1.5 2 1. 25 1 3 5 
e 50 130 40 11 0 1 25 1 30 1 55 
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9. 1.25 3.5 1 1. 25 2.5 3.75 1 
8 e 50 1 30 25 0 100 0 65 

9. 1. 25 2 3.5 0.75 1.5 2 1. 75 
e 80 90 70 40 105 150 20 

9. 3.5 2 1.5 2 1 1.25 3.75 
9 e 170 70 55 50 25 1 20 85 

9. 2 3 1. 25 1 2 2.25 4.5 
e 0 50 25 60 70 55 90 

9. 1 1 1. 25 1 1. 75 3 1.25 
10 e 90 40 0 45 50 35 65 

MAXIMUM STRAIN = 0.002 

Band No. Type of Data Crack Data 
Trace Length, 9., 0.0006 in.; Trace Angle, e, cteg. 

( 1 in. = 25400 ].lffi) 

9. 2.5 1 0 25 2 1 1. 25 1.5 3 
e 55 0 11 0 30 55 140 25 
9. 2 1 4.25 3 2 3 1 
e 5 0 30 0 1 20 90 1 65 

9. 1. 75 2.75 3 2.5 0.75 2.5 3 
2 e 60 90 1 0 1 20 140 90 40 

9. 3 1 0 25 1 0 5 
e 11 0 75 0 

9. 2 2.5 1. 25 2.5 7.25 5.75 3.5 
e 100 0 165 1 40 35 1 30 90 

3 9. 0.5 0.5 0.75 1.25 2 1.25 1.25 
9 90 175 125 60 60 155 0 

9. 1.5 1.5 2 3 3 3.75 2 
4 e 90 120 35 1 40 165 0 105 

9. 1. 75 1 0.5 2.5 0.75 
e 35 1 40 45 30 110 

9. 2.75 1.5 2 1 2.5 3. 25 
5 e 0 55 0 75 120 40 90 

9. 1 0.75 0.5 1 1 1. 25 
e 1 40 1 20 10 90 1 60 85 

9. 1 1.5 1 1 1 0 25 2.5 1. 75 
6 6 50 85 60 0 0 175 65 

£ 2.5 1 1.25 1 
8 90 0 1 45 155 
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~ 1. 75 2.25 4.5 1 2 3.75 2.5 
7 e 1 65 175 1 25 60 60 155 0 

~ 1 0.75 1. 75 2 4.75 1 5.75 
e 90 1 30 35 1 40 165 0 40 

~ 3.25 2 10.25 3. 25 1 2.75 2 
8 e 1 20 55 30 11 0 0 25 80 

~ 1.5 1 0.75 1 1 2.5 2.75 
e 1 20 90 145 0 90 1 30 35 

~ 3.5 3 3.5 3.25 1 4 1.25 
9 e 75 35 15 1 40 90 10 1 20 

~ 1 2 1.25 1.5 1.5 0.75 2.25 
10 e 1 45 1 45 0 90 65 175 0 

~ 2.25 0.75 1.5 1. 25 0.5 
e 0 60 85 50 85 

MAXIMUM STRAIN 0.004 

Band No. Type of Data Crack Data 
Trace Length, ~. 0.0006 in.; Trace Angle, e, de g. 

( 1 in. = 25400 \lffi) 

~ 1.5 1.25 2 6 1. 75 1 1.5 
e 75 0 60 95 25 1 00 55 
~ 1 1.25 2 2.5 2.25 
e 15 30 5 0 155 

~ 1.5 2 1 . 25 1.5 2.25 2 2 
2 e 150 10 105 40 60 90 80 

~ 3.5 2.5 5 1. 25 2 5 
e 50 20 40 145 1 25 130 155 

~ 1. 75 3.5 2.25 2 1 1. 75 1.5 
3 e 90 10 75 150 30 35 45 

~ 2.5 2 2.5 2.25 
e 20 45 75 65 

~ 4.5 2.5 1 0.75 2 1.5 1.5 
4 e 65 30 35 5 0 15 80 

~ 2.5 1 2.25 2.5 1. 75 3 3 
5 e 30 45 25 125 11 5 35 30 

~ 1 2.5 1. 75 3. 25 2.75 1.5 2 
e 20 135 25 125 65 90 70 

6 ~ 1.25 2 3.5 0.75 1.5 2 L75 
e 80 90 70 40 105 150 20 
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i 6 2.5 1. 75 3.5 0.75 1.25 1. 25 
7 e 20 5 155 1 40 90 1 20 70 

i 2.5 1.5 6.5 1.5 
e 90 55 80 85 

i 2.5 5 5 2.5 2 2 2 
8 e 30 70 11 5 65 5 60 25 

i 2.25 3.5 1 1.25 2.5 3.75 1 
e 45 1 20 25 0 100 0 65 

i 2.5 1 5.75 3.25 2 1. 25 1 
9 8 100 70 120 90 50 20 5 

i 2 3 1. 25 1 2 2.25 4.5 
e 0 50 25 60 70 55 90 

i 3.5 2 1.5 2 1 1. 25 3.75 
10 e 1 70 70 55 50 25 120 85 

i 0.75 0.75 1 2.5 1. 75 1.5 
e 65 55 25 45 20 80 

MAXIMUM STRAIN = 0.006 

Band No. Type of Data Crack Data 
Trace Length, ~. 0.0006 in.; Trace Angle, e, de g. 

( 1 in. 25400 lJffi) 

~ 3.5 2.5 1 0.75 2 1.5 1.5 
e 75 30 35 5 0 15 80 
i 2.5 3 6 3 2.5 2 3.5 
e 65 75 90 1 50 65 0 85 
~ 1.5 1.5 1 1. 75 0.75 1.5 1 
e 20 90 45 5 0 30 1 50 

i 3.75 3.5 1.25 2 1 1. 75 1 . 5 
2 e 90 70 120 90 50 20 5 

i 3.5 3 2.5 2.25 
e 40 20 75 65 

i 2.5 1. 25 2 6 1. 75 1.5 
3 e 95 0 50 95 35 i 00 55 

~ 2 1. 75 1 0.75 3 3.75 1 . 5 
e 20 40 0 70 45 105 40 

i 3.5 5 7 1.5 5 2 3 
4 e 35 70 105 65 5 55 25 

~ 1.5 1 1. 25 2.5 1. 75 3 3 
6 20 45 25 1 25 11 5 35 30 

~ 1 2.5 1. 75 3.25 2.75 1.5 2 
5 e 20 135 25 1 25 65 90 70 
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~ 2 1 . 5 1. 75 3.5 0.75 1.25 1. 25 
6 e 30 5 1 35 1 40 90 1 20 70 

~ 1.5 1.5 3.5 1.5 
e 100 55 90 85 

~ 2.5 1.5 2 1 • 25 2.5 5 
7 e 60 130 40 55 1 25 130 155 

~ 2.25 3.5 2 1. 25 2.5 3.75 1 
8 e 50 1 30 25 0 100 0 65 

~ 3. 25 2 3.5 0.75 1.5 2 1. 75 
e 60 90 75 40 105 150 20 

~ 3.5 2 1.5 2 3 1. 25 3.75 
9 e 160 70 65 50 25 120 85 

~ 5.5 1 1. 25 4 1. 75 3 2.25 
e 90 40 0 45 50 35 35 

~ 3. 25 3.75 2.75 8.25 3.25 2.5 2.75 
1 0 e 60 1 25 1 20 85 35 65 50 

Q, 2 3 1.25 1 2 2.25 4.5 
e 0 50 25 60 70 55 90 
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TABLE 2.10 

CRACK DENSITY OF NONLOADED, OVEN DRIED CEMENT PASTE AND MORTAR SPECIMENS 

Crack Density, in./in. 2 

* Specimen Transverse Longitudinal 

Surface Surface 

1-1/P-0.7/NL 18.4 
2-1/P-0.7/NL 19.9 
2-2/P-0. 7 /NL 16.9 
3-1/P-0.7/NL 19.5 
6-1/P-0.7/NL 20.2 19. 4 
7-1/P-0.7/NL 1 9. 1 17.8 
4-1/P-0.5/NL 18.9 
8-1/P-0.5/NL 22.7 20.6 
9-1/P-0.5/NL 20.3 19.8 
1 4-1 /P-O. 5/NL 21.2 1 9. 1 
15-1/P-0.5/NL 22.3 18.5 
18-1 /P-O. 5/NL 21 • 1 20.8 
1 9-1 /P-O. 5/NL 18.2 19.5 
5-1/P-0.3/NL 20.2 
1 0-1 /P-O. 3/NL 23.7 20.6 
11-1 /P-O. 3/NL 21 • 2 22.3 
1 6-1 /P-O. 3/NL 24. 1 25.7 
17-1 /P-O. 3/NL 23.3 20.3 
20-1 /P-0. 3/NL 22.5 20.4 
21-1/P-0.3/NL 20.3 24.7 
12-1 /M-0. 5/NL 1 2. 0 1 0. 5 
1 3-1 /M-0. 5/NL 1 5. 2 1 4. 6 

* See Appendix A 



1 48 

TABLE 2.11 

CRACK DENSITY OF OVEN DRIED SPECIMENS. 

MONOTONIC LOADING : CEMENT PASTE WITH A W/C = 0.7 

Crack Density, in. lin. 2 

* Specimen Maximum Transverse Longitudinal 

Strain Surface Surface 

1-1/P-0.7/NL 0.0 18.4 

2-1/P-0.7/NL 0.0 19.9 

2-2/P-0.7/NL o.o 16.9 

3-1/P-0.7/NL 0.0 19.5 

6-1/P-0.7/NL o.o 20.2 19.4 

6-2/P-0.7/M 0.0005 24.0 22.5 

6-3/P-0.7/M 0. 001 25.2 23.1 

6-4/P-0.7/M 0.002 28.3 29.2 

6-5/P-0.7/M 0.004 36.5 34.9 

7-1/P-0.7/NL o.o 1 9. 1 17.8 

7-2/P-0.7/M 0.0005 24. 1 23. 2 

7-3/P-0.7/M 0.001 26. 3 24.6 

7-4/P-0.7/M 0.002 32.4 29.5 

7-5/P-0.7/M 0.004 41.3 37.6 

7-6/P-0.7/M 0.006 43.6 40.9 

* See Appendix A 
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TABLE 2.12 

CRACK DENSITY OF OVEN DRIED SPECIMENS. 

MONOTONIC LOADING : CEMENT PASTE WITH A W/C = 0.5 

Crack Density, in. lin. 2 

* Specimen Maximum Transverse Longitudinal 

Strain Surface Surface 

4-1/P-0.5/NL 0.0 18.9 
4-2/P-0.5/M 0.0005 18.3 
4-3/P-0.5/M 0. 001 20. 1 
4-4/P-0.5/M 0.002 27.8 
4-5/P-0. 5/M 0.004 37.6 
8-1/P-0.5/NL o.o 22.7 20.6 
8-2/P-0.5/M 0.0005 27. 1 21 .8 
8-3/P-0.5/M 0. 001 27.7 24.7 
8-4/P-0.5/M 0.002 30.5 28.9 
8-5/P-0.5/M 0.004 39.4 30.7 
8-6/P-0.5/M 0.006 45.4 43.6 
9-1/P-0.5/NL o.o 20.3 19.8 
9-2/P-0.5/M 0.0005 23.6 22.3 
9-3/P-0.5/M 0.001 26.2 25.4 
9-4/P-0.5/M 0.002 30.2 27.5 
9-5/P-0.5/M 0.004 39.4 38.7 
9-6/P-0.5/M 0.006 43.5 42.3 
1 4-1 /P-O. 5/NL o.o 21.2 1 9 • 1 
1 4-2/P-0. 5/M 0.004 34.7 29.8 
1 4-3/P-O. 5/M 0.006 47. 1 42.5 
15-1/P-0.5/NL o.o 22.3 18.5 
15-2/P-0.5/M 0.004 35.6 27.2 
15-3/P-0.5/M 0.006 41.3 39.4 
18-1/P-0.5/NL o.o 21.1 20.8 
18-2/P-0.5/M 0.002 29.6 25.8 
18-3/P-0.5/M 0.004 30.3 28.5 
19-1/P-0.5/NL 0.0 18.2 19.5 
19-2/P-0.5/M 0.002 30.2 27.5 
1 9-3/P-O. 5/M 0.004 37.7 32.4 

* See Appendix A 
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TABLE 2.13 

CRACK DENSITY OF OVEN DRIED SPECIMENS. 

MONOTONIC LOADING : CEMENT PASTE WITH A W/C = 0.3 

Crack Density, in .lin. 2 

* Specimen Maximum Transverse Longitudinal 

Strain Surface Surface 

5-1/P-0.3/NL 0.0 20.2 
5-2/P-0.3/M 0.0005 20.4 
5-3/P-0.3/M 0.001 22.8 
5-4/P-0.3/M 0.002 23.5 
5-5/P-0.3/M 0.004 31.6 
1 0-1 /P-O. 3/NL 0.0 23.7 20.6 
1 0-2/P-O. 3/M 0.0005 22.8 21.4 
1 0-3/P-O. 3/M 0. 001 23.9 24.3 
1 0-4/P-O. 3/M 0.002 29. 4 26.5 
1 0-5/P-0. 3/M 0.004 35.2 33.9 
11-1 /P-0. 3/NL 0.0 21.2 22.3 
11-2/P-0.3/M 0.0005 23.5 23.4 
11-3/P-O. 3/M o. 001 25.7 27. 4 
11-4/P-O. 3/M 0.002 26.6 26.2 
11-5 /P-O. 3/M 0.004 37.4 34.3 
1 6-1 /P-0. 3/NL o.o 24. 1 25.7 
1 6-2/P-O. 3/M 0.004 30.6 31.8 
1 6-3/P-O. 3/M 0.0058 44.3 39.7 
1 7-1 /P-0. 3/NL 0.0 23.3 20.3 
17-2/P-O. 3iM 0.004 33.6 27,8 
17-3/P-O. 3/M 0.006 47.8 44.0 
20-1/P-0.3/NL 0.0 22.5 20.4 
20-2/P-0.3/M 0.002 30.4 26.7 
2C-3/P-0.3/M 0.003 28.9 30.4 
21-1 /P-O. 3/NL o.o 20.3 24.7 
21-2/P-0.3/M 0.0025 25.3 20. 1 
21-3/P-0.3/M 0.003 31.2 27.5 

* See Appendix A 
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TABLE 2.14 

CRACK DENSITY OF OVEN DRIED SPECIMENS. 

MONOTONIC LOADING : MORTAR WITH A W/C = 0.5 

Crack Density, in. lin. 2 

• Specimen Maximum Transverse Longitudiqal 

Strain Surface Surface 

1 2-1 /M-0. 5/NL 0.0 1 2. 0 10.5 

1 2-2/M-O. 5/M 0.0005 17.6 17. 1 

12-3/M-O. 5/M o. 001 23.9 22. 1 

12-4/M-O. 5/M 0.002 33.6 29.3 

1 2-5/M-0. 5/M 0.003 32.8 29.6 

13-1 /M-0. 5/NL 0.0 1 4. 6 15.2 

13-2/M-0.5/M 0.0005 1 6. 8 27.4 

1 3-3/M-O. 5/M 0.001 25.6 28. 3 

1 3-4/M-O. 5/M 0.002 34.3 26.7 

1 3-5/M-O. 5/M 0.003 38.6 35.6 

13-6/M-O. 5/M 0.004 47.7 43.4 

* See Appendix A 
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TABLE2.15 

CRACK DENSITY OF OVEN DRIED SPECIMENS. 

SUSTAINED AND CYCLIC LOADING : CEMENT PASTE WITH W/C = 0.5, 0.3 

Crack Density, in .lin. 2 

* Specimen Maximum Transverse Longitudinal 

Strain Surface Surface 

14-4/P-0.5/S 0.0039 22.6 27.4 

1 4-5/P-0. 5/S 0.0062 34. 1 26.7 

15-4/P-0.5/S 0.0040 28.6 25.7 

1 5-5/P-0. 5/S 0.0059 37.2 35.9 

16-4/P-0.3/S 0.0042 38.9 38.4 

16-5/P-O. 3/S 0. 0061 46.8 42.4 

17-4/P-0.3/S 0.0039 42.7 37.7 

1 7-5/P-0. 3/S 0.0059 46.2 50.5 

18-4/P-0.5/C 0.002 28.4 27.3 

18-5/P-0.5/C 0.004 40.7 39.4 

19-4/P-0.5/C 0.002 34. 1 26.5 

1 9-5/P-0. 5/C 0.004 41.4 35.2 

20-4/P-0.3/C 0.002 32.4 27.8 

20-5/P-0.3/C 0.003 49. 1 48.6 

21-4/P-0.3/C 0.0025 34.2 29.7 

21-5/P-0.3/C 0.003 57.8 43.4 

* See Appendix A 
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TABLE 2.16 

CRACK DENSITY OF SOLVENT REPLACEMENT DRIED SPECIMENS. 

MONOTONIC LOADING : CEMENT PASTE WITH A W/C = 0.5 

Crack Density, in. lin. 2 

* Specimen Maximum Transverse Longitudinal 

8-1/P-0.5/NL 
8-2/P-0.5/M 
8-3/P-0.5/M 
8-4/P-0.5/M 
8-5/P-0.5/M 
8-6/P-0.5/M 
9-1/P-0.5/M 
9-2/P-0.5/M 
9-3/P-0.5/M 
9-4/P-0.5/M 
9-5/P-0.5/M 
9-6/P-0.5/M 

Strain 

o.o 
0.0005 
0. 001 
0.002 
0.004 
0.006 
0.0 
0.0005 
0.001 
0.002 
0.004 
0.006 

* See Appendix A 

Surface Surface 

23.6 25. 2 
26.8 27.3 
28.4 28.1 
32.3 31.6 
41.7 40.5 
53.4 49.4 
22.9 22.5 
26.2 25.8 
27.5 27.2 
31.4 31.7 
39.6 38.2 
50.7 49.8 

TABLE 2.17 

CRACK DENSITY OF SILICA GEL DRIED SPECIMENS. 

MONOTONIC LOADING : CEMENT PASTE WITH A W/C = 0.5 

Crack Density, in,/in. 2 

* Specimen Maximum Transverse Longitudinal 

Strain Surface Surface 

9-1/P-0.5/NL 0.0 1 9. 4 2'1 . 8 
9-2/P-0.5/M 0.0005 25. 3 23.6 
9-3/P-0.5/M 0.001 26.8 26. 1 
9-4/P-0.5/M 0.002 27.6 27.8 
9-5/P-0.5/M 0.004 33.9 31.4 
9-6/P-0.5/M 0.006 40.5 37.6 

* See Appendix A 



154 

TABLE 2.18 

AVERAGE CRACK DENSITY OF OVEN DRIED SPECIMENS AT EACH STRAIN. 

Maximum 

Strain 

0.0 
0.0005 
0. 001 
0.002 
0.004 
0.006 

MONOTONIC LOADING: CEMENT PASTE WITH A W/C = 0.7 

Crack Density, in./in. 2 

* Transverse 

Surface 

19.7 
24. 1 
25.8 
30.4 
38.9 
43.6 

* Longitudinal 

Surface 

18.6 
22.8 
23.9 
29.4 
36.3 
40.9 

* Each value is an average of two specimens. 

TABLE 2.19 

AVERAGE CRACK DENSITY OF OVEN DRIED SPECIMENS AT EACH STRAIN. 

Maximum 

Strain 

0.0 
0.0005 
0. 001 
0.002 
0.004 
0.006 

MONOTONIC LOADING : CEMENT PASTE WITH A W/C = 0.5 

Crack Density, in./in. 2 

* Transverse 

Surface 

20.6 
22.4 
25. 1 
28. 1 
34.4 
44.0 

* Longitudinal 

Surface 

19.7 
22. 1 
25.0 
27.4 
33.1 
42.0 

* Each value is an average of three specimens. 
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TABLE 2.20 

AVERAGE CRACK DENSITY OF OVEN DRIED SPECIMENS AT EACH STRAIN. 

Maximum 

Strain 

0.0 
0.0005 
0. 001 
0.002 
0.003 
0.004 
0.006 

MONOTONIC LOADING : CEMENT PASTE WITH A W/C = 0.3 

2 Crack Density, in./in. 

* Transverse 

Surface 

22.5 
22.7 
24.9 
26.2 
28.9 
33.2 
46. 1 

* Longitudinal 

Surface 

22.3 
22.6 
25.2 
25.9 
30.4 
32.7 
44.3 

* Each value is an average of three specimens. 

TABLE 2.21 

AVERAGE CRACK DENSITY OF OVEN DRIED SPECIMENS AT EACH STRAIN. 

Maximum 

Strain 

0.0 
0.0005 
o. 001 
0.002 
0.003 
0.004 

MONOTONIC LOADING : MORTAR WITH A W/C = 0.5 

Crack Density, in./in. 2 

* Transverse 

Surface 

1 3. 3 
17.2 
24.8 
26.2 
35.7 
47.7 

* Longitudinal 

Surface 

1 2. 9 
22.3 
25.2 
25.3 
32.6 
43.4 

* Each value is an average of two specimens. 
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TABLE 2.22 

AVERAGE CRACK DENSITY OF OVEN DRIED SPECIMENS AT EACH STRAIN. 

Maximum 

Strain 

0.004 
0.006 

0.004 
0.006 

* Each 

SUSTAINED LOADING 

Crack Density, in./in. 2 

* Transverse 

Surface 

CEMENT PASTE WITH A W/C 

26.6 
35.7 

CEMENT PASTE WITH A W/C 

36.8 
46.7 

value is an average of two 

TABLE 2. 23 

* Longitudinal 

Surface 

0.5 

25.6 
33.3 

0.3 

35.1 
46.5 

specimens. 

AVERAGE CRACK DENSITY OF OVEN DRIED SPECIMENS AT EACH STRAIN. 

Maximum 

Strain 

0.002 
0.004 

0.002 
0.003 

* Each 

CYCLIC LOADING 

Crack Density, in./in. 2 

* Transverse 

Surface 

CEMENT PASTE WITH A W/C 
31.3 
4L1 

CEMENT PASTE WITH A W/C 
33.3 
53.5 

value is an average of two 

= 

* Longitudinal 

Surface 

0.5 
26.9 
37.3 

0.3 
28.8 
46.0 

specimens. 
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TABLE 2.24 

AVERAGE CRACK DENSITY BASED ON MICROSCOPIC STRUCTURES. 

MONOTONIC LOADING : TRANSVERSE AND LONGITUDINAL SURFACES OF 

OVEN DRIED CEMENT PASTE WITH A W/C = 0.7 

* Maximum Structure ** Crack Density, ** % of Total 

Strain . ;· 2 1n. 1n. Crack Density 

Transverse Longitudinal Transverse Longitudinal 

III 15.2 1 4. 5 77.2 78.2 
o.o CH-III 2.3 2.2 11.7 11. 4 

CH 2.2 1.9 11 • 1 1 0. 4 

III 17.9 17.4 74.3 76.3 
0.0005 CH-III 3.7 3. 1 15.3 13. 5 

CH 2.5 2.3 10.4 10.2 

III 19.4 18.4 75.2 76.8 
0.001 CH-III 3.5 2.8 1 3. 6 11 • 9 

CH 2.9 2.7 11.2 11 • 3 

III 25.3 24.9 83.2 84.7 
0.002 CH-III 2.7 2.4 8.9 8.2 

CH 2.4 2. 1 7.9 7. 1 

III 30.8 29.5 79.2 81.3 
0.004 CH-III 4.3 3.8 11 . 0 1 o. 4 

CH 3.8 3.0 9.8 8.3 

III 35.6 34.2 81.7 83.5 
0.006 CH-III 4.2 3.7 9.6 9. 1 

CH 3.8 3.0 8.7 7.4 

* See Section 2.5.4.1 for descriptions of structures. 

** Each value is an average of two specimens. 
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TABLE 2.25 

AVERAGE CRACK DENSITY BASED ON MICROSCOPIC STRUCTURES. 

MONOTONIC LOADING : TRANSVERSE AND LONGITUDINAL SURFACES OF 

OVEN DRIED CEMENT PASTE WITH A W/C = 0.5 

* Maximum Structure 

Strain 

** Crack Density, 

. I. 2 1n. m. 

** % cf Total 

Crack Density 

Transverse Longitudinal Transverse Longitudinal 

III 17.2 16.2 83.5 82.3 
0.0 CH-III 2. 1 2.0 1 0. 2 9.9 

CH 1.3 1 • 5 6.3 7.8 

III 17.4 1 6. 8 77.7 75.9 
0.0005 CH-III 2.9 2.9 13.0 1 2. 9 

CH 2. 1 2.5 9.3 11.2 

III 21.0 21.2 83.7 84;6 
0. 001 CH-III 2.0 1.9 8.0 7.6 

CH 2. 1 1.9 8.3 7.8 

III 23.9 23.3 85.0 85. 1 
0.002 CH-III 1.9 1.8 6.8 6.5 

CH 2.3 2.3 8.2 8.4 

III 27.1 25.7 78.8 77.6 
0.004 CH-III 3.2 3.4 9.3 10.3 

CH 4. 1 4.0 11.9 1 2. 1 

III 34.7 33.4 78.9 79.4 
0.006 CH-III 4.9 4.7 11.1 11.2 

CH 4.4 3.9 10.0 9.4 

* See Section 2.5.4.1 for descriptions of structures. 

** Each value is an average of three specimens. 
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TABLE 2. 26 

AVERAGE CRACK DENSITY BASED ON MICROSCOPIC STRUCTURES. 

MONOTONIC LOADING : TRANSVERSE AND LONGITUDINAL SURFACES OF 

OVEN DRIED CEMENT PASTE WITH A W/C = 0.3 

* Maximum Structure 

Strain 

** Crack Density, 

. ;· 2 1n. 1n. 

** % of Total 

Crack Density 

Transverse Longitudinal Transverse Longitudinal 

III 17.4 17.5 77.3 78.4 
0.0 CH-III 2.2 1.9 9.8 8.6 

CH 2.7 2.7 1 2. 0 1 2. 1 
UHC-III 0.2 0.2 0.9 0.9 

III 18. 1 17.9 79.7 79.2 
0.0005 CH-III 2. 1 2.3 9.2 10.3 

CH 2.0 2. 1 8.8 9.4 
UHC-III 0.3 0.2 1.3 1.1 

III 19.8 21 • 0 79.5 83.4 
0. 001 CH-Ill 2.4 2.0 9.6 8. 1 

CH 2.3 1.9 9.3 7.6 
UHC-III 0.4 0.2 1.6 0.9 

III 20.2 19.9 77. 1 76.7 
0.002 CH-III 3.0 3.2 11 • 4 1 2. 4 

CH 2.6 2.5 10.0 9.6 
UHC-III 0.4 0.3 1.5 1.3 

III 27.5 26.5 82.9 81 • 1 
0.004 CH-III 2.6 2.9 7.8 8.9 

CH 2.6 2.8 7.8 8.7 
UHC-III 0.5 0.4 1.5 1.3 

III 37.0 35.4 80.2 79.8 
0.006 CH-III 4.5 4.7 9.8 10.5 

CH 4.0 3.6 8.7 8.2 
UHC-III 0.6 0.5 1.3 1.2 

* See Section 2.5.4.1 for descriptions of structures. 
** Each value is an average of three specimens. 



160 

TABLE 2. 27 

AVERAGE CRACK DENSITY BASED ON MICROSCOPIC STRUCTURES. 

SUSTAINED AND CYCLIC LOADING : TRANSVERSE AND LONGITUDINAL SURFACES OF 

OVEN DRIED CEMENT PASTE WITH A W/C = 0.5 

* ** ** Loading Maximum Structure Crack Density, % of Total 

Regime Strain in. lin. 2 Crack Density 

Trans. Long. Trans. Long. 

III 21.8 21 • 2 82.0 82.7 

0.004 CH-Ili 2.6 2.6 9.8 1 0 w 1 

CH 2.2 1.8 8.2 7.2 

Sustained 

III 27.6 26.4 77.3 79.4 

0.006 CH-III 4.3 3.8 1 2. 0 11.3 

CH 3.8 3. 1 10.7 9.3 

III 24.6 21.8 78.6 81.1 

0.002 CH-III 3.3 2.4 10.5 8.8 

CH 3.4 2.7 1 o. 9 1 0. 1 

Cyclic 

III 33.6 31.1 81.8 83.2 

0.004 CH-Ili 3.9 3.5 9.5 9.5 

CH 3.6 2.7 8.7 7.3 

* See Section 2.5.4.1 for descriptions of structures. 

** Each value is an average of two specimens. 
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TABLE 2. 28 

AVERAGE CRACK DENSITY BASED ON MICROSCOPIC STRUCTURES. 

SUSTAINED AND CYCLIC LOADING : TRANSVERSE AND LONGITUDINAL SURFACES OF 

OVEN DRIED CEMENT PASTE WITH A W/C = 0.3 

* ** ** Loading Maximum Structure Crack Density, % of Total 

Regime Strain in .lin. 2 Crack Density 

Trans. Long. Trans. Long. 

III 30.7 28.2 83.4 80.4 

0.004 CH-III 3.4 3.9 9.2 11.2 

CH 2.2 2.6 6.0 7.2 

UHC-III 0.5 0.4 1.4 1.2 

Sustained 

III 38.9 38.9 83.3 83.6 

0.006 CH-III 3.8 3.7 8. 1 8. 1 

CH 3.5 3.4 7.5 7.3 

UHC-III 0.5 0.5 1 • 1 1 • 0 

III 27.6 24.0 82.9 83.2 

0.002 CH-III 2.9 2.6 8.7 9. 1 

CH 2.8 2.2 8.4 7.7 

Cyclic 

III 41.1 36.2 76.8 78.7 

0.003 CH-III 6.2 5.2 11.6 11 • 2 

CH 5.5 4. 1 10.3 9.0 

UHC-III 0.7 0.5 1.3 1.1 

* See Section 2.5.4.1 for descriptions of structures. 

** Each value is an average of two specimens. 
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TABLE 2. 29 

AVERAGE CRACK DENSITY BASED ON MICROSCOPIC STRUCTURES. 

MONOTONIC LOADING : TRANSVERSE AND LONGITUDINAL SURFACES OF 

* Maximum Structure 

Strain 

III 
0.0 SG-III 

CH-III 
CH 

III 
0.0005 SG-III 

CH-III 
CH 

III 
0. 001 SG-III 

CH-III 
CH 

III 
0.002 SG-III 

CH-III 
CH 

III 
0.003 SG-III 

CH-III 
CH 

III 
0.004 SG-III 

CH-III 
CH 

* See Section 

OVEN DRIED MORTAR WITH A W/C = 0.5 

** Crack Density, 

. I. 2 1n. 1n. 

Transverse Longitudinal 

9.5 9.3 
2.4 2.2 
0.8 0.8 
0.6 0.6 

1 2. 4 1 6. 3 
2.7 3.6 
1.0 1.2 
1 • 1 1.2 

17.6 17.7 
4.4 4.6 
1.6 1.7 
1.2 1 • 2 

20.1 18.0 
2.5 4.0 
1.9 1.9 
1.7 1.4 

211.3 22.3 
6.7 5.9 
2.5 2.3 
2.2 2. 1 

32.0 28.5 
9.4 8.9 
3.5 3.3 
2.8 2.7 

2.5.4.1 for descriptions of 

** % of Total 

Crack Density 

Transverse Longitudinal 

71.4 72.3 
18.0 1 6. 7 
6.0 6. 1 
4.6 4.9 

72.1 73. 1 
1 5. 7 1 6. 2 
5.8 5.3 
6.4 5.4 

71.0 70.5 
17.7 1 7. 7 
6.5 6.9 
4.8 4.9 

76.7 71.2 
9.5 15.8 
7.3 7.4 
6.5 5.6 

68. 1 68.3 
18.8 1 8. 1 
7.0 7.2 
6. 1 6.4 

67.1 65.8 
1 9. 7 20.4 
7.3 7.6 
5.9 6.2 

structures. 
** Each value is an average of two specimens. 
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TABLE 2. 30 

AVERAGE CRACK WIDTH AT EACH STRAIN FOR MONOTONIC, SUSTAINED AND 

CYCLIC LOADING. OVEN DRIED CEMENT PASTE WITH A W/C ~ 0.5 

Loading Maximum 

Regime Strain 

Monotonic 0.0 

0.0005 

0.001 

0.002 

0.004 

0.006 

Sustained 0.004 

0.006 

Cyclic 0.002 

o. 004 

* Avg. Crack Width, ~m 

Trans. Surface 

(Long. Surface) 

1 • 01 
(1.03) 
0.94 

( 1 • 01) 
1.02 

(1.02) 
1.02 

( 1 . 05) 
1 • 22 

( 1 • 21 ) 
1.38 

( 1 • 39) 

1. 21 
(1.18) 
1. 37 

(1.41) 

1.02 
( 1 • 01 ) 
1. 22 

(1.19) 

Width Range, )lm 

Trans. Surface 

(Long. Surface) 

0.20-5.50 
(0.20-5.50) 
0.20-5.75 

(0.20-6.00) 
0.20-5.75 

(0.20-5.50) 
0.20-5.75 

(0.20-5.75) 
0.20-6.25 

(0.20-6.25) 
0. 20-7.00 

( 0. 20-6. 50) 

0.20-6.00 
(0. 20-6. 00) 
0. 20-6. 50 

(0.20-6.00) 

0.20-5.50 
(0.20-6.00) 
0.20-6.50 

(0.20-6.00) 

* Each value is an average of three specimens for monotonic 
loading, and two specimens for sustained and cyclic loading. 

1 pm ~ 0.04x10-3 in. 



164 

TABLE 2.31 

AVERAGE CRACK WIDTH AT EACH STRAIN FOR MONOTONIC, SUSTAINED AND 

CYCLIC LOADING. OVEN DRIED CEMENT PASTE WITH A W/C = 0.3 

* Loading Maximum Avg. Crack Width, )Jm Width Range, pm 

Regime Strain Trans. Surface Trans. Surface 

(Long. Surface) (Long. Surface) 

Monotonic 0.0 0.97 0.20-5.00 
( 1 • 01 ) (0. 20-5. 00) 

0.0005 1.02 0.20-5.25 
( 1. 02) (0.20-5.25) 

0.001 1 . 01 0.20-5.50 
( 1 • 03) (0.20-6.00) 

0.002 1.02 0.20-6.00 
( 1 • 05) (0.20-6.00) 

0.004 1.17 0.20-7.00 
(1.14) (0.20-6.00) 

0.006 1.36 0.20-6.75 
( 1. 38) (0.20-6.50) 

Sustained 0.004 1. 21 0.20-6.25 
( 1 • 23) (0. 20-6. 25) 

0.006 1. 35 0. 20-7.00 
( 1. 34) (0.20-7.00) 

Cyclic 0.002 1.04 0.20-6.25 
( 1 . 05) (0.20-6.00) 

0.003 1. 15 0.20-6.25 
(1.15) (0.20-6.50) 

* Each value is an average of three specimens for monotonic 
loading, and two specimens for sustained and cyclic loading. 

1 pm = 0.04x10-3 in. 
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TABLE 2.32 

AVERAGE CRACK WIDTH AT EACH STRAIN FOR MONOTONIC, SUSTAINED AND 

CYCLIC LOADING. SOLVENT REPLACEMENT AND SILICA GEL DRIED CEMENT 

Drying Maximum 

Method Strain 

Solvent 0.0 
Replacement 

0.0005 

0.001 

0.002 

0.004 

0.006 

Silica Gel 0.0 

0.0005 

0. 001 

0.002 

0.004 

0.006 

PASTES WITH A W/C ~ 0.5 

* Avg. Crack Width, ~m 

Trans. Surface 

(Long. Surface) 

0. 71 
(0.75) 
0.70 

(0.75) 
0.74 

( 0. 81) 
0.82 

(0.82) 
0.87 

(0.85) 
0.95 

(0.95) 

0.77 
( 0. 70) 
0. 81 

(0.81) 
0.94 

(0.95) 
1 • 01 

( 1 • 05) 
1.10 

(1.10) 
1 • 21 

(1.24) 

Width Range, ~m 

Trans. Surface 

(Long. Surface) 

0.15-5.00 
(0.15-5.00) 
0.20-5.00 

(0.20-5.00) 
0.15-5.25 

(0.20-5.00) 
0.15-5.00 

(0.15-5.00) 
0.15-5.25 

(0.15-5.25) 
0.15-5.25 

(0.15-6.50) 

0.25-5.25 
(0.25-6.00) 
0.20-5.25 

(0.20-5.25) 
0.20-5.50 

(0.20-5.50) 
0.20-5.75 

(0.20-5.75) 
0. 25-6.25 

(0.15-6. 25) 
"0.20-5.75 

(0.20-6.25) 

* Each value is an average of two specimens for solvent 
replacement drying. The values for silica gel drying 
are from a single specimen at each strain. 

-3 1 ~m ~ 0.04x10 in. 
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TABLE 2. 33 

AVERAGE CRACK WIDTH AT EACH STRAIN FOR MONOTONIC LOADING. 

OVEN DRIED MORTAR WITH A W/C = 0.5 

* Maximum Avg. Crack Width, \lm Width Range, \liD 

Strain Trans. Surface Trans. Surface 

(Long. Surface) (Long. Surface) 

0.0 1.04 0.15-5.00 

( 1. 01) (0.15-5.00) 

0.0005 1.03 0.15-5.00 

( 1 • 07) (0.15-5.00) 

o. 001 1.08 0.20-5.50 

(1.11) (0.15-6.00) 

0.002 1. 13 0.15-6.00 

( 1. 09) (0.15-6.00) 

0.003 1.25 0.15-7.50 

( 1. 27) (0.15-7.00) 

0.004 1.23 0.15-6.75 

( 1 • 28) (0.15-7.00) 

* Each value is an average of two specimens. 

1 \lm = 0.04x10-3 in, 
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TABLE 3. 1 

MEAN TRACE LENGTH AND VARIANCE OF CRACK TRACE LENGTH DISTRIBUTION 

FOR MONOTONIC LOADING OF CEMENT PASTE WITH A W/C = 0. 7. 

Transverse Surface Longitudinal Surface 

* * Maximum <~>T' var(~)T' <~9>L ' var(9. 6) L 
' 

Strain 10-31n. 10-61n. 2 10-3in. 10-6. 2 1n. 

o.o 1.54 0.47 1 • 5.2 0.67 
0.0005 1.55 0.72 1.52 0.59 
0.001 1.63 0.54 1 . 69 -2 1 • 02 -3 
0.002 2.07 1 • 21 0 .. 68x1 0_

2
6+2, 02 1. 21 x10_

3
6+1. 07 

0.004 2.24 1.15 0.73x10_26+2.11 1.18x10_
3

9+1,24 
0.006 2.38 1. 32 0.76x10 9+2.22 1.04x10 6+1.65 

TABLE 3. 2 

MEAN TRACE LENGTH AND VARIANCE OF CRACK TRACE LENGTH DISTRIBUTION 

FOR MONOTONIC LOADING OF CEMENT PASTE WITH A W/C = 0.5 

Transverse Surface Longitudinal Surface 

* * Maximum G>T' var(OT' <~ 9>L ' var(i 6)L ' 
Strain 10-3in. -6 2 1 o in. 10-3in. 10-61n. 2 

o.o 1.49 0.64 1.50 0.71 
0.0005 1.49 0.78 1.51 0.68 
0.001 1. 51 0.66 1.58 -2 0.72 -3 
0.002 2. 01 1. 37 0.75x10_29+1.90 1.15x10_

3
9+1.35 

0.004 2.23 0.82 0.62x10_29+2.07 1.20x10_
3

6+1,58 
0.006 2. 31 1.45 0.65x10 8+2.14 1.08x10 9+1, 79 

* 6 in degrees. 
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TABLE 3.3 

MEAN TRACE LENGTH AND VARIANCE OF CRACK TRACE LENGTH DISTRIBUTION 

FOR MONOTONIC LOADING OF CEMENT PASTE WITH A W/C = 0.3 

Transverse Surface 

Maximum <J!.>T' 

Strain 10-3in. 

o.o 1 • 48 
0.0005 1. 51 
0.001 1.62 
0.002 1.94 
0.003 1 . 98 
0.004 2. 11 
0.006 2.42 

var(J!.)T' 

10-6in. 2 

0.58 
0.82 
0. 71 
0.94 
0. 91 
1. 33 
1. 24 

Longitudinal Surface 

1.52 0.55 
1 . 54 0.71 
1. 67 -2 0.77 
0. 64x1 0_29+1. 78 0. 96 3 
0.67x10_29+1.86 1.03x10_

3
9+1.25 

0.59x10_29+1.92 1.09x10_
3

9+1.27 
o.61x10 9+2.10 1. 21 x1 0 8+1.52 

TABLE 3. 4 

MEAN TRACE LENGTH AND VARIANCE OF CRACK TRACE LENGTH DISTRIBUTION 

FOR MONOTONIC LOADING OF MORTAR WITH A W/C = 0.5 

Transver·se Surface Longitudinal Surface 

* * Maximum <J!.> T' var(J!.)T' <J!.9>L • var(J!. 9)L • 
Strain 10-3in. 10-6in. 2 10-\n. 10-6. 2 1n. 

o.o 1. 21 0.43 1.20 0.47 
0.0005 1.53 0.51 1 • 51 0. 119 
0.001 1. 55 0.64 1.56 0.58 
0.002 1.98 1. 32 2.13 -2 1 . 36 3 
0.003 2.06 1. 35 o.65x10_29+2.05 1.05x10_

3
9+1,41 

0.004 2.25 1. 51 0.70x10 9+2.08 1.22x10 9+1.53 

* e in degrees. 
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TABLE 3.5 

MEAN TRACE LENGTH AND VARIANCE OF CRACK TRACE LENGTH DISTRIBUTION 

FOR SUSTAINED LOADING OF CEMENT PASTE 

Transverse Surface Longitudinal Surface 

* * Maximum <.R.> T' var(i)T' <.t6>L ' var(.t 6)L ' 
Strain 10-3in. 10-6. 2 1n. 10-\n. 10-6. 2 1n. 

CEMENT PASTE WITH A W/C ~ 0.5 

0.004 1.98 1.23 
-2 

1 . 21 x 1 (~ 6+ 1 . 77 0.55x10_26+1.93 
0.006 2. 11 1. 24 0.50x10 6+1,96 1.36x10 6+1.65 

CEMENT PASTE WITH A W/C = 0.3 

0.004 1. 22 -2 -3 1.92 0.67x10_26+1.89 1.18x10_
3

6+1.64 
0.006 2.03 1. 25 0.73x10 6+1.97 1.27x10 6+1.72 

TABLE 3.6 

MEAN TRACE LENGTH AND VARIANCE OF CRACK TRACE LENGTH DISTRIBUTION 

FOR CYCLIC LOADING OF CEMENT PASTE 

Transverse Surface 

Maximum <i>T' 

Strain 10-3in. 

0.002 2.03 
0.004 2. 27 

0.002 1. 91 
0.0025 1.97 
0.003 2.28 

* e in degrees. 

var(i)T, 

10-6in. 2 

CEMENT PASTE 

o. 73 
1. 25 

CEMENT PASTE 

0.80 
0.75 
1.02 

Longitudinal Surface 

WITH A W/C = 0.5 

-2 1.50 0.80x10_
2

6+1.95 
0.72x10 6+2.11 1. 70 

WITH A W/C = 0.3 

2. 1 3 0.78 
2.17 -2 0.82 
0.51x10 6+2.23 0. 91 
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TABLE 3. 7 

NUMBER OF CRACKS PER UNIT AREA FOR MONOTONIC LOADING OF 

CEMENT PASTE WITH A W/C = 0.7 

Maximum Measured, MT or ML' and Modified, Number of Specimen 

Strain ~ or ML' Number of Cracks Preparation Cracks 

Transverse Surface Longitudinal Surface 

o.o 15584 9610 15564 9590 5974 
0.0005 15756 101 29 15921 10294 5627 
0. 001 15961 1 0491 15477 10007 5470 
0.002 16349 11836 15167 10654 4513 
0.004 16548 1 3393 151 38 11983 3155 
0.006 17684 15336 15671 13323 2348 

TABLE 3.8 

NUMBER OF CRACKS PER UNIT AREA FOR MONOTONIC LOADING OF 

CEMENT PASTE WITH A W/C = 0.5 

Maximum Measured, MT or ML' and Modified, Number of Specimen 

Strain MT or ML' Number of Cracks Preparation Cracks 

Transverse Surface Longitudinal Surface 

o.o 171 23 10811 17051 10739 6312 
0.0005 17207 11 01 2 17074 10879 6195 
0.001 17434 11505 16765 10836 5929 
0.002 17694 1 2017 17'i18 11 441 5677 
0.004 18509 1 3273 17903 131 67 4736 
0.006 18900 15887 17711 14698 3013 
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TABLE 3.9 

NUMBER OF CRACKS PER UNIT AREA FOR MONOTONIC LOADING OF 

CEMENT PASTE WITH A W/C: 0.3 

Maximum Measured, MT or ML' and Modified, Number of Specimen 

Strain ~ or ML' Number of Cracks Preparation Cracks 

Transverse Surface Longitudinal Surface 

0.0 18497 11959 17825 11 287 6538 
0.0005 18103 11854 17661 11 41 2 6249 
0. 001 17362 11235 16643 1 0516 61 27 
0.002 17178 11 495 161 40 10457 5683 
0.003 17194 12727 161 55 11 688 4467 
0.004 17016 13175 16090 12249 3841 
0.006 1921 4 16198 18728 1571 2 3016 

TABLE 3.10 

NUMBER OF CRACKS PER UNIT AREA FOR MONOTONIC LOADING OF 

MORTAR WITH A W/C ~ 0.5 

Maximum Measured, MT or ML' and Modified, Number of Specimen 

Strain MT or ML' Number of Cracks Preparation Cracks 

Transverse Surface Longitudinal Surface 

0.0 1 0931 7686 10923 7678 3245 
0.0005 10979 8105 10953 8079 2874 
o. 001 13243 10710 1 2982 10449 2533 
0.002 1 4959 12777 13684 11502 2182 
0.003 17061 15194 1 4286 1 2419 1867 
0.004 17449 16178 14286 14335 1 271 
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TABLE3.11 

NUMBER OF CRACKS PER UNIT AREA FOR SUSTAINED LOADING OF CEMENT PASTE 

Maximum Measured, MT or ML' and Modified, Number of Specimen 

Strain ~ or ML' Number of Cracks Preparation Cracks 

Transverse Surface Longitudinal Surface 

CEMENT PASTE WITH A W/C = 0.5 

0.004 1 31 68 10303 11 71 4 8849 2865 
0.006 1 4829 1 2417 1 3619 11 207 2412 

CEMENT PASTE WITH A W/C = 0.3 

0.004 17188 1 41 67 16578 13557 3021 
0.006 21040 181 26 18256 1 5342 291 4 

TABLE3.12 

NUMBER OF CRACKS PER UNIT AREA FOR CYCLIC LOADING OF CEMENT PASTE 

Maximum Measured, MT or ML' and Modified, Number of Specimen 

Strain MT or ML' Number of Cracks Preparation Cracks 

Transverse Surface Longitudinal Surface 

CEMENT PASTE WITH A W/C = 0.5 

0.002 15951 12167 13991 10207 3784 
0.004 15836 13304 14304 11772 2532 

CEMENT PASTE WITH A W/C = 0.3 

0.002 15708 1181 2 1 4024 1 01 37 3887 
0.0025 15721 11827 1 4036 1 01 42 3894 
0.003 19655 1 6930 19102 16377 2725 
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TABLE3.13 

SURFACE CRACK DENSITY FOR NONLOADED SPECIMENS OF 

CEMENT PASTE AND MORTAR 

Material Water-Cement Trans. Surface Long. Surface 

Ratio 

Cement Paste 
0.7 
0.5 
0.3 

1 4.8 
16.2 
17.7 

1 4. 7 
16.2 
17.6 

Mortar 0.5 9.3 9.3 

TABLE 3.14 

SURFACE CRACK DENSITY FOR MONOTONIC LOADING OF 

CEMENT PASTE AND MORTAR 

Maximum Transverse Surface Longitudinal Surface 

Strain MT<DT' in. lin. 2 
ML <DL' in./in. 2 

Paste Paste Paste Mortar Paste Paste Paste 

W/C=0.7 W/C=0.5 W/C=0.3 W/C=0.5 W/C=O. 7 W/C=0.5 W/C=O. 3 

0.0 1 4. 8 16.2 17.7 9.3 1 4. 7 16.2 17.6 
0.0005 15.7 16.5 17.9 1 2. 4 15.5 16.3 17.7 
0. 001 17. 1 17.3 18.2 16.6 16.8 16.9 17.8 
0.002 24.5 24.0 22.3 25.4 23.6 23. 1 21 • 5 
0.003 25. 2 31.3 24. 1 
0.004 30.0 29.6 27.8 36. 1 28. 3 27.9 26.8 
0.006 36.5 36.7 39.2 34.2 34.3 36.6 

Mortar 

W/C=0.5 

9.3 
1 2. 2 
16.3 
24. 5 
29.5 
34.2 
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TABLE3.15 

SURFACE CRACK DENSITY.FOR SUSTAINED LOADING OF CEMENT PASTE 

Maximum 

Strain 

0.004 

0.006 

Transverse Surface 

. MT<~>T' in .lin. 
2 

W/C=0.5 W/C=0.3 

20.4 

26.2 

27.2 

36.8 

TABLE3.16 

Longitudinal Surface 

ML<~>L' in./in.
2 

W/C=0.5 W/C=0.3 

19.6 

24.8 

26. 1 

35.2 

SURFACE CRACK DENSITY FOR CYCLIC LOADING OF CEMENT PASTE 

Maximum 

Strain 

0.002 

0.004 

0.002 

0.0025 

0.003 

Transverse Surface 

MT<DT' in .lin. 
2 

Longitudinal Surface 

ML<~>L' in./in.
2 

CEMENT PASTE WITH A W/C 0.5 

24.7 

30.2 

CEMENT PASTE WITH A W/C 0.3 

22.9 

23.3 

38.6 

23.9 

28.8 

22. 1 

22.4 

37. 1 
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TABLE 3.17 

THREE-DIMENSIONAL CRACK PARAMETERS FOR NONLOADED SPECIMENS OF 

CEMENT PASTE AND MORTAR 

Material Water Cement K r var(aljl), 

10-6in2 

NV, NV<a3> 

Ratio 

0.7 
Cement Paste 0.5 

0.3 

Mortar 0.5 

-0.02 1.0 
0.0 1.0 

-0.02 1.0 

0.0 1.0 

1. 1 2 
1.03 
1.05 

0.95 

TABLE 3.18 

0.70 
0.82 
0.61 

0. 51 

1o6in-3 

3.57 
4.63 
4.89 

3.22 

THREE-DIMENSIONAL CRACK PARAMETERS FOR MONOTONIC LOADING OF 

Maximum K r 

Strain 

0.0 -0.02 1.0 
0.0005 -0.05 1.0 
0.001 -0.07 1.0 
0.002 -o. 16 0.92 
0.004 -o. 26 0.95 
0.006 -0.31 0.90 

* 1/J in degrees. 

CEMENT PASTE WITH A W/C = 0.7 

1 . 1 2 
1 • 46 3 
1.5x10_2ljl+1.52 
1.0x10_2ljl+1,67 
1.1x10_2ljl+2.43 
1.0x10 ljl+2.56 

* var(aljl) , 

10-6in. 2 

0.70 
0.62 
0.90 -3 
1.3x10_

3
ljl+1.21 

1.7x10_~ljl+1.55 
1.6x10 ~ljl+2.33 

3.57 
2. 91 
2.34 
2. 41 
1. 23 
1. 12 

0.009 
0.010 
0.012 

0.006 

0.009 
0. 01 3 
0.014 
0.025 
0.057 
0.068 
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TABLE 3.19 

THREE-DIMENSIONAL CRACK PARAMETERS FOR MONOTONIC LOADING OF 

Maximum K r· 

Strain 

0.0 0.00 1.0 
0.0005 -0.07 1 • 0 
0.001 -o. 11 1.0 
0.002 -0.16 0.9 
0.004 -0.27 0.85 
0.006 -0.30 0.87 

CEMENT PASTE WITH A W/C = 0.5 

1. 03 
1 • 43 3 
1. 3x1 o_2ljJ+1. 47 
1 .Ox1 o_ 21J!+1 .69 
1.0x10_21J!+2.35 
1. 2x 1 0 ljJ+ 2. 50 

TABLE 3. 20 

* var(aljJ) , 

10
-6. 2 1n. 

0.82 
0.77 
1 • 21 -3 
1.6x10_

3
ljJ+1.43 

1.5x10_
3

ljJ+1. 71 
1.8x10 ljJ+2.10 

NV' NV<a3> 

106in-3 

4.63 0.010 
3.92 o. 01 3 
3.02 0.015 
2. 31 0.022 
1. 42 0.053 
1 • 28 0.076 

THREE-DIMENSIONAL CRACK PARAMETERS FOR MONOTONIC LOADING OF 

Maximum K r 

Strain 

0.0 -0.02 1.0 
0.0005 -0.05 1 . 0 
0.001 -0.09 1.0 
0.002 -·0. 15 0.95 
0.003 -o. 18 0.90 
0.004 -0.24 0.90 
0.006 -o. 31 0.85 

* ljJ in degrees. 

CEMENT PASTE WITH A W/C = 0.3 

1. 05 
1. 36 
I • 45 _

2 0.9x10_
2

ljJ+1.68 
1.0x10_

2
1J!+2.08 

1.0x10_21J!+2.10 
1.1x10 ljJ+2.35 

* var(aljJ) , 

10-6in. 2 

0. 61 
0. 81 
0.88 
1. 32 
1 • 57 3 
1.4x10=

3
ljJ+1.48 

1.6x10 ljJ+1.79 

NV' NV <a3> 

1061n-3 

4.89 0. 01 2 
4. 11 0.015 
3. 37 0.016 
2.62 0. 021 
2.13 0.028 
1.67 0.047 
1 • 42 0.078 
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TABLE 3. 21 

THREE-DIMENSIONAL CRACK PARAMETERS FOR MONOTONIC LOADING OF 

Maximum K r 

Strain 

0.0 0.00 1.0 
0.0005 -0.07 1.0 
0.001 -0.08 1.0 
0.002 -0.15 0.95 
0.003 -o. 18 1.0 
0.004 -0.24 0.90 

MORTAR WITH A W/C = 0.5 

0.95 
1. 27 
1.42 
1.83 
0.9x1(~1)J+2,27 
1,0x10 ljl+2,46 

TABLE 3. 22 

• var(aljl) , 

10
-6. 2 

1n. 

0. 51 
0. 49 
0.78 
1.13 3 
1,2x10_

3
1)J+0.88 

1,4x10 ljl+1,71 

NV, Nv<a3> 

106in-3 

3. 22 0.006 
2.54 0.010 
2.49 0.014 
2. 31 0.028 
1. 33 o. 051 
1. 28 0.067 

THREE-DIMENSIONAL CRACK PARAMETERS FOR SUSTAINED LOADING OF CEMENT PASTE 

Maximum K r NV, NV <a3> 

Strain 106in-3 

CEMENT PASTE WITH A W/C = 0.5 

0.004 -0.17 0.95 
-2 1.2x10=~1jl+1,57 1. 14 0. 041 0.9x10_21)J+2.02 

0.006 -o. 24 0.90 1.1x10 ljl+2,37 1 , 2x 1 0 ljl+ 1 • 80 1.12 0.050 

CEMENT PASTE WITH A W/C = 0.3 

0.004 -0.18 -2 -3 0.047 1.0 1,0x10_
2

1)J+2,08 0.9x10_
3

1)J+1,79 1.73 
0.006 -o. 19 0.92 1,0x10 ljl+2,31 1.2x10 ljl+1,62 1. 49 0.070 

* 1)J in degrees. 



178 

TABLE 3. 23 

THREE-DIMENSIONAL CRACK PARAMETERS FOR CYCLIC LOADING OF CEMENT PASTE 

Maximum K r 

Strain 

CEMENT PASTE WITH A 

0.002 -o. 1 4 -2 
1 . 0 1.0x1 o_21ji+1 .65 

0.004 -0.20 1.0 1 , 2x 1 0 \ji+ 2, 29 

CEMENT PASTE WITH A 

0.002 -o .15 -2 1.0 0.6x10_
2

1ji+2,05 
0.0025 -0.15 1.0 0.7x10_

2
1ji+2,09 

0.003 -0.17 1.0 0, 9x1 0 1ji+2, 38 

* 1ji in degrees. 

TABLE 3. 24 

* var ( a\ji) , 

10-6. 2 1n. 

W/C = 0.5 

0.70 
1. 28 

W/C = 0.3 

0. 81 
0.78 3 
1.1x10 1ji+1.14 

1 • 71 0. 031 
1 • 1 3 0.059 

1. 52 0.032 
1.50 0.034 
1. 22 0.063 

BOUNDS ON NUMBER OF CRACKS PER UNIT AREA FOR MONOTONIC LOADING OF 

CEMENT PASTE WITH A W/C = 0.5 

Maximum Transverse Surface Longitudinal Surface 

Strain Modified No. of Cracks, MT' in. 
-2 

Modified No. of Cracks, ML' 
. -2 1n. 

(No. before Modification, MT' in.-2) (No, before Modification, ML, 
-2 in. ) 

Lower Bound Upper Bound Lower Bound Upper Bound 

o.oo 10764 10839 10732 10788 
(16238) (17546) (16206) (17495) 

0.0005 10956 11 048 10740 10832 
(16491) (17632) (16275) (17416) 

0.001 11 468 11566 10674 10752 
(16856) ( 18002) (16062) (17188) 

0.002 11969 12037 11 508 11 597 
(16978) (18104) (16517) (17664) 

0.004 14786 14885 13923 13995 
(17883) (19046) (17020) (18156) 

0.006 18262 18418 1711 3 17207 
(21478) (22734) (20329) (21523) 
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TABLE 3. 25 

BOUNDS ON MEAN CHARACTERISTIC CRACK SIZE AND VARIANCE FOR 

MONOTONIC LOADING OF CEMENT PASTE WITH W/C = 0.5 

Maximum 

Strain 

o.oo 
0.0005 
0. 001 
0.002 
0.004 
0.006 

Lower Bound 

1 • 03 
1. 42 
1.3x10=~lji+1.45 
1.0x10_21)J+1.66 
1.0x10_21)J+2.33 
1.2x10 lji+2.47 

* lji in degrees. 

Upper Bound 

1.03 
1. 43 
1.3x10=~1ji+1.48 
1.0x10_2$+1.03 
1.0x10_21)J+2.36 
1.2x10 lji+2.52 

TABLE 3.26 

( ) * 1 0-6. 2 var alji , 1n. 

Lower Bound 

0.82 
0.87 
1. 05 3 
1.6x10=

3
lji+1.38 

1.5x10_
3

1jJ+1.70 
1.8x10 $+2.08 

Upper Bound 

0.82 
0.84 
1 • 25 -3 
1.6x10_

3
1ji+1.45 

1.5x10_
3

1ji+1.74 
1.8x10 lji+2.30 

THREE-DIMENSIONAL CRACK PARAMETERS : MULTI-DIRECTIONAL CRACK TRACES 

TREATED AS SINGLE UNI-DIRECTIONAL TRACES. 

NONLOADED SPECIMENS OF CEMENT PASTE AND MORTAR 

Material Water Cement K r 

Ratio 

0.7 
Cement Paste 0.5 

0.3 

Mortar 0.5 

-0.02 1.0 
o.o 1.0 

-0.02 1.0 

0.0 1.0 

1.58 
1.50 
1. 51 

1.35 

var(alji), 

10-6in2 

0.73 
0.84 
0.63 

0.55 

1. 73 
2.32 
2. 41 

1. 54 

0. 01 4 
0.015 
0.017 

0.008 
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TABLE 3. 27 

THREE-DIMENSIONAL CRACK PARAMETERS : MULTI-DIRECTIONAL CRACK TRACES 

TREATED AS SINGLE UNI-DIRECTIONAL TRACES. 

MONOTONIC LOADING OF CEMENT PASTE WITH A W/C = 0.7 

* * Nv<a\ Maximum K r <aljJ> • var(aljJ) • NV' 

Strain 10-3in. 10-6. 2 1n. 1061n-3 

o.o -0.02 1.0 1.58 o. 73 1. 73 o. 01 4 
0.0005 -0.05 1.0 2.1 0 3 0.64 1 • 40 0.020 
0. 001 -0.07 1.0 1.5x10_

2
1j!+2,16 0.93 3 1.12 0.021 

0.002 -0.16 0.92 1,0x10_21j!+2.23 1. 3x1 o_31j!+1. 26 1 • 1 9 0.036 
0.004 -0.26 0.95 1.1 x1 o_21jJ+3. 47 1. 7 X 1 0 _

3
1jJ+ 1. 58 0.63 0.082 

0.006 -o. 31 0.90 1,0x10 ljJ+3.68 1.6x10 1j!+2,37 0. 51 0.097 

TABLE 3. 28 

THREE-DIMENSIONAL CRACK PARAMETERS : MULTI-DIRECTIONAL CRACK TRACES 

TREATED AS SINGLE UNI-DIRECTIONAL TRACES, 

MONOTONIC LOADING OF CEMENT PASTE WITH A W/C = 0.5 

* * Nv<a3> Maximum K r <aljJ> • var(aljJ) • NV' 

Strain 10-3in. 10-6. 2 1n. 1061n-3 

0.0 0.00 1 • 0 1.50 0.84 2.32 0.015 
0.0005 -0.07 1.0 2.06 0.83 1. 91 0.020 
0. 001 -0.11 1.0 1.3x10=~1jJ+2.12 1. 25 -3 1. 38 0.024 
0.002 -o. 16 0.9 1.0x10_21j!+2.27 1.6x10_

3
1jJ+1.47 1.03 0.033 

0.004 -0.27 0.85 1.0x10_21J!+3.13 1.5x10_
3

1jJ+1.75 0.72 0.076 
0.006 -0.30 0.87 1.2x10 1j!+3.60 1.8x10 1j!+2.14 0.68 0. 105 

* 1jJ in degrees. 
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TABLE 3. 29 

THREE-DIMENSIONAL CRACK PARAMETERS : MULTI-DIRECTIONAL CRACK TRACES 

TREATED AS SINGLE UNI-DIRECTIONAL TRACES. 

MONOTONIC LOADING OF CEMENT PASTE WITH A W/C = 0.3 

* * Nv<a\ Maximum K r <a1Ji> ' var(a1Ji) ' NV' 

Strain 10-3in. 10-6. 2 1n. 1061n-3 

0.0 -0.02 1.0 1. 51 0.63 2. 41 0.017 
0.0005 -0.05 1.0 1.96 0.85 1.93 o. 021 
0. 001 -0.09 1.0 2.09 -2 0.92 1. 41 0.024 
0.002 -0.15 0.95 0.9x10_ 21JI+2.27 1. 36 1. 32 o. 031 
0.003 -0.18 0.90 1.0x10_21J1+2.75 1. 57 3 1. 1 4 0.042 
0.004 -0.24 0.90 1.0x10_21JI+3.01 1.4x10_

3
1Ji+1.53 0.92 0. 071 

0.006 -o. 31 0.85 1.1x10 1Ji+3.56 1.6x10 1Ji+1.84 0. 81 0.109 

TABLE 3. 30 

THREE-DIMENSIONAL CRACK PARAMETERS : MULTI-DIRECTIONAL CRACK TRACES 

TREATED AS SINGLE UNI-DIRECTIONAL TRACES. 

MONOTONIC LOADING OF MORTAR WITH A W/C = 0.5 

* * Nv<a\ Maximum K r <a1Ji> ' var(a1Ji) ' NV, 

Strain 10-3in. 10-6. 2 1n. 106in-3 

0.0 0.00 1.0 1.35 0.55 1.54 0.008 
0.0005 -0.07 1.0 2.08 0.54 1 • 22 0.018 
0. 001 -0.08 1.0 2. 14 0.82 1.19 0.022 
0.002 -o. 15 0.95 2.54 -2 1. 16 3 1.13 0.040 
0.003 -o .18 1.0 0.9x10_21J1+3.21 1.2x10_

3
1Ji+0.92 0. 71 0.072 

0.004 -0.24 0.90 1.0x10 1Ji+3.52 1.4x10 1Ji+1.74 0.60 0.088 

* 1Ji in degrees. 
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TABLE 3. 31 

THREE-DIMENSIONAL CRACK PARAMETERS : MULTI-DIRECTIONAL CRACK TRACES 

Maximum K 

Strain 

0.004 -0.17 
0.006 -0.24 

0.004 -o .18 
0.006 -o. 19 

TREATED AS SINGLE UNI-DIRECTIONAL TRACES. 

r 

0.95 
0.90 

1.0 
0.92 

SUSTAINED LOADING OF CEMENT PASTE 

CEMENT PASTE WITH A 

-2 0.9x10_21jl+2.89 
1.1x10 1Ji+3.41 

CEMENT PASTE WITH A 

-2 1.0x10_
2

1jl+2,89 
1.0x10 1Ji+3.32 

TABLE 3. 32 

* var(alJi) , 

1 0
-6. 2 

1n. 

W/C = 0.5 

1.2x10=~1jl+1.61 
1.2x10 1jl+1.83 

W/C = 0.3 

0.9x10=~1jl+1.82 
1.2x10 1/1+1.64 

NV' NV<a\ 

106in-3 

0.62 0.063 
0. 51 0.072 

0.84 0.070 
o. 73 0.099 

THREE-DIMENSIONAL CRACK PARAMETERS : MULTI-DIRECTIONAL CRACK TRACES 

Maximum K 

Strain 

0.002 -0.14 
0.004 -o. 20 

0.002 -0.15 
0.0025 -o. 15 
0.003 -o. 17 

• ljJ in degrees. 

TREATED AS SINGLE UNI-DIRECTIONAL TRACES. 

r 

1. 0 
1. 0 

1.0 
1 • 0 
1. 0 

CYCLIC LOADING OF CEMENT PASTE 

CEMENT PASTE WITH A 

-2 1.0x10_21Ji+2.39 
1.2x10 1Ji+3.38 

CEMENT PASTE h~TH A 

-2 0.6x10_21jJ+2.97 
0.7x10_21/J+3.01 
0.9x10 1Ji+3.39 

* var(alJi) , 

10-6. 2 1n. 

W/C = 0.5 

0.73 
1. 33 

W/C = 0.3 

0.85 
0.84 -< 1.1 x1 0 -w+1.17 

NV' NV<a3> 

1061n-3 

0. 91 0.044 
0.52 0.083 

0.74 0.045 
o. 71 0.049 
0.62 0.091 
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TABLE 3. 33 

COMPARISONS OF CRACK DENSITIES AND DEGREE OF ANISOTROPY FOR CRACK 

DISTRIBUTIONS IN CEMENT PASTES UNDER MONOTONIC LOADING. 

RESULTS CORRESPOND TO LARGER ESTIMATE OF <a¢> 

Maximum Surface Crack Density, Volume Density, Degree of Anisotropy, 

Strain ~<~>T' in. lin. 2 Nv<a3> K 

(ML <~>L) 

W/C W/C W/C 

0.7 0.5 0.3 0.7 0.5 0.3 0.7 0.5 0.3 

0.0 1 4. 8 16.2 17.7 .014 .015 .017 -.02 .o -.02 

(14.7) ( 16. 2) (17.6) 

0.0005 15.7 16.5 17.9 .020 .020 . 021 -.05 -.07 -.05 

(15.5) (16.3) (17.7) 

0. 001 17. 1 17.3 18.2 • 021 .024 .024 -.07 -. 11 -.09 

(16.8) (16.9) (17.8) 

0.002 24.5 24.0 22.3 .036 • 033 • 031 -. 16 -. 16 -.15 

(23.6) ( 23. 1) ( 21 • 5) 

0.004 30.0 29.6 27.8 .082 .076 • 071 -. 26 -.27 -.24 

( 28. 3) (27.9) (26.8) 

0.006 36.5 36.7 39.2 .097 • 105 • 1 09 -.29 -.30 -. 31 

(34.2) (34.3) (36. 6) 
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TABLE 3. 34 

COMPARISONS OF CRACK DENSITIES AND DEGREE OF ANISOTROPY FOR CRACK 

DISTRIBUTIONS IN CEMENT PASTE AND MORTAR WITH A W/C = 0.5. 

MONOTONIC LOADING. RESULTS CORRESPOND TO LARGER ESTIMATE OF <a~>. 

Maximum Surface Crack Density, Volume Density, Degree of Anisotropy, 

Strain MT<~>T' in. lin. 2 Nv<a3> K 

(ML <~>L) 

Paste Mortar Paste Mortar Paste Mortar 

0.0 1 6. 2 9.3 • 015 .008 .0 .0 

( 16. 2) (9.3) 

0.0005 16.5 1 2. 4 .020 .018 -.07 -.07 

(16.3) (12.2) 

0. 001 17.3 1 6. 6 .024 .022 -. 11 -.08 

(16.9) (16.3) 

0.002 24.0 25.4 .033 .040 -. 1 6 -.15 

( 23. 1 ) (24.5) 

0.004 29.6 36. 1 .076 .088 -.27 -.24 

(27.9) (34. 2) 
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TABLE 3. 35 

COMPARISONS OF CRACK DENSITIES AND DEGREE OF ANISOTROPY FOR CRACK 

DISTRIBUTIONS IN CEMENT PASTE UNDER MONOTONIC AND SUSTAINED LOADING. 

RESULTS CORRESPOND TO LARGER ESTIMATE OF <aW>. 

Maximum Surface Crack Density, Volume Density, Degree of Anisotropy, 

Strain MT<i>T, in./in. 2 Nv<a3> K 

(ML<i>L) 

Monotonic Sustained Monotonic Sustained Monotonic Sustained 

0.004 

0.006 

0.004 

0.006 

29.6 

(27.9) 

36.7 

( 34. 3) 

27.8 

( 26. 8) 

39.2 

(36.6) 

CEMENT PASTE WITH A W/C = 0.5 

20.4 

(19.6) 

26.2 

(24.8) 

.076 .063 

• 1 05 .072 

CEMENT PASTE WITH A W/C = 0.3 

27.2 

( 26. 1 ) 

36.8 

( 35. 2) 

• 071 

• 109 

.070 

.099 

-. 27 -.17 

-.30 -.24 

-.24 -.18 

-. 31 -.19 
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TABLE 3.36 

COMPARISONS OF CRACK DENSITIES AND DEGREE OF ANISOTROPY FOR CRACK 

DISTRIBUTIONS IN CEMENT PASTE UNDER MONOTONIC AND CYCLIC LOADING. 

Maximum 

Strain 

0. 002 

0.004 

0.002 

0.003 

RESULTS CORRESPOND TO LARGER ESTIMATE OF <a~>. 

Surface Crack Density, Volume Density, 

MT<~>T' 

(ML <DL) 

Monotonic 

24.0 

( 23. 1) 

29.6 

(27.9) 

22.3 

( 21 • 5) 

25.2 

(24.1) 

in. lin. 2 
Nv<a\ 

Cyclic Monotonic Cyclic 

CEMENT PASTE WITH A W/C = 0.5 

24.7 .033 .044 

(23.9) 

30.2 .076 .083 

(28.8) 

CEMENT PASTE WITH A W/C = 0.3 

23.3 

(22.4) 

38.6 

( 37. 1 ) 

• 031 

.042 

.045 

• 091 

Degree of 

K 

Monotonic 

-.16 

-. 27 

-. 15 

-.18 

Anisotropy, 

Cyclic 

-. 14 

-.20 

-.15 

-.17 
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TABLE 4.1 

SENSITIVITY OF THE STIFFNESS MODULUS, E
3

, TO VARIATIONS IN 

CRACK PARAMETERS. 

<aw> = 1.0x10-5w + 5.0x10-3in. r = 0.9 

-9 -6 2 
var(aw) = 1.0x10 w + 1.0x10 in. K = -o. 3 

5 -3 N = 4x10 in v . n = oa 

Crack % Increase in Crack Parameter 

Parameter 0 5 10 20 30 

E/E 

<aw> 0.827 0.779 o. 731 0.650 o. 531 

var(aw) 0.827 0.818 0.784 0.740 0. 71 3 

NV 0.827 0.820 0.798 0.764 0.741 

% Decrease in Crack Parameter 

0 5 10 20 30 

r 0.827 0.849 0.893 0. 91 4 

Range of n 

n = oa -10° ~ n ~ 10° -45° ~ n ~ 45° -goa :; n :; goo 

n 0.827 0.820 0.768 
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TABLE 5.1 

EFFECTIVE MODULI AND AXIAL STRAIN DUE TO SUBMICROCRACKING FOR 

MONOTONIC LOADING OF CEMENT PASTE WITH A W/C = 0.7. 

* FIRST APPROACH ; DRY CRACKS. 

E. 6 0.24 = 1.78x10 psi; v. = 
l l 

E
3

, 1 o6psi ~3 E.-E
3 

£ a _c_% a, psi "31 £ = s =a(-1-) E. ec E3 c EiE 3 
s-e:. 'I 

l e 

RESULTS CORRESPONDING TO SMALLER ESTIMATE OF <alj!>. 

E 6 0.242 1.816x10 psi; v = 

.0005 830 1 • 767 • 9921 .240 .000469 .000004 11. 1 

• 001 1581 1.763 .9899 .240 .000897 .000013 10.5 

.002 2657 1. 752 .9837 • 241 .001516 .000058 10.0 

.004 3740 1 • 633 .9169 • 245 • 002290 .000189 9.9 

.006 4070 1.564 .8782 .248 .002602 .000315 8.5 

RESULTS CORRESPONDING TO LARGER ESTIMATE OF <alj!>. 

E = 6 = 0.243 1.837x10 psi; v 

.0005 830 1 • 763 .9899 • 241 .000471 .000006 16.7 

. 001 1581 1. 758 • 9871 • 241 .000899 .000016 1 4. 5 

.002 2657 1. 750 .9826 • 242 .001518 • 000061 1 2. 0 

.004 3740 1 • 578 .8860 .246 .002370 .000269 14.2 

.006 4070 1. 512 .8490 .249 .002692 .000405 10.9 

* Cracks are assumed to exist in the specimens prior to loading. 
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TABLE 5.2 

EFFECTIVE MODULI AND AXIAL STRAIN DUE TO SUBMICROCRACKING FOR 

MONOTONIC LOADING OF CEMENT PASTE WITH A W/C = 0.5. 

* FIRST APPROACH ; DRY CRACKS. 

Ei = 2.54x106 
psi; vi = 0.24 

RESULTS CORRESPONDING TO SMALLER ESTIMATE OF <alj!>. 

E 6 
pSii 0.242 2.590x10 v = 

.0005 1195 2.520 • 9921 .240 .000474 .000004 1 4. 0 

• 001 2310 2. 515 .9902 .240 .000918 .000009 1 2. 5 

.002 41 28 2.499 .9839 • 240 .001652 .000027 1 2. 7 

.004 6036 2.328 .9165 .243 .002593 .000217 11. 8 

.006 6687 2.230 .8780 . 245 .002999 .000366 1 0. 9 

RESULTS CORRESPONDING TO LARGER ESTIMATE OF <alj!>. 

E = 2.620x10 6 psi; v = 0.243 

• 0005 1195 2. 51 5 .9894 .240 .000475 .000005 1 8. 1 

• 001 2310 2.507 .9862 • 240 • 000921 • 00001 2 1 6. 8 

.002 4128 2. 490 .9795 • 241 .001658 .000033 15.7 

.004 6036 2.309 .8855 • 244 .002614 .000238 1 4. 6 

.006 6687 2.156 .8482 .253 .003102 .000469 1 3. 9 

* Cracks are assumed to exist in the specimens prior to loading. 
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TABLE 5.3 

EFFECTIVE MODULI AND AXIAL STRAIN DUE TO SUBMICROCRACKING FOR 

MONOTONIC LOADING OF CEMENT PASTE WITH A W/C ~ 0.3 • 

• FIRST APPROACH ; DRY CRACKS. 

6 psi; 0.24 E. ~ 3.31 x10 "· ~ 

1 1 

E
3

,1o6psi ~3 E.-E
3 

£ 
0 _c_% cr, psi "31 £ s =o(-1-) 

E. ec E3 c EiE3 
e:-e: Jl 

l e 

RESULTS CORRESPONDING TO SMALLER ESTIMATE OF <aiJJ>. 

E 
6 psi; 0.242 3.385x10 " = 

.0005 1581 3.294 .9953 .240 .000480 .000016 72.9 

. 001 3137 3.287 • 9931 • 239 .000954 .000037 69. 1 

.002 6051 3.268 .9872 .239 • 001851 .000080 46.5 

.003 8195 3.155 .9533 . 241 .002597 .000204 38.5 

.004 9860 3.044 .9197 .244 .003239 .000360 35. 2 

.006 11503 2. 91 5 .8807 .246 ,003946 .000592 23.4 

RESULTS CORRESPONDING TO LARGER ESTIMATE OF <aljJ>. 

6 psi; " = 0.243 E = 3.423x10 

.0005 1581 3. 288 .9935 .240 • 000481 .000017 76.7 

• 001 3137 3.280 .9910 • 241 .000956 .000039 72.3 

.002 6051 3.264 .9860 • 241 .001854 .000083 48.2 

.003 8195 3.105 .9380 .242 .002639 ,000248 46.8 

.004 9860 2.942 .8890 .245 .003351 .000476 46.6 

.006 11503 2.819 .8518 • 254 .004080 .000605 28.9 

• Cracks are assumed to exist in the specimens prior to loading. 
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TABLE 5.4 

EFFECTIVE MODULI AND AXIAL STRAIN DUE TO SUBMICROCRACKING FOR 

MONOTONIC LOADING OF MORTAR WITH A W/C ~ 0.5. 

* FIRST APPROACH ; DRY CRACKS. 

6 psi; 0.20 E. ~ 4.79x10 \). = 
1 1 

E
3

,1o6psi ~3 Ei-E3 E a _c_% a, psi "31 E = E ~a(--) E. ec E3 c EiE3 
e:-e: , 

1 e 

RESULTS CORRESPONDING TO SMALLER ESTIMATE OF <alji>. 

6 E = 4.838x10 psi; \) ~ o. 201 

.0005 2205 4. 731 .9877 .198 .000466 .000006 1 4. 5 

• 001 3697 4.698 .9808 • 198 .000787 .000015 6.7 

.002 5398 4.644 .9695 • 199 .001162 .000035 4. 1 

.003 5804 4.403 .9192 .205 .001318 .000106 5.9 

.004 4066 4.209 .8787 .208 .000966 .000117 3.7 

RESULTS CORRESPONDING TO LARGER ESTIMATE OF <a¢>. 

E ~ 4.874x10 6 psi; \) ~ 0.202 

.0005 2205 4.718 .9844 • 199 .000467 .000007 17.7 

• 001 3697 4.664 • 9731 • 199 .000793 .000021 9.3 

.002 5398 4.628 .9656 . 200 .001166 .000039 8.9 

.003 5804 4. 21 6 .8796 .207 .001377 .000165 9.2 

.004 4066 4.060 .8471 • 218 .001002 .000153 4.8 

* Cracks are assumed to exist in the specimens prior to loading. 
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TABLE 5.5 

EFFECTIVE MODULI AND AXIAL STRAIN DUE TO SUBMICROCRACKING FOR 

MONOTONIC LOADING OF CEMENT PASTE WITH A W/C = 0.7. 

* FIRST APPROACH ; SATURATED CRACKS. 

Ei = 1.78x106 psi; vi 0.24 

RESULTS CORRESPONDING TO LARGER ESTIMATE OF <a\j!>. 

E = 1.812x106 psi; v = 0.235 

830 1. 768 .9927 .243 .000469 .000004 
1581 1. 764 .9905 .244 .000896 .000013 
2657 1.755 .9854 .248 .001514 .000057 
3740 1. 645 .9236 .262 .002274 .000173 
4070 1. 600 .8984 .267 .002544 .000257 

TABLE 5.6 

£ c 
€:="€·% 

e 

11. 1 
11.8 
11.2 
9. 1 
6.9 

EFFECTIVE MODULI AND AXIAL STRAIN DUE TO SUBMICROCRACKING FOR 

MONOTONIC LOADING OF CEMENT PASTE WITH A W/C = 0.5. 

* FIRST APPROACH ; SATURATED CRACKS. 

6 psi; 0.24 E. 2.54x10 v. 
1 1 

E
3

,1o6psi :3 
E.-E

3 
£ 

0 c • o, psi v31 £ 
= E3 

£ =o(-1-) €:="€' p Ei ec c EiE3 e 

RESULTS CORRESPONDING TO LARGER ESTIMATE OF <a11/. 

E = 2.590x106 psi; v = 0.235 

1195 2.528 .9945 • 241 .000473 .000003 1 0. 9 
2310 2. 523 .9925 .242 .000916 .000007 9.8 
41 28 2.512 .9882 .244 .001643 .000020 9.5 
6036 2.352 .9253 .250 .002566 • 000170 9.4 
6687 2.287 .8992 • 261 .002924 • 000291 8.6 

* Cracks are assumed to exist in the specimens prior to loading. 
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TABLE 5. 7 

EFFECTIVE MODULI AND AXIAL STRAIN DUE TO SUBMICROCRACKING FOR 

MONOTONIC LOADING OF CEMENT PASTE WITH A W/C = 0.3 • 

RESULTS 

1581 3.297 
3137 3. 290 
6051 3.276 
8195 3.169 
9860 3.067 

11502 2. 978 

• FIRST APPROACH ; SATURATED CRACKS. 

'J. = 0.24 
1 

0 
E =-
ec E

3 

CORRESPONDING TO LARGER ESTIMATE 

E = 3.377x106 psi; 'J = 0. 235 

.9960 .242 .000480 

.9938 .243 .000954 

.9897 .245 .001847 

.9573 .248 .002586 

.9265 • 256 .003215 

.8997 .263 .003863 

TABLE 5.8 

OF <al/,>. 

.000016 

.000037 

.000076 

.000195 

.000340 

.000388 

E 
_c_% 
s-E ' 

e 

72.9 
69.1 
44.1 
36.8 
33.3 
18.5 

EFFECTIVE MODULI AND AXIAL STRAIN DUE TO SUBMICROCRACKING FOR 

o, psi 

2205 
3697 
5398 
5804 
4066 

MONOTONIC LOADING OF MORTAR WITH A W/C = 0.5 • 

• FIRST APPROACH ; SATURATED CRACKS. 

Ei = 4.79x106 psi; 

6 ~3 
E3, 1 0 psi Ei "31 

v. = 0. 20 
1 

0 
E = -ec E

3 

RESULTS CORRESPONDING TO LARGER ESTIMATE 

E = 4.858x106 psi; 'J=0.196 

4.761 .9933 .203 .000463 
4. 731 .9871 .209 • 000781 
4.716 .9839 • 21 4 .001145 
4.460 .9305 • 221 .001301 
4.285 • 9051 • 227 .000949 

OF <al/1>. 

.000003 

.000016 

.000018 

.000089 

.000100 

7.6 
7. 1 
4. 1 
5.0 
3. 1 

• Cracks are assumed to exist in the specimens prior to loading. 
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TABLE 5.9 

EFFECTIVE MODULI FOR MONOTONIC LOADING OF CEMENT PASTE, W/C = 0.7. 

.0005 

• 001 

.002 

.004 

.006 

* SECOND APPROACH ; DRY CRACKS. 

E = Ei = 1.78x1o6 psi; 

a, psi 

\) = \i. = 0.24 
1 

E
3

, 106psi 

RESULTS CORRESPONDING TO LARGER ESTIMATE OF <a~>. 

830 

1581 

2657 

3740 

4070 

TABLE5.10 

1 • 766 

1. 760 

1 • 752 

1 • 587 

1 • 523 

.239 

• 240 

• 241 

.245 

.248 

EFFECTIVE MODULI FOR MONOTONIC LOADING OF CEMENT PASTE, W/C = 0.5. 

E 

.0005 

• 001 

.002 

.004 

.006 

* SECOND APPROACH ; DRY CRACKS. 

E = E. = 2.54x106 psi; v = v. = 0.24 
1 1 

a, psi E
3

, 106psi 

RESULTS CORRESPONDING TO LARGER ESTIMATE OF <a~>. 

1195 

2310 

41 28 

6036 

6687 

2.518 

2.510 

2.498 

2.322 

2. 172 

• 240 

.240 

• 241 

.243 

.252 

* Cracks are assumed not to exist in the specimens prior to loading. 
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TABLE 5.11 

EFFECTIVE MODULI FOR MONOTONIC LOADING OF CEMENT PASTE, W/C 0.3. 

E 

.0005 

• 001 

.002 

.003 

.004 

.006 

* SECOND APPROACH ; DRY CRACKS. 

6 E = E. = 3.31•10 psi; 
1 

a, psi 

v - \). - 0. 24 
1 

E 106psi 
3' 

RESULTS CORRESPONDING TO LARGER ESTIMATE OF <aW>. 

1581 3.289 

3137 3. 277 

6051 3.259 

8195 3. 108 

9860 2.950 

11503 2.832 

TABLE 5.12 

• 240 

• 240 

• 241 

.242 

.244 

.253 

EFFECTIVE MODULI FOR MONOTONIC LOADING OF MORTAR, W/C 0.5. 

E 

RESULTS 

.0005 

• 001 

.002 

.003 

• 004 

* SECOND APPROACH ; DRY CRACKS. 

6 E. = 4. 79•10 
1 

a, psi 

CORRESPONDING TO 

2205 

3697 

5398 

5804 

4066 

psi; v - \). - 0.20 
1 

E3' 1 o6psi 

LARGER ESTIMATE 

4. 721 

4.669 

4.635 

4.220 

4. 11 2 

OF 

"31 

<aw>. 

• 200 

• 200 

• 201 

.205 

. 21 4 

* Cracks are assumed not to exist in the specimens prior to loading. 
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TABLE 5.13 

MODULI OF INELASTIC MATRIX AND STRAIN DUE TO SUBMICROCRACKING FOR 

* MONOTONIC LOADING OF CEMENT PASTE WITH A W/C = 0.7. FIRST APPROACH 

RESULTS CORRESPOND TO LARGER ESTIMATE OF <a~> ;DRY CRACKS. 

6 E. 1.78x10 psi 
1 

Emat'10
6
psi 

€ 

psi a c a, v € = E € = €-€ 
' mat mat c mat E-E 

mat e 

.0005 830 1.725 .242 • 000481 .000019 55.9 
• 001 1581 1. 654 • 242 .000956 .000044 39.4 
.002 2657 1 • 450 . 243 .001832 .000168 33.2 
.004 3740 1 • 094 .246 .003419 • 000581 30.6 
.006 4070 0.835 .264 .004875 .001125 30.2 

TABLE 5.14 

MODULI OF INELASTIC MATRIX AND STRAIN DUE TO SUBMICROCRACKING FOR 

* MONOTONIC LOADING OF CEMENT PASTE WITH A W/C = 0.5. FIRST APPROACH 

RESULTS CORRESPOND TO LARGER ESTIMATE OF <a~> ;DRY CRACKS. 

E. 
1 

2.54x10 6 psi 

6 € 

psi cr c cr, Emat'10 psi v mat € mat = E' € = E-E 
mat ' c €-€ 

mat e 

.0005 1195 2.485 .242 • 000481 .000019 64.6 
• 001 2310 2. 41 6 • 241 .000956 .000044 48.6 
.002 41 27 2. 217 .242 .001862 .000138 36.7 
.004 6036 1 . 758 • 246 .003433 .000567 34.9 
.006 6687 1. 375 .262 .004863 .001137 33.8 

* Cracks are assumed to exist in the specimens prior to loading. 

% 

% 
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TABLE5.15 

MODULI OF INELASTIC MATRIX AND STRAIN DUE TO SUBMICROCRACKING FOR 

* MONOTONIC LOADING OF CEMENT PASTE WITH A W/C ~ 0.3. FIRST APPROACH 

RESULTS CORRESPOND TO LARGER ESTIMATE OF <aW> ;DRY CRACKS. 

Ei 3.31 x10 
6 psi 

6 E 

psi a c a, E t'10 psi "mat E mat ~ E" E ~ g-g 
mat rna c s-s 

mat e 

.0005 1581 3.286 .242 • 000481 .000019 85.4 
• 001 3137 3. 271 .244 .000959 .000041 78.5 
.002 6051 3. 198 • 247 .001892 .000108 62.8 
.003 8195 3.034 .250 .002701 .000299 57.0 
.004 9860 2.870 • 258 .003436 .000564 55.2 
.006 11503 2.363 • 289 .004868 .001132 44.8 

TABLE5.16 

MODULI OF INELASTIC MATRIX AND STRAIN DUE TO SUBMICROCRACKING FOR 

E 

* MONOTONIC LOADING OF MORTAR WITH A W/C ~ 0.5. FIRST APPROACH 

RESULTS CORRESPOND TO LARGER ESTIMATE OF <aW> ;DRY CRACKS. 

6 E. 4.79x10 psi 
1 

Emat, 1 o6
psi 

E 

psi a c a, \1 mat E mat 
~ 

E E = e:-s 
c mat g-g 

mat e 

.0005 2205 4.575 • 21 4 .000482 .000018 45.4 
• 001 3697 3.855 .249 .000959 .000041 18.0 
.002 5398 2.919 • 290 .001880 • 0001 51 17.3 
.003 5804 2.150 .352 .002700 .000300 1 6. 8 
.004 4066 1. 231 . 441 .003303 .000697 22.1 

* Cracks are assumed to exist in the specimens prior to loading. 

' 

' 

% 

% 
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TABLE 5.17 

MODULI OF INELASTIC MATRIX AND STRAIN DUE TO SUBMICROCRACKING FOR 

.004 

.006 

.004 
• 006 

* SUSTAINED LOADING OF CEMENT PASTE. FIRST APPROACH . 

RESULTS CORRESPOND TO LARGER ESTIMATE OF <aW> ;DRY CRACKS. 

a, psi "mat 
a 

E = - s = s-s 
mat E t c mat 

4572 
4884 

7856 
8091 

rna 

6 CEMENT PASTE WITH A W/C = 0.5; E. = 2.54x10 psi 
l 

1 • 319 
o. 943 

• 229 
• 165 

.003465 

.005176 
.000535 
.000824 

CEMENT PASTE WITH A W/C = 0.3; E. = 3.31x106 psi 
l 

2. 275 
1. 630 

.243 

.175 
.003453 
.004964 

TABLE 5.18 

.000547 

.001036 

24.3 
20.2 

33.6 
29. 1 

MODULI OF INELASTIC MATRIX AND STRAIN DUE TO SUBMICROCRACKING FOR 

.002 

.004 

.002 

.0025 

.003 

* CYCLIC LOADING OF CEMENT PASTE. FIRST APPROACH • 

RESULTS CORRESPOND TO LARGER ESTIMATE OF <aW> ;DRY CRACKS. 

a, psi "mat 
a 

E = - E = s-e 
mat E t c mat 

3017 
5033 

6383 
7285 
6902 

rna 

6 CEMENT PASTE WITH A W/C = 0.5; Ei = 2.54x10 psi 

; • 725 
1. 437 

• 21 2 
• 281 

.001749 

.003503 
. 000251 
.000583 

CEMENT PASTE WITH A W/C = 0.3; E.= 3.31x106 psi 
l 

3.302 
3. 177 
2.632 

• 149 
• 150 
• 172 

.001933 
• 002293 
.002622 

.000067 

.000207 

.000378 

E c 
E-e 

e 

39.9 
24.6 

91.3 
69.2 
41.3 

* Cracks are assumed to exist in the specimens prior to loading. 

' % 

' % 
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TABLE 5.19 

MODULI OF INELASTIC MATRIX AND STRAIN DUE TO SUBMICROCRACKING FOR 

* MONOTONIC LOADING OF CEMENT PASTE WITH A W/C = 0.1. SECOND APPROACH 

RESULTS CORRESPOND TO LARGER ESTIMATE OF <a~> ;DRY CRACKS. 

E. 6 
1 

1.78x10 psi 

Emat, 1 o6
psi 

£ 

psi a c a, v £ = £ = s-s 
' mat mat E c mat s-s 

mat e 

.0005 830 1 • 71 8 .242 .000483 .000017 50.2 

.001 1581 1 • 642 .243 .000963 .000037 33.7 

.002 2657 1. 428 .244 .001861 .000139 27.4 

.004 3740 1 . 054 .248 .003548 .000452 23.8 

.006 4070 0.790 .267 .005154 .000846 22.7 

TABLE 5. 20 

MODULI OF INELASTIC MATRIX AND STRAIN DUE TO SUBMICROCRACKING FOR 

* MONOTONIC LOADING OF CEMENT PASTE WITH A W/C = 0.5. SECOND APPROACH 

RESULTS CORRESPOND TO LARGER ESTIMATE OF <a~> ;DRY CRACKS. 

% 

a, psi vmat 
a 

£ = -
mat E t rna 

' % 

.0005 1195 2.474 • 242 .000483 .000017 59.8 
• 001 2310 2. 401 .242 .000962 .000038 42.3 
.002 41 27 2. 189 • 243 .001885 .000115 30.7 
• 004 6036 1.703 .248 .003544 .000456 28. 1 
.006 6687 1. 31 3 .265 .005093 .000907 26.9 

* Cracks are assumed not to exist in the specimens prior to loading. 
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TABLE 5.21 

MODULI OF INELASTIC MATRIX AND STRAIN DUE TO SUBMICROCRACKING FOR 

* MONOTONIC LOADING OF CEMENT PASTE WITH A W/C = 0.3. SECOND APPROACH 

.0005 
• 001 
.002 
.003 
.004 
.006 

RESULTS CORRESPOND TO LARGER ESTIMATE OF <a¢> ;DRY CRACKS, 

a, psi 

1581 3.280 
31 37 3.268 
6051 3. 168 
8195 2.987 
9860 2.808 

11 503 2. 251 

6 3.31x10 psi 

a s = - e = s-s 
mat Emat c mat 

.242 .000482 .000018 
• 244 .000960 .000040 
.248 .001910 .000090 
• 251 .002743 .000257 
.260 .003512 .000488 
• 292 .005110 .000890 

TABLE 5. 22 

E c 
c-c 

e 

80.9 
76.6 
52.3 
49.1 
47.7 
35.2 

MODULI OF INELASTIC MATRIX AND STRAIN DUE TO SUBMICROCRACKING FOR 

* MONOTONIC LOADING OF MORTAR WITH A W/C = 0.5. SECOND APPROACH 

RESULTS CORRESPOND TO LARGER ESTIMATE OF <a¢> ;DRY CRACKS. 

E. 6 psi 
1 

4.79x10 

Emat, 1 o6
psi 

E 
psi a c a, v E mat = E E = c-c mat c mat c-c 

mat e 

.0005 2205 4.556 • 21 4 .000484 .000016 41.1 
• 001 3697 3.819 • 250 .000968 .000032 14.2 
• 002 5398 2.858 .292 .001889 .000111 12.7 
.003 5804 2.069 .355 .002805 .000195 10.9 
.004 4066 1 . 198 .446 .003394 .000606 19.2 

' % 

' % 

* Cracks are assumed not to exist in the specimens prior to loading. 
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TABLE 5.23 

MODULI OF INELASTIC MATRIX AND STRAIN DUE TO SUBMICROCRACKING FOR 

.004 
• 006 

.004 

.006 

* SUSTAINED LOADING OF CEMENT PASTE. SECOND APPROACH • 

RESULTS CORRESPOND TO LARGER ESTIMATE OF <a~> ;DRY CRACKS. 

a, psi a 
E = - E:: = e::-e: 
mat E t c mat rna 

CEMENT PASTE WITH A W/C = 0.5; Ei = 2.54x1o6 psi 

4572 1 • 278 • 231 .003577 .000423 19.2 
4884 0.905 • 168 .005396 .000604 1 4. 8 

CEMENT PASTE WITH A W/C = 0.3; Ei = 3.31x106 psi 

7856 2.204 .245 .003565 .000435 26.7 
8091 1 • 546 • 179 .005235 .000765 21.5 

TABLE 5. 24 

MODULI OF INELASTIC MATRIX AND STRAIN DUE TO SUBMICROCRACKING FOR 

.002 

.004 

.002 

.0025 

.003 

* CYCLIC LOADING OF CEMENT PASTE. SECOND APPROACH • 

RESULTS CORRESPOND TO LARGER ESTIMATE OF <a~> ;DRY CRACKS. 

a, psi 6 
Emat'10 psi v 

mat 

3017 
5033 

6383 
7285 
6902 

6 CEMENT PASTE WITH A W/C = 0.5; E
1 

= 2.54x10 psi 

1. 696 
1 • 425 

• 21 2 
.283 

.001779 
• 003531 

• 000221 
.000469 

CEMENT PASTE WITH A W/C = 0.3; E. = 3.31x106 psi 
1 

3.295 
3.148 
2.572 

• 150 
• 150 
• 175 

.001937 

.002314 

.002684 

.000063 

.000186 

.000316 

35. 1 
19.8 

86.2 
62. 1 
34.5 

' % 

' % 

* Cracks are assumed not to exist in the specimens prior to loading. 
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Fig. 2. 2. 

203 

Compressometer and Extensometers as Mounted on Test 
Specimen 
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Fig. 2.3. Stress versus Longitudinal Strain for Monotonic Loading of Cement with a W/C = 0.7: Specimen 
7-6/P-0.7M 
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Fig. 2.4. Stress versus Longitudinal and Lateral Strains for Monotonic Loading of Cement 
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Fig. 2.9. Poisson's Ratio versus Axial Strain for Monotonic Loading of Cement Paste with a W/C = 0.3: 
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Fig. 2.10. Poisson's Ratio versus Axial Strain for Monotonic Loading of Mortar with a W/C = 0.5: 
Specimen 13-6/M-0.5/M 
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Fig. 2.26. Specimen as Mounted on Stud 
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Fig. 2.27. Specimen as Positioned in SEM 
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Fig. 2.28. Type I Calcium Silicate Hydrate (CSH); Oven Dried 
Specimen; magnification= 5000x, ~ marker =0.9 ~m 

Fig. 2.29. Type I Calcium Silicate Hydrate (CSH); Solvent 
Replacement Dried Specimen; magnification = 5000x, 
~ marker = 0.9 ~m 



230 

Fig. 2.30. Type II Calcium Silicate Hydrate (CSH); 
magnification= 5000x, v marker= 0.9 vm 

Fig. 2.31. Crack through type III Calcium Silicate Hydrate (CSH); 
magnification = 5000x, v marker = 0.9 ~m 
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Fig. 2.32. Type IV Calcium Silicate Hydrate (CSH) or Inner Product 
Morphology (in center of micrograph); 
magnification = 10000x, p marker = 0.9 pm 

Fig. 2.33. Calcium Hydroxide (CH) with Crack Parallel to Cleavage 
Plane; magnification = 5000x, p marker = 0.9 pm 



232 

Fig. 2.34. Crack through type III CSH and CH Structures; 
magnification= 1250x, ~marker= 9.1 ~m 

Fig. 2.35. Unhydrated Cement Grain (UHC); magnification 
~ marker = 0.9 ~m 

2500x, 
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Fig. 2.36. Ettringite; magnification 10000x, ~marker= 0.9 ~m 

Fig. 2.37. Sand Grain (SG) Adjacent to type III CSH with Cracks at 
the Interface and withing the CSH; magnification= 320x, 
~ marker = 90.9 ~m 
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Fig. 2.38. Sand Grain (SG) Adjacent to type III CSH with Cracks at 
the Interface and withing the CSH; magnification= 160x, 
~ marker = 90.9 ~m 
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Fig. 2.39. Crack Density versus Water-Cement Ratio for Nonloaded Cement Paste Specimens 
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Fig. 2.40. Crack Density versus Strain for Monotonic Loading of Cement 
Paste with a W/C = 0.7; Transverse and Longitudinal Surfaces 
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Fig. 2.41. Crack Density versus Strain for Monotonic Loading of Cement 
Paste with a W/C = 0.5; Transverse and Longitudinal Surfaces 
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Fig. 2.42. Crack Density versus Strain for Monotonic Loading of Cement 
Paste with a W/C = 0.3; Transverse and Longitudinal Surfaces 
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Fig. 2.43. Crack Density versus Strain on Monotonic Loading of Mortar 
with a W/C = 0.5; Transverse and Longitudinal Surfaces 
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Fig. 2.44. Crack Density versus Strain for Sustained Loading of Cement 
Paste with a W/C = 0.5; Transverse and Longitudinal Surfaces 
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Fig. 2.45. Crack Density versus Strain for Sustained Loading of 
Cement Paste with a W/C = 0.3; Transverse and Longi­
tudinal Surfaces 
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Fig. 2.46. Crack Density versus Strain for Cyclic Loading of Cement 
Paste with a W/C = 0.5; Transverse and Longitudinal 
Surfaces 
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Fig. 2.47. Crack Density versus Strain for Cyclic Loading of Cement 
Paste with a W/C = 0.3; Transverse and Longitudinal 
Surfaces 
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Fig. 2.48. Crack Density versus Trace Angle for Transverse and Longitudinal 
Surfaces of Nonloaded Cement Paste with a W/C = 0.5 
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Fig. 2.49. Crack Density versus Trace Angle for Transverse and Longitudinal 
Surfaces of Monotonically Loaded Cement Paste with a W/C = 0.5; 
Strain = 0.006 
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Fig. 2.50. Crack Density versus Trace Angle for Transverse and Longitudinal 
Surfaces of Nonloaded Mortar with a W/C = 0.5 
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Fig. 2.51. Crack Density versus Trace Angle for Transverse and Longitudinal 
Surfaces of Monotonically Loaded Mortar with a W/c = 0.5; 
Strain = 0.004 
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Fig. 2.52. Crack Density versus Strain for Transverse Surfaces of Oven Dried, Solvent Replacement 
Dried, and Silica Gel Dried Cement Paste Specimens with a W/C = 0.5; Monotonic Loading 

N .,. 
00 



...-
I . 
()I 
II) 
"0 

N 
I . . ~ 

(/J 
~ 
0 

E 
0 
..,_ 
0 
L 
II) 

..0 
E 
:J 
z 

500 

250 

0 
0 45 90 

e, degrees 

Fig. 3.1. Variation of Number of Cracks per Unit Area per Degree with Trace Angle; Transverse Surface 
of Nonloaded Cement Paste with a W/C = 0.5 

N .... 
10 



... 
I 

• c: ·-
• 
~ ·-11.1 c: 
CD c 
i)' 
c: 
CD 
:::J 
0'" 
f 

LL. . 
CD 
~ 

250 

1000 
Histogram - Experimental Distribution 

0 
1000 

0 
1000 

0 
1000 

r-

__.,., 
_.,,· 

/ 

... 

,...~ 

f-1--

"' 
c 

r-

-
-~" 

... 

0 
0.000 

~·"" 

f(.tlelac, Calculated Apparent Distributio n 
-- f<tl9l, True Distribution 

,... 
-..-

9 = 30° 
..... 

..... ---Ill -~ -----

1-r-~ 

1.- -- 9 = 50° 
... l~ 

~:::---ITF --- "T-.,... __ I I I --

,... 
-

... .. ;:::;,- 9 = 60° ---... rr ~ "';;:::;. I I 1 --::.....-n...,.., ____ 

r-

~._ 
e = 70° 

~--I'-

1'--:;::J. --
I~ --.I I ...._.._...._ ___ 

0.003 0.006 

Length, in. 

Fig. 3.2. Apparent and True Trace Length Distributions for Cement Paste 
with a W/C = 0.5; Monotonic Loading: Strain = 0.004 



0.02 

Histogram = Experimental Distribution 

.... -- t<a>ac. Calculated Apparent Distribution 
I 

• 
~ --tea), True Distribution 

Ol 
CD 1-
"0 
~ 

p .--
·-fl) 
c: 
~ 0.01 

~ 
c: 
CD 
:::J 1--
0" 

~ 
LL. 
. 

CD ----- --
-

0:: 

0.00 I I I I I I I I I I • I I I I I I I I I I 

0 45 90 

a, degrees 

Fig. 3.3. Apparent and True Trace Angle Distributions for Cement Paste with a W/C = 0.5; Monotonic 
Loading: Strain = 0.004 

N 
ln 
1-' 



3.00 

• c ·-tt) 

I 
0 ,.... 

~ 

.c ..... 
2.25 Ol 

c 
.3 

.d>. 
.d>. .d>. .d>. .d>. .d>. 

.d>. 
4:>. 

(I) 
0 e 
1-

c 
0 
(I) 

::::E 

1.5oL---~~-----L------'------:: 
0 90 45 

e, degrees 

Fig. 3.4. Mean Trace Length versus Trace Angle for Transverse Surface of Cement Paste with a W/C = 0.5; 
Monotonic Loading: Strain = 0.004 

1'0 
tn 
N 



N . 
c m-

1 
0 
..-

-Q) 
0 
c 
0 
'i: 
0 
> 

1.00 

.d>. 
.d>. 

.d>. 
.d>. 

.d>. 

0.75. 

0.50 L----~-----'------~------' 
0 45 90 

e, degrees 

Fig. 3.5. Variance of Trace Length Distribution versus Trace Angle for Transverse Surface of Cement 
Paste with a W/C = 0.5; Monotonic Loading: Strain = 0.004 

N 
U; 

"' 



. 
c ·-1'1') 

I 
0 
...-
-..c: ...... 

01 
c 
Q) 
_j 

Q) 
0 
0 
'-

1-

c 
0 
Q) 

::a: 

3.00 

2.25 -AI.- E 
A 

-""' ~ - E ~ -A- A A .. A. 

1.50 '-----------'-------L-------'----------.1 
0 

Fig. 3.6. 

45 90 

e. degrees 

Modified Experimental Mean Trace Length, <~>T' versus Trace Angle for Transverse Surface of 
Cement Paste with a W/C = 0.5; Monotonic Loading: Strain= 0.001, 

N 
u' ..,. 



N 
• c 

t0-
1 
0 
..-

~ 

Q) 
() 
c 
0 ·c 
0 
> 

1.00 

0.75 

A>. 

-A>.- 4.. "2t.. 
A>. 

.d:L .4- E ,Al. -A>. - .d:L 

0.50~----------~--------~----------~----------~ 

0 

Fig. 3.7. 

45 90 

a, degrees 

Modified Experimental Variance of Trace Length Distribution, var(t)I, versus Trace Angle for 
Transverse Surface of Cement Paste with a W/C = 0.5; Monotonic Load ng: Strain = 0.004 

'" '" '" 



3.00 

. 
c -·-I'<) 

I 
0 
..-

--
41. ~ - .<Is: -..t.. 

-41. 

-. 
..c ...... 

2.25 01 
c 

-..t..-41. -.... - - .£" £ 

-£ 
(I) 

_J -
I -(I) 

0 
0 
L 
I-

c 
0 
(I) 

::iE 

1.50~--------~~--------~----------------------~ 

0 

Fig. 3. 8. 

45 90 

e, degrees 

Modified Experimental Mean Trace Length, <t>L, versus Trace Angle for Longitudinal Surface 
of Cement Paste with a W/C = 0.5; Monotonic Loading: Strain = 0.004 

N 

'" 
"' 



2.0 

N . 
c: 

""' A:>.. 'J.. -""' - 4. 
""' AI;" .4>. - ""' - At" """' 

·-<0 
I 1.5 0 
.-

Q) 
0 
c: 
0 ·c 
0 
> 

1;0 .__ ____ ___..._ _____ __.__ _____ ~-------' 

0 

Fig. 3.9. 

45 90 

a, degrees 

Modified Experimental Variance of Trace Length Distribution, var (te)r., versus Trace Angle 
for Longitudinal Surface of Cement Paste with a W/C = 0.5; Monotonic Loading: Strain = 0,004 

N 
u' __, 



...... 
I 

• c ·-
i-·-(I) 
c 
Q) 
0 

~ 
c 
Q) 
::::J 
0" 

~ 
• 

1> a:: 

500 

250 

0~--------~----------~----------~--------~ 

0.000 0.003 0.006 

Length. in. 

Fig. 3.10. Modified Experiment Trace Length Distribution, f<~>T' for Transverse Surface of Cement 
Paste with a W/C = 0.5; Monotonic Loading: Strain= 0.001, 

N 

"' co 



500 

..-
I . 
01 
Q) 

"0 
N 
I . 
c ·-
(/) 250 
~ 
0 
0 
L.. 

(.) 

,._ 
0 
L.. 
Q) 

..0 
E 
:l 
z 

0 
0 45 

a, degrees 

Fig. 3.11. Variation of Number of Cracks per Unit Area per Degree with Trace Angle; Transverse 
Surface of Cement Paste with a W/C = 0.5; Monotonic Loading: Strain = 0.004 

90 

N 
<n 
C? 



200 

...... 
I 

• 
01 
Q) 

N-o 
I . 
c: ·-en 100 
~ 
0 
0 
L. 
u -0 
L. 
Q) 
.0 
E 
::J 
z 

0 
0 

Fig. 3.12. 

Modified Distribution 
---------------------------------~ 

45 90 

e. degrees 

Distributions of Measured, rn0, and Modified, rn6, Numbers of Cracks per Unit Area per Degree 
on Transverse Surface of Cement Paste with a W/C = 0.5; Monotonic Loading: Strain = 0.004 

"' 0 
0 



200 

...... 
I 

• 
Ol 
Cl> 

"0 

~-------....!Measured Distribution _. ...__.._ 
N 
I 

• c ·-rn 100 
~ 
0 
E 
() 

.... 
0 
L... 
Cl> 

--------------- Modified Distribution ------------.0 
E 
::J 
z 

0 
0 45 90 

a. degrees 

Fig. 3.13. Distributions of Measured, m8, and Modified, m8, Numbers of Cracks per Unit Area per Degree 
on Longitudinal Surface of Cement Paste with a W/C = 0.5; Monotonic Loading: Strain = 0.004 

"' "" .... 



2.0 

...... 
I . 

Ol 
q) 

"U 
N 
I 
0 ...... 

_i. 1.0 ·-en 
c 
q) 

I -------0 

>. u 
c 
q) 
::l 
o-
E 

Lt.. 
• 

q) 
0:: 0.0 

0 45 90 

a, degrees 

Fig. 3.14. Modified Experimental Trace Angle Distribution of Cracks, f(O)b, for Longitudinal Surface 
of Cement Paste with a W/C = 0.5; Monotonic Loading: Strain = .004 

N 

"' '" 



0.02 

I 
He>L <Experimental> 

I ..... 
I 

• Ol 
Cl> 

"0 

.i- flol,c ,::::,1· 
·-0) 
c 

0.01 Cl> 
0 

~ 
c 
Q) 
:::s 
0" 
~ 

LL 

• 
Q) 
~ 

0.00 
0 45 90 

e, degrees 

Fig. 3.15. Modified Experimental and Calculated Trace Angle Distributions for Longitudinal Surface of 
Cement Paste with a W/C = 0.5; Monotonic Loading: Strain = 0.004 

N 

"' "' 



.... 
I 

• c: ·-
• ;, ·-(/) 

c: 
Cl) 
0 

6' 
c 
Cl) 
;:) 
0" 

~ 
• 

Q) 
0:: 

500 

250 

f<t>T (Experimental) 

-- f<t>Tc <Calculated) 

0~--------~----------~----------~--------~ 

0.000 0.003 0.006 

Length. in. 

Fig. 3.16. Modified Experimental and Calculated Trace Length Distributions for Transverse Surface of 
Cement Paste with a W/C = 0.5; Monotonic Loading: Strain = 0.004 

N 
~ ..,. 



.... 
I 

• c::: ·-
:i-

26S 

5aa -- t<.elelL <Experimental) 

-- t<.ZielLc (Calculated) 

a~~----------------~~~ 
5aa 

e = 30° 

·a; 
~ a~~-----------------------=::==== 
c 5aa 
{;' 
c::: 
Q) 
:::J 

l . 
Q) 
a:: 

aLL----------------~~= 
5aa 

~-

e = 60° 

aLL~~----~----~~~~ 
a.aaa a.aa3 a.aas 

Length, in. 

Fig. 3.17. Modified Exper~mental and Calculated Trace Length Distri­
butions for Longitudinal Surface of Cement Paste with a 
W/C = 0.5; Monotonic Loading: Strain = 0.004 



.-
I 

• 
Ol 
Q) 

"0 

-;, 
·c;; 
c: 
Q) 
Cl 

6 
c: 
Q) 
::l 
0" 

~ 
. 

Q) 
0:: 

0.0250 

0.0125 

// 

// 

// 

--// 
' -0.00000~~-----------~------

// 

// 

_? 
// 

45 

IJl, degrees 

// 
./'. 

/---__....--.---- .. 

---Non loaded 
---Loaded 

90 

Fig. 3.18. Crack Orientation Distributions, f(¢), for Nonloaded and Loaded (Strain= 0.004) Cement 
Pastes with a W/C = 0.5 

"' "' c·, 



.-

c ·-
_i. 
·w 
c 

1000 

---Non loaded 
---Loaded 

~ 500 
[) 
c 
(I) 
:J 
0"' 

~ 
LL 

• 
(I) 

a:: 

..,.,.----
// -­-/ -

/ -
/ --

// --
0 ~--- ------

0.000 ---
0.003 0.006 

Si:ze, a, in. 

Fig. 3.19. Crack Size Distributions, f(al~), for Nonloaded and Loaded (Strain= 0.004) Cement Pastes 
with a W/C = 0.5, = 60° 

t0 

"' " 



268 

Equivalent 
Uni-Directional 
Crack Trace 

e-Trace Angle for Equivalent 
~--'--'- Uni-Directional Crack Trace 

Fig. 3.20. Multi- and Uni-Directional Crack Traces 



20 

N 
• c ·-'-.. 
• c ·-
• 

£ 
(I) 
c 15 <I> 

0 
~ 
0 
0 
L.. 
u 
<I> 
0 
0 
't: 
::J 

(/) 

10 
0.3 0.5 

Water-Cement Ratio 

Fig. 3.21. Surface Crack Density versus Water-Cement Ratio for Nonloaded Cement Paste 

0.7 

tv 
C' co 



1\ 
I"') 

0 
v 
> z 

;; 
·c;; 
c 
Q) 
a 
Q) 

E 
::l 
0 
> 

0.020 

0.015 

0.010 1.....-----------''-----------'-----------' 

Fig. 3.22. 

0.3 0.5 

Water-Cement Ratio 

Measure of Volumetric Crack Density, Nv<a
3>, versus Water-Cement Ratio for Nonloaded 

Cement Paste 

0.7 

N ,, 
0 



40 

C\1 
• c ·--........ • c ·-
ft 

~ ·-(J) 

~ 20 
Cl 
~ 
0 
0 
"-
() 

Q) 
0 
0 
't: 
::J 
Vl 

0 

..,;:;:;· 
-::::-..,;:;:;· =--

.-~ 
-~ 

~~.....-:::::·.....-:::::-::::-~ [!] 

~ 

4:..- W/C = 0.7 
(!)- W/C = 0.5 
r!J- W/C = 0.3 

[!] 

0.000 0.003 0.006 

Strain 

Fig. 3.23. S~rface Crack Density, MT<2>T' versus Strain for Monotonic Loading of Cement Pastes 
Wlth W/C = 0.7, 0.5 and 0.3 

" " ,_. 



40 

N 
0 

c 
\-
c ·-
~ ·-(J) 

~ 20 
0 
~ 

::r--- ~ 

0 

~ 
0 
<I) 
0 
0 

't: 
:J 

(/) 

0 
0.000 

;; 

0.003 

Strain 

A-W/C = 0.7 
(!)- W/C = 0.5 
[!]- W/C = 0.3 

0.006 

Fig. 3.24. Surface Crack Density, ~<.e>T' versus Strain for Monotonic Loading of Cement Pastes with 
W/C = 0.7, 0.5 and 0.3 

N 

" N 



40 

N, 
c: 

'-.. • c: ·-
.;;. 
'Cii 
c: 20 (J) 

0 

-~ r 0 

"' 0 
-a. 

.._ 
(.) 

(J) 
0 
0 
't: 
::J 

(/) 

0 
0.000 

"' / 

"' 

Mortar ... 

/ 

A>. / 
/ 

0.003 

Strain 

... 

., 
........ 

Cement Paste 

0.006 

Fig. 3.25. Surface Crack Density, MT<~>T' versus Strain for Monotonic Loading of Cement Paste and 
Mortar with a W/C = 0.5 

t0 

"' ~" 



C\1 7000 
I 

• c: ·-
ft 

(I] 
.::L. 
0 
0 
L. 

(,) 

c: 
0 ·-..... e 
~ 3500 
L. 

0... (!) 

c: 
Q) 

E ·-0 
Q) 
0. 

(/) 

..... 
0 
L. 
Q) 
.a 0 E 
:::J 0.000 0.003 0.006 z 

Strain 

Fig. 3.26. Number of Specimen Preparation Cracks per Unit Area versus Strain for Monotonic Loading of 
Cement Paste with a W/C = 0. 5 . 

N 

" ..,. 



0.0050 

c ·-
or 
N ·-(/) 

~ljl=90° 

.... ,.,............. - - - 1!1\jJ = 4 5° 
,.,..... --- - - __.-'(!) ljJ = oo 

.X 
0 .... 
f! 
() 

0 0.0025 :.:; 
(I) 

·c 
Q) .... 
0 
f! 
c 
.c 
() 

c 
c 
Q) 

::::!: 

0.0000 
0.000 0.003 0.006 

Strain 

Fig. 3.27. Mean Characteristic Crack Size, <a~>, versus Strain for Monotonic Loading of Cement 
Paste with a W/C = 0.5 

N 

" <ro 



c 
0 

+:; 
0 ·c 
0 
> -0 
...... 
c 
Q) ·o 

::.: 
Q) 
0 

(_) 

0.50 

0.25 

0.00 L_ ____ ____.. _____ -J_ _____ _.__ ____ ____. 

0.000 0.003 0.006 

Strain 

Fig. 3.28. Coefficient of Variation versus Strain for Monotonic Loading of Cement Paste with a W/C = 0.5 

N .._, 

"' 



3.0 

I") 

I . 
c ·-tO 

0 ..... 

> z 1.5 
• I ' C/) 

'.!..-~ ...t..-0 e ... 
0 
.... 
0 

... 
Cement Paste ... 

.<b.-
L 
Q) 

Mortar - • 
..0 
E 
::J z 

0.0 
0.000 0.003 0.006 

Strain 

Fig. 3.29. Number of Cracks per Unit Volume, NV' versus Strain for Monotonic Loading of Cement Paste 
and Mortar with a W/C = 0.5 

'" ...., ...., 



A 
r<) 

0 v 
> z 

.i-·m 
c 
Q) 

0 
Q) 

E 
::s 
0 
> 

0.12 

0.06 
? 

A- W/C = 0.7 
(!)- W/C = 0.5 
1!1- W/C = 0.3 

1!1 

O.OOL---------~~--------~~--------~----------~ 

0.000 0.003 0.006 

Strain 

Fig. 3.30. Measure of Volumetric Crack Density, NV<a3 >, versus Strain for Monotonic Loading of Cement 
Pastes with W/C = 0.7, 0.5 and 0.3 

'~ 

" co 



,.," 
0 
v 
-£ 

0.12 

.?5- 0.06 
·-0) 
c 
Q) 

0 
Q) 

E 
:::J 
0 
> 

.-. 
... 

.... - -
"' ,. _,../ 

,. Jlf' ........ 

,. /./ 
,. ~ ,......./· ,. 

,. ::::,.---·....-
,. .::::..---· 

~ ~~·'/" 
..tr..-W/C = 
C!>- W/C ~ 
r:!J- W/C -

0.7 
0.5 
0.3 

- .... 

O.OOL---------~----------~----------~--------~ 

0.000 0.003 0.006 

Fig. 3.31. 

Strain 

Measure of Volumetric Crack Density, Nv<a
3
>, versus Strain for Monotonic Loading of Cement 

Pastes with W/C = 0.7, 0.5 and 0.3 

'" __, 
<D 



1\ 
I"') 

0 
v 
> z 

.i-·u; 
c 
Q) 

0 
Q) 

E 
::I 

g. 

0.12 

"' 0.06 "' 
"' 

(!) 

£ ... 

"' 
"' 

"' 

Mortar"' 
.M 

"' 

0.00 L..---------''-------1-------'---------1 

0.000 0.003 0.006 

Strain 

Fig. 3.32. Measure of Volumetric Crack Density, Nv<a3>, versus Strain for Monotonic Loading of Cement Paste 
and Mortar with a W/C = 0.5 

N 
co 
0 



40 
.£I -- W/C = 0.3 --N -• -c -'-... --• c ·- [!')-

__..e:) 
~ 

~ W/C = 0.5 ·-(JJ 

~ 20 (9---

0 
.::,(. 

0 

E 
0 
<I) 
0 
0 
't: 
:::1 
(/) 

0 
0.0030 0.0045 0.0060 

Strain 

Fig. 3.33. Surface Crack Density, MT<,~>T, versus Strain for Sustained Loading of Cement Pastes with 
W/C ; 0.5 and 0.3 

'" co .... 



N 
• c: ·-"":-

c: ·-
.?5-·-Ul 
c: 
IU 

0 
.::f. 
(.) 

~ 
(.) 

IU 
(.) 
0 
't: 
:J 

U) 

40 

20 

0 

40r 

20 

~ 

282 

Monotonic ---------------€) 
----- -

Sustained 
- - EJ -- - ... - -

[!3 - - - --

W/C = 0.5 

Monotonic 

- e:J 
__ - - - - Sustained 

W/C = 0.3 

0~------~------~--------------~ 

0.0030 0.0045 0.0060 

Strain 

Fig. 3.34. Surface Crack Density, ~<~>T' versus Strain for Monotonic 
and Sustained Loading of Cement Pastes with W/C ~ 0.5 and 
0.3 



0.0050 

• c 

-Q) 
N ·-(/) 

IJ!= 90° 
...--·-·-·-·-·-·-·-·-·-... 

- - eJ 

.Y. ljJ = 45° [9- - - E!) 
0 
0 
L.. 
() IJ! = 0° G 

0 0.0025 ·-.....-
rn ·c 
Q) .....-
0 

~ 
0 
.c 
() 

c 
0 
Q) 

~ 

0.0000 
0.0030 0.0045 0.0060 

Strain 

Fig. 3.35. Mean Characteristic Crack Size, <a~/· versus Strain for Sustained Loading of Cement Paste with 
aW/C=0.5 

N 
co 
(.N 



I"') 

I . 
c 

cO­
o 
.--

> 

1.0 

z 0.5 
] 
0 e 
u 
'1-
0 
L­
CI> 

..0 

E 
::J 
z 

m-

C9>----

- - - - - W/C = 0.3 - E!l 

W/C =0.5 
E!) 

0.0~--------~----------~----------~--------~ 

0.0030 0.0045 0.0060 

Strain 

Fig. 3.36. Number of Cracks per Unit Volume versus Strain for Sustained Loading of Cement Pastes with 
W/C = 0.5 and 0.3 

N 
(X> .,. 



1\ 
1"1 

0 
v 
> z 

.i-·a; 
c 
Q) 

0 
Q) 

E 
::l 
0 
> 

0.12 

W/C = 0.3 
-l!l --------

0.06 

1:!3- - W/C = 0.5 

G ~ 
---

0.00 L_ ____ ___._ _____ _.._ _____ ~-------' 

0.0030 0.0045 0.0060 

Strain 

Fig. 3.37. Measure of Volumetric Crack Density, Nv<a
3
>, for Sustained Loading of Cement PastP.s with 

W/C = 0.5 and 0.3 

N 
00 

"' 



286 

0.12 
Monotonic 

Sustained 

0.06 
[!3---- .. ... .. ... - - - - - - -----1!1 

WIG= 0.5 
1\ 

I') 0.00 0 
v 
> z 

i-
'iii 
c: 
cl) 
a 
cl) 

0.12 Monotonic 

E 
::J .e:J 
0 - • Sustained 
> 

0.06 

WIG = 0.3 

0.00 ,__ ___ ....._ ___ _,__ ___ ~----' 

0.0030 0.0045 0.0060 

Strain 

Fig. 3.38. Measure of Volumetric Crack Density, Nv<a
3
>, versus Strain 

for Monotonic and Sustained Loading of Cement Pastes with 
W/C = 0.5 and 0.3 



1\ 
n 

0 
v 
> z 
• 

.0 ·-U) 
c: v 

Cl 

v 
E 
:J 

~ 

0.12 

0.08 

0.04 

0.00 
0.65 

0.12 

0.08 

0.04 

287 

Sustain_ed_ 
- - -[9 -

(9 Monotonic 

0.70 

Sustained ... [!] 
... ... ... ... ... 

[9 

(9~--~~~~~€1 
Monotonic 

- -E!J 

€1 

W/C - 0.5 

0.75 

W/C - 0.3 
0.00 .__--~~------~----'""-------J 

0.65 0.70 

Stress/Strength 

0.75 

Fig. 3.39. Measure of Volumetric Crack Density, NV<a
3
>, versus Stress­

Strength Ratio for Monotonic and Susta1ned Loading of Cement 
Pastes with W/C = 0.5 and 0.3 



40 
Ill 

/ 

"'W/C = 0.3 

N 
/ . 

c: ·-
/ 

- -e> 
......... 

• W/C = 0.5 / 

c: / ·-
.?5-·-

(9 ·-

13 
(/) 

~ 20 
0 

.::L 
0 
0 
I... 
u 
Cl) 
0 
0 
't: 
::J 
en 

0 
0.0010 0.0025 0.0040 

Strain 

Fig. 3.40. Surface Crack Density, ~<~>T' versus Strain for Cyclic Loading of Cement Pastes with 
W/C = 0.5 and 0.3 

N 
co 
co 



289 

40 

- - -I!- - -

c_y ~n~ _ ~;:J 
- - - - - - Monotonic 

20 

N 
• c: W/C = 0.5 ·-........ 
• c: 0 
• p 

·u; 
c: 
d) 
d 
~ 
() 

~ 40 Cyclic 
(.) )!l 
<I) , 
() 

, , 
0 , 
't: , , Monotonic :::3 , 
(/') , 

~ , , 
at 

20 

W/C = 0.3 
0~.,._ ___ ....__ ___ .--l... _______ ___. 

0.0010 0.0025 0.0040 

Strain 

Fig. 3.41. Surface Crack Density, ~<i>T' versus Strain for Monotonic 
and Sustained Loading of Cement Pastes with W/C = 0.5 and 
0.3 



0.0050 

. 
c ·-
• 

(j) 
N ··-(/) 

.::t. 
0 
0 
L 

0 
0 0.0025 ·-...... rn ·c 
(j) ...... 
0 
0 
L 
0 

..c 
0 
c 
0 
(j) 

~ 

0.0000 
0.0010 

'" -·-·---'f= goo~--·-·-·-·-· --
-

3" -ljJ = 45° [J 

ljJ = oo ,...----

---

0.0025 

Strain 

-·-· - .-·_...t.. 

-1!1 ----

0.0040 

Fig. 3.42. Mean Characteristic Crack Size, <a >, versus Strain for Cyclic Loading of Cement Paste with a 
W/C = 0.5 ~ 

N 
<.0 
G 



I"') 

I . 
c ,o-
0 
....-

> 

1.0 

z 0.5 
(/) 

.;:,(. 

0 

E 
0 
..._ 
0 
L.. 
4) 
.0 
E 
:::1 
z 

[9. - - - - -
W/C = 0.3- m = 0.5 

o.oL---------~----------~----------~--------~ 
0.0010 0.0025 0.0040 

Strain 

Fig. 3.43. Number of Cracks per Unit Volume, NV, versus Strain for Cyclic Loading of Cement Pastes with 
W/C = 0.5 and 0.3 

N 
<D ,_. 



1\ 
·I'") 

0 
v 
> z 

.i-·a; 
c 
Q) 

0 
Q) 

E 
:J 

~ 

0.12 

0.06 

W/C = 0.3 
1!1 

W/C = 0.5 

O.OOL---------~~--------~--------~~----------~ 

0.0010 0.0025 0.0040 

Strain 

Fig. 3.44. Measure of Volumetric Crack Density, Nv<a\, versus Strain for Cyclic Loading of Cement Pastes 
with W/C = 0.5 and 0.3 

'" ~., 

N 



1\ 
I"') 

0 v 
> z 
• p 

(/.) 

c: 
q) 

Cl 

q) 

E 
::J 

~ 

0.12 

0.06 

0.00 

0.12 

0.06 

293 

, , , , 

, 

Cyclic 
l!l , , 

, 
1:!!1 , Monotonic ------e;) 
G" 

W/C = 0.5 

W/C = 0.3 

0.00 .....__ ___ ....._ __ ----''----~~------' 

0.001 0 0.0025 0.0040 

Strain 

Fig. 3.45. Measure of Volumetric Crack Density, Nv<a3>, versus Strain 
for Monotonic and Cyclic Loading of Cement Pastes with 
W/C = 0.5 and 0.3 · 



294 

3 

I 

2 

~----------------------------~1 

Fig. 4.1. Elliptic Crack and Principal Material Directions 



295 

3 3 
s 

L--------'·------~1 1 

s 
Load Case 1: E1 Load Case 2: E3 

s 
3 

s 
Load Case 3: V12 Load Case 4: v31 

3 

I 
load Case 5: 631 

Fig. 4.2. Applied Stresses for Determining Effective Moduli 



296 

y 

X 

z 

Fig. 4.3. Crack-based Coordinates 



~7 

y 

X 

z 

Fig, ~.4. Elliptic Crack and Resolved Stresses 



1.0......-------------------------, 
BUDIANSKY & O'CONNELL 

- CURRENT STUDY 

E 
T 0.5 

SATURATED 
CRACKS 

o.oL ____ _.___~ __ _._ ____ ......_ __ ___,_:-: 
0.00 0.75 

Nv<o3> 

1.50 

Fig. 4.5. Effective Stiffness Modulus; Dry or Saturated Circular Cracks in an Isotropic Solid 

N 

"' "" 



0~0 ~------------------~~~ 

v 0.25 

BUDIANSKY & O'CONNELL 
- CURRENT STUDY 

o.ooL ____ __..__~::....._----~-----......._-----=-: 
0.00 0.75 

Nv<o3 > 
1.50 

Fig. 4.6. Effective Poisson's Ratio; Dry or Saturated Circular Cracks in an Isotropic Solid 

N 

"' "' 



~--------~~~ 1.0 
-- HOENIG 

~0.5 
E 

DRY 
CRACKS 

... 
SATURATED " 

CRACKS 

- CURRENT STUDY 

... 

o.oL__:_ _ __._ ___ _.._____=::=:::::::::===::====~ 
0.0 0.5 

Nv<03) 

1.0 

Fig. 4.7. Effective Stiffness Modulus; Dry or Saturated Circular Cracks in a Cylindrically Transverse 
Isotropic Solid 

"" 0 
0 



1.0,------------------. 
-- HOENIG 

- CURRENT STUDY 

vl2 0.5 

o.oL-------====~~----_..._ ___ _j 
0.0 0.5 1.0 

Nv<03) 

Fig. 4.8. Effective Poisson's Ratio; Dry or Saturated Circular Cracks in a Cylindrically Transverse 
Isotropic Solid 

'" 0 
>-' 



1.0..,.--------------------------, 

631 0.5 
G 

DRY 
CRACKS 

HOENIG 
- - - CURRENT STUDY 

0.0';------------'---------'-----_j 
0.0 0.5 

Nv<03> 
1.0 

Fig. 4.9. Effective Shear Modulus; Dry or Saturated Circular Cracks in a Cylindrically Transverse 
Isotropic Solid 

"' 0 

·~ 



1.0~---------------------. 

_§_ 0.5 
E 

\, 
~ 
~ 
~ 

0. 
~ 
~ 
~ 

,'\. 

" " '\. ~ATURATED 
'{RACKS 

"'-"'-
DR~"'-

CRACKS ~ '-- ""-
-""-::...... 

:::-..... :::-..... 
::::,.... 

.::::::-....~ 

0.0 1------~-------~------=::::::::::::!:=,......._ _ _j 

0.00 0.25 0.50 

Nv<o 3> 

Fig. 4.10. Effective Stiffness Modulus; Dry or Saturated Circular Cracks in a Transversely Isotropic 
Solid; K = -0. 3 

'-'' 
0 
'-'' 



1.0 ------- SAlURATBl 

. -------- CRACKS 

E3 0.5 
E 

--------------------
--------

0.0~----------~----------~----------~----------~ 

0.00 0.25 
Nv<03> 

Fig. 4.11. Effective Stiffness Modulus; Dry or Saturated Circular Cracks in a Transversely 
Isotropic Solid; K = -0.3 

0.50 

v> 
0 .,. 



1.0 ~-------------------~ 

SATURATED ---
CRACKS ----------- ---::D::::R::-:Y:---

./"/ CRACKS 
/ 

/ . 

.....-:: 
.,....-: 

~~ 
..0-

v12 0.5 ..0-
.0 

.0 
.0 

.§ 
# 

0.0~----------~----------~----------~----------~ 

0.00 0.25 
Nv<o3> 

0.50 

Fig. 4.12. Effective Poisson's Ratio; Dry or Saturated Circular Cracks in a Transversely Isotropic 
Solid; K = -0, 3 

"' 0 
U1 



1.0 ~----------------, 

----SATURATED _......--
CRACK§._--

v31 0.5 

------. -
------ 00 I = --- - CRACKS 

0.0~---~-------'------~----J 
0.00 0.25 0.50 

Nv<a3> 

Fig. 4.13. Effective Poisson's Ratio; Dry or Saturated Circular Cracks in a Transversely Isotropic 
Solid; K = -0.3 

"' 0 
0' 



1.0~---------------------------------------------. 

631 0.5 
6 

~ 
::::.... 

0-
::---.. 

.'-.. .................. 

'',,,, 
'-..-........ SATURATED 

'-..--!:_RACKS 
'-.. 

'-.. 

'-..'-..'-..'-.. 

DRY 
CRACKS ......... '-..'-.. 

......... '-.., 

0.0~----------~----------~----------~----~----~ 

0.00 0.25 
Nv<a3> 

0.50 

Fig. 4.14. Effective Shear Modulus; Dry or Saturated Circular Cracks in a Transversely Isotropic 
Solid; K = -0.3 

w 
0 

" 



0 . 
..--

I 
I 

. 
~ 
II( 

::.:: 
I 

308 

I 
I 

I 

I 
I 

I 

0 
II 

::.:: 
' , 

I ~"'~ 
I 9 I , I 

I II , ::.::, . 

"! I / , /o 
':;:tt' I ' /~ 
II ' ' I II 

::.::I I ' : ./ ::.:: 
j I ,: / 
: I , , / 

'

/; ,'/. 
I ,"' '/' 

I I . '/. 
jl . 

F _..;/ 
i! :/:/ 

,£ ',;· 
'/.// 

1.(') 0 
ci ci 

uJI~ 

0 
1.(') 

ci 

0 
0 
0 

"' ..:; 
" ., 

::ll 
"' "' "' " "" "" .... .., 
"' 
"' ?«"1 ..... . 
4->0 
~ I 

~ II 

"':.< 



1.0~--------------------------------------------~ 

S.o.5 E 

0.0 
0.00 

~~~.-::--...._ 

'""'=- - ~----·----
~>,;: - ' - ' ·----·----·----

"-":: ' ' - _ ·----·---·--- K = -1.0 "''-. ' -- ·---·~·---', '-. --- ·--\ '-. ----', '-. 
\, '-. 

'\ " 
' " ' \ 

\ 
\\ 

\ 
\ 

'-. 
'-. 

'-. 
'-. 

'-. 
'-. 

K = +0.3-.... 

\K = +1.0 

'\ 

\ 
' 

0.25 
Nv<03) 

" 

- - - - ~ = -0.3 

K=O 

'-. 
'-. 

......_ 

'-. 
'-. 

'-. 
'-. 

'-. 
'-. 

Fig. 4.16. Effective Stiffness Modulus; Dry Circular Cracks in a Transversely Isotropic Solid; 
K = -0.3 

0.50 

L-> 
0 

"' 



1.0.----------------------------------------------. 

V12 0.5 

K=-l:.Q-.­....--· ....--· 
_.-/' 

/' 
./· -

/ -
./· --

/ --
/' --

/·, .. " 

/· ..... ' 

/·--
/~,-

v.r-~-

- -- -- """"' """ """' -= -= -= -= --'-' -----------------------------
K=+l.O 

K=O 
----- --- ---+0':'3-= K 

-- y;_·o:3--

-..:;-.:;:;;:;;-,;;;;:;:;:- ..., 

0.0~----------~----------~----------~----------~ 

0.00 0.25 
Nv<03) 

Fig. 4.17. Effective Poisson's Ratio; Dry Circular Cracks in a Transversely Isotropic Solid 

0.50 

'" 1-' 
0 



1.0 ~----------------, 

V31 0.5 

K = -1.0 - - -
k·~·~·:--·~·-·-·-·-·-·-·-·-·-·- ---- ---------------------------

------
- -K = -o. 3 

------ ~·~ - K - ... --------=--= = 
K=+l.O 

0 
""""' = 

~ 

O.OL-----------~----------~----------~----------~ 

0.00 0.25 
Nv<o3> 

Fig. 4.18. Effective Poisson's Ratio; Dry Circular Cracks in a Transversely Isotropic Solid 

0.50 

"'' >-' 
>-' 



I 
I 

I 

312 

I 

I 
I 

I 
I 

""' . 

I 

' 

I 9 
""' I 0 II , I 
~ I ~ ~, / 
u , jo 
~I ' . ...:; 
I , / ,: 

I , I ~ , 
;I I 

/1 I' 
/1 ,' I 

0 /1 , I' . I , . 
o;t;l -'I 
~/I ,'I 
/I ,'1. 
'· I I ,'/ 

j I ,'/ 
: I -'/ 
f I -/ 
16/ 

'· 

0 

, 

0 
!.{) 

0 

0 
0 . oo 

0 



ur 
~ 

t<) 
w 

• 
(/) 
;:! 

:J 
"U 
0 
:2 
(/) 
(/) 
(]) 
c 

::::: 
:;:.; 
(/) 

"U 
(]) 
N 

0 

E 
L. 
0 
z 

1.0 

0.9 

0.8~--------~~--------~----------~----------~ 

0.000 0.003 0.006 

Applied Strain, £ 

Fig. 5.1. Normalized Stiffness Modulus versus Applied Strain for Monotonic Loading of Cement Pastes 
with W/C = 0.7, 0.5 and 0.3; Dry Cracks 

"' ..... 
'" 



ur 
~ 
w 
~ 

(/) 

:J 
:J 

"U 
0 

2 
(/) 
(/) 
(I) 
c 
~ 
:;:i 
(/) 

"U 
(I) 
N 

0 

E 
L 
0 
z 

-
'":d>,_ 

-><!> 

\ 

0.9 

\ 

\ 

\ 

\ 

Mortar, 

Cement Paste 

'\ 
<!>. 

' .... 
.... 

.... 
:lt. 

0,8L-----------~----------~----------~----------~ 

0.000 Oo003 0.006 

Applied Strain, £ 

Fig. 5.2. Normalized Stiffness Modulus versus Applied Strain for Monotonic Loading of Cement Paste 
and Mortar with a W/C = 0.5; Dry Cracks 

"' >-"" .,. 



7500 

Submicrocracking, Ec 

·-rn 
0.. 

Elastic, Ee l_j_l Other Inelastic Deformation, E- Ee- Ec I 

ui 3750 ./ r.y-::!:?... Calcula~te~d:!_-;;;:---------
/·~ // "--Experimental rn 

e ....... 
(/) 

.~ 

•/ 

~ ./ 

0~--------~----------~--------~--------~ 
0.000 0.003 0.006 

Strain 

Fig. 5.3. Experimental and Calculated Stress-Strain Relationships for Monotonic Loading of Cement Paste 
with a W/C = 0.7. (Calculated STress-Strain Relationship is Based on an Elastic Matrix; 
Dry Cracks) 

0• ..... 
(J; 



·-Ul 
0.. 

Submicrocracklng, Ec 

7 500 r • Elastic, E e • ~~ <:»her Inelastic Deformation, E- Ea - ~c~ 
/ ? 

/ ~/'-Calculated 
. / 
// 
'/ // 

// 

'-Experimental 

en 3750 

k/ 
y .f 

Ul 

~ ...... 
(f) 

g. 

.J 
// . 

,;;.:; 

0~----------~----------~----------~--------~ 

0.000 0.003 0.006 

Strain 

Fig. 5.4. Experimental and Calculated Stress-Strain Relationships for Monotonic Loading of Cement Paste 
with a W/C = 0.5. (Calculated Stress-Strain Relationship is Based on an Elastic Matrix; 
Dry Cracks) 

"' ,__. 
C"· 



·c;; 
a. 

(/) 
(/) 

~ ..... 
Vl 

Submlcrocracklng, Ec 
-~ l Other Inelastic 

12000 
~, Elastic, Ee ·I~\ ~eformatlon, g-Ee-E~ 

1 
/ /1¢ 

6000 

/ / 
./ /<f/,, ~ "-Experimental 

/ / 
/// 

/>t<f 
/--;,/ 

./~. 

0~--------~--------~--------~--------~ 
0.000 0.003 0.006 

Strain 

Fig. 5.5. Experimental and Calculated Stres·s-Strain Relationships for Monotonic Loading of 
Cement Paste with a W/C = 0.3. (Calculated Stress-Strain Relationship is Based 
on an Elastic Matrix; Dry Cracks) 

"' f-' ,, 



7500 

'oo 
0.. 

Submlcrocracklng, Ec 

, I , Other Inelastic 
Elastic, E8 ~ 9eformation, E-Ee-E.cl 

~~ -
If!. 

/; 
~~ 

"'=• Experimental 

rn 3750 if Cl) 

e ...... 
(f) 

f I 

o~------------~~--------~----------~----------~ 

0.000 0.003 0.006 

Strain 

Fig. 5.6. Experimental and Calculated Stress-Strain Relationships for Monotonic Loading of Mortar with 
a W/C = 0.5. (Calculated Stress-Strain Relationship is Based on an Elastic Matrix; Dry 
Cracks) 

~" >-" 
00 



1.0 

w- I ' .... 
........... 

'[!] 10 
w ' 

• ' en .... 
:::J ' J Smaller Estimate of :::J 
'0 W .... Mean Crack Size 0 
::::E ... 

0.9 ... 
en ... 
en ... ... 
Q) --w c 

:::.: ·-+' 
(I) 

~ 
Larger Estimate of 

'0 
Q) Mean Crack Size N ·-
0 
E 
L. 
0 
z 0.8 

0.000 0.003 0.006 

Applied Strain, £ 

Fig. 5.7. Comparison of Values of Normalized Stiffness Modulus Corresponding to the Smaller and Larger 
Estimates of Mean Crack Size; Monotonic Loading of Cement Pastes with W/C = 0.7, 0.5 and 0.3; 
Dry Cracks 

"' ,... 
<D 



0 
:;::; 
0 
~ 

0.50 

,rn 0.25 
c 
0 
(/) 
(/) 

·o 
a.. 

Experimental __ 

----­+ ~--------~dr&r--~----~--~--~~---=~~~~-=-~---~~~ - "" 
Calculated 

0.00~----------~----------~----------~----------~ 

0.000 0.003 0.006 

Strain 

Fig. 5.8. Experimental and Calculated Poisson's Ratios versus Applied Strain for Monotonic Loading of 
Cement Paste with a W/C = 0.5. (Calculated Poisson's Ratios are Based on an Elastic Matrix; 
Dry Cracks) 

"' '" 0 



0 
:p 
0 

0::: 

0.50 

,m 0.25 
c 
0 
(/) 
(/) 

0 
0... 

- .&,. 

Experimental ---
.&,. - AI. 

Calculated 

0.00~----------~----------~----------~----------~ 

0.000 0.003 0.006 

Strain 

Fig. 5.9. Experimental and Calculated Poisson's Ratios versus Applied Strain for Monotonic Loading of 
Cement Paste with a W/C = 0.3. (Calculated Poisson's Ratios are Based on an Elastic Matrix; 

Dry Cracks) 

'" ~0 .... 



0 
:;:; 
0 
~ 

fll 
' c 
0 
fll 
fll 

0 
n. 

0.50 

0.25 

""' - ""' - ""' - .&.-

Experimental 

- "" 
Calculated 

O.OOL-----------~----------~----------~----------~ 

0.000 0.003 0.006 

Strain 

Fig. 5.10. Experimental and Calculated Poisson's Ratios versus Applied Strain for Monotonic Loading of 
Mortar with a W/C = 0.5. (Calculated Poisson's Ratios are Based on an Elastic Matrix; 
Dry Cracks) 

'" '" N 



1.0 

..... ur ..... 
........... '!:!:J, 1"'). 
w ..... 

• ..... 
II) ..... ::I 

Ill ... Saturated Cracks ::I 
"'0 

... 
0 

::::;E 
0.9 

II) 
II) 
Q) 

I ------c 
:t: ·-...... 
(I) 

"'0 
Q) 

.~ 
0 
E 
'-
0 z 0.8 

0.000 . 0.003 

Applied Strain, £ 

Fig. 5.11. Comparison of Values of Normalized Stiffness Modulus for Dry and Saturated Cracks; 
Monotonic Loading of Cement Pastes with W/C = 0.7, 0.5 and 0.3 

0.006 

"' '" "" 



0 
~ 
0 

0:::: 

0.50 

,w 0.25 
c 
0 
(/) 
(/) ·-0 

(]_ 

Experimental ----
--- AI. "" -A-~--=--='-"-"=-.<~+..._~--=---=-~-~=---'~~==---==,___,"'-"'"--=---'=---- Calculated 

O.OOL-----------~----------~----------~----------~ 

0.000 0.003 0.006 

Strain 

Fig. 5.12. Experimental and Calculated Poisson's Ratios versus Applied Strain for Monotonic Loading of 
Cement Paste with a W/C = 0.5. (Calculated Poisson's Ratios are Based on an Elastic Matrix; 
Saturated Cracks) 

w 
N 

""' 



0 
:;:; 
0 

0::: 

0.50 

..,rn 0.25 
c 
0 
(/) 
(/) ·o 

(L 

Experimental 

:&,.: . """ .<!!.- - .<!!.- Calculated 

0.00~----------~----------~----------~----------~ 

0.000 0.003 0.006 

Strain 

Fig. 5.13. Experimental and Calculated Poisson's Ratios versus Applied Strain for Monotonic Loading of 
Cement Paste with a W/C = 0.3. (Calculated Poisson•s Ratios are Based on an Elastic Matrix; 
Saturated Cracks) 

(A 
N 
(I1 



0 
4J 
0 
~ 

0.50 

,ro 0.25 
c 
0 
(/) 
(/) ·-0 

0... 

Experimental 

- <fl.- - ..:!>. 

:&.- Calculated 

o.ooL-----------~----------~----------~-----------~ 
0.000 0.003 0.006 

Strain 

Fig. 5.14. Experimental and Calculated Poisson's Ratios versus Applied Strain for Monotonic Loading of 
Mortar with a W/C = 0.5. (Calculated Poisson's Ratios are Based on an Elastic Matrix; 
Saturated Cracks) 

'" tJ 

"' 



'Cii 
a. 

CD 
0 
.-

irl w 
{I) 

:J 
:J 
'U 
0 

::::iE 

{I) 
{I) 
Q) 
c 

:::: ·-.... 
Ul 

3.0 

2.sT --e • A. 

(!)- First Approach 
A- Second Approach 

2.0~--------~----------~----------~--------~ 

0.000 0.003 0.006 

Strain 

Fig. 5.15. Comparison of Values of Stiffness Modulus Calculated in Accordance with the First and 
Second Approaches; Monotonic Loading of Cement Paste with a W/C = 0.5; Dry Cracks 

"' ,,, 
'-l 



0 
:.;:::; 
0 

n::: 

0.50 

(!)- First Approach 
A- Second Approach 

,Ill 0.25~ (i) c . (i) (i) 0 (i) ~ 
Ill 
Ill ·-0 n.. 

0.00~--------~~--------~----------~----------~ 

0.000 0.003 0.006 

Strain 

Fig. 5.16. Comparison of Values of Poisson's Ratios Calculated in Accordance with the First and Second 
Approaches; Monotonic Loading of Cement Paste with a W/C = 0.5; Dry Cracks 

0' 
N 
co 



7500 

Other Inelastic Submicrocracking, 

'iii 
0. 

Elastic, Ee I Deformation, £mat- Ee ~I Ec ~I ---~~~~----J-~~~~~~~~~====~1 A 

Calculated --.....,_ ---' 
/.. _h-:- ~Experimental a) 3750 

/. ----rn 
~ 

U) / . .--:;::...-::::. 
..-::: /"c.r:::::-

/
. ...-::. 

..:;:;. 

-~ 

0~--------~~--------~----------~-----------J 

0.000 0.003 0.006 

Strain 

Fig. 5.17. Experimental and Calculated Stress-Strain Relationships for Monotonic Loading of Cement 
Paste with a W/C = 0.7. (Calculated Stress-Strain Relationship is Based on an Inelastic 
Matrix) 

~' N 

"' 



7500 

·-(1) 
0. 

ro 3750 
(/) 

~ ..... 
(f) 

Other Inelastic Submicrocracklng, 
Elastic, Ea I pelormation, E mat - Ee .I Ec I 

I - -~~::::::::::::::::::===== /Calculated~--- _ 
. /!?-

/ ,...,... '- Experimental 
/ ........ 

/ / 
/ ........ . / 

//~ 
/h" 

/_.b 
~·~ 
.:Y. 

0~--------~----------~----------~--------~ 

0.000 0.003 0.006 

Strain 

Fig. 5.18. Experimental and Calculated Stress-Strain Relationships for Monotonic Loading of Cement Paste 
with a W/C = 0.5. (Calculated Stress-Strain Relationship is Based on an Inelastic Matrix) 

'" '" 0 



·-fl) 
a. 

Other Inelastic 
12000 f' Elastic, Ee 

1 

Deformation, Submicrocracklng, e: 
, E mat - Ee ,, / •I c 

./ ---../() 
/ -­/' -­/ .,/'flY ... 

/ .,/' 
//(If 

~·/ 

Experimental 

,; sooo 
// 

~'/. 
/Y 

fl) 

~ 
Vi 

0~--------~----------~----------~--------~ 
0.000 0.003 0.006 

Strain 

Fig. 5.19. Experimental and Calculated Stress-Strain Relationships for Monotonic Loading of 
Cement Paste with a W/C = 0.3. (Calculated Stress-Strain Relationship is Based 
on an Inelastic Matrix) 

"" "' ,_. 



7500 

·-(1) 
a. 
qj 3750 
(/) 

~ 
Ci) 

Elastic, €a 

€a 

Other Inelastic 
Deformation, 

€mat- €e 

€mat - €e 

Submicrocracking, €c 

\ 
\ 

Calculated 

-Experimental 

€c 

0~--------~----------~----------~--------~ 

0.000 0.003 0.006 

Strain 

Fig. 5.20. Experimental and Calculated Stress-Strain Relationships for Monotonic Loading of Mortar with 
a W/C = 0.5. (Calculated Stress-Strain Relationship is Based on Inelastic Matrix) 

'" "' N 



0 .... 
Q) 
:3 
"0 
c: ·-as ... -(/) 

0 ·-.... 
1/) 

.m 
Q) 
c: --0 

<fl. 

100 

~ 
J, 
~ ...... 

0 
w 
o; 
c: ·-..:.:: o50 
as ... 
0 
0 ... 
0 ·-E 
.0 
:3 
(/) 

rn...... ......... 

. ........__ W/C • 0.3 

4 

<l> 
' 

' 
' .... 
' -
' 
' 
' 
' ' 

~ Cement Paste, ""----------.,__, ----------------.., 
- - .... -

W/C = 0.5 Cement Paste, 

- 4 - - - - - - - A 
Cement Paste, W/C = 0.7 

', ,..--~~(!> 
~- - - - - - - - -<!>- - - - - - - - -<I!>- - - - - -

Mortar, W/C = 0.5 

OL---------~~--------~----------~----------~ 
0.000 0.003 

Applied Strain, E 

0.006 

Fig. 5.21. Percentage of Inelastic Strain Due to Submicrocracking versus Applied Strain for Monotonic 
Loading of Cement Paste with W/C = 0.7, 0.5 and 0.3, and Mortar with a W/C = 0.5 

"' "' <.N 



0 ·-..... 
0 

0:: 

0.50 

,oo 0.25 
c 
0 
(/) 
(/) 

'o 
0.. 

Experimental 
~ 

l<>f Calcu. ___ _ 

0.00 '---------'--------'-------'--------' 
0.000 0.003 0.006 

Strain 

Fig. 5.22. Experimental and Calculated Poisson's Ratios versus Applied Strain for Monotonic Loading of 
Cement Paste with a W/C = 0.5. (Calculated Poisson's Ratios are Based on an Inelastic Matrix) 

01 
01 ..,. 



0 ·-...... 
0 

IY: 

0.50 

,00 0.25 
c: 
0 
0) 
(f) 

'o 
0.. 

Experimental 

- ..t> 

..... - "':. .&. ,... .. ... .... ... ..... & ---:::--::: 
............... 

Calculated 

0.00 ,__ ____ __._ _____ _.___ ____ __._ ____ ____, 

0.000 0.003 0.006 

Strain 

Fig. 5.23. Experimental and Calculated Poisson's Ratios versus Applied Strain for Monotonic Loading of 
Cement Paste with a W/C = 0.3. (Calculated Poisson's Ratios are Based on an Inelastic Matrix) 

"' "' '" 



0 
:p 
0 
~ 

0.50 

,m 0.25 
c 
0 
0) 
0) 

'o 
a_ 

Calculated 

0.00~--------~----------~----------~--------~ 

0.000 0.003 0.006 

Strain 

Fig. 5.24. Experimental and Calculated Poisson's Ratios versus Applied Strain for Monotonic Loading of 
Mortar with a W/C = 0.5. (Calculated Poisson's Ratios are Based on an Inelastic Matrix) 

"' '" a-



7500 

·-(1) 

0. 

a) 3750 
(I) 

~ 
U) 

Other Inelastic 
Elastic, Ea I Deformation, Emat- Ee 

/ 

/ 
/ 

/. 
~ 
~ 

# 
.J 

Submicrocracking, Ec 

I 

0~--------~~--------~----------~----------~ 

0.000 0.003 0.006 

Strain 

Fig. 5.25. Experimental Stress-Strain Curve and Calculated Strain in Inelastic Matrix Material for 
Sustained Loading of Cement Paste with a W/C = 0.5; Applied Strain = 0.004 

<A 

"' " 



7500 

·-(1) 
0.. 

0 3750 
(I) 

~ 
U) 

Submicrocracking, £ 0 

Elastic, Ee I ?her Inelastic Deformation, Emat- Ea ·I· l .. , 
./' 

/ 

0~--------~----------~----------~----------~ 

0.000 0.003 

Strain 

Fig. 5.26. Experimental Stress-Strain Curve and Calculated Strain in Inelastic Matrix Material for 
Sustained Loading of Cement Paste with a W/C = 0.5; Applied Strain = 0.006 

0.006 

w 
01 
co 



12000 

8000 

·-en 
a. 

-en en 
~ ...... 

(/) 

4000 

Elastic, Ee 

~· 

Other Inelastic 
Deformation, 

Emat -Ee 

Submicrocracking, Ec 

t 

0~----~------~------~------~------~----~ 

0.000 0.002 0.004 

Strain 

Fig. 5.27. Experimental Stress-Strain Curve and Calculated Strain in Inelastic Matrix Material for 
Sustained Loading of Cement Paste with a W/C = 0.3; Applied Strain = 0.004 

0.006 

w 
'" tO 



·-fl.l 
0. 

-fl.l 
fl.l 

~ ..... 
(/) 

12000 

Elastic, Ee 

8000 

4000 

0 
/~· 

Other Inelastic Submlcrocracklng, Ec 
Deformation, Em at- Ee 

0~------~----~~----~-------~------~------~ 

0.000 0.002 0.004 0.006 

Strain 

Fig. 5.28. Experimental Stress-Strain Curve and Calculated Strain in Inelastic Matrix Material for 
Sustained Loading of Cement Paste with a W/C = 0.3; Applied Strain = 0.006 

'" ~ 
u 



341 

0.0012 

m 
~ 

~ 

~ 

~ ~Sustained 
0.0006 ~ 

" w . 
W/C- 0.5 o> 

c 
:i! 
0 
e 0.0000 
0 0.002 0.004 0.006 e 
0 

E 
..0 
:I 

(IJ 

0 0.0012 .... 
Gl 
:I 
"0 

c ·c; .. .... 
(IJ 

0.0006 

W/C- 0.3 

0.0000 L--------'----~-----' 
0.002 0.004 0.006 

Applied Strain, E 

Fig. 5.29. Comparison of Calculated Strains Due to Submicro­
cracking for Monotonic and Sustained Loading of 
Cement Pastes (W/C = 0.5 and 0.3) at the same 
Applied Strain. (Calculated Strains are Based on 
an Inelastic Matrix) 



til 
~ 
c::: 

:;;: 
(J 

0.0012 

0.0006 

342 

Sustained -l!l ----
Monotonic ------e 13--

W/C- 0.5 
e o.oooo '-----~----'----------' 
(J e o.65 
(J ·e 
.0 
:I 

(/) 

0 - 0.0012 

0.0006 

0.70 

l!l 
"' 

Sustained ,. " 

Monotonic ....:=.::.:.=.:.::.;::...--e> (9-

0.75 

W/C - 0.3 
0.0000 1....---~-----'-----------' 

0.65 0.70 

Stress/Strength 

0.75 

Fig. 5.30. Comparison of Calculated Strains Due to Submicro­
cracking for Monotonic and Sustained Loading of 
Cement Pastes (W/C = 0.5 and 0.3) at the same Stress­
Strength Ratio. (Calculated Strains are Based on an 
Inelastic Matrix) 



0 ·-+' 
0 

0::: 

w 

0.50 

• 0.25 
c 
0 
(Q 

(Q ·-0 
a.. 

343 

/ Experimental 

[ - - - ~ 
Calculated-

W/C = 0.5 
0.00~--------------------~-----------------~ 

0 ·-+' 
0 

0::: 

w 

0.002 

0.50 

- 0.25 c 
0 
(Q 

(Q ·-0 
a.. 

0.004 
Strain 

0.006 

( Experl~en"ta~ 

Calculated 

W/C = 0.3 
0.00~--------~------~~------~--------~ 

0.002 0.004 
Strain 

0.006 

Fig. 5.31. Experimental and Calculated Poisson's Ratios versus Applied 
Strain for Sustained Loading of Cement Pastes (W/C = 0.5 
and 0.3). (Calculated Poisson's Ratios are Based on an 
Inelastic Matrix) 



7500 

·-rJ) 
Q. 

a) 3750 
rJ) 

~ 
(/) 

0 
0.000 

Elastic, Ee 

Other Inelastic 
Deformation, 

Emat -Ee 

0.002 

Strain 

Ec 

0.004 

Fig. 5.32. Experimental Stress-Strain Curve and Calculated Strain in Inelastic Matrix Material for 
Cyclic Loading of Cement Paste with a W/C = 0.5; Applied Strain= 0.002 

"' ... ... 



7500 

Other Inelastic 
Deformation, Emat - Ee 

Submicrocracklng, e:.c 
Elastic, Ee - I -' 

·-0) 
a. 
a) 3750 
0) 

.b 
(f) 

0.,.. reM 

0.000 0.002 0.004 

Strain 

Fig. 5.33. Experimental Stress-Strain Curve and Calculated Strain in Inelastic Matrix Material for Cyclic 
Loading of Cement Paste with a W/C = 0.5; Applied Strain = 0.004 

"" ..,. 
U1 



12000 

·-CIJ 
a. 
ui 6000 
til 

~ ..... 
(/) 

0 
0.000 

Elastic, Ee 

Other Inelastic 
Deformation, 

Emat-Ee Submicrocracking, Ec 

0.002 

Strain 

0.004 

Fig. 5.34. Experimental Stress-Strain Curve and Calculated Strain in Inelastic Matrix Material for 
Cyclic Loading of Cement Paste with a W/C = 0.3; Applied Strain = 0.002 

"" -"' c-



12000 

Other Inelastic 
Deformation, 

Emat-Ee 

• Elastic, Ee f J J: Ll 
'fjj 
0. 

en Booo 
rn 
~ ...... 

(/) 

0 
0.000 0.002 

Strain 

Ec 

0.004 

Fig. 5.35. Experimental Stress-Strain Curve and Calculated Strain in Inelastic Matrix Material for 
Cyclic Loading of Cement Paste with a W/C = 0.3; Applied Strain = 0.0025 

"' "" "' 



'iii 
0. 

12000 

ui 6000 
C/1 

~ ...... 
Ul 

0 
0.000 

Elastic, Ee 

Other Inelastic 
Deformation, 

Emat -Ee 

0.002 

Strain 

Submicrocracking, Ec 

0.004 

Fig. 5.36. Experimental Stress-Strain Curve and Calculated Strain in Inelastic Matrix Material for 
Cyclic Loading of Cement Paste with a W/C = 0.3; Applied Strain = 0.003 

"' .,. 
co 



349 

0.0006 
" 

" 
" Cyclic" 

" 
" 

" 
"' 0.0003 "' Monotonic 

[!! 

(.) 
w . 
C'l c: 

W/C- 0.5 ~ u 
E 0.0000 
u 

0.000 0.002 0.004 e u 
E 
.0 
:I 

(f) 

0 0.0006 .... 
Cll 
:I 

"0 

c: 
'6 

l:!l Cyclic ... 
iii I 

0.0003 I Monotonic 
I 

I 

I 

1!1 W/C • 0.3 

0.0000 
0.000 0.002 0.004 

Applied Strain, E 

Fig. 5.37. Comparison of Calculated Strains Due to Submicro­
cracking for Monotonic and Cyclic Loading of Cement 
Pastes (W/C = 0.5 and 0.3) at the Same Applied Strain. 
(Calculated Strains are Based on an Inelastic Matrix) 



(I) 

w 
I 

Cil 
E 

w 

0.002 

0.001 

:;so 

Cyclic .-
" 

W/C = 0.5 

x· 0.000 ...._ ___ ~ ___ __.. ____ ......_ ___ __, 

~ 0.000 
0 
~ 

c ·-
c ·-E 0.002 Ci) 
u 

=tl 
0 

Q) 
c 

0.001 

0.002 0.004 

W/C = 0.3 " 
1!1 Cyclic 

0.000 '-----~----e!!----~'-------' 
0.000 0.002 0.004 

Applied Strain, c: 

Fig. 5.38. Comparison of Inelastic Strains in Matrix for Monotonic and 
Cyclic Loading of Cement Pastes (W/C = 0.5 and 0.3) at the 
Same Applied Strain. (Calculated Strains are Based on an 
Inelastic Matrix) 



0 ·-...... 
0 

a:: 
{/) 

0.50 

. 0.25 
c 
0 
{/) 

{/) ·-0 
0... 

351 

W/C = 0.5 
[_ Exparime:tal 

....... --- \_ Calculated 

0.00~------~------~------------~ 

0 ·-...... 
0 

a:: 
{/) 

0.000 

0.50 

~ 0.25 
c 
0 
{/) 

{/) ·-0 
0... 

W/C = 0.3 

0.002 
Strain 

0.004 

Experimental 

l Calculated 

O.OOL-------------~~----~~----~ 
0.000 0.002 

Strain 
0.004 

Fig. 5.39. Experimental and Calculated Poisson's Ratios versus Applied 
Strain for Cyclic Loading of Cement Pastes (W/C = 0.5 and 
0.3). (Calculated Poisson's Ratios are Based on an Inelastic 
Matrix) 



·o; 
n. 

7500 

,n 3750 
0) 

~ 
ii) 

// 
/ 

Arst Approach, E:c 

---First Approach 
- - - - - ·Second Approach 

OL---------~-----------L----------~--------~ 

0.000 0.003 0.006 

Strain 

Fig. 5.40. Calculated Stress-Strain Relationships for First and Second Approaches (Based on 
an Inelastic Matrix) Compared with Experimental Curves. Monotonic Loading of 
Cement Paste with a W/C = 0.5 

"' U1 
N 



353 

APPENDIX A 

KEY TO SPECIMEN IDENTIFICATION 

The specimens are identified as follows: 

Identification: i-j/X-R/L 

in which 

i batch number 

j specimen number, in batch i 

X = type of specimen 

R water-cement ratio 

L type of load regime 

Type of specimen - X 

p cement paste 

M mortar 

Type of load regime - L 

NL nonloaded 

M = monotonic loading 

S sustained loading 

C cyclic loading 

Example: 8-4/P-0.5/M 

I t_ monotonic loading 

L_______ cement paste with a water-cement ratio 0.5 

4th specimen of 8th batch 



a 

b 

[C] 

[C'] 
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APPENDIX B 

NOTATION 

major semi-axis of an elliptic crack or "characteristic" 
crack size 

smallest characteristic crack size that gives a trace 
length of ~ on a plane 

projected length, on longitudinal plane, of the major 
semi-axis of an elliptic crack 

projected length, on transverse plane, of the major semi­
axis of an elliptic crack 

mean characteristic crack size for each crack orientation 
ljJ 

minor semi-axis of an elliptic crack 

projected length, on longitudinal plane, of the minor 
semi-axis of an elliptic crack 

projected length, on transverse plane, of the minor semi­
axis of an elliptic crack 

boundary length per unit area of traces of three­
dimensional objects on longitudinal plane 

boundary length per unit area of traces of three­
dimensional objects on transverse plane 

elements of compliance matrix in global coordinates 

elements of compliance matrix in crack coordinates 

compliance matrix in global coordinates 

compliance matrix in crack coordinates 

second order tensor used in calculating stress-intensity 
factors 

elements of stiffness matrix in global coordinates 

elements of stiffness matrix in crack coordinates 

stiffness modulus of uncracked material 

stiffness modulus of an isotropic cracked material 



f c e) 

f (e) a 

f(e)ac 

f(6\ 

f( 1jJ) 

G 
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stiffness modulus prior to loading 

stiffness modulus of matrix material (material between 
submicroscopic cracks) 

stiffness modulus in the plane of isotropy, for a 
transversely isotropic cracked material 

stiffness modulus in the direction of applied stress, for 
a transversely isotropic cracked material 

three-dimensional crack size distribution for each crack 
orientation 1jJ 

modified experimental crack trace length distribution on 
transverse surface 

calculated crack trace length distribution on transverse 
surface 

true crack trace length distribution for each trace angle 
e 

apparent crack trace length distribution for each trace 
angle e 

calculated apparent crack trace length distribution for 
each trace angle e 

modified experimental crack trace length distribution on 
longitudinal surface for each trace angle e 

calculated crack trace length distribution on lon­
gitudinal surface for each trace angle e 

true crack trace angle distribution 

apparent crack trace angle distribution 

calculated apparent crack trace angle distribution 

modified experimental crack trace angle distribution on 
longitudinal surface 

calculated crack trace angle distribution on longitudinal 
surface 

three-dimensional crack orientation distribution 

shear modulus of uncracked material 

Shear modulus of an isotropic cracked material 



h 

K 
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shear modulus in the plane of isotropy, for a 
transversely isotropic cracked material 

shear modulus in the direction of applied stress, for a 
transversely isotropic cracked material 

height of viewing area in SEM 

energy release rates associated with Mode I crack defor­
mation in the case of dry and saturated cracks, 
respectively 

energy release rate associated with Mode II crack 
deformation 

energy release rate associated with Mode III crack 
deformation 

generalized notation for stress-intensity factors, KI' 
KII' KIII 

measure of degree of anisotropy for three-dimensional 
crack distributions 

stress-intensity factors for Mode I crack deformation 

stress-intensity factors for Mode II crack deformation 

stress-intensity factors for Mode III crack deformation 

bulk modulus of fluid in cracks 

bulk modulus of cracked material 

crack trace length 

modified experimental mean crack trace length on lon­
gitudinal surface 

modified experimental mean crack trace length on 
transverse surface 

true mean crack trace length for each trace angle a 

apparent mean crack trace length for each trace angle a 

modified experimental mean crack trace length on lon­
gitudinal surface for each trace angle a 

modified experimental number of cracks per unit area per 
degree 



M 

n 

N 

p 
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measured number of cracks per unit area per degree 

true number of cracks per unit area 

apparent number of cracks per unit area 

apparent number of cracks per unit area for each trace 
angle e 

modified experimental number of cracks per unit area on 
longitudinal surface 

modified experimental number of craks per unit area on 
transverse surface 

true number of cracks per unit area for each trace angle 
e 

number of cracks per unit area on longitudinal surface 
before modification 

number of cracks per unit area on transverse surface 
before modification 

crack density on longitudinal surface 

crack density on transverse surface 

number of cracks in viewing area with a given trace 
length and trace angle 

number of cracks that lie fully within the viewing area 

number of cracks that lie partially within the viewing 
area 

number of cracks in viewing area with a trace angle of e 
± d9/2 

total number of cracks in viewing area 

second order tensor used in calculating stress-intensity 
factors 

number of cracks per unit volume 

measure of volumetric crack density 

distance measured along crack perimeter 

second order tensor used in calculating stress-intensity 
factors 



r 

R 

s 

s max 

sjk 

tjk 

[T ] 
E 

[T ]T 
E 

[T ] 
a 

[T ] T 
a 

u 

u 

v 
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applied stress acting on cracked solid 

second order tensor used in calculating stress-intensity 
factors 

crack aspect ratio = b/a 

aspect ratio of crack projection on longitudinal plane 

aspect ratio of crack projection on transverse plane 

correlation coefficient 

second order tensor used in calculating stress-intensity 
factors 

applied normal stress acting on cracked solid; also 
distance between crack centroid and intersecting plane 

maximum value of s for which a plane intersects a crack 

real component of tensor pjk 

imaginary. component of tensor pj k 

strain transformation matrix 

transpose of strain transformation matrix 

stress transformation matrix 

transpose of stress transformation matrix 

crack displacement along major axis 

Airy's stress function 

real component of tensor Njk 

applied shear stress acting on cracked solid; also crack 
displacement normal to crack plane 

volume of crack 

variance of crack size distribution for each crack orien­
tation 1jJ 

modified experimental variance of crack trace length 
distribution on transverse surface 

true variance of crack trace length distribution for each 
trace angle e 



v 

w 

w 
c 

x,y,z 

a, a 

Yxy 

y y 
xz' yz 
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apparent variance of crack trace length distribution for 
each trace angle a 

modified experimental variance of crack trace length 
distribution on longitudinal surface for each trace angle 
a 

volume of cracked material 

imaginary component of tensor Njk 

width of viewing area in SEM; also crack displacement 
along minor axis 

crack width 

crack energy parameter due to fluid within cracks 

crack energy parameter for each load case 

local reference frame of crack 

coordinates of points at which longitudinal and 
transverse planes intersect boundaries of crack 
projections 

distances of center of crack trace from center of viewing 
area; also coordinates of points at which longitudinal 
and transverse planes intersect boundaries of crack 
projections 

y
1 

coordinate corresponding to smallest crack size that 
has a given trace length on longitudinal plane 

complex variable solutions for equilibrium and com­
patibility equations 

parameters of gamma distribution 

real parts of solutions for equilibrium and compatibility 
equations 

imaginary parts of solutions for equilibrium and com­
patibility equations 

shear strain associated with Mode II crack deformation 

shear strains associated with Mode III crack deformation 

Y12 ,Y
23

,Y
31 

shear strains in principal material directions 

interval at which crack trace lengths are recorded 



£ c 

£ec 

£mat 

n 

v 

v 

v mat 

p 
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interval at which crack trace angles are recorded 

strain energy change due to cracks 

strain energy change due to cracks, for each load case 

applied axial (longitudinal) strain 

strain due to submicroscopic cracks 

strain due to elastic deformation = o/Ei 

elastic strain plus cracking strain = o!E
3 

strain in matrix material = cr/Emat 

lateral strain 

volumetric strain = £ - 2£t 

normal strains associated with Modes I and II crack 
deformations 

normal strains in principal material directions 

angular rotation of crack about its normal 

projection of angle n on longitudinal plane 

projection of angle n on transverse plane 

crack trace angle 

complex roots of equilibrium and compatibility equations 

Poisson's ratio of uncracked material 

Poisson's ratio of an isotropic cracked material 

Poisson's ratio of matrix material 

Poisson's ratio in the plane of isotropy, for a 
transversely isotropic cracked material 

Poisson's ratio in a plane perpendicular to the plane of 
isotropy 

energy change associated with a single crack 

perpendicular distance from crack centroid to a point on 
the crack perimeter 



0 

T xy 

T T xz' yz 

T1 'T2 
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stress normal to crack plane 

hydrostatic stress due to fluid within cracks 

normal stresses associated with Modes I and II crack 
deformations 

normal stresses in principal material directions 

stress tangential to crack plane 

shear stress associated with Mode II crack deformation 

shear stresses associated with Mode III crack deformation 

perpendicular components of stress ••hich acts tangential 
to crack plane 

T12 ,T
23

,T
31 

shear stresses in principal material directions 

<P c 

crack angular coordinate which varies in a full circle 
about the longitudinal axis 

strain energy of uncracked solid under a prescribed 
loading 

strain energy of cracked solid under a prescribed loading 

three-dimensional crack orientation 
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APPENDIX C 

CORRECTION OF WINDOW SIZE DISTORTION OF CRACK DISTRIBUTIONS 

ON PLANE SECTIONS 

C,1 INTRODUCTION 

The problem studied here deals with the estimation of true surface 

distributions from measurements of lengths and angles of cracks (or straws, 

needles, etc.) on a plane section, where only a portion of the plane section 

is visible within the field of view, or window. This problem stems from a 

scanning electron microscope study of load-induced cracks in cement paste 

and mortar. 

The window width, w, is very large and has no effect on the problem 

(Fig. C.1). However, the window height, h, is finite. Segments of some 

cracks will therefore lie outside the window, and hence their measured 

lengths will be shorter than their true lengths, causing the length dis­

tribution to be skewed towards low values. A crack whose center is located 

outside the viewing area may have a portion within the field of view. A 

crack centered at the same point, but at a lower angle, e, may lie com­

pletely outside the viewing area. The observed or apparent number of cracks 

at low angles will therefore be relatively lower than the number at high 

angles, resulting in the angle distribution being skewed towards e = 90°. 

This implies that the apparent number of cracks at low angles is less than 

the true number and the apparent number at high angles is greater than the 

true number. The true surface distributions of crack length and crack angle 

on plane sections of opaque bodies are required in order to accurately 

estimate crack distributions in three-dimensions. 

In the following analysis, the concepts of mathematical statistics [31] 

and geometrical probability [48] are used to establish relationships between 

the observed or apparent distributions and the true distributions. 

Procedures are established for estimating the true distributions. Examples 

based on a study of load-induced cracks in cement paste and mortar are given 

to illustrate the results of the procedures. 

It is shown that the total length of cracks per unit area is unaffected 

by the window height. A guideline is provided to determine if the window 

analysis is required for a given window height. 
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C.2 ESTIMATES OF THE TRUE SURFACE DISTRIBUTIONS OF CRACK LENGTH 

AND CRACK ANGLE 

C.2.1 True Surface Distribution of Crack Length 

The derivations that follow are aimed at establishing a relationship 

between the apparent and true distributions of crack length. The form of 

the true distribution, as well as its mean and variance, is required. An 

iterative procedure is used to determine the true distribution. 

If f(~,e) is the true joint relative frequency density of a crack 

length and angle on a plane, then f(~,9)d~d9 is the probability that a crack 

has a true length of ~ ± d~/2 and an angle of e ± d9/2. The true number of 

such cracks in a unit area is 

M f(~, 9)d~d9 (C.1) 

in which M is the true number of cracks per unit area. The ranges of ~ and 

e are 
Q(~(oo 

o:>e:>'Tf 

such that 

00 'IT 
fo ! 0 f(~,e)cted~ (c. 2) 

The number of cracks, n, in the viewing area with a measured length of 

~i ± d~/2 and an angle of e ± de/2 is the sum of two components, n 1 and n2 • 

n
1 

is the number of cracks that lie fully within the window and n2 is the 

number that lie partially within the window. 

In order for cracks with a length of ~i ± d~/2 and an angle of e ± 

d9/2 to lie fully within the viewing area, their centers must not be further 

than a distance of ± y
1 

from the center of the viewing area (see the crack 

labelled A in Fig. C.1). 

1 y =- (h-~isin9) (C.3) 
1 2 

in which ~i < h/sine. 
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From Eq. (C.1), n
1 

M f(~i, 8)d~d8 w 2y1 = 

M w (h-~.sine) f(~.,8)d~d8 
1 1 

(C.4) 

Type B and C cracks (Fig. C.1) contribute to n2• Type B cracks are 

those with a measured length equal to ~. ± d~/2 (~. < h/sin8) projecting 
1 1 

into the viewing area. Type C cracks are those with a true length of ~ ~ 

h/sin8 and a measured length exactly equal to h/sin8 and which have centers 

not further than a distance of± y
2 

from the window center. Fig. C.1 shows 

a type C crack which has its center at a distance of y
2 

above the window 

center. 

1 y = - ~sine - h/2 
2 2 

(C,5) 

The number of type B cracks that have a true length of ~ ± d~/2 and an 

angle of a± d8/2 and have tips within a region d~sina wide (i.e., tips 

within the region ~ 1 sine ± d~sin8/2 from the edge of the window) is equal to 

the number of cracks with centers within a region of the same width. This 

number is 

M f(~.a)d~de w d~sine (C.6) 

for each edge of the viewing area. 

To obtain the total number of type B cracks which contribute to n2, Eq. 

(C.6) is integrated for all ~ ~ ~i to give 

.. 
2M w sine d~ de ~~.fC~.a)d~ 

1 

(C.7) 

Type C cracks will contribute to n
2 

only if cracks with a measured 

length, ~i' exactly equal to h/sine are being considered. In this case, the 

contribution 

angle of e ± 

to n
2 

of 

d8/2 is 

type C cracks with a true length of ~ ± d~/2 and an 

M f(i,8)did8 w 2y2 
(C.8) 

The total number of type C cracks is obtained by integrating Eq. (C.8) for 

all ~ ~ hsine to give 
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"' M w de Jh/sine(~sine-h)f(~,e)d~ (C.9) 

If h is not large enough in relation to the mean crack length for a 

particular angle, the number of type C cracks [given by Eq. (C.9)] will 

appear as a spike at h/sine in the measured length distribution for the 

given angle (Fig. C.2). A spike cannot be handled adequately with this 

analysis. The absence of a spike (implying a negligible number of type C 

cracks) is desirable and indicates that the window height is adequate for 

the cracks being measured; (i.e. few cracks have a length of ~ > h/sine). 

In the absence of a significant number of type C cracks, the number of 

cracks in the viewing area with a measured length of ~i ± d~/2 and an angle 

of e ± de/2 is obtained by summing Eq. (C.4) and (C.7). 

"' n = Mw(h-t.sine)f(~.,e)d~de + 2Mwsin8d~d8Jt f(~,e)d~ 
1 1 i 

(C. 1 Oa) 

or 

n = Mwde[(h-~.sinS)f(~.,e) + 2sineJ~ f(t,e)d~]d~ 
1 1 "i 

(C.10b) 

If f(~j e)a is the apparent relative frequency density of a measured length 

for a given angle, then f(~ije)ad£ is the probability that a crack has a 

measured length of ~i ± d~/2 for a given e. 

f < ~. 1 e l d~ 
1 a 

Number of cracks with ~i ± d£12, e ± de/2 

Number of cracks with e ± de/2 (C.11) 

The number of cracks for a particular angle is obtained by integrating Eq. 

(C.10b) for all~. The number of cracks withe± dS/2 is 

(c. 12) 

Eq. (C.12) can be simplified using the following statistical relation [31]. 

f(£,e) = f(£je) f(e) (C.13) 

in which f(~je) is the true relative frequency density of a crack length for 

a given angle and f(e) is the true relative frequency density of a crack 
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angle. Substituting Eq. (C.13) into Eq. (C.12), the number of cracks withe 

± de/2 is 

(C.14) 

Eq. (C. 1 4) can be further simplified by using the technique of integration 

by parts to show that 

Substituting Eq. (C.15) into Eq. (C.14), the number of cracks with e ± 

de/2 is 

(C.16) 

However in Eq. (C.16), 1: f(~!e)d~ ~ 1, and 1: ~f<~leld~ is the true mean 

crack length ate; i.e. <~ 8> ~ 1: ~f(~leld~ • Hence the number of cracks 

with angle e ± d6/2 is 

n
9 

~ M w f(S)dS(h + <~ 8>sine) (C.17) 

The statistical relation expressed in Eq. (C.13) is substituted into Eq. 

(C.10b) to give 

n ~ M w f(S)de[(h-~isine)f(~ilel + 2sineJ~ fC~!e)d~]d~ 
i 

Substitution of Eq. (C.17) and (C.18) into Eq. (C.11) yields 

(h-~isine)f(~i!eJ + 2 sine "' J~. f(~!S)d~ 

f(~i!eJa 
1 

h + <~ 8 > sine 

(C.18) 

(C.19) 

In Eq. (C.19), ~may be substituted in place of~ .• since the expression is 
1 

valid for any measured length. 

fO.I el a 

(h-~sine)fC~Iel + 2 sine J~ fC~Ield~ 
h + <~ > sine 

6 

(C.20) 
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The apparent mean crack length at e is given by 

(c. 21 ) 

By substituting Eq. (C.20) into Eq. (C.21) and evaluating the integral, the 

true mean crack length at e can be determined in terms of a measurable 

quantity, <i 9>a. 

(C.22) 

in which h must be greater than <i 9>a sine • 

The variance of the apparent length distribution for a given e can be 

expressed as 

(C.23) 

Substituting Eq. (C.20) into Eq. (C.23) and evaluating the integral, the 

variance of the true length distribution for a given e is 

(C.24) 

In Eq. (C.24), <i
9
>a and var(i 6)a are respectively the mean and variance of 

the apparent length distribution and are therefore known quantities. 

In order to estimate the true crack length distribution, f(ije), the 

form of f(&je), mean crack length, <1 6>, and variance, var(& 9), must be 

known. <1
6
> can be obtained from Eq. (C.22), The form and variance of 

f(&je), however, cannot be obtained directly, requiring the use of an itera­

tive procedure. The objective of the procedure is to calculate an apparent 

distribution based on an assumed form of the true distribution. If a close 

match is obtained between the known (experimental) and calculated apparent 

distributions, then the assumed form of the true distribution is the correct 

one. Since only some of the true crack lengths will be longer than their 

corresponding measured lengths, as an initial guess, it is reasonable to 
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assume that the true length distribution, f(i!Sl, is similar in form to the 

known apparent length distribution. 

The procedure for estimating the true length distribution is outlined 

as follows. 

1. Assume that f(i!Sl is similar in form to the known apparent length 

distribution. 

2. The mean and variance of f(ilsl are <is> and var(is), respectively. 

<is> is obtained from Eq. (C.22). As an initial guess, assume that 

var(is) = var(is)a • 

3. Calculate the true variance, var(is), using Eq. (C.24). 

4. If the computed variance is not equal to the assumed variance, recom­

pute var(i 8) from Eq. (C.24) using the variance calculated in Step 3. 

5. Repeat Steps 3 and 4 until the assumed and computed variances are 

equal. 

6. Substitute fCilel, with parameters <is> and var(i 9), into Eq. (C.20) in 

order to calculate fCi!Sl • a 
7. A "goodness of fit" test, based on the chi-square distribution [31], is 

used to determine if there is a close agreement between the known and 

calculated apparent distributions. A close agreement implies that a 

good estimate of f(iJel has been obtained. 

8. If the "goodness of fit" test fails, assume a true distribution with a 

different form. Repeat Steps 2 to 7. 

An example based on a study of load-induced cracks in cement paste and 

mortar is presented in Section C.2.3 to illustrate the results of the above 

procedure. 

C.2.2 True Surface Distribution of Crack Angle 

In the following derivation, a relationship is established between the 

apparent and true distributions of crack angles. An iterative procedure is 

described for determining the true distribution. 

If f(e)a is the apparent relative frequency density of a measured 

angle, then f(S)ade is the probability that an observed crack has a measured 

angle of e ± dS/2 • 

Number of cracks with 9 + dS/2 
Number of cracks for all e 

~9 
N 

(C.25) 
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The number of cracks with an angle of 6 ± d6/2 is given by Eq. (C.17) as 

n6 = M w f(8)d8(h + <i 8>sin6) (C.26) 

Integrating Eq. (C.26), the number of cracks for all 6 is 

N 
1T 

M wJ, (h + <i
8
>sine)f(6)d6 (C.27) 

By noting that J! f(8)d8 1, Eq. (C.27) is simplified to become: 

N = M w[h + J! <i 8>sin6 f(6)de] (c. 28) 

Substituting Eq. (C.26) and (C.28) into Eq. (C.25), 

(h + <i
6
>sin6)f(8) 

f( 6) = ----''-----­
a h + J! <i

6
>sin6 f(6)d6 

(C.29) 

In Eq. (C.29), the true angle distribution, f(6), is the only unknown. 

An iterative procedure is used to estimate f(e). The objective of the 

procedure is similar to that in the case of the length distribution. An 

apparent distribution is calculated based on an assumed expression for the 

true angle distribution. If a close match is obtained between the known and 

calculated apparent distributions, then the assumed expression for the true 

distribution is the correct estimate. 

The procedure for estimating the true angle distribution is outlined as 

follows. 

1. Assume an expression for f(e). As described in the 

tion, the true number of cracks at low angles will be 

introduc­

greater than 

the apparent number and the true number at high angles will be less 

than the apparent number. This information serves as a guide in 

determining an assumed expression for f(6). 

2. Compute f(6) using F.q. (C.29). 
a 

3. A "goodness of fit" test, based on the chi-square distribution, is used 

to determine if there is a close agreement between the known and calcu­

lated apparent distributions. 
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4. Repeat Steps 1 to 3 until the "goodness of fit" test in Step 3 is 

successful. The true angle distribution which satisfies the test is 

the correct estimate of f(e). 

In the following section, examples based on a study of load-induced 

cracks in cement paste and mortar are presented in order to illustrate the 

results of the procedures for obtaining the true length and angle 

distributions. 

C.2.3 Examples 

The examples presented in this section are based on the results ob­

tained in a study of load-induced cracks in cement paste and mortar. 

Cement paste and mortar specimens are loaded in compression to selected 

stress levels and then unloaded. Fractured surfaces of the loaded specimens 

are then viewed in a scanning electron microscope (SEM). Within the SEM, 

the fractured surfaces are scanned horizontally, and crack lengths and 

angles are measured at a magnification of 1250x. Only the portions of 

cracks within the field of view are measured in order to obtain an accurate 

estimate of the density of cracks within the scanned areas. Apparent dis­

tributions of crack length and crack angle are obtained from the data. 

Typical apparent distributions are represented by the histograms in Fig. C.3 

and C. 4. The particular length distribution illustrated represents cracks 

measured at angles, e, between 47.5° and 52.5°. Angles of e and 180°-8 are 

grouped together. The data in the histograms, along with the results of the 

analysis, are summarized in Tables C.1 and C.2. 

The procedures described in Sections C.2.1 and C.2.2 are used to obtain 

calculated apparent distributions. Calculations are performed using a 

computer, and all integrals are numerically evaluated using Gaussian quadra­

ture [72]. Four integration points over a length range of 0.0 to 0.006 in. 

are sufficient for these results. A level of significance of 0.05 is used 

for the "goodness of fit" tests. 

The calculated apparent length distribution, fC~Je) , is obtained by 
a 

assuming that the true length distribution, f(~Je), has the form of a gamma 

distribution. This form of distribution gives a close match between the 

calculated apparent distribution and the histogram, as shown in Fig. C.3. 

As expected, the estimated true length distribution is shifted to the right 

of the apparent distribution. 
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In Fig. C.4, it is observed that the known apparent angle distribution 

(the histogram) has spike8 near 0° and 90°. These spikes are mainly due to 

specimen preparation (sawing, drying, and fracturing) prior to viewing in 

the SEM. In using the procedure described in section C.2.2 to determine the 

true angle distribution, f(8), trial expressions need to be assumed for 

f(8). Due to the discontinuous form of the known apparent distribution, 

constant functions are assumed for f(8) from 0° to 2.5° and from 87.5° to 

90°, while a quadratic function is assumed over the middle eighty-five 

degree range. This form of f(S), as shown in Fig. C.4, gives a close match 

between the calculated apparent distribution and the histogram. A com­

parison of the true and the apparent angle distributions in Fig. C.4 shows 

that, as expected, the true number of cracks at low angles is greater than 

the apparent number and the true number at high angles is less than the 

apparent number. 

C.3 ESTIMATE OF THE TRUE NUMBER OF CRACKS PER UNIT AREA 

As explained in the introduction and illustrated in the example (Fig. 

C.4), the apparent number of cracks at low angles is less than the true 

number and the apparent number at high angles is greater than the true 

number. The apparent number of cracks per unit area should, therefore, not 

be expected to equal the actual number of cracks per unit area. In the 

following analysis, the true number of cracks per unit area is estimated. 

The apparent number of cracks on a plane section is given by Eq. (C.28) 

as 

N = M w[h + J~ <~ 8>sinef(e)de] 

Rearranging Eq. (C.30), the true number of cracks per unit area, M, is 

M = 
N 

The apparent number of cracks per unit area, Ma' is given by 

N 
M = --a w h 

(C.30) 

(C.31) 

(C.32) 
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By comparing Eq. (C.31) and (C.32), it is noted that 

observation may be intuitive by examination of Fig. C.1. 

M > M. This a 
It may also be 

easily demonstrated by referring to Fig. C.5. In the figure, a plane sec­

tion of unit area is shown with eight cracks, i.e. M = 8 • If the hatched 

area is not visible within the field of view, the two horizontal cracks in 

this area will be completely invisible. The apparent number of cracks 

within the window will be 6 and the apparent number per unit area will be 

M a 
6 

(1)(1/2) 1 2 

Hence, M > M. The effect of a finite window size is therefore to overes­a 
timate the number of cracks per unit area on a plane section. 

C.4 TOTAL LENGTH OF CRACKS PER UNIT AREA 

The following proof shows that the total length of all cracks per unit 

area is unaffected by the window height. 

The number of cracks with an angle of e ± d6/2 is given by Eq. (C.17) 

as 

n
6 

= M w f(B)de(h + <~ 6>sine) (C.33) 

The apparent number of cracks per unit area with an angle of 6 ± d6/2 is 

Substituting Eq. (C.33) into Eq. (C.34), 

(C.35) 

Eq. (C.22) for <~ 6 > is substituted into Eq. (C.35) to obtain 

~[Mf(6)d6(h + h (C.36) 

Multiplying both sides of Eq. (C.36) by <i
6
>a and simplifying, the apparent 

total length per unit area of cracks with an angle of e ± de/2 is 
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(C.37) 

The true total length per unit area of cracks with an angle of e ± de/2 

is 

(c. 38) 

Substitution of Eq. (C.22) for <~ 9> into the right hand side of the above 

equation gives 

(c. 39) 

The right hand sides of Eq. (C,37) and (C.39) are identical. Hence, 

Since Eq. (C.40) is true for all e, it follows that the total length of all 

cracks per unit area is unaffected by the window height. 

C.5 DETERMINING IF THE WINDOW ANALYSIS IS REQUIRED 

The following discussion addresses the question of how big the window 

height, h, must be so that the apparent and the true crack distributions are 

approximately the same. Eq. (C.22), which relates the apparent and the true 

mean crack lengths, provides a guide in answering this question. 

The true mean crack length is expressed in Eq. (C.22) as 

(C.41) 

in which h must be greater than <£
6
> a sine. Eq. (C.41) is rearranged to 

become 

<~ > 
6 a 

<~e> 
(C.42) 
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The relationship expressed in Eq. (C.42) is shown in Fig. C.6, and it indic­

ates that for the app~rent and the true mean crack lengths to be 

approximately the same, the ratio of the window height to the projected 

height of the apparent mean crack length must be extremely large. 

For the apparent and the true distributions to be exactly the same, the 

total plane surface must be visible within the window. In practical situa­

tions involving the use of microscopes, the window height will be small in 

comparison to the height of the plane surface under view. This is because 

portions of the plane surface may have to be viewed at a high magnification 

in order to obtain a good resolution. Hence, correction of the window size 

distortion of the surface distributions may be required in most practical 

situations. However, if the ratio hi<R- 6> a sine is very large for .all a, the 

differences between the apparent and the true crack parameters may be so 

small that the correction may not be needed. For example, as Eq. (C.42) 

indicates, if hl<i
6
>a sine= 100, the difference between the apparent and 

the true mean crack lengths is only 1%. 

For a given window height and an apparent mean length of cracks with an 

angle of a, Eq. (C.42), therefore, provides a guide to determine if the 

window size distortion needs to be corrected. In border line cases, it is 

possible that a given wJ.ndow size, h, may be satisfactory for lower values 

of e, but may be too narrow for higher values. 

C.6 SUMMARY 

True distributions of cracks (or straws, needles, etc.) on a plane 

section may not be obtained directly if only a portion of the plane section 

is visible within the field of view. The procedures used to estimate the 

true distributions are presented. These procedures are based on the con-

cepts of geometrical probability and statistics. Relationships are 

established between the observed and the true distributions, and iterative 

techniques are employed to estimate the true distributions. For a given 

window height, a guideline is provided to determine if the window size 

distortion needs to be corrected. 

It is shown that the total length of cracks per unit area on a plane 

section is not affected by the window size. 
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True estimates of crack parameters on plane sections of opaque bodies 

are required if crack parameters in three-dimensions are to be accurately 

estimated. 
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TABLEC.1 

LENGTH DISTRIBUTION DATA FOR CRACK ANGLES, 9, FROM 47.5' to 52.5'. 

Observed Dist. <i
9
>a ~ 0.98x10-3in. var(i 9)a -7 

= 2.80x10 in. 2 

True Dist. <ie> 1.22x10-3in. var(i
9

) = 2.45x10-7in. 2 

r<ilel 1 • 23x 1 020 i 5 e -4953i 

Length, Relative Frequency Density, in. 
-1 

10-3in. Observed Calculated Apparent True 

0.00 0.0 310.9 o.o 

0. 15 0.0 31 3. 7 4.4 

0.30 555.6 357.3 67.7 

0.45 555.6 477. 1 244.4 

0.60 954.9 631.6 489.9 

0.75 740.7 749.7 711 • 3 

0.90 740.7 788.8 841.9 

1.05 555.6 747.8 865.7 

1.20 740.7 650.9 802.9 

1.35 341.6 528.4 688.3 

1.50 505.6 405.0 554.5 

1.65 o.o 295.5 424.8 

1. 80 475.6 206.8 312.2 

1.95 1 20.0 140.5 221.6 

2. 1 0 200.2 92.2 152.7 

2.25 0.0 58.8 102.6 

2.40 170.2 36.5 67.4 
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TABLE C.Z. ANGLE DISTRIBUTION DATA. 

-2 o•::ie:£2.5° 1,85x10_6 2 + 1.07x10-4e + 3.72x10-3 f(e) l-1.42x10_2e 2.5•:>e:£87,5• 
1.50x10 87.5°:£8:>90° 

Angle, Relative Frequency Density, 
-2 10 deg. 

-1 

degrees Observed Calculated Apparent True 

1. 25 1 • 429 1 • 428 1 • 850 

5.00 0. 275 0.273 0.422 

10.00 0.385 0.337 0.465 

15.00 0.220 0.394 0.501 

20.00 0.495 0.443 0.529 

25.00 0.330 0.486 0.551 

30.00 0.549 0. 521 0.565 

35.00 0.549 0.550 0.573 

40.00 0.604 0.571 0.573 

45.00 0.533 0.585 0.566 

50.00 0.659 0.592 0.552 

55.00 0.440 0.592 0. 531 

60.00 0.672 0.585 0.503 

65.00 0.604 0. 571 0.468 

70.00 0.385 0.549 0.425 

75.00 0.549 0. 521 0.376 

80.00 0.495 0.485 0.319 

85.00 0.385 0.443 0.256 

88.75 1. 81 3 1.813 1. 500 
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APPENDIX D 

CONVERSION OF CRACK DISTRIBUTIONS ON PLANE SECTIONS TO 

SPATIAL DISTRIBUTIONS 

D.1 INTRODUCTION 

The analysis presented here involves the conversion of crack trace 

distributions on plane sections of a transversely isotropic body to three­

dimensional crack distributions. In such a body, the orientation and size 

distributions of cracks are symmetric about one axis of the body. The 

cracked body is assumed to be opaque so that only crack traces on the ex­

terior of the body can be obtained experimentally. This analysis was 

developed as part of a study of load-induced cracks in cement paste and 

mortar, in which an estimate of the three-dimensional crack distribution was 

required to gain a full understanding of the material response. 

A number of investigators [1 ,25,26,36,44,60,74,83,99] have used the 

concepts of stereology to develop methods for determining numerical den­

sities and size distributions of inclusions from information obtained on 

plane sections of a structure. These methods are mainly applicable to 

systems in which the orientation distributions of the inclusions are 

isotropic with respect to the structure space [98]. In an isotropic system 

of inclusions or cracks, all orientations occur with equal likelihood and 

size distribution is independent of orientation. Weibel [98] has shown how 

the orientation distribution of inclusions in a transversely isotropic body 

can be estimated from information obtained on two mutually perpendicular 

plane sections of the body. Seaman, Curran and Crewdson [75] extended the 

method of Kaechele and Tetelman [44] to establish a statistical procedure to 

transform observed crack traces on a single plane section of a transversely 

isotropic body to a spatial crack distribution. The procedure is limited to 

circular cracks with a size distribution that is independent of crack 

orientation. 

The current study establishes an iterative procedure for estimating 

spatial crack distributions for transversely isotropic systems. The crack 

size distribution can vary with orientation. The cracks are assumed to have 

a general elliptic planform. The analysis may also apply to similarly 

shaped inclusions. An example based on a study of load-induced cracks in 
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cement paste and mortar is provided to illustrate the results of the proce­

dure. 

D.2 OVERVIEW OF THE METHOD OF ANALYSIS 

In this analysis, the concepts of mathematical statistics [31], 

geometrical probability [48] and stereology [94,98] are used to establish 

relationships between spatial distributions of crack size and orientation 

and surface distributions of crack trace length and angle on plane sections. 

First, each relationship is obtained in a form which is valid for a struc­

ture in which the size and the orientation distributions of the cracks are 

generally anisotropic with respect to the structure space. Relevant assump­

tions are made to reduce the general relationships to simpler forms which 

are valid for a transversely isotropic system of cracks. The derivations 

are presented in terms of continuous frequency distribution functions. The 

distribution functions of crack trace lengths and angles are those that 

describe crack distributions on two mutually perpendicular plane sections of 

a cracked body. The plane sections are the longitudinal and the transverse 

planes which are respectively parallel and perpendicular to the longitudinal 

(or loading) axis of a cracked body (Fig. D.1). For a transversely 

isotropic system, the longitudinal axis is the axis of symmetry for the 

crack size and orientation distributions. 

To obtain the three-dimensional crack parameters for a transversely 

isotropic system, the orientation distribution of the cracks must be 

determined. In this regard, a Marriott distribution function [98], which 

describes the orientation distribution of transversely isotropic systems 

with mild degrees of anisotropy, is assumed. This distribution has the 

property that it can be determined from a knowledge of the length of crack 

traces on longitudinal and transverse plane sections. The solution proce­

dure is not limited to any particular form of trace length or size 

distribution. 

The geometric expressions which are required to establish relationships 

between spatial and surface distributions are derived in Appendix E. 

D.3 RELATIONSHIPS BETWEEN 2-D AND 3-D CRACK DISTRIBUTIONS 

In this study, each crack is assumed to be elliptic, as shown in Fig. 

D.1, with a major semi-axis length of a and a minor semi-axis length of b. 
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The size of an elliptic crack will be represented by the length of its 

major axis. The length of the major semi-axis, a, is therefore designated 

as the "characteristic crack size". The aspect ratio of the crack, r, is 

defined as the ratio bla, and its value is assumed to be same for all 

cracks. The aspect ratio varies between 0 and 1. A value of 1 indicates a 

circular crack. 

w, $ and n are the angular coordinates of the crack. w is the angle 

between the plane of the crack and the transverse plane; it is also the 

angle that the normal to the crack surface makes with the longitudinal axis 

of the body. $ is the angle between a plane defined by the projection, on a 

transverse plane, of the normal to the crack and the longitudinal axis and a 

selected longitudinal plane. $ varies in a full circle about the lon­

gitudinal axis. The angle n defines the degree of rotation of the crack 

about its normal. For n = 0, the plane defined by the major axis of the 

crack and the crack normal is parallel to the longitudinal axis and perpen­

dicular to the transverse plane, while n = n/2 when the major axis is 

parallel to the transverse plane. For a circular crack (r = 1), n is not 

defined since every axis of the crack is a major axis. 

When a plane intersects a crack, a crack trace length, i, and angle, e, 
are obtained, as shown in Fig. D.2 for a longitudinal plane intersecting an 

elliptic crack. The crack angle, e, on a transverse plane is equal to $ ± 

n/2, as can be seen in Fig. D.3. 

If f(a,w,$,n) is the joint relative frequency density of crack size and 

orientation, then f(a,w,$,n)dadwd$dn is the probability that a crack has a 

major semi-axis length of a ± da/2 and an orientation of w ± dw/2, $ ± d$12, 

n ± dn/2. The number of such cracks in a unit volume is 

NV f(a,w,$,n)dadwd$dn (D.1) 

in which NV is the total number of cracks per unit volume. The ranges of a, 

w. $ and n are 

0 < a < ~ 
0 ~ w ~ n/2 

0 ~ $ ~ 2TI 

-n' ~ n ~ n' 
such that 
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(D.2) 

In the discussions that follow, the relationship of spatial distribu­

tions to surface angle distributions are derived first, followed by 

relationships to surface length distributions. Finally, the total number of 

cracks per unit volume, NV' is estimated from the total length of cracks per 

unit area on longitudinal and transverse planes. In a subsequent section, 

these relationships will be used to obtain an estimate of spatial distribu­

tions based on observed surface distributions. 

D.3.1 Relationships between Spatial Distributions and Surface 

Angle Distributions 

D.3.1.1 Longitudinal Plane 

For a crack which intersects a given plane, s is the distance between 

the crack centroid and the plane, and smax is the maximum distance for which 

an intersection can be obtained. smax is a function of a, w, ~and n; i.e. 

s = s (a,w,$,n). The expression for s is given later in this max max max 
section. 

The number of cracks with given values of a, w. $ and n which intersect 

a longitudinal plane of unit area and therefore lie within a distance of s ~ 

smax from both sides of the plane is 

2 NV f(a,w,$,n)dadwd$dn s (D.3l max 

For all a, w, $ and n, the number of cracks with an angle of e ± dS/2 on the 

plane is 

(D.4) 

in which w is defined over a range which limits the cracks to a trace angle 

of e ± dS/2. Only cracks with w ~ e can give a trace angle of e on the 

plane. An expression which relates e to w and $ is given later in this 

section. The total number of cracks which intersect the plane is 

(D.5) 
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If f(B) is the relative frequency density of a crack angle on the plane, 

then f(8)d8 is the probabllity that a crack intersects the plane with an 

angle of e ± dB/2; 0 ~ e ~ ~12. 

f(8)d8 Number of cracks with e + de/2 
Total number of cracks which intersect the plane 

Substituting Eq. (0.4) and (0.5) into Eq. (0.6), 

!_~; J! f: [f(a,wCB,$),$,n)dw smax]dad$dn 
f c e l de = -'-7----;-::----------'==-----

f n' f~o !~12 f~ f( ) -n' 0 0 a,w,$,n s dadwd$dn max 

Substituting dw = aw dB into Eq. (0.7), ae 

f(B) 
aw1ae 1 s dad$dn max 

f~o f~/2 !"' ( ) 
0 0 f a,w,$,n smaxdad$d$dn 

(0.6) 

(0. 7) 

(0,8) 

The joint distribution, f(a,$,$,n), is expressed in terms of conditional 

distributions [31] as follows. 

(0. 9) 

Substituting Eq. (0.9) into Eq. (0.8), 

(0.10) 

For a general anisotropic system of cracks, Eq. (0.10) gives the relation­

ship between the spatial distributions and the angle distribution on the 

longitudinal plane. 

In a transversely isotropic system, the crack size distribution is 

independent of $, and the distribution in $ is uniform. It is assumed in 

the current analysis that the distribution in n is uniform. Therefore, the 

characteristic crack size, a, and the variance of the crack size distribu­

tion, var(a), are, in general, functions of $ only; i.e. a = a(w) = a$, 
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var(a) = var(at/1). f(~) and f(n) are constant functions and therefore Eq. 

(D.10) becomes 

f(9) (D.11) 

As shown in Appendix E, the relationship between e, t/1 and ~ on the 

longitudinal plane is given by 

Differentiation of Eq. (D.12) gives 

cos ~ 

Also in Appendix E, s is expressed as max 

s max 

in which 

aT [r~ cos(~+nT) + sin(~+nT) tan(~+nT)] 

[r~ + tan2 (~+nT)J 112 

tan n/cos t/J "' " 1T/2 

(.:;:c;:::o::_s 
2::.-'n~+__:=s~i n:.c2::.-'n~c.:;:o;:::s 2::.-'ft/J ) 1 12 

sin2n + cos2n cos 2t/i 

(D. 12) 

(0.13) 

(0.14) 

(D.15) 

ay is the projected length on a transverse plane of the major semi-axis of 

the crack, ny is the projection of the angle n on a transverse plane, and rT 

is the aspect ratio of the projection of the crack on a transverse plane. 

The evaluation of Eq. (0.11) requires that the size distribution of the 

cracks, f(alt/il, be known. However, the equation can be simplified so that 

its evaluation depends only on a knowledge of the mean size of the cracks. 

In Eq. (0.11), since only f(alt/Jl and s are functions of a, both the max 
numerator and the denominator can be simplified by noting that the mean 
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value of s for all cracks at a particular orientation, 1jJ, is directly max 
dependent upon the mean crack size, <a1jJ>. In the numerator, 

In the denominator, 

<s > ~ J: smaxf(a!1J!lda max 1jJ 

Eq. (D.11) then becomes 

f( 9) 

J! ;!12 
f(1J!) < s >,,, d1J!d~dn max o/ 

(D.16a) 

(D.16b) 

(D.17) 

If the mean crack size, <a,,,>, is known, <s > in the numerator and 
"' max 

denominator of Eq. (D.17) can be determined using Eq. (D.14) and (D.15). 

Eq. (D.17) is therefore independent of f(alwl. The numerator of Eq. (D.17) 

is evaluated by using Eq. (D.12) to express 1jJ in terms of e and~. 

The evaluation of Eq. (D.17) is illustrated by considering the case of 

an isotropic system of cracks. In this case, the use of polar coordinates 

[98] yields 

f( 1jJ) sin 1jJ (D.18) 

Substitution of Eq. (D.18) into Eq. (D.17) should give a uniform distribu­

tion in e since all orientations occur with equal likelihood. The result is 

shown in Fig. D.4. 1jJ and e have units of degrees. It is observed in Fig. 

D.4 that a uniform distribution is computed over the range of e from about 

10° to 90°. The non-uniform distribution over the range of e from o• to 

about 10° is due to 

o if 1jJ ~ o•. But 

the nature of Eq. (D.18). This equation gives f(1jJ) ~ 

1jJ ~ o• also corresponds to e ~ o• [see Eq. (D.12)]. 

Hence Eq. (D.17) is zero for e ~ o• resulting in the non-uniform distribu­

tion over low angles. In evaluating Eq. (D.17), it is therefore recommended 

that f(B) be computed over the range of e from 10° to 90° and the results 

extrapolated to include the range from o• to 10°, The forms of the in­

tegrands in Eq. (D.17) do not allow direct integration. Gaussian quadrature 
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[72] is therefore used for the numerical evaluation of Eq. (D.17). Four 

integration points are sufficient for these results. 

D.3.1.1.1 Marriott Distribution 

The orientation distribution of a transversely isotropic system of 

three-dimensional objects with a mild degree of anisotropy can be described 

by a Marriott distribution [98]. This distribution is expressed as 

f( lji) 
1 

(1 + K cos 2$) sin lji 
- K/3 

K is a measure of the degree of anisotropy and is given by 

K 

in which 

4( (BL/BT) - 1] 

2(BL/BT) - 1 

(D.19) 

(D.20a) 

BLand BT are the boundary lengths of the objects per unit area on lon­

gitudinal and transverse planes respectively. The boundary length of a 

three-dimensional object is the perimeter of the trace of the object ob­

tained on a plane section. If the object is a crack, the trace on a plane 

section is a line. Hence, the boundary length of a crack is twice its trace 

length on a plane section. BL and BT' therefore, are respectively equal to 

two times the total crack trace length per unit area on longitudinal and 

transverse planes; i.e. BL = 2 ~ <~>L' BT = 2 MT<~>T' in which~ and ~ are 

the number of cracks per unit area on longitudinal and transverse planes 

respectively, and <~>L and <~>T are the mean crack trace lengths on lon­

gitudinal and transverse planes respectively. Eq. (D.20a) can therefore be 

written in the following form: 

in which 

4((ML <~>LI~<DT) - 1] 
2(ML<~>LI~<~>T)- 1 

2 < .MT<DT < .§_ 
3 = M <D = 5 

L L 

(D.20b) 
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Defining "high angles" as angles, 1j!, close to 90° and "low angles" as 1j! 

close to 0°, a negative K indicates a system in which more cracks are 

oriented at high angles than at low angles, while a positive K indicates a 

system in which fewer cracks are oriented at high angles than at low angles. 

ForK= 0, Eq. (D.19) reduces to Eq. (D.18), the equation for an isotropic 

distribution of orientations •. 

Fig. D.5 provides comparisons between the orientation, 1j!, and the 

surface angle, e, distributions for an isotropic system of cracks (K = 0) 

and those for a transversely isotropic system in which K = -o. 5. The sur­

face angle distributions are determined using Eq. (D.17). The orientation 

distribution of the transversely isotropic system is skewed more towards 

high angles than the corresponding distribution for the isotropic system. 

The computed surface angle distribution for the transversely isotropic 

system correctly indicate~ that more cracks are oriented at high angles than 

at low angles. 

If M<~> is obtained on longitudinal and transverse plane sections of a 

cracked body, the Marriott distribution provides an estimate of the orienta­

tion distribution. It will be shown later how Eq. (D.17), (D.19) and 

(D.20b) can be used with expressions relating spatial distributions and 

surface length distributions, to establish a procedure for estimating the 

crack size distribution, f(aj1j!), aspect ratio, r, and the range of n for a 

transversely isotropic system of cracks. 

0.3.1.2 Transverse Plane 

The trace angle, e, on a transverse plane is equal to ~ ± ~/2 (see Fig. 

D.3). Hence, the distributions in e and~± ~/2 are equal. 

reel = rc~ ± ~/2) (D. 21) 

For a transversely isotropic system of cracks, the distribution in ~ is 

equal to the distribution in ~ ± ~12. The distributions in e and$ are 

therefore equal. 

f(e) = f(~) (D. 22) 
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D.3.2 Relationships between Spatial Distributions and Surface Lengt~ 

Distributions 

D.3.2.1 Longitudinal Plane. 

For a general transversely isotropic system of cracks, the trace length 

distribution on a longitudinal plane will vary with trace angle. For con­

venience, the derivations that follow are in terms of the number of cracks 

with given values of trace length and angle. 

The number of cracks with given values of a, ~. ~ and n that have 

centers within a distance of s ± ds/2 from both sides of a longitudinal 

plane of unit area and give a trace length of ~ ± d~/2 and a trace angle of 

e ± d8/2 on the plane is 

(D.23) 

in which a and $are limited to those values that give a trace length of ~ ± 

d~/2 and an angle of e ± d8/2, respectively, on the plane. For all a, ~. ~ 

and n, the number of cracks that give a length of £ ± d~/2 and an angle of e 

± d8/2 on the plane is 

!_~; J! !: 2Nv[f(ac~.~.~.n),~(e,~),~,n)d~ ds]dad¢dn 
min 

(D.24) 

in which amin is the smallest characteristic crack size that gives a length 

of ~ on the plane and is a function of £, ~. ~ and n. The expression for 

a . is given later in this section. The total number of cracks which m1n 
intersect the plane with an angle of e ± d8/2 is given by Eq. (D.4) as 

J_nn; J! !; 2Nv[f(a,~(e,~).~,n)d~ s ]dad~dn max (D.25) 

If f(~lel is the relative frequency density of a crack length on the plane 

for a given angle, then f(~leld~ is the probability that a crack intersects 

the plane with a length of~ ± d~/2 for a given e. 

Number of cracks with ~ + d£/2, e ± de/2 
Number of cracks which intersect the plane with 8±d8/2 

(D.26) 

Substituting Eq. (D.24) and (D.25) into Eq. (D.26), 
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J n'Irrf~ [f(a<~.~.$,n),~(6,$),$,n)d~ ds]dad$dn -n' 0 a . m1n 

Substituting ds: ~~ d~ into Eq. (0.27), 

J n' frrf~ ( ( ) ( ) l I ~~I -n' 0 a fa ~.~,$,n .~ 6,$ ,$,n o• dad$dn 
min 

Eq. (D.9) is substituted into Eq. (D.28) to obtain 

Eq. (0.29) is valid for a general anisotropic system of cracks. 

(D.27) 

(D. 28) 

(D. 29) 

For transverse isotropy and the assumption that the crack distribution 

is uniform inn, Eq. (D.29) becomes 

(0. 30) 

Eq. (D. 30) is evaluated by using Eq. (D. 1 2) to express ~ in terms of e and 

$. smax is given by Eq. (0.14). From the geometric relations derived in 

Appendix E, 

in which ym = 

1/2 

l 
~ 

~ case tan($+nT)[sin2($+nT) + r~ cos2($+nT)] 

2 sin($+nT) tan($+nT) + r~ cos($+nT) 

(0.31) 
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nT and rT are defined previously in Eq. (0.15). 

(0.30) requires an integration over crack sizes, 

Since the numerator of Eq. 
as ai needs to be expressed as 

a function of the characteristic crack size. This is accomplished in 

Appendix E by considering the projection of the crack on a transverse plane. 

~~ is expressed as 

(0.32) 

in which aT is the projected length on a transverse plane of the major 

semi-axis of the crack and is defined previously in Eq. (0.15). The 

derivative on the right hand side of Eq. (0.32) are expressed in Eq. (E.63) 

through (E.68) of Appendix E. 

The nature of surface trace length distributions obtained using Eq. 

(0.30) can be illustrated using assumed spatial distributions. For an 

orientation distribution in which the degree of anisotropy, K = -0.5 [Eq. 

(0.19)], and for a crack size distribution which is independent of~ [i.e. 

f(al~l = f(a)], Eq. (0.30) gives the distribution of crack trace length on 

the longitudinal plane shown in Fig. 0.6. As expected, the mean trace 

length on the plane, <i
8
>, is smaller than the mean crack size, <2a>. 

0.3.2.2 Transverse Plane 

For a transversely isotropic system of cracks, the trace length dis­

tribution on a transverse plane will not vary with trace angle. Therefore 

in the following derivations, the number of cracks with a given value of 

trace length is summed over all trace angles. 

The number of cracks with given values of a, ~. $ and n that have 

centers within a distance of s ± ds/2 from both sides of a transverse plane 

of unit area and give a trace length of i ± di/2 on the plane is 

2 NV f(a(i,~,n),~,$,n)dad~d$dn ds (0. 33) 

in which a is limited to those values that give a length of i ± di/2 on the 

plane. For all a, ~. $ and n, the number of cracks that give a length of ~ 

± di/2 on the plane is 
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J_~: J! J! 12 J: . 2Nv[f(a(£,~,nl.~.~.n) ds]dad~d~dn 
m1n 

(D.34) 

in which a . is the smallest characteristic crack size that gives a length m1n 
of £ on the plane and is a function of ~. ~ and n. The expression for a . m1n 
is derived in Appendix E and given later in this section. The total number 

of cracks which intersect the plane is 

n' , ,;2 ~ [ J J_n' fo fo fo 2Nv f(a,~,$,n) s dad~d~dn max (D.35) 

If f(£) is the relative frequency density of a crack length on the plane, 

then f(t)dt is the probability that a crack intersects the plane with a 

length of £ ± d£/2 

f(i)d£ Number of cracks with ~ + d~/2 
Total number of cracks which intersect the plane 

Substituting Eq. (D.34) and (D.35) into Eq. (D.36), 

f(t)d~ 

J_nn: J! J!12 J~ [f(a(t,~.nl.~.~.n) ds]dad~d$dn 
a min 

Substituting ds ~ ~~ d~ into Eq. (D.37), 

r(a(t,tjl,n),tjl,~.n) ~~~' dad~d~dn 
f(~) 

dadtjld~dn 

Eq. (D.9) is substituted into Eq. (D.38) to obtain 

n' , 1T/2 ~ ( ) 3s J_ ,fofo fa . f a(t,~,n)j~.~.n f(~j~.n)f(~jn)f(nllaiidad~d~dn 
n m1n 

f(~) 

Eq. (D.39) is for a general anisotropic system of cracks. 

(D.36) 

(D.37) 

(D.38) 

(D.39) 

For a transversely isotropic system of cracks, and the assumption that 

the crack distribution is uniform in n, Eq. (D.39) is simplified to become 
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n' J~/2 
!:min 

f(ac~.ljJ.nl lljJ) f(ljJ) I J -n' 
f(~) = n' J~/2 J_n' f: fCalljJJ f(ljJ) s dadljJdn max 

The geometric relations in Appendix E give 

tan nL = tan nisin 1jJ 

cos2n + 

r ( 2 
sin n + 

. 2 
s1n n 

2 cos n 

3s/d~ I dadljJdn 

(D.40) 

(D.41) 

(D. 42) 

~ is the projected length on a longitudinal plane of the major semi-axis of 

the crack, ~ is the projection of the angle n on a longitudinal plane, and 

rL is the aspect ratio of the projection of the crack on a longitudinal 

plane. The smallest a that gives a length of ~ on the plane is derived in 

Appendix E as 

(D.43) 

The derivative, ~~' in the numerator of Eq. (D.40) needs to be expressed as 

a function of the characteristic crack size. In Appendix E, this relation­

ship is obtained by considering the projection of the crack on a 

longitudinal plane. ~~ is expressed as 

(D.44) 

The expressions for the derivatives on the right hand side of Eq. (D.44) are 

given by Eq. (E.70) through (E.75l of Appendix E. 

The nature of the surface trace length distributions obtained using Eq. 

(D.40) can be illustrated using the same assumed spatial distributions used 

previously for the longitudinal plane [K = -0.5 and fCai1J!l = f(a)]. Eq. 
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(D.40) gives the distribution of crack lengths on the transverse plane shown 

in Fig. D.7. As in the case of the longitudinal plane, the mean trace 

length on the transverse plane, <~>. is smaller than the mean crack size, 

<2a>. 

D.3.3 Estimate of the Total Number of Cracks per Unit Volume. 

Weibel [98] has shown that based on the Marriott distribution, the 

surface area per unit volume of flattened structures can be expressed as 

(D.45a) 

in which BT and BL are the boundary lengths per unit area of sections of the 

structures on transverse and longitudinal planes, respectively. In the case 

of cracks, BT and BLare respectively equal to two times the total crack 

trace length per unit area on transverse and longitudinal planes (see sec­

tion 0.3.1.1.1). Eq. (D.45a) can therefore be written as 

(D.45b) 

in which Mr<~>T and ML<~>L are, respectively, the total crack trace length 

per unit area on transverse and longitudinal planes. 

If the elliptic cracks have a mean surface area of <rrab> over all 

orientations, then 

or 

(D,46) 

in which NV is the number of cracks per unit volume, r is the aspect ratio 

of the cracks, and <a2> is the mean squared value of the characteristic 

crack size over all orientations; i.e. 

(D.47) 

Equating (D.45b) and (D.46) and rearranging, 
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(D. 48) 

In Eq. (D. 48), the total crack trace lengths per unit area (M<~>) on 

transverse and longitudinal planes are measurable quantities. <a2> can be 

determined from Eq. (D. 47) if the crack size and orientation distributions 

are known. For a transversely isotropic system of cracks, Eq. (D. 48) can 

therefore be used to estimate the number of cracks per unit volume. The 

procedure for determining distributions fCaJ~) and f(~) is described in the 

following section. 

D.4 PROCEDURE FOR ESTIMATING 3-D CRACK PARAMETERS 

The expressions relating spatial crack distributions to surface dis­

tributions on longitudinal and transverse planes, can be used to estimate 

the three-dimensional crack distributions for a transversely isotropic 

system of cracks based on observations of surface crack traces. 

Specifically, the procedure that follows provides estimates of the distribu­

tions of crack orientation and size, f(~) and fCaJ~), the mean 

characteristic size of cracks as a function of ~. <a~>, the variance of the 

crack size distribution, var(a~), the crack aspect ratio, r, and the range 

of the angle n. It is assumed that crack trace distributions have been 

obtained on longitudinal and transverse planes of the cracked body. 

An iterative procedure is used in order to estimate the spatial crack 

parameters. The procedure is set up in terms of the three equations 

[(D.17), (D.30), and (D.40)] which relate spatial crack distributions to 

surface distributions on longitudinal and transverse plane sections of a 

cracked body. The Marriott distribution which is described in Section D.3.1 

for a mildly anisotropic system, is assumed. In using this distribution, 

the restriction on the degree of anisotropy (i.e. -1 ~ K ~ 1) must be 

satisfied. 

The procedure is based on minimizing the sum of the squared differences 

between observed surface distributions and calculated distributions that are 

obtained from assumed spatial distributions. As an initial guess, the 

relationship between mean trace length and trace angle on the longitudinal 

plane is used as a guide to the form of f(aJ~) and the values of <a~>. 

Similarly, values of var(a~) may be assumed. The assumed spatial distribu­

tions which minimize the sum of the squared differences between the observed 
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and calculated surface distributions are the correct estimates based on the 

assumed form of f(al¢). The procedure may be repeated with different forms 

of f(al¢). The spatial distributions and the form of f(al¢) which enable 

the minimization process to attain a global minimum are the desired 

estimates. 

The procedure is outlined as follows. 

1. Determine the degree of anisotropy, K, from Eq. (D.20b) using the total 

lengths of cracks per unit area, M<~>, obtained on longitudinal and 

transverse plane sections of the cracked body.f(¢) is then obtained 

fromEq. (D.19). 

2. Assume a form for the crack size distribution, f(ai¢), such as a gamma 

distribution. 

3. Assume expressions for <a¢> and var(a¢) as functions of crack 

orientation. 

4. By varying the crack aspect ratio, r, compute the trace angle distribu­

tion on the longitudinal plane, f(e)Lc' using Eq. (D.17) with -n/2 ~ n 

~ n/2. Determine the r which minimizes the sum of the squared dif­

ferences between the observed, f(e)L' and computed, f(e)Lc' trace angle 

distributions. This sum is expressed as 

5. 

68 is the interval for recording the trace angles. Change the range of 

n and again determine the r which minimizes Eq. (D.49). Continue this 

process until Eq. (D. 49) cannot be minimized further. The value of r 

and the range of n for which Eq. (D.49) is fully minimized, are the 

estimates to be used in the following steps. 

Use Eq. (D.40) to compute the trace length distribution on the 

transverse plane, f(i)Tc· An improved estimate of the variance of 

f(al¢) is obtained by assuming trial values for var(a¢) until the sum 

of the squared differences between the observed, f(i)T' and computed, 

f(i)Tc' trace length distributions is minimized. This sum is expressed 

as 

(D.50) 
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~£ is the interval for recording the trace lengths. 

6. Compute the trace length distribution on the longitudinal plane, 

fCt!e)Lc' using Eq. (D.30). Calculate the sum, over all trace angles, 

of the squared differences between the observed, fCt!e)L' and computed, 

fCt!e)Lc' trace length distributions. This sum is expressed as 

(D. 51) 

7. Return to Step 3 and repeat the process until the values computed from 

Eq. (D.51) reach a global minimum. The parameters <al)!>, var(alj!), r, 

and the range of n which produce this global minimum are the best 

estimates for the three-dimensional crack distribution based on the 

form of f(ailj!) assumed in Step 2. 

8. The iterative process may be restarted at Step 2 by assuming a dif­

ferent form for fCalwl. The form of f(ailj!) and the corresponding 

values of <al)!>, var(alj!), r, and the range of n which minimize Eq. 

(D.51) are the desired estimates. 

If the cracks are assumed to be circular, the procedure becomes 

simplified since Step 4 is no longer required. 

D.4.1 Example 

In order to illustrate the results of the procedure described above, an 

example based on a study of lead-induced cracks in cement paste and mortar 

is presented. In the example, angles have units of degrees. Computations 

are performed on a computer, and all integrals are evaluated numerically 

using Gaussian quadrature. Four integration points are sufficient for these 

results. 

Cement paste and mortar specimens are loaded in compression to selected 

stress levels and then unloaded. Longitudinal and transverse fractured 

surfaces of the loaded specimens are then viewed using a scanning electron 

microscope (SEM). Crack trace lengths and angles are measured at a mag­

nification of about 1250x. Only portions of cracks within the field of view 

are measured in order to obtain an accurate estimate of the density of 

cracks within the scanned areas. As a result of the finite size of the 

viewing area, the trace length and angle distributions are distorted. These 
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distortions are corrected as described in Appendix C. The trace distribu­

tions are also modified to account for the effects of specimen preparation 

prior to viewing in the SEM (see Chapter 3). The experimental trace dis­

tributions for a specimen of cement paste (age 28 days, water-cement ratio = 

0.5) loaded to a strain of 0.002 are summarized in Tables D.1 and D.2 and 

used in this example. The trace length distributions on both the transverse 

and longitudinal planes are best described by the gamma distribution. This 

distribution is representP.d as 

(D.52) 

in which n and B are functions of the mean and the variance of the distribu­

tion, in this case<~> or <~ 6> and var(~) or var(~ 6 ). 

n = 
var(~) 

<~> 

r(n) is the gamma function and is defined as 

r( n) 
00 a.-1 -y 

f o Y e dy 

(D.53) 

(D. 54) 

Gaussian quadrature with four integration points over the range of y from 0 

to 50 is sufficient for the integration in Eq. (D.54). 

For the longitudinal plane, representative values for the trace length 

distributions are given in Table 0.2 for trace angles of 15', 30' and 60'. 

Values of the relative frequency density for other trace angles can be 

obtained using Eq. (D.52) and the values of <~ 6 >L and var(~e)L given in 

Table D. 2. 

In Fig. D.8, the experimental trace angle distribution indicates that 

the orientations of the crack traces are skewed towards the longitudinal 

direction. The degree of anisotropy also shows that the spatial distribu­

tion is skewed toward the longitudinal direction. K is -0.16 as determined 

using Eq. (D.20b). The value of K falls within the required range of -1 to 

1, indicating that the Marriott distribution is valid. 

As observed in Fig. D.8-D.10, the calculated surface distributions, 

obtained from the converged solution for the spatial distributions, closely 

match the distributions obtained from the experimental data. Selected 



values for the calculated surface distributions are also given in Tables D.1 

and D.2. 

For the spatial distributions, crack size varies with crack 

orientation. The best form of the size distribution, f(aJljJ), turns out to 

be a gamma distribution [Eq. (D.52)]. 

f(aJwl -
.....:.._ ct-1 -alB a e 

s"r(ct) 
(D. 55) 

with a= alJ!. "' a and rare defined in Eq. (D.53) and (D.54). For this 

example, the values of the estimated crack parameters are: 

r = 0. 9 n' = oo 

-5 -3 1.0x10 ljJ + 1.55x10 in. 
-9 -6 2 1.6x10 ljJ + 1.4x10 in. 

f(lji) = 0.95(1 - 0.16cos 2lji)sin ljJ 

To obtain the total number of cracks per unit volume, NV' the calculated 

spatial distributions are used in Eq. (D.47) to determine <a2>. The value 

of NV [Eq. (D.48)] is 2.3x106 cracks per cubic in. 

D.5 SENSITIVITY OF THE MODEL TO ERRORS IN TRACE LENGTH PARAMETERS 

In this section, the sensitivity of the estimated three-dimensional 

crack size parameters to errors in the surface crack trace length parameters 

is investigated. 

A trace length distribution of known form is adequately described by 

its mean, <i>, and variance, var(i). The corresponding three-dimensional 

parameters which describe a size distribution of known form are <alji> and 

var(alji). For errors of 10%, 20% and 30% in the trace length parameters used 

in the previous example, estimates of <alji> and var(alji) are obtained. 

Table D.3 illustrates the results. A 30% overestimation of <i> results 

in a 43.8% overestimation of <alji>, while a 30% underestimation of <i> 

results in a 39.2% underestimation of <alji>. This implies that errors made 

in the measurement of trace lengths can result in larger errors in estimated 

crack sizes. The effect of an overestimation (or underestimation) of <i> on 
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var(a¢) is very small, as evidenced by the 2.6% overestimation of var(a¢) 

for a 30% overestimation of <~>. 

On the other hand, a 30% overestimation or underestimation of var(~) 

has a large effect on var(a¢) and a very small effect on <a¢>. A 30% over­

estimation of var(~) results in overestimations of var(a¢) and <a¢> of 72.3% 

and 1.4%, respectively, while a 30% underestimation of var(~) results in 

underestimations of 68.4% and 1.0%, respectively •. 

This example reinforces the fact that the data on surface crack traces 

must be obtained accurately in order to cbtain a close estimate of the 

spatial crack distribution. 

D.6 SUMMARY 

The three-dimensional distributions of cracks or similarly shaped 

inclusions in opaque bodiP.S cannot be obtained directly from experimental 

measurements. By using the concepts of statistics, geometrical probability, 

and stereology, relationships have been obtained between spatial and surface 

distributions of cracks. These relationships are used to establish an 

iterative procedure for estimating three-dimensional crack parameters for a 

transversely isotropic system of cracks, using crack trace distributions on 

longitudinal and transverse sections of the cracked body. 

Results from a study of load-induced cracks in cement paste and mortar 

are provided to illustrate the use of the procedure. 



405 

TABLE D.1 

TRACE ANGLE DISTRIBUTIONS FOR THE LONGITUDINAL PLANE. 

(CEMENT PASTE WITH A WATER-CEMENT RATIO ~ 0.5; STRAIN ~ 0.002) 

Angle, Relative Frequency Density, -2 10 deg. -1 

degrees Experimental Calculated 

0 0.97 0. 91 

5 0.99 0.94 

1 0 1. 00 0. 97 

15 1.02 0.99 

20 1.03 1.02 

25 1.05 1. 04 

30 1.06 1. 07 

35 1.08 1.09 

40 1. 1 0 1. 11 

45 1 • 11 1. 13 

50 1.13 1. 15 

55 1.14 1. 16 

60 1 • 1 6 1. 18 

65 1.17 1. 19 

70 1.19 1. 21 

75 1. 21 1.22 

80 1.22 1.23 

85 1. 24 1. 23 

90 1 • 25 1. 24 
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TABLE D. 2 

EXPERIMENTAL ANI! CALCULATED TRACE LENGTH DISTRIBUTIONS. 

(CEMENT PASTE WITH A WATER-CEMENT RATIO = 0.5; STRAIN = 0.002) 

Transverse Plane: -3. <t>T = 2.01x10 1n. var(t)T 
-6 2 

1.37x10 in. 

Longitudinal Plane: <~e>L = 0.75x1o-5e+1,90x10-3in. 

-9 -6 2 
var(~e)L = 1.15x10 8+1.35x10 in. 

Length, Relative Frequency Density, in.-1 

10-3in. Tran. Plane Longitudinal Plane 

e = 1 5° e = 30° e = 60° 

Exp. Cal. Exp. Cal. Exp. Cal. Exp. Cal. 

o.o 0 0 0 0 0 0 0 0 

0.5 202 156 89 11 0 76 95 59 66 

1.0 374 301 254 242 238 232 21 2 21 2 

1.5 396 364 345 31 9 339 317 325 310 

2.0 333 343 346 329 349 332 350 336 

2.5 247 276 294 289 301 296 311 305 

3.0 1 69 199 225 228 233 235 245 245 

3.5 11 0 1 31 160 1 65 167 1 71 178 180 

4.0 68 81 108 11 2 11 3 117 1 21 1 24 

4.5 41 47 70 72 73 75 79 80 

5.0 24 26 44 45 46 47 49 50 

5.5 1 4 1 4 27 26 28 28 30 30 

6.0 8 7 1 6 1 5 17 1 6 18 17 
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TABLE D.3 

SENSITIVITY OF 3-D CRACK SIZE PARAMETERS TO ERRORS IN 

TRACE LENGTH PARAMETERS. 

Overestimation Resulting Resulting 

(Underestimation) Overestimation Overestimation 

of <~>. % (Underestimation) (Underestimation) 

of <a,p>, % of var(aljl), % 

10 1 4. 1 0.7 

20 28.6 1.8 

30 43.8 2.6 

( 1 0) (12.5) (0.6) 

(20) (25.3) ( 1. 4) 

(30) (39. 2) ( 2. 2) 

Overestimation Resulting Resulting 

(Underestimation) Overestimation Overestimation 

of var(~), % (Underestimation) (Underestimation) 

of <aljl>' % of var(aljl), % 

10 0.4 24.8 

20 0.9 49.2 

30 1.4 72.3 

( 1 0) ( 0. 1) (22.7) 

( 20) (0.5) (46.5) 

( 30) ( 1 • 0) (68.4) 
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APPENDIX E 

GEOMETRIC RELATIONS FOR CONVERTING CRACK DISTRIBUTIONS ON 

PLANE SECTIONS TO SPATIAL DISTRIBUTIONS. 

E.1 INTRODUCTION 

The relationships established in Appendix D between spatial and surface 

distributions of cracks require geometrical expressions relating crack sizes 

and orientations to crack trace lengths and angles on longitudinal and 

transverse plane sections of a cracked body. In this appendix, expressions 

are derived that relate surface and spatial crack parameters for an elliptic 

crack. The dimensions and the angular coordinates of the 3-D cracks and the 

corresponding parameters for the crack traces are as defined in Appendix D. 

In deriving relationships which involve the characteristic crack size, 

projections of the ellipti.c crack on longitudinal and transverse planes are 

considered. These projections are also ellipses. This fact is used in 

order to simplify the derivations. 

E.2 DERIVATION OF GEOMETRIC RELATIONS 

The relationships established in Appendix D between spatial and surface 

distributions of cracks, require expressions for (1) the trace angle, e, as 

a function of the angular coordinates, wand$, (2) the rate of change of w 

with respect to e, aw/ae, (3) s which is the maximum distance between a max 
crack centroid and a given plane for which the plane intersects the crack, 

( 4) a i which is the smallest characteristic crack size that gives a trace m n 
length of ion a plane, and (5) the rate of change of s with respect to ~. 

as/ a~. 

Expressions relating the crack trace angle on a longitudinal plane, e, 

to the angular coordinates of the three-dimensional crack are derived first, 

followed by derivations involving the characteristic crack size, a. 

E.2.1 Relationship between Crack Trace Angle on a Longitudinal 

Plane, e, and Angu.l.ar Coordinates of a 3-D Crack, w and $ 

The crack trace angle on a longitudinal plane, e, is related to the 

angular coordinates of the three-dimensional crack, $ and $, by means of the 

labelled triangles in Fig. E.1. Note that variations inn (Fig. D.1) do not 

affect e. 



From triangles ACD and ABD, 

AC sin ~ = AB sin e 

AC sin e 
AB = sin ~ 

BD = AB cos e 

From triangle BCD, 

BC = BD sin <P 
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Substituting Eq. (E.2) into Eq. (E.3) and rearranging, 

BC 
AB = cos e sin <P 

From triangle ABC, 

BC 
sin B = AB 

AC 
cos 8 = AB 

Equating (E.4) and (E.5), 

But 

sin B cos e sin <P 

2 cos B 
2 1 - sin B 

Substituting Eq. (E.7) into Eq. (E.8), 

Equating (E.1), (E.6) and (E.9), 

sin e 2 2 112 
sin~= (1 - cos e sin <P) 

(E. 1 ) 

(E. 2) 

(E. 3) 

(E. 4) 

(E. 5) 

(E. 6) 

(E.7) 

(E.8) 

(E.9) 

(E. 1 0) 



420 

Rearranging Eq. (E.10), 

.. 2 2 -1/2 
cos e = cos ~ (1 - s1n $ sin~) 

o ~ e, ~ ~ ~12 

0 ~ ~ ~ 2~ 

(E. 11) 

The rate of change of ~with respect to e is obtained by differentiating Eq. 

(E.11). 

cos ~ (E.12) 

E.2.2 Relationships between smax and crack parameters 

For a crack that intersects a plane, the maximum distance between the 

crack centroid and the longitudinal or the transverse plane, s , can be max 
expressed in terms of the size and the angular coordinates of the crack. 

Fig. E.2 shows an inclined elliptic crack with major semi-axis length a 

and minor semi-axis length b. The crack has been rotated through an angle n 

about a normal to the crack plane. The expression for s with respect to max 
the longitudinal plane is obtained by considering the projection of the 

inclined crack on a transverse plane, while the expression for s with max 
respect to the transverse plane is obtained by considering the projection of 

the crack on a longitudinal plane. Fig. E.3 and E.4 show the projections of 

the crack on transverse and longitudinal planes, respectively. The coor­

dinates of points on the boundary of each projected crack are defined in 

terms of x-y axes, with the origin at the crack centroid. In both Fig. E.3 
and E.4, OT is the distance between the crack centroid and the plane; i.e. 

OT = s. For each plane, s is obtained by expressing s in terms of the max 
coordinates of one of the points at which the plane intersects the boundary 

of the projected crack. 

In the derivations that follow, the lengths of the major and minor 

semi-axes of the projected cracks are determined in terms of the size and 

the angular coordinates of the inclined crack. The aspect ratios of the 

projected cracks are then obtained. Finally, s is expressed as a func-max 
tion of the size, the aspect ratio, and the angular coordinates of the 

projected cracks. The longitudinal plane is considered first. 
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E.2.2.1 Longitudinal Plane 

Consider triangle OAC of Fig. E.2 and its projection on a transverse 

plane, triangle OEF, shown in Fig. E.5. In Fig. E.2, 

OA = a 

AC a sin n (E.13) 

oc a cos n 

In Fig. E.5, 

EF AC a sin n 

(E.14) 

OF oc cos 1jl a cos n cos I)J 

The right angle triangle OEF gives 

2 2 (sin2n + cos 2n cos 2
1jl) aT a (E. 15) 

in which aT is the projected length, on a transverse plane, of the major 

semi-axis of the crack. Triangle OEF also gives 

EF 
OF 

tan n 
cos 1jl 

in which nT is the projection of the angle n on a transverse plane. 

(E.16) 

Consider triangle OBD of Fig. E. 2 and its projection on a transverse 

plane, triangle OGD, as shown in Fig. E.6. In Fig. E.2, 

OB = b 

BD b sin n (E. 17) 

OD = b cos n 

In Fig. E.6, 

GD BD cos 1jl = b sin n cos 1jl (E.18) 

The right angle triangle OGD gives 
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(E.19) 

Dividing Eq. (E.19) by Eq. (E.15), the aspect ratio of the projection of the 

crack on a transverse plane is 

2 . 2 
(cos n + s1n n 

rT = r 2 2 
sin n + cos n 

(E.20) 

In Fig. E.3, which shows the projection of the inclined elliptic crack 

on a transverse plane, if P(x
1 

,y
1

) is one of the points at which the lon­

gitudinal plane intersects the boundary of the projected crack, the equation 

of the projection of the crack on a transverse plane is 

= (E. 21 ) 

Since r~ 2 2 
bTl aT, Eq. (E. 21) becomes 

(E.22) 

In order to obtain an expression for smax' s must be expressed in terms of 

the coordinates of P. If OP = d in Fig. E.3, triangle AOP gives 

OP = d (E. 23) 

and (E.24) 

Angle TOB 

(E. 25) 

Substituting Eq. (E.23) and (E.24) into Eq. (E.25), 

(E.26) 

Substituting Eq. (E.22) into Eq. (E.26), 
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(E.27) 

The value of y1 which corresponds to s is obtained by differentiating Eq. max 
(E.27) with respect to y1 and setting the resulting expression to zero. 

as 
ay1 

Upon solving Eq. (E.28) for y
1

, 

0 

Eq. (E.29) is substituted in place of y1 in Eq. (E.27) to obtains max 

(E.28) 

(E.29) 

(E.30) 

in which aT, nT and rT are given by Eq. (E.15), (E.16), and (E.20), 

respectively. 

E.2.2.2 Transverse Plane 

Consider triangle OAC (Fig. E.2) and its projection on a longitudinal 

plane, triangle MAC, shown in Fig. E.7. 

AC a sin n 

(E. 31 ) 

MC = OC sin w = a cos n sin w 

The right angle triangle MAC gives 

(E.32) 

in which aL is the projected length, on a longitudinal plane, of the major 

semi-axis of the crack. Triangle MAC also gives 

AC tan n 
MC sin ljJ 

(E.33) 
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in which nL is the projection of the angle n on a longitudinal plane. 

Consider triangle OBD (Fig. E.2) and its projection on a longitudinal 

plane, triangle MBT, as shown in Fig. E.8. 

MT OD = b cos n 

(E. 34) 

BT = BD sin ~ = b sin n sin ~ 

The right angle triangle MBT gives 

(E.35) 

Dividing Eq. (E.35) by Eq. (E.32), the aspect ratio of the projection of the 

crack on a longitudinal plane is 

(cos
2
n + sin2n sin2~)1/2 

sin2n + cos 2n sin2~ 
(E.36) 

In Fig. E.4, which shows the projection of the inclined elliptic crack 

on a longitudinal plane, if P(x
2

,y 2 ) is one of the points at which the 

transverse plane intersects the boundary of the projected crack, the equa­

tion of the projection of the crack on a longitudinal plane is 

Since r~ 2 2 = bL/aL, Eq. (E.37) becomes 

2 
X = 

2 

In order to obtain an expression 

the coordinates of P. If OP = d 

OP = d = y2/cos a 

and tan a 

for s , s must be expressed in max 
in Fig. E.4, triangle AOP gives 

(E.37) 

(E.38) 

terms of 

(E.39) 

(E.40) 
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Angle TOA nL' hence 

OT ~ s (E.41) 

Substituting Eq. (E.39) and (E.40) into Eq. (E.41), 

Substituting Eq. (E.38) into Eq. (E.42), 

(E.43) 

The value of y2 which corresponds to smax is obtained by differentiating Eq. 

(E.43) with respect to y
2 

and setting the resulting expression to zero. 

as 
3y2 

Upon solving Eq. (E.44) for y
2

, 

0 

Eq. (E.45) is substituted in place of y2 in Eq. (E.43) to obtains max 

(E.44) 

(E.45) 

(E.46) 

in which aL, nL and rL are given by Eq. (E.32), (E.33), and (E.36), 

respectively. 

E.2.3 Relationships between a . and crack parameters 
m1n 

For the smallest characteristic crack size, amin' that gives a length 

of ~ on a plane, the plane must pass through the crack centroid; i.e. s ~ 0. 

Relationships established in Section E.2.2 are used to obtain amin' First, 

the characteristic crack size is expressed as a function of crack trace 

length on each plane. Then amin is obtained by setting s ~ 0 in the result­

ing expression. 
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E.2.3.1 Longitudinal Plane 

The characteristic crack size is expressed as a function of crack trace 

length on the longitudinal plane through the relationship given by Eq. 

(E.27). 

Rearranging Eq. (E.27), 

( ( 
s - y1 cos(<jl+nT) 2 

sin(<jl+nT) ) 

1/2 
l (E,47) 

For a given trace length 1. on the plane, if y1 is expressed in terms of 1., 

Eq. (E.47) provides the relationship between the characteristic crack size 

and 1.. y1 is expressed in terms of 1. as follows. 

In Fig. E. 3, let EF = t. Angle EPG = <jl+nT. The x-coordinate of E is 

OA + AF, in which 

OA = X 
1 

AF = PG 

(E.48) 

1. cos a cos ( <P+nT) 

Thus the coordinates of E are [1. cos e cos(<jl+nT) + x1 , t]. With these 

coordinates, Eq, (E.22) becomes 

(E.49) 

From triangle PEG of Fig. E.3, 

(E. 50) 

Rearranging and squaring both sides of Eq. (E.50), 

(E. 51 ) 

Equating (E.49) and (E.51) and substituting Eq. (E.22) and (E.47) for x
1 

and 

aT, respectively, 
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~case tan(~+nT)[sin2 (~+nT) + r~cos2 (~+nT)] + 2 s r~ 
2 

2 sin(~+nT) tan(~+nT) + rT cos(~+nT) 
(E.52) 

amin is obtained by settings= 0 in Eq. (E.47) and substituting the result­

ing expression into Eq. (E.15). 

1/2 
l (E.53) 

in which ym is obtained by setting s 0 in Eq. (E.52). 

[ 2 2 2 l 2 case tan(~+nT) sin (~+nT) + rT cos (~+nT) 

2 sin(~+nT) tan(~+nT) + r~ cos(~+nT) 
(E. 54) 

E.2.3.2 Transverse Plane 

In the case of the transverse plane, the relationship given by Eq. 

(E.43) is used to express the characteristic crack size as a function of 

crack trace length on the plane. 

Rearranging Eq. (E.43), 

1/2 
l (E.55) 

For a given length 2 on the plane, if y2 is expressed in terms of 2, Eq. 

(E. 55) provides the relationship between the characteristic crack size and 

2. y2 is expressed in terms of ~ as follows. 

In Fig. E.4, EP = 2 and let EF = t. The x-coordinate of E is OA + AF, 

in which 

OA 

(E. 56) 

AF PG = 2 sin nL 

Thus the coordinates of E are (2 sin nL + x2, t). With these coordinates, 

Eq. (E.38) becomes 



428 

(E. 57) 

From triangle PEG of Fig. E.4, 

(E. 58) 

Rearranging and squaring both sides of Eq. (E.58), 

(E. 59) 

Equating (E.57) and (E.59) and substituting Eq. (E.38) and (E.55) for x2 and 

aL respectively, 

(E.60) 

amin which gives a length of ~ on the transverse plane is obtained by set­

ting s = 0 in Eq. (E.55) and (E.60) and substituting the resulting 

expression into Eq. (E.32). 

(E.61) 

E.2.4 Expressions for as/a~ 

Since the equations for the relative frequency density of crack trace 

lengths on longitudinal and transverse planes require integrations over 

crack size (see Appendix D), as/all. needs to be expressed as a function of 

crack size. In the following derivations, as/all. is expressed as the product 

of two differentials which involve the characteristic crack size. 

Expressions are then obtained for these differentials by differentiating 

relationships established in Sections E.2.2 and E.2.3. 

E.2.4.1 Longitudinal Plane 

as/a~ is expressed in terms of the projected length, on a transverse 

plane, of the major semi-axis of the crack, a
1

, as 
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(E.62) 

os/oaT in Eq. (E.62) is obtained by differentiating Eq. (E.27). 

(a~ (E.63) 

By substituting Eq. (E.27) in place of s in Eq. (E. 52), y
1 

is expressed as a 

function of aT. 

(E.64) 

B 9, cos e [sin2 (~+nT) + r~ cos 2 C~+nTl] 

c A2 + 4 2 2 
rT cos ( ~+nT) 

D s2 - 4 2 4 2 
aT rT cos C~+nT) 

aT, nT and rT are defined previously in Eq. (E.15), (E.16), and (E.20), 

respectively. ay11aaT in Eq. (E.63) is obtained by differentiating Eq. 

(E,64). 

(Cy
1 

- AB) (E.65) 

In Eq. (E.62), (E.66) 

Differentiating Eq. (E.47) with respect to y1 , 

(E.67) 

in which sand y
1 

are given by Eq. (E.27) and (E.64), respectively. 
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Differentiating Eq. (E.52) with respect to ~. 

[ 2 2 2 l cose tan(~+nT) sin (~+nT) + rT cos (¢+nT) 

2 [sin(¢+nT) tan(¢+nT) + r~ cos(¢+nT) 
(E.68) 

oslo~ is therefore obtained from Eq. (E.62) by evaluating Eq. (E.63) through 

(E.68). 

E.2.4.2 Transverse Plane 

3s/3i is expressed in terms of the projected length, on a longitudinal 

plane, of the major semi-axis of the crack, aL, as 

os/oaL in Eq. (E.69) is obtained by differentiating Eq. (E.43). 

sin 

2 
2 y2 -1/2 

(a - -) 
L 2 

rL 

(E.69) 

(E.70) 

By substituting Eq. (E.43) in place of sin Eq. (E.60), y
2 

is expressed as a 

function of aL' 

1 [AB + (A2g 2 - CD) 112 ] (E. 71 ) y = -2 c 

in which A = 2 cos nL 

B i [cos
2

nL 2 . 2 l + rL s1n nL 

c A2 + 4 2 2 
rL sin nL 

D 82 - 4 2 4 2 
aL rL sin nL 

aL' nL and rL are defined previously in Eq. (E.32), (E.33), and (E.36), 

respectively. Hence oy l aaL in Eq. (E. 70) is obtained by differentiating 

Eq. (E.71). 
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D 
AB) 

InEq. (E.69), 

Differentiating Eq. (E.55) with respect to y2 , 

sin nL (y2 sin n - s) y 
[----==--_::_---=L:___ + __£ J 

2 2 
cos nL rL 

(E.72) 

(E.73) 

(E.74) 

in which s and y
2 

are given by Eq. (E.43) and (E.71), respectively. 

Differentiating Eq. (E.60) with respect to ~. 

(E.75) 

as/at is therefore obtained from Eq. (E.69) by evaluating Eq. (E.70) through 

(E.75). 
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Fig. E.3. Projection of Crack on Transverse Plane 



435 

y 

EDGE OF 
TRANSVERSE 
PLANE 

X 

Fig. E.4. Projection of Crack on Longitudinal Plane 
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Fig. E.S. Projection of Triangel OAC (Fig. E.2) on 
Transverse Plane 
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Fig. E.7. Projection of Triangle OAC (Fig. E.2) on 
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Fig. E.8. Projection of Triangle OBD (Fig. E.2) on 
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