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CHAPTER 1 

INTRODUCTION 

1.1 General 

The finite element method has been widely adopted for 

predicting the response of structures loaded into the nonlinear region. 

Successful application of this analysis tool requires the synthesis of 

element types, material constitutive relationships, and solution methods 

into a modeling scheme that incorporates the important nonlinear ef-

fects occurring in the actual structure. Structural analysts must also 

balance the level of modeling detail with the computational effort .re­

quired for numerical solution. Overly detailed models, while capable of 

accurately predicting nonlinear response, may be too expensive to imple­

ment. 

Reinforced concrete structures pose unique modeling problems 

due to the number, type, and interaction of effects that contribute to 

nonlinear response. Analysis procedures for structures such as shear 

walls and beams must include nonlinearity arising from a number of 

sources. These are: 1) yielding and strain hardening of reinforce-

ment, 2) degeneration of bond between concrete and reinforcement, 

3) nonlinear response of concrete subjected to compression, and 

4) cracking of concrete in tension. 

The response of a reinforced concrete structure (or member) 

can be examined at either the microscopic or the macroscopic level. 

Microscopic analysis predicts the detailed stress distribution near 
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cracks, bond stresses, and the propagation of individual cracks under 

loading. A macroscopic analysis provides the strength and overall 

deformation characteristics of the structure expressed in terms of load-

deflection curves and generalized cracking patterns. Modeling 

procedures for the prediction of microscopic response may be unneces­

sarily complex for macroscopic analysis and may not be justified due to 

the large computational effort. A shear wall, for example, may develop 

hundreds of cracks under loading; the detailed consideration of each in­

dividual crack is clearly impractical and may be unnecessary for a 

strength and deformation analysis. In contrast, the propagation of a 

single crack in a large unreinforced concrete structure, such as a 

gravity dam, may have disasterous consequences. A microscopic analysis 

is both warranted and feasible for this type of structure, i.e., one for 

which the propagation of a single crack dominates the response. 

Recent microscopic response studies by Bazant and Cedolin 

(4,5) have raised a serious question regarding the general applicability 

of cracking models based on a simple limiting tensile stress criterion. 

Tensile panels containing a predefined crack (Mode I) were analyzed 

using a blunt band crack representation. The material stiffness normal 

to the crack plane and the shear stiffness were reduced to zero for ele-

ments within a one element wide crack band. The load required to 

propagate the predefined crack for plain concrete was shown to be 

strongly dependent on the refinement of the finite element grid when the 

limiting tensile strength criterion was used. Uniform refinement of the 

element grid produced a sharper crack tip and rapidly increased the com­

puted tensile stress in the element nearest to the crack tip. Predic-
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tion of crack extension using the computed tensile stress was thus shown 

to be highly dependent upon the finite element grid selected. However, 

the energy release rate, G, associated with extension of the blunt crack 

converged to a constant value with mesh refinement and was therefore 

recommended as a more appropriate parameter to govern crack extension. 

Similar computations for a reinforced panel predicted a constant energy 

release rate but only following the introduction of a bond slip model 

for the reinforcement traversing the crack plane. 

Extrapolated to the analysis of common reinforced concrete 

structures that develop numerous cracks, these microscopic studies imply 

that load-deflection curves generated using a limited tensile stress 

cracking criterion will not converge with increasing mesh refinement. 

For such structures, cracks are most commonly incorporated in element 

grids with either a "discrete" or a "smeared11 representation. The 

discrete crack model allows element edges to uncouple thereby in­

troducing a geometric discontinuity, with a strain concentration ahead 

of each crack tip. The magnitude of the computed strain (stress) con­

centration naturally depends on the degree of mesh refinement. In the 

limit of mesh refinement, the discrete crack representation and the 

blunt band crack representation are identical. The same sensitivity to 

mesh refinement exhibited by the blunt band model should also be ex­

pected with the discrete crack model. With the widely used "smeared" 

crack representation, simple pointwise stress discontinuities within 

elements simulate the loss of stiffness due to crack formation. Strain 

fields within the elements and displacements across element boundaries 

remain continuous, irrespective of grid refinement. For this reason, 
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the smeared representation may be considered a macroscopic damage model 

for cracked concrete. 

The smeared crack representation and limiting tensile stress 

criterion have been used extensively for the analysis of beams, plates, 

shells, shear walls, etc. Good correlations with experimental load­

deflection curves and crack patterns have been reported. This appears 

to contradict implications of the microscopic crack extension studies. 

The level of finite element mesh refinement used for beam, plate, and 

shell models was generally based on engineering judgement within the 

constraints of computer program capacity and funds available for the 

analysis. Bazant and Cedolin (4) suggest that the correct predictions 

of structural response in those studies were obtained by the fortuitous 

selection of element dimensions relative to the aggregate size and con­

crete tensile strength, and that more refined meshes would have 

predicted divergent load-deflection curves. Clearly, grid refinement 

has some effect on computed results as for all finite element analyses. 

Yet, it is not obvious how grid refinement affects the computed response 

when cracks are represented using the smeared model. 

In view of these questions and with the continued widespread 

use of smeared crack-tensile stress models, this study was conducted to 

investigate the effect of a number of finite element modeling 

parameters, including grid refinement, on the macroscopic, nonlinear 

response of reinforced concrete structures. 
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1.2 Previous Work 

This section provides a brief summary of the major approaches 

that are used to incorporate cracking in the finite element analysis of 

reinforced concrete. Cracking models must address two problems: 

1) material constitutive relationships that predict the formation and 

possibly propagation of a crack, and 2) representation within the ele­

ment mesh of the discontinuity introduced by the crack. Predictive 

methods for crack formation have traditionally been based on a limiting 

tensile stress or strain criterion and are collectively termed stress 

controlled models. More recently, procedures to predict the propagation 

of an existing crack have been developed following the principles of 

linear elastic fracture mechanics. 

Two methods are commonly employed to accommodate the crack in 

a finite element grid. In the first method, termed "discrete cracking", 

the boundaries between elements are permitted to separate, while 

preserving geometric continuity within the elements. In the second 

method, termed nsmeared cracking", element boundaries remain 

geometrically continuous during deformation, with cracks introduced by 

eliminating the material stiffness normal to the cracks at sampling 

points within elements. The smeared crack representation therefore does 

not introduce a direct geometric discontinuity in the mesh 

stress discontinuity. 

only a 

The following sections describe the use of smeared and 

discrete crack representations in conjunction with the stress controlled 

and fracture mechanics based constitutive models. More detailed discus-
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sions can be found in Ref. (33). 

1.2.1 Stress Controlled Models 

The first finite element model for reinforced concrete was 

developed by Ngo and Scordelis (25) to study local bond, concrete and 

steel stresses along predefined cracks in beams (Fig. 1.1). Two nodes 

were defined at each mesh point on element boundaries along the path of 

each crack. A crack was formed by allowing separation of the nodal 

points (Fig. 1.2). Ngo, Scordelis and Franklin (26) later used linkage 

elements along the cracks to simulate aggregate interlock (Fig. 1.3). 

Constant strain triangle elements were used to model the concrete in 

these early studies. 

Nilson (24) eliminated the necessity to predefine crack loca-

tions. An automated process was developed to introduce cracks between 

elements. When the average tensile stress at the interface of two adja­

cent elements exceeded the modulus of rupture, common nodes were discon­

nected, thus introducing a crack. This scheme, in effect, propagated 

the crack (either new or existing) by one element dimension and created 

some degree of strain (and thus stress) concentration at the crack tip. 

For elements at the exterior of the mesh, only common outside nodes were 

disconnected. For interior cracks all common nodes were separated 

(Fig. 1.4). 

Mufti, et al., (21,22) further improved the discrete cracking 

model by initially incorporating two separate nodes at each element con­

nection point. The nodes were connected with a linkage element having 

stiffness parallel and perpendicular to the crack. All possible crack 



Introduction 7 

locations were thus predefined. The stiffness of a linkage element per­

pendicular to the crack was gradually decreased to zero as the tensile 

stress exceeded the cracking strength. The linkage elements parallel to 

a crack were used to simulate aggre.gate interlock. Al-Hahaidi (1) con­

ducted a similar investigation but with two or four nodes connected by 

linkage elements at one point. The four nodes allowed cracking in two 

perpendicular directions (Fig. 1.5). 

Despite their apparent simplicity, the discrete cracking 

models have not been widely employed in analysis. Two major drawbacks 

have existed for this approach: 1) crack paths are constrained to fol­

low predefined element boundaries, and 2) the solution procedure may be 

inefficient. Each time a crack forms, a new node must be introduced to 

uncouple the nodal degrees of freedom. This changes the mesh topology 

and thus necessitates a regeneration of the structure stiffness and 

triangulation. Addition of nodal points to model numerous cracks also 

increases the bandwidth of the global stiffness matrix, thereby 

quadratically increasing solution time. Recently, some progress has 

been made in equation solving techniques that reduce these objections to 

discrete cracking (30). 

To help overcome early objections associated with the discrete 

crack model, Rashid (27) introduced the "smeared crack model", in which 

cracked concrete is represented as a linearly elastic, orthotropic 

material. When the principal tensile stress (or strain) at a material 

sampling point within an element exceeds the tensile strength, a crack 

is formed by reducing the modulus of elasticity to zero in the direction 

of the principal stress. The tensile stress carried prior to cracking 
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is then redistributed to surrounding elements. Subsequent stress 

changes are related to strain increments in the cracked coordinate 

system by the following constitutive matrix: 

0 0 0 

= 0 E 0 (1.1) 

0 0 0 

in which E is Young's modulus for concrete. a
1

, a
2

, £
1

, and e
2 

are the 

principal stresses and strains in the cracked coordinate system (direc-

tion 1 is perpendicular to the crack plane). The shear modulus is 

reduced to zero upon crack formation in this early model. 

Whereas the discrete crack model represents a single crack 

with fixed direction, determined by element orientation, the orthotropic 

constitutive relationship simulates many closely spaced (or smeared) 

cracks near the sampling point, oriented perpendicular to the principal 

tensile stress (Fig. 1.6). A consequence of incorporating the crack in 

this manner is that no real geometric discontinuity develops in the 

finite element grid as it does for the discrete crack representation. 

Strain fields within the finite elements remain continuous functions of 

the spatial coordinates. 

The smeared model was used successfully by several in-

vestigators (7,8,19,34). However, the absence of shear stiffness along 

the crack interface sometimes led to ill-conditioned stiffness matrices 

once large areas of the structure cracked (17,31). To eliminate these 

problems, later investigators (2,3,10,11,16,32) reinserted the shear 

modulus, G, with a reduction factor, ~ (assigned a value between zero 
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and one). In this case, the incremental, orthotropic constitutive 

matrix becomes: 

0 0 0 

= 0 E 0 ( 1. 2) 

0 0 ~G 

Retention of a non-zero shear modulus, G, effectively places springs 

parallel to the crack and simulates aggregate interlock and dowel ac-

tion. Fortunately, the particular choice of~ is not critical (16,17). 

A value of 0.4 is normally adopted. The inclusion of some shear stiff-

ness alleviates the stiffness ill-conditioning problems and improves the 

computed crack patterns. 

Eq. (1.1) and (1.2) predict subsequent stress changes once a 

crack forms. Techniques are also required to reduce the existing ten-

sile stress at crack formation. In the simplest of these, the tensile 

stress normal to the crack is immediately reduced to zero. In other 

methods, collectively termed "tension stiffening" (15,17,30,35), the 

tensile stress is gradually reduced to zero through a descending branch 

of the tensile stress-strain curve. Tension stiffening has improved 

both numerical stability of the solution process and comparisons with 

experimental results (15), but has not been universally adopted. 

The smeared crack model offers two major advantages compared 

with the discrete crack representation. First, no redefinition of the 

element mesh topology is required during analysis. Significant reduc-

tions in computational effort are therefore realized. Secondly, the 

smeared model eliminates the bias of predetermined crack orientations 
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inherent in most discrete representations. 

1.2.2 Fracture Mechanics Models 

Because concrete in tension responds in a brittle manner, con-

siderable effort has been made to derive constitutive models based on 

linear elastic fracture mechanics. These models predict the direction 

in which a crack propagates and the load increase required to extend the 

crack. Fracture mechanics models are applied as follows. With a known 

crack geometry, a finite element analysis is performed to determine the 

rate of energy release, G, that would occur for an increase in crack 

length. When the energy release rate exceeds a critical value, G , the 
c 

crack extends until G is again below the critical value, i.e., the 

structure reaches another equilibrium configuration for the same applied 

loading. During crack extension, the stresses in the previously un-

cracked material are redistributed to the reinforcement and to the con-

crete ahead of the crack. The major parameter in this process is the 

critical value of the energy release rate. G is assumed to be a 
c 

material property of concrete that is independent of the crack length, 

loading, structure dimensions, etc. 

Rostam and Bysckov (28), and Salah El-Din and El-Adawy Nassef 

(29) effectively combined the discrete crack representation with frac-

ture mechanics constitutive models to compute moment versus crack length 

relationships for singly reinforced beams. Crack propagation for these 

Mode I (tension) type problems was modeled by incrementally releasing 

constraints applied to nodes along the crack front. These studies used 

constant strain triangle elements, not singularity type elements, to 
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model the crack tip. Modeer (20) has also used the discrete crack ap­

proach with constant strain triangles, but with crack propagation con­

trolled by a crack opening displacement (COD) criterion. Both rein­

forced and unreinforced beams were considered with a stress controlled 

criterion to initiate cracks. These studies considered members con-

taining only one crack and did not attempt to accurately model the 

strain singularity ahead of the crack tip. More recently, Saouma (30) 

developed a procedure to follow the propagation of combined Mode I and 

Mode II (shear) cracks in beams and shear panels. An automated computer 

procedure tvas devised to construct new element meshes (containing spe­

cial singularity elements) each time one or more cracks extended. Crack 

propagation occurred when G reached a critical value, with the crack ex­

tending in the direction of maximum calculated G. Specialized solution 

algorithms were also developed to minimize the impact of new nodes and 

elements incorporated in the mesh. Saouma's work is notable as combined 

Mode I (tension) and Mode II (shear) cracks were allowed, without the 

necessity to predefine crack paths. 

A combination of the computationally more efficient smeared 

crack representation and a fracture mechanics constitutive model is 

presented by Bazant and Cedolin (4,5). A single crack is modeled by a 

one element wide "band" of quadrilaterals composed of constant strain 

triangles. When the energy release rate (computed using a scheme to ac­

count for reinforcement bond slip) exceeds the critical value, the ten­

sile and shear stiffness in the crack tip element is reduced to zero, 

thus affecting a crack extension equal to the dimension of one element. 

Bazant and Cedolin (4) showed that the computed energy release rate con-
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verges to a constant value with increasing mesh refinement, while cor­

responding stress estimates at the crack tip increase without bound. 

Therefore, they argue that the stress controlled constitutive model is 

not objective, since the degree of mesh refinement employed near the tip 

directly controls the predicted tensile stress. 

1.3 Objective and Scope 

This report examines the effects of finite element modeling 

parameters on the nonlinear strength and deformation response of rein­

forced concrete members due to cracking. Convergence properties of the 

macroscopic measures of response, including load-deflection curves and 

general cracking patterns, are of primary interest. Acceptable finite 

element models must generate convergent load-deflection curves for in­

creasing grid refinement. 

Nonlinearity is limited to cracking of the concrete and 

yielding of the reinforcement. Crack formation is governed by a 

limiting tensile stress criterion. A nsmeared 11 representation is used 

to incorporate cracks in the finite element mesh. Since the major em­

phasis of the study concerns nonlinearity due to cracking, the concrete 

is treated as a linear elastic material in compression. While this as­

sumption simplifies the parametric study of cracking, it precludes the 

comparison of computed solutions with experimental results. The rein­

forcement stress-strain curve is linear elastic with linear strain 

hardening after yield. Constant strain bar elements are used to model 

the reinforcement. 
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Finite element analyses are performed for slender, moderate, 

and deep beams, with respective span-to-depth ratios of 12 to 1) 5 to 

1, and 2 to 1. Each beam is analyzed for a uniformly distributed load 

and a midspan) concentrated load using a minimum of three variations in 

grid refinement. Both the four node (linear) and eight node (quadratic) 

isoparametric elements are employed to model concrete portions of the 

members. 

Additional analyses are conducted for the shear critical deep 

beam (2:1 aspect ratio) to assess the influence of concrete tensile 

strength and loading increment size on the solutions. Separate analyses 

of the deep beam are also performed to study the effect of numerical in­

tegration order for models constructed with the quadratic element. 
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CHAPTER 2 

NUMERICAL PROCEDURES 

2.1 General 

This chapter describes the major components of the analytical 

model and the solution procedures adopted in this study. Items 

specifically addressed include: 1) material constitutive relationships 

selected to model concrete and reinforcement, 2) finite element for­

mulations for modeling concrete and reinforcement, and 3) relevant 

aspects of the iterative process used to solve the resulting nonlinear 

equilibrium equations. The formulations and procedures described are 

incorporated in the POLO-FINITE (12,13,18) system, which was used to ob­

tain the numerical results presented in Chapter 3. 

2.2 Nonlinear Material Models 

2.2.1 Concrete 

Cracking under tensile stress is the only nonlinear behavior 

of concrete modeled. A '1crack" is formed when the computed tensile 

stress exceeds the tensile strength, f~. Cracks are incorporated in the 

finite element mesh using the smeared representation. Concrete is as­

sumed to respond linearly for all levels of compressive stress. 

Prior to cracking, concrete is modeled as a linearly elastic, 

isotropic material in a state of plane stress. The incremental stress­

strain relationship prior to any cracking is: 
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l v 0 
E 

= v 
1 

2 
- v 

(2. 1) 1 0 

0 0 (1 - v)/2 

Initially, all stress-strain sampling points are assumed to be 

uncracked. At each loading stage, strain increments are converted to 

elastic stress increments using Eq. (2.1). The accumulated total 

stresses are rotated to principal axes, and the maximum tensile stress 

is compared to the tensile strength of the concrete. If the computed 

stress exceeds the tensile strength, a crack is introduced by setting 

the total stress to zero in the corresponding direction. Concrete at 

the point is thereafter modeled as an elastic, orthotropic material with 

material directions fixed parallel and normal to the crack. The in-

cremental stress-strain relationship becomes: 

aE 0 0 

0 E 0 (2. 2) 

0 0 iJG 

in which subscripts 1 and 2 refer to material axes (direction 1 is nor-

mal to the first crack). The shear modulus, G, = 0.5E/(1+v). All sub-

sequent stress computations are performed by transforming strain incre-

ments to the 1-2 material directions and then applying Eq. (2.2). The 

resultant stress increments are added to previous stresses in the 1-2 

system, followed by a rotation of the new total stresses to the global 

coordinate axes. The normal stiffness reduction factor, a, is a 

numerical device that may improve the stability of the equilibrium equa-
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tions by retaining a very small stiffness normal to the crack. Unless 

otherwise noted, a zero value for a is employed in this study. When 

-3 -6 
used, typical values of a range from 10 to 10 . Retention of a non-

zero shear stress-strain term in Eq. (2.2) simulates aggregate interlock 

by allowing the concrete to develop additional shear stress along the 

crack. A constant value of 0.4 for the shear stiffness reduction fac-

tor, ~' is used in this study. No attempt is made to gradually reduce 

~ with increasing crack width. No provisions are included to model 

crack closure. 

Eq. (2.2) implies that no Poisson effect exists between stress 

increments in the 1-2 material directions once a crack forms. However, 

at the instant of crack formation, the stress a
2 

parallel to the crack 

contains a Poisson coupling term with direction 1 due to the isotropic 

constitutive relationship in effect prior to cracking. The loss of 

Poisson coupling at the instant of cracking lets the concrete urebound 11 

along direction 2. 2 Stress a
2 

changes by the amount -ve
1
E/(l-v ). This 

effect may be included or neglected in the cracking material model. 

When included, a
2 

becomes simply Ee
2 

immediately after cracking. A 

number of preliminary analyses were conducted to determine the effects 

of Poisson coupling. Computed load-deflection curves and general crack 

patterns with and without 11 reboundu showed no detectable differences. 

This result might be anticipated considering the very small value of e
1 

when the tensile stress exceeds f~. The 11 rebound 11 effect was neglected 

in this study. 
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If the total stress a
2 

exceeds the tensile strength of the 

concrete, a second crack is introduced perpendicular to the first crack. 

When two cracks are present, the incremental stress-strain relation 

becomes: 

aE 0 0 

0 CIE 0 (2.3) 

0 0 ~G 

The ability to transfer shear along both cracks is retained through the 

~ factor. Formation of a second crack is generally associated with cy-

clically applied loads, although it is theoretically possible for a 

second crack to form under monotonic loading if sufficient load 

redistribution occurs. 

2.2.2 Reinforcement 

The reinforcement is modeled as a material in a state of 

uniaxial stress. A simple bilinear stress-strain law is used (described 

in Ch. 3). 

2.3 Finite Elements 

2.3.1 Bar Elements for Reinforcement 

Two techniques are commonly employed to model the reinforce-

ment. In the first method, a "smeared 11 composite material matrix is 

generated by adding the constitutive matrix for the reinforcement to 
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that of the concrete in volumetric proportions. A single, 2-D finite 

element may then model both the concrete and the reinforcement. This 

approach is particularly convenient when the reinforcement is not paral­

lel to the element edges. 

In the second approach, termed the 11 discrete" model, separate 

finite elements are utilized for the concrete and the reinforcement. 

Simple constant strain bar elements are adequate to represent the rein-

forcement. These elements have two nodes, each with a single axial 

degree of freedom (Fig. 2.1). The discrete reinforcement model is 

adopted in this study due to its simplicity and availability in the com­

puter code. 

2.3.2 Isoparametric Elements 

Numerically integrated finite elements, based on the 

isoparametric formulation, are used to represent the concrete. 

Isoparametric elements have several advantages compared to simple con­

stant strain triangular elements. Substantially more accurate solutions 

are obtained with fewer elements, thus reducing input and computational 

effort. Isoparametric elements generally distribute residual forces oc-

curring in nonlinear analysis over a larger portion of the model. This 

may reduce the number of corrective iterations required. The Gauss 

points in isoparametric elements have proven to be optimal locations for 

the calculation of strains and stresses. For 2-D linear analysis, Nayak 

(23) presents computational evidence indicating that a linear displace­

ment (4 node) isoparametric element is approximately equivalent to eight 

constant strain triangles. Similarly, the quadratic displacement (8 
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node) isoparametric element is approximately equivalent to sixteen 

triangular elements. 

Both the four node and eight node isoparametric elements (Fig. 

2.2 and 2.3) are used in this investigation. Complete details of the 

element formulation are given in Ref. (37). 

Isoparametric element stiffnesses are calculated using the 

standard Gauss numerical integration procedure. A four point (2x2) 

Gauss quadrature rule (Fig. 2.4) exactly integrates the four node ele­

ment stiffness in linear analysis. Both the four point and nine point 

(3x3, Fig. 2.5) integration rules are considered for the eight node ele­

ment. The four point rule comprises "reduced11 integration for the eight 

node element. Reduced integration saves considerable computational ef­

fort compared to the 3x3 rule and has heen extensively employed in non­

linear plasticity analyses (23). The 3x3 rule exactly integrates the 

eight node element stiffness in linear analysis. 

2.4 Solution Procedures 

When cracking of the concrete and yielding of the reinforce­

ment are considered, the finite element method produces a nonlinear set 

of equilibrium equations. However, the load path dependent nature of 

cracking precludes generation of the equation coefficients for an ar­

bitrarily specified load level. Therefore, structural response is com­

puted by applying the total load in a sequence of incremental load 

steps. Within each step, the nonlinear equilibrium equations are 

linearized using a tangent stiffness approach. These equations are 

solved to determine approximate increments of the nodal displacements. 
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Residual or 11Unbalanced 11 forces develop since the linearized displace­

ment increments do not satisfy the nonlinear equilibrium equations. The 

true equilibrium configuration at each load step is found by iteratively 

correcting the displacements with small changes arising from application 

of the residual forces~ The procedure continues until residual force 

components vanish within some prescribed tolerance. Although the solu­

tion method is incremental, the iterative process employed in this study 

considers total equilibrium conditions for the structure to compute 

residual forces. No errors accumulate from one step to the next with 

this solution method. 

Variations of this solution procedure, known as the Newton­

Raphson method, are widely used for nonlinear finite element analysis. 

Fig. 2.6 illustrates the basic process for a single degree of freedom 

system. With the Newton-Raphson method, the analyst has several options 

to control the solution process. In this investigation, the incremental 

(tangent) stiffness is updated before each load step and before each 

equilibrium iteration. Frequent updating of the tangent stiffness 

produces a more accurate distribution of residual forces, accelerates 

the convergence rate, and reduces the number of iterations required for 

a load step. Cedolin and dei Poli (6) studied the solution convergence 

rates for various modifications of the Newton-Raphson method applied to 

cracking problems. Stiffness updating before each iteration was found 

to yield the best convergence rate, and in some cases, the use of any 

other scheme resulted in a non-convergent or very slowly convergent 

solution. 
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The following outline summarizes the major computational 

phases necessary to analyze the structure for each load step. 

i) Compute the incremental equivalent nodal loads, [~}, cor­

responding to the increment of applied load defined for the step. Set 

the residual nodal loads equal to the applied 

[R} = [~}, for the first iteration of a load step. 

load increment, 

2) Update the total nodal loads applied to the structure through 

the current step, [PNEW} = [P01D} +[~},to reflect the new loading 

increment. 

3) Generate the incremental (tangent) constitutive relation, [DT], 

for all concrete and reinforcement elements using the current stresses, 

strains, and loading history. 

4) Using the updated [DT] matrices, . recompute the stiffness 

matrices for newly cracked elements and assemble the new structure tan­

gent stiffness matrix, [KT]. Triangulate the new tangent stiffness. 

5) Solve for the increment of nodal displacements using the 

triangulated stiffness. Update the total nodal 

displacements, [UNEW} = {u01Dl + {~U}. 

6) Compute increments of strain at Gauss points within each ele­

ment. Update the total strains at each Gauss point. 

7) Update stresses at each Gauss point given previous strains, 

stresses, and loading history (number of cracks and crack angles). New 

total stresses at each Gauss point result from these computations. 

8) Evaluate the nodal forces required to maintain each element in 

its deformed configuration, {IF}. These are given by {IF} = 

Jv [B]T{rr} dv. Assemble these into a nodal vector for the structure, 
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9) Compute the structure residual nodal load vector as (R} = 

10) Apply convergence tests to determine the level of residual 

loads remaining. If the convergence tests are satisfied, go to (1) and 

begin processing the next load step; otherwise go to (3) and begin the 

next iteration. 

The two convergence tests used to terminate the iterative 

solution process are: 

II(R}II < 

MAX I (R)I 
o .03 ;, 11 (LlP} 11 (2.4) 

< o. 02 ,., II (LlP} II (2 .5) 

where {R} is the residual load vector and {LlP} is the applied incremen-

tal load vector. The first test, Eq. (2.4), compares Euclidean norms 

(square root of the sum of the squares) of the residual load and applied 

load vectors and represents an average measure of equilibrium. The 

second test, Eq. (2.5), detects any highly localized residual loads that 

could be missed by a vector norm computation. Both tests must be satis-

fied for acceptance of a solution. These convergence tests force the 

equilibrium iterations to continue until no further cracks develop for 

the applied load increment. 
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3.1 General 

CHAPTER 3 

RESULTS AND DISCUSSION 

A parametric study of nonlinear simple beam responses was con­

ducted using the solution and modeling procedures described in the 

previous chapter. Three span-to-depth ratios of 12:1, 5:1, and 2:1 were 

considered. These span-to-depth ratios cover beam responses ranging 

from those dominated primarily by flexure (12:1) to those controlled by 

shear (2:1). In subsequent discussions, these geometries are referred 

to as the slender beam (12:1), the moderate beam (5:1), and the deep 

beam (2:1). Analyses were conducted for a uniformly distributed load 

applied across the top surface of the beam and for a single concentrated 

load applied on the top surface at midspan. 

Analyses were also performed to assess the influence of 

smeared cracks on the stiffness characteristics and convergence proper-

ties of the four and eight node isoparametric elements. Difficulties 

arising from the development of zero-energy modes in cracked eight node 

elements were explored. Additional analyses were conducted to in-

vestigate the effect of loading increment size on the path dependent 

formation of cracks. 

This chapter presents a detailed description of the problems 

selected for the parametric study, the numerical results obtained, and a 

discussion of the findings. 
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3.2 Beam Properties and Modeling Details 

All beams analyzed were 7 inches thick, 15 inches deep and 

simply supported at each end. Span lengths of 180, 75, and 30 inches 

for the slender, moderate, and deep peams provided the span-to-depth 

ratios desired. A concrete elastic modulus of 3,600 ksi and a rein-

forcing steel modulus of 29,000 ksi were used. A reinforcing steel 

yield point of 60 ksi was selected, with linear strain hardening at a 

slope of 5% of the elastic modulus (Fig. 3.1). All beams were singly 

reinforced with a reinforcing ratio of 1.5% (1.6 sq.in.). No shear 

reinforcement was provided. A limiting tensile strength (f') 
t 

of 

400 psi was used to predict cracking in the model. Several analyses 

were also performed for the deep beam to assess the influence of tensile 

strength on the response of shear critical members. A 10 psi tensile 

strength was employed to approximate a zero strength condition for these 

analyses (a tensile strength of zero leads to numerical difficulties in 

the finite element solution, as extensive cracking occurs at a very 

small load). Tables 3.1 and 3.2 summarize the beam dimensions and 

material properties. 

To eliminate possible effects of the finite element shape, 

square elements were used whenever the geometry permitted. In those few 

cases which required rectangular elements to be used, the rectangular 

elements were placed immediately above the simple support. 

The slender and moderate beams were analyzed using 1, 2, and 5 

elements through the 15 in. depth. For the deep beam, grids were 

analyzed with up to 20 elements through the depth. 
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Early in this study, it was found that placement of concrete 

elements below the reinforcement (modeled with bar elements) produced 

numerical problems during solution when the normal stiffness reduction 

factor, a in Eq. 2.3, was assigned a zero value. In the high moment re­

gions, elements below the reinforcement develop a near vertical crack at 

each Gauss integration point. When a perfectly vertical crack develops 

at each point in an element, a complete loss of stiffness occurs in the 

horizontal direction. In solutions for the beam problems, exactly ver­

tical cracks do not form in an element due to small shear stresses 

present below the bar elements. However, the single precision arith­

metic (48 bit word) employed for the computations was insufficient to 

detect these small differences in crack orientation, and a singular or 

near singular stiffness resulted at the adjacent bottom nodes. The 

situation was remedied by eliminating the layer of concrete elements 

below the reinforcement, which produced a very slight decrease in the 

initial cracking loads. Alternatively, a very small value for the nor­

mal stiffness reduction factor could have been retained to prevent the 

numerical problems. 

When connected, the eight node isoparametric element and the 

two node constant strain bar element do not maintain interelement 

displacement compatibility. Models in this study were constructed with 

two rod elements for each eight node element at the level of the rein­

forcement, i.e., a bar element connected a corner and a mid-side node. 

To determine the error introduced by the displacement incompatibility, 

several analyses were performed for the deep beam meshes. Models were 

constructed with a single bar element connecting the quadratic element 
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corner nodes. The mid-side node displacements of the quadratic element 

were constrained to be the average of the adjacent corner node displace­

ments, thus re-establishing displacement compatibility with the bar ele-

ment. Comparison of solutions with and without displacement com-

patibility revealed negligible differences in the load-deflection 

curves. 

Uniformly distributed loads were modeled using energy equiva­

lent forces applied to the nodes along the top surface. The concen­

trated loading was modeled by a single force applied to the midspan top 

surface node. Symmetry of the loads and constraints about mid-span per­

mitted the use of only one half of the beam in the finite element 

models. Horizontal constraints imposed on all midspan nodes enforced 

the symmetry boundary condition. The simple support was modeled by a 

vertical constraint imposed at the bottom edge node. 

A deflection measure was developed to minimize the effect of 

localized deformation at the simple support and under the concentrated 

load. For the purpose of comparison, deflections were computed by sub­

tracting the mid-depth deflection over the support from the mid-depth 

deflection at center span. These values are termed "mid-depth deflec­

tions" on all load-deflection curves. If a node did not fall at mid­

depth, the average displacement for the two nodes on each side of mid­

depth was used. 

Loads were applied to the finite element models in a sequence 

of increments or steps. Initially, load step sizes were estimated using 

theoretical predictions of the loads corresponding to first cracking and 

yielding. During subsequent analyses, load step sizes were selected to 
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provide an adequate description of the load-deflection curves. Variable 

size load increments were used in each case to obtain a better resolu­

tion of the load-deflection curves near loading levels at which exten­

sive cracking or yielding occurred. Load-displacement curves presented 

in this chapter show the individual load steps for each analysis. Sec-

tion 3.5 examines the sensitivity of computed displacements and cracking 

patterns to the selected load increment size. 

The qualitative load-deflection response for all beams is il­

lustrated in Fig. 3.2. Four distinct regions may be identified in this 

figure. For discussion, these regions are denoted: 1) elastic pre­

cracking, 2) cracking prior to yield of the reinforcement, 3) rounded 

knee that develops at initial yielding, and 4) post-reinforcement yield 

and strain hardening with little additional cracking. The unlimited 

strain hardening, coupled with the elastic model for concrete in com­

pression, permits the load to increase almost linearly with displacement 

once significant yielding occurs. Therefore, no limit loads are at­

tainable with this model. 

3.3 Numerical Examples 

3.3.1 Slender Beam 

Analyses were conducted for the slender beam (12:1 span-to­

depth ratio) considering both distributed and concentrated loading for 

1, 2, and 5 elements through the depth. A 2 x 2 integration order was 

used for both the linear and quadratic elements. Load-deflection curves 

and crack patterns for the uniform load case are shown in Figs. 3.3-3.7. 
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·The linear element grids become more flexible as the number of elements 

through the depth increases; the quadratic element grids, however, 

become progressively stiffer with grid refinement. As will be discussed 

in Section 3.4, this unusual trend can be traced to the development of 

zero energy deformation modes in cracked quadratic elements that are 

evaluated with· a reduced (2x2) integration order. The computed load­

displacement responses for both element types rapidly converge to a com­

mon solution, as shown in Fig. 3.7, and appear to provide an upper and 

lower bound strength prediction. 

Several analyses were performed using fully (3x3) integrated 

quadratic element grids. Load-deflection curves were found to coincide 

exactly with those for the four node element and are therefore not shown 

on the figures. 

The quadratic element solution for one element through the 

depth (Fig. 3.4) shows the greatest departure from the other five solu-

tions obtained for this problem. This solution predicts initial 

yielding of the reinforcement at approximately 80% of the load obtained 

in other solutions. Similar behavior is also observed for the concen­

trated load case (Fig. 3.9). The coarse grid is stiffer than the finer 

grids before cracking; but once cracks develop, the region affected is 

larger than for the finer grids which results in a significant loss of 

stiffness. The stiffness loss apparently increases the strain in the 

reinforcement, which causes the lower yield load. 

The extensive vertical cracks in the uniformly loaded beam 

(Figs. 3.5 and 3.6) clearly indicate the flexural nature of the 

response. Crack orientations in the linear element grids are erratic 
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until a grid with five elements through the depth is used. The 

inability of the linear element to accurately model the shear stress 

distribution leads to the alternating crack directions. The eight node 

element, even for the coarse grid, produces realistic crack orientations 

due to the improved shear stress representation. Fine grids for both 

element types show the influence of the simple support reaction. The 

region of inclined cracks due to high shear stress extends approximately 

twice the beam depth from the support. 

The extent of cracking through the beam depth is an important 

aspect of the crack patterns. For the linear element, coarse grids (1 

element through the depth) develop cracks at all Gauss points, whereas 

the intermediate and fine grids have one or more layers of completely 

uncracked points above mid-depth. In the coarse grids, both the shear 

force and the compression force of the couple providing the internal 

resisting moment must be transferred by a completely cracked, and thus 

more flexible, element. 

Crack patterns for the fine meshes (5 through the depth) ex­

hibit gaps near the neutral axis-- several uncracked or partially 

cracked elements are surrounded by totally uncracked elements. The ap­

pearance of· ngaps 11 in the cracking pattern has been termed 11 strain 

localization" by other investigators (5). Almost no partial cracking 

occurs within linear elements (Fig. 3.5). All Gauss points within an 

element are either cracked or uncracked, with the resulting longitudinal 

saw-tooth crack pattern near the neutral axis. In contrast, many 

quadratic elements have only one or two cracked Gauss points (Fig. 3.6). 

This difference may be attributed to the mid-side node of the quadratic 
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element which provides considerably more freedom for deformation once 

cracks form. The displacements of a mid-side node relative to those of 

the corresponding corner nodes and the linear strain variation within 

the element permit a crack at one Gauss point to ''relieve 11 stresses at 

adjacen·t points in the same element. Linear elements, with their 

simpler strain variation, are unable to relieve other points in an ele­

ment when one point cracks. They do relieve adjacent elements through 

the normal discontinuity of strains across element boundaries, as in­

dicated by the gaps in crack patterns. A similar situation can occur 

for the quadratic element, in which full or partial cracking in one ele­

ment completely relieves an adjacent element. The absence of partially 

cracked and/or completely relieved elements (gaps) for the coarse and 

intermediate grids indicates that the stress relief effect diminishes 

rapidly with distance from a cracked Gauss point. 

Load-deflection curves and cracking patterns for the same 

grids subjected to a concentrated load are shown in Figs. 3.8-3.12. As 

for the uniform load case, the four node element grids converge from the 

stiff side, whereas the eight node element grids converge from the 

flexible side. Fine grids for both element types converge to a common 

solution, as shown in Fig. 3.12. 

3.3.2 Moderate Beam 

Analyses were performed for the moderate beam (5:1 span-to­

depth ratio), considering models with 1, 2, and 5 linear and quadratic 

elements through the depth. The response of beams within this range of 

span-to-depth ratio is controlled by shear and flexure over approx-
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imately equal portions of the length. 

Load-deflection curves and crack patterns for the distributed 

and concentrated load models are shown in Figs. 3.13-3.17 and 3.18-3.22, 

respectively. Linear element grids decrease in stiffness, while the 

quadratic element grids (again using 2x2 integration) first increase and 

then decrease in stiffness with grid refinement. After the reinforce­

ment yields, the trends become similar to those observed for the slender 

beams, with the linear element grids continuing to decrease in stiffness 

while the quadratic element grids increase in stiffness. Convergence of 

load-deflection curves to a common solution with increased grid refine­

ment is shown in Fig. 3.17. 

The crack patterns for the uniform load (Figs. 3.15 and 3.16) 

clearly distinguish those regions controlled by flexure and those con­

trolled by shear. Extensive diagonal cracks inclined at approximately 

45 degrees, indicate the high shear, low flexure stresses near the sup­

port. Linear element coarse and intermediate grids again do not predict 

realistic crack patterns. The alternating crack directions within an 

element become much less noticeable for the fine grid. The quadratic 

elements produce reasonable crack patterns for all three levels of grid 

refinement. Gaps observed in cracking patterns for the slender beam 

solutions occur infrequently for the moderate beam. It can be argued 

that, due to the more complex stress field within the moderate beam, a 

grid with five elements through the depth does not reflect the same 

degree of grid refinement as it does for the slender beam. Considering 

the ratio of element size to span length, the fine grid for the moderate 

beam is actually less refined than it is for the slender beam. 
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The trends evident for the concentrated load case 

(Figs. 3.18-3.22) closely follow those for the uniform load case. Fine 

element grids for both element types appear to be converging to a common 

solution (Fig. 3.22). However, the rate of convergence is not as rapid 

as for the uniform load case. 

3.3.3 Deep Beam 

Analyses were performed for the deep beam (2:1 span-to-depth 

ratio) subjected to a distributed load and a concentrated load. Due to 

the high stress gradients present in the deep beam, finer grids were em­

ployed than for the slender and moderate beams. Up to 20 linear ele­

ments and 10 quadratic elements were used through the depth for the deep 

beam analyses. Load-deflection curves and cracking patterns are given 

in Figs. 3.23-3.36. The response of beams with this span-to-depth ratio 

is controlled almost entirely by shear, especially for the concentrated 

load case. Consequently, diagonal tension cracks oriented at near 45 

degrees develop along a line connecting the simple support and the beam 

top surface at mid-span (see, for example, Fig. 3.34). Only small re­

gions near the bottom edge and at mid-span develop flexural cracks. 

Load-deflection curves for the linear element (Figs. 3.23 and 

3. 29) follow the same trend of increased flexibility l?ith grid refine­

ment observed for the slender and moderate beams. For the distributed 

load, quadratic element load-deflection curves, generated using reduced 

integration, also indicate increasing flexibility with grid refinement 

(Fig. 3.24). Under a concentrated load, the quadratic element load-

deflection curves (Fig. 3.30) show, at first, increased flexibility, 
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then increased stiffness with additional grid refinement. This trend is 

due in part to the formation of a horizontal crack (labelled "A") just 

below mid-depth of the SxS grid, as shown in Fig. 3.31. Nodes above 

crack 11N' displace upward (positive) rather than downward. When used to 

calculate the mid-depth deflection, the positive displacement over the 

support increases, rather than decreases, the mid-depth deflection at a 

given load. The 2x2 element grid does not develop a similar horizontal 

crack and thus appears much stiffer (edge nodes displace downward). The 

10x10 grid has several nearly horizontal cracks near mid-depth as shown 

in Fig. 3. 31, and yet nodes on the leftmost edge displace downward'<. 

The linear element grids, shown in Fig. 3.34, also exhibit 

horizontal cracks near mid-depth above the simple support; but all nodes 

on the edge displace downward. When solved with full (3x3) rather than 

reduced integration, quadratic element grids exhibit the same trend in 

load-deflection curves (increased flexibility with grid refinement, 

Fig. 3.33) and the same trend in the cracking patterns (horizontal 

cracks above support, Fig. 3.35) as the linear element grids. The 

response sensitivity to the formation of a horizontal crack above the 

support and the reversal of trends in load-deflection curves obtained 

for the quadratic element with reduced integration cast doubt on the 

element's integrity when smeared cracks are present. These problems 

prompted a detailed study of the stiffness characteristics of 

isoparametric elements containing smeared cracks (see Section 3.4). 

'< If only the absolute deflection at 
quadratic element load-deflection curves 
trated load case show much better agreement. 
yield very similar curves; however, the 
stiffer. 

mid-span is considered, the 
(Fig. 3.32) for the concen­
The SxS and 10x10 grids 

10x10 grid remains slightly 
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Full (3x3) integration for the quadratic element was tried for 

each loading type in an attempt to obtain load-deflection curves with 

monotonic convergence. The results shown in Figs. 3.25 and 3.33 in­

dicate that the desired monotonic behavior is obtained with full in­

tegration. Full (3x3) integration was then adopted to generate the 

quadratic element results described in the remainder of this section. 

Load-deflection curves and crack patterns for the distributed 

load case are shown in Fig. 3.23 and 3.25-3.28. Coarse element grids 

did not demonstrate satisfactory convergence. Thus, linear element 

grids up to 15x15 and quadratic element grids up to lOxlO were analyzed 

to obtain convergence. As observed for the slender and moderate beams, 

the linear element grids decrease in stiffness with increasing grid 

refinement. Solutions for the lOxlO and 15xl5 linear element grids are 

essentially identical (Fig. 3.23). Prior to yielding of the reinforce­

ment, the response is insensitive to grid refinement. As observed for 

the slender and moderate beams, gaps in the linear element grid cracking 

patterns are present and indicate stress relief in adjacent elements due 

to cracking. Fig. 3.25 shows the quadratic element (3x3 integration) 

load-deflection curves for the distributed load. Small differences 

between the solutions occur prior to yielding of the reinforcement. In­

creased grid refinement slightly lowers the load required to yield the 

reinforcement. Load-deflection curves for the Sx5 and lOxlO quadratic 

element grids are essentially the same, indicating convergence. Gaps in 

the quadratic element cracking patterns are also obtained (Fig. 3.27). 



Results and Discussion 35 

Linear a.n.d quadratic element load-deflection curves, compared 

in Fig. 3.28, exhibit convergence toward a common solution, as obtained 

for the slender and moderate beams. The linear element 15x15 grid solu­

tion closely parallels the lOxlO grid solution for the quadratic ele­

ment. The lOxlO quadratic element grid has 33% more nodes than the 

15x15 linear grid and becomes slightly more flexible between the 4 and 6 

kip/in load levels. 

Load-deflection curves and crack patterns for the concentrated 

load case (Figs. 3.29 and 3.33-3.35) follow the same general trends ob­

served for the distributed load case. The crack patterns (Figs. 3.34 

and 3.35) exhibit regions of flexural cracks similar to those obtained 

for the distributed load case. Gaps in the cracking patterns are not 

nearly as common as for the distributed load case. These figures also 

reveal that complete "through depth" cracking occurs at a small percen­

tage of the load required to yield the reinforcement. Even after all 

elements through the depth are cracked, the beam has considerable 

strength remaining due to the shear capacity of the cracked concrete. 

To insure that a fully converged solution had been obtained, a 20x20 

grid analysis was performed using the linear element. As shown in 

Fig. 3.29, the 15xl5 and 20x20 grid load-deflection curves are nearly 

identical over the entire loading range. 

Fig. 3.36 compares the linear and quadratic element load­

deflection curves for the concentrated load case. Differences in the 

two curves develop between the 20 and 40 kip loading levels. Above the 

80 kip load level the stiffnesses are very similar; the average slope of 

the linear load-deflection curve is just slightly larger than the 
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quadratic element curve slope. floreover, the loads at '>Yhich the rein­

forcement yields are identical. The displacement jumps between the 20 

and 40 kip load levels for the quadratic element and between the 40 and 

80 kip load levels for the linear element occur as the structural system 

changes from a beam to a tied arch due to the very extensive shear 

cracking. Section 3.5 demonstrates that the exact load at which the 

shear cracking occurs is sensitive to the element type, grid refinement, 

and load increment size. It is also shown that the four load increments 

used here to reach the 80 kip load level are not sufficient for the 

linear element to adequately predict the displacement shift due to the 

transition . 

. 3.4 Stiffness Characteristics of Cracked Elements 

For the deep beam, the quadratic element with reduced integra­

tion produces load-deflection curves that have oscillating, rather than 

monotonic, convergence characteristics with increased grid refinement 

(Fig. 3.30). This behavior was at first attributed solely to the 

development of specific horizontal cracks above the support, as 

discussed in Section 3.3.3. However, upon closer study, the basic 

stiffness characteristics of quadratic elements containing smeared 

cracks are also found to affect the response. 

In the slender and moderate beam solutions, load-deflection 

curves for the quadratic element with reduced integration exhibit 

monotonically increasing stiffness with grid refinement, irrespective of 

the load case and deflection measure. When the same problems are 

analyzed with the fully integrated quadratic element, the load-
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deflection curves show increased flexibility with grid refinement, as 

expected for most finite element solutions. These observ3tions raise 

questions about the stiffness characteristics of quadratic elements con­

taining smeared cracks, particularly 11 shearll cracks, as observed in the 

deep beam. This section presents the results of numerical tests devised 

to study the stiffness characteristics of cracked isoparametric ele­

ments. 

3.4.1 Elements With Parallel Cracks 

To study the behavior of a cracked element in shear, a simple 

test problem was devised, as illustrated in Fig. 3.37. The problem con­

sists of a square, unreinforced single element fixed at one end and 

loaded in shear. The material constitutive matrix at each integration 

point represents a smeared crack oriented at 45 degrees with the 

horizontal. The normal stiffness reduction factor, a, is assigned a 

value of zero. Table 3.3 lists the tip displacements computed for the 

linear element, the quadratic element with reduced integration, and the 

quadratic element with full integration. Values are normalized relative 

to the deflection at node 4 of the linear element (Fig. 3.37). Both the 

linear element and fully integrated quadratic element produce finite 

displacement values, as required for a non-zero value of the shear 

stiffness reduction factor, ~- The quadratic element with reduced in­

tegration, however, produces extremely large displacements, indicative 

of a singular stiffness matrix. The fully integrated quadratic element, 

while not singular, is noticeably more flexible than the linear element. 

The large difference between top and bottom node deflection for the 
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quadratic element clearly demonstrates the additional freedom of defor­

mation introduced by the mid-side node. 

To further explore the singularity that occurred with reduced 

integration, an eigenvalue analysis was performed on the stiffness 

matrix for the elements of the test problem. Eigenvalues of a stiffness 

matrix are proportional to the strain energy generated when an element 

is deformed in the shape of the corresponding eigenvector. Rigid body 

motion (two translations and a rotation for these 2-D elements) 

generates no strain energy and thus is associated with a zero eigen­

value. Table 3.4 lists the number of zero and non-zero stiffness matrix 

eigenvalues for the uncracked and cracked elements (all cracks at 45° as 

shown in Fig. 3.37). The same number of zero eigenvalues is also ob-

tained for each case shown in the table for a rectangular element (2:1 

aspect ratio). The uncracked linear and fully integrated quadratic ele­

ments have the three required zero eigenvalues to represent rigid body 

motion. The uncracked quadratic element with reduced integration has 

four zero eigenvalues, indicating the existence of an additional defor­

mation mode that causes no strain at the 2x2 Gauss point locations. The 

additional "zero energy mode" was discovered soon after reduced integra­

tion came into widespread use. In most analyses, reduced integration 

dramatically improves the element performance. A discussion of zero­

energy modes and reduced integration can be found in most recent finite 

element texts (37). 

Of interest here is the number of additional zero energy modes 

that occur when all integration points are cracked at similar angles. 

As shown in Table 3.4, the linear element in the test problem has one 
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additional zero eigenvalue for a total of four; the fully integrated 

quadratic element has three additional zero eigenvalues for a total of 

six. The reduced quadratic element, however, has four additional zero 

eigenvalues for a total of eight. From this analysis, it is now clear 

why the quadratic element with reduced integration fails in the simple 

shear test problem. Removal of the constrained degrees of freedom (at 

nodes 1-3) from the stiffness matrix of the quadratic element in 

Fig. 3.37 leaves a lOxlO set of equations with a rank of eight, two less 

than the number of equations. Constraints applied to the boundary nodes 

eliminate only six of the zero energy modes. The shear loading ac-

tivates one, or a combination, of the two remaining zero energy modes 

for the cracked element resulting in an unstable structure. The con-

strained stiffness matrices for the linear and fully integrated 

quadratic elements, however, possess sufficient rank to remain positive 

definite and thus are stable. 

3.4.2 Elements With Differing Crack Orientation 

The particular case discussed above for an element containing 

parallel cracks represents the most severe condition for element stiff­

ness degradation. In most analyses, this condition rarely occurs due to 

the load redistribution process. Cracks with varying orientations 

generally form at the Gauss points. This should have the effect of in­

creasing the element stiffness relative to parallel crack configura­

tions. To study this effect, additional eigenvalue analyses were per-

formed. A randomly oriented smeared crack was imposed at each Gauss 

point of an element. The element stiffness matrix was computed, and the 
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eigenvalues extracted. Results of these computations are summarized in 

Table 3.5. 

Both the linear element and the fully integrated quadratic 

element have no zero energy deformation modes in excess of the three re-

quired for rigid body motion. The remaining non-zero eigenvalues for 

these elements are smaller in magnitude than those for the uncracked 

elements. The quadratic element with reduced integration, however, has 

eight zero energy modes irrespective of the crack orientations. 

Moreover, the formation of a crack at each Gauss point in this element 

introduces a zero energy deformation mode, i.e., an element with one 

cracked Gauss point has a total of five zero energy modes of deforma-

tion. The same number of zero energy modes was also obtained for each 

case shown in Table 3.5 with a rectangular element (2:1 aspect ratio). 

For the linear element, altering the orientation of just one 

of four initially parallel cracks eliminates the single excess zero 

energy mode. In a fully integrated quadratic element, the three zero 

energy modes are eliminated by varying the orientation of just three (of 

nine) initially parallel cracks. 

3.4.3 Effects of the Normal Stiffness Reduction Factor -- ---

The normal stiffness reduction factor, a, is often used 

simply to avoid placing a zero on the diagonal of the material constitu-

tive matrix. The exact role of a non-zero a in the solution process 

has not been studied previously. It is generally known that small 

values do not drastically alter the nodal displacements. The eigenvalue 

analyses conducted as part of this study have defined the role of the 
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stiffness reduction factor. It suppresses the formation of zero energy 

deformation modes in cracked elements. Consider, for example, an ele-

ment with dimensions of lxlx~. The zero eigenvalues in excess of the 

three associated with rigid body motion become simply a times Young's 

modulus, E. 

The test problem in Fig. 3.37 was solved for a=10- 3 and 10-S 

to assess the sensitivity of the computed displacements to a range of a 

values. Results for these two cases and for a=O are listed in Table 

3.6. The four node element results show little effect for this range of 

a, with only a 4% displacement reduction occuring for the relatively 

-3 large a value of 10 . The quadratic element displacements show a much 

larger effect for both full and reduced integration cases. The SO% 

displacement reduction for the fully integrated element suggests that 

-3 a=lO is too large. 

For the reduced integration case, any small positive value of 

a is sufficient to render the stiffness matrix positive definite. The 

computed displacements appear to vary inversely with the prescribed 

value of a ; the artificial stiffness normal to the crack provides the 

primary load resisting mechanism. These numerical results suggest that 

the use of a normal stiffness reduction factor is a questionable tech-

nique and may in some instances disguise undesirable element behavior. 



42 Results and Discussion 

3.4.4 Significance of Stiffness Test Results 

explain 

The test problem and eigenvalue analyses provide a basis to 

the trends in load-deflection curves obtained using the 

quadratic element. Wilen the structure geometry and loading are such 

that cracked elements must resist the applied loading, then the struc­

ture stiffness degradation is unpredictable if the cracked elements have 

zero energy modes. Zero energy modes in cracked elements that are not 

required to resist the applied loads (due to redistribution among other 

elements) do not appear to adversely affect the structure stiffness. 

For beams analyzed with the linear and the fully integrated 

quadratic elements, load-deflection curves show an increased flexibility 

with grid refinement. This trend is observed in most finite element 

analyses. A set of four cracks for the linear element, and seven cracks 

for the quadratic element, with precisely the same orientation is re­

quired to introduce the first zero energy mode. Non-uniform strain 

fields and the redistribution of loads among elements prevent this from 

occurring. 

The quadratic element with reduced integration exhibits two 

different trends in the convergence of load-deflection curves with grid 

refinement. Load-deflection curves for the slender beam indicate a 

stiffness increase with grid refinement; for the deep beam, load­

deflection curves show a general flexibility increase with grid refine-

ment. The moderate beam behavior lies between that for the slender and 

deep beam; grid refinement at first increases the flexibility but 

further refinement increases the stiffness. 
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Results of the element stiffness study point to the formation 

of zero energy modes as the source of the different convergence trends. 

Once a crack forms at a Gauss point, regardless of the crack orienta­

tion, an additional zero energy mode is obtained in the quadratic ele­

ment with reduced integration. The type of convergence observed in the 

load-deflection curves depends directly on whether or not cracked ele­

ments provide the internal resisting forces. In the slender beam, for 

example, the load transfer mechanism is bending, with the internal mo­

ment provided by compression in elements at the top surface and tension 

in the reinforcement. The coarse grid has a single element through the 

depth which is subjected to both tension and compression. Tension 

cracks along the bottom row of Gauss points (Fig. 3.11) introduce zero 

energy modes that decrease the element stiffness in compression. As a 

consequence, the load-deflection curve is more flexible and a much lower 

yield load is predicted (Fig. 3.9). The intermediate and fine grids 

have completely uncracked elements available near the top surface that 

provide the compression force and shear transfer. These grids are 

therefore stiffer than the coarse grid. Just above the yield load, 

cracks develop in the top row of elements for the intermediate grid. 

The top row of elements in the fine grid does not crack after yielding. 

The fine grid is therefore stiffer after the reinforcement yields. The 

presence of fully cracked elements with zero energy modes along the bot­

tom surface in the fine and intermediate grids has no effect on the 

load-deflection curves. 
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In contrast to the slender beam, the primary load transfer 

mechanism for the deep beam is shear, which must be resisted by the con-

crete. Virtually all elements develop shear cracks, including those 

near the top surface, independent of the grid refinement. Only cracked 

elements, usually with eight zero energy modes each (four Gauss points 

cracked), are available to resist the shear force. Grid refinement 

simply increases the flexibility for this case. 

3.5 Effects of Load Increment Size on Load-Deflection Curves 

The formation of cracks is generally considered to be a 

loading path dependent phenomenon. Bazant and Cedolin (5) suggest that 

the load increment size used in a finite element analysis significantly 

affects the computed response. They adjust load increment sizes as the 

solution progresses such that a single element (composed of 4 triangles) 

cracks for each increment of external load. However, during iterations 

to distribute residual loads, any number of additional cracks may form 

as necessary to reach the equilibrium configuration. 

There are two major problems with this solution method. The 

first problem concerns the practicality of cracking a single Gauss point 

(or element as the case may be) with each external load increment. When 

considering grids of isoparametric elements, the number of sampling 

points is generally large compared to grids of quadralateral elements 

formed from triangles. In the 20x20 grid of linear elements, for ex-

ample, there are 1600 Gauss points at which a crack may form. An extra-

ordinarily large number of load increments is required to reach a fully 

cracked state using this procedure, which may render the analysis 
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economically infeasible. Furthermore, most finite element codes do not 

support automatic determination of load increment sizes based upon 

projected stress increments. Load increment sizes are usually specified 

directly by the analyst as a multiplier applied to a loading pattern. 

The second problem with the procedure followed by Bazant and 

Cedolin is the inconsistency bet'iveen allowing formation of only one 

crack for an external load increment and permitting any number of cracks 

to form during an equilibrium iteration at fixed external load. A more 

consistent approach is to successively scale the residual load vector to 

permit the formation of only one crack per iteration. Chen (9) has 

adopted this solution strategy for relatively coarse grids of constant 

strain triangle elements. However, with the large number of sampling 

points in isoparametric element grids, this solution strategy may not be 

feasible .. 

To gain some insight into the sensitivity of load-deflection 

curves to load increment size, the deep beam (shear panel) with the con-

centrated load at mid-span was subjected to additional study. A 15xl5 

grid of linear elements was used for the load increment size study. 

Cracking patterns for the load increment sizes used to generate the 

load-deflection curves in Fig. 3.29 revealed that essentially all cracks 

formed below the 80 kip load level. The effects of load increment size 

on crack formation could therefore be determined by considering the load 

level from first cracking (24 kips) through 80 kips. The loading range 

was divided into 8, 15, 29, and 83 equal size load steps. This con­

trasts to four steps used to reach the 80 kip load level for this grid 

in prior analyses (Fig. 3.29). For the 83 load steps, only one or two 
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Gauss points cracked in the first iteration of each step (which cor­

responds to the application of the external load increment). The solu­

tion procedure thus became that recommended by Bazant and Cedolin. As a 

final check, the 20x20 linear element grid was also analyzed using 83 

load steps to detect any combined load step-grid size effects. 

Fig. 3.38 shows load-deflection curves generated for the 

varying numbers of load steps with the 15xl5 grid. For 8 or more load 

steps, the response up to the 80 kip load level consists of four 

distinct regions: (1) linear elastic below 24 kips, (2) flexural 

cracking below approximately 0.006 in. of deflection, (3) a transition 

region in which the structural behavior changes from a beam to a tied 

arch, as indicated by the displacement jump, and (4) additional minor 

shear cracking once the tied arch configuration is attained. Fig. 3.39 

compares the 15xl5 and 20x20 grid load-deflection curves that were 

generated using 83 load steps. The two curves are identical with the 

exception of the beam to tied arch transition, which occurs at different 

load levels. The cracking patterns for 

clearly illustrate the transition behavior. 

the 15xl5 grid (Fig. 3.40) 

For the first 50 load 

steps, primarily flexure cracks formed below a diagonal line connecting 

the simple support and the load point at mid-span. During load step 51 

(P=49 kips), extensive diagonal shear cracks formed during the 

equilibrium iterations, although only one Gauss point cracked in the 

first iteration of the load step. The development of extensive diagonal 

shear cracks characterizes the transition in structural behavior from a 

beam to a tied arch. The tied arch has only about 65% of the stiffness 

of the beam. These cracking patterns also reveal more distinct gaps 
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than those generated with the larger load increments (Fig. 3.34). A 

large load increment in the early stages of loading may cause the 

stresses to be overestimated and thus lead to excessiYe cracking. 

The curves in Figs. 3.38 and 3.39 demonstrate the sensitivity 

of the beam to tied arch transition to both load step size and grid 

refinement. For the 15x15 grid, the use of smaller load steps increases 

the load at which the transition initiates. Increasing the grid refine­

ment lowers it. The slope of the load-displacement curve for the 20x20 

grid during the transition is very nearly zero, which indicates an 

unstable structure. This behavior is analagous to snap-through buckling 

in shells when driven by applied loads rather than applied displace­

ments. The "snap-through" behavior observed for the deep beam transi­

tion occurs when, for a very small load increase, the level of cracking 

rapidly increases until the stable tied arch configuration is attained. 

This clearly indicates that the transition behavior in the deep beam is 

fracture sensitive. Fracture mechanics techniques are required to 

predict accurately the transition response, if this is the purpose of 

the analysis. 

These results demonstrate equally as well that the macroscopic 

stiffness and strength of the structure are insensitive to the load step 

sizes used in the finite element computations. This is expected since 

structural behavior before the transition (a beam) and after (a tied 

arch) is not dependent upon the load that initiates the transition, but 

rather the current extent of the cracking. The exact load to initiate 

the transition plays a minor role in the response of this particular 

member. The transition behavior does not affect the stiffness of the 
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tied arch configuration or the load necessary to yield the reinforce­

ment. It does, however, produce the load-deflection curve jump observed 

in Figs. 3.38 and 3.39. The magnitude of the displacement jump is 

nearly identical for the range of load steps considered (8 to 83). The 

load-deflection curves agree very well after the transition, both in 

slope and absolute position. The four load steps used to reach the 80 

kip load level in earlier analyses (Figs. 3.33 and 3.36) are clearly 

inadequate to sense the displacement shift during the transition. This 

example emphasizes the importance of proper load increment selection. 

The nonlinear analysis of reinforced concrete structures must consider 

different combinations of grid refinement and load increment size. 

In other types of structures, for which there is not an alter­

native equilibrium configuration, the transition load may indeed con­

stitute the "failure" load. Unreinforced structures and certain struc­

tures with very low reinforcement ratios would be included in this 

category. A fracture mechanics based analysis may then be necessary to 

accurately predict the transition load. The stress controlled-smeared 

crack model and the solution algorithms employed in this study will 

predict an unstable structure if another equilibrium configuration does 

not exist. The stress controlled model thus serves as a good indicator 

of its own adequacy, and will indicate when a fracture mechanics 

analyses is required. 

The effect of element type is illustrated in Figs. 3.4la and 

b, which compare the load-deflection curves for the lOxlO grid of eight 

node elements with the 15xl5 grid of four node elements for 4, 8 and 29 

load increments. While both models attain stable configurations fol-
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lowing the beam to tied arch transition, it is clear that the models 

differ in both the stiffness following the transition and the transition 

load itself. The lOxlO grid of quadratic elements remains more flexible 

than the 15xl5 grid of linear elements (see also Fig. 3.36). This dif­

ference may be traced to the lower stiffness exhibited by the cracked, 

fully integrated eight node element, observed in Section 3.4. These 

results suggest that the effects of element type remain an open question 

and require additional study. 

3.6 Effects of Concrete Tensile Strength 

The deep beam was selected to study the effect of concrete 

tensile strength on response. Diagonal tension stresses in "shear 

panels" of this type usually cause large areas to crack and may lead to 

a considerable loss of stiffness. The effect of concrete tensile 

strength should be more pronounced for such a structure than for a 

slender beam which is controlled by flexure. Of the problems con­

sidered, the deep beam with the concentrated load at mid-span provides 

the most severe diagonal tension. 

Load-deflection curves obtained in Section 3.5 for a tensile 

strength of 400 psi represent an upper bound solution. To obtain a 

lower bound solution, the 15x15 linear element grid was analyzed using a 

tensile strength of 10 psi. Load-deflection curves for the 400 and 10 

psi tensile strengths are given in Fig. 3.42. The tensile strength 

directly controls the load at which initial cracking occurs. The crack 

patterns that are obtained with a 10 psi tensile strength closely 

resemble those in Fig. 3.40, only they occur at 1/40 of the load. These 
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results clearly demonstrate the negligible influence of f' 
t 

on the 

overall response. 

3.7 Concluding Remarks 

This chapter presents the results of a large number of. 

numerical studies designed to evaluate the response characteristics of a 

·limiting tensile strength-smeared crack model for nonlinear analyses of 

reinforced concrete structures. Questions raised by recent investiga-

tions concerning this modeling approach have been addressed. The 

specific concerns include: 

1) Do load-deflection curves converge with grid refinement? If yes, 

in what manner, and what governs the type of convergence? 

2) Are numerical or response problems introduced when the tensile 

stress is immediately reduced to zero upon crack formation? 

3) What is the impact of load increment size on the response, i.e., 

how path dependent is the response? 

4) What are the effects of concrete tensile strength on response? 

Each of these questions was studied from the viewpoint of the 

macroscopic response, as measured by the overall load-deflection curves 

and cracking patterns. It must be emphasized that for the types of 

problems considered in this study, the flexure reinforcement enabled the 

members to reach stable equilibrium configurations following extensive 

crack formation. Consequently, the "limit" strength of each structure 

was only partially determined by the degree of cracking. A stable 

equilibrium configuration, either a beam or tied arch, was attained for 
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each member, even after very significant cracking occurred. Large 

changes in structural stiffness due to the softening effect of cracking 

were generally limited to early portions of the load deflection-curves 

(up to one-half the load to yield the reinforcement). 

This study indicates that load-deflection curves do exhibit 

convergence toward a common solution ~vith grid refinement. The rate of 

convergence depends on the geometry, type of loading, and element type. 

The shear dominated deep beam solutions converge more slowly and require 

finer grids than do those for the flexure controlled members. The 

linear and fully integrated quadratic element load-deflection curves 

show monotonically increased flexibility with grid refinement, very 

similar to the response obtained in ordinary linear analyses. Conver-

gence characteristics of load-deflection curves generated using 

quadratic elements with reduced integration are problem dependent and 

vary based on whether or not cracked elements must resist the applied 

load. These elements contain one additional zero energy deformation 

mode for each cracked Gauss point, which may considerably increase the 

structure flexibility unless adjacent elements suppress the zero energy 

modes. In the coarse grids (1 element through depth) for flexure 

dominated problems, cracked elements must resist the shear and compres­

sive forces. Adjacent elements are not available to suppress the zero 

energy modes. Consequently, grid refinement leads to increased stiff-

ness as uncracked elements above the mid-depth become available to 

resist the load. For the deep beam problem, cracking occurs completely 

through the depth for all grids, thus requiring that the cracked ele­

ments resist the load. Grid refinement simply increases the flexibility 
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for this case. The linear and fully integrated quadratic elements do 

not develop zero energy modes) except when all Gauss points within an 

element crack at precisely the same orientation. 

It has been suggested that immediately reducing the tensile 

stress to zero upon crack formation may lead to solution instability as 

grids are refined. No such difficulties are experienced in analyzing 

the beam and shear panel structures considered in this study. From a 

qualitative viewpoint, it may be argued that the impact of crack forma­

tion at a Gauss point is determined by the cracked element size and the 

sizes of the adjacent elements. The residual load magnitude imposed on 

adjacent elements is governed by the cracked element size; the influence 

of the residual load applied to the nodes of adjacent elements depends 

upon their size-- larger elements are influenced less. In this study, 

element grids are uniformly refined, which probably minimizes any ef­

fects of this type. 

Below a certain magnitude, load increment size is found to 

have no influence on the overall stiffness and strength predictions for 

the deep beam considered. The load increment size does affect the load 

at which the beam to tied arch transition occurs for this type of 

member. Fracture mechanics based analyses are recommended when accurate 

prediction of the transition load is the goal of the analysis. For the 

deep beam studied, the transition behavior is a very minor aspect of the 

overall structural response. The transition load constitutes only 

10-15% of the load required to yield the reinforcement. The load incre­

ment study also shows that a reasonable number of load steps is required 

to predict the displacement jump that occurs during the transition. 
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Analyses with a range of load increment sizes may be necessary if a 

major transition is structural behavior is suspected. 

The concrete tensile strength controls the initial cracking 

load and the rate at which cracking penetrates through the depth. 

Neither of these responses appears to have a significant impact on the 

overall load-deflection curve. Once a stable, fully cracked configura­

tion is attained, the response is independent of the tensile strength. 
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CHAPTER 4 

SUMMARY AND CONCLUSIONS 

4.1 Summary 

A parametric study has been conducted to examine the influence 

of finite element modeling parameters on the predicted nonlinear 

response of reinforced concrete members. Nonlinear effects were limited 

to cracking of the concrete and yielding of the reinforcement. The in­

vestigation focused on the sensitivity of macroscopic response to the 

finite element modeling parameters. In this study, macroscopic response 

was characterized by load-deflection curves and general trends in the 

cracking patterns. 

Three classes of problems were considered in the study; 

namely, 1) long, shallow beams with flexure dominated response, 

2) moderate length beams influenced by both flexure and shear, and 

3) deep beams (shear panels) in which shear dominated the response. 

Span-to-depth ratios of 12:1, 5:1, and 2:1 were selected for analysis to 

represent the three problem classes. The beams were singly reinforced 

and simply supported. Each beam was analyzed for a uniformly 

distributed load applied across the top surface and for a concentrated 

load applied at mid-span. 

The finite element modeling parameters studied were: the ele­

ment type (order of displacement approximation), the element grid 

refinement, the order of Gauss numerical integration, the concrete ten­

sile strength, £~, and the load increment size. 
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The concrete was modeled as 2. linear matt:rial in compression. 

Cracks were introduced in the finite element grid using a 0 smearedn 

representation that simulates a crack by a stress discontinuity within 

the continuous strain field of an element. Cracks were formed when the 

principal tensile stress exceeded a limiting value for the material. 

The tensile stress was immediately reduced to zero upon crack formation. 

Flexural reinforcement was modeled using constant strain, 

discrete bar elements. The stress-strain curve for the reinforcement 

followed a simple bilinear, strain hardening approximation. 

Concrete portions of the beams were modeled with four node, 

linear displacement and eight node) quadratic displacement isoparametric 

elements. The nonlinear response was computed incrementally using the 

Newton-Raphson procedure with corrective equilibrium iterations. The 

structural tangent stiffness was recomputed before each iteration to as­

sure accurate distribution of the residual loads and to maximize the 

convergence rate. 

4.2 Conclusions 

Results of the finite element parametric study presented in 

this report support the following conclusions. 

1. Load-deflection curves for the reinforced concrete members con­

sidered in this study exhibit general convergence toward a com­

mon solution with increased grid refinement. Flexure controlled 

members converge more rapidly than do shear controlled members. 
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2. The type of convergence, whether from the stiff or the flexible 

side) depends on the geometry, loading, element type, and 

numerical integration order (for the quadratic element). 

3. For the member geometries and load cases considered, changes in 

structural stiffness due to cracking are generally complete at 

loads less than one-half the load required to yield the rein-

forcement. Each member reaches a stable, cracked configuration 

early in the loading process and experiences only minor crack 

development under additional loading. No difficulties were ex­

perienced in continuing the analysis beyond yielding of the 

reinforcement. 

4. Detailed analyses for a flexure reinforced deep beam show that 

below a certain magnitude, the load increment size does not ,af­

fect the macroscopic stiffness or strength (yield load) predic-

tions. For a specific grid refinement, the load increment size 

does influence the load at which the transition in structural 

behavior from a beam to a tied arch occurs. With the use of 

large load increments, the analysis may not detect the existence 

of such a transition. 

5. Concrete tensile strength has only a minor effect on the overall 

load-deflection curve for the flexure reinforced deep beam. The 

tensile strength controls the initial cracking load and the 

loading at which the stable cracked configuration is attained. 

6. Cracking patterns for the slender and moderate beams are sensi­

tive to the element type and grid refinement. Coarse grids of 

linear elements exhibit alternating crack directions within each 
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element due to the poor shear stress representation. Even for 

coarse grids, the quadratic element~ t.Jith its higher order 

strain variation, produces more realistic crack patterns that do 

not show large differences in crack angles within an element. 

7. Crack patterns for the slender and deep beam fine grids show 

partially and completely uncracked elements adjacent to fully 

cracked elements. This behavior is attributed to 11 Stress 

relief 11 of neighboring Gauss points that occurs when a point 

cracks. Other investigators have referred to this phenomenon as 

11 strain localization11
• 

8. For the flexure reinforced deep beam studied, considerably finer 

element grids (more elements through the depth) are required to 

eliminate grid size effects in the response. A lSxlS grid of 

linear elements is found to be adequate. 

9. Eigenvalue analyses of cracked element stiffness matrices reveal 

that the linear and the fully integrated quadratic elements have 

one and three additional zero energy modes, respectively, when 

all Gauss points are cracked and the cracks are parallel. A 

similarly cracked quadratic element with reduced integration has 

four additional zero energy modes. Thus, eight of the sixteen 

deformation modes produce no strain at the 2x2 Gauss points. 

10. Further, eigenvalue analysis studies show that the four node 

element and the fully integrated quadratic element develop no 

spurious zero energy modes when cracks at the Gauss points have 

slightly different orientations, as occurs in most analyses. 

The quadratic element with reduced integration has an additional 
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spurious zero energy mode for each cracked Gauss point, regard­

less of the crack orientation. 

11. The development of zero energy deformation modes in the 

quadratic element with reduced integration causes unpredictable 

response when cracked elements are required to resist the ap­

plied load (e.g. for a coarse mesh in flexure problems and in 

all grids for a deep beam or shear panel). 

12. Because of response variations with the reduced quadratic ele­

ment, it is not recommended for general use. The linear element 

and the fully (3x3) integrated quadratic element are both recom-

mended for general use. Load-deflection curves exhibiting 

monotonic convergence from the stiff side with grid refinement 

can be expected. 

13. The stress controlled-smeared crack modeling scheme is suitable 

for macroscopic strength and deformation analyses of members in 

which the "limit" strength is not governed solely by cracking. 

Clearly, unreinforced and very lightly reinforced members re­

quire analysis using fracture mechanics procedures. 

14. The stress controlled-smeared crack representation adequately 

models the general softening effect that results from cracking 

in common reinforced concrete members4 Such members invariably 

achieve stable equilibrium configurations following extensive 

crack formation when load is transferred to the reinforcement. 

The failure of the solution procedure adopted in this study to 

reach the stable cracked configuration would strongly indicate 

the need for a fracture mechanics investigation. 
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4.3 Recommendations for Further Study 

A number of areas remain to be examined for the analytical 

prediction of cracking behavior in reinforced concrete structures. 

These are briefly outlined below. 

1. The effect of tension stiffening, i.e., the gradual decrease of 

stress to zero after cracking, was not considered. Various 

schemes have been proposed to represent the descending branch of 

the tensile stress strain curve but few, if any, studies have 

been conducted to determine the interaction with grid refine­

ment. 

2. All beams in this study had a reinforcing ratio of 1.5%, which 

approaches the upper bound permitted in design codes. The ef­

fect of lower reinforcement ratios, perhaps the minimum allowed, 

should be examined. 

3. None of the beams analyzed had stirrups for shear reinforcement. 

It is not clear what affect various amounts of shear reinforce­

ment would have on the convegence properties of the solution. 

Shear reinforcement would contribute significantly to the 

response of the deep beam (shear panel). 

4. A simple nonlinear model for biaxial compression incorporated in 

the finite element model would permit meaningful comparisons 

with experimental data. It would also enable investigation of 

the descending branch of the overall load-deflection curve, 

e.g., stability behavior. 
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5. The use of a "smeared" representation for the reinforcing steel 

should be considered. The discrete bar element approach, while 

quite simple, restricts reinforcement to the interelement boun­

daries. 

6. The difference in stiffness between a fully cracked, four node 

element and a fully cracked, eight node element requires further 

study. The use of a nine node, Lagrangian element should also 

be examined to assess any effects due to the non-uniform shear 

strain variation that occurs over the eight node element. 
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Table 3.1 
BEAN DIHENSIONS 

I Span-to-Depth Length'' Depth'' I 
Thickness)'t 

Beam*·/\ Ratio (in.) (in.) (in.) 

' Slender 12:1 180 15 

i·!oderate 5:1 75 15 

Deep 2:1 30 15 

''1 in. = 2.54 em 

'"'All beams have 1.5% reinforcement (1.6 sq. in.) 

Table 3.2 
MATERIAL PROPERTIES 

7 

7 

7 

Property Symbol Assumed Value 

STEEL 

Young's Modulus 

Strain Hardening Modulus 

Yield Stress 

CONCRETE 

Young's Nodulus 

Cracking Stress 

Poisson's Ratio 

Shear Modulus 
Reduction Factor 

E 
s 

E~ 
' 

(jy 

E c 
(j 
cr 

v 

i3 

29,000 ksi (200 GPa) 

0.05E = 1,450 ksi (10 
s 

60 ksi (414 MPa) 

3,600 ksi (24.8 GPa) 

400 psi (2.76 MPa) 

0.2 

0.4 

GPa) 
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Table 3.3 
CRACKED SHEAR P&~EL STIFFNESS TEST 

Normalized Tip Deflection 

Element 
Top Middle Bottom 

4 Node 1.0 - - 2.47 

8 Node (3x3) 1. 35 2.03 7.72 

8 Node (2x2) >10! 0 >10 10 >1010 

Table 3.4 
EL&~ENT STIFFNESS EIGENVALUE ANALYSIS (All Parallel Cracks) 

Number of Number of Rank of 
Integration Total Zero Non-Zero Constrained 

Order DOF 
Eigenvalues Eigenvalues Stiffness 

Fig. 3.37 

Linear, Uncracked 2 X 2 8 3 5 4 

Linear, Cracked 2 X 2 8 4 4 4 

Quadratic, Uncracked 3 X 3 16 3 13 10 

Quadratic, Cracked 3 X 3 16 6 10 10 

Quadratic, Uncracked 2 X 2 16 4 12 10 

Quadratic, Cracked 2 X 2 16 8 8 8 
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Table 3.5 
ELEMENT STIFFNESS EIGENVALUE ANALYSIS (Randomly Oriented Cracks) 

Element Integrated Total Number of Zero 
Order DOF Eigenvalues 

Linear, Unc.racked 2 X 2 8 3 

Linear, Cracked 2 X 2 8 3 

Quadratic, Uncracked 3 X 3 16 3 

Quadratic, Cracked 3 X 3 16 3 

Quadratic, Uncracked 2 X 2 16 4 

Quadratic, Cracked 2 X 2 16 8 

Table 3.6 
EFFECTS OF NORMAL STIFFNESS REDUCTION FACTOR 

Normalized Tip Deflection (See Fig . 3.35) 
. 

-5 -3 
a = 0 a = 10 a = 10 

I 
Top Bottom Top Bottom Top Bottom 

4 Node 1.0 2.47 1.0 2.47 0.976 2. 37 

8 Node (3x3) 1.35 7. 72 1. 34 7.63 0.85 3. 72 

8 Node (2x2) >10 10 >10 10 310 1301 3.26 13.18 



68 

"[ypical Triangular 
Concrete Element 

Typical Triangular 
Stee I Elements 

Stee I Reinforcement 

Fig. 1.1 -Finite Element Model for Reinforced Concrete Beam, 
Ngo and Scordelis (25). 

Fig. 1.2 - Discrete Representation of a Single Crack, 
Ngo and Scordelis (25). 
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Fig. 1.3 - Discrete Crack Representation with Spring Elements 
to Model Aggregate Interlock, Ngo, Scordelis, and 
Franklin (26). 
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-\, +Edge of 
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(a) Exterior Crack 
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Edge of 
Concrete 

(b) lnteri or Crack 

Fig. 1.4 - Discrete Crack Representation at Interior and 
Exterior Grid Points, Nilson (24). 
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0 

Fig. 1.5 -Discrete Representation of Two Cracks, Al-Mahaidi (1). 

Fig. 1.6 - Interpretation of the Smeared Crack Model. 
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Fig. 2.1 - Bar Element for Reinforcement 
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Fig. 2.2 - Linear, Four Node, Isoparametric Element. 
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Fig. 2. 3 - Quadratic, Eight Node, Isoparametric Element. 
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F . 2 4 Gauss Point Location for 2x2 Integration in lg. . -
Isoparametric Coordinates. 
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Fig. 2.5 - Gauss Point Location for 3x3 Integration in Isoparametric 
Coordinates. 
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Fig. 2.6 - Single Degree of Freedom Hepresentation 
of the Newton-Raphson Solution Procedure. 
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Fig. 3.1 - Uniaxial Stress-Strain Curve for Reinforcing Steel. 
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cracking with no steel yielding 

--elastic pre-crack 

Deflection 

Fig. 3.2- Qualitative Load-Deflection Response for 
All Span-to-Depth Ratios. 
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4 node elements distributed load 
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Fig. 3.3 - Load-Deflection Curves for Slender Beam, Distributed Load, 
Linear Elements. 
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0.50.------------------------------------, 
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8 node elements distributed load 
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Fig. 3.4 - Load-Deflection Curves for Slender Beam, Distributed 
Load, Quadratic Elements (Reduced Integration). 
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Fig. 3.7- Comparison of Load-Deflection Curves for Slender Beam, 
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with Reduced Integration. 
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4 node elements point load 
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Fig. 3.8 - Load-Deflection Curves for Slender Beam, 
Concentrated Load, Linear Elements. 
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Fig. 3.9 - Load-Deflection Curves for Slender Beam, Concentrated 
Load, Quadratic Elements (Reduced Integration). 
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Fig. 3.11 Crack Patterns for Slender Beam, Concentrated Load, Quadratic Elements 
(Reduced Integration). 
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Element Type Comparison For 
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Fig. 3.12 - Comparison of Load-Deflection Curves for Slender Beam, 
Concentrated Load, Linear Elements and Quadratic Elements 
with Reduced Integration. 
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Fig. 3.13 - Load-Deflection Curves for Moderate Beam, 
Distributed Load, Linear Elements. 
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Fig. 3.14 - Load-Deflection Curves for Moderate Beam, 
Distributed Load, Quadratic Elements 
(Reduced Integration) 
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Note: Cracking Pattern for w = l .7 k/in 
Crack Contours: 

w "' 0.5 k/in 
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Fig. 3.15- Crack Patterns for Moderate Beam, Distributed Load, Linear Elements. 
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Note: Cracking Pattern for w = I . 7 k/in 
Crack Contours: 
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Fig. 3.16- Crack Patterns for-Moderate Beam, Distributed Load, Quadratic Elements 
(Reduced Integration). 
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Element Type Comparison For 
Distributed Load - Fine Meshes 
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Fig. 3.17 - Comparison of Load-Deflection Curves for Moderate Beam, 
Distributed Load, Linear Elements and Quadratic Elements 
with Reduced Integration. 
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Fig. 3.18 - Load-Deflection Curves for Moderate Beam, Concentrated 
Load, Linear Elements. 
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Fig. 3.19 - Load-Deflection Curves for Moderate Beam, Concentrated 
Load, Quadratic Elements (Reduced Integration). 



Note: Cracking Pattern for P = 60 k 
Crack Contours: 

p = 20 k 
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Fig. 3.20- Crack Patterns for Moderate Beam, Concentrated Load, Linear Elements. 
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Note: Cracking Pattern for P = 60 k 
Crack Contours: 

p 6 20 k 
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Fig. 3.21 - Crack Patterns for Moderate Beam, Concentrated Load, Quadratic Elements 
(Reduced Integration). 
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Fig. 3.22- Comparison of Load-Deflection Curves for the Moderate Beam, 
Concentrated Load, Linear Elements and Quadratic Elements 
with Reduced Integration. 
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Fig. 3.23 -Load-Deflection Curves for Deep Beam, Distributed Load, 
Linear Elements 
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Fig. 3.24 -Load-Deflection Curves for the Deep Beam, Distributed 
Load, Quadratic Elements (Reduced Integration). 
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Fig. 3.25- Load-Deflection Curves for the Deep Beam, Distributed 
Loa~ Quadratic Elements (Full Integration). 
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Note: Cracking Pattern for W = 8 k/in 
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Fig. 3.26 - Crack Patterns for Deep Beam, Distributed Load, 
Linear Elements. "' '-" 
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Fig. 3.27- Crack Patterns for Deep Beam, Distributed Load, Quadratic Elements (Full. Integration). 
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Fig. 3.28 - Comparison of Load-Deflection Curves for the Deep Beam, 
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Fig. 3.29- Load-Deflection Curves for the Deep Beam, Concentrated 
Load, Linear Elements. 
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Fig. 3.30- Load-Deflection Curves for the Deep Beam, Concentrated Load, 
Quadratic Elements (Reduced Integration). 
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Fig. 3#31- Crack Patterns for Deep Beam, Concentrated Load, Quadratic Elements (Reduced Integration). 
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Fig. 3.32- Load-Deflection Curves for the Deep Beam, Concentrated 
Load, Quadratic Elements with Reduced Integration, 
Mid-Span Only Deflection. 
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Fig. 3.33 - Load-Deflection Curves for the Deep Beam, Concentrated 
Load, Quadratic Elements, (Full Integration). 
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Note: Cracking Patterns for P = 160k 
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Fig. 3.35- Crack Patterns for Deep Beam, Concentrated Load, Quadratic Elements (Full Integration). 
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Fig. 3.37 - Test Problem for Determination of Cracked Element 
Stiffness Characteristics. 
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Fig. 3.38 - Effect of Load Increment Size on Load-Deflection Curves. 
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Fig. 3.39 - Effect of Load Increment Size and Grid Refinement on 
Load-Deflection Curves. 
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Fig. 3.4lb - Effect of Load Increment Size and Element Type, 
Continued. 
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Fig. 3.42 - Effect of Concrete Tensile Strength on Load-Deflection 
Curves. 
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{de} 

(dcr} 

[DT] 
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APPENDIX A 

NOTATION 

matrix relating strains at a point to 

nodal displacements 

differential strain vector 

in material coordinates: de 1 , de 2 , dy12 
in local (element) coordinates: de de dv 

x' y' 'xy 

differential stress vector 

in material coordinates: dcr
1

, da
2

, dt
12 

in local (element) coordinates: dcr , da , dt 
X y xy 

incremental (tangent) constitutive matrix 

Young's modulus 

concrete tensile strength 

shear modulus 

energy release rate 

critical energy release rate 

vector of nodal forces required to maintain an 

element or structure in its deformed configuration 

tangent structure stiffness matrix 

total nodal load vector 

residual nodal load vector 

total nodal displacements 

normal stiffness reduction factor 

shear stiffness reduction factor 

vector of incremental nodal loads 

vector of incremental nodal displacements 
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118 Notation 

(e) vector of strains at a point 

in material coordinates: "1' "2' )'12 
in local (element) coordinates: e x' e 

y' >'xy 

v Poisson's ratio 

(a) vector of stresses at a point 

in material coordinates: a1' a2, '12 
in local (element) coordinates: a x' ay, 1 xy 




