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CHAPTER 1

INTRODUCTION

1.1 General

The finite element method has been widely adopted for
predicting the response of structures loaded into the nonlimear region.
Successful application of this analysis tool requires the synthesis of
element types, material constitutive relationships, and solution methods
into a modeling scheme that incorporates the impertant nonlinear ef-
fects occurring in the actual structure. Structural analysts must also
balance the level of modeling detail with the computational effort re-
quired for numerical solution. Overly detailed models, while capable of
accurately predicting nonlinear response, may be too expensive to imple-
ment.

Reinforced concrete structures pose unique modeling problems
due to the number, type, and interaction of effects that contribute to
nonlinear response. Analysis procedures for structures such as shear
walis and beams must include nonlinearity arising from a number of
sources. These are: 1) yvielding and strain hardening of reinforce-
ment, 2) degeneration of bond between <concrete and reinforcement,
3) nonlinear response of concrete subjected to compression, and
4) cracking of concrete in tension.

The response of a reinforced concrete structure (or member)
can be examined at either the microscopic or the macroscopic level.

Microscopic analysis predicts the detailed stress distribution near
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crack;, bond stresses, and the propagation of individual cracks under
loading. A macroscopic analysis provides the strength and oversll
deformation characteristics of the structure expressed in terms of load-
deflection curves and generalized cracking patterns. Modeling
procedures for the prediction of microscopic response may be unneces-
sarily complex for macroscopic analysis and mav not be justified due to
the large computational effort. A shear wall, for example, may develop
hundreds of cracks under loading; the detailed consideration of each in-
dividual crack is clearly impractical and may be unnecessary for a
strength and deformation analysis. In contrast, the propagation of a
single crack in a large unreinforced concrete structure, such as a
gravity dam, may have disasterous consequences. A microscopic analysis
is both warranted and feasible for this type of structure, i.e., one for
which the propagation of a single crack dominates the response.

Recent microscopic response studies by Bazant and Cedolin
(4,5) have raised a serious question regarding the general applicability
of cracking models based on a simple limiting tensile stress criterion.
Tensile panels containing a predefined crack (Mode I) were analyzed
using a blunt band crack representation. The material stiffness normal
to the crack plane and the shear stiffness were reduced to zero for ele-
ments within a one element wide <crack band. The load required to
propagate the predefined crack for plain concrete was shown to be
strongly dependent on the refinement of the finite element grid when the
limiting temsile strength criterion was used. Uniform refinement of the
element grid produced a sharper crack tip and rapidly increased the com-

puted tensile stress in the element nearest to the crack tip. Predic-
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tion of crack extension using the computed tensile stress was thus shown

to be highly dependent upon the finite element grid selected. BHowever,
the energy release rate, G, associated with extension of the blunt crack
converged to a constant wvalue with mesh refinement and was therefore
recommended as a more appropriate parameter to govern crack extension.
Similar computations for a reinforced panel predicted a constant energy
release rate but only following the introduction of a2 bond slip model
for the reinforcement traversing the crack plane.

Extrapolated to the analysis of common reinforced concrete
structures that develop numerous cracks, these microscopic studies imply
that load-deflection curves generated using a limited tensile stress
cracking criterion will not converge with intreasing mesh refinement.
For such structures, cracks are most commenly incorporated in element
grids with either a "discrete" or a "smeared" representation. The
discrete crack model allows element edges to uncouple thereby in-
troducing a geometric discontinuity, with a strain concentration ahead
of each crack tip. The magnitude of the computed strain (stress) con-
centration naturally depends on the degree of mesh refinement. In the
limit of mesh refinement, the discrete c¢rack representation and the
blunt band crack representation are identical. The same sensitivity to
mesh refinement exhibited by the blunt band model should alsec bpe ex-
pected with the discrete crack model. With the widely used '"smeared"
crack representation, simple pointwise stress discontinuities within
elements simulate the loss of stiffness due to crack formation. Strain
fields within the elements and displacements across element boundaries

remain continuous, irrespective of grid refinement. For this reason,
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the smeared representation may be considered a macroscopic damage model
for cracked concrete.

The smeared crack representation and limiting tensile stress
criterion have been used extensively for the analysis of beams, plates,
shells, shear walls, etc. Good correlations with experimental load-
deflection curves and crack patterns have been reported. This appears
to contradict implications of the microscopic crack extension studies.
The 1level of finite element mesh refinement used for beam, plate, and
shell models was generally based on engineering judgement within the
constraints of computer program capacity and funds available for the
analysis. Bazant and Cedolin (4) suggest that the correct predicticns
of structural response in those studies were obtained by the fortuitous
selection of element dimensions relative to the asggregate size and con-
crete tensile strength, and that more refined meshes would have
predicted divergent load-deflection curves, Clearly, grid refinement
has some effect on computed results as for all finite element analyses.
Yet, it is not obvious how grid refinement affects the computed response
when cracks are represented using the smeared model.

In view of these questions and with the continued widespread
use of smeared crack-tensile stress models, this study was conducted to
investigate the effect of a number of finite element modeling
parameters, including grid refinement, on the macroscopic, nonlinear

response of reinforced concrete structures.
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1.2 Previous Work

This section provides a brief summary of the major approaches
that are used to incorporate cracking in the finite element analysis of
reinforced concrete. Cracking models must address two problems:
1) material constitutive vrelationships that predict the formation and
possibly propagation of a crack, and 2) representation within the ele-
ment mesh of the discontinuity introduced by the crack. Predictive
methods for crack formation have traditionally been based on a limiting
tensile stress or strain criterion and are collectively termed stress
controlled models. More recently, procedures to predict the propagation
of an existing crack have been developed following the principles of
linear elastic fracture mechanics.

Two methods are commonly emploved to accommodate the crack in
a finite element grid. In the first method, termed "discrete cracking',
the boundaries between elements are permitted to separate, while
preserving geometric continuity within the elements. In the second
method, termed Ysmeared  cracking", element  boundaries remain
geometrically continuous during deformation, with cracks introduced by
eliminating the material stiffness normal to the <c¢racks at sampling
points within elements, The smeared crack representation therefore does
not introduce a direct geometric discontinuity im the mesh -~ only a
stress discontipuity.

The following sections describe the wuse of smeared and
discrete crack representations in conjunction with the stress controlled

and fracture mechanics based constitutive models. More detailed discus-
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sions cap be found in Ref. {33).

1.2.1 Stress Controlled Models

The first finite element model for reinforced concrete was
developed by Ngo and Scordelis (25) to study local bond, concrete and
steel stresses along predefined cracks in beams (Fig. 1.1). Two nodes
were defined at each mesh point on element boundaries along the path of
each crack. A crack was formed by allowing separation of the nodal
points (Fig. 1.2). Ngo, Scordelis and Franklin (26) later used linkage
elements along the cracks to simulate aggregate interlock (Fig. 1.3).
Constant strain triangle elements were used to model the concrete in
these early studies.

Nilson (24) eliminated the necessity to predefine crack loca~
tions. An automated process was developed to introduce cracks between
elements. When the average tensile stress at the interface of two adja-
cent elements exceeded the modulus of rupture, common nodes were discon-
nected, thus introducing a crack. This scheme, in effect, propagated
the crack {either new or existing) by one element dimension and created
some degree of strain {and thus stress) concentration at the crack tip.
For elements at the exterior of the mesh, only common outside nodes were
disconnected. For dinterior cracks all common nodess were separated
(Fig. 1.4).

Mufti, et al., (21,22) further improved the discrete cracking
model by initially incorporating two separate nodes at each element con-
nection point. The nodes were connected with a linkage eslement having

stiffness parallel and perpendicular to the crack. All possible crack
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locations were thus predefined. The stiffness of a linkage element per-
pendicular to the crack was gradually decreased to zero as the tensile
stress exceeded the cracking strength. The linkage elements parallel to
a crack were used to simulate aggregate interlock. Al-Mahaidi (1) con~
ducted a similar investigation but with two oy four nodes connected by
linkage elements at one point. The four nodes allowed cracking in two
perpendicular directions {Fig. 1.5).

Despite their apparent simplicity, the discrete cracking
medels have not been widely employed in analysis. Two major drawbacks
have existed for this approach: 1) crack paths are constrained to fol-
low predefined element boundaries, and 2) the solution procedure may be
inefficient. Each time a crack fqrms, a new node must be introduced to
uncouple the mnodal degrees of freedom. This changes the mesh topology

and thus necessitates a regeneration of the structure stiffness and

triangulation. Addition of nodal points to model pumerous cracks also
increases the bandwidth of the gleobal stiffness matrix, thereby
quadratically increasing solution time. Recently, some progress has

been made in equation solving techniques that reduce these objections to
discrete cracking {(30).

To help overcome early objections associazted with the discrete
crack model, Rashid (27) introduced the "smeared crack model", in which
cracked concrete is represented as a linearly elastic, orthotropic
material. When the principal tensile stress {or strain) at a material
sampling peint within an element exceeds the tensile strength, a crack
is formed by reducing the modulus of elasticity to zero in the direction

of the principal stress. The tensile stress carried prior to cracking
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is then redistributed to surrounding elements. Subsequent stress
changes are related to strain dincrements im the cracked cecordinate

system by the following constitutive matrix:

( do, 1 o 0 0 g de,
1 d02 g = 0 E 0 1 d82 (1.1}
dr,, 0 0 0 ¥y,

in which E is Young's modulus for concrete. 015 Ogs €4, and e, are the
principal stresses and strains in the cracked coordinate system {direc-
tion 1 is perpendicular to the crack plane). The shear wmodulus is
reduced to zero upon crack formation in this early model.

Whereas the discrete crack model represents a single crack
with fixed direction, determined by element orientation, the orthotropic
constitutive relationship simulates many closely spaced {or smeared)
cracks near the sampling point, oriented perpendicular to the principal
tensile stress {Fig. 1.6). A consequence of incorporating the crack in
this manner is that no real geometric discontinuity develops in the
finite element grid as it dces for the discrete crack representation.
Strain fields within the finite elements remain continuous functions of
the spatial coordinates.

The smeared model was used successfully by several in-
vestigators (7,8,19,34). However, the absence of shear stiffness along
the crack interface sometimes led to ill~conditionmed stiffness matrices
once large areas of the structure cracked {17,31). To eliminate these
problems, later investigators (2,3,10,11,16,32) reinserted the shear

medulus, G, with a reduction factor, B (assigned a value between zero
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and one). In this case, the incremental, orthotropic <constitutive

matrix becomes:

g dal l 4] 0 0 d31 l
l doz 5 = 0 E 0 dez s (1.2)
dtlz 0 0 BG dylz

Retention of a nen-zero shear modulus, G, effectively places springs
paraliel te the crack and simulates aggregate interlock and dowel ac-
tion. Fortunately, the particular choice of B is mot critical (16,17).
A wvalue of 0.4 is normally adopted. The inclusion of some shear stiff-
ness alleviates the stiffness ill-conditioning problems and improves the
computed crack patterns.

Eq. (1.1) and (1.2) predict subsequent stress changes once a
crack forms. Techniques are also required to reduce the existing ten-
sile stress at crack formation. In the simplest of these, the tensile
stress normal to the <c¢rack is immediately reduced to zero. In other
methods, collectively termed ‘'tension stiffening" (15,17,30,35), the
tensile stress is gradually reduced to zero through a descending branch
of the tensile stress-strain curve. Tension stiffening has improved
both numerical stability of the solution process and comparisons with
experimental results (15), but has not been universally adopted.

The smeared crack model coffers two major advantages compared
with the discrete crack representation. First, no redefinition of the
element mesh topology is required during analysis. Significant reduc-
tions in computational effort are therefore realized. Secondly, the

smeared model eliminates the bias of predetermined crack orienmtations
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inherent in most discrete representstions.

1.2.2 Fracture Mechanics Models

Because concrete in tension responds in a brittle manner, con-
siderable effort has been made to derive comstitutive models based on
linear elastic fracture mechanics. These models predict the direction
in which a crack propagates and the lcad increase required to extend the
crack. Fracture mechanics models are applied as follows. With a known
crack geometry, a finite element analysis iy performed to determine the
rate of energy release, G, that would occur for an increase in crack
length. When the energy release rate exceeds a critical value, Gc , the
crack extends until G is again below the c¢ritical wvalue, i.e., the
structure reaches another equilibrium configuration for the same applied
loading. During crack extension, the stresses in the previously un-~
cracked material are redistributed to the reinforcement and to the con-
crete ahead of the crack. The major parameter in this process is the
critical wvalue of the energy release rate. GC is assumed to be a
material property of concrete that is independent of the crack Ilength,
loading, structure dimensions, etc.

Rostam and Bysckov (28), and Salah Eil-Din and El-Adawy Nassef
(29) effectively combined the discrete crack representation with frac-
ture mechanics constitutive models te compute moment versus crack length
relationships for singly reinforced beams. Crack propagation for these
Mode I (tension) type problems was modeled by incrementally releasing
constraints applied to nodes along the crack front. These studies used

constant strain triangle elements, not singularity type elements, to
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model the crack tip. Modeer (20) has also used the discrete crack ap-
preach with constant strain triangles, but with crack propagation con-
trolled by a c¢rack opening displacement (COD) criterion. Both rein-
forced and unreinforced beams were considered with a stress controlled
¢riterion to initiate cracks. These studies considered members con-
taining only one crack and did not attempt to accurately model the
strain singularity ahead of the crack tip. More recently, Saouma (30)
developed a procedure to follow the propagation of combined Mode I and
Mode I1 (shear) cracks in beams and shear panels. An automated computer
procedure was devised to construct new element meshes (containing spe-
cial singularity elements) each time one or more cracks extended. Crack
propagation occurred when & reached & critical value, with the crack ex-
tending in the direction of maximum calculated G. Specialized solution
algorithms were aiso developed to minimize the impact of new nodes and
eiements incorporated in the mesh. Saouma's work is notable as combined
Mode I {tension) and Mode II (shear) cracks were allowed, without the
necessity to predefine crack paths.

A combination of the computationally more efficient smeared
crack representation and a fracture mechanics constitutive model is
presented by Bazant and Cedolin (4,5). A single crack is mocdeled by a
one element wide ‘''band" of quadrilaterals composed of constant strain
triangles. When the energy release rate (computed using a scheme to ac-
count for reinforcement bond slip) exceeds the critical wvalue, the ten-
sile and shear stiffness in the crack tip element is reduced to zero,
thus affecting a crack extension equal to the dimension of one element.

Bazant and Cedolin (4) showed that the computed energy release rate con-
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verges to a constant value with increa;ing mesh refinement, while cor-
responding stress estimates at the crack tip dincrease without bound.
Therefore, they argue that the stress controlled constitutive model is
not objective, since the degree of mesh refinement employed near the tip

directly controls the predicted tensile stress.

1.3 Objective and Scope

This report examines the effects of finite element modeling
parameters on the monlinear strength and deformation response of rein-
forced concrete members due to cracking. Convergence properties of the
macroscopic measures of response, including load-deflection curves and
general cracking patterns, are of primary interest. Acceptable finite
element medels must generate convergent load-deflection curves for in-
creasing grid refinement.

Nonlinearity is limited to cracking of the concrete and
vielding of the reinforcement. Crack formation is governed by a
limiting tensile stress criterion. A "smeared" representation 1is used
to incorporate <c¢racks in the finite element mesh. Since the major em-
phasis of the study concerns nonlinearity due to cracking, the concrete
is treated as a linear elastic material in compression. While this as-
sumpticen simplifies the parametric study of cracking, it precludes the
comparison of computed solutions with experimental results. The rein-
forcement stress-strain curve is linear elastic with linear strain
hardening after vyield. Constant strain bar elements are used to model

the reinforcement.
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Finite element analyses are performed for slender, moderate,
and deep beams, with respective span-~to-depth ratios of 12 to 1, 5 to
1, and 2 to 1. Each beam is analyzed for a uniformly distributed load
and a midspan, concentrated load using a minimum of three variations in
grid refinement. Both the four node (linear) and eight node (quadratic)
isoparametric elements are employed to model concrete portions of the
members.

Additicnal analyses are conducted for the shear critical deep
beam (2:1 aspect ratio) to assess the influence of concrete tensile
strength and loading increment size on the solutions. Separate analyses
of the deep beam are also performed to study the effect of numerical in-

tegration order for models constructed with the quadratic element.
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CHAPTER 2

NUMERICAL PROCEDURES

2.1 General

This chapter describes the major components of the analytical
model and the solution procedures adopted din this study. Ttems
specifically addressed include: 1) material comstitutive relationships
selected to model concrete and reinforcement, 2) finite element for-
mulations for modeling concrete and reinforcement, and 3} relevant
aspects of the iterative process used to solve the resulting nonlinear
equilibrium equations. The formulations and procedures described are
incorporated in the POLO-FINITE {(12,13,18) system, which was used to ob-
tain the numerical results presented in Chapter 3.

-

2.2 Nonlinear Material Models

2.2.1 Concrete

Cracking under tensile stress is fhe only nonlinear behavior
of concrete modeled. 4 Tcrack” 1is formed when the computed tensile
stress exceeds the tensile strength, fé. Cracks are incorporated in the
finite element mesh using the smeared representation. Concrete is as-
sumed to respond linearly for all levels of compressive stress.

Prior to cracking, concrete is modeled as a linearly elastic,
isotropic material in a state of plane stress. The incremental stress-—

strain relationship prior to any cracking is:
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dcx H % 0 dax
E
4 4o T e Y 1 0 de (2.1)
- 2 d
dzxy 0 o (1 vY/ ny
Initially, all stress-strain sampling points are assumed to be
uncracked. At each 1loading stage, strain increments are converted to
elastic stress increments using Eq. (2.1}, The accumulated total

stresses are rotated to principal axes, and the maximum tensile stress
is compared to the tensile strength of the concrete. If the computed
stress exceeds the tensile strength, a crack is introduced by setting
the total stress to zero in the corresponding direction. Concrete at
the point is thereafter modeled as an elastic, orthotropic material with
material directions fixed parallel and normal tc the crack. The 1in-

cremental stress-strain relationship becomes:

‘ dcl oE 0 0 g del 2
l dcz 0 E t] l dsz S : (2.2}
dv, 0 0 BG ay,,

2

in which subscripts 1 and 2 refer to material ames (direction 1 is nor-
mal to the first crack). The shear modulus, G, = 0.5E/(1+v}. All sub-
sequent stress computations are performed by transforming strain incre-
ments to the 1-2 material directions and then applying Eq. (2.2). The
resultant stress increments are added to previous stresses in the 1-2
system, followed by a rotation of the new total stresses to the global
coordinate axes. The normal stiffmess reduction factor, o, is a

numerical device that may improve the stability of the equilibrium equa-
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ticns by retaining a very small stiffness normal to the crack. Unless
otherwise noted, a =zero value for o is employed in this study. When
used, typical values of 0 range from 10“3 to 10‘6. Retention of a non-
zero shear stress-strain term in Eq. (2.2) simulates aggregate interlock
by allowing the concrete to develop additional shear stress along the
crack. A  constant value of 0.4 for the shear stiffness reduction fac-
tor, B, is used in this study. No attempt is made to gradually reduce
B with increasing crack width. No provisions are included to model
crack closure.

Eq. (2.2) implies that no Poisson effect exists between stress
increments in the 1~2 material directions once a crack forms. However,

at the instant eof crack formation, the stress o, parallel to the crack

2
contains a Poisson coupling term with direction 1 due to the isotropic
constitutive relationship in effect prior to cracking. The leoss of
Poisson coupling at the instant of cracking lets the concrete "rebound"
along direction 2. Stress o, changes by the amount -Vle/(I-VZ}. This

effect may be included or neglected in the cracking material model.

When included, O, becomes simply E82 immediately after cracking. A

2
number of preliminary analyses were conducted to determine the effects
of Poisson coupling. Computed load-deflection curves and general crack
patterns with and without "rebound" showed no detectable differences.
This result might be anticipated considering the very small value of 81

when the tensile stress exceeds fé. The "rebound" effect was neglected

in this study.
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If the total stress S, exceeds the tensile strength of the
concrete, a second crack is introduced perpendicular to the first crack.

When two cracks are present, the iancremental stress-strain relation

becomes:

dG1 aE O G dal

1 d02 5 = 0 o 0 l daz S (2.3)
dt,, D O BG dy,,

The ability to transfer shear along both cracks is retained through the
8 factor. Formation of a second crack is generally associated with cy-
clically applied loads, although it is theoretically possible for a
second crack to form under monotonic loading if sufficient load

redistribution occurs.

2.2.2 Reinforcement

The reinforcement is modeled as a material din a state of
uniaxial stress. A simple bilinear stress-strain law is used (described

in Ch. 3).

2.3 Finite Elements

2.3.1 Bar Elements for Reinforcement

Two techniques are commonly employed to model the reinforce-
ment. In the first method, a "smeared" composite material matrix is

generated by adding the constitutive matrix for the reinforcement to
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that of the concrete in volumetric proportions. A single, E;D finite
element may then model both the concrete and the reinforcement. This
approach is particularly convenient when the reinforcement is not paral=-
lel to the element edges.

In the second approach, termed the "discrete'" model, separate
finite elements are utilized for the concrete and the reinforcement.
Simple constant strain bar elements are adequate to represent the rein-
forcement. These elements have two nodes, each with a single axial
degree of freedom (Fig. 2.1). The discrete reinfeorcement model is
adopted in this study due to its simplicity and availability in the com=~

puter code.

2.3.2 Isoparametric Elements

Numerically dintegrated finite elements, based on the
isoparametric formulation, are used to represent the concrete,
Isoparametric elements have several advantages compared to simple con-
stant strain triamgular elements. Substantially more accurate solutions
are obtained with fewer elements, thus reducing input and computational
effort. Isoparametric elements generally distribute residual forces oc-
curring in nonlinear analysis over a larger portion of the model. This
may reduce the number of corrective iterations required. The Gauss
peoints in isoparametric elements have proven to be optimal locations for
the calculation of strains and stresses. ¥Yor 2-D linear analysis, Navak
(23) presents computational evidence indicating that a linear displace-
ment {4 node) isoparametric element is approximately equivalent to eight

constant strain triangles. Similarly, the quadratic displacement (8§
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node) isoparametric element is approximately equivalent to sixteen
triangular elements.

RBoth the four node and eight node isoparametric elements {(Fig.
2.2 and 2.3) are used in this investigation. Complete details of the
element formulation are given in Ref. (37).

Isoparametric element stiffnesses are calculated using the
standard Gauss numerical integration procedure. A four point (2x2)
Gauss gquadrature rule {Fig. 2.4) exactly integrates the four node ele-
ment stiffness 1in linear analysis. Both the four point and nine point
(3%3, Fig. 2.3) integration rules are considered for the eight node ele-
ment. The four point rule comprises "reduced" integration for the eight
node element. Reduced integration saves considerable computational ef-
fort compared to the 3x3 rule and has been extensively employed in non-
linear plasticity analyses (23). The 3x3 rule exactly integrates the

eight node element stiffness in linear analysis.

2.4 Solution Procedures

When cracking of the concrete and yielding of the reinforce-~
ment are considered, the finite element method produces a nonlinear set
of equilibrium equations. However, the load path dependent nature of
cracking precludes generation of the eguation coefficients for an ar-
bitrarily specified load level. Therefore, structural response is com=-
puted by applying the total lecad in a sequence of incremental load
steps. Within each step, the nonlinear equilibrium equations are
linearized using a tangent stiffness approach. These equations are

solved to determine approximate increments of the nodal displacements.
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Residual or Tunbalanced" forces develop since the linearized displace-
ment increments de not satisfy the nonlinea; equilibrium egquations. The
true equilibrium configuration at each load step is found by iteratively
cdrrecting the digplacements with small changes arising from application
of the residual forces. The procedure continues until residual force
components vanish within some prescribed tolerance. Although the solu-
tion method is incremental, the iterative process employed in this study
considers total equilibrium conditions for the structure to compute
residual forces. Ne errors accumulate from one step to the next with
this solution method.

Variations of this solution procedure, koown as the Newton-
Raphsen method, arve widely used for nonlinear finite element analysis.
Fig. 2.6 illustrates the basic process for a single degree of freedom
system. With the Newton-Raphson method, the analyst has several options
to control the solution process. In this investigation, the incremental
{tangent) stiffness is updated before each load step and before each
eguilibrium iteration. Frequent wupdating of the tangent stiffness
produces a more accurate distribution of residual forces, accelerates
the convergence rate, and reduces the number of iterations required for
a load step. Cedolin and dei Poli {6) studied the solution convergence
rates for various modifications of the Newton-Raphson method applied to
cracking problems. Stiffness updating before each iteration was found
to yield the best convergence rate, and in some cases, the use of any
other scheme resulted in a non-convergent or very slowly convergent

solution.
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The following outline summarizes the major computational
phases necessary to analyze the structure for each load step.

1) Compute the incremental eguivalent nodal loads, {AP}, cor-
responding to the increment of applied load defined for the step. Set
the residual nodal loads equal to the applied 1load  increment,
{R} = {AP}, for the first iteration of a load step.

2) Update the total nodal loads applied to the structure through
the current step, {PNEW} = {POLD} + {AP}, to reflect the new loading
increment.

3) Generate the incremental (tanmgent) constitutive relation, [DT],
for all concrete and reinforcement elements using the current stresses,
strains, and loading history.

4) Using the updated I[D matrices, , recompute the stiffness

]
matrices for newly cracked elements and assemble the new structure tan-
gent stiffness matrix, {KT]. Triangulate the new tangent stiffness.

5) Solve for the increment of nodal displacements using the
triangulated stiffness. {AUY = [KTIWI{R}. Update the total nodal
displacements, {UNEW} = {UOLD} + {AU}.

6) Compute increments of strain at Gauss points within each ele-
ment. Update the total strains at each Gauss point.

7) Update stresses at each Gauss point given previous strains,
stresses, and loading history (number of cracks and crack angles). New
total stresses at each Gauss point result from these computations.

8) Evaluate the nodal forces required to maintain each element in

its deformed configuration, {IF}. These are given by {IF} =

fv [B]T{U} dv. Assemble these into a nodal vecter for the structure,
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{IFS} .
9) Compute the structure residual nodal load wvector as {R} =
{PNEW} - {IF}.

10) Apply convergence testg to determine the level of residuoal
loads remaining. If the convergence tests are satisfied, go to (1) and
begin processing the next load step; otherwise go to (3) and begin the
next iteration.

The two convergence tests used to terminate the iterative

solution process are:

lir3]] < o0.03 % ||cary] (2.4)
| taey | (2.5)

MAX |{Ri}’ < 0.02 ¥

where {R} is the residual load vector and (AP} is the applied incremen-
tal 1load wvector. The first test, Eq. (2.4), compares Euclidean norms
(square root of the sum of the sguares) of the residual load and applied
load wvectors and represents an average measure of equilibrium, The
second test, Eq. {2.5), detects any highly localized residual loads that
could be missed by a vector norm computation. Both tests must be satis-
fied for acceptance of a seolutiom. These convergence tests force the
equilibrium iteratiomns to continue until no further cracks develop for

the applied load increment.
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CHAPTER 3

RESULTS AND DISCUSSION

3.1 Geperal

A parametric study of nonlinear simple beam responses was con-
ducted wusing the solution and modeling procedures described in the
previous chapter. Three span-to-depth ratios of 12:1, 5:1, and 2:1 were
considered. These span-to-depth vratios cover beam responses ranging
from those dominated primarily by flexure (12:1) to those controlled by
shear (2:1). In subsequent discussions, these geometries are referred
te as the slender beam (12:1), the moderate beam (5:1), and the deep
beam (2:1}. Analyses were conducted for a uniformly distributed load
applied across the top surface of the beam and for a single concentrated
load applied on the top surface at midspan.

Analyses were also performed to assess the i1nfluence of
smeared cracks on the stiffness characteristics and comvergence proper-
ties of the four and eight node isoparametric elements. bifficulties
arising from the development of zero-energy modes in cracked eight node
elements were explored. Additional analyses were conducted to in-
vestigate the effect of loading increment size on the path dependent
formation of cracks.

This chapter presents a detailed description of the problems
selected for the parametric study, the numerical results obtained, and a

discussion of the findings.
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3.2 Beam Properties and Modeling Details

All beams analyzed were 7 inches thick, 15 dinches deep and
simply supported at each end. Span lengths of 180, 75, and 30 inches
for the slender, moderate, and deep beams provided the span-to~depth
ratios desired. A concrete elastic modulus of 3,600 ksi and a rein-
forcing steel modulus of 29,000 ksi were used. A reinforcing steel
yield point of 60 ksi was selected, with linear strain hardening at a
slope of 3% of the elastic modulus (Fig. 3.1). All beams were singly
reinforced with a reinforcing ratio of 1.5% (1.6 sq.in.). No shear
reinforcement wag provided. A limiting tensile strength (fé) of
400 psi was used to predict cracking in the model. Several analyses
were also performed for the deep beam to assess the influence of tensile
strength on the response of shear critical members. A 10 psi tensile
strength was employved to approximate a zero strength condition for these
analyses (a tensile strength of zero leads to numerical difficulties in
the finite element solution, as extensive cracking occurs at a very
small Tload}. Tables 3.1 and 3.2 summarize the beam dimensions and
material properties.

To eliminate possible effects of the finite element shape,
square elements were used whenever the geometry permitted. In those few
cases which required rectangular elements to be used, the rectangular
elements were placed immediately above the simple support.

The slender and moderate beams were analyzed using 1, 2, and 5
elements through the 15 in. depth. For the deep beam, grids were

analyzed with up to 20 elements through the depth.
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Farly in this studv, it was found that placement of concrete
elements below the reinforcement (modeled with bar elements) produced
numerical problems during solution when the normal stiffness reduction
factor, o in Eq. 2.3, was assigned a zero value. In the high moment re-
gions, elements below the reinforcement develop a near vertical crack at
each Gauss integration point. When a perfectly vertical crack develops
at each point in an element, a complete loss of stiffness occurs in the
horizontal direction. In solutions for the beam problems, exactly ver-
tical cracks do not form in an element due to small shear stresses
prezent below the bar elements. However, the single precision arith-
metic (48 bit word) emploved for the computations was insufficient to
detect these small differences in crack orientation, and a singular or
near singular stiffness resulted at the adjacent bottom nodes. The
situation was remedied by eliminating the layer of concrete elements
below the reinforcement, which produced a very slight decrease in the
initial cracking loads. Alternatively, a very small value for the nor-
mal stiffness reduction factér could have been retained to prevent the
numerical preblems.

When connected, the eight node isoparametric element and the
two mnode constant strain bar element do not maintain interelement
displacement compatibility. Models in this study were constructed with
two rod elements for each eight node element at the level of the rein-
forcement, i.e., a bar element connected 2 corner and a mid-side node.
To determine the error introduced by the displacement incompatibility,
several analyses were performed for the deep beam meshes. Models were

constructed with a single bar element connecting the quadratic element
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corner nodes. The mid-side node displacements of the quadratic element
were constrained to be the average of the adjacent corner node displace~
ments, thus re-establishing displacement compatibility with the bar ele-
ment. Comparison of solutions with and without displacement com=~
patibility revealed negligible differences in the load-deflection
curves,

Uniformly distributed loads were modeled using energy equiva-
lent forces applied to the nodes along the top surface. The concen~
trated loading was modeled by a single force applied to the midspan top
surface node. Symmetry of the loads and constraints about mid-span per=-
mitted the use of only one half of the beam in the finite element
models. Horizontal constraints dimposed on all midspan nodes enforced
the symmetry boundary condition. The simple support was modeled by a
vertical constraint imposed at the bottom edge node.

A deflection measure was developed to minimize the effect of
localized deformation at the simple support and under the concentrated
load. For the purpose of comparison, deflections were computed by sub-
tracting the mid-depth deflection aver the support from the mid-depth
deflection at center span. These values are termed "mid-depth deflec~
ticné" on all Jload-deflection curves. If a node did net fall at mid-
depth, the average displacement for the two nodes on each side of mid-
depth was used.

Loads were applied to the finite element models in a sequence
of increments oy steps. Initially, load step sizes were estimated using
theoretical predictions of the loads corresponding to first cracking and

vielding. During subsequent analyses, load step sizes were selected to
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pr&vide an adequate description of the locad-deflection curves. Variable
size load dincrements were used in each case to obtain a better resolu-
tion of the load-deflection curves near loazding levels at which exten-
sive cracking or yielding cccurred. Load-displacement curves presented
in this chapter show the individual load steps for each analysis. Sec-
tion 3.5 examines the sensitivity of computed displacements and cracking
patterns to the selected load increment size.

The qualitatifa load-deflection response for all beams is i1~
lustrated in Fig. 3.2. Four distinct vegions may be identified in this
figure. For discussion, these regions are denoted: 1) elastic pre-
cracking, 2) cracking prior to yield of the reinforcement, 3) rounded
knee that develops at initial yielding, and 4} post-reinforcement yield
and strain hardening with little additional cracking. The unlimited
strain hardening, coupled with the elastic model for concrete in com=-
pression, permits the load to increase almost linearly with displacement
once significant yielding occurs. Therefore, no 1limit loads are at-

tainable with this model.

3.3 Numerical Examples

3.3.1 Slender Bean

Analyses were coanducted for the slender beam (12:1 span-to-
depth ratie) <considering both distributed and concentrated loading for
1, 2, and 5 elements through the depth. 4 2 x 2 integration order was
used for both the linear and gquadratic elements. Load-deflection curves

and crack patterns for the uniform load case are shown in Figs. 3.3-3.7.
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‘The linear element grids become more flexible as the number of elements
through the depth increases; the quadratic element grids, however,
become progressively stiffer with grid refinement. As will be discussed
in Section 3.4, this unusual trend can be traced to the development of
zero energy deformation modes in cracked guadratic elements that are
evaluated with.a reduced (2x2)} integration order. The computed load-
displacement responses for both element types rapidly converge to a com=
mon solution, as shown in Fig. 3.7, and appear to provide an upper and
lower bound strength prediction.

Several analyses were performed using fully (3x3) integrated
quadratic element grids. Load-deflection curves were found te coincide
exactly with those for the four node element and are therefore not shown
on the figures.

The quadratic element solution for one element through the
depth (Fig. 3.4) shows the greatest departure from the other five solu-
tions obtained for this problem. This solution predicts dinitial
vielding of the reinforcement at approximately 80% of the load obtained
in other solutions. Similar behavior is also observed for the concen=-
trated load cagse (Fig. 3.9). The coarse grid is stiffer than the finer
grids before cracking; but once cracks develop, the region affected is
larger thamn for the finer grids which results in a significant loss of
stiffness, The stiffness loss apparently increases the strain in the
reinforcement, which causes the lower yield load.

The extensive vertical cracks in the uniformly loaded beam
(Figs. 3.5 and 3.6) clearly indicate the flexural nature of the

response. Crack orientations in the linear element grids are erratic
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until a grid with five elements through the depth is used. The
inability of the linear element to accurately model the shear stress
distribution leads to the alternating crack directions. The eight node
element, even for the coarse grid, produces realistic crack orientations
due to the improved shear stress representation. Fine grids for both
element types show the influence of the simple support reaction. The
region of inclined cracks due to high shear stress extends approximately
twice the heam depth from the support.

The extent of cracking through the beam depth is an important
aspect of the crack patterns. For the linear element, coarse grids (1
element through the depth) develep cracks at all Gauss points, whereas
the intermediate and fine grids have one or more layers of completely
uncracked points above mid-depth. 1In the coarse grids, both the shear
force and the compression force of the couple providing the internal
resisting moment must be transferred by a completely cracked, and thus
more flexible, element.

Crack patterans for the fine meshes (5 through the depth) ex-
hibkit gaps near the neutral axis-- several uncracked or partially
cracked elements are surrounded by totally uncracked elements. The ap-
pearance of - "gaps" in the cracking pattern has been termed "strain
localization" by other investigators {5). Almost no partial cracking
occurs within linear elements (Fig. 3.5). All Gauss points within an
element are either cracked or uncracked, with the resulting longitudinal
saw-tooth crack pattern mnear the neutral axis. In contrast, many
guadratic elements have only one or two cracked Gauss points (Fig. 3.6).

This difference may be attributed to the mid-side node of the quadratic
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element which provides considerably more freedom for deformation once
cracks form. The displacements of a mid-side node relative to those of
the corresponding corner nodes and the linear strain variation within
the element permit a crack at one Gauss point to "relieve'” stresses at
adjacent points in the same element. Linear elements, with their
siﬁpler strain variation, are unable to relieve other points in an ele-
ment when one point cracks. They do relieve adjacent elements through
the normal discontinuity of strains across element boundaries, as in-
dicated by the gaps in crack patterms. A similar situastion can occur
for the quadratic element, in which full or partial cracking in one ele-
ment completely relieves an adjacent element. The absence of partially
cracked and/or completely relieved elements (gaps) for the coarse and
intermediate grids indicates that the stress relief effect diminishes
rapidly with distance from a cracked Gauss point.

Load~deflection curves and cracking patterns for the sanme
grids subjected to a concentrated load are shown in Figs. 3.8-3.12. As
for the uniform locad case, the four node element grids converge from the
stiff side, whereas the eight node element grids converge from the
flexible side., Fine grids for both element types converge to a common

solution, as shown in Fig. 3.12.

3.3.2 Moderate Beam

Analyses were performed for the moderate beam (5:1 span-to-
depth ratio), considering models with 1, Z, and 5 linear and guadratic
elements through the depth. The response of beams within this range of

span~to-depth ratio is coeontrolled by shear and flexure over approx-
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imately equal portions of the length.

Load-deflection curves and crack patterns for the distributed
and concentrated load models are shown in Figs. 3.13-3.17 and 3.18-3.22,
respectively. ILinear element grids decrease in stiffness, while the
quadratic element grids (again using 2x2 integration) first increase and
then decrease in stiffness with grid refinement. After the reinforce-
ment yields, the trends become similar to those observed for the slender
beams, with the linear element grids continuing to decrease in stiffness
while the gnadratic element grids increase in stiffmess. Convergence of
load~deflection curves to a common solutjion with increased grid refine-
ment is shown in Fig. 3.17.

The crack patterns for the uniform load (Figs. 3.15 and 3.16)
clearly distinguish those regioms controlled by flexure and those con-
trolled by shear. Extensive diagonal cracks inclined at approximately
45 degrees, indicate the high shear, low flexure stresses near the sup-
port. Linear element coarse and intermediate grids again do not predict
realistic crack patterns. The alternating crack directions within an
element become much less noticeable for the fine grid. The quadratic
elements produce reasonable crack patterns for all three levels of grid
refinement. Gaps observed in cracking patterns <for the slender beam
solutions occur infrequently for the moderate beam. It can be argued
that, due to the more complex stress field within the moderate beam, a
grid with five elements through the depth does not reflect the same
degree of grid refinement as it does for the slender beam. Considering
the ratio of element size to span length, the fine grid for the moderate

beam is actually lessg refined than it is for the slender beam.
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The trends evident fox the concentrated load case
{(Figs. 3.18-3.22) closely follow theose for the uniform load case. ¥ine
element grids for both element types appear to be converging to a common
solution {Fig. 3.22). However, the rate of convergence is not as rapid

as for the uniform load case.

3.3.3 Deep Beam

Analyses were performed for the deep beam (2:1 span-to-depth
ratio) subjected to a distributed load and a concentrated leoad. Due to
the high stress gradients present in the deep beam, finer grids were em-
ployed than for the slender and moderate beams. Up to 20 linear ele-
ments and 10 quadratic elements were used through the depth for the deep
beam analyses. Load-deflection curves and cracking patterns are given
in Figs. 3.23-3.36. The response of beams with this span-to-depth ratio
is controlled almost entirely by shear, especially for the concentrated
lead case. Conseguently, diagonal tension cracks oriented at near 45
degrees develop along a line connecting the simple support and the beam
top surface at mid-span (see, for example, Fig. 3.34). Only small re-
gions near the bottom edge and at mid-span develop flexural cracks.

Load-deflection curves for the linear element {(Figs. 3.23 and
3.29) follow the same trend of increased flexibility with grid refine-
ment observed for the slender and moderate beams. For the distributed
load, quadratic element load~deflection curves, generated using reduced
integration, also indicate increasing flexibility with grid refinement
{Fig. 3.24). Under 2 concentrated load, the quadratic element load-

deflection curves (¥ig. 3.30) show, at first, increased flexibility,
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then increased stiffness with additional grid refinement. This trend is
due in part to the formation of a horizontal crack {labelled "A")} just
below mid-depth of the 5x5 grid, as shown in Fig. 3.31. Nodes above
crack "A" displace upward (positive) rather than downward. When used to
calculate the mid-depth deflection, the positive displacement over the
support increases, rather than decreases, the mid-depth deflection at a
given load. The 2x2 element grid does not develop a similar horizontal
crack and thus appears much stiffer (edge nodes displace downward). The
10x10 grid has several nearly horizontal cracks near mid-depth as shown
in Fig. 3.31, and vet nodes on the leftmost edge displace downward*.

The linear element grids, shown 4in Fig. 3.34, also exhibit
horizeontal cracks near mid-depth above the simple support; but all nodes
on the edge displace dowaward. When solved with full (3x3) rather than
reduced integration, quadratic element grids exhibit the same trend in
load-deflection curves (increased flexibility with grid refinement,
Fig. 3.33) and the same trend in the cracking patterms (horizontal
cracks above support, Fig. 3.35) as the lipear element grids. The
response sensitivity to the formation of a horizontal crack above the
support and the reversal of trends in load-deflection curves obtained
for the quadratic element with reduced integration cast doubt on the
element's integrity when smeared cracks are present. These problems
prompted a detailed study of the stiffness characteristics of
isoparametric elements containing smeared cracks (see Section 3.4).

7 If only the absolute deflection at mid-span is considered, the
quadratic element leoad-~deflection curves (Fig. 2.32) for the concen-
trated load case show much better agreement. The 5x5 and 10x10 grids
yield very similar curves; however, the 10x10 grid remains slightly
stiffer.
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Fuill (3x3) integration for the quadratic element was tried for
each loading type in an attempt to obtain load-deflection curves with
monotonic convergence. The results shown in Figs. 3.25 and 3.33 io-
dicate that the desired monotonic behavior is obtained with full in-
tegration. Full (3x3} integration was then adopted to generate the
quadratic element results described in the remainder of this section.

Load~deflection curves and crack patterns for the distributed
load case are shown in Fig. 3.23 and 3.25-3.28. Coarse element grids
did not demonstrate satisfactory convergence. Thus, linear element
grids up to 15x%15 and quadratic element grids up to 10x10 were analyzed
to obtain convergence. As observed for the slender and moderate beams,
the linear element grids decrease in stiffness with increasing grid
refinement. Solutions for the 10x10 and 15x15 linear element grids are
essentially . identical (Fig. 3.23). Prior to yielding of the reinforce-
ment, the response is insensitive to grid refinement. As observed for
the slender and moderate beams, gaps in the linear element grid cracking
patterns are present and indicate stress relief in adjacent elements due
to ‘cracking. Fig. 3.25 shows the guadratic element (3x3 integration)
load-deflection curves for the distributed Iload. Small differences
between the solutiomns occur prior te yielding of the reinforcement. In-
creased grid refinement slightly lowers the load required to yield the
reinforcement. Load~deflection curves for the 5x5 and 10x10 quadratic
element grids are essentially the same, indicating convergence. Gaps in

the quadratic element cracking patterns are also obtained (Fig. 3.27).
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Linear and guadratic element load-deflection curves, compared
in Fig. 3.28, exhibit convergence Toward a commen solution, as obtained
for the slender and moderate beams. The linear element 15x15 grid solu-~
tion «closely paraliels the 10x10 grid sclution for the guadratic ele~
ment, The 10x10 guadratic element grid has 33% more nodes than the
15x15 linear grid and becomes slightly more flexible between the 4 and &
kip/in load levels,

Load-~deflection curves and crack patterns for the concentrated
load case (Figs. 3.29 and 3.33-3.35) fellow the same general trends ob-
served for the distributed load case. The crack patterns (Figs. 3.34
and 3.35) exhibit regions of flexural cracks similar to those obtained
for the distributed locad case. Gaps in the cracking patterns are not
nearly as common as for the distributed load case. These figures also
reveal that complete "through depth" cracking occurs at a small percen-
tage of the load required to yield the reinforcement. Ewen after all
elements through the depth are cracked, the beam has considerable
strength remaining due to the shear capacity of the cracked concrete.
To insure that a fully converged solution had been obtained, a 20x20
grid analysis was performed using the linear element. As shown in
Fig. 3.29, the 15x15 and 20%20 grid load-deflection cuyxves are nearly
identical over the entire loading range.

Fig. 3.3%6 compares the linear and quadratic element Jload-
deflection curves for the concentrated load case. Differences in the
two curves develop between the 20 and 40 kip loading levels. Above the
80 kip load level the stiffnesses are very similar; the average slope of

the linear load-deflection curve is just =slightly larger than the
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gquadratic element curve slope. Moreover, the loads at which the rein-
forcement yields are identical. The displacement jumps between the 20
and 40 kip load levels for the quadratic element and between the 40 and
80 kip load levels for the linear element occur as the structural system
changes from a beam to a tied arch due to the very extensive shear
cracking. Section 3.5 demonstrates that the exact load at which the
shear cracking occurs is sensitive to the element type, grid refinement,
and load increment size. It is also shown that the four load increments
used here to reach the 80 kip load level are not sufficient for the
linear element to adequately predict the displacement shift due to the

transition.

- 3.4 Stiffness Characteristics of Cracked Elements

For the deep beam, the gquadratic element with reduced integra-
tion produces load-deflection curves that have oscillating, rather than

monotonic, convergence characteristics with dincreased grid refinement

(Fig. 3.30). This behavior was at first attributed solely to the
development of specific horizeontal cracks above the support, as
digcussed in Section 3.3.3. However, upon closer study, the basic

stiffness characteristics of quadratic elements containing smeared
cracks are also found to affect the response.

In the slender and moderate beam solutions, load-deflection
curves for the quadratic element with reduced integration exhibit
monotonically increasing stiffness with grid refinement, irrespective of
the load case and deflection measure. When the same problems are

analyzed with the fully integrated quadratic element, the load~-
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deflection curves show increased flexibility with grid refinement, as
expected for most finite element solutions. These observations raise
questions about the stiffness characteristics of quadratic elements con-
taining smeared cracks, particularly "shear" cracks, as cbserved in the
deep beam. This section presents the results of numerical tests devised
to study the stiffness characteristics of cracked disoparametric ele-

ments.

3.4.1 Elements With Parallel Cracks

To study the behavior of a cracked element in shear, a simple
test problem was devised, as illustrated in Fig. 3.37. The problem con-
sists of a square, unreinforced single element fixed at one end and
loaded in shear. The material comstitutive matrix at each integration
point represents a smeayed crack oriented at 45 degrees with the
horizontal. The normal stiffness reduction factor, o, is assigned a
value of zero. Table 3.3 lists the tip displacements computed for the
linear element, the quadratic element with reduced integration, and the
gquadratic element with full integraticn. Values aré normalized relative
to the deflection at node & of the linear elemeﬁt (Fig. 3.37). Both the
linear element and fully integrated quadratic element produce finite
displacement wvalues, as required £or a non-zero value of the shear
stiffness reduction factor, f. The guadratic element with reduced in-
tegration, however, produces extremely large displacements, indicative
of a singular stiffness matrix. The fully integrated quadratic element,
while not singular, is noticeably more flexible than the linear element.

The large difference between top and bottom node deflection for the
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guadratic element clearly demonstrates the additional freedom of defor-
mation introduced by the mid-side node.

To further explore the singularity that occurred with reduced
integration, an eigenvalue analysis was performed on the stiffness
matrix for the elements of the test problem. Eigenvalues of a stiffness
matrix are proportional to the strain energy génerated when an element
is deformed in the shape of the corresponding eigenvector. Rigid body
motion {(two translations and a rotation for these 2-D elements)
generates no strain energy and thus is associated with a zero eigen-
value., Table 3.4 lists the number of zero and non-zero stiffness matrix
eigenvalues for the uncracked and cracked elements (all cracks at 45° as
shown in Fig. 3.37). The same number of zero eigenvalues is also ¢b-
tained for each case shown in the table for a rectangular element (2:1
aspect ratio). The uncracked linear and fully integrated quadratic ele-
ments have the three required zero eigenvalues to represent rigid body
motion. The wuncracked quadratic element with reduced integration has
four zero eigenvalues, indicating the existence of an additional defor-
mation mode that causes no strain at the 2x2 Gauss point locations. The
additional "zero energy mode” was discovered soon after reduced integra-
tion came into widespread use. In most analyses, reduced integration
dramatically improves the element performance. A discussion of zero-
energy modes and reduced integration can be found in most recent finite
element texts {37).

Qf interest here is the number of additional zero epergy modes
that occur when all integration points are cracked at similar angles.

As shown in Table 3.4, the linear element in the test problem has one
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additional =zero eigenvalue for a total of four; the fully integrated
quadratic element has three additional zero eigenvalues for a total of
six. The redaced quadratic element, however, has four additional zero
eigenvalues for a total of eight. From this analysis, it is now clear
why tﬁe quadratic element with reduced integration fails in the simple
shear test problem. Removal of the constrained degrees of freedom (at
nodes 1-3) from the stiffness matrix of the quadratic element in
Fig. 3.37 leaves a 10210 set of eguations with a rank of eight, two less
than the pumber of equations. Constraints applied toe the boundarv nodes
eliminate only six of the zero energy modes. The shear loading ac-
tivates one, or a combination, of the two remaining zero energy modes
for the cracked element resulting irn an unstable structure. The con-
strained stiffness matrices for the linear and fully integrated

quadratic elements, however, possess sufficient rank to remain positive

definite and thus are stable.

3.4.2 Elements With Differing Crack Orientation

The particular case discussed zbove for an element containing
parallel cracks represents the most severe condition for element stiff-
ness degradation. In moét analyses, this condition rarely occurs due to
the 1load redistribution process. Cracks with wvarying orientations
generally form at the Gauss points. This should have the effect of in-
creasing the element stiffness relative to parallel crack configura~
tions. To study this effect, additional eigenvalue analyses were per-
formed. A randomly oriented smeared crack was imposed at each Gauss

point of an element. The element stiffness matrix was computed, and the
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eigenvalues extracted. Results of these computations ars summarized in
Table 3.5.

Both the linear element and the fully integrated quadratic
element have no zero energy deformation modes in excess of the three re-
quired for rigid body motion. The remaining non-zerc eigenvalues for
these elements are smaller in magﬁitude than those for the uncracked
elements. The quadratic element with reduced integration, however, has
eight zero energy modes irrespective of the c¢rack orientations.
Moreover, the formaztion of a crack at each Gauss point in this element
introduces a zero energy deformation mode, i.e., an element with one
cracked Gauss point has a total of five zero energy modes of deforma-
tion. The same number of zero energy modes was also obtained for each
case shown in Table 3.5 with a rectangular element {2:1 aspect ratio).

For the linear element, altering the orientation of just one
of four initially parallel cracks eliminates the single excess zero
energy mode. In a fully integrated gquadratic element, the three =zero
energy modes are eliminated by varving the orientation of just three (of

nine) initially pavallel cracks.

3.4.3 Effects of the Normal Stiffness Reduction Factoer

The normal stiffness reduction factoy, o, is often used
simply to aveid placing a zerc on the diagomal of the material constitu-
tive matrix. The exact role of a non-zero o in the solution process
has not been studied previously. It is generally known that small
values do not drastically alter the nodal displacements. The eigenvalue

analyses conducted as part of this study have defined the role of the
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stiffness reduction factor. It suppresses the formation of zero energy
deformation modes in cracked elements. Consider, for example, an ele-
ment with dimensions of 1xlxl. The zero eigenvalues in excess of the
three associated with rigid bedy motiecn become simply o times Young's
modulus, E.

The test problem in Fig. 3.37 was solved for m=10_3 and 10'5
to assess the seasitivity of the computed displacements to a range of «
values. Results for these two cases and for ¢=0 are listed in Table
3.6. The four node element results show little effect for this range of
o, with only a 4% displacement reduction occuring for the relatively
large o0 walue of 10_3. The quadratic element displacements show a much
larger effect for both full and reduced integration cases. The 50%
displacement reduction for the fully integrated element suggests that
amlows is too large. °

For the reduced integration case, any small positive value of
o is sufficient to render the stiffness matrix positive definite. The
computed displacements appear to vary inversely with the prescribed
value of o ; the artificial stiffmess normal to the crack provides the
primary load resisting mechanism. These numerical results suggest that

the use of a normal stiffness reduction factor is a questionable tech-

nigue and may in some instances disguise undesirable element behavior.
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3.4.4 Sdignificance of Stiffness Test Results

The test problem and eigenvalue analyses provide a basis to
explain the trends in load~deflection curves obtained using the
quadratic element. When the structure geometry and loading are such
that cracked elements must resist the applied loading, then the struc-
ture stiffpess degradation is unpredictable if the cracked elements have
zero energy modes. Zero energy modes in cracked elements that are not
required to resist the applied loads (due to redistribution among other
elements} do not appear to adversely affect the structure stiffness.

For beams analyzed with the linear and the fully integrated
quadratic elements, load-deflection curves show an increased flexibility
with grid refinement. This trend is observed in most finite element
analyses. A set of four cracks for the linear element, and seven cracks
for the quadratic element, with precisely the same orientation is re~
quired to dintroduce the first zero energy mode. Non-uniform strain
fields and the redistribution of loads among elements prevent this from
occurring.

The guadratic element with reduced integration exhibits two
different trends in the convergence of load-deflection curves with grid
refinement. Load-deflection curves for the slender beam indicate a
stiffness increase with grid refinement; for the deep beam, load-
deflection curves show a general flexibility increase with grid refine-
ment. The meoderate beam behavior lies between that for the slender and
deep beam; grid refinement at first increases the flexibility but

further refinement increases the stiffness.
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Results of the element stiffness study point to the formation
0f zero energy modes as the source of the different convergence trends.
Once a crack forms at a Gauss point, regardless of the crack orienta-
tion, an additional zero energy mode is obtained in the guadratic ele-
ment with reduced integration. The type of convergence observed in the
load-defliection curves depends directly on whether or not cracked ele-
nents provide the internal resisting forces. In the slender beam, for
example, the load transfer mechanism is bending, with the internal mo-
ment provided by compression in elements at the top surface and tension
in the reinforcement. The coarse grid has a single element through the
depth which is subjected to both tensiocn and compression. Tension
cracks along the bottom row of Gauss points (Fig. 3.11) introduce zero
energy modes that decrease the element stiffness in compression. As a
consequence, the load-deflection curve is more flexible and a2 much lower
yield load is predicted (Fig. 3.9). The intermediate and fine grids
have completely uncracked elements available near the top surface that
provide the compression force and shear transfer. These grids are
therefore stiffer than the coarse grid. Just above the yield load,
cracks develop in the top row of elements for the intermediate grid.
The top row of elements in the fine grid does mot crack after yielding.
The fine grid is therefore stiffer after the reinforcement yields. The
presence of fully cracked elements with zero energy modes along the bot~
tom surface in the fine and intermediate grids has no effect om the

load~deflection curves.
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In contrast to the slender beam, the primary lcad transfer
mechanism for the deep beam is shear, which must be resisted by the con-
crete. Virtually all elements develop shear cracks, including those
near the top surface, independent of the grid refinement. Only cracked
elements, uvsually with eight zero energy modes each (four Gauss points
cracked), are available to resist the shear force. Grid refinement

simply increases the flexibility for this case.

3.5 Effects of Load Increment Size on Load-Deflection Curves

The formation of c¢racks is generally considered to be a
loading path dependent phenomenon. Bazant and Cedolin (5) suggest that
the load increment size used in a finite element analysis significantly
affects the computed response. They adjust load increment sizes as the
solution progresses such that a single element (composed of 4 triangles)
cracks for each increment of external leoad. However, during iterations
to distribute residual loads, any number of additional cracks may form
as necessary to reach the equilibrium configuration.

There are two major problems with this solution method. The
first problem concerns the practicality of cracking a single Gauss point
{or element as the case may be) with each external load increment. When
considering grids of isoparametric elements, the number of sampling
points is generally large compared to grids of quadralateral elements
formed from triangles. In the 20x20 grid of linear elements, for ex-
ample, there are 1600 Gauss points at which a crack may form. An extra-
ordinarily large number of load increments is required to reach a fully

cracked state using this procedure, which may render the analysis



Results and Discussion 45

economically infeasible. Turthermore, most finite element codes do not
support automatic determination of load increment sizes based upon
projected stress increments. Load increment sizes are usually specified
directly by the analyst as a multiplier applied to a loading pattern.

The second problem with the procedure followed by Bazant and
Cedolin is the inconsistency between allowing formation of only one
crack for an external load increment and permitting any number of cracks
te form during an eguilibrium iteration at fixed external load. A more
consistent approach is to successively scale the residual load vector to
permit the formation of only one crack per iteration. Chen (9) has
adopted this seclution strategy for relatively coarse grids of constant
strain triangle elements. However, with the large pumber of sampling
points in isoparametric element grids, this solution strategy may not be
feasible..

To gain some insight intc the sensitivity of load-deflection
curves to load increment size, the deep beam (shear panel) with the con-
centrated load at mid-span was subjected to additiomal study. A 1515
grid of linear elements was used for the load increment size study.
Cracking patterns for the lcad increment sizes used to generate the
load-deflection curves in Fig. 3.29 revealed that essentially all cracks
formed below the 80 kip load level. The effects of load increment size
on crack formation could therefore be determined by considering the lcad
level from first cracking (24 kips) through 80 kips. The loading range
was divided into 8, 15, 29, and 83 egual size load steps. This con-
trasts to four steps used to reach the B0 kip load level for this grid

in prior analyses (Fig. 3.29). For the 83 load steps, only one or two
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Gauss points cracked in the first iteration of each step (which cor-
responds to the application of the external load increment). The solu-
tion procedure thus became that recommended by Bazant and Cedolin. As a
firal check, the 20x20 linear element grid was also analyzed using 83
load steps to detect any combined load step-grid size effects.

Fig. 3.38 shows lcad~deflection curves generated for the
varying numbers of load steps with the 15x15 grid. For 8 or more load
steps, the response up to the 80 kip 1load 1level consists of four
distinct regions: (1) linear elastic below 24 kips, (2) flexural
cracking below approximately 0.006 in. of deflection, {3) a tramsition
region in which the structural behavior changes from a beam to -a tied
arch, as indicated by the displacement jump, and (4) additional minor
shear cracking once the tied arch configuration is attained. TFig. 3.39
compares the 15x15 and 20x20 grid load~deflection curves that were
generated wusing 83 load steps. The two curves are identical with the
exception of the beam to tied arch transition, which occurs at different
lcad levels. The cracking patterns for the 153x15 grid (Fig. 3.40)
clearly illustrate the transition behavier, For the first 50 Jload
steps, primarily flexure cracks formed below a diagonal line connecting
the simple support and the load point at mid-span. During load step 51
(P=49 kips), extensive  diagonal shear cracks formed during the
equilibrium iterations, although only one Gauss point cracked im the
first iteration of the load step. The development of extensive diagonal
shear cracks characterizes the transition in structural behavior from a
beam to a tied arch. The tied arch has only about 65% of the stiffness

of the beam. These cracking patterns also reveal more distinct gaps
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than those generated with the larger load increments (Fig. 3.34). A
large load increment in the early stages of loading may cause the
stresses to be overestimated and thus lead to excessive cracking.

The curves in Figs. 3.38 and 3.39 demonstrate the sensitivity
0of the beam to tied arch transition to both locad step size and grid
refinement. For the 15x15 grid, the use of smaller load steps increases
the load at which the transition initiates. Increasing the grid refine-
ment lowers it. The slope of the load-displacement curve for the 20x20
grid during the transitiom is verv nearly zero, which indicates an
unstable structure. This behavior is aznalapgous to smap-through buckiing
in shells when driven by applied loads rather than applied displace-
ments. The “snap~through'" behavicr observed for the deep beam transi-
tion occurs when, for a very small load increase, the level of cracking
rapidly increases until the stable tied arch configuration is attained.
This clearly indicates that the transition behavior in the deep beam is
fractufe sensitive. Fracture mechanics technigques are required to

predict accurately the transition response, if this is the purpose of

the analysis.

These results demonstrate equally as well that the macroscopic
stiffness and strength of the structure are insensitive to the load step
sizes used in the finite element computations. This is expected since
structural behavior before the transition {(a beam) and after {(a tied
arch) is not dependent upon the load that initiates the transition, but
rather the current extent of the cracking. The exact load to initiate
the transition plays a minor role im the response of this particular

member. The transition behavior deoes not affect the stiffness of the
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tied arch configuration or the load necessary to vyield the reinforce~
ment. It does, however, produce the load-deflection curve jump observed
in Figs. 3.38 and 3.39. The magnitude of the displacement jump is
nearly identical for the range of load steps considered (8 to 83). The
load-deflection curves agree very well after the transition, both in
slope and absolute position. The four lcad steps used to reach the 80
kip load level in earlier analyses {Figs. 3.33 and 3.36) are clearly
inadequate to sense the displacement shift during the transition. This
example emphasizes the importance of proper load dincrement selection.
The nonlinear analysis of reinforced concrete structures must consider
different combinations of grid refinement and load increment size.

In other types of structures, for which there is not an alter~
native equilibrivm configuration, the transition lcad may indeed con-
stitote the "failure" load. Unreinforced structures and certain struc-
tures with very low reinforcement ratios would be included in this
category. A fracture mechanics based analysis may then be necessary to
accurately predict the transition load. The stress controlled-smeared
crack model and the solution algorithms employed in this study will
predict an unstable structure if another eguilibrium configuration does
not exist. The stress controlled model thus serves as a good indicater
of dits own adequacy, and will indicate when a fracture mechanics
analyses is required.

The effect of element type is illustrated in Figs. 3.4la and
b, which compare the load-deflection curves for the 10%210 grid of eight
node elements with the 15x15 grid of four node elements for 4, 8 and 29

load increments. While both models attain stable configurations fol-
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lowing the beam to tied arch tranmsition, it is clear that the models
differ in both the stiffness following the transition and the transition
load itself. The 10x10 grid of quadratic elements remains more flexible
than the 15%15 grid of limear elements (see also Fig. 3.36). This dif-
ference may be traced to the lower stiffness exhibited by the cracked,
fully integrated eight node element, observed in Section 3.4. These
results suggest that the effects of element type remain an open gquestion

and require additional study.

3.6 Effects of Concrete Tensile Strength

The deep beam was selected to study the effect of concrete
tensile strength on response. Diagonal tension stresses in "shear
panels” of this type usually cause large areas to crack and may lead to
a considerable loss of stiffness. The effect of concrete tensile
strength should be more pronounced for such a structure than for a
slender beam which 1is controlled by flexure. Of the problems con~
sidered, the deep beam with the concentrated load at mid-span provides
the most severe diagonal tensien.

Load~deflection curves cbtained in Section 3.5 for a tensile
strength of 400 psi represent an upper bound solution. To obtain a
lower bound seolution, the 15x15 linear element grid was analyzed using a
tensile strength of 10 psi. Load~deflection curves for the 400 and 10
psi tensile strengths are given in Fig. 3.42. The tepsile strength
directly controls the load at which initial cracking occurs. The crack
patterns that are obtained with a 10 psi tensile strength closely

resemble those in Fig. 3.40, only they occur at 1/40 of the load. These
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results clearly demonstrate the negligible influence eof fé on the

overall response.

3.7 Concluding Remarks

This chapter presents the results of a large number of.
numerical studies designed to evaluate the response characteristics of a
‘limiting tensile strength-smeared crack model for nonlinear analyses of
reinforced concrete structures. Questions raised by recent investiga-
tions concerning this modeling approach have been addressed. The

specific concerns include:

1} Do load-deflection curves converge with grid refinement? If yes,
in what manner, and what governs the type of convergence?
2} Are numerical or response problems introduced when the tensile
stress is immediately reduced to zero upon crack formation?
3) What is the impact of load increment size on the response, i.e.,
how path dependent is the response?
4) What are the effects of concrete tensile strength on response?
Each of these questions was studied from the viéwpoint of the
macroscopic response, as measured by the overall load~deflection curves
and ¢racking patterns. It must be emphasized that for the types of
problems considered in this study, the flexure reinforcement enabled the
members to reach stable equilibrium configurations ~ following extensive
crack formation. Consequently, the "limit" strength of each structure
was only partially determined by the degree of cracking. A stable

eguilibrium configuration, either a beam or tied arch, was attained for
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each member, even after very significant cracking occurred, Large
changes in structural stiffness due to the softening effect of cracking
were generally limited te early portions of the load deflection-curves
(up to one-haif the load to yield the reinforcement).

This study indicates that load-deflection curves do exhibit
convergence toward a common solution with grid refinement. The rate of
convergence depends on the geometry, type of loading, and element type.
The shear dominated deep beam solutions converge more slowly and require
finer grids thaun do those for the flexure controlled members. The
linear and fully dintegrated gquadratic element load-deflection curves
show monotonically increased flexibility with grid refinement, very
similar to the response obtaimned in ordinary linear analyses. Conver-
gence characteristics of 1load-deflection curves generated using
quadratic elements with reduced ihtegration are problem dependent and
vary based on whether or not cracked elements must resist the applied
load. These elements contain one additional zero energy deformation
mode for each cracked Gauss point, which may considerably increase the
structure flexibility unless adjacent elements suppress the zero energy
modes. In the coarse grids (1 element through depth) for flexure
dominated problems, cracked elements must resist the shear and compres-
sive forces. Adjacent elements are not available to suppress the zero
energy modes. Consequently, grid refinement leads to increased stiff-
ness as uncracked elements above the mid-depth become available to
resist the load. TFor the deep beam problem, cracking occurs completely
through the depth for all grids, thus requiring that the cracked ele-

ments resist the load. Grid refinement simply increases the flexibility
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for this case. The linear and fully integrated guadratic elements do
not develop zero energy modes, except when all Gauss points within an
element crack at precisely the same orientation.

1t has been suggested that immediately vreducing the tensile
stress to zero upon crack formation may lead to solution instability as
grids are refined. ©No such difficulties are experienced in analyzing
the beam and shear panel structures considered in this study. TFrom a
qualitative viewpoint, it may be argued that the impact of crack forma-
tion at a Gauss point is determined by the cracked element size and the
sizes of the adjacent elements. The residual load magnitude imposed on
adjacent elements is governed by the cracked element size; the influence
of the residual load applied te the nodes of adjacent elements depends
upen their size--~ larger elements are influenced less. In this study,
element grids are uniformly refined, which probably minimizes any ef-
fects of this type.

Below a certain magnitude, load increment size 1s found to
have no influenice on the overall stiffness and strength predictions for
the deep heam considered. The lcad increment size does affect the load
at which the beam to tied arch transition occurs for this type of
member. Fracture mechanics based analyses are recommended when accurate
pradiction of the transition load is the goal of the analysis. TFor the
deep beam studied, the tramsitiom behavior is a very minor aspect of the
overall structural response. The transition load comstitutes only
10-15% of the load required to yield the reinforcement. The load incre-
ment study also shows that a reasonable number of load steps is required

to predict the displacement jump that occurs during the transition.
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Anazlyses with a range of load increment sizes may be necessary if a
major transition is structural behavior is suspected.

The concrete tensile strength controls the initial cracking
load and the rate at which cracking penetrates through the depth.
Neither of these responses appears to have a significant impact on the
overall Jload-deflection curve. Once a stable, fully cracked cenfigura-

tion is attained, the response is independent of the tensile strength.
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CHAPTER 4

SUMMARY AND CONCLUSTIONS

4.1 Summary

A parametric study has been conduacted to examine the influence
of finite element modeling parameters on the predicted nonlinear
response of reinforced concrete members. Nonlinear effects were limited
to cracking of the concrete and yielding of the reinforcement. The in-
vestigation focused on the sensitivity of macroscopic response to the
finite element modeling parameters. In this study, macfoscopic response
was characterized by load-deflecticn curves and general trends in the
cracking patterns.

Three classes of problems were considered in the study;
namely, 1} long, shallow beams with flexure dominated response,
2) moderate length beams influenced by both flexure ‘and shear, and
3) deep beams (shear panels) in which shear dominated the response.
Span-to-depth ratios of 12:1, 5:1, and 2:1 were selected for analysis to
represent the three problem classes. The beams were singly reinforced
and simply supported. Each beam was analyzed for a uniformly
distributed load applied across the top surface and for 2 concentrated
load applied at mid-span.

The finite element modeling parameters studied were: the ele-
ment type (order of displacement approximation}, the element grid
refinement, the order of Gauss numerical integration, the concrete ten-

sile strength, fé, and the load increment size.
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The concrete was modeled as a linear material in compression.
Cracks were dintroduced in the finite element grid using a "smeared"
representation that simulates a crack by a stress discontinuity within
the continuous strain field of an element. Cracks were formed when the
principal tensile stress exceeded a limiting wvalue for the material.
The tensile stress was immediately reduced to zero upon crack formation.

Flexural reinforcement was modeled using constant strain,
discrete bar elements. The stress-strain curve for the reinforcement
followed a simple bilinear, strain hardening approximation.

Concrete portions of the beams were modeled with four node,
lineay displacement and eight node, quadratic displacement isoparametric
elements. The nonlinear response was computed incrementally using the
Newton-Raphson procedure with corrective equilibrium iterations. The
structural tangent stiffness was recomputed before each iteration to as-
sure accurate distribution of the residual loads and to maximize the

convergence rate.

4.2 Conclusions

Results of the finite element parametric study presented in

this report support the fellowing conclusions.

1. Load-deflection curves for the reinforced concrete members con-
sidered in this study exhibit general convergence toward a com-
mon solution with increased grid refinement. Flexure controlled

members converge more rapidly than do shear controlied members.
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The type of convergence, whether from the stiff or the flexible
side, depends on the geometry, loading, element type, and
numerical integration order (for the quadratic element).

For the member geometries apnd load cases considered, changes in
structural stiffness due to cracking are generally complete at
loads less than one-half the load required to vyield the rein-
forcement. Fach member reaches a stable, cracked configuration
early in the loading process and experiences only minor crack
development wunder additional loading. WNo difficulties were ex-
perienced in continuing the analysis beyond vielding of the
reinforcement.

Detailed analyses for a flexure reinforced deep beam show that
below a certain magnitude, the load increment size does not af-
fect the macroscopic stiffness or strength {yield load) predic-
tions. For a specific grid refinement, the load increment size
does influence the load at which the +transition in structural
behavior from a beam to a tied arch occurs, With the use of
large load increments, the analysis may not detect the existence
of such a transzition.

Concrete tensile strength has only 2 minor effect on the overall
load-deflection curve for the flexure reinforced deep beam. The
tensile strength controls the initial c¢racking load and the
loading at which the stable cracked configuration is attained.
Cracking patterns for the slender and moderate beams are sensi-
tive to the element type and grid refinement. Coarse grids of

linear elements exhibit alternating crack directions within each
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10.

element due to the poor shear stress representaticon. Even for
coarse grids, the quadratic element, with its higher order
strain variatiom, produces more realistic crack patterns that do
not show large differences in crack angles within an element.
Crack patterns for the slender and deep beam fine grids show
partially and completely uncracked elements adjacent to fully
cracked elements. This behavior dis attributed to ‘stress
relief" of neighboring Gauss points that occurs when a point
cracks. Other investigators have referred to this phenomenon as
“strain localization”.

For the flexure reinforced deep beam studied, considerably finer
element grids {more elements through the depth) are required to
eliminate grid size effects in the response. A 15x15 grid of
linear elements is found to be adequate.

Eigenvalue analyses of cracked element stiffness matrices reveal
that the linear and the fully integrated quadratic elements have
one and three additional zero energy modes, respectively, when
all Gauss points are cracked and the cracks are parallel. A
similarly cracked quadratic element with reduced integration has
four additional =zero energy modes. Thus, eight of the sixteen
deformation modes produce no strain at the 2x2 Gauss points.
Further, eigenvalue analysis studies show that the four node
element and the fully integrated quadratic element develop no
spurious zero energy modes when cracks at the Gauss points have
slightly different orientations, as occurs in most analyses.

The quadratic element with reduced integration has an additional
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12.

13.

14,

Summaxy and Cenclusions

spurious zero energy mode for each cracked Gauss point, regard-
less of the crack orientation.

The development of =zero energy deformation modes in  the
quadratic element with reduced integration causes unpredictable
response when cracked elements are required to resist the ap-
plied load (e.g. for a coarse mesh in flexure problems and in
all grids for a deep beam or shear panel).

Because ¢f response variations with the reduced gquadratic ele-
ment, it is not recommended for gemeral use. The linear element
and the fully (3x%3) integrated quadratic element are both recom-
mended for general use. Load-deflection curves exhibiting
monotonic convergence from the stiff side with grid refinement
can be expected.

The stress controlled-smeared crack modeling scheme is suitable
for macroscopic strength and deformation analyses of members in
which the "limit" strength is not governed solely by cracking.
Clearly, unreinforced and very lightly reinforced members re-
quire analysis using fracture mechanics procedures.

The stress controlled-smeared c¢rack representation adeguately
models the general softening effect that results from cracking
in common reinforced concrete members. Such members invariably
achieve stable equilibrium configurations following extensive
crack formation when load is transferred to the reinforcement.
The failure of the solution procedure adepted in this study to
reach the stable cracked configuration would strongly indicate

the need for a fracture mechanics investigation.
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4.3 Recommendations for Further Study

A number of areas remain to be examined for the analytical

prediction of cracking behavior in reinforced concrete structures.

These are briefly outiined below.

1.

The effect of tension stiffening, i.e., the gradual decrease of
stress to zero after cracking, was not comsidered. Various
schemes have been proposed to represent the descending branch of
the tensile stress strain curve but few, if any, studies have
been conducted to determine the interaction with grid refine-
ment.

All beams in this study had a reinforcing ratio of 1.5%, which
approaches the upper bound permitted in design codes. The ef-
fect of lower reinforcement ratics, perhaps the minimum allowed,
should be examined.

None of the beams analyzed had stirrups for shear reinforcement.
It is not clear what affect various amounts of shear reinforce-
ment would have on the convegence properties of the solutien.
Shear reinforcement would contribute significantly to the
response of the deep beam {shear panel).

A simple nonlinear model for biaxial compression incorporated in
the finite element model would permit meaningful comparisons
with experimental data., It would alsc enable investigation of
the descending branch of the overall load-deflection curve,

e.g., stability behavier.
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The uge of a "smeared" representation for the reinforcing steel
should be considered. The discrete bar element approach, while
guite simple, restricts reinforcement to the interelement boun-
daries.

The difference in stiffness between a fully cracked, four gaode
element and a fully cracked, eight node element requires further
study. The use of a nine node, Lagrangian element should also
be examined to assess an§ effects due to the non-uniform shear

strain variation that occurs over the eight node element.
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Tabie 3.1
BEAM DIMENSIONS
Span-to-Depth Length#* Depth*® [ Thickness®

Beam®# Ratio {in.) (inm.) (in.}
Slender 12:1 180 15 7
Hoderate 5:1 75 15 7

Deep 2:1 30 15 7

*1 in. = 2,54 cm

#*%A1] beams have L.5% reinforcement (1.6 sqg. in.)

Table 3.2

MATERIAL PROPERTIES

Property Symbol Assumed Value

STEEL

Young 's Modulus ES 29,000 ksi (200 GPa)

Strain Hardening Modulug r 0.05E_ = 1,450 ksi (10 GPa)

Yield Stress Gy 60 ksi (414 MPa)
CONCRETE

Young's Modulus E. 3,600 ksi (24.8 GPa)

Cracking Stress Gcr 400 psi (2.76 MPa)

Poisson's Ratio v 0.2

Shear Modulus 8 0.4

Reduction Factor
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Table 3.3

CRACKED SHEAR PANEL STIFFNESS TEST

Normalized Tip Deflection
Element Top Middle Bottom
4 Node 1.0 - 2.47
8 Node (3x3) 1.35 2.03 7.72
8 Node (2x2) >10%% 1 >1010 | >10!0
Table 3.4

ELEMENT STIFFNESS ELIGENVALUE ANALYSIS (All Parallel Cracks)

Integration | Total Numgzzoof N§§§f§e;§ Coizziazied
Ordex bo¥ Eigenvalues | Higenvalues %Fiffness
Fig. 3.37

Linear, Uncracked 2x 2 8 3 3 &
Linear, Cracked Z2x 2 8 4 4 &
Quadratic, Uncracked 3x3 16 3 13 10
Quadratic, Cracked 3x 3 16 6 16 190
Quadratic, Uncracked 2x 2 16 4 i2 10
Quadratic, Cracked 2 x 2 16 8 8 8




ELEMENT STIFFNESS EIGENVALUE ANALYSIS

Table 3.5

(Randomly Oriented Cracks)

67

Element Integrated Total Number of Zero

Ordex DOF Eigenvalues
Linear, Uncracked 2% 2 8 3
Linear, Cracked 2x 2 8 3
Quadratie, Uncracked 3 x 3 16 3
Quadratic, Cracked 3x 3 16 3
Quadratic, Uncracked 2 x 2 16 4
Quadratic, Cracked 2x 2 16 8

Table 3.6

EFFECTS OF NORMAL STIFFNESS REDUCTION FACTOR

Normalized Tip Deflection (See Fig. 3.33)

« =0 o =10"" o =10
Top Bottom Top Bottom Top Bottom
4 Node 1.0 2.47 1.0 2.47 0.976 2.37
8 Node (3x3) 1.35 7.72 1.34 7.63 0.85 3.72
8 Node (2x2) >10t° >10t° 310 1301 3.26 13.18
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Fig. 1.3 - Discrete Crack Representation with Spring Elements
to Model Aggregate Interlock, Ngo, Scordelis, and
Frankiin (26).
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Fig. 1.4 - Discrete Crack Representation at Intericr and
Exterior Grid Points, Nilson (24).
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Fig. 3.1 - Uniaxial Stress-Strain Curve for Reinforcing Steel.
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Crack Contours:
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Fig. 3.10 - Crack Patterns for Slender Beam, Concentrated Load, Linear Elements.
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3.0
Element Type Comparison For
i Distributed Load — Fine Meshes
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Fig. 3.17 - Comparison of Load-Deflection Curves for Moderate Beam,
Distributed Load, Linear Elements and Quadratic Elements

with Reduced Integration.
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Fig. 3.18 - Load-Deflecticn Curves for Moderate Beam, Concentrated
Load, Linear Elements.
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Fig. 3.19 - Load-Deflection Curves for Moderate Beam, Concentrated
Load, Quadratic Elements (Reduced Integration).
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Fig. 3.22 ~ Comparison of Load-Deflection Curves for the Moderate Beam,
Concentrated Load, Linear Elements and Quadratic Elements

with Reduced Integration.
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Fig. 3.23 -~ Load-Deflection
Linear Elements

Curves for Deep Beam, Distributed Load,
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8 Node Elements — Distributed Load
2x2 integration Order
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Fig. 3.24 - Load-Deflection Curves for the Deep Beam, Distributed

Load, Quadratic Elements (Reduced Integration).
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Fig. 3.25 - Load-Deflection Curves for the Deep Beam, Distributed
Load, Quadratic Elements (Full Integration).
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Element Type Comparisen For
Distributed Load
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Fig. 3.28 - Comparison of Load-Deflection Curves for the Deep Beam,
Distributed Load, Linear Elements and Quadratic Elements
With Full Integration .
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4 Node Elements —~ Point Load
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Fig. 3.29 -~ Load~Deflection Curves for the Deep Beam, Concentrated
Load, Linear Elements.
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I 8 Node Elements -~ Point Load
2X2 Integration Order
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Fig. 3.30 - Load-Deflection Curves for the Deep Beam, Concentrated Load,
Quadratic Elements (Reduced Integration).
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Fig. 3.32 - Load-Deflection Curves for the Deep Ream, Concentrated
Load, Quadratic Elements with Reduced Integration,
Mid~Span Only Deflection.
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Fig. 3.33 - Load-Deflection Curves for the Deep Beam, Concentrated
Load, Quadratic Elements, (Full Integration).
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Note: Cracking Patterns for P = 160k
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Fig. 3.35 - Crack Patterns for Deep Beam, Concentrated Load, Quadratic Elements (Full Integration).



320

280

240

200

Load, kips
»
O

120

80

40

109

Element Type Comparison
For Point Load
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Fig. 3.36 - Comparison of Load-Deflection Curves for Deep Beam,

Concentrated Load, Linear Elementsand Quadratic Elements
with Full Integration.
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(a) Linear, Four Node Element (2x2 Integration)
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{c} Quadratic Element (2x? Integration)

Fig, 3.37 - Test Problem for Determination of Cracked Element
Stiffness Characteristics,
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Fig. 3.38 - Effect of Load Increment Size on Lead-Deflection Curves.
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Fig. 3.39 - Effect of Load Increment Size and Grid Refinement on
Load~Deflection Curves.
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Fig. 3.4la - Effect of Load Increment Size and Element Type on

Load-Deflection Curves.
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Fig. 3.41b ~ Effect of Load Increment Size and Element Type,
Continued.
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o Effect of Concrete Tensile Strength
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Fig. 3.42 - Effect of Concrete Tensile Strength on Load-Deflection
Curves.



Notation

{de}

{do}

G

G
c

{IF}, {IF}

{ap}

{au}

APPENDIX A

NOTATION

matrix relating strains at a point to

nodal displacements

differential strain vector
in material coordinates: dsl, dsz, dy12

in local (element) coordinates: dg_, de_, dy
X ¥ xy

differential stress vector

in material coordinates: dGl, do d

20 “T1p
in local (element) coordinates: dox, de, dz

incremental {tangent) constitutive matrix
Young's modulus

concrete tensile strength

shear modulus

energy release rate

critical energy release rate

vector of nodal forces required to maintain an

element or structure in its deformed configuration
tangent structure stiffness matrix

total nodal load wvector

residual nodal load vector

total nodal displacements

normal stiffness reduction factor

shear stiffness reduction facter

vector of incremental nmodal loads

vector of incremental nodal displacements
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118 Notation

{e} vector of strains at a paint
in material coordinates: €ys €35 Yip
in local {(element} coordinates: & , £ , ¥
£ ¥ £y
v Poisson's ratio
{o} vector of stresses at a point

in material coordinates: O
17 920 Typ

in local (element) coordinates: ¢_, g, T
X ¥ By





