DEVELOPMENT LENGTH CRITERIA FOR CONVENTIONAL AND HIGH RELATIVE RIB AREA REINFORCING BARS

By David Darwin Jun Zuo Michael L. Tholen Emmanuel K. Idun

A Report on Research Sponsored by

THE CIVIL ENGINEERING RESEARCH FOUNDATION Contract No. 91-N6002

THE NATIONAL SCIENCE FOUNDATION Research Grants No. MSS-9021066 and CMS-9402563

THE REINFORCED CONCRETE RESEARCH COUNCIL Project 56

STRUCTURAL ENGINEERING AND ENGINEERING MATERIALS SL REPORT 95-4

UNIVERSITY OF KANSAS CENTER FOR RESEARCH, INC. LAWRENCE, KANSAS MAY 1995

LEGAL NOTICE

This report was prepared by the University of Kansas Center for Research, Inc. as an account of work sponsored by the Civil Engineering Research Foundation (CERF) and the National Science Foundation (NSF).

Neither CERF, nor any persons acting on behalf of either:

- a. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any apparatus, method, or process disclosed in this report may not infringe third party rights; or
- b. Assumes any liability with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this report.
- c. Makes any endorsement, recommendation or preference of specific commercial products, commodities or services which may be referenced in this report.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

DEVELOPMENT LENGTH CRITERIA FOR CONVENTIONAL AND HIGH RELATIVE RIB AREA REINFORCING BARS

ABSTRACT

Statistical analyses of 133 splice and development specimens in which the bars are not confined by transverse reinforcement and 166 specimens in which the bars are confined by transverse reinforcement are used to develop an expression for the bond force at failure as a function of concrete strength, cover, bar spacing, development/splice length, transverse reinforcement, and the geometric properties of the developed/spliced bars. The results are used to formulate design criteria that incorporate a reliability-based strength reduction (ϕ) factor that allows the calculation of a single value for both development and splice length for given material properties and member geometry.

The analyses demonstrate that the relationship between bond force and development or splice length, l_d , is linear but not proportional. Thus, to increase the bond force (or bar stress) by a given percentage requires more than that percentage increase in l_d . $f'_c l^{1/2}$ does not provide an accurate representation of the effect of concrete strength on bond strength; development/splice strengths are underestimated for low strength concretes and overestimated for high strength concretes. $f'_c l^{1/4}$ provides an accurate representation of the effect of concrete strength on bond strength on bond strength for concretes with compressive strengths between 2,500 and 16,000 psi (17 and 110 MPa). The most accurate representation of the effect of transverse reinforcement on bond strength obtained in the current analysis includes parameters that account for the number of transverse reinforcing bars that cross the developed/splice bar, the area of the transverse reinforcement, the number of bars developed or spliced bar. The yield strength of transverse reinforcement does not play a role in the effectiveness of the transverse reinforcement in improving development/splice strength. The development/splice lengths obtained with the expressions presented in this report are uniformly lower than those obtained under the provisions of ACI 318-89 for both conventional and high

relative rib area reinforcement. Depending on the design expression selected, for conventional and high relative rib area bars that are not confined by transverse reinforcement, development lengths average 2 to 14 percent higher and splice lengths average 12 to 22 percent lower than those obtained with the criteria proposed for ACI 318-95. For conventional reinforcing bars confined by transverse reinforcement, development lengths average 5 percent lower to 16 percent higher than those obtained using ACI 318-95, while splice lengths average 11 to 27 percent lower than those obtained with ACI 318-95. For high relative rib area reinforcing bars confined by transverse reinforcement, development lengths average 3 to 17 percent lower than those obtained using ACI 318-95. When confined by transverse reinforcement, high relative rib area bars require development and splice lengths that are 13 to 16 percent lower than required by conventional bars.

Keywords: bond (concrete to reinforcement); bridge specifications; building codes; deformed reinforcement; development; lap connections; reinforcing steels; relative rib area; reliability; splic-ing; structural engineering.

ACKNOWLEDGEMENTS

Support for this research was provided by the Civil Engineering Research Foundation under CERF Contract No. 91-N6002, the National Science Foundation under NSF Grants No. MSS-9021066 and CMS-9402563, the U.S. Department of Transportation-Federal Highway Administration, the Reinforced Concrete Research Council under RCRC Project 56, ABC Coating, Inc., Birmingham Steel Corporation, Chaparral Steel Company, Fletcher Coating Company, Florida Steel Corporation, Morton Powder Coatings, Inc., North Star Steel Company, O'Brien Powder Products, Inc., and 3M Corporation. Support was also provided by Geiger Ready-Mix, Iron Mountain Trap Rock Company, and Richmond Screw Anchor Company.

INTRODUCTION

The provisions that are proposed for Chapter 12 of the new ACI Building Code (ACI 318-95) will make the design process easier and will reflect development and splice strength better than any previous code procedures. The new expressions are based, in part, on a statistical analysis carried out 20 years ago (Orangun, Jirsa, and Breen 1975) and on recommendations based on that analysis provided by ACI Committee 408 (1990). As with previous versions of the ACI Code, the calculated development/splice lengths are proportional to the bar stress (the actual relationship is linear but not proportional), and most splice lengths are 30 percent greater than the corresponding development lengths.

Over the past 20 years, additional data has become available, and analyses of the expanded data base (presented in this report) have exposed a number of shortcomings in the ability of both the code expressions (old and new) and the original statistically based expressions to accurately represent the development and splice strength of reinforcing bars, as used in current practice. Specifically, the analyses demonstrate that 1) the square root of the concrete compressive strength, f'c, does not accurately characterize the effect of concrete strength on bond strength and 2) the yield strength of transverse reinforcement, f_{yt}, plays no measurable role in the contribution of confining steel to bond strength. In addition, the study by Orangun et al. (1975, 1977) and a more recent study by Darwin, McCabe, Idun, and Schoenekase (1992a, 1992b) have the drawback of inadvertently including top-cast and side-cast bar specimens in analyses representing bottom-cast reinforcement. Only bottom-cast bars are considered in the current study.

The current analyses were carried out in conjunction with a large-scale experimental study to improve the development characteristics of reinforcing bars (Darwin and Graham 1993a, 1993b, Darwin, Tholen, Idun, and Zuo 1995a) and have several advantages over the earlier studies: 1) the data base is larger (Chinn et al. 1955, Chamberlin 1956, 1958, Mathey and Watstein 1961, Ferguson and Thompson 1965, Ferguson and Breen 1965, Thompson et al. 1975, Zekany et al. 1981, Choi et al. 1990, 1991, DeVries et al. 1991, Hester et al. 1991, 1993, Rezansoff et al. 1991, 1993, Azizinamini et al. 1993, 1995, Darwin et al. 1995a), including 133 splice and development specimens in which the bars are not confined by transverse reinforcement and 166 specimens in which the bars are confined by transverse reinforcement; 2) the concrete strengths cover a broader range, from 1820 psi to 15,760 psi, than used in the earlier studies; and 3) the data includes bars with a wide range of relative rib area (ratio of bearing area of ribs to shearing area between ribs), R_r , a parameter that has been demonstrated to significantly affect the added bond strength provided by transverse reinforcement (Darwin and Graham 1993a, 1993b, Darwin et al. 1995a).

This report describes the development of a statistically-based expression that accurately represents the development and splice strength of reinforcing bars, both with and without confining reinforcement, for values of f'_c between 2,500 and 16,000 psi (17 and 110 MPa). In addition to transverse reinforcement and concrete strength, the expression takes into account cover, bar spacing, development/splice length, and the geometric properties of the developed/spliced bars. The expression is used to formulate design criteria that incorporate a reliability-based strength reduction (ϕ) factor (Darwin, Idun, Zuo, and Tholen 1995b) that allows the calculation of a single value for both splice and development length for given material properties and member geometry. Compared to current design practice (ACI 318-89, ACI 318-95, AASHTO Highway 1992), the new design criteria provide major reductions in the development lengths of high relative rib area bars confined by transverse reinforcement and in the splice lengths of conventional and high relative rib area bars under all conditions of confinement.

OVERVIEW

The statistical analyses and development of design criteria that are described in this report are based on a model in which the maximum bond force in a developed or spliced bar, T_b , is expressed as the sum of a "concrete contribution," T_c , which is a function of concrete strength, member geometry, and bar size, and a "steel contribution," T_s , which is a function of concrete

2

strength, the geometric properties of the developed bar, and the geometry of the confining reinforcement in the development/splice region.

$$T_{b} = T_{c} + T_{s} \tag{1}$$

Eq. 1 serves as the basis for the basic analysis, that, when complete, is used to formulate design expressions that can be used to calculate development/splice length, l_d .

The calculation of the concrete contribution, T_c , builds on earlier work (Orangun et al. 1975, 1977, Darwin et al. 1992a, 1992b). The analysis initially proceeds by determining the best statistical match between the total bond force for bars not confined by transverse reinforcement, $T_c = A_b f_s$, in which $A_b = bar$ area, and $f_s = bar$ stress at development or splice failure, and the product of I_d , the development or splice length, and $c_m + 0.5 d_b$, the smaller of the cover to the center of the bar ($c_b + 0.5 d_b$) or half the center-to-center bar spacing ($c_s + 0.5 d_b$), in which $c_b = cover$, $c_s = one-half$ of the clear spacing between bars, and $d_b = bar$ diameter. Next, adjustments are made to take into account the fact that bond strength increases with respect to the product $I_d(c_m + 0.5 d_b)$ as the difference between c_b and c_s increases.

The initial analysis is carried out using (as is traditional) $f'_c{}^{1/2}$ to represent the effect of concrete strength on bond strength. The resulting expression is tested for f'_c between 2610 and 15,120 psi (18 and 104 MPa), and the power of f'_c is adjusted to provide an improved representation for bond strength.

The new expression for T_c is then used to calculate the steel contribution, T_s , in development/splice tests for members containing confining reinforcement. This is done by subtracting the calculated value of the concrete contribution from the experimental bond force, T_b .

$$T_s = T_b - T_c \tag{2}$$

 T_s is correlated with the concrete strength, the geometric properties of the transverse

reinforcement, and the geometric properties of the developed/spliced bars to obtain an accurate representation of the increase in bond strength provided by the confining steel. The evaluation includes the establishment of limits within which the expressions give conservative predictions of strength.

The resulting expressions for bond force for developed/spliced bars, both with and without confining reinforcement, are then combined with a reliability-based strength reduction (ϕ) factor (Darwin, Idun, Zuo, and Tholen 1995b) to obtain design expressions for l_d . The expressions include the effect of relative rib area, R_r , and, thus, can be used to take advantage of the increased bond strength obtainable with high R_r bars. The development and splice lengths obtained with the new expressions are then compared to those obtained with ACI 318-89 and the newly proposed expressions for ACI 318-95.

The test specimens used in the analyses are limited to splice and development specimens for which concrete properties are characterized by the compressive strength of standard cylinders (ASTM C-39).

EXPRESSIONS FOR DEVELOPMENT/SPLICE STRENGTH

Bars without Confining Reinforcement

The work reported here represents the final results of a series of analyses using 133 development and splice specimens containing bottom-cast bars. The techniques used in the analyses and the data supporting the results presented here are summarized in Appendix A.

Using $f'_c^{1/2}$ to represent the effect of concrete compressive strength on bond strength produces the following expression for total bond force for bars not confined by transverse reinforcement:

$$\frac{T_c}{f'_c} = \frac{A_b f_s}{f'_c} = [8.76 \, l_d \, (c_m + 0.5 \, d_b) + 187 \, A_b] \left(0.14 \, \frac{c_M}{c_m} + 0.86 \right)$$
(3)

in which $c_m, c_M = minimum$ or maximum value of c_s or c_b ($c_M/c_m \le 3.5$), in in.

- $c_s = \min(c_{si} + 0.25 \text{ in., } c_{so}), \text{ in in.}$
- c_{si} = one-half of clear spacing between bars, in in.
- c_{so} , c_b = side cover or bottom cover of reinforcing bars, in in.
- T_c is in lb, A_b is in in.², and f_s , f'_c and f'_c ^{1/2} are in psi.

Eq. 3 is obtained following the procedures of Darwin et al. (1992a, 1992b). A best fit is obtained between $T_c/f'_c{}^{1/2}$ and the product $l_d (c_m + 0.5 d_b)$ using a dummy variables analysis (Draper and Smith 1981) in which the data are separated based on bar size. The results of the analysis are then used to improve the fit by including a weighted average coefficient to represent the area of the bar, A_b . Unlike the earlier analysis (Darwin et al. 1992a, 1992b), the effects of differences in c_m and c_M are evaluated after the coefficient for A_b is obtained.

The term (0.14 $c_M/c_m + 0.86$) is obtained based on a best-fit analysis comparing the test/prediction ratios (obtained using the term in brackets on the right side of Eq. 3 as the predicted strength) with the ratio c_M/c_m . The term takes into account the increased strength observed in the tests when $c_m \neq c_M$. When determining c_s , 0.25 in.(6 mm) is added to c_{si} , one-half of the clear spacing between the bars, because the extra 0.25 in. (6 mm) gives an improved match with the test data. The fact that the effective value of c_{si} is slightly larger than one-half of the clear spacing is likely due to the longer effective crack lengths that occur when concrete splits between the bars (Fig. 1) (Darwin et al. 1992a, 1992b).

When the test results used to develop Eq. 3 are reevaluated based on categories of concrete strength, the specimens with the lowest strength concretes produce the highest relative strengths, as shown in Table 1a and Fig. 2. For the categories of concrete strengths evaluated, from below 3000 psi (21 MPa) to over 10,000 psi (69 MPa), the intercepts on the vertical axis decrease as the concrete strength increases. The line representing concrete with compressive strengths above 10,000 psi (69 MPa) is significantly below that of the rest of the data. The comparisons show that $f'_c 1/2$ gives a good representation for concrete strengths between 4500 and 7500 psi (31 and 52 MPa). Outside of this range, $f'_c 1/2$ does not give a good representation.

Based on this observation, a series of reanalyses were carried out to determine the power of f'_c that would minimize the spread in the data. The reanalyses showed that f'_c to the 0.24 power provided the best match. For (obvious) reasons of convenience, the 1/4 power was selected for further analysis.

Using the 1/4 power, the best-fit equation is

$$\frac{T_{c}}{f'_{c}} = \frac{A_{b}f_{s}}{f'_{c}} = [63 l_{d} (c_{m} + 0.5 d_{b}) + 2130 A_{b}] \left(0.1 \frac{c_{M}}{c_{m}} + 0.9\right)$$
(4)

in which $f'_c^{1/4}$ is in psi.

As illustrated in Table 1b and Fig. 3, Eq. 4 produces significantly less scatter as a function of compressive strength than does Eq. 3. The best-fit lines for all categories of concrete strength nearly coincide, with the exception of the specimens with concrete strengths in excess of 10,000 psi (69 MPa). This deviation is largely the result of the limited amount of data for development/splice tests using high-strength concrete. Two relatively low splice strengths have a dominant effect on the results for this category. If those two tests are removed, all strength categories produce nearly coincident best-fit lines (Table 1c).

Table 2 provides a summary of the geometric and material properties of the specimens used to develop Eqs. 3 and 4, the test results for those specimens, and the predicted strengths based on Eqs. 3 and 4. As shown in Table 2, the mean ratio of test to predicted strength is 1.00 using both the 1/2 and the 1/4 power of f'_c, with a coefficient of variation (COV) of 0.138 using the 1/2 power of f'_c and a COV of 0.107 using the 1/4 power.

Bars with Confining Reinforcement

Eq. 2 is used to determine the additional bond strength provided by transverse reinforcement, T_s . The concrete contribution to bond strength, T_c , given in Eq. 4, is subtracted from the experimental bond force, T_b . The results for 166 specimens in which the developed/spliced bars were confined by transverse reinforcement were initially used for this analysis. During the course of the analysis, it was established that especially low strengths, with respect to any predictive equations, were exhibited by specimens with $l_d/d_b < 16$. Therefore, 32 specimens with $l_d/d_b < 16$ have been removed from the analysis, leaving 134 specimens for the analysis described next. The removal of these specimens does not hurt the overall evaluation, since members with such low values of l_d/d_b are not used in practice.

Correlations of T_s with several combinations of potential controlling parameters are evaluated. Principal among these parameters are the yield strength of the transverse reinforcement, f_{yt} , and the "effective transverse reinforcement" per developed/spliced bar, NA_{tr}/n , in which N = the number of transverse reinforcing bars (stirrups or ties) crossing l_d ; A_{tr} = area of each stirrup or tie crossing the potential plane of splitting adjacent to the reinforcement being developed or spliced; and n = number of bars being developed or spliced along the plane of splitting. The value of n is determined by the smaller of c_b or c_s . If c_b controls, the plane of splitting passes through the cover and n = 1. If c_s controls, the plane of splitting intersects all of the bars and n = the total number of bars spliced or developed at one location. Also included in the analysis are parameters representing the effect of the relative rib area, t_r , and the bar size, t_d , of the developed/spliced bar on T_s .

$$t_r = 9.6 R_r + 0.28 \tag{5}$$

$$t_d = 0.72 \, d_b + 0.28 \tag{6}$$

Eqs. 5 and 6 are based on an analysis of test results for 70 splice specimens containing No. 5, No. 8, and No. 11 (16, 25, 36 mm) bars confined by transverse reinforcement with relative rib areas, R_r , ranging from 0.065 to 0.14. The details of the development of Eqs. 5 and 6 are presented by Darwin, Tholen, Idun, and Zuo (1995a). For conventional reinforcement, t_r typically ranges from 0.82 to 1.11 (for R_r from 0.056 to 0.086), with an average value of 0.98 (for the average value of $R_r = 0.0727$, supporting data presented in Appendix B). $t_d = 0.73$, 1.00, and 1.295 for No. 5, No. 8, and No. 11 (16, 25, 36 mm) bars, respectively.

To determine the principal controlling parameters, T_s is compared to four combinations of the parameters, $NA_{tr}f_{yt}/n$, NA_{tr}/n , t_rNA_{tr}/n , and $t_rt_dNA_{tr}/n$. The first of these variables, $NA_{tr}f_{yt}/n$, is incorporated in the revisions proposed for Chapter 12 of ACI 318-95 to represent the effect of confining reinforcement on bond strength. (Note: In ACI 318-95, $N = l_d/s$, in which s = spacing of transverse reinforcement.)

In carrying out the analyses, distinct differences are observed in the test results for different investigators. For example, the bond strengths obtained by Rezansoff et al. (1991, 1993) are consistently higher than those obtained by Choi et al. (1990, 1991), Hester et al. (1991, 1993), and Darwin et al. (1995a). The differences, in all likelihood, are due to differences in concrete properties and, perhaps, testing procedures. The effect of concrete properties on bond strength is demonstrated by Darwin et al. (1995a) who observed 35 to 45 percent changes in the effectiveness of transverse reinforcement with a change in coarse aggregate. To remove the variation caused by differences in concrete properties or other differences between test sites, the study uses a dummy variables analysis in which the data is separated based on test site and bar size.

Of the 134 specimens used in the analysis, the value of R_r is known for 85 specimens, based on measurements made on the bars or based on data provided in the original papers. For the balance of the bars, the mean values of R_r for bars of that size (Appendix B) are used. The mean values, 0.0752 for No. 5 (16 mm) bars, 0.0748 for No. 6 (19 mm) bars, 0.0731 for No. 8 (25 mm) bars, and 0.0674 for No. 11 (36 mm) bars, are based on bar samples measured in studies dating to 1987 (Choi et al. 1990, 1991, Hester et al. 1991, 1993, Darwin et al. 1995a), including bar samples provided by other researchers (Rezansoff et al. 1991, 1993, Azizinamini et al. 1995). The overall average value of R_r , 0.0727, represents No. 5 and larger bars. $R_r = 0.0727$ is used for bar sizes other than No. 5, No. 6, No. 8, and No. 11 (16, 19, 25, 36 mm), if individual data is not available. For "metric bars" included in the data base (Rezansoff et al. 1991, 1993), nominal metric sizes are converted exactly to customary units for the analysis. The values of all variables for the full 166 specimen data set are detailed in Table 5.

The results of the analyses with the four combinations of variables are shown in Figs. 4-7

8

and Table 3. For the analysis, T_s is in lb, f_{yt} , f'_c and $f'_c^{1/4}$ are in psi, and A_{tr} is in in.². The data base includes specimens with concrete strengths between 1820 and 15,760 psi (13 and 109 MPa) and bars with relative rib areas between 0.059 and 0.14. Figs. 4-7 and Table 3 demonstrate that considerable differences exist from study to study.

Based on the dummy variables analyses and using the weighted mean intercepts at $T_s/f'_c^{1/4}$ = 0, the best-fit expressions for the four combinations are

$$\frac{T_s}{f'_c^{1/4}} = 26.7 \frac{NA_{tr}f_{yt}}{n} + 355$$
(7)

with a coefficient of determination $r^2 = 0.757$.

$$\frac{T_s}{f'_c^{1/4}} = 2391 \frac{NA_{tr}}{n} + 89$$
(8)

with $r^2 = 0.787$.

$$\frac{T_s}{f'_c} = 2093 t_r \frac{NA_{tr}}{n} + 110$$
(9)

with $r^2 = 0.840$.

$$\frac{T_s}{f'_c^{1/4}} = 1867 t_r t_d \frac{NA_{tr}}{n} + 177$$
(10)

with $r^2 = 0.839$.

The closer the coefficient of determination, r^2 , is to 1.0, the better the correlation between $T_s/f'_c^{1/4}$ and the selected combination of parameters. r^2 is lowest (0.757) when NA_{tr}f_{yt}/n is used to represent the effect of transverse reinforcement on bond strength (Eq. 7). Removal of f_{yt} from the controlling variable (Eq. 8) improves r^2 to 0.787. The fact that such an improvement would occur makes sense, since it has been amply demonstrated that transverse reinforcement rarely

yields during a splice or development failure (Maeda et al. 1991, Sakurada et al. 1993, Azizinamini et al. 1995). The addition of the term t_r to the analysis (Eq. 9), as supported by the experimental work of Darwin et al. (1995a), improves r^2 to 0.840, while the addition of the term t_d (Eq. 10), also supported by Darwin et al. (1995a), drops r^2 slightly to 0.839. For reasons that will be clear shortly, Eq. 10 is used for the next step in the analysis.

Combining Eq. 4 and Eq. 10, replacing N by l_d/s , dropping the mean intercept of 177, and solving for the development /splice length, l_d , gives

$$I_{d} = \frac{A_{b} \left[\frac{f_{s}}{f'_{c}} - 2130 \left(0.1 \frac{c_{M}}{c_{m}} + 0.9 \right) \right]}{63 \left[(c_{m} + 0.5 d_{b}) \left(0.1 \frac{c_{M}}{c_{m}} + 0.9 \right) + \frac{29.6 t_{r} t_{d} A_{tr}}{sn} \right]}$$
(11)

Modifying Eq. 11 to express ld in terms of bar diameter, db, gives

$$\frac{l_{d}}{d_{b}} = \frac{\frac{f_{s}}{f'_{c}^{1/4}} - 2130 \left(0.1 \frac{c_{M}}{c_{m}} + 0.9\right)}{80.2 \left(\frac{c + K_{tr}}{d_{b}}\right)}$$
(12)

in which $c = (c_m + 0.5 d_b)(0.1 c_M/c_m + 0.9)$ and $K_{tr} = 29.6 t_r t_d A_{tr}/sn$.

The term $(c + K_{tr})/d_b$ in the denominator of Eq. 12 is a measure of the assistance provided by concrete cover, bar spacing, and transverse reinforcement (ACI 318-95), increases in which result in an increase in bond strength. Increases in $(c + K_{tr})/d_b$, however, will eventually cause the mode of bond failure to switch from splitting to pullout, with bond strength limited by the strength of the concrete between the ribs of the bar rather than the clamping forces provided by surrounding concrete and steel. When this happens, bond strengths will drop in relation to the predicted strength.

Test-to-prediction ratios, based on the sum of Eqs. 4 and 10, are compared with (c +

 K_{tr} /d_b for the 134 tests with $l_d/d_b \ge 16$ in Fig. 8. The figure shows that the test/prediction ratios are consistently below 1.0 for values of $(c + K_{tr})/d_b > 3.75$. Based on this observation, a reanalysis was carried out using specimens with $(c + K_{tr})/d_b \le 3.75$. The results for the remaining 119 specimens are shown in Figs. 9-12 and Table 4.

Based on the dummy variables analysis and using the weighted mean intercepts at $T_s/f'_c^{1/4}$ = 0, the best-fit expressions for the four combinations are

$$\frac{T_s}{f'_c^{1/4}} = 30.3 \frac{NA_{tr}f_{yt}}{n} + 430$$
(14)

with $r^2 = 0.758$.

$$\frac{T_s}{f'_c} = 2521 \frac{NA_{tr}}{n} + 148$$
(15)

with $r^2 = 0.783$.

$$\frac{T_s}{f'_c} = 2412 t_r \frac{NA_{tr}}{n} + 71$$
(16)

with $r^2 = 0.853$.

$$\frac{T_s}{f'_c^{1/4}} = 2226 t_r t_d \frac{NA_{tr}}{n} + 66$$
(17)

with $r^2 = 0.857$.

In this case, the term $t_r t_d NA_{tr}/n$ (Eq. 17) provides the best coefficient of determination. Compared to Eqs. 7-10, the slopes have increased and, with the exception of Eq. 14 which contains the variable f_{yt} , the intercepts have decreased. Combining Eq. 17 with Eq. 4 gives the final expression for T_b .

$$\frac{T_{b}}{f_{c}^{\prime 1/4}} = \frac{T_{c} + T_{s}}{f_{c}^{\prime 1/4}} = \frac{A_{b}f_{s}}{f_{c}^{\prime 1/4}} = [631_{d}(c_{m} + 0.5 d_{b}) + 2130A_{b}] \left(0.1 \frac{c_{M}}{c_{m}} + 0.9\right) + 2226t_{r}t_{d} \frac{NA_{tr}}{n} + 66$$
(18)

Dropping the intercept, 66, and solving for ld in terms of Ab and db gives, respectively,

$$l_{d} = \frac{A_{b} \left[\frac{f_{s}}{f'_{c}} - 2130 \left(0.1 \frac{c_{M}}{c_{m}} + 0.9 \right) \right]}{63 \left[(c_{m} + 0.5 d_{b}) \left(0.1 \frac{c_{M}}{c_{m}} + 0.9 \right) + \frac{35.3 t_{r} t_{d} A_{tr}}{sn} \right]}$$
(19)

$$\frac{l_{d}}{d_{b}} = \frac{\frac{f_{s}}{f'c}^{1/4} - 2130\left(0.1\frac{c_{M}}{c_{m}} + 0.9\right)}{80.2\left(\frac{c + K_{tr}}{d_{b}}\right)}$$
(20)

in which $c = (c_m + 0.5 d_b)(0.1 c_M/c_m + 0.9)$ and $K_{tr} = 35.3 t_r t_d A_{tr}/sn$. Eqs. 20 and 12 are identical, except for the coefficient in the K_{tr} term.

A reanalysis of the data versus $(c + K_{tr})/d_b$ using Eq. 18 and the new definition of K_{tr} is shown in Fig. 13, illustrating that Eqs. 18-20 provide accurate predictions for specimens with $(c + K_{tr})/d_b \le 4.0$. Test/prediction ratios for all 166 specimens with transverse reinforcement in the data base are presented in Table 5. For the 119 specimens used to develop Eq. 18, the mean test/prediction ratio is 1.01, with a COV of 0.125; two of the specimens have $(c + K_{tr})/d_b > 4.0$. A comparison of the test results with the values predicted using Eq. 18 for the 117 specimens with $l_d/d_b \ge 16$ and $(c + K_{tr})/d_b \le 4.0$ is shown in Fig. 14.

Effect of Bar Stress on Development/Splice Strength

Concern has been expressed that yielding of developed/spliced bars will result in a reduc-

tion in bond strength (Orangun et al. 1975, Harajli 1994). An evaluation of the test results used in the current study shows that the concern is unwarranted.

Of the 133 test specimens without confining reinforcement, bars yielded in 11 specimens prior to bond failure. The mean test/prediction ratio based on Eq. 4 for the 11 tests is 0.99, with a COV of 0.107, comparing favorably to the mean of 1.00 and COV of 0.107 for the full set of data. Of the 119 bars used to develop Eq. 18, bars yielded in 20 specimens prior to bond failure. For those tests, the mean test/prediction ratio is 1.15, with a COV of 0.134, comparing very favorably with the mean of 1.01 and COV of 0.125 for the full set of 119 specimens. For the 99 tests with bars confined by transverse reinforcement that did not yield, the mean test/prediction ratio using Eq. 18 is 0.98, with a COV of 0.100.

Overall, the data indicates that if the development/splice length is long enough to cause the bar to yield, yielding has no effect on the bond strength of bars not confined by transverse reinforcement, and results in an increase in bond strength for bars that are confined by transverse reinforcement. The increase for bars with confining reinforcement may result from a more uniform state of bond stress along the length of the bar due to greater slip that accompanies yielding. This greater slip mobilizes clamping stresses in the transverse reinforcement along a greater length of the bar.

DESIGN EXPRESSIONS FOR DEVELOPMENT/SPLICE LENGTH

Strength Reduction (ϕ) Factor

Eqs. 18-20 serve as the basis for design expressions for development/splice length. Eqs. 19 and 20 cannot be used directly in design to calculate l_d because they are based on the best-fit (average) expression, Eq. 18. If used as presented, bond strength would be below the value predicted by Eq. 18 fifty percent of the time. Procedures exist, however, for insuring an adequate level of safety through the selection of a strength reduction factor (ϕ) based on the desired level of reliability.

Following the procedures of Ellingwood, Galambos, MacGregor, and Cornell (1980), Mirza and MacGregor (1986), and Lundberg (1993), a ϕ -factor of 0.9 for development and splice strength has been obtained using a reliability index, β , of 3.5 (Darwin et al. 1995b). This gives an overall probability of bond failure equal to about one-fifth of the probability of a flexural failure, for which $\beta = 3.0$ is normally obtained (Ellingwood et al. 1980). $\phi = 0.9$ is obtained using Eq. 18 without the final term, 66, as the design strength and Eq. 18 with the final term (if transverse reinforcement is used) as the predicted strength. Additional simplifications of Eq. 18, setting $c_M = c_m$ and dropping 0.25 in. from the definition of c_s , produce higher values of ϕ (Darwin et al. 1995b).

 $\phi = 0.9$ for bond is applied in addition to the ϕ -factor for the main load effect (e.g., 0.9 for flexure or 0.7 for tied columns) that is used to select the area and strength of the steel. Therefore, the total ϕ -factor against a primary mode of failure in bond is the product of 0.9 and the ϕ -factor for the main load effect.

Beside allowing the selection of a desired relative probability of failure, using a reliabilitybased ϕ -factor provides another important benefit. Since over 90 percent of the tests in the data base used to calculate ϕ are splice tests in which all of the bars are spliced at one location (a Class B splice in ACI 318-89 and ACI 318-95, and a Class C splice in AASHTO Highway 1992), $\phi = 0.9$ and Eqs. 18-20 are already calibrated based on splice strength. Therefore, the values of 1_d calculated using $\phi = 0.9$ apply to spliced, as well as developed bars, removing the requirement to multiply 1_d by 1.3 to obtain the length of a Class B splice (ACI 318-89, ACI 318-95) or by 1.7 to obtain the length of a Class C splice (AASHTO Highway 1992).

The design expressions presented in the next section start with the incorporation of ϕ on the right side of Eq. 18 (without the final term, 66) and the substitution of the bar yield strength, f_y , for f_s on the left side

$$\frac{A_{b}f_{y}}{f_{c}^{\prime 1/4}} = \phi \left\{ \left[63 l_{d} \left(c_{m} + 0.5 d_{b} \right) + 2130 A_{b} \right] \left(0.1 \frac{c_{M}}{c_{m}} + 0.9 \right) + 2226 t_{r} t_{d} \frac{NA_{tr}}{n} \right\}$$
(21)

Design Expressions

Using the formulation shown in Eq. 21, a detailed design expression in the form of Eq. 20 becomes

$$\frac{l_{d}}{d_{b}} = \frac{\frac{f_{y}}{\phi f'_{c}^{1/4}} - 2130 \left(0.1 \frac{c_{M}}{c_{m}} + 0.9\right)}{80.2 \left(\frac{c + K_{tr}}{d_{b}}\right)}$$
(22)

in which $c = (c_m + 0.5 d_b)(0.1 c_M/c_m + 0.9)$ and c_m , c_M , c_s , c_{si} , c_{so} , and c_b are defined

following Eq. 3 $K_{tr} = K_{tr}(conv.) = 34.5 t_d A_{tr}/sn = 34.5 (0.72 d_b + 0.28) A_{tr}/sn \text{ for conventional bars}$ (average R_r = 0.0727)

 $K_{tr} = K_{tr}(new) = 53 t_d A_{tr}/sn = 53 (0.72 d_b + 0.28) A_{tr}/sn \text{ for high relative rib area bars}$ (average R_r = 0.1275)

$$(c + K_{tr})/d_b \le 4.0$$

Incorporating $\phi = 0.9$ into Eq. 22 and conservatively rounding the coefficients gives

$$\frac{l_{d}}{d_{b}} = \frac{\frac{f_{y}}{f'_{c}^{1/4}} - 1900 \left(0.1 \frac{c_{M}}{c_{m}} + 0.9\right)}{72 \left(\frac{c + K_{tr}}{d_{b}}\right)}$$
(23)

Eq. 23 is the prototype for design equations based on Eq. 21. Different degrees of simplification are possible, depending on the application and the level of simplification desired.

One such simplification can be obtained by setting $c_M/c_m = 1$.

$$\frac{l_{d}}{d_{b}} = \frac{\frac{f_{y}}{f_{c}^{'1/4}} - 1900}{72\left(\frac{c+K_{tr}}{d_{b}}\right)}$$
(24)

in which $c = (c_m + 0.5 d_b)$.

In applying Eq. 24 to design, it would seem prudent to change the definition of the term c to the smaller of the cover to the center of the bar or one-half of the center-to-center bar spacing. The only change that this entails is dropping 0.25 in. from the definition of c_s that follows Eq. 3. The definitions of K_{tr} following Eq. 22 remain unchanged.

Following the lead of design criteria proposed for ACI 318-95, an alternate simplification of Eq. 23, for the case in which the clear spacing between bars being developed or spliced is not less than 2 d_b and the cover is not less than d_b [i.e., $(c + K_{tr})/d_b \ge 1.5$], is obtained by setting $(c + K_{tr})/d_b = 1.5$.

This gives

$$\frac{l_{d}}{d_{b}} = \frac{\frac{f_{y}}{f_{c}^{1/4}} - 1900}{108}$$
(25)

Since, except for shells, the minimum cover, c_b , for cast-in-place concrete is 0.75 in. (19 mm) and the minimum clear spacing, 2 c_{si} , is 1 in. (25 mm) (ACI 318-89, ACI 318-95), Eq. 25 provides the maximum value of l_d for No. 6 and smaller bars.

For bars with a cover not less than d_b and a clear spacing not less than 7 d_b (principally slabs), Eq. 23 can be conservatively simplified to

$$\frac{l_{d}}{l_{b}} = \frac{\frac{f_{y}}{f_{c}^{'1/4}} - 1900}{135}$$
(26)

 l_d from Eq. 26 is 80 percent of l_d calculated using Eq. 25. Because of the simplified format,

neither Eq. 25 nor Eq. 26 takes advantage of the higher value of K_{tr} provided by high relative rib area bars. Like the simplified format in ACI 318-95 (discussed in the next section), each of the two equations provides a single value of l_d/d_b for each combination of f_y and f'_c .

Comparison with Current Design Criteria

To illustrate the effects on development and splice lengths of both the newly proposed expressions and high relative rib area bars, values of l_d obtained with Eqs. 23-26 are compared with development and splice lengths calculated under the provisions of ACI 318-89 and the proposed provisions of ACI 318-95. Comparisons are limited to uncoated bottom-cast bars.

Eqs. 23-26 differ from current design criteria in several important respects: 1) The relationship between l_d and the steel stress f_s or f_y , is linear but nonproportional, rather than proportional as in current design expressions. The more accurate representation provided by Eqs. 23-26 results in values of l_d that are relatively shorter for $f_y < 60$ ksi (414 MPa) and relatively longer for $f_y > 60$ ksi (414 MPa) than obtained with current expressions. Eqs. 23-26 automatically account for the fact that, when f_y is increased by 25 percent from 60 to 75 ksi (414 to 517 MPa), l_d must be increased by more than 25 percent. 2) The effect of concrete strength on bond strength is represented by $f'_c^{1/4}$ rather than $f'_c^{1/2}$. The impact of this change is greatest for high strength concrete. The proposed expressions apply up to at least 16,000 psi (110 MPa); ACI 318-89 and ACI 318-95 effectively limit f'_c to 10,000 psi (69 MPa) by limiting the value of $f'_c^{1/2}$ to 100 psi (0.69 MPa). 3) Using Eqs. 23-26, splice length and development length are identical, removing the requirement to multiply l_d by 1.3 (ACI) or 1.7 (AASHTO) to obtain the length of most splices.

The key aspects of the development/splice length criteria of ACI 318-89 and ACI 318-95 are summarized next.

ACI 318-89-Under the provisions of ACI 318-89, the basic development length, l_{db} , is 0.04 $A_b f_y/f'_c ^{1/2}$ for No. 11 and smaller bars, 0.085 $f_y/f'_c ^{1/2}$ for No. 14 bars, and 0.125 $f_y/f'_c ^{1/2}$ for No. 18 bars. To obtain l_d , l_{db} is multiplied by 1) 1.0 for bars in beams and columns with a minimum specified cover, transverse reinforcement satisfying minimum stirrup and tie require-

ments, and a clear spacing not less than 3 d_b; bars in beams and columns with a minimum specified code cover and enclosed within transverse reinforcement $A_{tr} \ge d_b sN/40$, in which N = number of bars in a layer being spliced or developed at a critical section; bars in the inner layer of a slab or wall with a clear spacing $\ge 3 d_b$; or bars with cover $\ge 2 d_b$ and clear spacing $\ge 3 d_b$; 2) 2.0 for bars with cover $\le d_b$ or clear spacing $\le 2 d_b$; or 3) 1.4 for bars not covered under the previous criteria. An additional multiplier of 0.8 is allowed for No. 11 and smaller bars with clear spacing $\ge 5 d_b$ and side cover $\ge 2.5 d_b$. A 0.75 factor is used for closely-spaced transverse reinforcement (see ACI 318-89, Section 12.2.3.5). The basic development length multiplied by the applicable factors must be $\ge 0.03 d_b f_y/f'_c l^{1/2}$. Except when 50 percent or less of the reinforcement is spliced at one location and the area of steel provided is equal to or greater than twice the area required, the splice length is equal to 1.3 l_d.

ACI 318-95–Under the proposed provisions of ACI 318-95, two options are available for selecting development length. One involves a chart with selected expressions for l_d/d_b and the other involves the use of a more detailed expression for l_d/d_b . Under the proposed provisions for Section 12.2.2 for bottom-cast uncoated reinforcement, $l_d/d_b = f_y/(25 \text{ f}'_c^{1/2})$ (for No. 6 and smaller bars) and $f_y/(20 \text{ f}'_c^{1/2})$ (for No. 7 and larger bars) if the bars have 1) a clear spacing between bars $\geq d_b$, cover $\geq d_b$, and transverse reinforcement not less than the code minimums, or 2) clear spacing between bars $\geq 2 d_b$ and cover $\geq d_b$. For all other cases, $l_d/d_b = 3 f_y/(50 \text{ f}'_c^{1/2})$ for No. 6 and smaller bars and $3 f_y/(40 \text{ f}'_c^{1/2})$ for No. 7 and larger bars.

Under the provisions of Section 12.2.3

$$\frac{l_{d}}{d_{b}} = \frac{3}{40} \frac{f_{y}}{f_{c}^{'1/2} \left(\frac{c + K_{tr}}{d_{b}}\right)}$$
(27)

in which $K_{tr} = A_{tr}f_{yt}/(1500 \text{ sn})$, (c + K_{tr})/d_b ≤ 2.5 . Although K_{tr} is the same symbol as used in this study to represent the effect of transverse reinforcement, the value includes f_{yt} and does not correspond to the value in Eqs. 22-24.

The splice length criteria of ACI 318-89 are retained.

Bars not confined by transverse reinforcement-For bars not confined by transverse reinforcement, it is appropriate to compare the simplified expressions proposed for ACI 318-95 with the development and splice lengths obtained using Eqs. 25 and 26. For No. 7 bars and larger with clear spacing $\geq 2 d_b$ and cover $\geq d_b$ and 4000 psi concrete, l_d/d_b is 47.4 for developed bars and 61.7 for Class B splices, under the provisions of ACI 318-95, and 52.26 using Eq. 25 for both developed and spliced bars. Thus, using the proposed expression, l_d is 10 percent greater than under the provisions of ACI 318-95, while the splice length is 18 percent lower. The same percentages hold for the conditions under which Eq. 26 is applied. Overall, for normal strength concretes, Eqs. 25 and 26 provide greater development lengths, and shorter splice lengths than do the provisions of Section 12.2.2 of ACI 318-95. The increases in development length are more than matched by the reductions in splice length.

Comparisons of development and splice lengths obtained using Eqs. 23 and 24 with those obtained under the provisions of ACI 318-89 and the more detailed provisions of ACI 318-95 (Eq. 27) are presented in Table 6 for the 35 beam configurations used by Darwin et al. (1995b) to develop the reliability-based ϕ -factor. The tables cover concrete compressive strengths of 3000, 4000, and 6000 psi (21, 28, and 41 MPa) for developed or spliced No. 6, No. 8, No. 10, and No. 11 (19, 25, 32, and 36 mm) bars. The comparisons show that development lengths obtained with Eq. 24 (the more simplified of the two new expressions) are, on average, 95 and 114 percent of those obtained with ACI 318-89 and ACI 318-95, respectively. Development lengths obtained with Eq. 23 are, on average, 84 and 102 percent of those obtained with the two codes, respectively. The splice lengths obtained with Eq. 24 average 73 and 88 percent of those obtained with ACI 318-95, respectively, while those obtained with Eq. 23 are and 78 percent of those obtained with the two codes. These comparisons show that Eqs. 23 and 24 result in a small increase in development length and a substantial reduction in splice length compared to values obtained under the provisions proposed for ACI 318-95. Both development and splice lengths are lower than those obtained under ACI 318-89.

Bars confined by transverse reinforcement-Comparison of development and splice lengths obtained using Eqs. 23 and 24 with those obtained under the provisions of ACI 318-89 and ACI 318-95 are presented in Table 7 for the 140 beams with transverse reinforcement used to develop $\phi = 0.9$ (Darwin et al. 1995b). The comparisons include development lengths obtained with both conventional and high relative rib area reinforcement. The 140 beams used for the comparison are placed in four groups representing different degrees of transverse reinforcement and bar spacing. Concrete strengths and bar sizes are the same as used for the comparisons in Table 6. No. 3 and No. 4 (9.5 and 12.5 mm) bars are used as transverse reinforcement. The overall averages for all 140 beams show the following:

Effect of relative rib area. Limiting consideration to the effect of using high relative rib area bars (a savings not available under ACI 318-89 or ACI 318-95), the average ratios of l_d for high relative rib area bars to l_d for conventional bars are 0.87 and 0.84 using Eqs. 23 and 24, respectively. Therefore, depending on which of the expressions is used for the design, average reductions of 13 to 16 percent in development and splice length can be expected with the use of high relative rib area bars.

Comparisons with ACI 318-89. For conventional reinforcement, development lengths based on Eqs. 23 and 24 average 70 and 85 percent, respectively, of the development lengths obtained with ACI 318-89; the splice lengths obtained with the two expressions average 54 and 66 percent, respectively, of the splice lengths obtained with ACI 318-89. For high relative rib area bars, the development lengths based on Eqs. 23 and 24 average 61 and 72 percent, respectively, while the splice lengths average 47 and 55 percent, respectively, of the values obtained using ACI 318-89.

Comparisons with ACI 318-95. For conventional reinforcement, the development lengths average 95 and 116 percent for Eqs. 23 and 24, respectively, of those obtained using ACI 318-95; the splice lengths average 73 and 89 percent, respectively. For high relative rib area bars, the development lengths obtained with Eqs. 23 and 24 average 83 and 97 percent, respectively, of the development lengths obtained with ACI 318-95; the splice lengths average 64 and 75 percent,

20

respectively, of the splice lengths obtained with ACI 318-95. Overall, significant savings can be obtained with conversion to the new expressions. Even higher savings are available when Eqs. 23 and 24 are used in conjunction with high relative rib area bars.

SUMMARY AND CONCLUSIONS

Statistical analyses of 133 splice and development specimens in which the bars are not confined by transverse reinforcement and 166 specimens in which the bars are confined by transverse reinforcement are used to develop an expression for the bond force at failure as a function of concrete strength, cover, bar spacing, development/splice length, transverse reinforcement, and the geometric properties of the developed/spliced bars. The expression is valid for concrete strengths between 2,500 and 16,000 psi (17 and 110 MPa). The results are used to formulate design criteria that incorporate a reliability-based strength reduction (ϕ) factor that allows the calculation of a single value for both development and splice length for given material properties and member geometry.

The following conclusions are based on the analyses and comparisons made in this report.

1. The relationship between bond force and development or splice length, l_d , is linear but not proportional. Thus, to increase the bond force (or bar stress) by a given percentage requires more than that percentage increase in l_d .

2. $f'_c^{1/2}$ does not provide an accurate representation of the effect of concrete strength on bond strength. Development/splice strengths are underestimated for low strength concretes and overestimated for high strength concretes.

3. $f'_c^{1/4}$ provides an accurate representation of the effect of concrete strength on bond strength for concretes with compressive strengths between 2,500 and 16,000 psi (17 and 110 MPa).

4. The most accurate representation of the effect of transverse reinforcement on bond strength obtained in the current analysis includes parameters that account for the number of trans-

verse reinforcing bars that cross the developed/splice bar, the area of the transverse reinforcement, the number of bars developed or spliced at one location, the relative rib area of the developed/ spliced bar, and the size of the developed/spliced bar.

5. The yield strength of transverse reinforcement does not play a role in the effectiveness of the transverse reinforcement in improving development/splice strength.

6. With the incorporation of a reliability-based strength reduction (ϕ) factor, the design expressions for development and splice length are identical. The development/splice lengths obtained with the expressions presented in this report are uniformly lower than those obtained under the provisions of ACI 318-89 for both conventional and high relative rib area reinforcement.

7. Depending on the design expression selected:

a. For bars that are not confined by transverse reinforcement, development lengths average 2 to 14 percent higher and splice lengths average 12 to 22 percent lower than those obtained with ACI 318-95.

b. For conventional bars confined by transverse reinforcement, development lengths average 5 percent lower to 16 percent higher than those obtained using ACI 318-95, while splice lengths average 11 to 27 percent lower than those obtained with ACI 318-95.

c. For high relative rib area bars confined by transverse reinforcement, development lengths average 3 to 17 percent lower than those obtained using ACI 318-95, while splice lengths average 25 to 36 percent lower than those obtained with ACI 318-95. When confined by transverse reinforcement, high relative rib area bars require development and splice lengths that are 13 to 16 percent lower than required by conventional bars.

REFERENCES

ACI Committee 318. 1989. Building Code Requirements for Reinforced Concrete (ACI 318-89)

22

AASHTO Highway Sub-Committee on Bridges and Structures. 1992. Standard Specifications for Highway Bridges, 15th Edition, American Association of State Highway and Transportation Officials, Washington, DC, 686 pp.

and Commentary - ACI 318R-89, American Concrete Institute, Detroit, MI, 353 pp.

ACI Committee 318. 1994. "Proposed Revisions to Building Code Requirements for Reinforced Concrete (ACI 318-89) (Revised 1992) and Commentary – ACI 318R-89 (Revised 1992),"Concrete International, Vol. 16, No. 12, Dec., pp. 76-128. Cited as ACI 318-95.

ACI Committee 408. 1990. Suggested Development, Splice, and Standard Hook Provisions for Deformed Bars in Tension (ACI 408.1R-90), American Concrete Institute, Detroit, MI, 3 pp.

ASTM. "Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens (ASTM C 39-93a)," 1994 Annual Book of ASTM Standards, Vol. 4.02, American Society of Testing and Materials, Philadelphia, PA, pp. 17-21.

Azizinamini, A; Stark, M.; Roller, John J.; and Ghosh, S. K. 1993. "Bond Performance of Reinforcing Bars Embedded in High-Strength Concrete," ACI Structural Journal, Vol. 95, No. 5, Sept.-Oct., pp. 554-561.

Azizinamini, A; Chisala, M.; and Ghosh, S. K. 1995. "Tension Development Length of Reinforcing Bars Embedded in High-Strength Concrete," *Engineering Structures*, in press.

Chamberlin, S. J. 1956. "Spacing of Reinforcement in Beams," ACI Journal, *Proceedings* Vol. 53, No. 1, July, pp. 113-134.

Chamberlin, S. J. 1958. "Spacing of Spliced Bars in Beams," ACI Journal, *Proceedings* Vol. 54, No. 8, Feb., pp. 689-698.

Chinn, James; Ferguson, Phil M.; and Thompson, J. Neils 1955. "Lapped Splices in Reinforced Concrete Beams," ACI Journal, *Proceedings*, Vol. 52, No. 2, Oct., pp. 201-214.

Choi, Oan Chul; Hadje-Ghaffari, Hossain; Darwin, David, and McCabe Steven L. 1990. "Bond of Epoxy-Coated Reinforcement to Concrete: Bar Parameters," *SL Report* No. 90-1, University of Kansas Center for Research, Lawrence, Kansas, Jan., 43 pp.

Choi, Oan Chul; Hadje-Ghaffari, Hossain; Darwin, David, and McCabe Steven L. 1991. "Bond of Epoxy-Coated Reinforcement: Bar Parameters," *ACI Materials Journal*, Vol. 88, No. 2, March-April, pp. 207-217.

Darwin, D.; McCabe, S. L.; Idun, E. K.; and Schoenekase, S. P. 1992a. "Development Length Criteria: Bars without Transverse Reinforcement," *SL Report* 92-1, University of Kansas Center for Research, Lawrence, Kansas, April, 62 pp.

Darwin, D.; McCabe, S. L.; Idun, E. K.; and Schoenekase, S. P. 1992b. "Development Length Criteria: Bars Not Confined by Transverse Reinforcement," *ACI Structural Journal*, Vol. 89, No. 6, Nov.-Dec., pp. 709-720.

Darwin, D. and Graham, E. K. 1993a. "Effect of Deformation Height and Spacing on Bond Strength of Reinforcing Bars," *SL Report* 93-1, University of Kansas Center for Research, Lawrence, Kansas, January, 68 pp.

Darwin, D. and Graham, E. K. 1993b. "Effect of Deformation Height and Spacing on Bond Strength of Reinforcing Bars," ACI Structural Journal, Nov.-Dec., Vol. 90, No. 6, pp. 646-657.

Darwin, D.; Tholen, Michael L.; Idun, Emmanuel K.; and Zuo, Jun. 1995a. "Splice Strength of

High Relative Rib Area Reinforcing Bars," SL Report 95-3, University of Kansas Center for Research, Lawrence, Kansas, May, 58 pp.

Darwin, D.; Idun, Emmanuel K.; Zuo, Jun; and Tholen, Michael L. 1995b. "Reliability-Based Strength Reduction Factor for Bond," *SL Report* 95-5, University of Kansas Center for Research, Lawrence, Kansas, May, in press.

DeVries, R. A.; Moehle, J. P.; and Hester, W. 1991. "Lap Splice Strength of Plain and Epoxy-Coated Reinforcement," *Report* No. UCB/SEMM-91/02, University of California, Berkeley, California, Jan., 86 pp.

Ellingwood, Bruce; Galambos, Theodore V.; MacGregor, James G.; and Cornell, C. Allin. 1980. "Development of a Probability Based Criterion for American National Standard A58," *NBS Special Publication* 577, U.S. Dept. of Commerce, Washington, D.C., June, 222 pp.

Ferguson, Phil M. and Thompson, J. Neils. 1965. "Development Length of High Strength Reinforcing Bars," ACI Journal, *Proceedings*, Vol. 62, No. 1, Jan., pp. 71-94.

Ferguson, Phil M. and Breen, John E. 1965. "Lapped Splices for High Strength Reinforcing Bars," ACI Journal, *Proceedings*, Vol. 62, No. 9, Sept., pp. 1063-1078.

Harajli, M. H. 1994. "Development/Splice Strength of Reinforcing Bars Embedded in Plain and Fiber Reinforced Concrete," ACI Structural Journal, Vol. 91, No. 5, Sep.-Oct., pp. 511-520.

Hester, Cynthia J.; Salamizavaregh, Shahin; Darwin, David; and McCabe, Steven L. 1991. "Bond of Epoxy-Coated Reinforcement to Concrete: Splices," *SL Report* 91-1, University of Kansas Center for Research, Lawrence, Kansas, May, 66 pp.

Hester, Cynthia J.; Salamizavaregh, Shahin; Darwin, David; and McCabe, Steven L. 1993. "Bond of Epoxy-Coated Reinforcement: Splices," *ACI Structural Journal*, Vol. 90, No. 1, Jan.-Feb., pp. 89-102.

Lundberg, Jane E. 1993. "The Reliability of Composite Columns and Beam Columns," *Structural Engineering Report* No. 93-2, University of Minnesota, Minneapolis, Minnesota, June, 233 pp.

Maeda, M.; Otani, S.; and Aoyama, H. 1991. "Bond Splitting Strength in Reinforced Concrete Members," *Transactions of the Japan Concrete Inst.*, Vol. 13, pp. 581-588.

Mathey, Robert and Watstein, David 1961. "Investigation of Bond in Beam and Pull-Out Specimens with High-Yield-Strength Deformed Bars," ACI Journal, *Proceedings*, Vol. 32, No. 9, Mar., pp. 1071-1090.

Mirza, S. Ali and MacGregor, James G. 1986. "Strength Variability of Bond of Reinforcing Bars in Concrete Beams," *Civil Engineering Report Series* No. CE-86-1, Lakehead University, Thunder Bay, Ontario, Jan., 35 pp.

Orangun, C. O., Jirsa, J. O., and Breen, J. E. 1975. "The Strength of Anchored Bars: A Reevaluation of Test Data on Development Length and Splices," *Research Report* No. 154-3F, Center for Highway Research, Univ. of Texas at Austin, Jan., 78 pp.

Orangun, C. O., Jirsa, J. O., and Breen, J. E. 1977. "Reevaluation of Test Data on Development Length and Splices," ACI Journal, *Proceedings*, Vol. 74, No. 3, Mar., pp. 114-122.

Rezansoff, T.; Konkankar, U. S.; and Fu, Y. C. 1991. "Confinement Limits for Tension Lap Splices under Static Loading", *Report*, University of Saskatchewan, Saskatoon, Sask., Aug., 24 pp.

Rezansoff, T.; Akanni, A; and Sparling, B. 1993. "Tensile Lap Splices under Static Loading: A Review of The Proposed ACI 318 Code Provisions," ACI Structural Journal, Vol. 90, No. 4, July-Aug., pp. 374-384.

Sakurada, T; Morohashi, N.; and Tanaka, R. 1993. "Effect of Transverse Reinforcement on Bond Splitting Strength of Lap Splices," *Transactions of the Japan Concrete Inst.*, Vol. 15, pp. 573-580.

Thompson, M. A.; Jirsa, J. O.; Breen, J. E.; and Meinheit, D. F. 1975. "The Behavior of Multiple Lap Splices in Wide Sections," *Research Report* No. 154-1, Center for Highway Research, The University of Texas at Austin, Feb., 75 pp.

Zekany, A. J.; Neumann, S.; and Jirsa, J. O. 1981. "The Influence of Shear on Lapped Splices in Reinforced Concrete," *Research Report* No. 242-2, Center for Transportation Research, Bureau of Engineering Research, University of Texas at Austin, July, 88 pp.

Results of dummy variables analyses of best-fit equations for bond strength of developed and spliced bars without confining reinforcement: (a) 133 tests, Eq. 3, based on $f_c^{1/2}$, (b) 133 tests, Eq. 4, based on $f_c^{1/4}$, (c) 131 tests, Eq. 4, based on $f_c^{1/4}$ (two low-strength tests for $f_c^{*} > 10,000$ psi dropped)

f' _c (psi)	No. of Tests	Intercept*	Intercept*
			Range**
< 3000	6	201	0.080
3000-3500	15	125	0.050
3500-4000	20	93	0.037
4000-4500	27	51	0.020
4500-5000	17	33	0.013
5000-5500	17	40	0.016
5500-6000	14	31	0.012
6000-7500	8	36	0.014
> 10000	9	-125	-0.050

(a)

f _c (psi)	No. of Tests	Intercept*	Intercept*		
		_	Range**		
< 3000	6	243	0.014		
3000-3500	15	313	0.018		
3500-4000	20	375	0.021		
4000-4500	27	251	0.014		
4500-5000	17	154	0.009		
5000-5500	17	221	0.012		
5500-6000	14	301	0.017		
6000-7500	8	327	0.018		
> 10000	9	-326	-0.018		

(c)

f _c (psi)	No. of Tests	Intercept*	Intercept*
• -		-	Range**
< 3000	6	110	0.006
3000-3500	15	207	0.012
3500-4000	20	301	0.017
4000-4500	27	212	0.012
4500-5000	17	120	0.007
5000-5500	17	167	0.009
5500-6000	14	256	0.014
6000-7500	8	287	0.016
> 10000	7	112	0.006
	A f		

* Intercept at
$$\frac{A_b I_s}{f_c^p} = 0$$
, $p = 1/2$ or $1/4$

** Range =
$$\left(\frac{A_{b}f_{s}}{f_{c}^{p}}\right)_{max}$$
 - $\left(\frac{A_{b}f_{s}}{f_{c}^{p}}\right)_{min}$

1 psi = 6.89 kPa

Data and test/prediction ratios for developed and spliced bars without confining reinforcement

Test No.	n	ls	db	Ab	CSO	Csi	cb	b	h	d	f'c	fy	fs	T_/f_c ¹²	T_{c}/f_{c}^{-14}	T _c /f _c ^{1/2}	T _c /f'c ^{1/4}	Test	Test
												-		Test	Test	Eq.3⁺	Eq. 4*⁺	Eq. 3	Eq. 4
<u></u>		(in.)	(in.)	(in. ²)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(psi)	(ksi)	(ksi)	(in.²)	(in. ²)	(in. ²)	(in. ²)		
Chinn (1955)																			
D31	1	5.50	0.375	0.110	1.470		0.830	3.69	-	-	4700	79.00	60.35	97.23	805.07	77.20	633.14	I.260	1.272
D36	1	5,50	0.375	0.110	1.470		0.560	3.69	-	-	4410	79.00	48.95	81.41	663.38	69,56	574.58	1.170	1.155
D10 D20	1	7.00	0.750	0.440	1.060		1.480	3.62	-	•	4370	57.00	26.27	174.82	1421.42	179.72	1632,24	0.973	0.871
D20 D27	1	7.00	0.750	0.440	1.123		1,420 n 900	3.73	-	•	4230	57.00	20.95	157.04	1470.15	162.30	1500.04	1.009	0.890
D13	1	1.00	0.750	0.440	2 905		1 440	731		-	4400	57.00	48.03	310.09	2583 72	293.80	2418 31	1.055	1.068
D14	I	11.00	0.750	0.440	1.095		0.830	3.69		-	4820	57.00	32.63	206.77	1722.88	207.26	1828.85	0.998	0.942
D15	t	11.00	0.750	0.440	2.875		0.620	7.25	-	-	4290	57.00	42.24	283.74	2296.34	268.88	2218.39	1.055	1.035
D21	1	11.00	0.750	0.440	2.905		1.470	7.31	-	-	4480	57.00	43.35	284.97	2331.38	295.61	2432.09	0.964	0.959
D29	1	11.00	0.750	0.440	1.095		1.390	3.69	-	-	7480	57.00	44.60	226.89	2110.08	232.38	2008.60	0.976	1.051
D3	2	11.00	0.750	0.440	1.500	0.500	1.500	9.00	-	-	4350	57.00	36.86	245.92	1997.20	217.38	1888.51	1.131	1.058
D32	1	11.00	0.750	0.440	2.875		1.470	7.25	-	-	4700	57.00	46.05	295.54	2447.06	294.86	2427.57	1.002	1.008
D38	1	11.00	0.750	0.440	1.560		1.520	4.62	-	-	3160	57.00	28.16	220.41	1652.55	265.86	2256.36	0.829	0.732
D39	1	11.00	0.750	0.440	1.095		1.500	3.09	-	-	3100	57.00	44 34	210.17	2426.46	237.24	2058.97	1.006	0.795
D5	2	11.00	0.750	0.440	1.500	0.625	1 160	7.25	-	_	4160	57.00	33.17	221.51	1797.92	211.97	1862.19	1.020	0.965
D7	1	11.00	0.750	0.440	1.060	0.025	1.270	3.62	-	-	4450	57.00	33.85	223.29	1823.76	226.67	1969.92	0.985	0.926
D8	2	11.00	0.750	0.440	1.500	0.625	1.480	7.25			4570	57.00	35.95	234.00	1923.92	222.35	1928.15	1.052	0.998
D9	1	11.00	0.750	0.440	1.060		1.440	3.62	-	-	4380	57.00	34.98	232.59	1892.19	231.63	2000.90	1.004	0.946
D34	I	12.50	0.750	0.440	1.060		1.490	3.62	-	-	3800	57.00	36.86	263.13	2065.90	253.01	2151,12	1.040	0.960
D12	1	16.00	0.750	0,440	1.125		1.620	3.75	-	-	4530	57.00	45.70	298.73	2450.78	310.54	2556.96	0.962	0.958
D17	1	16.00	0.750	0.440	1.095		0.800	3.69	-	-	3580	57.00	39.74	292.25	2260.57	259,72	2199.83	1.125	1.028
D19*	1	16.00	0.750	0.440	2.905		1.700	7.31		-	4230	57.00	59.93	405.44	3269.77	410.14	3243.49	0.989	1.008
D23	1	16.00	0.750	0.440	1.060		0.780	3.62	-	-	4450	57.00	39.23	258.73	2113.16	256.44	2176.88	1.009	0.971
D24 D30	1	16.00	0.750	0.440	2.875		0.810	7.20	•	-	4400	57.00	43.18	264.79	2520.00	337.02	2073,13	0.840	0.870
D30 D4	2	16.00	0.750	0.440	1.500	0 500	1.500	9.09	-	-	7460 4470	57.00	46.84	308.29	25207.88	273.55	2278 32	1 127	1 106
D40	1	16.00	0.750	0.440	2.940	0.500	0.750	7.38	-	-	5280	57.00	50.55	306.12	2609.42	338.06	2675.99	0.906	0.975
D25*	1	24.00	0.750	0.440	1.060		1.530	3.62	-	-	5100	57.00	58.25	358.90	3032.99	407,81	3244.68	0.880	0.935
D26	1	24.00	0.750	0.440	1.095		0.750	3.69	-	-	5100	57.00	55.87	344.22	2908.88	339.33	2759.56	1.014	1.054
D35	1	24.00	0.750	0.440	1.060		1.450	3.62	-	-	3800	57.00	54.99	392.51	3081.73	403.75	3221.23	0.972	0.957
D33	1	20.25	1.410	1.560	1.990		1.550	6.80	-		4830	57.00	28.20	633.04	5277.39	719.23	6375.61	0.880	0.828
Chamberlin (1956)		6.00		0.000													3 00 / 5		
SHIS	1	6.00	0.500	0.200	0.500		1.000	6.00	6.00	4.75	4470	-	34.52	103.28	844.47	87.57	780.45	1.179	1.082
SII10 SIII21	1	6.00	0.500	0.200	0.750		1.000	0.00 6.00	0.00 6.00	4.15	44/U 5070	-	20.66	102.52	932.17	94.10	790.45	1.211	1.122
SIII32	1	6.00	0.500	0.200	0.500		1.000	6.00	6.00	4.75	5870	-	46 37	121.05	1059 56	94.16	830.80	1.182	1 275
SIII33	1	6.00	0.500	0.200	1.000		1.000	6.00	6.00	4.75	5870		48.45	126.47	1107.03	103.10	898.50	1.227	1.232
SII11	I	10.67	0.500	0.200	0.500		1.000	6.00	6.00	4.75	3680		41.17	135.74	1057.23	122.53	1023.00	1.108	1.033
SHI27	1	10.67	0.500	0.200	0.500		1.000	6.00	6.00	4.75	5870	-	46.43	121.19	1060.77	122.53	1023.00	0.989	1.037
SIH28	1	10.67	0.500	0.200	0.750		1.000	6.00	6.00	4.75	5870	-	49.32	128.75	1126.92	136.95	1134.60	0.940	0.993
SIII29	1	10.67	0.500	0.200	1.000		1.000	6.00	6.00	4.75	5870	-	49.32	128.76	1127.00	154,20	1266.00	0.835	0.890
SIV53	2	12.00	0.500	0.200	2.000	0.500	1.000	6.00	6.00	4.75	4540	-	46.95	139.36	1143.90	149,17	1221.40	0.934	0.937
SHZ3 Chamberlin (1958)	1	16.00	0.750	0.440	0.750		1.000	9.00	9.00	7.63	4470	-	41.89	275.72	2254.43	251.16	2140,24	1.098	1.053
3a	2	6.00	0 500	0.200	0.500	1.500	1.000	6.00	6.00	4 75	4450	50.00	32.78	98 29	802.76	87 57	780.45	1 122	1.029
35	2	6.00	0.500	0.200	0.500	1.000	1.000	6.00	6.00	4.75	4450	50.00	33.00	98.93	808.05	87.57	780.45	1.130	1.035
3c	2	6.00	0.500	0.200	0.500	0.500	1.000	6.00	6.00	4.75	4450	50.00	33.48	100.39	819.95	87.57	780.45	1.146	1.051
4a	1	6.00	0.500	0.200	2,500		1.000	6.00	6.00	4.75	4370	50.00	42.64	129.00	1048.88	124,75	1033.28	1.034	1.015
4b	1	6.00	0.500	0.200	2.250		1.000	6.00	6.00	4.75	4370	50.00	43.89	132.80	1079.71	121.14	1010,81	1.096	1.068
4c	1	6.00	0.500	0.200	2.000		1.000	6.00	6.00	4.75	4370	50.00	43.32	131.06	1065.58	117.53	988.35	1.115	1.078
Ferguson and Breen	(19	965)																	
SKIBA	2	18.00	1.000	0.790	3.250	3.265	1.750	17.03	14.97	12.72	3470	99.00	41.32	554.08	4252.64	562.81	4597.13	0.984	0.925
6K248 8F30a	2	24.00	1.000	0.790	3.250	3.310	1.670	17.12	15.03	12.86	3530	99.00	58.88 53 70	182.95	5600.0C	083.95	5455.36 6120.00	1,145	1.111
8F36a*	2	36.00	1.000	0.790	3,250	3.293	1.530	17.09	15.00	12.94	2030 4650	74.00 63.50	JL.18 66 34	768 52	5020.00 6346 94	106.40	01.39.66 6700 A6	0.901	0.033
8F36b	2	36.00	1.000	0.790	3.250	3.220	1.400	16.94	15.03	13.13	3770	74.00	61.30	788.66	6179.78	885.09	6783.69	0.891	0.911
8F36k	2	36.00	1.000	0.790	1.420	1.425	1.380	9.69	15.09	13.21	3460	74.00	54.65	734.03	5629.69	743.61	5963.78	0.987	0.944
8F39a*	2	39.00	1.000	0.790	3.250	3.280	1.530	17.06	15.09	13.06	3650	63.50	72.90	953,29	7409.67	973.66	7420.29	0.979	0.999
8F42a*	2	42.00	1.000	0.790	3.250	3.345	1.500	17.19	15.09	13.09	2660	63.50	65.93	1009.90	7252.66	1027.89	7788.42	0.982	0.931
8F42b*	2	42.00	1.000	0.790	3.250	3.330	1.450	17.16	15.03	13.08	3830	63.50	73.54	938.77	7385,18	1015.54	7691.80	0.924	0.960
8R42a	2	42.00	1.000	0.790	3.250	3.345	1.560	17.19	15.00	12.94	3310	99.00	71.01	975.05	7395.81	1043.00	7906.25	0.935	0.935
8K48a	2	48.00	1.000	0.790	3.250	3.265	1.480	17.03	15.00	13.02	3040	99.00	72.88	1044.29	7754.22	1144.41	8587.54	0.913	0.903
01/044	4	04.00	1,000	0.190	5.250	3.295	1.520	17.09	15.00	12.98	3050	99.00	69.71	1189.48	9191.20	1484.22	10943.85	0.801	0.839

Data and test/prediction ratios for developed and spliced bars without confining reinforcement (continued)

Test No.	n	١.	dъ	Аь	C.a	Cui	Сь	b	h	d	fc	fv	f,	$T_{c}/f_{c}^{-1/2}$	$T_c/f_c^{-1/4}$	$T_{c}/f_{c}^{1/2}$	T_{c}/f_{c}^{-14}	Test	Test
		5		•	20						•	,	,	Test	Test	Eq.3*	Eq. 4**	Eq. 3	Eq. 4
		(in)	(in)	(in ²)	(in)	(in)	(in)	(in)	(in)	(in)	(noi)	(Irei)	(Iroi)	(in 2)	(in ²)	(in ²)	(in ²)		~4.
2000		<u>(in.)</u>	(m.)	(in.)	(111.)	(m.)	<u>(in.)</u>	(m.)	(III.)	(m.)	(psi)	(KSI)	(KSI)	<u>(m.)</u>	(111.)	(11.)	(m.)	0. (0)	0.540
8K8Ua	2	80.00	1.000	0.790	3.250	3.265	1.500	17.03	15.03	13.03	3740	99.00	96.41	1245.45	9739.65	1802.39	13135.02	0.691	0.742
IIR24a	2	33.00	1,410	1.560	4.590	4.635	1.670	24.09	18.09	15.72	3720	93.00	51.81	1325.20	10349.44	1217.76	9704.76	1.088	1.066
11R30a	2	41.25	1.410	1.560	4.590	4.635	1.310	24.09	18.09	16.08	4030	93.00	58.50	1437.60	11454.22	1377.33	10702.37	1.044	1,070
11F36a	2	49.50	1.410	1.560	4.590	4.635	1.500	24.09	18.00	15.79	4570	73.00	64.16	1480.58	12173.38	1607.73	12300.11	0.921	0.990
11F36b	2	49.50	1.410	1.560	4.590	4.605	1.470	24.03	18.00	15.83	3350	65.00	59.20	1595.55	12138.65	1601.77	12250.39	0.996	0.991
11F42a	2	57.75	1.410	1.560	4.590	4,590	1.480	24.00	18.00	15.82	3530	65.00	63.61	1670.25	12874.38	1808.10	13641.10	0.924	0.944
11F48a*	2	66.00	1.410	1.560	4.590	4.620	1.530	24.16	18.03	15.80	3140	73.00	74.56	2075.59	15537.25	2027.40	15139.12	1.024	1.026
11F48b*	2	66.00	1,410	1.560	4.590	4.665	1.580	24.15	18.22	15.93	3330	65.00	72.24	1953.00	14835.85	2042.97	15266.85	0.956	0.972
11R48a	2	66.00	1.410	1.560	4.590	4.670	1.500	24.16	18.03	15.83	5620	93.00	82.22	1710.87	14813.30	2018.36	15064.38	0.848	0.983
11R48b	2	66.00	1.410	1.560	4.590	4.700	2.060	24,22	18.19	15.43	3100	93.00	71.43	2001.35	14933.60	2215.36	16639.76	0.903	0.897
11F60a*	2	82,50	1.410	1.560	4.590	4.575	1.590	23.97	18.09	15.83	2610	73.00	84.80	2589.35	18507.65	2465.49	18128.62	1.050	1.021
11F60b*	2	82.50	1.410	1.560	4.590	4.590	1.500	24.00	18.09	15.92	4090	65.00	78.02	1903.01	15218.54	2428.99	17828.64	0.783	0.854
11R60a	2	82,50	1.410	1.560	4.590	4.590	1.410	24.00	18.12	16.01	2690	93.00	74.61	2243.98	16160.60	2394.96	17544.12	0.937	0.921
11R60b	2	82.50	1.410	1.560	4.590	4.575	1.750	24.00	18.03	15.58	3460	93.00	87.80	2328.40	17857.73	2535.33	18692.65	0.918	0.955
Thompson et al. (1	975)																	
6-12-4/2/2-6/6	6	12.00	0.750	0.440	2,000	2.000	2.000	33.00	13.00	10.63	3730	61.70	57.40	413.56	3232.00	331.94	2732.70	1.246	1.183
8-18-4/3/2-6/6	6	18.00	1.000	0.790	2 000	2,000	3,000	36.00	13.00	9.50	4710	59 30	56.26	647 57	5364 69	579.87	4743 59	1 117	1 131
8-18-4/3/2 5-4/6	6	18.00	1.000	0.790	2 500	2.000	3,000	36.00	13.00	9.50	2020	59 30	49.33	721 17	5301 32	608.48	4061 24	1 185	1.069
8-74-41717 616	4	24.00	1.000	0.770	2,000	1 000	1 000	26.00	12.00	10.50	2105	50 30	50.64	717.05	5350 32	672 22	5460.20	1 066	0.001
11 75 600 515	5	24.00	1 410	1.550	2.000	2.000	2.000	30.00	12.00	10.30	2020	25.30	44.10	1101 17	0713 12	015.55	70402.70	1 1 4	1 004
11-23-012/3-3/3	5	20.00	1.410	1.500	3.000	3.000	2.000	44.00	13.01	10.50	3920	00.30	44.19	1107.10	0/10.10	1000 50	1902.33	1.104	0.070
11-30-4/2/2-6/6	0	30.00	1.410	1.560	2.000	2.000	2.000	40.88	13,01	10.30	2865	00.50	31.99	1107.19	8100.32	1002.59	8430.20	1.104	0.900
11-30-4/2/4-6/6	0	30.00	1.410	1.560	4.000	2.000	2.000	44.88	13.01	10.30	3350	63.40	44.39	1196.37	9101.81	1020.14	8540.69	1.17.5	1.000
11-30-4/2/2.7-4/6	4	30.00	1,410	1.560	2,700	2.000	2.000	44.88	13.01	10.30	4420	63.30	57.59	1351.41	11019.00	1020.14	8540.69	1.325	1.290
11-45-4/1/2-6/6	6	45.00	1.410	1.560	2.000	2.000	1.000	40.88	13.01	11.30	3520	60,50	45.28	1190.61	9170.76	1098.77	8972.12	1.084	1.022
14-60-4/2/2-5/5	5	60.00	1.693	2.250	2.000	2.000	2.000	37.50	16.15	13.30	2865	57.70	45.23	1901.10	13908.68	1916.87	15552.27	0.992	0.894
14-60-4/2/4-5/5	5	60.00	1.693	2.250	4.000	2.000	2.000	41.50	16.00	13.15	3200	57.70	56.64	2252.83	16944.03	1950.42	15746.67	1.155	1.076
Zekany 1981																			
9-53-B-N	5	16.00	1.128	1.000	2.000	1.423	2.000	27.25	16.00	13.44	5650	62.80	47.56	632,67	5485.20	514.20	4470.32	1.230	1.227
N-N-80B	4	22.00	1.410	1.560	2.000	1.849	2.000	27.25	16.01	13.30	3825	60.10	37.96	957.61	7530.89	813.03	7071.93	1.178	1.065
Choi et al. (1990, 1	1991])																	
1-5N0120U	2	12.00	0.625	0.310	2.000	2.000	1.000	10.50	16.00	14.69	5360	63.80	61.51	260.45	2228.55	223.37	1817.81	1.166	1.226
1-5N0120U*	3	12.00	0.625	0.310	2.000	2.000	1.000	15.75	16.00	14.69	5360	63.80	63.99	270.95	2318.38	223.37	1817.81	1.213	1.275
2-6C0120U	2	12.00	0.750	0.440	2.000	2,000	1.000	11.00	16.01	14.63	6010	70.90	51.40	291.71	2568.45	258.57	2174.37	1.128	1.181
2-6S0120U	2	12.00	0.750	0.440	2.000	2.000	1.000	11.00	16.01	14.63	6010	63.80	45.75	259.67	2286.34	258.57	2174.37	1.004	1.051
3-8N0160U	2	16.00	1.000	0.790	2.000	2.000	1.500	12.00	16.00	14.00	5980	63.80	43.02	439,52	3865.07	448.03	3821.99	0.981	1.011
3-8S0160U	2	16.00	1.000	0.790	2.000	2.000	1.500	12.00	14.00	12.00	5980	67.00	42.82	437.47	3847.05	448.03	3821.99	0.976	1.007
4-11C0240U	2	24.00	1.410	1 560	2.000	2.000	2.000	13.65	36.01	13.30	5850	63.10	37.82	771.38	6746.20	860.42	7412.76	0.897	0.910
4-11S0240U	2	24.00	1.410	1.560	2.000	2,000	2.000	13.65	16.01	13.30	5850	64.60	40.22	820.30	7173.98	860.42	7412.76	0.953	0.968
Hester et al. (1991	199	31	1	1,500	2.000	2.000		10/02	10.01	10100	2020	0 1100				00000			
1-8N316011	3	16.00	1.000	0.700	2.000	1.500	2.000	16.00	16.00	13 50	5000	63.80	50.03	510.70	4497 89	472 35	4007 14	1.081	1 121
2-8(31600	2	16.00	1.000	0.790	2.000	1.500	1.840	16.00	16 33	13.00	6200	69.00	16 24	463 07	4117.08	466.47	3971.02	0.995	1.037
3.8\$3160[]	3	16.00	1,000	0.790	2.000	1.500	2.040	16.00	16.55	13.60	6020	71 10	46.81	476.62	4108.27	473.83	4016 17	1.006	1.045
4 9521600	2	16.00	1.000	0.790	2,000	1.300	2.040	16.09	10.45	12.62	6020	71.10	40.01	417.02	2727 21	475.05	4020.17	0.876	0.077
4-6351000	ン っ	16.00	1.000	0,790	2.000	1,500	2.100	16.00	10.22	13.02	6450	60.00	42.40	437.03	3737,31	470.00	4022.71	0.070	0.927
5-8031000	2	10.00	1.000	0.790	2.000	1.500	2.050	10.09	10.27	12.72	5490	69.00	51.02	424.01	4693 43	474,20	4010.43 5010.69	0.070	0.910
0-6032200	2	22.15	1.000	0.790	2.000	1,500	2.150	10.00	10.19	13,34	5630	69.00	J1.0J	105 10	4085.42	600.21	4007.00	0.070	0.933
7-8031600	2	16,00	1.000	0,790	2.000	4.000	4.120	16.03	16.20	13.58	5240	69.00	45.37	495.10	4212.40	502.51	4227.92	0.960	0.990
Rezansoft et al. (15	993)												*n **	501.00	c		C107.00	1.110	1 100
Za	3	29.53	0.992	0.775	1.827	0.994	2.008	13.58	12.99	10.49	3958	64.52	58.56	721.29	5721.24	646.16	5187.80	1.116	1.103
2Ь	3	29.53	0.992	0.775	1.827	0.994	2.008	13.58	12.99	10.49	3799	64.52	58.63	737.15	5787.23	646.16	5187.80	1.141	1.116
5a	3	35.43	1.177	1.085	1.819	1.183	2.008	15.43	20.00	17.40	4031	68.87	56.08	958.36	7636.25	877.02	7097.54	1.093	1.076
5b	3	44.29	1.177	1.085	1.819	1.183	2,008	15.43	20.00	17.40	3726	68.87	65.83	1170.12	9142.25	1042.70	8270.99	1.122	1.105
Azizinamini et al. ((1993	5)																	
BB-8-5-23	2	23,00	1.000	0,790	1.000	1.500	1.000	9.00	14.00	12.50	5290	77.85	47.01	510.62	4354.71	449.95	3856.20	1.135	1.129
AB83-8-15-41	2	41.00	1.000	0.790	1.000	1.500	1.000	9.00	14.00	12.50	15120	77.85	73.07	469.42	5205.33	686.47	5557.20	0.684	0.937
BB-11-5-24	2	24.00	1.410	1.560	1.410	1.770	1.410	12.00	16.00	13.89	5080	70.80	29.73	650.70	5493.49	736.38	6520.68	0.884	0.842
BB-11-5-40	2	40.00	1.410	1.560	1.410	1.770	1.410	12.00	16.00	13.89	5080	70.80	43.03	941.72	7950.37	1032.82	8652.60	0.912	0.919
BB-11-12-24	2	24.00	1.410	1.560	1.410	1.770	1.410	12.00	16.00	13.89	12730	70.80	44.72	618.36	6568.21	736.38	6520.68	0.840	1.007
B-11-12-40	2	40.00	1,410	1.560	1.410	1.770	1.410	12.00	16.00	13.89	13000	70.80	58.78	804.23	8587.50	1032.82	8652.60	0.779	0.992
BB-11-11-45	3	45.00	1.410	1.560	1,410	1.680	1.410	18.00	18.00	15.89	10900	70.80	48.90	730.66	7465.74	1125.45	9318.83	0.649	0.801
BB-11-15-36	3	36.00	1.410	1,560	1.410	1.680	1.410	18.00	18.00	15.89	14550	70.80	57.34	741.57	8144.54	958.71	8119.62	0.774	1.003
BB-11-5-36	3	36.00	1 410	1 560	1.410	1 680	1.410	18.00	18.00	15.89	6170	73.72	46.75	928 44	8228.60	958.71	8119.62	0.968	1.013
BB-11-13-40	3	40.00	1 410	1 560	1 410	1 680	1 410	18.00	18.00	15.89	13600	73.72	57.70	771 88	8335 59	1032.82	8652.60	0.747	0.963
RB_11_15_12	2	13.00	1 410	1 560	1.410	1 770	1 410	12.00	16.00	13.90	14320	73 72	30.06	301 70	4285 58	532 58	5054.00	0.735	0 848
AB83-11-15-57 4	2	57 50	1 410	1 560	1 410	1 770	1 410	12.00	16.00	13.80	13870	73 73	71 66	940 21	10301.02	1357.05	10084 30	0.699	0.938
VD00.11 1 00	2	37.30	1,410	1.500	1.410	1.770	1.410	12.00	16.00	12.07	15100	72 73	71.00	003.00	10001104	1331.03	12023 10	0.022	0.716
VP02-11-12-90	4	80.00	1.410	1.200	1.410	1.770	1.410	12.00	10.00	10.09	10120	15.14	11.11	504.00	10011.94	1113,91	13704.40	0.009	0.710

Data and test/prediction ratios for developed and spliced bars without confining reinforcement (continued)

Test No.	n	I _s	db	Ab	¢so	C _{si}	с _b	b	h	d	f _c	fy	fs	T/fc ^{1/2}	T√f'c ^{1/4}	T_/f'_c ^{1/2}	T√f°c ¹⁴	Test	Test
												·		Test	Test	Eq.3⁺	Eq. 4 ⁺⁺	Eq. 3	Eq. 4
		(in.)	(in.)	(in. ²)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(psi)	(ksi)	(ksi)	(in. ²)	(in. ²)	(in. ²)	(in. ²)		
Darwin et al. (19	95a)																		
1.1	2	16.00	1.000	0.790	2.969	2.938	2.938	16.08	17.22	13.76	5020	60.00	51.63	575.67	4845.66	630.53	5153.64	0.913	0.940
1.2	2	16.00	1.000	0.790	2.032	2.281	1.938	24.06	16.25	13.79	5020	60.00	44,60	497.29	4185.87	492.76	4160.29	1.009	1.006
1.3	3	16.00	1.000	0.790	2.032	1.438	1.938	16.07	16.21	13.75	5020	60.00	45.01	501.86	4224.35	460.64	3921.61	1.089	1.077
2.4	2	24.00	1.000	0.790	2.000	1.914	1.313	12.13	15.64	13.79	5250	75.00	54.08	589.64	5019.08	567.64	4655.43	1.039	1.078
2.5	2	24.00	1.000	0.790	2.063	1.856	1.813	12.13	16.01	13.67	5250	75.00	58.67	639,68	5445.07	646.23	5251.24	0.990	1.037
4.5	2	24.00	1.000	0.790	2,063	1.936	1.844	12.12	16.15	13.79	4090	60.00	51.06	630.73	5044.02	651.16	5288.76	0.969	0.954
6.5	2	24.00	1.000	0.790	2.000	1.906	1.969	12.10	16.13	13.63	4220	75.00	53,59	651.71	5252.70	668.28	5424.35	0.975	0.968
8.1	2	24.00	1.000	0.790	2.000	1.953	2.000	12.11	16.05	13.53	3830	79.00	61.47	784.68	6172.92	673.33	5462.70	1.165	1.130
10.2	2	26.00	1.000	0.790	2.063	1.875	1.933	12.13	16.25	13.78	4250	81.00	61.17	741.26	5985.06	708.48	5706.07	1.046	1.049
13.4	3	16.00	0.625	0.310	2.094	1.016	1.354	12.19	15.60	13.92	4110	64.00	59.96	289.94	2321.47	281.88	2266.67	1.029	1.024
14.3	3	17.00	0.625	0.310	2.032	1.031	1.295	12.14	15.51	13.89	4200	64,00	62,84	300.59	2419.83	295.75	2369.75	1.016	1.021
15.5	2	40.00	1.410	1.560	3.063	2.984	1.908	18.05	16.12	13.47	5250	81.00	54.12	1165,21	9918.42	1309.59	10507.05	0.890	0.944
16.2	2	40.00	1.410	1.560	3.016	2.969	1.895	18.07	16.28	13.64	5180	81.00	52.38	1135.34	9631.80	1302.33	10458.69	0.872	0.921

For all 133 specimens:	Max.	1.325	1.290
	Min.	0.509	0.716
	Mean	1.000	1.003
	St. Dev.	0.138	0,107
	COV	0.138	0.107
For the 11 specimens with $f_s > f_y$:	Max.	1.213	1.275
	Min.	0.783	0.854
	Mean	0.968	0.992
	St. Dev.	0.112	0.107
	COV	0.115	0.107

* Specimens with $f_s > f_y$

+ Eq. 3 =
$$\frac{T_c}{f_c^{1/2}} = \frac{A_b f_s}{f_c^{1/2}} = [8.76l_d (c_m + 0.5d_b) + 187A_b] \left(0.14 \frac{c_M}{c_m} + 0.86 \right)$$

+ Eq. 4 = $\frac{T_c}{f_c^{1/4}} = \frac{A_b f_s}{f_c^{1/4}} = [63l_d (c_m + 0.5d_b) + 2130A_b] \left(0.1 \frac{c_M}{c_m} + 0.9 \right)$

1 in. = 25.4 mm; 1 psi = 6.89 kPa; 1 ksi = 6.89 MPa

		······································	Intercept									
				Varia	bles							
Study	Bar	No. of	$NA_{tr}f_{yt}$	NA _{tr}	NA _{tr}	NA _{tr}						
	Size	Specimens	n	n	ι _r —— n	$t_r t_d - n$						
Mathey and Watstein	No. 4	3	-1372.1	-924.2	-1006.0	-285.0						
(1961)	No. 8	6	-2730.5	-1789.7	-1736.6	-1381.0						
Ferguson and Breen	No. 8	8	-174.5	-625.6	-473.8	-374.1						
(1965)	No. 11	1	1									
Thompson et al. (1975)	No. 11	1										
DeVries et al.	No. 9	1										
(1991)												
Hester et al. (1991, 1993)	No. 8	10	-79.5	-241.0	-165.5	-121.6						
Rezansoff et al.	No. 20M	3	1147.7	885.1	957.0	1159.1						
(1991)	No. 25M	19	1013.2	502.2	714.6	860.9						
	No. 30M	2	1779.2	1047.3	1368.1	1356.2						
	No. 35M	7	1360.3	632.1	1231.7	836.6						
Rezansoff et al.	No. 25M	5	1332.8	1186.0	1279.8	1344.4						
(1993)	No. 30M	4	2097.9	1696.7	1937.0	1928.1						
Azizinamini et al. (1995 at CTL)	No. 11	1										
Azizinamini et al.	No. 11	3	-530.7	-843.2	-433.8	-616.5						
(1995 at UNL)												
Darwin et al.	No. 5 L	8	39.6	-37.2	-55.9	80.6						
(1995a)	No. 8 L	26	50.2	-243.6	-470.5	-273.8						
	No. 8 B	13	345.4	188.8	44.7	209.5						
	No. 11 L	13	1034.0	597.8	358.7	-71.3						
Weighted Average Int	tercept		354.6	89.0	110.3	176.6						
Slope	-		26.7	2390.9	2091.9	1866.7						
r ²			0.757	0.787	0.840	0.839						

Results of dummy variable analyses, based on study and bar size, of increase in bond force due to transverse reinforcement, T_s, normalized with respect to $f'_{c}^{1/4}$ versus selected combination of variables for 134 beams with $I_d/d_b \ge 16$

Results of dummy variable analyses, based on study and bar size, of increase in bond force due to transverse reinforcement, T_s, normalized with respect to $f_c^{1/4}$ versus selected combinations of variables for 119 beams with $l_d/d_b \ge 16$ and $(c+K_{tr})/d_b \le 3.75$ $(K_{tr} = 29.6 t_r t_d A_{tr}/sn)$

				Interc	ept .	
	_			Varia	bles	~ ~ .
Study	Bar	No. of	NA _{tr} f _{yt}	NA _{tr}	$t - \frac{NA_{tr}}{NA_{tr}}$	$t t \frac{NA_{tr}}{M}$
	Size	Specimens	n	n	r n	n n
Ferguson and Breen	No. 8	8	-259.0	-684.3	-614.8	-532.8
(1965)	No. 11	1				
Thompson et al. (1975)	No. 11	1				
DeVries et al. (1991)	No. 9	1				
Hester et al. (1991, 1993)	No. 8	10	-122.9	-267.3	-227.6	-191.5
Rezansoff et al.	No. 20M	3	1067.4	838.4	837.3	1047.0
(1991)	No. 25M	19	878.5	420.0	517.2	639.9
	No. 30M	2	1577.6	926.0	1078.0	987.9
	No. 35M	7	1029.4	458.9	838.8	265.0
Rezansoff et al.	No. 25M	5	1262.7	1149.7	1192.6	1246.8
(1993)	No. 30M	4	1927.0	1605.8	1719.7	1652.2
Azizinamini et al. (1995 at CTL)	No. 11	1				
Azizinamini et al. (1995 at UNL)	No. 11	3	-701.8	-929.3	-612.1	-876.6
Darwin et al.	No. 5 L	8	-0.2	-57.4	-115.5	31.7
(1995a)	No. 8 L	24	-97.2	-305.4	-679.4	-526.4
. ,	No. 8 B	11	372.1	286.2	-26.7	98.2
	No. 11 L	11	797.0	437.8	139.3	-390.2
Weighted Average In	tercept		429.5	147.6	71.2	65.9
Slope	_		30.3	2521.4	2411.8	2226.0
r^2			0.758	0.783	0.853	0.857
Data and test/prediction ratios for developed and spliced bars with confining reinforcement

Specimen No.	n	L	đ۲	R,	C	Cri	Сь	b	h	d	d.	N***	f	fe	fv	f.a	T _w /f _c ^{1/4}	T _b /f _c ¹⁴	Test
		-0	0		- 30	- 44	-0	•		-	-3		-0	-3	-,	~yt	Tert	Eg 19**	Prediction
		<i>e</i>	0	<i>a</i> >		<i>//</i> \	<i>(</i> • \	<i>c</i>	<i></i> .	<i>//</i> \	<i></i> 、			0	a . 1)	<i>(</i> 1 <i>·</i>)	1051	Eq.10	Frediction
Martin and Martin and a		(in)	(in)	(in)	(in)	(1n)	(in)	(in)	(in)	(1n)	<u>(in)</u>		<u>(ps1)</u>	(KSI)	(KSI)	(KS1)	(in.)	(in.)	
Mathey and Waistein (196	1)	0 000	0.007	2 5 5 6		1	0.00	10.00	14.00	0 600	•	1010	ae (0	114.50	114 70	2200	2202	0.000
4-7-2*	1	7.00	0.500	0.096	3.750		1.750	8.00	18.00	16.00	0.500	2	4210	88,60	114.70	114,70	2200	2208	1.022
4-10 5-3**	i	10.50	0.500	0.090	3.750		1.750	8.00	18.00	16.00	0.500	2	4203	113 30	114.70	114.70	2219	3042	0.957
4-10.5-2**	1	10.50	0.500	0.090	3 750		1.750	8.00	18.00	16.00	0.500	3	4055	115.00	114.70	114.70	2910	3042	0.937
4-14-2**	î	14.00	0.500	0.096	3.750		1.750	8.00	18.00	16.00	0.500	4	3710	100.40	114.70	114.70	2573	3876	0.664
8-21-1**	1	21.00	1.000	0.088	3.500		1.500	8.00	18.00	16.00	0.500	5	4235	61.80	97.00	114.70	6052	7476	0.810
8-28-1**	1	28.00	1.000	0.088	3.500		1.500	8.00	18.00	16.00	0.500	7	4485	77.20	97.00	114.70	7453	9477	0.786
8-28-2**	1	28.00	1.000	0.088	3.500		1.500	8.00	18.00	16.00	0.500	7	3700	71.80	97.00	114.70	7273	9477	0.767
8-34-1**	ł	34.00	1.000	0.088	3.500		1.500	8.00	18.00	16.00	0.500	9	3745	92.10	97.00	114.70	9301	11335	0.821
8-14-1*	1	14.00	1.000	0.088	3.500		1.500	8.00	18.00	16.00	0.500	4	3585	33.40	97.00	114,70	3410	5975	0.571
8-34-2**	1	34.00	1.000	0.088	3.500		1.500	8.00	18.00	16.00	0.500	9	3765	89.70	97.00	114.70	9046	11335	0.798
8-14-2*	1	14.00	1.000	0.088	3.500		1.500	8.00	18.00	16.00	0.500	4	4055	42.50	97.00	114.70	4207	5975	0.704
8-7-1*	1	7.00	1.000	0.088	3.500		1.500	8.00	18.00	16.00	0.500	2	4005	28.60	97.00	114.70	2840	3974	0.715
8-21-2**	1	21.00	1.000	0.088	3.500		1.500	8.00	18.00	16.00	0.500	5	3495	53.20	97.00	114,70	5466	7476	0.731
Freguson and Breen (1	965 1)	1 000	0.0721	2.200	2 005	1.450	12.00	14.00	12.00	0.000	~	47.40	(1.22	74.00	53.00	1000	2(17	0.070
8F30C 9F364*	2	30.00	1.000	0.0731	3.250	3.295	1.470	17.09	14.97	13.00	0.252	5 10	2/40	01.33	74,00	52.00	7590	7617	0.879
0F300 8F36a*	2	30.00	1.000	0.0731	3.250	3.280	1.330	17.06	13.00	12.97	0.252	10 6	3280	74.51	74.00	52.00	7507	8132	0.951
85366	2	36.00	1.000	0.0731	3.250	3.310	1.470	17.06	14.91	12.94	0.252	10	4170	78 15	74.00	52.00	7013	2017	1.000
8F36g*	2	36.00	1,000	0.0731	3 250	3 265	1.500	17.00	14.97	12.04	0.252	6	3070	75 78	74.00	52.00	8042	7715	1.042
8F36h	2	36.00	1,000	0.0731	3 250	3 265	1 590	17.03	15.09	13.00	0.252	14	1910	56.02	74.00	52.00	6695	8689	0.770
8F36i	2	36.00	1.000	0.0731	3.250	3.310	1.500	17.12	15.03	13.03	0.252	14	1820	64.09	74.00	52.00	7751	8540	0.908
8F30b	2	30.00	1.000	0.0731	3.250	3.270	1.500	17.04	15.03	13.03	0.252	6	2610	57.47	74.00	52.00	6352	6822	0.931
11R36a	2	49.50	1,410	0.0674	4.590	4,620	2.020	24.06	18.05	15.33	0.375	11	3020	82.35	93.00	42.00	17330	16625	1.042
Thompson et al. (1975)	****																		
11-30-4/2/2-6/6-\$5	6	30.00	1.410	0.0674	2.000	2,000	2.000	40.88	13.00	10.30	0.375	6	3063	46.47	65.00	68.00	9745	10265	0.949
11-20-4/2/2/-6/6-SP*	6	20.00	1.410	0.0674	2.000	2.000	2.000	40.88	13.00	10.30	0.375	7	3620	42.34	67.30	67.30	8515	8855	0.962
11-20-4/2/2-6/6-S5*	6	20.00	1,410	0.0674	2.000	2.000	2.000	40.88	13.00	10.30	0.375	4	3400	40.61	67.30	67.30	8296	7973	1.041
8-15-4/2/2-6/6-55*	6	15.00	1.000	0.0727	2.000	2.000	2.000	36,00	13.00	10.50	0.375	3	3507	57.31	61.10	61.10	5883	4830	1,218
Zekany et al. (1981)	-														10.00				1.007
9-53-B*	5	16.00	1,128	0.0727	2.000	1.500	2.000	27.25	16.00	13.44	0.236	4	5700	57.36	62.80	70,00	6601	4759	1.387
11-40-B-A*	4	22.00	1.410	0.0674	2.000	2.000	2.000	27.25	16.00	13.30	0.236	5	5425	44,94	60.10	70.00	8168	7723	1.058
2-4.2-00-D 2_5_40_R(4)+	4 1	22.00	1,410	0.0674	2.000	2.000	2,000	21.20	16.00	13.30	0.230	3	4200	42.34	60.10	74.50	8236	7606	1.007
1-5-51-B*	4	22.00	1.410	0.0674	2.000	2.000	2.000	27.25	16.00	13 30	0.375	4	3775	30 44	60.10	60.30	7850	8314	0.944
2-4.5-53-B*	4	22.00	1.410	0.0674	2.000	2.000	2.000	27.25	16.00	13.30	0.236	5	4125	42.00	60.10	74.50	8175	7723	1.059
11-53-B*	4	22.00	1.410	0.0674	2.000	2.000	2.000	27.25	16.00	13.30	0 236	5	4025	42.32	60.10	70.00	8289	7723	1.073
I1-40-B*	4	22.00	1.410	0.0674	2.000	2.000	2.000	27.25	16.00	13.30	0.236	5	5050	45.58	60.10	70,00	8435	7723	1.092
11-53-B-D*	4	22.00	1.410	0.0674	2.000	2.000	2.000	27.25	16.00	13.30	0.236	5	4125	33.89	60.10	70.00	6597	7723	0.854
3-5-40-B*	4	22.00	1.410	0.0674	2.000	2.000	2.000	27.25	16.00	13.30	0.375	4	3750	38.21	60.10	60.30	7617	8314	0.916
DeVries et al. (1991)***	•																		
8G-9B-P6*	2	9,00	0.750	0.0799	1.875	2.125	1.125	11.00	16.00	14,50	0.375	3	8850	70.39	76.63	78.58	3193	2604	1.226
8N-9B-P6*	2	9.00	0.750	0.0799	1.625	2.438	1.250	11.10	16.00	14,38	0.375	3	8300	56.55	76.63	78.58	2607	2611	0.998
8G-22B-P9	2	22.00	1.128	0.0727	1.500	1.744	1.125	11.00	16,00	14.31	0.375	4	7460	52.76	66.40	78.58	5677	5732	0.990
8N-18B-P9*	2	18.00	1.128	0.0727	1.375	1.932	1,500	11.10	16.00	13.94	0.375	3	7660	51.68	70.35	78.58	5524	5219	1.058
80-10B-19*	2	16.00	1.128	0.0727	1.375	1.869	1.063	11.00	16.00	14,37	0,375	3	7460	42,44	00.40	78.58	4367	4/31	0,965
10N 12B DO*	2	12.00	1.128	0.0727	1.058	1.357	1.250	11.00	16.00	14.19	0.373	3	0106	27.62	70.35	70.28	243/	2184	1.049
100-120-19*	2	12,00	1.120	0.0727	1,938	1.507	1.188	11.00	10.00	14,23	0.375	3	9760	37.63	70.35	78.59	3707	4412	0.656
15G-12B-P9*	2	12.00	1 128	0.0727	1.025	1.019	1 1 8 8	11.10	16.00	14.15	0.375	3	16100	49.09	70.35	78 58	4358	4359	1 000
15N-12B-P9*	2	12.00	1.128	0.0727	1.500	1.932	1.250	11.10	16.00	14.19	0.375	3	13440	50.77	70.35	78.58	4716	4422	1.066
Hester et al. (1991, 199	_ 3)₩	+			1.500	1.00.	11-50		10.00		-1070				10.00				
7-8C3-16-3-U	2	16.00	1.000	0.0710	2.000	4.000	2,030	16.00	16.30	13.77	0.375	3	5240	51.49	69.00	54.10	4781	4981	0.960
4-8S3-16-2-U	3	16.00	1.000	0.0700	2.000	1.500	2.040	16.09	16.36	13.82	0,375	2	6450	47.06	71.10	68.90	4148	4393	0.944
4-8S3-16-3-U	3	16.00	1,000	0.0700	2.000	1.500	2.100	16.09	16.28	13.68	0.375	3	6450	50.04	71.10	68,90	4411	4562	0.967
5-8C3-16-2-U	3	16.00	1.000	0.0710	2.000	1.500	2.060	16.10	16.42	13.86	0.375	2	5490	46,51	69.00	54.10	4269	4401	0.970
6-8C3-22 3/4-3-U	3	22.75	1.000	0.0710	2.000	1.500	2.170	16.06	16.20	13.53	0.375	3	5850	56.45	69.00	54.10	5099	5562	0.917
1-8N3-16-2-U	3	16.00	1.000	0.0780	2.000	1.500	2.000	16.00	16.00	13,50	0.375	2	5990	56.00	63.80	77.30	5029	4409	1.141
6-8C3-22 3/4-4-U	3	22.75	1.000	0.0710	2.000	1.500	2.160	16.03	16,17	13.51	0.375	4	5850	55.67	69.00	54.10	5029	5716	0.880
5-8C3-16-3-U	3	16.00	1.000	0.0710	2,000	1.500	2.060	16.09	16.12	13.56	0.375	3	5490	43.31	69.00	54.10	3975	4558	0.872
3-8S3-16-2-U	3	16.00	1.000	0.0700	2.000	1.500	2.080	16.06	16.24	13.66	0.375	2	6020	46.47	71.10	68.90	4168	4402	0.947
2-8C3-16-2-U	3	16.00	1.000	0.0710	2.000	1.500	1.830	16.00	16.28	13.95	0.375	2	6200	43.99	69.00	54.10	3916	4349	0.901
Rezansori et al. (1991)	1	10 15	0.749	0.0700	1 000	4 000	1 000	11.00	10.00	11.71	0 919	e	4077	10 10	72.60	41 00	4022	1764	1 104
20-0-4 20.4 2*	∡ م	16.10	0,70ă	0.0799	1.000	2.980	1.000	11.02	12.99	11.01	0.313	э ,	4217	/U.12	14.50	02,08	4032	3384	1.192
20-0-3	2	15.39	0.768	0.0799	1.000	2,980	1.000	11.02	12.99	11.61	0.313	0	3886	75.55	72.50	02.08	4449	3292	1.351
20-0-1	z	22.09	0.768	0.0799	1.000	2,980	1.000	11.02	12.99	11.61	0.313	3	4045	78,49	72.50	62.08	4576	3429	1.335

Data and test/prediction ratios for developed and spliced bars with confining reinforcement (continued)

Specimen No.	n	l _d	db	R _r	Cso	Csi	сь	b	h	d	ds	N***	f'c	fs	fy	f _{yt}	$T_b/f_c^{1/4}$	T_{b}/f_{c}^{-14}	Test
																	Test	Eq.18**	Prediction
		(in)	(in)	(in)	(in)	(in)	(in)	(in)	(in)	(in)	(in)		(psi)	(ksi)	(ksi)	(ksi)	(in. ²)	(in. ²)	
20-8-11*	2	16.34	0.992	0.0731	1.000	2.530	1.000	11.02	13.00	11.50	0.313	13	4466	75.00	65.54	62.08	7110	5425	1.311
20-8-9	2	18.70	0.992	0.0731	1,500	2.030	1.500	11.02	13.00	11.00	0.313	9	4205	60.05	65.54	62.08	5780	5569	1.038
20-8-10*	2	15.12	0.992	0.0731	1.500	2.030	1.500	11.02	13.00	11.00	0.313	12	4408	64.03	65.54	62.08	6090	5619	1.084
20-8-1*	2	18.70	0.992	0.0731	1.000	2.530	1.000	11.02	13.00	11.50	0.313	13	5220	71.05	65.54	62.08	6478	5647	1,147
20-8-12	2	16.34	0.992	0.0731	1.500	2.030	1.500	11.02	13.00	11.00	0.313	11	4350	64.20	65.54	62.08	6126	5606	1.093
20-8-2	2	21.77	0.992	0.0731	1.000	2.530	1.000	11.02	13.00	11.50	0.313	11	5742	64.84	65.54	62.08	5773	5603	1.030
20-8-3	2	26.10	0.992	0.0731	1.000	2.530	1.000	11.02	13.00	11.50	0.313	9	5510	64.02	65.54	62.08	3759	5678	1.014
20-8-0	2	26.10	0.992	0.0731	1.000	2.530	1.000	11.02	13.00	11.50	0.313	9	4770	75.37	65.54	62.08	7028	5678	1.238
20-8-7	2	20.10	0.992	0.0731	1.500	2.030	1.500	11.02	12.00	11.00	0.313	4	4495	61.33 50.59	65,54	62.08	5686	5622	1.025
20-8-5	2	21.77	0.992	0.0731	1.000	2.030	1.000	11.02	13.00	11.00	0.313	12	4330	39.Je 76.01	UJ.34 65 54	62.08	7099	5603	1.011
20-8-4*	2	18 70	0.992	0.0731	1.000	2.550	1.000	11.02	12.00	11.50	0.313	11	4170	71.04	65 54	62.00	6971	5647	1.203
20-8-21*	2	15.70	0.992	0.0731	1.000	2,330	1.500	11.02	13.00	11.00	0.313	7	3378	45.76	60.90	57.21	4652	4647	1.217
20-8-13	2	28.70	0.992	0.0731	1.180	2.350	1.000	11.02	13.00	11.50	0.313	4	3509	51.22	64.38	52.21	5158	5167	0.998
20-8-14	2	23.11	0.992	0.0731	1.180	2.350	1.000	11.02	13.00	11.50	0.313	6	3277	53.28	64.38	52.21	5458	4964	1.099
20-8-15	2	20.31	0.992	0.0731	1.180	2,350	1.000	11.02	13.00	11.50	0.313	7	3625	54.68	64.38	52.21	5462	4863	1.123
20-8-16	2	28.70	0.992	0.0731	1.180	2.350	1.000	11.02	13.00	11.50	0.313	4	3291	54.82	60.90	52.21	5609	5167	1.086
20-8-18	2	17.44	0.992	0.0731	1.180	2.350	1.000	11.02	13.00	11.50	0.313	8	3349	54.80	60.90	52.21	5582	4754	1.174
20-8-19	2	21.65	0.992	0.0731	1.260	2.270	1.500	11.02	13.00	11.00	0.313	4	3219	44,56	60.90	52.21	4584	4856	0.944
20-8-17	2	20.31	0.992	0.0731	1,180	2.350	1.000	11.02	13.00	11.50	0.313	7	3480	60.78	60.90	52.21	6133	4863	1.261
20-8-20	2	17.32	0.992	0.0731	1.260	2.270	1.500	11.02	13.00	11.00	0.313	6	3291	44.95	60.90	52.21	4599	4702	0.978
20-9-1	2	19,69	1.177	0.0727	2.000	2.140	1.500	12.99	21.72	17.91	0.444	7	3538	58.74	67.28	60.05	8204	792	1.061
20-9-2	2	12 00	1.177	0.0727	2.000	2.140	1.500	12.99	24.05	17.91	0.444	5	3378 4350	47.51	66 12	83.40	9423	10201	1.176
20-11-7	2	26.50	1.406	0.0074	2.020	1.670	1.306	12.77	20.00	17.19	0.444	10	4335	70.01	69.02	92.40	13545	12452	1.099
20-11-2	2	20.37	1.400	0.0074	2.020	1.670	2.295	12.99	20.00	17.00	0.444	5	4333 1770	68 50	69.02	83.40	13343	11897	1.088
20-11-3	2	26.61	1,406	0.0674	2.020	1.670	1 508	12.99	20.00	17.79	0.444	7	4466	52.37	66.12	83.40	9930	10156	0.978
20-11-8	2	34,29	1.406	0.0674	2.000	1.690	1.000	12.99	22.70	18.30	0.444	10	3349	61.36	66.12	60.05	12502	11832	1.057
20-11-5	2	27.01	1.406	0.0674	2.000	1.690	2,000	12.99	21.27	17.30	0.444	9	3625	63.81	66,12	60.05	12746	11605	1.098
20-11-6	2	34.72	1.406	0.0674	2.000	1.690	2.000	12.99	24.06	17.30	0.444	6	3625	54.54	66.12	60.05	10895	11655	0.935
20-11-7	2	27.20	1.406	0.0674	2.000	1.690	1.000	12.99	21.54	18.30	0.444	12	3291	51.38	66.12	60.05	10515	11826	0.889
Rezansoff et al. (1993)*	**																		
6	3	22.05	0.992	0.0731	1.827	0.502	2.008	11.61	12.99	10.49	0.313	8	3625	50.77	64.52	84.10	5071	4905	1.034
1b*	2	29.53	0.992	0.0731	1.827	0.520	2.008	8.66	12.99	10.49	0.250	6	3799	69.82	64.52	63,80	6892	5356	1.287
la⁺	2	29.53	0.992	0.0731	1.827	0.520	2.008	8.66	12.99	10.49	0.250	6	3958	74.05	64.52	63.80	7235	5356	1.351
7*	3	14.76	0.992	0.0731	1.827	0.502	2.008	11.61	12.99	10.49	0.630	4	3625	46.60	64.52	68.15	4654	5153	0.903
3a*	3	29.53	0.992	0.0731	1.827	0.502	2.008	11.61	12.99	10,49	0.250	6	3958	69.76	64.52	63.80	6816	5129	1.329
35	3	29.53	0.992	0.0731	1.827	0.502	2.008	11.61	12.99	10.49	0.250	6	3799	59.03	64.52	63.80	5827	5129	1.136
8* 46	2	11.81	0.992	0.0731	1.827	0.994	2.008	13.38	12,99	10.49	0.630	3	3625	34.05	64.52	68.15	3401	4347	0.748
40 0*	3	22 46	1.177	0.0727	1.019	0.575	2,008	12.99	20.00	17.40	0.230	3	3720	07.05	29.07	20.00	10500	0600	1.235
2 10 ⁺	2	22.40	1.177	0.0727	1.019	0.575	4.008	12.99	20,00	17.40	0.445	10	3080	70.40	00.07	00.67	0623	0500	1.213
10 4a	3	22.03	1,177	0.0727	1.019	0.573	2.008	12.99	20.00	17.40	0.630	1	4009	61.09	08.87	63.80	9052	6636	1.150
Azizinamini et al. (1004		25.45 VIT ****	1.177	0.0727	1.019	0.575	2.008	12.33	20.00	17.40	0.230	4	4051	01.00	00.07	05.60	5516	0050	1.4.7.5
AB83-11-15-57 58-50	2	57.50	2 410	0.0674	1 410	1 770	1.410	12.00	16.00	12.80	0.151	6	15120	75 63	73 70	52.02	10630	11852	0.898
Azizinamini et al. (1994	ू जगा	NT 1***	1.410	0.0074	1.410	1.770	1.410	12.00	10.00	13.03	0.2,72	0	15120	75.05	75.70	20.90	10032	110.52	0.076
ABS-11-15-458-60	3	45.00	1.410	0.0590	1.410	1 680	1.410	18.00	18.00	15.89	0 375	4	14890	67.87	70.50	71.80	9584	10459	0.916
ABS-11-15-45S-100*	3	45.00	t.410	0.0590	1 410	1 680	1.410	18.00	18.00	15.80	0 375	6	14850	77.53	70 50	71.80	10956	10995	0.996
ABS-11-15-40S-150	3	40.00	1.410	0.0590	1.410	1.680	1.410	18.00	18.00	15.89	0.375	8	15760	69.18	70.50	71.80	9632	10866	0.886
Darwin et al. (1995a)***																			
12.1	4	10.00	0.625	0.0820	1.875	0.521	1.335	12.07	15.56	13.90	0.500	2	4120	45.42	65.00	84.70	1757	1854	0.948
12.3	3	10.00	0.625	0.0820	2,032	1.039	1.291	12.14	15.50	13.88	0.375	1	4120	48.52	65.00	64.55	1877	1863	1.008
13.2	3	12.00	0.625	0.0820	1.563	1,266	1.315	12.11	15.50	13.86	0.375	1	4110	56.10	65.00	64.55	2172	2176	0.998
12.2	4	10.00	0.625	0.1090	1.953	0.516	1.297	12,12	15.57	13.94	0.500	2	4120	45.48	64.00	84,70	1760	1930	0.912
12.4	3	10.00	0.625	0.1090	2.063	1.032	1.264	12.12	15.56	13,96	0.375	1	4120	52.02	64.00	64.55	2013	1959	1.028
13.1 14 5	3	12.00	0.025	0.1090	1.532	1.289	1.303	12.18	15.51	13.88	0.375	1	4110 4200	55.82 60.14	04.00 65.00	04.35 64 55	2101	2218	U.9/3 1.000
14.0	2	12.00	0.023	0.0820	1.394	0.100 3 100	1.210	12.13	13,43	13.91	0.313	2	4200	00.13 63.45	63.00	04.30 64 55	2010 2443	2210	1.000
1.5	3	16.00	1.020	0.1050	2.062	1 375	1 079	14.03	15.49	13.09	0.273 11500	∠ 5	5020	52.74	60.00	04.JJ 70 75	<u>∠</u> ,. 49∩3	5819	0.843
1.6	3	16.00	1.000	0,1010	2.063	1,438	1.938	16.05	16.19	13.74	0.500	3	5020	52.00	60.00	70.75	4881	5124	0.952
2.1	2	24.00	1.000	0.0710	2.250	1.706	1.328	12.12	15.56	13.70	0.375	7	5250	62.43	70.00	69.92	5794	6371	0.909
2.2*	2	24.00	1.000	0.1400	2.125	1.801	1.406	12.12	15.52	13.58	0.375	7	5250	77.60	75.00	69.92	7202	7624	0.945
2,3	2	24.00	1.000	0.1400	2.125	1.780	1.969	12.11	16.06	13.56	0.375	4	5250	73.45	75.00	69.92	6817	7089	0.962
3.4	2	24.00	1.000	0.0850	2.110	1.857	2.000	12.14	16.26	13.73	0.375	4	5110	55.80	-	69.92	5214	6631	0.786
3.5	3	28.00	1.000	0.0850	1.001	0.965	1.906	12.17	16.17	13.74	0.375	8	3810	52,02	-	69.92	5230	6219	0.841

Data and test/prediction ratios for developed and spliced bars with confining reinforcement (continued)

Specimen No.	n	l_	dh	R,	Cso	Csi	Сь	b	h	đ	d,	N***	fc	fs	fv	f _{vi}	T _b /f _c [#]	T _b /f'c ^{1/4}	Test
-		•	v	•	00		Ū				5		-		,	,.	Test	Eq.18**	Prediction
		(in)	(in)	(in)	(in)	(in)	(in)	(in)	(in)	(in)	(in)		(psi)	(ksi)	(ksi)	(ksi)	(in. ²)	(in. ²)	
4.1	2	24.00	1.000	0.0710	2.063	1.926	1.250	12.16	15.49	13.72	0.500	6	4090	62,54	70.00	70.75	6178	7245	0.853
4.2	2	24,00	1.000	0.1400	2.094	1.848	1.313	12.17	15.59	13.74	0.375	8	4090	72.34	75.00	69.92	7146	7934	0.901
4,4	2	24.00	1.000	0,1010	2.032	1.978	1.219	12.15	15.47	13.73	0.375	4	4090	58.88 64.62	60.00	69.92 69.92	5816 6345	5857 6200	0.993
5.2	3	24.00	1.000	0.1400	2.010	1.867	1.250	18.16	15.62	13,73	0.375	7	4190	65.41	75.00	69.92	6422	7581	0.847
5.3	2	24.00	1.000	0.1400	2.063	1.849	1.281	12.11	15.50	13.68	0.375	7	4190	67.88	75.00	69.92	6665	7492	0.890
5.4	2	24.00	1.000	0.0650	1.985	1.980	1.250	12.12	15.46	13.68	0.375	7	4190	58.87	-	69.92	5781	6199	0.933
5.5 5.6**	2	24.00	1,000	0.0850	2.063	1.904	1.406	12.12	15.60	13.67	0.375	4	4190	46.43	-	69.92	4559	5917	0.770
6.1	3	24.00	1.000	0.0650	2.094	0.422	1.906	12.13	15.09	13.69	0.500	8	4190	63.26	-	66.42	6201	6302	0.984
6.2	3	24.00	1.000	0.1400	2.000	0.438	2.000	12.11	16.15	13.62	0.500	8	4220	74.88	75.00	66.42	7340	8064	0.910
6.3	2	16.00	1.000	0.1400	2,000	1.906	1,344	12.13	15.51	13.63	0.375	2	4220	46.09	75.00	64.55	4518	4576	0.987
6.4 7.1	2	16.00	1.000	0.0850	2.094	1.844	1.344	12.11	15.45	13.58	0.375	2	4220	36.68	76.00	64.55	3595	4342	0.828
7.2**	2	18.00	1.000	0.1400	1 469	2.531	1.875	12.00	15.18	13.77	0.575	2 5	4160	40.74	75.00 60.00	64.55 84.70	4096	4975	0.924
7.5	3	24.00	1.000	0.1400	2.032	0.399	2.000	11.97	16.17	13.64	0.500	8	4160	73.17	75.00	84.70	7198	8054	0.894
7.6	2	16.00	1.000	0.1010	2.032	1.969	1.938	12.01	16.22	13.77	0.375	2	4160	44.34	60.00	64.55	4362	4838	0.902
8.1	3	24.00	1.000	0.0690	2.032	0.453	1.953	12.13	16.23	13.76	0.500	8	3830	69.67	79.00	84.70	6996	6428	1.088
8.2	3	24.00	1.000	0.1190	2.047	0.430	1.969	12.16	16.20	13.69	0.500	8 1	3830	79.32 49.00	81.00	84.70	7965	7567	1.053
9.1	2	24.00	1.000	0.1190	2.005	1.891	1.900	12.10	16.19	13.70	0.375	2	4230	48.90 63.40	81.00	64.55	4911 6211	4904 6177	1.001
9.2	2	18.00	1.000	0.1400	2.063	1.844	1.290	12.10	15.67	13.84	0.375	6	4230	69.06	75.00	64.55	6765	6387	1.059
9.3	2	24.00	1.000	0.0690	2.094	1.907	1.818	12.19	16.12	13.78	0.375	2	4230	55.25	79.00	64.55	5412	5794	0.934
9.4	2	24.00	1.000	0.1400	2.016	1.891	1.915	12.11	16.17	13,72	0.375	2	4230	65.00	75.00	64.55	6367	6224	1.023
10.3	2	26.00	1.000	0.0690	2.094	1.844	1.798	12.11	16.09	13.77	0.375	2	42.50	58.85	79.00	64.55	5758	6064	0.950
10.4**	∠ 3	20.00	1.000	0.0690	2.079	0.453	1.928	12.07	16.19	13.75	0.500	5	4250	66.94	79.00	84.70 84.70	6500	6536	0.875
11.2	2	18.00	1.000	0.0690	2.094	1.844	1.881	12.19	16.13	13.72	0.500	4	4380	61.94	79.00	84.70	6015	6177	0.974
11.3**	2	18.00	1.000	0.1190	2.063	1.844	1,943	12.13	16,08	13.60	0,500	4	4380	62.44	81.00	84.70	6063	7080	0.856
11.4	2	24.00	1.000	0.1400	2.094	1.844	1.928	12.15	16.23	13.77	0.375	2	4380	62.49	75.00	64.55	6068	6261	0.969
14.1	3	36.00	1.000	0.1010	2.032	0.484	1.877	12.12	16.26	13.86	0.375	3	4200	59.96	60.00	64.55	5884	5857	1.005
15.1	2	21.00	1.410	0.1010	1 516	0.469	1.097	12.19	16.15	13.72	0.500	9	4200 5250	67.33	81.00	84.70 84.70	12339	15127	0.816
15.2	2	27.00	1.410	0.0720	1.610	1.469	1.924	12.11	16.12	13.46	0.500	9	5250	62.87	64.00	84.70	11522	12508	0.921
15.3**	2	40.00	1.410	0.0720	1.516	1.531	1.820	12,04	16.19	13.63	0.375	10	5250	62.07	64.00	64.55	11375	12245	0.929
15.4	2	40.00	1.410	0.1270	1.563	1.469	1.884	12.08	16.13	13.50	0.375	10	5250	76.93	81.00	64.55	14099	14044	1.004
16.3	2	40.00	1.410	0.1270	3.047	2.969	1.791	18.03	16.16	13.62	0.375	4	5180	61.42	81.00	64.55	11294	12255	0.922
17.3	2	38.00	1.410	0.1270	3.047	2.984	1.888	18.03	16.12	13.43	0.375	8	4710	68.85	81.00	64.55	12965	13985	0.927
17.4	2	38.00	1.410	0.0700	3.094	3.000	1.866	18.07	16.09	13.52	0.375	8	4710	65.82	70.00	64.55	12394	12583	0.985
17.5	2	30.00	1.410	0.0700	3.079	3.000	1.907	18.09	16.09	13.48	0.500	7	4710	58.57	70.00	84.70	11029	12675	0.870
17.6**	2	30.00	1.410	0.1270	3.063	2,969	1.911	18.07	16.20	13.54	0.500	7	4710	68.92	81.00	84.70	12978	14883	0.872
18.1 18.3	2	40.00	1.410	0.1270	1.485	4.500	1.845	18.05	16.11	13.52	0.375	10	4700	80.72 69.33	81.00	64.53 64.55	15208	13870	1.096
18.4	2	40.00	1.410	0.0700	3.016	3.031	1.911	18.08	16.23	13.62	0.375	6	4700	66.33	70,00	64.55	12497	12292	1.017
											For al	ll 166 s	pecim	ens:				Min	0.571
																		Max	1.387
																		Mean	0.979
																		St. Dev.	0.138
																		COV	0.141
											For th	ie 134 s	pecim	ens wit	h l _a /d _a z	16:		Min	0.664
													-					Max	1.352
																		Mean	0.989
																		St. Dev.	0.135
																		COV	0.137
											For the	te 119 s c+K \/d	pecim	ens wit 5 (K =	h l₄/d₅ ≥ 29.6t t	≥ 16 4. /sn):		Min	0.770
												u τ τ _α μα	ъ	~ ***	~~.uyu	~~·····/·		Max	1.352
																		Mean	1.010
																		St. Dev	0.127
																		COV	0.125

Data and test/prediction ratios for developed and spliced bars with confining reinforcement (continued)

Specimen No.	n	ld	db	R _r	Cso	Csi	Cb	b	h	d	ds	N***	f'c	fs	fy	f _{y1}	T _b /f _c ^{1/4}	$T_b/f_c^{1/4}$	Test
																	Test	Eg.18 ⁺⁺	Prediction
		(in)	(in)	(in)	(in)	(in)	(in)	(in)	(in)	(in)	(in)		(psi) (ksi)	(ksi)	(ksi)	(in. ²)	(in.²)	
											Fort	he 20 s	necin	nens wit	h f. ∖ f	and			
											with	$1/d_{\rm s} >$	16 au	ıd (c+K.	-)/d⊾ < ′	3 75.		Max	1.352
												-0-00 2-			0,00 - 1			Min	0.931
																		Mean	1.153
																		St. Dev.	0.154
																		COV	0.134
											For t	he 99 s	pecin	nens wit	$h f_s \leq f_s$	and			
											with	l₀/d₀ ≥	16 ar	id (c+K _t	$d_b \leq \frac{1}{2}$	3.75:		Max	1.261
																		Min	0.770
																		Mean	0.981
																		St. Dev.	0.098
																		COV	0.100

* Specimens with $l_d/d_b < 16$ which are removed from the 166 specimens

** Specimens with $(c+K_u)/d_b > 3.75$ which are removed from the 134 specimens, $K_u = 29.6t_t A_u/sn$ [Note: This definition of K_u and the limit on $(c+K_u)/d_b$ are changed for design - see Eqs. 20 and 22]

*** Number of transverse stirrups crossing l_a with 2 legs per stirrup, except for Thompson et al. (1975) [6 legs] and one specimen in Zekany et al. (1981) [No. 2-5-40-B(4), 4 legs]

Specimens with $f_s > f_y$

$$+ Eq. \ 18 = \frac{T_b}{f_c^{1/4}} = \frac{T_c + T_s}{f_c^{1/4}} = [63l_d(c_m + 0.5d_b) + 2130A_b] \left(0.1\frac{c_M}{c_m} + 0.9 \right) + 2226t_r t_d \frac{NA_{tr}}{n} + 66$$

*** R_r is known based on measurements made on the bars or based on data provided in the original papers

**** R_r is determined based on Appendix B

- Data is not available

1 in. = 25.4 mm; 1 psi = 6.89 kPa; 1 ksi = 6.89 MPa

Data, development lengths, and splice lengths for hypothetical beams without confining reinforcement*

									AC	['89	AC	['95	Eq. 23*	Eq. 24**	Eq. 23*	Eq. 23 ⁺	Eq. 24**	Eq. 24**	Eq. 23*	Eq. 23*	Eq. 24**	Eq. 24**
Beam No.	n	dь	ь	h	Cen	Cai	Ch	f	L	l.	1.	l,	\mathbf{l}_{d}	L	ACI '891.	ACI '95 I.	ACI '89 1.	ACI '95 L	ACI '89 1	ACI '95 L	ACI '89 L	ACI '95 L
		(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(psi)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	-	-			ų			
1	2	0.75	8.0	12.0	2.00	0.50	2.00	4000	33.39	43.41	36.59	47.57	31.71	50.40	0.731	0.667	1.161	1.059	0.950	0.867	1.509	1.377
2	2	0.75	12.0	12.0	2.00	2.50	2.00	4000	21.35	27.75	17.08	22.20	18.57	18.57	0.669	0.836	0.669	0.836	0.870	1.087	0.870	1.087
3	2	1.00	12.0	12.0	2.00	2.00	2.00	4000	29.98	38.97	28,46	37.00	31.36	31.36	0.805	0.848	0.805	0.848	1.046	1.102	1.046	1.102
4	2	1.27	12.0	12.0	2.00	1.46	2.00	4000	67.47	87.71	54,78	71.21	52.72	60.36	0.601	0.740	0.688	0.848	0.781	0.962	0.895	1,102
5	2	1.41	12.0	12.0	2.00	1.18	2.00	4000	118.40	153.91	75.04	97.56	69.26	82.69	0.450	0.710	0.537	0.848	0.585	0.923	0.698	1.102
6	2	0.75	24.0	12.0	2.00	8.50	2.00	4000	21.35	27.75	17.08	22.20	18.57	18.57	0.669	0.836	0.669	0.836	0.870	1.087	0.870	1.087
7	4	0.75	24.0	12.0	2.00	2.33	2.00	4000	21.35	27.75	17.08	22.20	18.57	18.57	0.669	0.836	0.669	0.836	0.870	1.087	0.870	1.087
8	6	0.75	24.0	12.0	2.00	1.10	2.00	4000	23.38	30.39	21.71	28.22	23.99	29.90	0.790	0.850	0.984	1.059	1.026	1.105	1.279	1.377
9	8	0.75	24.0	12.0	2.00	0.57	2.00	4000	33.39	43.41	33.83	43.98	30.68	46.59	0.707	0.698	1.073	1.059	0.919	0.907	1.395	1.377
10	2	1.00	24.0	12.0	2.00	8.00	2.00	4000	29.98	38.97	28.46	37.00	31.36	31.36	0.805	0.848	0.805	0.848	1.046	1.102	1.046	1.102
11	4	1.00	24.0	12.0	2.00	2.00	2.00	4000	29.98	38.97	28.46	37.00	31.36	31.36	0.805	0.848	0.805	0.848	1.046	1.102	1.046	1.102
12	6	1.00	24.0	12.0	2.00	0.80	2.00	4000	59.96	77.94	54.73	71.15	44.97	60.31	0.577	0.632	0.774	0.848	0.750	0.822	1.006	1.102
13	2	1.27	24.0	12.0	2.00	7.46	2.00	4000	67.47	87.71	43.55	56.62	47.99	47.99	0.547	0.848	0.547	0.848	0.711	1.102	0.711	1.102
14	4	1.27	24.0	12.0	2.00	1.64	2.00	4000	67.47	87.71	50.44	65.58	49.69	55.58	0.567	0.758	0.634	0.848	0.736	0.985	0.824	1.102
15	2	1.41	24.0	12.0	2.00	7.18	2.00	4000	82.88	107.74	52.29	07.98	27.6Z	37.62	0.535	0.848	0.535	0.848	0.695	1.102	0.695	1.102
16	4	1.41	24.0	12.0	2.00	1.45	2.00	4000	84.88	22.04	10.79	83.20	03.24	72.21	0.587	0.742	0.670	0.848	0.703	0.965	0.871	1.102
17	2	0.75	12.0	24.0	2.00	2.50	2.00	3000	24.03	32.04	17.02	20.00	19.42	20.42	0.637	0,797	0.637	0,797	0.828	1,035	0.826	1.030
18	2	0.75	12.0	24.0	2.00	2.50	2.00	4000	21.33	21.15	12.04	10.12	16.3/	10.37	0,009	0.830	0.009	0.030	0.870	1.087	0.870	1.087
19	2	0,73	12.0	24.0	2.00	2.30	2.00	2000	24.63	45.00	22.94	40.15	10.10	10.16	0.714	0.872	0.714	0.892	0.926	1.160	0.926	1.100
20	2	1.00	12.0	24.0	2.00	2.00	2.00	4000	29.02	39.00	22.00	37.00	31 26	34.46	0.705	0.807	0.700	0.807	1.046	1.049	1.046	1.047
21	2	1.00	12.0	24.0	2.00	2.00	2.00	4000	27.70	31.87	28.40	30.21	27 32	27 32	0.800	0.040	0.805	0.048	1.040	1.102	1.040	1.102
22	2	1.00	12.0	24.0	2.00	1 46	2.00	3000	77.01	101 28	63.25	82.23	58.00	66 37	0.609	0.204	0.655	0.204	0.745	0.17	0.852	1.170
23	2	1.27	12.0	24.0	2.00	1.46	2.00	4000	67 47	87 71	54 78	71 21	52.00	60.36	0.601	0.740	0.688	0.849	0.745	0.967	0.895	1 302
24	2	1.27	12.0	24.0	2.00	1.46	2.00	6000	55.09	71.62	44.73	58.14	45.89	52.58	0.641	0.789	0.734	0.904	0.833	1.026	0.954	1.102
26	2	1 41	12.0	24.0	2.00	1.18	2.00	3000	136.71	177.73	86.65	112.65	76.26	90.93	0.429	0.677	0.512	0.807	0.558	0.880	0.665	1.049
27	2	1.41	12.0	24.0	2.00	1.18	2.00	4000	118.40	153.91	75.04	97.56	69.26	82.69	0.450	0.710	0.537	0.848	0.585	0.923	0.698	1.102
28	2	1.41	12.0	24.0	2.00	1.18	2.00	6000	96.67	125.67	61.27	79.65	60.22	72.03	0.479	0.756	0.573	0.904	0.623	0.983	0.745	1.176
29	4	0.75	18.0	24.0	2.00	1.33	2.00	4000	21.35	27.75	18.74	24.36	21.75	25.81	0.784	0.893	0.930	1.059	1.019	1.160	1.209	1.377
30	6	0.75	18.0	24.0	2.00	0,50	2.00	4000	33.39	43.41	36.59	47.57	31.71	50.40	0.731	0.667	1.161	1.059	0.950	0.867	1.509	1.377
31	2	1.00	18.0	24.0	2.00	5.00	2.00	4000	29.98	38.97	28.46	37.00	31.36	31.36	0.805	0.848	0.805	0.848	1.046	1.102	1.046	1.102
32	4	1.00	18.0	24.0	2.00	1.00	2.00	4000	59.96	77.94	47.43	61.66	41.41	52.26	0.531	0.672	0.671	0.848	0.691	0.873	0.872	1,102
33	2	1.27	18.0	24.0	2.00	4.46	2,00	4000	67.47	87.71	43.55	56.62	47.99	47.99	0.547	0.848	0.547	0.848	0.711	1.102	0.711	1.102
34	4	1.27	18.0	24.0	2.00	0.64	2.00	4000	96.39	125.30	90.01	117.01	70.63	99.17	0.564	0.604	0.791	0.848	0.733	0.785	1.029	1.102
35	2	1.41	18.0	24.0	2.00	4.18	2.00	4000	82.88	107.74	52.29	67.98	57.62	57.62	0.535	0.848	0.535	0.848	0.695	1.102	0.695	1.102
	_																					
*			f,		(.	CM	~ ~ `)						Max	0.859	0.904	1.161	1.059	1.116	1.176	1.509	1.377
		1	F 1/4	19	00 0	.1	+0.9							Min	0.429	0.604	0.512	0.797	0.558	0.785	0.665	1.036
Eq. 2	23	<u></u> =	1 <u>c</u>		<u> </u>	ι m		2						Avg	0.647	0.782	0.732	0.878	0.841	1.017	0.951	1.141
+		dh			(c+)	K_{tr}																
		~		72		<u> </u>								$1 in - 2^{i}$	5 / mm· 1 .	nei - 6 80 L	Pa					
					(u	, /								1 m - 2	, , mur, 1	hai — 0.05 K	14					

* Eq. 24 = $\frac{l_d}{d_b} = \frac{\frac{f_y}{f_c} - 1900}{72\left(\frac{c + K_{tr}}{d_b}\right)}$

36

											AC	I '89	AC	I '95	Eq.	23*	Eq.	24**
Beam No.	n	ďb	cso	csi	c _b	ь	h	fc	ds	s	ld	1 _s	Id	l _s	l _d (Conv.**)	ld(New***)	1.4(Conv.**)	la(New***)
		(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(psi)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in)	(in)	(in)
Group 1												······			(/	(111)	(11.)	(111.)
1	2	0.75	2.00	0.50	2.00	8.00	12.00	4000	0.375	4.81	21.35	27.75	17.89	23.26	21.15	18.05	28.80	23.60
2	2	0.75	2.00	2.50	2.00	12.00	12.00	4000	0.375	4.81	21.35	27.75	17.08	22.20	14.70	14.70	14 70	14 70
3	2	1.00	2.00	2.00	2.00	12.00	12.00	4000	0.375	4.75	29.98	38.97	28.46	37.00	23.68	21.03	23.68	21.03
4	2	1.27	2.00	1.46	2.00	12.00	12.00	4000	0.375	4.68	67.47	87.71	37.82	49.16	37.34	32.47	41.09	35 30
5	2	1.41	2.00	1.18	2.00	12.00	12.00	4000	0.375	4.65	118.40	153.91	49.95	64.94	46.70	39.99	52.69	44 41
6	2	0.75	2.00	8.50	2.00	24.00	12.00	4000	0.375	4.81	21.35	27.75	17.08	22.20	14.70	14.70	14.70	14.70
7	4	0.75	2.00	2.33	2.00	24.00	12.00	4000	0.375	4.81	21.35	27.75	17.08	22.20	16,31	15.36	16.31	15.36
8	6	0.75	2.00	1.10	2.00	24.00	12.00	4000	0.375	4.81	23.38	30.39	17.99	23.39	21.41	20.28	26.04	24.42
9	8	0.75	2.00	0.57	2.00	24.00	12.00	4000	0.375	4.81	33.39	43.41	27.25	35.42	27.39	25.96	39.71	36.91
10	2	1.00	2.00	8.00	2.00	24.00	12.00	4000	0.375	4.75	29.98	38.97	28.46	37.00	23.68	21.03	23.68	21.03
11	4	1.00	2.00	2.00	2.00	24.00	12.00	4000	0.375	4.75	29.98	38.97	28.46	37.00	26.98	25.18	26.98	25.18
12	6	1.00	2.00	0.80	2.00	24.00	12.00	4000	0.375	4.75	59.96	77.94	44.23	57.50	38.77	36.21	49.93	45.87
13	2	1.27	2.00	7.46	2.00	24.00	12.00	4000	0.375	4.68	48.19	62.65	36.14	46.99	34.96	30.68	34.96	30.68
14	4	1.27	2.00	1.64	2.00	24.00	12.00	4000	0.375	4.68	67.47	87.71	41.81	54.35	41.64	38.44	45.71	41.89
15	2	1.41	2.00	7.18	2.00	24.00	12.00	4000	0.375	4.65	59.20	76.96	40.13	52.17	41.26	36.00	41.26	36.00
16	4	1.41	2.00	1.45	2.00	24.00	12.00	4000	0.375	4.65	82.88	107.74	53.75	69.88	51.88	47.49	57.84	52.47
17	2	0.75	2.00	2.50	2.00	12.00	24.00	3000	0.375	10.81	24.65	32.04	19.72	25.63	18.18	17.21	18.18	17.21
18	2	0.75	2.00	2.50	2.00	12.00	24.00	4000	0.375	10.81	21.35	27.75	17.08	22.20	16.53	15.65	16.53	15.65
19	2	0.75	2.00	2.50	2.00	12.00	24.00	6000	0.375	10.81	17.43	22.66	13.94	18.13	14.40	13.64	14.40	13.64
20	2	1.00	2.00	2.00	2.00	12.00	24.00	3000	0.375	10.75	34.62	45.00	32.86	42.72	30.16	28.34	30.16	28.34
21	2	1.00	2.00	2.00	2.00	12.00	24.00	4000	0.375	10.75	29.98	38.97	28.46	37.00	27.43	25.77	27.43	25.77
22	2	1.00	2.00	2.00	2.00	12.00	24.00	6000	0.375	10.75	24.48	31.82	23.24	30.21	23.90	22.45	23.90	22.45
23	2	1.27	2.00	1.46	2.00	12.00	24.00	3000	0.375	10.68	77.91	101.28	52.86	68.72	49.14	45.55	55.06	50.62
24	2	1.27	2.00	1.46	2.00	12.00	24.00	4000	0.375	10.68	67.47	87.71	45.78	59.51	44.66	41.40	50.07	46.03
25	2	1.27	2.00	1.46	2.00	12.00	24.00	6000	0.375	10.68	55.09	71.62	37.38	48.59	38.87	36.04	43.62	40.10
26	2	1.41	2.00	1.18	2.00	12.00	24.00	3000	0.375	10.65	136.71	177.73	71.07	92.39	62.98	57.80	72.83	66.07
27	2	1.41	2.00	1.18	2.00	12.00	24.00	4000	0.375	10.65	118.40	153.91	61.55	80.01	57.20	52.49	66.23	60.08
28	2	1.41	2.00	1.18	2.00	12.00	24.00	6000	0.375	10.65	96.67	125.67	50.25	65.33	49.73	45.64	57.70	52.34
29	4	0.75	2.00	1.33	2.00	18.00	24.00	4000	0.50	10.81	21.35	27.75	17.08	22.20	19.21	18.12	22.34	20.90
30	6	0.75	2.00	0.50	2.00	18.00	24.00	4000	0.50	10.81	33.39	43.41	28.55	37.11	27.95	26.34	41.92	38.58
31	2	1.00	2.00	5.00	2.00	18.00	24.00	4000	0.50	10.75	29.98	38.97	28.46	37.00	24.88	22.49	24.88	22.49
32	4	1.00	2.00	1.00	2.00	18.00	24.00	4000	0.50	10.75	59.96	77.94	38.01	49.41	35.23	32.71	42.94	39.34
33	2	1.27	2.00	4.46	2.00	18.00	24.00	4000	0.50	10.68	48.19	62.65	36.14	46.99	37.00	33.10	37.00	33.10
34	4	1.27	2.00	0.64	2.00	18.00	24.00	4000	0.50	10.68	96.39	125.30	69.57	90.45	57.51	52.49	75.88	67.71
35	2	1.41	2.00	4.18	2.00	18.00	24.00	4000	0.50	10.65	59.20	76.96	40.93	53.20	43.82	39.02	43.82	39.02

		*****		~~~~~							ACI	'89	ACI	'95	Eq.	23 ⁺	Eq.	24**
Beam No.	n	đ _b	cso	c _{si}	сb	b	h	fc	d_s	s	Id	l _s	la	l _s	ld(Conv.**)	l _d (New***)	ld(Conv.**)	l _d (New***)
		(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(psi)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
Group 2																		
1	2	0.75	2.00	0.75	2.00	8.50	12.00	4000	0.50	6.00	21.35	27.75	17.08	22.20	17.26	14.39	21.18	17.13
2	2	0.75	2.00	0.75	2.00	8.50	12.00	4000	0.50	6.00	21.35	27.75	17.08	22.20	17.26	14.39	21.18	17.13
3	2	1.00	2.00	1.00	2.00	10.00	12.00	4000	0.50	6.00	29.98	38.97	28.46	37.00	25,42	21.21	29.40	24.00
4	2	1.27	2.00	1.27	2.00	11.62	12.00	4000	0.50	6.00	48.19	62.65	36.14	46.99	34.59	28.87	38.34	31.49
5	2	1.41	2.00	1.41	2.00	12.46	12.00	4000	0.50	6.00	118.40	153.91	41.02	53.33	39.44	32.92	42.98	35.40
6	2	0.75	2.00	0.75	2.00	8.50	12.00	4000	0.50	6.00	21.35	27.75	17.08	22.20	17.26	14.39	21.18	17.13
7	4	0.75	2.00	0.75	2.00	14.50	12.00	4000	0.50	6.00	33.39	43.41	17.87	23.23	21.41	19.05	27.50	23.85
8	6	0.75	2.00	0.75	2.00	20.50	12.00	4000	0.50	6.00	33.39	43.41	20.40	26.52	23.27	21.36	30.54	27.43
9	8	0.75	2.00	0.75	2.00	26.50	12.00	4000	0.50	6.00	33.39	43.41	21.96	28.54	24.33	22.73	32.33	29.65
10	2	1.00	2.00	1.00	2.00	10.00	12.00	4000	0.50	6.00	29.98	38.97	28.46	37.00	25.42	21.21	29.40	24.00
11	4	1.00	2.00	1.00	2.00	18.00	12.00	4000	0.50	6.00	59.96	77.94	32.84	42.69	31.50	28.05	37.63	32.89
12	6	1.00	2.00	1.00	2.00	26.00	12.00	4000	0.50	6.00	59.96	77.94	36.59	47.57	34.23	31.43	41.50	37.53
13	2	1.27	2.00	1.27	2.00	11.62	12.00	4000	0.50	6.00	48.19	62.65	36.14	46.99	34.59	28.87	38.34	31.49
14	4	1.27	2.00	1.27	2.00	21.78	12.00	4000	0.50	6.00	96.39	125.30	44.62	58.01	42.85	38.16	48.60	42.72
15	2	1.41	2.00	1.41	2.00	12.46	12.00	4000	0.50	6.00	118.40	153.91	41.02	53.33	39.44	32.92	42.98	35.40
16	4	1.41	2.00	1.41	2.00	23.74	12.00	4000	0.50	6.00	118.40	153.91	50.85	66.11	48.84	43.51	54.30	47.82
17	2	0.75	2.00	0.75	2.00	8.50	24.00	3000	0.50	6.00	24.65	32.04	19.72	25.63	19.04	15.88	23.30	18.84
18	2	0.75	2.00	0.75	2.00	8,50	24.00	4000	0.50	6.00	21.35	27.75	17.08	22.20	17.26	14.39	21.18	17.13
19	2	0.75	2.00	0.75	2.00	8.50	24.00	6000	0.50	6.00	17.43	22.66	13.94	18.13	14.96	12.47	18.45	14.93
20	2	1.00	2.00	1.00	2.00	10.00	24.00	3000	0.50	6.00	34.62	45.00	32.86	42.72	28.01	23.37	32.33	26.39
21	2	1.00	2.00	1.00	2.00	10.00	24.00	4000	0.50	6.00	29.98	38.97	28.46	37.00	25.42	21.21	29.40	24.00
22	2	1.00	2.00	1.00	2.00	10.00	24.00	6000	0.50	6.00	24.48	31.82	23.24	30.21	22.08	18.42	25.61	20.91
23	2	1.27	2.00	1.27	2.00	11.62	24.00	3000	0.50	6.00	55.65	72.34	41.74	54.26	38.08	31.78	42.16	34.63
24	2	1.27	2.00	1.27	2.00	11.62	24.00	4000	0.50	6.00	48.19	62.65	36.14	46.99	34.59	28.87	38.34	31.49
25	2	1.27	2.00	1.27	2.00	11.62	24.00	6000	0.50	6.00	39.35	51.15	29.51	38.37	30.09	25.11	33.40	27.44
26	2	1.41	2.00	1.41	2.00	12.46	24.00	3000	0.50	6.00	136.71	177.73	47.37	61.58	43.40	36.23	47.27	38.93
27	2	1.41	2.00	1.41	2.00	12.46	24.00	4000	0.50	6.00	118.40	153.91	41.02	53.33	39.44	32.92	42.98	35.40
28	2	1.41	2.00	1.41	2.00	12.46	24.00	6000	0.50	6.00	96.67	125.67	33.49	43.54	34.32	28.65	37.45	30.84
29	4	0.75	2.00	0.75	2.00	14.50	24.00	4000	0.50	6.00	33.39	43.41	17.87	23.23	21.41	19.05	27.50	23.85
30	6	0.75	2.00	0.75	2.00	20.50	24.00	4000	0.50	6.00	33.39	43.41	20.40	26.52	23.27	21.36	30.54	27.43
31	2	1.00	2.00	1.00	2.00	10.00	24.00	4000	0.50	6.00	29.98	38.97	28.46	37.00	25.42	21.21	29.40	24.00
32	4	1.00	2.00	1.00	2.00	18.00	24.00	4000	0.50	6.00	59.96	77.94	32.84	42.69	31.50	28.05	37.63	32.89
33	2	1.27	2.00	1.27	2.00	11.62	24.00	4000	0.50	6.00	48.19	62.65	36.14	46.99	34.59	28.87	38.34	31.49
34	4	1.27	2.00	1.27	2.00	21.78	24.00	4000	0.50	6.00	96.39	125.30	44.62	58.01	42.85	38.16	48.60	42.72
35	2	1.41	2.00	1.41	2.00	12.46	24.00	4000	0.50	6.00	118.40	153.91	41.02	53.33	39.44	32.92	42.98	35.40

											AC	I '89	AC	['95	Eq.	23*	Eq.	24++
Beam No.	n	db	cso	c _{si}	cb	Ъ	h	fc	ds	s	Iđ	1 _s	lđ	ls	ld(Conv.**)	l _d (New***)	l _d (Conv.**)	l _d (New***)
		(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(psi)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
Group 3																		
1	2	0.75	2.00	0.50	2.00	8.00	12.00	4000	0.50	8.00	21.35	27.75	17.08	22.20	20.50	17.35	27.69	22,48
2	2	0.75	2.00	0.50	2.00	8.00	12.00	4000	0.50	8.00	21.35	27.75	17.08	22.20	20.50	17.35	27.69	22.48
3	2	1.00	2.00	0.50	2.00	9.00	12.00	4000	0.50	8.00	29.98	38.97	35.58	46.25	31.71	26.59	41.81	33.72
4	2	1.27	2.00	0.64	2.00	10.35	12.00	4000	0.50	8.00	96.39	125.30	50.55	65.72	43.93	36.76	54.62	44.33
5	2	1.41	2.00	0.71	2.00	11.05	12.00	4000	0.50	8.00	118.40	153.91	58.70	76.30	50.46	42.20	61.28	49.86
6	2	0.75	2.00	0.50	2.00	8.00	12.00	4000	0.50	8.00	21.35	27.75	17.08	22.20	20.50	17.35	27.69	22.48
7	4	0.75	2.00	0.50	2.00	13.00	12.00	4000	0.50	8.00	33.39	43.41	23.29	30.27	24.91	22.43	35.74	31.09
8	6	0.75	2.00	0.50	2.00	18.00	12.00	4000	0.50	8.00	33.39	43.41	26.50	34.45	26.83	24.86	39.58	35.64
9	8	0.75	2.00	0.50	2.00	23.00	12.00	4000	0.50	8.00	33.39	43.41	28.46	37.00	27.90	26.28	41.82	38.46
10	2	1.00	2.00	0.50	2.00	9.00	12.00	4000	0.50	8.00	29.98	38.97	35.58	46.25	31.71	26.59	41.81	33.72
11	4	1.00	2.00	0.50	2.00	15.00	12.00	4000	0.50	8.00	59.96	77.94	47.43	61.66	39.03	34.89	54.54	47.16
12	6	1.00	2.00	0.50	2.00	21.00	12.00	4000	0.50	8.00	59.96	77.94	53.36	69.37	42.29	38.95	60.69	54.38
13	2	1.27	2.00	0.64	2.00	10.35	12.00	4000	0.50	8.00	96.39	125.30	50.55	65.72	43.93	36.76	54.62	44.33
14	4	1.27	2.00	0.64	2.00	17.97	12.00	4000	0.50	8.00	96.39	125.30	64.84	84.29	54.20	48.38	70.54	61.34
15	2	1.41	2.00	0.71	2.00	11.05	12.00	4000	0.50	8.00	118.40	153.91	58.70	76.30	50.46	42.20	61.28	49.86
16	4	1.41	2.00	0.71	2.00	19.51	12.00	4000	0.50	8.00	118.40	153.91	74.06	96.28	62.33	55.61	78.85	68.72
17	2	0.75	2.00	0.50	2.00	8.00	24.00	3000	0.50	8.00	24.65	32.04	19.72	25.63	22.67	19.18	30.45	24.72
18	2	0.75	2.00	0.50	2.00	8.00	24.00	4000	0.50	8.00	21.35	27.75	17.08	22.20	20.50	17.35	27.69	22.48
19	2	0.75	2.00	0.50	2.00	8.00	24.00	6000	0.50	8.00	17.43	22.66	13.94	18.13	17.71	14.98	24.12	19.59
20	2	1.00	2.00	0.50	2.00	9.00	24.00	3000	0.50	8.00	34.62	45.00	41.08	53.40	35.06	29.39	45.98	37.08
21	2	1.00	2.00	0.50	2.00	9.00	24.00	4000	0.50	8.00	29.98	38.97	35.58	46.25	31.71	26.59	41.81	33,72
22	2	1.00	2.00	0.50	2.00	9.00	24.00	6000	0.50	8.00	24.48	31.82	29.05	37.76	27.38	22.96	36.42	29.37
23	2	1.27	2.00	0.64	2.00	10.35	24.00	3000	0.50	8.00	111.30	144.69	58.38	75.89	48.50	40.58	60.06	48.75
24	2	1.27	2.00	0.64	2.00	10.35	24.00	4000	0.50	8.00	96.39	125.30	50.55	65.72	43.93	36.76	54.62	44.33
25	2	1.27	2.00	0.64	2.00	10.35	24.00	6000	0.50	8.00	78.70	102.31	41.28	53.66	38.02	31.81	47.58	38.62
26	2	1.41	2.00	0.71	2.00	11.05	24.00	3000	0.50	8.00	136.71	177.73	67.78	88.11	55.68	46.56	67.39	54.83
27	2	1.41	2.00	0.71	2.00	11.05	24.00	4000	0.50	8.00	118.40	153.91	58.70	76.30	50.46	42.20	61.28	49.86
28	2	1.41	2.00	0.71	2.00	11.05	24.00	6000	0.50	8.00	96.67	125.67	47.92	62.30	43.71	36.55	53.39	43.43
29	4	0.75	2.00	0.50	2.00	13.00	24.00	4000	0.50	8.00	33.39	43.41	23.29	30.27	24.91	22.43	35.74	31.09
30	6	0.75	2.00	0.50	2.00	18.00	24.00	4000	0.50	8.00	33.39	43.41	26.50	34.45	26.83	24.86	39.58	35.64
31	2	1.00	2.00	0.50	2.00	9.00	24.00	4000	0.50	8.00	29.98	38.97	35.58	46.25	31.71	26.59	41.81	33.72
32	4	1.00	2.00	0.50	2.00	15.00	24.00	4000	0.50	8.00	59.96	77.94	47.43	61.66	39.03	34.89	54.54	47.16
33	2	1.27	2.00	0.64	2.00	10.35	24.00	4000	0.50	8.00	96.39	125.30	50.55	65.72	43.93	36.76	54.62	44.33
34	4	1.27	2.00	0.64	2.00	17.97	24.00	4000	0.50	8.00	96.39	125.30	64.84	84.29	54.20	48.38	70.54	61.34
35	2	1,41	2.00	0.71	2.00	11.05	24.00	4000	0.50	8.00	118.40	153.91	58.70	76.30	50.46	42.20	61.28	49.86

											AC	I '89	ACI	'95	Eq.	23*	Eq.	24**
Beam No.	n	db	c_{so}	c _{si}	cb	b	h	fc	đs	s	lđ	1 _s	I _d	I _s	ld(Conv.**)	l _d (New***)	ld(Conv.**)	Id(New***)
		(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(psi)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
Group 4																		
1	2	0.75	2.00	0.50	2.00	8.00	12.00	4000	0.50	4.00	21.35	27.75	17.08	22.20	15.15	13.87	19.09	14.70
2	2	0.75	2.00	0.50	2.00	8.00	12.00	4000	0.50	4.00	21.35	27.75	17.08	22.20	15.15	13.87	19.09	14.70
3	2	1.00	2.00	0.50	2.00	9.00	12.00	4000	0.50	4.00	29.98	38.97	28.46	37,00	23.06	18.50	28.51	21.48
4	2	1.27	2.00	0.64	2.00	10.35	12.00	4000	0.50	4.00	48.19	62.65	36.14	46.99	31.85	24.83	37.63	28.51
5	2	1.41	2.00	0.71	2.00	11.05	12.00	4000	0.50	4.00	59.20	76.96	41.48	53.93	36.54	28.46	42.39	32.19
6	2	0.75	2.00	0.50	2.00	8.00	12.00	4000	0.50	4.00	21.35	27.75	17.08	22.20	15.15	13.87	19.09	14.70
7	4	0.75	2.00	0.50	2.00	13.00	12.00	4000	0.50	4.00	21.35	27.75	17.08	22.20	20.50	17.35	27.69	22.48
8	6	0.75	2.00	0.50	2.00	18.00	12.00	4000	0.50	4.00	33.39	43.41	20.77	27.00	23.24	20.44	32.59	27.57
9	8	0.75	2.00	0.50	2.00	23.00	12.00	4000	0.50	4.00	33.39	43.41	23.29	30.27	24.91	22.43	35.74	31.09
10	2	1.00	2.00	0.50	2.00	9.00	12.00	4000	0.50	4.00	29.98	38.97	28.46	37.00	23.06	18.50	28.51	21.48
11	4	1.00	2.00	0.50	2.00	15.00	12.00	4000	0.50	4.00	29.98	38.97	35.58	46.25	31.71	26.59	41.81	33.72
12	6	1.00	2.00	0.50	2.00	21.00	12.00	4000	0.50	4.00	59.96	77.94	42.69	55.50	36.24	31.60	49.51	41.63
13	2	1.27	2.00	0.64	2.00	10.35	12.00	4000	0.50	4.00	48.19	62.65	36.14	46.99	31.85	24.83	37.63	28.51
14	4	1.27	2.00	0.64	2.00	17.97	12.00	4000	0.50	4.00	96.39	125.30	50.55	65.72	43.93	36.76	54.62	44.33
15	2	1.41	2.00	0.71	2.00	11.05	12.00	4000	0.50	4.00	59.20	76.96	41.48	53.93	36.54	28.46	42.39	32.19
16	4	1.41	2.00	0.71	2.00	19.51	12.00	4000	0.50	4.00	118.40	153.91	58.70	76.30	50.46	42.20	61.28	49.86
17	2	0.75	2.00	0.50	2.00	8.00	24.00	3000	0.50	4.00	24.65	32.04	19.72	25.63	16.75	15.34	20.99	16.16
18	2	0.75	2.00	0.50	2.00	8.00	24.00	4000	0.50	4.00	21.35	27.75	17.08	22.20	15.15	13.87	19.09	14.70
19	2	0.75	2.00	0.50	2.00	8.00	24.00	6000	0.50	4.00	17.43	22.66	13.94	18.13	13.08	11.98	16.63	12.81
20	2	1.00	2.00	0.50	2.00	9.00	24.00	3000	0.50	4.00	34.62	45.00	32.86	42.72	25.50	20.45	31.35	23.62
21	2	1.00	2.00	0.50	2.00	9.00	24.00	4000	0.50	4.00	29.98	38.97	28.46	37.00	23.06	18.50	28.51	21.48
22	2	1.00	2.00	0.50	2.00	9.00	24.00	6000	0.50	4.00	24.48	31.82	23.24	30.21	19.92	15.97	24.83	18.71
23	2	1.27	2.00	0.64	2.00	10.35	24.00	3000	0.50	4.00	55.65	72.34	41.74	54.26	35.17	27.41	41.38	31.35
24	2	1.27	2.00	0.64	2.00	10.35	24.00	4000	0.50	4.00	48.19	62.65	36.14	46.99	31.85	24.83	37.63	28.51
25	2	1.27	2.00	0.64	2.00	10.35	24.00	6000	0.50	4.00	39.35	51.15	29.51	38.37	27.56	21.49	32.78	24.84
26	2	1.41	2.00	0.71	2.00	11.05	24.00	3000	0.50	4.00	68.36	88.86	47.90	62.27	40.32	31.41	46.62	35.40
27	2	1.41	2.00	0.71	2.00	11.05	24.00	4000	0.50	4.00	59.20	76.96	41.48	53.93	36.54	28.46	42.39	32.19
28	2	1.41	2.00	0.71	2.00	11.05	24.00	6000	0.50	4.00	48.33	62.84	33.87	44.03	31.65	24.66	36.93	28.04
29	4	0.75	2.00	0.50	2.00	13.00	24.00	4000	0.50	4.00	21.35	27.75	17.08	22.20	20.50	17.35	27.69	22.48
30	0	0.75	2.00	0.50	2.00	18.00	24.00	4000	0.50	4.00	33.39	43.41	20.77	27.00	23.24	20.44	32.59	27.57
31	2	1.00	2.00	0.50	2.00	9.00	24.00	4000	0.50	4.00	29.98	38.97	28.46	37.00	23.06	18.50	28.51	21.48
32	4	1.00	2.00	0.50	2.00	15.00	24.00	4000	0.50	4.00	29.98	38.97	35.58	46.25	31.71	26.59	41.81	33.72
33	2	1.27	2.00	0.64	2.00	10.35	24.00	4000	0.50	4.00	48.19	62.65	36.14	46.99	31.85	24.83	37.63	28.51
34	4	1.27	2.00	0.64	2.00	17.97	24.00	4000	0.50	4.00	96.39	125.30	50.55	65.72	43.93	36.76	54.62	44.33
35	2	1.41	2.00	0.71	2.00	11.05	24.00	4000	0.50	4.00	59.20	76.96	41.48	53.93	36.54	28.46	42.39	32.19

Beam No.	New	New	Eq.23*	Eq.23*	Eq.24**	Eq.24**	Eq.23	Eq.23*	Eq.24**	Eq.24**	Eq.23*	Eq.23*	Eq.24 ⁺⁺	Eq.24**	Eq.23*	Eq.23*	Eq.24**	Eq.24**
	Conv.	Conv.	ACI '89 l _s	ACI '95 Is	ACI '89 l _s	ACI '95 Is	ACI '89 la	ACI '95 ld	ACI '89 la	ACI '95 l _d	ACI '89 ls	ACI '95 ls	ACI '89 ls	ACI '95 ls	ACI '89 Id	ACI '95 ld	ACI '89 ld	ACI '95 Id
	Eq. 24**	Eq. 23*	Conv.**	Conv.**	Conv.**	Conv.**	Conv.**	Conv.**	Conv.**	Conv.**	New***	New***	New***	New***	New***	New***	New***	New***
Group 1																		······
1	0.819	0.854	0.762	0.909	1.038	1.238	0.991	1.182	1.349	1.610	0.651	0.776	0.851	1.015	0.846	1.009	1.106	1.319
2	1.000	1.000	0.530	0.662	0.530	0.662	0.689	0.861	0.689	0.861	0.530	0.662	0.530	0.662	0.689	0.861	0.689	0.861
3	0.888	0.888	0.608	0.640	0.608	0.640	0.790	0.832	0.790	0.832	0.540	0.568	0.540	0.568	0.702	0.739	0.702	0.739
4	0.859	0.870	0.426	0.760	0.469	0.836	0.553	0.987	0.609	1.087	0.370	0.661	0.402	0.718	0.481	0.859	0.523	0.933
5	0.843	0.856	0.303	0.719	0.342	0.811	0.394	0.935	0.445	1.055	0.260	0.616	0.289	0.684	0.338	0.801	0.375	0.889
6	1.000	1.000	0.530	0.662	0.530	0.662	0.689	0.861	0.689	0.861	0.530	0.662	0.530	0,662	0.689	0.861	0.689	0.861
7	0.941	0.941	0.588	0.735	0.588	0.735	0.764	0.955	0.764	0.955	0.553	0.692	0.553	0,692	0.719	0.899	0.719	0.899
8	0.938	0.947	0.704	0.915	0.857	1.113	0.916	1.190	1.114	1.447	0.667	0.867	0.803	1.044	0.868	1.127	1.045	1.357
9	0.929	0.948	0.631	0.773	0.915	1.121	0.820	1.005	1.189	1.457	0.598	0.733	0.850	1.042	0.778	0.953	1.105	1.355
10	0.888	0.888	0.608	0.640	0.608	0.640	0.790	0.832	0.790	0.832	0.540	0.568	0.540	0.568	0.702	0.739	0.702	0.739
11	0.933	0.933	0.692	0.729	0.692	0.729	0.900	0.948	0.900	0.948	0.646	0.681	0.646	0.681	0.840	0.885	0.840	0.885
12	0.919	0.934	0.497	0.674	0.641	0.868	0.647	0.877	0.833	1.129	0.465	0.630	0.588	0.798	0.604	0.819	0.765	1.037
13	0.877	0.877	0.558	0.744	0.558	0.744	0.725	0.967	0.725	0.967	0.490	0.653	0.490	0.653	0.637	0.849	0.637	0.849
14	0.916	0.923	0.475	0.766	0.521	0.841	0.617	0.996	0.678	1.093	0.438	0.707	0.478	0.771	0.570	0.919	0.621	1.002
15	0.873	0.873	0.536	0.791	0.536	0.791	0.697	1.028	0.697	1.028	0.468	0.690	0.468	0.690	0.608	0.897	0.608	0.897
16	0.907	0.915	0.482	0.742	0.537	0.828	0.626	0.965	0.698	1.076	0.441	0.680	0.487	0.751	0.573	0.884	0.633	0.976
17	0.947	0.947	0.567	0.709	0.567	0.709	0.738	0.922	0.738	0.922	0.537	0.672	0.537	0.672	0.698	0.873	0.698	0.873
18	0.947	0.947	0.596	0.745	0.596	0.745	0.775	0.968	0.775	0.968	0.564	0.705	0.564	0.705	0.733	0.917	0.733	0.917
19	0.947	0.947	0.636	0.795	0.636	0.795	0.826	1.033	0.826	1.033	0.602	0.752	0.602	0.752	0.782	0.978	0.782	0.978
20	0.939	0.939	0.670	0.706	0.670	0.706	0.871	0.918	0.871	0.918	0.630	0.663	0.630	0.663	0.819	0.862	0.819	0.862
21	0.939	0.939	0.704	0.741	0.704	0.741	0.915	0.964	0.915	0.964	0.661	0.696	0.661	0.696	0.860	0.905	0.860	0.905
22	0.939	0.939	0.751	0.791	0.751	0.791	0.976	1.028	0.976	1.028	0.705	0.743	0.705	0.743	0.917	0.966	0.917	0.966
23	0.919	0.927	0.485	0.715	0.544	0.801	0.631	0.930	0.707	1.042	0.450	0.663	0.500	0,737	0.585	0.862	0.650	0.958
24	0.919	0.927	0.509	0.750	0.571	0.841	0.662	0.976	0.742	1.094	0.472	0.696	0.525	0.774	0.614	0.904	0.682	1.006
25	0.919	0.927	0.543	0.800	0.609	0.898	0.706	1.040	0.792	1.167	0.503	0.742	0.560	0.825	0.654	0.964	0.728	1.073
26	0.907	0.918	0.354	0.682	0.410	0.788	0.461	0.886	0.533	1.025	0.325	0.626	0.372	0.715	0.423	0.813	0.483	0.930
27	0.907	0.918	0.372	0.715	0.430	0.828	0.483	0.929	0.559	1.076	0.341	0.656	0.390	0.751	0.443	0.853	0.507	0.976
28	0.907	0.918	0.396	0.761	0.459	0.883	0.514	0.989	0.597	1.148	0.363	0.699	0.416	0,801	0.472	0.908	0.541	1.041
29	0.935	0.943	0.692	0.865	0.805	1.006	0.900	1.125	1.047	1.308	0.653	0.816	0.753	0.941	0.849	1.061	0.979	1.224
30	0.920	0.942	0.644	0.753	0.966	1.130	0.837	0.979	1.255	1.469	0.607	0.710	0.889	1.040	0.789	0.923	1.155	1.352
31	0.904	0.904	0.638	0.672	0.638	0.672	0.830	0.874	0.830	0.874	0.577	0.608	0.577	0.608	0.750	0.790	0.750	0.790
32	0.916	0.929	0.452	0.713	0.551	0.869	0.588	0.927	0.716	1.130	0.420	0.662	0.505	0.796	0.546	0.861	0.656	1.035
33	0.895	0.895	0.591	0.787	0.591	0.787	0.768	1.024	0.768	1.024	0.528	0.704	0.528	0.704	0.687	0.916	0.687	0.916
34	0.892	0.913	0.459	0.636	0.606	0.839	0.597	0.827	0.787	1.091	0.419	0.580	0.540	0.749	0.545	0.754	0.702	0.973
35	0.890	0.890	0.569	0.824	0.569	0.824	0.740	1.071	0.740	1.071	0.507	0.733	0.507	0.733	0.659	0.953	0.659	0.953
Mar	1 000	1.000	0.762	0.915	1.038	1 238	0.991	1 190	1 349	1 610	0.705	0.867	0.889	1 044	0.917	1 127	1 155	1 357
Min	0.810	0.854	0.702	0.636	0 342	0.640	0 394	0 827	0.445	0.832	0.260	0.568	0.289	0.568	0 338	0 739	0 375	0 739
Anna	0.015	0.034	0.505	0.050	0.618	0.876	0.726	0.067	0.804	1 074	0.516	0.505	0.209	0.300	0,550	0.755	0.736	0.051
Avg	0.913	0.922	0.009	V./44	0.010	0.040	0.720	0.907	0.004	1.074	0.510	0.000	0.500	0.154	0.070	0.030	0.750	0.201

Beam No.	New	New	Eq.23 ⁺	Eq.23*	Eq.24**	Eq.24**	Eq.23*	Eq.23*	Eq.24**	Eq.24**	Eq.23*	Eq.23 ⁺	Eq.24**	Eq.24**	Eq.23*	Eq.23*	Eq.24**	Eq.24 ^{**}
	Conv.	Conv.	ACI '89 ls	ACI '95 ls	ACI '89 Is	ACI '95 ls	ACI '89 la	ACI '95 ld	ACI '89 ld	ACI '95 la	ACI '891,	ACI '95 ls	ACI '89 ls	ACI '95 ls	ACI '89 14	ACI '95 1d	ACI '89 la	ACI '95 L
	Ea. 24 ⁺⁺	Ea. 23*	Conv.**	Conv.**	Conv.**	Conv.**	Conv.**	Conv.**	Conv.**	Conv.**	New***	New***	New***	New***	New***	New***	New***	New***
Group 2										······································								
1	0.809	0.834	0.622	0.777	0.763	0.954	0.809	1.011	0.992	1.241	0.519	0.648	0.617	0.772	0.674	0.843	0.803	1.003
2	0.809	0.834	0.622	0.777	0.763	0.954	0.809	1.011	0.992	1.241	0.519	0.648	0.617	0.772	0.674	0.843	0.803	1.003
3	0.816	0.834	0.652	0.687	0.754	0.795	0.848	0.893	0.981	1.033	0.544	0.573	0,616	0.649	0.707	0.745	0.801	0.843
4	0.822	0.835	0.552	0.736	0.612	0.816	0.718	0.957	0.795	1.061	0.461	0.614	0.503	0.670	0.599	0.799	0.653	0.871
5	0.824	0.835	0.256	0.740	0.279	0.806	0.333	0.961	0.363	1.048	0.214	0.617	0.230	0.664	0.278	0.803	0.299	0.863
6	0,809	0.834	0.622	0.777	0.763	0.954	0.809	1.011	0.992	1.241	0.519	0.648	0.617	0.772	0.674	0.843	0.803	1.003
7	0.867	0.890	0.493	0.921	0.634	1.184	0.641	1.198	0.824	1.539	0,439	0.820	0.549	1.026	0.570	1.066	0,714	1.334
8	0.898	0.918	0.536	0.877	0.704	1.152	0.697	1.141	0.915	1.497	0.492	0.805	0.632	1.034	0.640	1.047	0.821	1.344
9	0.917	0.934	0.560	0.852	0.745	1.133	0.729	1.108	0.968	1.472	0.524	0.796	0.683	1.039	0.681	1.035	0.888	1.351
10	0.816	0.834	0.652	0.687	0.754	0.795	0.848	0.893	0.981	1.033	0.544	0.573	0.616	0.649	0.707	0.745	0.801	0.843
11	0.874	0.890	0.404	0.738	0.483	0.881	0.525	0.959	0.628	1.146	0.360	0.657	0.422	0.771	0.468	0.854	0.549	1.002
12	0.904	0.918	0.439	0.720	0.532	0.872	0.571	0.936	0.692	1.134	0.403	0.661	0.482	0.789	0.524	0.859	0.626	1.026
13	0.822	0.835	0.552	0.736	0.612	0.816	0.718	0.957	0.795	1.061	0.461	0.614	0.503	0.670	0.599	0.799	0.653	0.871
14	0.879	0.891	0.342	0.739	0.388	0.838	0.445	0.960	0.504	1.089	0.305	0.658	0.341	0.736	0.396	0.855	0.443	0.957
15	0.824	0.835	0.256	0.740	0.279	0.806	0.333	0.961	0.363	1.048	0.214	0.617	0.230	0.664	0.278	0.803	0.299	0.863
16	0.881	0.891	0.317	0.739	0.353	0.821	0.413	0.961	0.459	1.068	0.283	0.658	0.311	0.723	0.367	0.856	0.404	0.940
17	0.809	0.834	0.594	0.743	0.727	0.909	0.772	0.966	0.945	1.181	0.495	0.619	0.588	0.735	0.644	0.805	0.764	0.956
18	0.809	0.834	0.622	0.777	0.763	0.954	0.809	1.011	0.992	1.241	0.519	0.648	0.617	0.772	0.674	0.843	0.803	1.003
19	0.809	0.834	0.660	0.825	0.815	1.018	0.858	1.073	1.059	1.324	0.550	0.688	0.659	0.824	0.716	0.895	0.856	1.071
20	0.816	0.834	0.622	0.656	0.718	0.757	0.809	0.852	0.934	0.984	0.519	0.547	0.586	0.618	0.675	0.711	0.762	0.803
21	0.816	0.834	0.652	0.687	0.754	0.795	0.848	0.893	0.981	1,033	0.544	0.573	0,616	0.649	0.707	0.745	0.801	0.843
22	0.816	0.834	0.694	0.731	0.805	0.848	0.902	0.950	1.046	1.102	0.579	0.610	0.657	0.692	0.753	0.793	0.854	0.900
23	0.822	0.835	0.526	0.702	0.583	0.777	0.684	0.912	0.758	1.010	0.439	0.586	0.479	0.638	0.571	0.761	0.622	0.830
24	0.822	0.835	0.552	0.736	0.612	0.816	0.718	0.957	0,795	1.061	0.461	0.614	0.503	0.670	0.599	0.799	0.653	0.871
25	0.822	0.835	0.588	0.784	0.653	0.870	0.765	1.019	0.849	1.132	0.491	0.655	0,536	0.715	0.638	0.851	0.697	0.930
26	0.824	0.835	0.244	0.705	0.266	0.768	0.317	0.916	0.346	0.998	0.204	0.588	0.219	0.632	0.265	0.765	0.285	0.822
27	0.824	0.835	0.256	0.740	0.279	0,806	0.333	0.961	0.363	1.048	0.214	0.617	0.230	0.664	0.278	0.803	0.299	0.863
28	0.824	0.835	0.273	0.788	0.298	0.860	0.355	1.025	0.387	1.118	0.228	0.658	0.245	0.708	0.296	0.855	0.319	0.921
29	0.867	0.890	0.493	0.921	0.634	1.184	0.641	1.198	0.824	1.539	0.439	0.820	0.549	1.026	0.570	1,066	0.714	1.334
30	0.898	0.918	0.536	0.877	0.704	1,152	0.697	1.141	0.915	1.497	0.492	0.805	0.632	1.034	0.640	1.047	0.821	1.344
31	0.816	0.834	0.652	0.687	0.754	0.795	0.848	0.893	0.981	1.033	0.544	0.573	0.616	0.649	0,707	0.745	0.801	0.843
32	0.874	0.890	0.404	0.738	0.483	0,881	0.525	0.959	0.628	1.146	0.360	0.657	0.422	0.771	0.468	0.854	0.549	1.002
33	0.822	0.835	0.552	0.736	0.612	0.816	0.718	0.957	0.795	1.061	0.461	0.614	0.503	0.670	0.599	0.799	0.653	0.871
34	0.879	0.891	0.342	0.739	0.388	0.838	0.445	0.960	0.504	1.089	0.305	0.658	0.341	0.736	0.396	0.855	0.443	0.957
35	0.824	0,835	0.256	0.740	0.279	0.806	0.333	0.961	0.363	1.048	0.214	0.617	0.230	0.664	0.278	0.803	0.299	0.863
	0.017	0.934	0.694	0.921	0.815	1 184	0.902	1 198	1 059	1 530	0 579	0.820	0.683	1 039	0.753	1.066	0.888	1 351
Min	0.217	0.934	0.004	0.656	0.015	0.757	0.317	0.852	0 346	0.984	0 204	0.547	0.219	0.618	0.265	0.711	0.285	0.803
Ava	0.839	0.654	0.497	0.759	0.587	0.892	0.646	0.986	0.763	1.160	0.424	0.650	0.491	0.750	0.552	0.845	0.639	0.976
TA B	0.055	0.000	0.427	0.,00	0.207	0.072	0.0.0	4.240	0.700	*****	0			0.755	0.000	01040	0.007	0.570

Beam No.	New	New	Eq.23*	Eq.23*	Eq.24**	Eq.24**	Eq.23*	Eq.23*	Eq.24**	Eq.24**	Eq.23*	Eq.23*	Eq.24**	Eq.24**	Eq.23 ⁺	Eq 23*	Eq.24**	Eq.24**
	Conv.	Conv.	ACI '89 l _s	ACI '95 1s	ACI '89 ls	ACI '95 l _s	ACI '89 ld	ACI '95 Id	ACI '89 ld	ACI '95 la	ACI '89 Is	ACI '95 Is	ACI '89 l _s	ACI '95 ls	ACI '89 la	ACI '95 la	ACI '89 Id	ACI '95 Id
	Eq. 24**	Eq. 23	Conv.**	Conv.**	Conv.**	Conv.**	Conv.**	Conv.**	Conv.**	Conv.**	New***	New***	New***	New***	New***	New***	New***	New***
Group 3																		
1	0.812	0.846	0.739	0.924	0.998	1.247	0.961	1.201	1.297	1.622	0.625	0.782	0.810	1.013	0.813	1.016	1.053	1.317
2	0.812	0.846	0.739	0.924	0.998	1.247	0.961	1.201	1.297	1.622	0.625	0.782	0.810	1.013	0.813	1.016	1.053	1.317
3	0.806	0.838	0.814	0.686	1.073	0.904	1.058	0.891	1.395	1.175	0.682	0.575	0.865	0.729	0.887	0.747	1.125	0.948
4	0.812	0.837	0.351	0.668	0.436	0.831	0.456	0.869	0.567	1.080	0.293	0.559	0.354	0.674	0.381	0.727	0.460	0.877
5	0.814	0.836	0.328	0.661	0.398	0.803	0.426	0.860	0.518	1.044	0.274	0.553	0.324	0.653	0.356	0.719	0.421	0.849
6	0.812	0.846	0.739	0.924	0.998	1.247	0.961	1.201	1.297	1.622	0.625	0.782	0.810	1.013	0.813	1.016	1.053	1.317
7	0.870	0.901	0.574	0.823	0.823	1.181	0.746	1.070	1.070	1.535	0.517	0.741	0.716	1.027	0.672	0.963	0.931	1.335
8	0.901	0.927	0.618	0.779	0.912	1.149	0.803	1.012	1.185	1.494	0.573	0.722	0.821	1.035	0.744	0.938	1.067	1.345
9	0.920	0.942	0.643	0.754	0.963	1.130	0.836	0.980	1.252	1.470	0.605	0.710	0.886	1,039	0.787	0.923	1.152	1.351
10	0.806	0.838	0.814	0.686	1.073	0.904	1.058	0.891	1.395	1.175	0.682	0.575	0.865	0.729	0.887	0.747	1.125	0.948
11	0.865	0.894	0.501	0.633	0.700	0.884	0.651	0.823	0.910	1.150	0.448	0.566	0.605	0.765	0.582	0.736	0.787	0.994
12	0.896	0.921	0.543	0.610	0.779	0.875	0.705	0.792	1.012	1.137	0.500	0.561	0.698	0.784	0.650	0.730	0.907	1.019
13	0.812	0.837	0.351	0.668	0.436	0.831	0.456	0.869	0.567	1.080	0.293	0.559	0.354	0.674	0.381	0.727	0.460	0.877
14	0.870	0.893	0.433	0.643	0.563	0.837	0.562	0.836	0.732	1.088	0.386	0.574	0.490	0.728	0.502	0.746	0.636	0.946
15	0.814	0.836	0.328	0.661	0.398	0.803	0.426	0.860	0.518	1.044	0.274	0.553	0.324	0.653	0.356	0.719	0.421	0.849
16	0.872	0.892	0.405	0.647	0.512	0,819	0.526	0.842	0.666	1.065	0.361	0.578	0.446	0.714	0.470	0.751	0.580	0.928
17	0.812	0.846	0.708	0.884	0.950	1.188	0.920	1.150	1.235	1.544	0.599	0.748	0.772	0.964	0.778	0.973	1.003	1.254
18	0.812	0.846	0.739	0.924	0.998	1.247	0.961	1.201	1.297	1.622	0.625	0.782	0.810	1.013	0.813	1.016	1.053	1.317
19	0.812	0.846	0.781	0.977	1.065	1,331	1.016	1.270	1.384	1.730	0.661	0.827	0.864	1.081	0.860	1.075	1.124	1.405
20	0.806	0.838	0.779	0.657	1.022	0.861	1.013	0.854	1.328	1.119	0.653	0.550	0.824	0.694	0.849	0.716	1.071	0.903
21	0.806	0.838	0.814	0.686	1.073	0.904	1.058	0.891	1.395	1.175	0.682	0.575	0.865	0,729	0.887	0.747	1.125	0.948
22	0.806	0.838	0.861	0.725	1.145	0,965	1.119	0.943	1.488	1.254	0.721	0.608	0.923	0,778	0.938	0.790	1,200	1.011
23	0.812	0.837	0.335	0.639	0.415	0.791	0,436	0.831	0.540	1.029	0.280	0.535	0.337	0.642	0.365	0.095	0.438	0.855
24	0.812	0.837	0.351	0.668	0.436	168.0	0.456	0.869	0.567	1.080	0.293	0.009	0.354	0.074	0.381	0.727	0.400	0.07/
25	0.812	0.837	0.372	0.708	0.465	0.887	0.483	0.921	0.003	1.133	0.311	0.393	0.377	0.120	0.404	0.771	0.491	0.930
26	0.814	0.836	0.313	0.632	0.379	0,765	0.407	0.822	0.495	1.044	0.202	0.320	0.306	0.022	0.341	0.087	0.401	0.809
27	0.814	0.836	0.328	0.661	0.398	0.803	0.420	0.800	0.518	1.044	0.2/4	0.333	0.324	0.000	0.330	0.719	0.421	0.049
28	0.814	0.830	0,348	0.702	0.423	1 191	0.432	1.070	1.070	1.114	0.291	0.387	0.540	1.027	0.578	0.705	0.449	1 335
29	0.870	0.901	0.374	0.623	0.823	1.101	0.740	1.012	1 185	1 4 9 4	0.573	0.722	0.720	1.027	0.072	0.938	1.067	1 345
30	0.901	0.927	0.018	0.179	1.073	0.004	1.058	0.803	1 305	1 175	0.687	0.575	0.865	0.729	0.887	0.747	1 125	0.948
31	0.800	0.030	0.614	0.000	0.700	0.204	0.651	0.823	0.910	1 150	0.448	0.575	0.605	0.765	0.582	0.736	0.787	0.994
22	0.805	0.024	0.301	0.668	0.700	0.831	0.456	0.869	0.567	1 080	0.293	0.550	0 354	0.674	0.381	0.727	0.460	0.877
23	0.012	0.037	0.331	0.643	0.563	0.837	0.567	0.836	0 732	1 088	0 386	0.574	0.490	0.728	0 502	0 746	0.636	0.946
35	0.814	0.836	0.328	0.661	0.398	0.803	0.426	0.860	0.518	1.044	0.274	0.553	0.324	0.653	0.356	0.719	0.421	0.849
55	0.014	0.000	0.520	0.001	0.050	0,000	0	0.000						00000				
	0.020	0.042	0.941	0.077	1 1 4 5	1 221	1 110	1 170	1 488	1 730	0 721	0 827	0.023	1.081	0.038	1.075	1 200	1 405
IVIAX	0.920	0.942	0.001	0.511	1,14.3	1.331	0.407	0.700	0.403	0.004	0.721	0.529	0.323	0.622	0.241	0.687	0.403	0.900
Min	0.806	0.830	0.313	0.010	0.379	0.700	0.407	0.794	0.956	1 252	0.202	0.526	0.508	0.042	0.341 0.614	0.007	0.401	1.045
Avg	0.833	0.861	0.550	0.727	0.735	0.905	0.715	0.945	0.9.30	1.432	0.474	0.020	0.015	0.604	0.010	0.814	0.197	1.043

										<u> </u>		<u> </u>						
Beam No.	New	New	Eq.23*	Eq.23 ⁺	Eq.24**	Eq.24**	Eq.23*	Eq.23*	_Eq.24**	Eq.24**	Eq.23*	Eq.23*	Eq.24**	Eq.24**	Eq.23*	Eq.23*	Eq.24**	Eq.24**
	Conv.	Conv.	ACI '89 l _s	ACI '95 ls	ACI '89 ls	ACI '95 ls	ACI '89 ld	ACI '95 la	ACI '89 la	ACI '95 l _d	ACI '89 i _s	ACI '95 ls	ACI '89 l _s	ACI '95 ls	ACI '89 la	ACI '95 la	ACI '89 la	ACI '95 ld
	Eq. 24 ⁺⁺	Eq. 23 ⁺	Conv.**	Conv.**	Conv.**	Conv.**	Conv.**	Conv.**	Conv,**	Conv.**	New***	New***	New***	New***	New***	New***	New***	New***
Group 4																		
1	0.770	0.916	0.546	0.682	0.688	0.860	0.710	0.887	0.894	1.118	0.500	0.625	0.530	0.662	0.650	0.813	0.689	0.861
2	0.770	0.916	0.546	0.682	0.688	0.860	0.710	0.887	0.894	1,118	0.500	0.625	0.530	0.662	0.650	0.813	0.689	0.861
3	0.753	0.802	0.592	0.623	0,732	0.771	0.769	0.810	0.951	1.002	0.475	0.500	0.551	0.581	0.617	0.650	0.716	0.755
4	0.758	0.780	0.508	0.678	0.601	0.801	0.661	0.881	0.781	1.041	0.396	0.528	0.455	0.607	0.515	0.687	0.592	0.789
5	0.759	0.779	0.475	0.678	0.551	0.786	0.617	0.881	0.716	1.022	0.370	0.528	0.418	0,597	0.481	0.686	0.544	0.776
6	0.770	0.916	0.546	0.682	0.688	0.860	0.710	0.887	0.894	1.118	0.500	0.625	0.530	0.662	0.650	0.813	0.689	0.861
7	0.812	0.846	0.739	0.924	0.998	1.247	0.961	1.201	1.297	1.622	0.625	0.782	0.810	1.013	0.813	1.016	1.053	1.317
8	0.846	0.879	0.535	0.861	0.751	1.207	0.696	1.119	0.976	1.569	0.471	0.757	0.635	1.021	0.612	0.984	0.826	1.328
9	0.870	0.901	0.574	0.823	0.823	1.181	0.746	1.070	1.070	1.535	0.517	0.741	0.716	1.027	0.672	0.963	0.931	1.335
10	0.753	0.802	0.592	0.623	0.732	0.771	0.769	0.810	0.951	1.002	0.475	0.500	0.551	0.581	0.617	0.650	0.716	0.755
11	0.806	0.838	0.814	0.686	1.073	0.904	1.058	0.891	1.395	1,175	0.682	0.575	0.865	0.729	0.887	0.747	1.125	0.948
12	0.841	0.872	0.465	0.653	0.635	0.892	0.605	0.849	0.826	1.160	0.405	0.569	0.534	0.750	0.527	0.740	0.694	0.975
13	0.758	0.780	0,508	0.678	0.601	0.801	0.661	0.881	0.781	1.041	0.396	0.528	0.455	0.607	0.515	0.687	0.592	0.789
14	0.812	0.837	0.351	0.668	0.436	0.831	0.456	0.869	0.567	1.080	0.293	0.559	0.354	0.674	0.381	0.727	0.460	0.877
15	0.759	0.779	0.475	0.678	0.551	0.786	0.617	0.881	0.716	1.022	0.370	0.528	0.418	0.397	0.481	0.686	0.544	0.776
16	0.814	0.836	0.328	0.661	0.398	0.803	0.426	0.860	0.518	1.044	0.274	0.553	0.324	0.653	0.356	0.719	0.421	0.849
17	0.770	0.916	0.523	0.653	0.655	0.819	0.680	0.849	0.852	1.065	0.479	0.598	0.504	0.631	0.622	0.778	0.636	0.820
18	0.770	0.916	0.546	0.682	0.688	0.860	0.710	0.887	0.894	1.118	0.500	0.623	0.550	0.002	0.050	0.815	0.089	0.801
19	0.770	0.916	0.577	0.722	0.734	0.918	0.751	0.938	0.934	1.193	0.529	0.001	0.565	0.700	0.057	0.839	0.735	0.918
20	0.753	0.802	0,567	0.597	0.697	0.734	0.737	0.776	0.906	0.954	0.455	0.479	0.525	0.555	0.591	0.644	0.082	0.719
21	0.753	0.802	0.592	0.623	0.732	0.771	0.769	0.810	0.951	1.002	0.475	0.500	0,331	0.561	0.017	0.050	0.716	0.755
22	0.753	0.802	0.626	0.659	0.780	0.822	0.814	0.857	1.015	1.069	0.302	0.329	0.388	0.019	0.033	0.087	0.704	0.805
23	0,758	0.780	0.486	0.648	0.572	0.703	0.632	0.845	0.744	0.991	0.379	0.505	0.455	0.578	0.495	0.637	0.303	0.751
24	0.758	0.780	0.508	0.078	0.601	0.801	0.001	0.881	0.761	1.041	0.390	0.526	0.455	0.007	0.315	0.08/	0.392	0.769
25	0.758	0.780	0.539	0.718	0.041	0.634	0.701	0.934	0.655	1.111	0.420	0.500	0.460	0.047	0.140	0.128	0.031	0.644
20	0.759	0.779	0.454	0.045	0.525	0.7%	0.590	0.842	0.002	1 022	0.355	0.528	0.398	0.507	0.481	0.030	0.544	0.739
21	0.759	0.779	0.473	0.078	0.551	0.780	0.655	0.035	0.764	1.022	0.370	0.560	0.446	0.637	0.510	0.000	0.580	0.770
28	0.739	0.119	0.304	0.715	0.008	1 247	0.055	1 201	1 207	1.672	0.572	0.580	0.810	1.013	0.510	1.016	1.053	1 317
29	0.012	0.640	0.739	0.924	0.550	1.247	0.696	1 1 1 0	0.976	1 569	0.025	0.757	0.615	1 021	0.612	0.984	0.826	1 328
20	0.040	0.079	0.555	0.623	0.732	0.771	0.769	0.810	0.951	1 002	0.475	0.500	0.551	0.581	0.617	0.650	0.716	0.755
22	0.906	0.602	0.372	0.625	1 073	0.904	1.058	0.891	1.395	1 175	0.682	0.575	0.865	0.729	0.887	0.747	1.125	0.948
32	0.000	0.000	0.508	0.678	0.601	0.801	0.661	0.881	0.781	1 041	0.396	0.528	0.455	0.607	0.515	0.687	0 592	0.789
24	0.730	0.100	0.351	0.668	0.436	0.831	0.456	0.869	0 567	1.080	0 2.93	0.559	0 354	0.674	0.381	0 727	0.460	0.877
34	0.812	0.837	0.475	0.678	0.551	0.786	0.617	0.881	0.716	1.022	0.370	0.528	0.418	0.597	0.481	0.686	0.544	0.776
																		
Max	0.870	0.916	0.814	0.924	1.073	1.247	1.058	1.201	1.395	1.622	0.682	0.782	0.865	1.027	0.887	1.016	1.125	1.335
Min	0.753	0.779	0.328	0.597	0.398	0.734	0.426	0.776	0.518	0.954	0.274	0.479	0.324	0.553	0.356	0.622	0.421	0.719
Avg	0.781	0.831	0.543	0.698	0.681	0.875	0.706	0.907	0.886	1.137	0.452	0.581	0.533	0.687	0.587	0.755	0.693	0.893

Data, development lengths, and splice lengths for hypothetical beams with confining reinforcement (continued)*

Beam No.	New	New	Eq.23*	Eq.23*	Eq.24**	Eq.24**	Eq.23*	Eq.23*	Eq.24**	Eq.24**	Eq.23 ⁺	Eq.23*	Eq.24**	Eq.24**	Eq.23*	Eq.23⁺	Eq.24**	Eq.24**
	Conv.	Conv.	ACI '89 Is	ACI '95 ls	ACI '89 ls	ACI '95 l _s	ACI '89 la	ACI '95 ld	ACI '89 ld	ACI '95 Id	ACI '89 ls	ACI '95 Is	ACI '89 ls	ACI '95 ls	ACI '89 ld	ACI '95 ld	ACI '89 la	ACI '95 la
	Eq. 24**	Eq. 23 ⁺	Conv.**	New***														
For all 14	10 beams																	
Max Min Avg	1.000 0.753 0.842	1.000 0.779 0.867	0.861 0.244 0.537	0.977 0.597 0.732	1.145 0.266 0.655	1.331 0.640 0.889	1.119 0.317 0.698	1.270 0.776 0.951	1.488 0.346 0.852	1.730 0.832 1.156	0.721 0.204 0.466	0.867 0.479 0.635	0.923 0.219 0.551	1.081 0.553 0.749	0.938 0.265 0.606	1.127 0.622 0.826	1.200 0.285 0.716	1.405 0.719 0.973

* Using $\phi = 0.9$ and $f_v = 60$ ksi

*** High relative rib area bars, $R_r = 0.1275$

1 in. = 25.4 mm; 1 psi = 6.89 kPa

c_{si} < c_b

Fig. 1 Bond cracks: (a) $c_{si} > c_b$, (b) $c_{si} < c_b$

Fig. 2 Experimental bond force, $T_c = A_b f_s$, normalized with respect to $f'_c^{1/2}$ versus predicted bond force, $A_b f_s / f'_c^{1/2}$, as a function of concrete compressive strength for bars without confining reinforcement

Fig. 3 Experimental bond force, $T_c = A_b f_s$, normalized with respect to $f'_c {}^{1/4}$ versus predicted bond force, $A_b f_s / f'_c {}^{1/4}$, as a function of concrete compressive strength for bars without confining reinforcement

Fig. 4 Increase in bond force due to transverse reinforcement, T_s , normalized with respect to $f'_c^{1/4}$ versus $NA_{tr}f_{yt}/n$ for 134 beams with $l_d/d_b \ge 16$

49

Fig. 5 Increase in bond force due to transverse reinforcement, T_s , normalized with respect to $f'_c^{1/4}$ versus NA_{tr}/n for 134 beams with $l_d/d_b \ge 16$

Fig. 6 Increase in bond force due to transverse reinforcement, T_s, normalized with respect to $f'_c^{1/4}$ versus $t_r NA_{tr}/n$ for 134 beams with $l_d/d_b \ge 16$

Fig. 7 Increase in bond force due to transverse reinforcement, T_s , normalized with respect to $f'_c^{1/4}$ versus $t_r t_d NA_{tr}/n$ for 134 beams with $l_d/d_b \ge 16$

Fig. 8 Test/prediction ratio versus (c + K_{tr})/d_b for 134 beams with $l_d/d_b \ge 16$ ($K_{tr} = 29.6 t_r t_d A_{tr}/sn$)

Fig. 9 Increase in bond force due to transverse reinforcement, T_s , normalized with respect to $f'_c^{1/4}$ versus $NA_{tr}f_{yt}/n$ for 119 beams with $l_d/d_b \ge 16$ and $(c + K_{tr})/d_b \le 3.75$ ($K_{tr} = 29.6 t_r t_d A_{tr}/sn$)

Fig. 10 Increase in bond force due to transverse reinforcement, T_s, normalized with respect to $f'_c^{1/4}$ versus NA_{tr}/n for 119 beams with $l_d/d_b \ge 16$ and (c+ K_{tr})/d_b ≤ 3.75 (K_{tr} = 29.6 t_rt_dA_{tr}/sn)

Fig. 11 Increase in bond force due to transverse reinforcement, T_s, normalized with respect to $f'_c^{1/4}$ versus $t_r NA_{tr}/n$ for 119 beams with $l_d/d_b \ge 16$ and $(c + K_{tr})/d_b \le 3.75$ ($K_{tr} = 29.6 t_r t_d A_{tr}/sn$)

Fig. 12 Increase in bond force due to transverse reinforcement, T_s , normalized with respect to $f'_c^{1/4}$ versus $t_r t_d NAt_{tr}/n$ for 119 beams with $l_d/d_b \ge 16$ and $(c + K_{tr})/d_b \le 3.75$ ($K_{tr} = 29.6 t_r t_d A_{tr}/sn$)

Fig. 13 Test/prediction ratio versus (c + K_{tr})/d_b for 117 beams with $l_d/d_b \ge 16$ and (c+ K_{tr})/d_b ≤ 4 ($K_{tr} = 35.3$ t_rt_dA_{tr}/sn)

Fig. 14 Experimental bond force, $T_b = A_b f_s$, normalized with respect to $f'_c {}^{1/4}$ versus predicted bond force, $A_b f_s / f'_c {}^{1/4}$, for bars with confining reinforcement

APPENDIX A

ANALYSIS PROCEDURES FOR BARS WITHOUT CONFINING REINFORCEMENT

The approach used to develop an expression for the maximum bond force for bars not confined by transverse reinforcement, $T_c = A_b f_s$, starts with a basic model of the form:

$$\frac{T_{c}}{f'_{c}{}^{p}} = \frac{A_{b}f_{s}}{f'_{c}{}^{p}} = K_{1}l_{d}(c_{m} + 0.5d_{b}) + K_{2}$$
(A.1)

in which $f_c^{'p}$ = concrete compressive strength to the power p, in psi

 K_1 = slope of relationship

$$K_2 = \text{intercept at } T_c/f_c^p = 0$$

 K_1 is assumed to be independent of bar size, but K_2 may depend on bar size. Initially, c_m is as defined following Eq. 3, but without the 0.25 in. used in the definition of c_s .

For a given power p, a dummy variables analysis (Draper and Smith 1981) is carried out based on bar size comparing $A_b f_s / f_c^{'p}$ (test) versus $l_d (c_m + 0.5 d_b)$. K_1 and the individual values of K_2 (based on bar size) are determined. The results show that the values of K_2 are roughly proportional to the bar area, A_b . Based on this observation, a weighted average multiplier for A_b is determined for the full data set, and K_2 is replaced by $K_3 A_b$.

$$\frac{T_{c}}{f'_{c}} = \frac{A_{b}f_{s}}{f'_{c}} = K_{1}l_{d}(c_{m} + 0.5 d_{b}) + K_{3}A_{b}$$
(A.2)

Using the right side of Eq. A.2 as the predicted strength, test/prediction ratios, T/P, are plotted versus c_M/c_m , again using dummy variables analysis based on bar size. [The reasoning for this step is explained following Eq. 3.]

This gives an expression of the form

$$\frac{T}{P} = K_4 \frac{c_M}{c_m} + K_5$$
 (A.3)

in which $K_4 > 0$.

In this case, the coefficient of K_5 is different for each bar size, but no relationship appears to exist between the individual values and the bar size. Therefore, the individual values of K_5 are replaced by the weighted average intercept, K_6 . The results regularly show T/P < 1 for $c_M/c_m = 1$, demonstrating that using Eq. A.2 to predict T_c , without accounting for the effects of $c_M \neq c_m$, will cause bond strength to be overestimated when $c_M = c_m$.

Eq. A.3 (with K_5 replaced by K_6) is now combined with Eq. A.2 to give

$$\frac{T_{c}}{f'_{c}^{p}} = \frac{A_{b}f_{s}}{f'_{c}^{p}} = \left[K_{1}l_{d}(c_{m} + 0.5 d_{b}) + K_{3}A_{b}\right] \left(K_{4}\frac{c_{M}}{c_{m}} + K_{6}\right)$$
(A.4)

Eqs. 3 and 4 are in the form used for Eq. A.4. At this point, the coefficients K_1 , K_3 , K_4 , and K_6 can be adjusted so that the term ($K_4c_M/c_m + K_6$) = 1 at $c_M/c_m = 1$. The values of K_4 and K_6 are divided by ($K_4 + K_6$), while the values of K_1 and K_3 are multiplied by the same term.

Analyses can be carried out using different values of p and different definitions for c_s and c_b . The final results of those analyses, presented in the report, show that p = 1/4 and $c_s = \min (c_{si} + 0.25 \text{ in., } c_{so})$ provide the best results for the formulation described here. The limitation, $c_M/c_m \leq 3.5$, is based on the data available.

The plots and coefficients obtained in the derivations described above are presented in Figs. A.1 and A.2 and Table A.1 for Eq. 3 and in Figs. A.3 and A. 4 and Table A.2 for Eq. 4.

Table A.1

Bar Size No. of Specimens Κ, K_{γ}/A_{μ} K, No. 3 2 43.4 394.2 1.024 No. 4 50.6 16 253.0 0.893 82.0 No. 5 4 264.7 0.905 No. 6 33 94.6 215.1 0.802 No. 8 38 165.8 0.776 131.0 No. 9 3 298.8 298.8 0.938 No. 11 35 279.9 179.4 0.722No. 14 2 460.1 204.5 0.864 Slope, K. 9.46 Weighted Average, K, 202.1 Slope, K₄ 0.131 Weighted Average Intercept, K₆ 0.795 $K_1(K_4+K_6)=8.76$ $K_3(K_4+K_6)=186.9$ $K_4/(K_4+K_6)=0.14$ $K_{6}/(K_{4}+K_{6})=0.86$

Coefficients obtained in the derivation of Eq. 3

Table A.2

Bar Size	No. of Specimens		ĸ	K /A	ĸ
No. 3	2.		$\frac{R_2}{408.9}$	$\frac{11}{271}$	1.024
No. 4	16		511.3	2556.6	0.893
No. 5	4		917.1	2958.2	0.905
No. 6	33		981.4	2230.5	0.802
No. 8	38		1601.3	2026.9	0.776
No. 9	3		3020.5	3020.5	0.938
No. 11	35		3462.4	2219.5	0.722
No. 14	2		3978.1	1768.0	0.864
Slope, K ₁		67.03			
Weighted Average, K,				2263.8	
Slope, K ₄		0.095			
Weighted Average Inte	ercept, K ₆				0.85
$K_1(K_4+K_6)=63.2$	$K_{3}(K_{4}+K_{6})=2133.6$		$K_4/(K_4+K_6)=0.10$)	$K_6/(K_4+K_6)=0.90$

Coefficients obtained in the derivation of Eq. 4

Fig. A.1 $A_b f_s f_c^{'p}$ (test) versus $l_d (c_m + 0.5 d_b)$ for p = 1/2

Fig. A.2 Ratio of $A_b f_s f_c^{'p}$ (test) to $K_1 l_d (c_m + 0.5 d_b) + K_3 A_b$ versus c_M / c_m for p = 1/2. See Table A.1 for values of K_1 and K_3

Fig. A.3 $A_b f_s f_c^{'p}$ (test) versus $l_d (c_m + 0.5 d_b)$ for p = 1/4

65

Fig. A.4 Ratio of $A_b f_s f_c^{'p}$ (test) to $K_1 l_d (c_m + 0.5 d_b) + K_3 A_b$ versus c_M / c_m for p = 1/4. See Table A.2 for values of K_1 and K_3

Appendix B

Table B.1

Relative rib areas of conventional reinforcing bars

Source of Data	Designation	Bar Size	Relative
	-		Rib Area
Choi et. al. (1990, 1991)	S	No. 5	0.057
	С	No. 5	0.074
	N	No. 5	0.086
Hester et al. (1991, 1993)	С	No. 5	0.077
Darwin et al. (1995a)	5N0	No. 5	0.082
Average			0.0752
Standard Deviation			0.0112
COV			0.148
Choi et. al. (1990, 1991)	S	No. 6	0.060
	С	No. 6	0.079
	Ν	No. 6	0.084
Hester et al. (1991, 1993)	S	No. 6	0.070
	С	No. 6	0.076
Rezansoff et al. (1991, 1993)		No. 20M*	0.080
Average			0.0748
Standard Deviation			0.0086
COV			0.115
Choi et. al. (1990, 1991)	S	No. 8	0.064
	С	No. 8	0.077
	Ν	No. 8	0.080
Hester et al. (1991, 1993)	Ν	No. 8	0.078
	С	No. 8	0.071
Rezansoff et al. (1991, 1993)		No. 25M*	0.071
Darwin et al. (1995a)	8C0	No. 8	0.085
	8N0	No. 8	0.069
	8SH0	No. 8	0.065
	<u>8S0</u>	No. 8	0.071
Average			0.0731
Standard Deviation			0.0067
COV			0.092
Source of Data	Designation	Bar Size	Relative
-------------------------------	-------------	----------	----------
			Rib Area
Rezansoff et al. (1991, 1993)		No. 30M*	0.075
Choi et. al. (1990, 1991)	S	No. 11	0.071
	С	No. 11	0.069
Rezansoff et al. (1991, 1993)		No. 35M*	0.064
Azizinamini et al. (1995)		No. 11	0.059
Darwin et al. (1995a)	11N0	No. 11	0.072
	11B0	No. 11	0.070
Average	······		0.0674
Standard Deviation			0.0051
COV			0.075
All sources and sizes:			
Average			0.0727
Standard Deviation***			0.0086
COV**			0.118

Table B.1 Relative rib areas of conventional reinforcing bars (continued)

* Metric bar

** Coefficient of variation was calculated using the formula

$$COV = \sqrt{\frac{\Sigma(n_i(COV_i)^2)}{\Sigma n_i - N - 1}}$$

where

 n_i = number of measured bars in each group i (i = 1 to 4) COV_i = COV for each group of bars i (i = 1 to 4)

N = number of groups, 4

*** Standard deviation = COV x average

Appendix C

Notation	
A _b	= bar area, in in. ²
A _{tr}	= area of each stirrup or tie crossing the potential plane of splitting adjacent to the reinforcement being developed or spliced, in in. ²
b	= beam width, in in.
с	$= c_{\rm m} + 0.5 d_{\rm b}$
c _b	= bottom cover of reinforcing bars, in in.
c _M	= maximum value of c_s or c_b ($c_M/c_m \le 3.5$), in in.
c _m	= minimum value of c_s or c_b ($c_M/c_m \le 3.5$), in in.
c _s	= min (c_{si} + 0.25 in., c_{so}) or min (c_{si} , c_{so}), in in.
c _{si}	= one-half of clear spacing between bars, in in.
c _{so}	= side cover of reinforcing bars, in in.
d	= beam effective depth, in in.
d _b	= nominal bar diameter, in in.
d _s	= stirrup diameter, in in.
f'c	= concrete compressive strength, in psi; $f'_c^{1/2}$ and $f'_c^{1/4}$, in psi
f ^{'p} _c	= concrete compressive strength to the power p, in psi
f _s	= steel stress at failure, in psi
fy	= yield strength of bars being spliced or developed, in psi
f _{yt}	= yield strength of transverse reinforcement, in psi
h	= beam depth, in in.
K _i	= coefficients used to define the expressions used in Appendix A ($i = 1$ to 6)
K _{tr}	= term representing the effect of transverse reinforcement on bond strength. The value depends on the stage of the analysis and the design expression in which it is used. $K_{tr} = 29.6 t_r t_d A_{tr}/sn$ based on initial analysis. $K_{tr} = 35.3 t_r t_d A_{tr}/sn$ based on final analysis [K_{tr} (conv.) = 34.5 (0.72 d _b + 0.28)A_{tr}/sn for conventional reinforcement (average $R_r = 0.0727$); K_{tr} (new) = 53 (0.72 d _b + 0.28)A_{tr}/sn for new reinforcement (average $R_r = 0.1275$)]

= $A_{tr}f_{yt}/(1500 \text{ sn})$ in the proposed expressions for ACI 318-95

ld	= development or splice length, in in.
l _{db}	= basic development length, in in.
ls	= splice length, in in.
Ν	= number of transverse reinforcing bars (stirrups or ties) crossing l _d or, in ACI 318-89, number of bars in a layer being spliced or developed at a critical section
n	= number of bars being developed or spliced along the plane of splitting
R _r	= ratio of projected rib area normal to bar axis to the product of the nominal bar perimeter and the center-to-center rib spacing
S	= spacing of transverse reinforcement, in in.
T _b	= total force in a bar at splice failure, in lb
T _c	= concrete contribution to total force in a bar at splice failure, in lb
Ts	= confining steel contribution to total force in a bar at splice failure, in lb
t _d	= 0.72 d_b + 0.28, term representing the effect of bar size on T_s
t _r	= 9.6 R_r + 0.28, term representing the effect of relative rib area on T_s
β	= reliability index
ф	= reliability-based strength reduction factor