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RELIABILITY-BASED STRENGTH REDUCTION FACTOR FOR BOND 

ABSTRACT 

The formulation and calculation of a reliability-based strength-reduction ( <P) factor for 

developed and spliced bars is described. Conventional and high relative rib area bars, both with 

and without confining reinforcement, are considered. The cp-factor is determined using statistical­

ly-based expressions for development/splice strength and Monte Carlo simulations of a range of 

beams. 

A strength-reduction factor of 0.9 is obtained for the design expressions for develop­

ment/splice length, based on a probability of failure in bond equal to about one-fifth of the proba­

bility of failure in bending or combined bending and compression. <P = 0.9 is incorporated into 

two expressions for development/splice length in a manner that is transparent to the user. A major 

advantage of each of the final expressions is that they provide identical values for development and 

splice length, removing the need to multiply development length by 1.3 or 1.7 to obtain the length 

of most splices. 

Keywords: bond (concrete to reinforcement); bridge specifications; building codes; deformed 

reinforcement; development; lap connections; reinforcing steels; relative rib area; reliability; splic­

ing; structural engineering; variability. 
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INTRODUCTION 

Recent work to improve the development characteristics of reinforcing bars by modifying 

bar deformation patterns (Darwin and Graham 1993a, 1993b, Darwin, Tholen, !dun and Zuo 

1995a) has included a reevaluation of existing development and splice tests and the formulation of 

an expression to represent the bond force of bottom-cast bars at development/splice failure (Dar-

win, Zuo, Tholen, and Idun 1995b). 

Based on this analysis, the best-fit equation for the ultimate bond force, Tb, is 

in which Tb 

fs 

= ;~~: = [63ld(cm + 0.5 db)+ 2130Ab] (o.l :: + 0.9) 
c 

NAtr 
+ 2226 t td -- + 66 

r n 

= force in bar at development or splice failure, in lb 

= bar area, in in.2 

= nominal bar diameter, in in. 

= steel stress at failure, in psi 

= concrete compressive strength, in psi; f' cl/4 in psi 

= development or splice length, in in. 

Cm, CM = minimum or maximum value of Cs or Cb (cMfcm :s; 3.5), in in. 

Cs = min ( Csi + 0.25 in., C50), in in. 

Csi = one-half of clear spacing between bars, in in. 

C50, Cb = side cover or bottom cover of reinforcing bars, in in. 

N = number of transverse reinforcing bars (stirrup or ties) crossing I.! 

(1) 

Atr = area of transverse reinforcement crossing the potential plane of splitting 

adjacent to the reinforcement being developed, in in.2 

n = number of bars being developed or spliced along the plane of splitting 
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t,. = 9.6 Rr + 0.28 

1d = 0.72 db + 0.28 

Rr = ratio of projected rib area normal to bar axis to the product of the nominal bar 

perimeter and the center-to-center rib spacing 

The final term in Eq. 1, 66, is used only if the member has confining transverse reinforce-

ment. 

Eq. 1 is based on the analysis of 133 development and splice tests of bottom-cast bars 

without confining reinforcement and 166 tests with confining reinforcement (Chinn et al. 1955, 

Chamberlin 1956, 1958, Mathey and Watstein 1961, Ferguson and Thompson 1965, Ferguson 

and Breen 1965, Thompson et al. 1975, Zekany et al. 1981, Choi et al. 1990, 1991, DeVries et al. 

1991, Hester et al. 1991, 1993, Rezansoff et al. 1991, 1993, Azizinamini et al. 1993, 1995, 

Darwin et al. 1995a). The data base includes specimens with concrete strengths, f' c• between 1820 

and 15,760 psi (13 and 109 MPa) and bars with relative rib areas, Rr, between 0.056 and 0.140; 

the relative rib area has been shown to significantly affect the contribution of transverse reinforce­

ment to bond strength (Darwin and Graham 1993a, 1993b, Darwin et al. 1995a). The effect of Rr 

is reflected in the expression for tr. Rr averages 0.0727 for conventional reinforcement and 0.1275 

for newly proposed high relative rib area bars (Darwin et al. 1995a, 1995b). 

Eq. 1 produces a mean test/prediction ratio of 1.00, with a coefficient of variation, V TIP· of 

0.107 for beams in which the bars are not confined by transverse reinforcement and a mean 

test/prediction ratio of 1.01, with VT/P = 0.125, for beams in which the bars are confined by 

transverse reinforcement. 

Eq. 1 can be used to calculate development/splice length, ld, by dropping the final term, 66, 

and setting N = ldfs, in which s = spacing of transverse reinforcement, in in . 

• ~'14 -2130 (o.I :M + o.9) 
fc m 

= --------~--~~~----

80.2 ( C :bKtr ) 

(2) 
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in which c =(em+ 0.5 db)(O.l CM/cm + 0.9), Ktr =35.3 t,t.!Au/sn, and (c + Ku)/db ~ 4.0 

Eq. 2 can be further simplified by setting CM/Cm = 1 and dropping 0.25 in. from the ddini· 

tion of c5 • 

(3) 

in which c =(em+ 0.5 db). 

Converting Eqs. 2 and 3 back to a form that can be used to predict Tb = A~s gives, respec· 

tively, 

+ 0.9) 

IdA } + 2226 t td __ tr 
r sn 

(4) 

(5) 

in which t, = 0.98 for conventional bars and 1.50 for high relative rib area bars, and c, (use--d to 

determine em), is defined appropriately in the two expressions. 

Eq. 4 (and Eq. 2) represents, very nearly, the best-fit equation for the full data base, Eq. 1. 

Therefore, 50 percent of the development/splice designs based on this expression will be weaker 

than predicted by Eq. 1 -a situation that presents unacceptable safety risks. Eq. 5 (and Eq. 3) is, 

in general, more conservative than Eq. 4, but will provide the same value of ld as Eq. 4 when em = 
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The level of safety can be improved by reducing the usable bond force, Tb = Abf., by 

multiplying the right side of Eqs. 4 and 5 by a suitable strength reduction (<jl) factor. A longer 

development length is then required to provide the desired value ofT b· 

This report describes the calculation of a reliability-based t-factor for developed and spliced 

bars with relative rib areas of 0.0727 and 0.1275 (for conventional and high relative rib area bars, 

respectively). Bars both with and without confming transverse reinforcement are considered. The 

$-factor is used in conjunction with Eqs. 4 and 5 to formulate design expressions for ld that are 

similar in format to Eqs. 2 and 3. The overall approach is described first, followed by the details 

of the calculation. As will be demonstrated, a major advantage of the final expressions is that they 

provide identical values for development and splice length. 

CALCULATION OF STRENGTH REDUCTION FACTORS 

Overall Approach 

The capacity reduction factor, <l>b, must be selected to insure an acceptably low probability 

of bond failure. Considering the brittle nature of bond failures, that probability should be lower 

than the probability of failure under a main load-carrying mechanism, such as bending or combined 

bending and compression. This can be achieved by using the concepts of structural reliability. 

Limiting consideration to "statically" applied load for the purpose of this analysis (i.e., not 

seismic or shock loading), it is recognized that the bar force, A~ •• that appears on the left side of 

Eqs. 4 and 5 has already been increased by a factor of 1/ <jl, in which <1> = strength reduction factor 

for the main loading, before development/splice design is undertaken. So as not to double-count 

<!>-factors, the resistance to which <l>b is applied corresponds to <I>Abfs (equivalent to the factored 

load). That is, 

<jlA~s :2: <l>b [Right side of Eq. 4 or 5] (6) 
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Therefore, the effective $-factor for use in calculating development/splice length becomes <Pd = 

<PJ<j), although the overall $-factor against bond failure remains <Pl,. 

Abfs ;;:: <Pd [Right side of Eq. 4 or 5] (7) 

Determining the value of% (and ultimately <j)d) requires the selection of the desired level of 

reliability, which can be represented by the reliability index, f3 (Ellingwood, Galambos, Mac­

Gregor, and Cornell 1980). For a resistance, R, and a loading, Q, failure will not occur if RIQ ;;> 

1. Using the formulation shown in Fig. 1 and the small-variance approximations (Ellingwood et 

a!. 1980), ln(R/Q) ~ln(R/ Q)andcr1n(RIQ) ~ (V~ + V~) 112 , in which the overbarrepre· 

sents the average, cr = standard deviation, and V = coefficient of variation, 

,l=.n .;::<R.:.:./...::Q)~ f3 = -
ln(R/Q) 

(8) 

Under typical conditions of loading, f3 ~ 3.0 for reinforced concrete beams and columns 

(Ellingwood et a!. 1980). A higher value of f3 is needed to insure that the probability of a bond 

failure is lower than the probability of a failure in bending for beams or in combined bending and 

compression for columns. Therefore, f3 = 3.5 is used in the calculation of development/splice 

length, producing a probability of failure equal to approximately one-frfth of that obtained with f3 = 

3.0. 

Eq. 8 can be used to calculate $b. but to do so requires knowledge of R and Q, both of 

which are random variables. This knowledge can be obtained through the application of Monte 

Carlo analysis, used in conjunction with data obtained from field measurements and test results. 

The derivation that follows parallels techniques used by Ellingwood et a!. ( 1980), Mirza and 

MacGregor (1986), and Lundberg (1993): 

R = random variable for resistance, which is represented as 
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R=X(l) Rp (9) 

in which X(l) =test-to-predicted load capacity random variable 

Rp = predicted capacity random variable, dependent on material and geometric 

properties of member, which are also random variables 

Q = :E loads (10) 

For dead load and live load, 

Q=Qo+Qr. (11) 

(12) 

in which Qo and Qr. = random variables representing dead and live load effects 

ODn = nominal dead load 

=X(2) (13) 

(14) 

in which Qr.n = nominal live load 

X(2), X(3) =actual-to-nominal dead and live load random variables 

[ ~~t = nominal ratio of live load to dead load 
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In design, 

in which $c = "composite" strength reduction factor (for this derivation, 4>c = «Pt,) 

Rn = nominal resistance 

')'D. 'YL = load factors for dead and live loads 

Factoring out Oon on the right side ofEq. 15 and setting Qu.!Oon = (Qu'Qn)n gives 

Solving Eq. 16 for Oon gives 

The total load, Q, is obtained by substituting Eqs. 13, 14, and 17 into Eq. 12. 

Q= 

[x(2) + X(3) (~)Jcj>cRn 

Yo+ YL (~~ t 
Letting 

q= 

[x(2) + X(3) (~ )J 
Yo+ YL (~~t 

(i 5) 

(16) 

(17) 

(l 8) 
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(20) 

Defining r = :n = (21a) 

(2lb) 

From Eq. 8, 

~= 
ln(RIQ) ln(rRnlljlc qRn) In (r I ljlcq) 

= = 
crln(RJQ) cr cr 

ln(r R,,J<PcqR,) ln(ri$ q) 
c 

In( r I q, q ) c In( r I q, c q ) (22) 
= = 

r,y2 + y2 )l/2 
r $q 

012 + y2 )l/2 
r $q 

in which 

r = (X(~nRP) (23) 

cr (24) v r 
r r 

X(2) + X(3) ( ~~ t 
(25) q = 

Yo+ YL (~~ t 



v = 
$q 

(j 

= q = 
q 

9 

(XcZT vOo]2 + [m(~t v~r 112 

X(2) + X(3) ( ~~ t 

<I> is calculated using Eq. 22. Starting with 13 = (In (r 1 <1> -q )] 1 (V2 + v 2 
) 

112
, 

c c r $q 

Random Variables 

(26) 

(27) 

(28) 

(29) 

The mean values, r and q , and the coefficients of variation, Vr and V $q• are needed to 

calculate <l>c using Eq. 29. The values associated with the resistance random variable r, r and Vr, 

are obtained first, followed by the values associated with the load random variable q, q and V <llq· 

Resistance Random Variable-Resistance random variable r is obtained using Eq. 21a. 

R 
r=-

R 

X(l) RP 
= 

R 
(21a) 

n n 

Test-to-predicted load random variable, X( I). The test-to-predicted load random variable, 

X(l), is based on a comparison of test results with Eq. 1. X(l) is treated as a normal random 
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variable with a mean equal to the mean test/prediction ratio. X(1) = 1.00 and 1.01 for members 

without and with confining transverse reinforcement, respectively (Darwin eta!. 1995b). The 

coefficient of variation Vx(l) is equal to the coefficient of variation associated with the predictive 

equation (or model) itself, V m• as separate from uncertainties in the measured loads and differences 

in the actual material and geometric properties of the specimens from values used to calculate the 

predicted strength, represented by V ts· The total coefficient of variation in the test/prediction ratio, 

VTfP, is equal to (V m2 + V ts2)1/2 (Grant, Mirza, and MacGregor 1978). Therefore, V m = (V T~­

v .. 2)1/2. 

For reinforced concrete, V ts ~ 0.07 (Grant et a!. 1978). For beams without confining 

reinforcement, V m = (VT/p2- V ts2)1/2 = (0.1072 - 0.072)1/2 = 0.081. For beams with confining 

reinforcement, additional uncertainty occurs because the relative rib area, Rr, is not known for 34 

of the beams used to establish Eq. 1. This is handled with V R = 0.02, giving V m = CVT~- V tsz 
2 ' 

- v R,)1/2 = (0.1252- 0.072- 0.022)1/2 = 0.102. 

Predicted Capacity Random Variable, R P. The individual values of the predicted capacity 

random variable, Rp, are obtained for hypothetical beams using the Monte Carlo method. The 

random variables used to calculate Rp are the concrete strength, fc (adjusted for the rate of load­

ing), the development/splice length, ld, the member width, b, the cover, Cb, the side cover, Cso• and 

the relative rib area of the developed/spliced bar, Rr. The predicted capacity, Rl" is calculated by 

solving Eq. 1 for Abfs. 

NAtr } 
+ 2226 trtd -n- + 66 (30) 

Individual values of Rp are calculated by substituting values for each of the variables that 

are determined based on the nominal value and statistical properties of that variable. Beams with 
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spliced bars are used as the physical model in this study. 

Concrete strength, f'c [X(4)]. The random variable for concrete strength, X(4), must take 

into consideration the strength and variability of concrete, as used in practice, and the effect of the 

actual load rate in the structure, as opposed to the load rate used in standard tests (Mirza, 

Hatzinikolas, and MacGregor 1979). The latter point is considered first. 

A relation proposed by Jones and Richart (1936) is used to take into account the fact that, 

under practical conditions, loading rates will be different than the average value of 35 psi/sec (0.24 

MPa/sec) used in a standard compression test (ASTM C 39). 

(31) 

in which 0.1 psi/sec s; f s; 10,000 psi/sec 

( cl' = compressive strength of concrete at stress rate f 

( 35= compressive strength of concrete at r = 35 psi/sec (0.24 MPa/sec) 

It is assumed that, in practice, the load rate will be such that failure will occur in one hour, 

resulting in a lower effective compressive strength than would be obtained in a standard test. The 

stress rate, f, corresponding to compressive failure in one hour is 

(32) 

The values off and f~t are obtained by iteration using Eqs. 31 and 32. 

The selection of the value of t;,35 , which should be representative of concrete strength in 

the field, is affected by two considerations: 1) Splice tests are calibrated against the compressive 

strength of standard cylinders that are cured in the same manner as the splice test specimens, not on 

the actual strength of the concrete in the splice specimens. The closest thing in concrete construe-
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tion is the use of field-cured specimens. 2) In practice, concrete must be proportioned to produce a 

higher strength than used to design the structure to insure that the strength of most of the concrete 

Will exceed the specified ValUe Of ( C• 

The two considerations have opposite effects on the value of ( 35 used in the analysis, 

since field-cured cylinders usually produce a lower strength than standard laboratory-cured speci­

mens (the basis upon which rc is measured), while the average strength of concrete produced in 

the field, as measured using standard specimens, exceeds r c by a considerable amount. These 

opposing effects largely cancel each other out. Therefore, the specified value of rc is used as the 

mean value of the concrete strength for use in determining Rp· 

(33) 

rc in Eq. 30 is replaced by the normally distributed random variable X(4) with a mean 

value X(4) = C:r [Eqs. 31 and 32]. Fodc = 4000 psi (28 MPa), X(4) = (r = 3559 psi (24.54 

MPa). The standard deviation crx14) = V c C:c is based on 1) an assumed standard deviation for 

standard laboratory cylinders, crccyt = 550 psi (3.8 MPa), representative of good job-site quality 

control, and 2) an assumed variability for in-place concrete, expressed as V c = (V ccyt2 + 0.0 

084)1/2 (Mirza et al. 1979), in which Vccyl = crccyyf~ and f~ =required average compressive 

strength of concrete= f'c + 2.33 q,yt- 500 psi (Eq. 5-2 of ACI 318-89). For rc = 4000 psi (28 

MPa), Vc = 0.147 and crx(4) = 523 psi (3.6 MPa). 

Geometric Properties. The balance of the random variables used to calculate Rp are the 

geometric properties of the structural member and the reinforcement. The tolerances in ACI 117-

90 are used as the basis for establishing the variability of the geometric properties of concrete 

sections. All geometric properties are represented using normal distributions. 

The splice length, ld, is represented by the random variable X(5), with a mean equal to the 
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specified value of J.i. The tolerance for the embedded length of bars and the length of bar laps in 

ACI 117-90 is- 1 in. (25 mm) for No.3 through No. 11 (9.5 through 36 mm) bars. It is as-

sumed that 95 percent of all bars will meet this criterion. For the normal distribution X(5), this 

means that 1.645 IJX(5) = 1 in. (25 mm), or 0X(5) = 0.61 in. (16 mm). [The values of O'X(i) are 

shown rounded to two significant figures. No rounding, however, is used in the calculation of q>.] 

Concrete cover, Cb, is represented by random variable X(6), with a mean equal to the 

specified cover. The tolerance on cover in ACI 117-90 is- 3/g in. (9 .5 mm) for members less than 

or equal to 12 in. (305 mm) in size and - lfz in. (13 mm) for members greater than 12 in. (305 

mm) in size. Again, assuming that 95 percent of all members will meet these criteria, 1.645 IJX(6) 

= 0.375 in. (9.5 mm), or crx(6) = 0.23 in. (6 mm) for members ~ 12 in. (305 mm) in size, and 

1.645 O'X(6) = 0.5 in. (13 mm), or O"X(6) = 0.30 in. (8 mm) for members> 12 in. (305 mm) in size. 

Side cover, c50, is represented by random variable X(7), with a mean equal to the specified 

value of c50• In this case, the tolerances on placement of reinforcement in ACI 117-90 are± 3fg in. 

(9.5 mm) for members between 4 and 12 in. (102 and 305 mm) in size and± lf2 in. (13 mm) for 

members greater than 12 in. (305 mm) in size. Since c 50 is bounded on two sides, if 95 percent of 

all bar placements meet these criteria, the tolerances are equal to 1.96 O"X(7)· Using procedures 

similar to those used for Cb and J.i, O"x(7) = 0.19 in. for members between 4 and 12 in. (102 and 

305 mm) in size and O"X(7) = 0.26 in. (7 mm) for members > 12 in. (305 mm) in size. 

One-half of the clear spacing between bars, c,;, is calculated as 

b-2n d -2c 
b b so c . = ---.:o-7---=-~-= 

" 2 (nb- 1) 
(34) 

in which nb = number of bars. In this expression, in addition to c50 , beam width, b, is a random 

variable, represented by X(8). 

The tolerances on cross-sectional dimensions in ACI 117-90 are+ 3fg in. and -1/4 in. 
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(+9.5 mm and -6.5 mm) for members with dimensions of 12 in. (305 mm) or Jess and+ lh in. 

and- 3fs in. ( + 13 mm and- 9.5 mm) for members with dimensions greater than 12 in. (305 mm), 

but less than 3ft (914 mm). ACI 117-90 also provides criteria for members over 3ft (914 mm) in 

dimension, but these are not used in the current Monte Carlo analysis. The mean value of beam 

width, X(8) , is taken as the nominal beam width plus the average of the tolerances = b + 0.0625 

in. (1.6 mm) for members in both size categories. The standard deviations are selected such that 

95 percent of all members have dimensions between the tolerances, giving crx(S) = 0.16 in. (4 mm) 

for members with b ~ 12 in. (305 mm) and O'X(S) = 0.22 in. (6 mm) for members 12 < b ~ 36 in. 

(305 < b ~ 914 mm). 

The term representing the effect of relative rib area on the effectiveness of transverse 

reinforcement on bond strength, tr = 9.6 R, + 0.28, depends on the random variable representing 

Rr = X(9). R r = X(9) = 0.0727 for conventional reinforcement and 0.1275 for high relative rib 

area reinforcement. Conservatively, the standard deviations are crx(9) = 0.0090 for conventional 

reinforcement and 0.0045 for high relative rib area reinforcement (Darwin et al. 1995b). 

In Eqs. 4 and 5, the number of stirrups crossing the splice, N, (Eqs. 1 and 30) has been 

replaced by ldls. N, of course, must have an integer value, although Ids is the value used in Eqs. 2 

and 3 to calculate development and splice length. As an example, if !Js = 3.6, the development/ 

splice length would be crossed by four stirrups 60 percent of the time and three stirrups 40 percent 

of the time, for an average of 3.6 stirrups. Thus, the average strength can be based on 3.6 stir­

rups. However, using 3.6 stirrups does not account for the variability in strength that occurs 

because some splices are crossed by 3 stirrups, while others are crossed by 4. This variability is 

accounted for in the Monte Carlo simulation by applying the appropriate weights to the calculated 

strengths for the two integer values for the number of stirrups. This results in a lower $-factor 

than if N = IJs were used to calculate Rp-

Nominal Strength, Rn. The nominal strength, Rm is calculated using Eq. 4 or Eq. 5 with 
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the specified concrete strength, f' c. and the nominal dimensions of the member. 

Monte Carlo Simulation. The values of r and Vr (Eq. 24) are obtained using Monte Carlo 

simulations of a selected number of beams. For each beam and simulation, values are selected for 

normally distributed random variables X(l) and X(4)- X(9). To do this for each variable, a 

random number between 0 and 1 is used with the cumulative distribution function to calculate the 

standard normal random variable, z (- oo < z < oo). For variable i, X(i)= X ( i) + ZO"X(i)· The 

values of X(i) are used to calculate r (Eq. 2la) for the simulation. The results of multiple simula-

tions are combined to obtain r and Yr. 

Loading Random Variable-The term q, given in Eq. 19, depends on random variables 

X(2) and X(3), representing the actual-to-nominal ratios for dead and live load, respectively; load 

factors for dead and live load, 'YD and ')'L; and the nominal live load-to-dead load ratio, (QiiQp)n. 

ro and 'YL are selected based on the load factors used in design, 1.4 and 1.7 for ACI 318-89, ACI 

318-95, and AASHTO Highway (1992), and 1.2 and 1.6 for ASCE 7-93. Values of (QI.IQo)n of 

0.5, 1.0, and 1.5 are normally selected for evaluating the reliability of reinforced concrete struc­

tures, with a nominal live load-to-dead load ratio of 1.0 serving as the standard for calculating $-

factors or determining the reliability index, f3. 

For reinforced concrete structures, X(2) = Q 0 /QDn = 1.03 and VQ, = 0.093 

(Ellingwood et al. 1980). X (3) = Q uOJ..n depends on the tributary area, AT, and the influence 

area, Ar (Ellingwood et al. 1980). For AT = 400 ft2 (37 m2) and A r = 800 ft2 (7 4 m 2) (representa-

rive values for a reinforced concrete flexural member), 

(35) 
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in which Lo =basic (unreduced) live load and areas are in ft2. 

Thus, X(3) = Q rJQu, = 0.975. V ~ = 0.25 (Ellingwood et al. 1980). 

STRENGTH REDUCTION FACTORS 

Strength reduction ( cp) factors are calculated for Eqs. 4 and 5 using I) nominal live load-to­

dead load ratios of 0.5, 1.0, and 1.5; 2) two combinations of dead and live load factors - a) 1.4 

and 1.7 (with cp for bending= 0.9), and b) 1.2 and 1.6 (with cp for bending= 0.8); 3) bars with 

relative rib areas of 0.0727 and 0.1275; and 4) members with and without confining transverse 

reinforcement 

The evaluations are based on splice lengths obtained from the respective equations calculat­

ed with a provisional value of ci>d = 0.9. [Note: The calculated $-factors are independent of the 

provisional value of <Jld.] Thirty-five beams in which the bars are not confined by transverse 

reinforcement and 140 beams (in four groups of 35 each) in which the bars are confined by trans­

verse reinforcement are used in the calculations. The beams have widths of 8, 12, 18, or 24 in. 

(203, 305, 457, and 610 mm) and depths of 12 or 24 in. (305 and 610 mm). Concrete strengths 

of 3000, 4000, and 6000 psi (21, 28, and 41 MPa) are evaluated, and 2, 4, 6, or 8 bars are spliced 

at the same location. No.6, No. 8, No. 10, and No. 11 (19, 25, 32, and 36 mm) bars are used. 

For bars with confining transverse reinforcement, No. 3 and No. 4 (9.5 and 12.5 mm) bar stirrups 

are spaced at values ranging from 4 to 10.8 in. (102 to 275 mm). A summary of the beams used 

for the analysis is presented in Appendix A. 

For each of the 35 beams without transverse reinforcement, 1000 Monte Carlo simulations 

are carried out in which the predicted strengths are calculated using Eq. 30 and the material and 

geometric random variables described in this report. For each of the 140 beams with transverse 

reinforcement, 250 simulations are carried out. The programs used for the Monte Carlo simula-
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tions are presented in Appendix B. The individual predicted strengths are used to calculate r (Eq. 

23) and V, (Eq. 24). The selected load factors and live load-to-dead load ratios are used to calcu­

late q (Eq. 25) and V 9q (Eq. 26). The results are combined with 13 = 3.5 to calculate $0 = q,b (Eq. 

29). The value of $d = <1>1/$ is then obtained. 

The results of the Monte Carlo simulations are presented in Table 1. 

Load factors 1.4 and 1.7-For Eq. 4, which is based on Eq. 2 (the more accurate of 

the two design equations), $d equals 0.94, 0.91, and 0.88 for bars without confining transverse 

reinforcement at live load-to-dead load ratios of 0.5, 1.0, and 1.5, respectively; and 0.93, 0.90, 

and 0.88 (R, = 0.0727) and 0.92, 0.89, and 0.87 (R, = 0.1275) for bars with confining transverse 

reinforcement at the same live load-to-dead load ratios. 

For Eq. 5, which is based on Eq. 3 (the more simplified of the two expressions), $d equals 

0.89, 0.87, and 0.85 for bars without confining transverse reinforcement at live load-to-dead load 

ratios of 0.5, 1.0, and 1.5, respectively; and 0.99, 0.97, and 0.95 (R, = 0.0727) and 0.97, 0.95, 

and 0.93 (R, = 0.1275) for bars with confining transverse reinforcement at the same live load-to­

dead load ratios. 

Load factors 1.2 and 1.6-For load factors of 1.2 and 1.6, the values of $d increase 

slightly compared to those obtained for load factors of 1.4 and 1.7. Using Eq. 4 and a live load­

to-dead load ratio of 1.0, $d equals 0.93 for bars without transverse reinforcement and 0.92 (R, = 

0.0727) and 0.91 (R, = 0.1275) for bars with transverse reinforcement. Using Eq. 5, the respec­

tive values are 0.89, 0.99, and 0.97. 

$d = 0.9 appears to be generally conservative and satisfactory for application with Eqs. 4 

and 5 for both sets of load factors. The lower values of q,d for bars without confining reinforce­

ment obtained for Eq. 5 compared to Eq. 4 pose no safety problems, since id obtained with Eq. 5 

is never shorter than ld obtained with Eq. 4. The lower values of $d calculated for Eq. 5 are due to 

the greater scatter (higher V,) obtained with Eq. 5, as shown in Table 1. 

Table 1 demonstrates that an increase in the live load-to-dead load ratio results in a reduc-
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tion in the $-factor. This reduction is due to the increased variability, represented by V $<!• that 

results from the greater uncertainty in the live load. 

Design Expressions-For ease in application, <Pd can be incorporated directly into the 

design expressions so that its value becomes transparent to the user. Multiplying the right side of 

Eqs. 4 and 5 by <!Jd = 0.9, setting fs = fy. and solving for Jddb gives, respectively, 

(37) 

(38) 

The development and splice lengths obtained with Eqs. 37 and 38 are compared with those 

obtained using the provisions of ACI 318-89 and ACI 318-95 for both conventional and high 

relative rib area bars by Darwin et al. (1995b ). 

The analysis described here provides an important advantage over current design proce-

dures (ACI 318-89, ACI 318-95, AASHTO Highway 1992) in that Eqs. 37 and 38 apply directly 

to both development and splice lengths, since the equation calibration and $-factor calculations are 

based on data that consists predominantly of splice tests in which all bars are spliced at the same 

location; over 90 percent of the specimens used to establish Eq. 1 contain Class B (ACI)/Class C 

(AASHTO) splices (Darwin et al. 1995b). Thus, following the procedures described here and by 

Darwin et al. (1995b) eliminates the need to multiply~ by 1.3 (ACI) or 1.7 (AASHTO) to obtain 

the length of most splices. 
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SUMMARY AND CONCLUSIONS 

The formulation and calculation of a reliability-based strength-reduction ( <jl) factor for 

developed and spliced bars is described. Conventional and high relative rib area bars, both with 

and without confming reinforcement, are considered. The <jl-factor is determined using statistical­

ly-based expressions for development/splice strength and Monte Carlo simulations of a range of 

beams. 

A strength-reduction factor of 0.9 is obtained for the design expressions for develop­

ment/splice length, based on a probability of failure in bond equal to about one-fifth of the proba­

bility of failure in bending or combined bending and compression. <jl = 0.9 is incorporated into 

two expressions for development/splice length in a manner that is transparent to the user. A major 

advantage of each of the final expressions is that they provide identical values for development and 

splice length, removing the need to multiply development length by 1.3 or 1.7 to obtain the length 

of most splices. 
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Table 1 

Strength Reduction (<j>) Factors for Bond 
Eq. 4 

Yo= 1.4 YL = 1.7 ( <!>""'""' = 0.9) 

Without Stirru s With Stirru s 

N/A 0.0727 
0.955 0.989 
0.106 0.125 

0.5 1.0 1.5 0.5 1.0 1.5 0.5 
0.675 0.647 0.631 0.675 0.647 0.631 0.675 
0.102 0.131 0.152 0.102 0.131 0.152 0.102 

0.846 0.819 0.792 0.833 0.812 0.788 0.826 
0.940 0.910 0.880 0.926 0.902 0.875 0.917 

Yo= 1.2 YL = 1.6 ( <!>"'"""' = 0.8) 

Without Stirru s With Stirru s 
N/A 0.0727 

0.955 0.989 
0.106 0.125 

0.5 1.0 1.5 0.5 1.0 1.5 0.5 
0.759 0.716 0.693 0.759 0.716 0.693 0.759 

0.102 0.131 0.152 0.102 0.131 0.152 0.102 

0.752 0.740 0.722 0.741 0.733 0.718 0.734 
0.940 0.925 0.902 0.926 0.917 0.897 0.917 

0.1275 
0.980 
0.125 

1.0 1.5 
0.647 0.631 
0.131 0.152 

0.805 0.780 
0.894 0.867 

0.1275 
0.980 
0.125 

1.0 1.5 
0.716 0.693 

0.131 0.152 

0.727 0.711 
0.908 0.889 
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Table 1 

Strength Reduction (lj>) Factors for Bond (continued) 
Eq.5 

Yo= 1.4 Yc = 1.7 (<!>"'';"' = 0.9) 

Without Stirru s With Stirru s 

Average R, N/A 0.0727 0.1275 
r 1.046 1.136 1.101 

V, 0.159 0.150 0.146 
(QJQL), 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5 

q 0.675 0.647 0.631 0.675 0.647 0.631 0.675 0.647 0.631 

v .. 0.102 0.131 0.152 0.102 0.131 0.152 0.102 0.131 0.152 

q,b 0.800 0.787 0.768 0.892 0.875 0.853 0.875 0.857 0.835 
q,, 0.889 0.874 0.853 0.991 0.973 0.948 0.972 0.953 0.928 

Yo= 1.2 YL = 1.6 (<!>",,;,, = 0.8) 

Without Stirru s With Stirru s 
Average R, N/A 0.0727 0.1275 

i' 1.046 1.136 1.101 
V, 0.159 0.150 0.146 

(QJQL), 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5 
q 0.759 0.716 0.693 0.759 0.716 0.693 0.759 0.716 0.693 

v .. 0.102 0.131 0.152 0.102 0.131 0.152 0.102 0.131 0.152 

q,b 0.711 0.711 0.700 0.793 0.791 0.778 0.778 0.774 0.761 
q,d 0.889 0.888 0.875 0.991 0.988 0.972 0.972 0.968 0.951 
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Frequency 

f30in(R/Q) 

ln(R/0) ln(R/0) 

Fig. 1 lllustration of reliability index (after Ellingwood et al. 1980). ~ = number of standard 
deviations, cr1n(RJQJ' between ln(R/Q)= ln(R/Q) andln(R/Q)=O. 
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Appendix A 

TableA.l 

Data for hypothetical beams used for the Monte Carlo Analyses 

(a) 
(without confining reinforcement) 

Beam No. n ld. db b h Cso Csi Cb f'c 
(in.) (in.) (in.) (in.) (in.) (in.) (in.) (psi) 

1 2 31.38 0.75 8.00 12.00 2.00 0.50 2.00 4000 
2 2 18.39 0.75 12.00 12.00 2.00 2.50 2.00 4000 
3 2 31.36 1.00 12.00 12.00 2.00 2.00 2.00 4000 
4 2 52.55 1.27 12.00 12.00 2.00 1.46 2.00 4000 
5 2 68.79 1.41 12.00 12.00 2.00 1.18 2.00 4000 
6 2 18.39 0.75 24.00 12.00 2.00 8.50 2.00 4000 
7 4 18.39 0.75 24.00 12.00 2.00 2.33 2.00 4000 
8 6 23.76 0.75 24.00 12.00 2.00 1.10 2.00 4000 
9 8 30.36 0.75 24.00 12.00 2.00 0.57 2.00 4000 
10 2 31.36 1.00 24.00 12.00 2.00 8.00 2.00 4000 
11 4 31.36 1.00 24.00 12.00 2.00 2.00 2.00 4000 
12 6 44.96 1.00 24.00 12.00 2.00 0.80 2.00 4000 
13 2 47.84 1.27 24.00 12.00 2.00 7.46 2.00 4000 
14 4 49.53 1.27 24.00 12.00 2.00 1.64 2.00 4000 
15 2 57.24 1.41 24.00 12.00 2.00 7.18 2.00 4000 
16 4 62.82 1.41 24.00 12.00 2.00 1.45 2.00 4000 
17 2 20.23 0.75 12.00 24.00 2.00 2.50 2.00 3000 
18 2 18.39 0.75 12.00 24.00 2.00 2.50 2.00 4000 
19 2 16.01 0.75 12.00 24.00 2.00 2.50 2.00 6000 
20 2 34.50 1.00 12.00 24.00 2.00 2.00 2.00 3000 
21 2 31.36 1.00 12.00 24.00 2.00 2.00 2.00 4000 
22 2 27.31 1.00 12.00 24.00 2.00 2.00 2.00 6000 
23 2 57.84 1.27 12.00 24.00 2.00 1.46 2.00 3000 
24 2 52.55 1.27 12.00 24.00 2.00 1.46 2.00 4000 
25 2 45.72 1.27 12.00 24.00 2.00 1.46 2.00 6000 
26 2 75.77 1.41 12.00 24.00 2.00 1.18 2.00 3000 
27 2 68.79 1.41 12.00 24.00 2.00 1.18 2.00 4000 
28 2 59.78 1.41 12.00 24.00 2.00 1.18 2.00 6000 
29 4 21.53 0.75 18.00 24.00 2.00 1.33 2.00 4000 
30 6 31.38 0.75 18.00 24.00 2.00 0.50 2.00 4000 
31 2 31.36 1.00 18.00 24.00 2.00 5.00 2.00 4000 
32 4 41.41 1.00 18.00 24.00 2.00 1.00 2.00 4000 
33 2 47.84 1.27 18.00 24.00 2.00 4.46 2.00 4000 
34 4 70.37 1.27 18.00 24.00 2.00 0.64 2.00 4000 
35 2 57.24 1.41 18.00 24.00 2.00 4.18 2.00 4000 
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Table A.l 

Data for hypothetical beams used for the Monte Carlo Analyses (continued) 

(b) 

(with confining reinforcement) 

Beam No. n !d" b s 

Group I 
1 2 
2 2 
3 2 
4 2 
5 2 
6 2 
7 4 
8 6 
9 8 
10 2 
II 4 
I2 6 
I3 2 
I4 4 
15 2 
16 4 
17 2 
18 2 
I9 2 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
3I 
32 
33 
34 
35 

2 
2 
2 
2 
2 
2 
2 
2 
2 
4 
6 
2 
4 
2 
4 
2 

R,=0.0727 R,=0.1275 
(in.) (in.) 

21.01 
I4.45 
23.76 
37.36 
46.57 
14.45 
16.18 
21.22 
27.15 
23.76 
27.04 
38.83 
34.97 
41.59 
41.13 
51.65 
I8.04 
I6.40 
14.28 
30.22 
27.48 
23.93 
49.09 
44.60 
38.81 
62.71 
56.94 
49.48 
19.05 
27.70 
24.95 
35.29 
36.99 
57.43 
43.67 

17.84 
12.95 
21.02 
32.33 
39.68 
12.95 
15.20 
20.07 
25.69 
21.02 
25.17 
36.18 
30.55 
38.29 
35.72 
47.14 
17.04 
15.50 
I3.49 
28.34 
25.76 
22.43 
45.39 
41.25 
35.89 
57.39 
52.11 
45.28 
17.94 
26.05 
22.48 
32.69 
32.97 
52.26 
38.73 

(in.) (in.) (in.) (in.) (in.) (in.) (psi) (in.') (in.) 

0.75 8.00 12.00 2.00 0.50 2.00 4000 0.110 4.81 
0.75 I2.00 I2.00 2.00 2.50 2.00 4000 0.110 4.8I 
1.00 I2.00 I2.00 2.00 2.00 2.00 4000 0.110 4.75 
1.27 12.00 12.00 2.00 1.46 2.00 4000 0.110 4.68 
1.41 12.00 I2.00 2.00 1.18 2.00 4000 0.110 4.65 
0.75 24.00 I2.00 2.00 8.50 2.00 4000 O.llO 4.8I 
0.75 24.00 I2.00 2.00 2.33 2.00 4000 0.055 4.8I 
0.75 24.00 I2.00 2.00 1.10 2.00 4000 0.037 4.81 
0.75 24.00 I2.00 2.00 0.57 2.00 4000 0.028 4.81 
1.00 24.00 12.00 2.00 8.00 2.00 4000 O.llO 4.75 
1.00 24.00 12.00 2.00 2.00 2.00 4000 0.055 4.75 
1.00 24.00 12.00 2.00 0.80 2.00 4000 0.037 4.75 
1.27 24.00 12.00 2.00 7.46 2.00 4000 0.110 4.68 
1.27 24.00 12.00 2.00 1.64 2.00 4000 0.055 4.68 
1.41 24.00 12.00 2.00 7.18 2.00 4000 0.110 4.65 
1.41 24.00 12.00 2.00 1.45 2.00 4000 0.055 4.65 
0.75 12.00 24.00 2.00 2.50 2.00 3000 0.110 10.81 
0.75 12.00 24.00 2.00 2.50 2.00 4000 0.110 10.81 
0.75 12.00 24.00 2.00 2.50 2.00 6000 0.110 10.81 
1.00 12.00 24.00 2.00 2.00 2.00 3000 0.110 10.75 
1.00 12.00 24.00 2.00 2.00 2.00 4000 0.110 10.75 
1.00 12.00 24.00 2.00 2.00 2.00 6000 0.110 10.75 
1.27 12.00 24.00 2.00 1.46 2.00 3000 O.llO 10.68 
1.27 12.00 24.00 2.00 1.46 2.00 4000 O.llO 10.68 
1.27 12.00 24.00 2.00 1.46 2.00 6000 0.110 10.68 
1.41 12.00 24.00 2.00 1.18 2.00 3000 0.110 10.65 
1.41 12.00 24.00 2.00 1.18 2.00 4000 0.110 10.65 
1.4I 12.00 24.00 2.00 1.18 2.00 6000 O.I10 I0.65 
0.75 18.00 24.00 2.00 1.33 2.00 4000 0.100 10.8I 
0.75 18.00 24.00 2.00 0.50 2.00 4000 0.067 10.8I 
1.00 18.00 24.00 2.00 5.00 2.00 4000 0.200 10.75 
1.00 18.00 24.00 2.00 1.00 2.00 4000 O.IOO 10.75 
1.27 18.00 24.00 2.00 4.46 2.00 4000 0.200 10.68 
1.27 18.00 24.00 2.00 0.64 2.00 4000 0.100 10.68 
1.41 18.00 24.00 2.00 4.18 2.00 4000 0.200 10.65 
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Table A.l 

Data for hypothetical beams used for the Monte Carlo Analyses {continued) 

{b) 

{with confining reinforcement) 

Beam No. n lct' s 

Group 2 
1 2 
2 2 
3 2 
4 2 
5 2 
6 2 
7 4 
8 6 
9 8 
10 2 
11 4 
12 6 
13 2 
14 4 
15 2 
16 4 
17 2 
18 2 
19 2 
20 2 
21 2 
22 2 
23 2 
24 2 
25 2 
26 2 
27 2 
28 2 
29 4 
30 6 
31 2 
32 4 
33 2 
34 4 
35 2 

R,=0.0727 R,=0.1275 
{in.) {in.) 

17.17 
17.17 
25.54 
34.65 
39.37 
17.17 
21.25 
23.08 
24.12 
25.54 
31.60 
34.31 
34.65 
42.84 
39.37 
48.67 
18.95 
17.17 
14.87 
28.15 
25.54 
22.17 
38.15 
34.65 
30.12 
43.33 
39.37 
34.25 
21.25 
23.08 
25.54 
31.60 
34.65 
42.84 
39.37 

14.23 
14.23 
21.18 
28.74 
32.66 
14.23 
18.84 
21.13 
22.49 
21.18 
28.02 
31.41 
28.74 
38.01 
32.66 
43.18 
15.70 
14.23 
12.32 
23.34 
21.18 
18.39 
31.64 
28.74 
24.98 
35.95 
32.66 
28.41 
18.84 
21.13 
21.18 
28.02 
28.74 
38.01 
32.66 

{in.) {in.) {in.) (in.) (in.) (in.) (psi) (in.') (in.) 

0.75 8.50 12.00 2.00 0.75 2.00 4000 0.200 6.00 
0.75 8.50 12.00 2.00 0.75 2.00 4000 0.200 6.00 
1.00 10.00 12.00 2.00 1.00 2.00 4000 0.200 6.00 
1.27 11.62 12.00 2.00 1.27 2.00 4000 0.200 6.00 
1.41 12.46 12.00 2.00 1.41 2.00 4000 0.200 6.00 
0.75 8.50 12.00 2.00 0.75 2.00 4000 0.200 6.00 
0.75 14.50 12.00 2.00 0.75 2.00 4000 0.100 6.00 
0.75 20.50 12.00 2.00 0.75 2.00 4000 0.067 6.00 
0.75 26.50 12.00 2.00 0.75 2.00 4000 0.050 6.00 
1.00 10.00 12.00 2.00 1.00 2.00 4000 0.200 6.00 
1.00 18.00 12.00 2.00 1.00 2.00 4000 0.100 6.00 
1.00 26.00 12.00 2.00 1.00 2.00 4000 0.067 6.00 
1.27 11.62 12.00 2.00 1.27 2.00 4000 0.200 6.00 
1.27 21.78 12.00 2.00 1.27 2.00 4000 0.100 6.00 
1.41 12.46 12.00 2.00 1.41 2.00 4000 0.200 6.00 
1.41 23.74 12.00 2.00 1.41 2.00 4000 0.100 6.00 
0.75 8.50 24.00 2.00 0.75 2.00 3000 0.200 6.00 
0.75 8.50 24.00 2.00 0.75 2.00 4000 0.200 6.00 
0.75 8.50 24.00 2.00 0.75 2.00 6000 0.200 6.00 
1.00 10.00 24.00 2.00 1.00 2.00 3000 0.200 6.00 
1.00 10.00 24.00 2.00 1.00 2.00 4000 0.200 6.00 
1.00 10.00 24.00 2.00 1.00 2.00 6000 0.200 6.00 
1.27 11.62 24.00 2.00 1.27 2.00 3000 0.200 6.00 
1.27 11.62 24.00 2.00 1.27 2.00 4000 0.200 6.00 
1.27 11.62 24.00 2.00 1.27 2.00 6000 0.200 6.00 
1.41 12.46 24.00 2.00 1.41 2.00 3000 0.200 6.00 
1.41 12.46 24.00 2.00 1.41 2.00 4000 0.200 6.00 
1.41 12.46 24.00 2.00 1.41 2.00 6000 0.200 6.00 
0.75 14.50 24.00 2.00 0.75 2.00 4000 0.100 6.00 
0.75 20.50 24.00 2.00 0.75 2.00 4000 0.067 6.00 
1.00 10.00 24.00 2.00 1.00 2.00 4000 0.200 6.00 
1.00 18.00 24.00 2.00 1.00 2.00 4000 0.100 6.00 
1.27 11.62 24.00 2.00 1.27 2.00 4000 0.200 6.00 
1.27 21.78 24.00 2.00 1.27 2.00 4000 0.100 6.00 
1.41 12.46 24.00 2.00 1.41 2.00 4000 0.200 6.00 
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Table A.l 

Data for hypothetical beams used for the Monte Carlo Analyses (continued) 

(b) 

(with confining reinforcement) 

Beam No. n lct. b h s 

Group 3 
1 2 
2 2 
3 2 
4 2 
5 2 
6 2 
7 4 
8 6 
9 8 
10 2 
11 4 
12 6 
13 2 
14 4 
15 2 
16 4 
17 2 
18 2 
19 2 
20 2 
21 2 
22 2 
23 2 
24 2 
25 2 
26 2 
27 2 
28 2 
29 4 
30 6 
31 2 
32 4 
33 2 
34 4 
35 2 

R,=0.0727 R,=0.1275 

(in.) (in.) 

20.38 
20.38 
31.85 
43.98 
50.35 
20.38 
24.71 
26.60 
27.65 
31.85 
39.13 
42.35 
43.98 
54.16 
50.35 
62.08 
22.54 
20.38 
17.59 
35.22 
31.85 
27.48 
48.57 
43.98 
38.04 
55.58 
50.35 
43.59 
24.7I 
26.60 
31.85 
39.I3 
43.98 
54.I6 
50.35 

I7.I5 
17.15 
26.54 
36.58 
41.84 
17.15 
22.I8 
24.58 
25.99 
26.54 
34.84 
38.90 
36.58 
48.16 
41.84 
55.17 
I8.97 
I7.15 
14.80 
29.35 
26.54 
22.90 
40.40 
36.58 
31.64 
46.I9 
41.84 
36.23 
22.18 
24.58 
26.54 
34.84 
36.58 
48.I6 
41.84 

(in.) (in.) (in.) (in.) (in.) (in.) (psi) (in.') (in.) 

0.75 8.00 I2.00 2.00 0.50 2.00 4000 0.200 8.00 
0.75 8.00 I2.00 2.00 0.50 2.00 4000 0.200 8.00 
1.00 9.00 12.00 2.00 0.50 2.00 4000 0.200 8.00 
1.27 10.35 I2.00 2.00 0.64 2.00 4000 0.200 8.00 
1.4I Il.05 12.00 2.00 0.71 2.00 4000 0.200 8.00 
0.75 8.00 I2.00 2.00 0.50 2.00 4000 0.200 8.00 
0.75 13.00 I2.00 2.00 0.50 2.00 4000 0.100 8.00 
0.75 I8.00 I2.00 2.00 0.50 2.00 4000 0.067 8.00 
0.75 23.00 12.00 2.00 0.50 2.00 4000 0.050 8.00 
1.00 9.00 12.00 2.00 0.50 2.00 4000 0.200 8.00 
1.00 15.00 I2.00 2.00 0.50 2.00 4000 O.IOO 8.00 
1.00 21.00 I2.00 2.00 0.50 2.00 4000 0.067 8.00 
1.27 10.35 12.00 2.00 0.64 2.00 4000 0.200 8.00 
1.27 I 7.97 I2.00 2.00 0.64 2.00 4000 0.100 8.00 
1.41 I 1.05 I2.00 2.00 0.7I 2.00 4000 0.200 8.00 
1.4I 19.5I I2.00 2.00 0.71 2.00 4000 O.IOO 8.00 
0.75 8.00 24.00 2.00 0.50 2.00 3000 0.200 8.00 
0.75 8.00 24.00 2.00 0.50 2.00 4000 0.200 8.00 
0.75 8.00 24.00 2.00 0.50 2.00 6000 0.200 8.00 
1.00 9.00 24.00 2.00 0.50 2.00 3000 0.200 8.00 
1.00 9.00 24.00 2.00 0.50 2.00 4000 0.200 8.00 
1.00 9.00 24.00 2.00 0.50 2.00 6000 0.200 8.00 
1.27 I 0.35 24.00 2.00 0.64 2.00 3000 0.200 8.00 
1.27 I 0.35 24.00 2.00 0.64 2.00 4000 0.200 8.00 
1.27 10.35 24.00 2.00 0.64 2.00 6000 0.200 8.00 
1.41 11.05 24.00 2.00 0.7I 2.00 3000 0.200 8.00 
1.41 11.05 24.00 2.00 0.7I 2.00 4000 0.200 8.00 
1.41 I 1.05 24.00 2.00 0.7 I 2.00 6000 0.200 8.00 
0.75 I3.00 24.00 2.00 0.50 2.00 4000 O.IOO 8.00 
0.75 I8.00 24.00 2.00 0.50 2.00 4000 0.067 8.00 
1.00 9.00 24.00 2.00 0.50 2.00 4000 0.200 8.00 
1.00 I5.00 24.00 2.00 0.50 2.00 4000 0.100 8.00 
1.27 I0.35 24.00 2.00 0.64 2.00 4000 0.200 8.00 
1.27 I7.97 24.00 2.00 0.64 2.00 4000 0.100 8.00 
1.41 Il.05 24.00 2.00 0.7I 2.00 4000 0.200 8.00 
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TableA.l 

Data for hypothetical beams used for the Monte Carlo Analyses (continued) 

(b) 
(with confining reinforcement) 

Beam No. n !d. <4 b s 

* 

Group 4 
1 2 
2 2 
3 2 
4 2 
5 2 
6 2 
7 4 
8 6 
9 8 
10 2 
11 4 
12 6 
13 2 
14 4 
15 2 
16 4 
17 2 
18 2 
19 2 
20 2 
21 2 
22 2 
23 2 
24 2 
25 2 
26 2 
27 2 
28 2 
29 4 
30 6 
31 2 
32 4 
33 2 
34 4 
35 2 

R,=0.0727 R,=0.1275 
(in.) (in.) (in.) (in.) (in.) (in.) (in.) (in.) (psi) (in.2

) (in.) 

15.09 
15.09 
23.21 
31.96 
36.54 
15.09 
20.38 
23.08 
24.71 
23.21 
31.85 
36.36 
31.96 
43.98 
36.54 
50.35 
16.69 
15.09 
13.03 
25.67 
23.21 
20.03 
35.30 
31.96 
27.64 
40.34 
36.54 
31.64 
20.38 
23.08 
23.21 
31.85 
31.96 
43.98 
36.54 

I 1.80 
11.80 
17.97 
24.70 
28.22 
11.80 
17.15 
20.20 
22.18 
17.97 
26.54 
31.55 
24.70 
36.58 
28.22 
41.84 
13.05 
11.80 
10.18 
19.88 
17.97 
15.51 
27.28 
24.70 
21.36 
31.14 
28.22 
24.43 
17.15 
20.20 
17.97 
26.54 
24.70 
36.58 
28.22 

0.75 8.00 12.00 2.00 0.50 2.00 4000 0.200 4.00 
0.75 8.00 12.00 2.00 0.50 2.00 4000 0.200 4.00 
1.00 9.00 12.00 2.00 0.50 2.00 4000 0.200 4.00 
1.27 10.35 12.00 2.00 0.64 2.00 4000 0.200 4.00 
1.41 11.05 12.00 2.00 0.71 2.00 4000 0.200 4.00 
0.75 8.00 12.00 2.00 0.50 2.00 4000 0.200 4.00 
0.75 13.00 12.00 2.00 0.50 2.00 4000 0.100 4.00 
0.75 18.00 12.00 2.00 0.50 2.00 4000 0.067 4.00 
0.75 23.00 12.00 2.00 0.50 2.00 4000 0.050 4.00 
1.00 9.00 12.00 2.00 0.50 2.00 4000 0.200 4.00 
1.00 15.00 12.00 2.00 0.50 2.00 4000 0.100 4.00 
1.00 21.00 12.00 2.00 0.50 2.00 4000 0.067 4.00 
1.27 10.35 12.00 2.00 0.64 2.00 4000 0.200 4.00 
1.27 17.97 12.00 2.00 0.64 2.00 4000 0.100 4.00 
1.41 11.05 12.00 2.00 0.71 2.00 4000 0.200 4.00 
1.41 19.51 12.00 2.00 0.71 2.00 4000 0.100 4.00 
0.75 8.00 24.00 2.00 0.50 2.00 3000 0.200 4.00 
0.75 8.00 24.00 2.00 0.50 2.00 4000 0.200 4.00 
0.75 8.00 24.00 2.00 0.50 2.00 6000 0.200 4.00 
1.00 9.00 24.00 2.00 0.50 2.00 3000 0.200 4.00 
1.00 9.00 24.00 2.00 0.50 2.00 4000 0.200 4.00 
1.00 9.00 24.00 2.00 0.50 2.00 6000 0.200 4.00 
1.27 10.35 24.00 2.00 0.64 2.00 3000 0.200 4.00 
1.27 10.35 24.00 2.00 0.64 2.00 4000 0.200 4.00 
1.27 10.35 24.00 2.00 0.64 2.00 6000 0.200 4.00 
1.41 11.05 24.00 2.00 0.71 2.00 3000 0.200 4.00 
1.41 11.05 24.00 2.00 0.71 2.00 4000 0.200 4.00 
1.41 11.05 24.00 2.00 0.71 2.00 6000 0.200 4.00 
0.75 13.00 24.00 2.00 0.50 2.00 4000 0.100 4.00 
0.75 18.00 24.00 2.00 0.50 2.00 4000 0.067 4.00 
1.00 9.00 24.00 2.00 0.50 2.00 4000 0.200 4.00 
1.00 15.00 24.00 2.00 0.50 2.00 4000 0.100 4.00 
1.27 10.35 24.00 2.00 0.64 2.00 4000 0.200 4.00 
1.27 17.97 24.00 2.00 0.64 2.00 4000 0.100 4.00 
1.41 11.05 24.00 2.00 0.71 2.00 4000 0.200 4.00 

Predicted development/splice lengths based on Eq. 2, using <!>d = 0.9 and fy = 60 ksi 
1 in. = 25.4 mm; 1 psi= 6.89 kPa; 1 ksi = 6.89 MPa 
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AppendixB 

Programs Used For Monte Carlo Simulations 

(a) 

Program Bms; 
{MONTE CARLO SIMULATION FOR BEAMS wrTIIOUT STIRRUPS) 

Uses Crt, Dos; 

{DECLARATION OF GLOBAL CONSTANTS FOR Tiffi PROGRAM) 

Canst 
left= 0.0; to!= l.Oe-6; 

{DECLARATION OF GLOBAL VARIABLES FOR Tiffi PROGRAM) 

Var 
a, b, z, pz, Ls, Cb, Csi, fc, Db, Ab, Cmin, Cmax, fern, Cbm, Cim, Lsm, 
Elm, E2m, Rl, R2, h, tel, tc2, Rcl, Rc2, aO, a!, a2, a3, a4, sdl, sl, 
sd2, r21, r22, Vc, mrl, mr2, msl, ms2, mvl, mv2, s2, s3, 
result, errest, Cso, W, Cs, s4, el, e2, CMm, feR, Cmind: Real; 

Nb, Ns, err: Byte; 
n, I : Integer; 
kl, i,j, k, m, mO, hr, mn, sec, sec!OO, hrl, mnl, sec!, sec!OO!: Word; 
fname: String[20]; 
st: String; 
fin, foul, fl : Text; 

{FUNCTION EVALUATES Tiffi EXPRESSION eA-(0.5*zA2)) 

Function F(z : Real) : Real; 
Begin 
F:= exp( -z*zl2.0); 

End; 

{FUNCTION EVALUATES TilE EXPRESSION FOR SIMPSON'S RULE) 

Function Simpson(a,b,h: Real) : Real; 
V ar mid : Real; 
begin 

mid := (b+a)/2.0; 
Simpson:= h/6.0*(F(a)+4.0*F(mid)+F(b)); 

end; 

{NUMERICAL METHOD TO DETERMINE Tiffi CURRENT IMPROVED STANDARD) 
{NORMAL VALUE, z[i+l], FROM A PREVIOUS VALUE OF z[i] DURING EACH CYCLE) 
{OF TilE ITERATIVE PROCESS) 

Procedure Adap_Quad(left,z,tol:Real; var result:Real; var errest:Real); 
Var h, II, !2, mid, result!, result2, errestl, errest2: Real; 
Begin 
m·=m+l· 
if ~0 > ](JO then 

begin 
window(20,23,50,24); 
writeln(pz:6:4,m0:9,m:9); 

end; 
h := z-left; 
II := Simpson(left,z,h); 
h := h/2.0; 
mid := (left+z)/2.0; 



I2 := Simpson(left,mid,h)+Simpson(mid,z,h); 
errest := abs((I2-Il)/15.0); 
if abs(errest) >to! tben 

begin 
Adap_Quad(left,mid,toV2,resultl,errestl); 
Adap_Quad(mid,z,toV2,result2,errest2); 
result := result! +result2; 
errest := errestl +errest2; 

end 
else 

result := I2-errest; 
End; 
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(ITERATIVE PROCESS TO OBTAIN THE STANDARD NORMAL VALUE, z, FOR ANY} 
{RANDOMLY GENERA TED CUMULATIVE PROBABILITY, pz, USING THE} 
{PROCEDURE Adap_Quad AS OFTEN AS IT IS REQUIRED} 

Procedure Getz; 
Begin 

pz := Random; 
a := 0.0; z := 2.0; b := 4.0; mO := 0; 
Repeat 

mO := mO+l; m := 0; 
Adap_quad(left,z,tol,result,errest); 
result := 0.5+result/sqrt(2.0*pi); 
if pz < 0.50 then 
begin 
result := 1.0-result; 
if result< pz then b := z else a := z; 

end 
else 

begin 
if result < pz then a := z else b := z; 

end; 
z := 0.5*(a+b); 
if mO > 500 then Exit; 

Until abs(pz-result) <to!; 
End; 

{FUNCTION DETERMINES THE MINIMUM OF TWO VARIABLES} 

Function Min(a,b :Real) :Real; 
begin 
if a< b tben Min:= a 
else Min := b; 

end; 

{FUNCTION DETERMINES THE MAXIMUM OF TWO VARIABLES} 

Function Max(a,b :Real): Real; 
begin 

if a> b tben Max :=a 
else Max := b; 

end; 

{FUNCTION DETERMINES PREDICTED BOND FORCE} 

Function Eqn I : Real; 
Var Eq: Real; 
Begin 

Eq := (63.0*Ls*(Cmin+0.5*Db)+2130.0*Ab)*(O.lO*CMm+0.90); 
Eqnl := Sqrt(Sqrt(fc))*Eq; 

End; 

(FUNCTION DETERMINES NOMINAL BOND FORCE} 



Function Eqn2 : Real; 
Var Eq: Real; 
Begin 
Eq := (63.0*Ls*(Cmind+0.5*Db)+2130.0*Ab); 
Eqn2 := Sqrt(Sqrt(fc))*Eq; 

End; 
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{FUNCTION DETERMINES THE APPROPRIATE VALUES FOR SOME PARAMETERS} 
{AND FUNCTIONS USED IN THE DETERMINATION OF BOND FORCE} 

Function Eqn(n: Byte) : Real; 
Begin 

Csi := (O.S*W-Nb*Db-Cso)/(Nb-1.0); 
Cs := Min(Cso,Csi+0.25); 
Cmin := Min(Cs,Cb); 
Cmind :=min(min(Cso,Csi),Cb); 
Cmax := Max(Cs,Cb ); 
CMm := Cmax/Cmin; 
if CMm > 3.5 then CMm := 3.5; 
ifn = 1 then Eqn := Eqnl 
else Eqn := Eqn2; 

End; 

{PROCEDURE FOR READING, FROM THE DATA FILE, AND DISPLAYING, ON THE} 
{SCREEN, THE NOMINAL VALUES FOR EACH BEAM} 

Procedure InputData; 
Begin 

readln(fin,W,h,fc,Cb,Cso,Ls,Nb,Db,Ab); 
n := l+n; 
writeln(' 
writeln(' 
writeln(' 
writeln(' 
writeln(' 
writeln(' 
writeln(' 
writeln(' 
writeln(' 
writeln(' 
writeln(' 
writeln(' 

End; 

CURRENT INPUT DATA FROM FILE ',fname+'.DAT); 
----------------------------------------'); 
Data for beam number ............ ',n:5); 
Beam width (ins.) ............... ',W:5:2); 
Beam depth (ins.) ............... ',h:5:2); 
Concrete strength (psi) ......... ',fc:4:0); 
Concrete cover (ins.) ........... ',Cb:5:3); 
Concrete side cover (ins.) ...... ',Cso:5:3); 
Splice length (ins.) ............ ',Ls:5:2); 
Number of bars spliced .......... ',Nb:2); 
Spliced bar diameter (ins.) ..... ',Db:5:3); 
Spliced bar area (sq. ins.) ..... ',Ab:4:2); 

{PROCEDURE FOR WRITING THE NOTATION AND HEADING INFORMATION FOR} 
{EACH BEAM INTO THE OUTPUT FILE FOR THE BEAM} 

Procedure OutData; 
Begin 

writeln(fout,' RESULTS OUTPUT FOR BEAMS W /0 STIRRUPS'); 
wri teln( fout,' -------------------------------------'); 
writeln(fout,' n =Number of iterations'); 
writeln(fout,' W = Beam width (ins.)'); 
writeln(fout,' fc = Concrete strength (psi)'); 
writeln(fout,' Cb =Concrete cover (ins.)'); 
writeln(fout,' Cso =Concrete side cover (ins.)'); 
writeln(fout,' Csi =One-half clear bar spacing (ins.)'); 
writeln(fout,' Ls =Splice length (ins.)'); 
writeln(fout,' Nb = Number of bars spliced'); 

. writeln(fout,' Db =Spliced bar diameter (ins.)'); 
writeln(fout,' Ab =Spliced bar area (sq. ins.)'); 
writeln(fout,' '); 
write(fout,' n W fc Cb Cso Csi Ls Nb Db Ab '); 
writeln(fout,' Eql Eq2 Rl R2 MRl MR2 SD! SD2 VI V2'); 
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write( f out,'--------------------------------------------------------'); 
writeln(fout,'-------------------------------------------------------------------'); 

End; 

{ITERATIVE PROCESS FOR DETERMINING THE LONG-TERM IN-SITU} 
{ COMPRESSNE STRENGTH OF CONCRETE} 

Procedure fcstrR; 
V ar fc35 : Real; 
Begin 

fc35 := fc; 
Repeat 
feR:= fc; 
fc := fc35*(0.89*(1.0+0.08*ln(fcRJ3600)/In(l0.0))); 

until Abs(fcR-fc) < 1.0; 
End; 

{MAIN PROCEDURE FOR THE MONTE CARLO SIMULATIONS WHERE THE DATA} 
{FOR EACH BEAM IS READ FROM THE DATA FILE; RUNS ALL THE PROCEDURES} 
{REQUIRED FOR THE SIMULATIONS; COMPUTES THE MEANS, STANDARD} 
{DEVIATIONS, AND COY FOR EACH BEAM; COMPUTES THE CUMULATIVE} 
{MEANS, STANDARD DEVIATIONS, AND COY; AND WRITES THE RESULTS} 
{INTO FILES} 

Procedure Simulate; 
Begin 

{WRITES THE NOTATION AND HEADING INFORMATION FOR} 
{MONTE CARLO SIMULATION OUTPUT RESULT FILE} 

writeln(fl,' RESULTS OUTPUT FOR BEAMS W/0 STIRRUPS'); 
writeln(fl,' ------------------------------------'); 
writeln(fl,' W = Beam width (ins.)'); 
writeln(fl,' fc = Concrete strength (psi)'); 
writeln(fl,' Cb =Concrete cover (ins.)'); 
writeln(fl,' Cso =Concrete side cover (ins.)'); 
writeln(fl,' Csi =One-half clear bar spacing (ins.)'); 
writeln(fl,' Ls =Splice length (ins.)'); 
writeln(fl,' Nb =Number of bars spliced'); 
writeln(fl,' Db = Spliced bar diameter (ins.)'); 
writeln(fl,' Ab =Spliced bar area (sq. ins.)'); 
writeln(fl,' '); 
write(fl,'Beam W fc Cb Cso Csi Ls Nb Db Ab '); 
write(fl,' El E2 Rl R2 Sl S2 VI '); 
writeln(fl,' V2 MRl MR2 MSl MS2 MV! MV2'); 
write( fl, '-----------------------------------------------------------'); 
write( fl, '-------------------------------------------------'); 
write In( fl, '---------------------------------------------'); 

{READS THE FIRST LINE (HEADING) FROM THE INPUT FILE} 

readln(fin,st); 

{INITIALIZES VARIABLES} 

mrl := 0.0; mr2 := 0.0; msl := 0.0; ms2 := 0.0; mvl := 0.0; mv2 := 0.0; 
s I := 0.0; s2 := 0.0; kl := 0; s3 := 0.0; s4 := 0.0; 

{ITERATION FOR READING AND PROCESSING THE DATA FOR EACH BEAM} 

While not Eof(fin) do 
begin 

Window(!, 1,80,25); 
ClrScr; InputData; Str(n,st); 
Assign(fout,fname+'.'+st); {$I-} Rewrite(fout); {$I+} 



Chkfile('FlLE FOR OUTPUT' ,'DISK/DRIVE'); 
if err= I then Exit; 

{INITIALIZES AND EVALUATES VARIABLES) 

Rl := Eqn(l); R2 := Eqn(2); 
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OutData; 
write(fout,W:10:2,fe:6:0,Cb:7:3,Cso:7:3,Csi:7:3,Ls:7:2,Nb:3); 
writeln(fout,Db:7 :3,Ab:6:2,R I :7:0,R2:7:0); 
aO := Ls; a! := Cb; a2 := Cso; a3 := W; a4 := fc; 
Ve := 550.0/(fe+2.33*550.0-500.0); Vc := sqrt(Vc*Ve+0.0084); 
Rei:= 0.0; Re2 := 0.0; sdl := 0.0; sd2 := 0.0; r21 := 0.0; 
r22 := 0.0; fern := 0.0; Cbm := 0.0; Cim := 0.0; Lsm := 0.0; 
Elm:= 0.0; E2m := 0.0; 

{ITERATION FOR PERFORMING THE MONTE CARLO SIMULATIONS k TIMES) 
{FOR EACH BEAM) 

forj := 1 tokdo 
begin 
Randomize; 
Window(20,21,40,22); 
writeln('WORKlNG ON CYCLE 'j); 
Ls := aO; Cb := al; Cso := a2; W := a3; fc := a4; 
festrR; 

{ITERATION FOR RANDOMLY GENERATING THE VARIABILITY ASSOCIATED) 
{WITI! EACH OF THE VARIABLES FOR CALCULATING THE PREDICTED) 
{BOND FORCE) 

for i := I to 6 do 
begin 

Getz; 
if pz < 0.50 then z := -z; 
Case i of 

I : Ls := Ls+0.6079*z; 
2 : if h > 12.0 then Cb := Cb+0.3040*z 

else Cb := Cb+0.2280*z; 
3 : if W > 12.0 then Cso := Cso+0.2551 *z 

else Cso := Cso+0.1913*z; 
4: ifW > 12.0 then W := W+0.0625+0.2232*z 

else W := W+0.0625+0.1594*z; 
5 : fe :=feR *(l.O+Ve*z); 
6: tel := 1.0000*(1.0+0.0809*z); 

end; 
end; 

{COMPUTES THE MEAN, STANDARD DEVIATION, AND COY FOR) 
{EACH BEAM AND CUMULATIVE MEAN, STANDARD DEVIATION) 
{AND COY INCLUDING PRECEDING BEAMS) 

el :=tel *Eqn(l); e2 := te2*Eqn(l); 
Rel := Rel+el/Rl; Re2 := Re2+e21R2; kl := kl+l; 
r21 := r21+e1*e1/Rl/Rl; r22 :=r22+e2*e21R2/R2; 
s3 := s3+el/R1; s4 := s4+e2/R2; 
sl := sl+el *e1/Rl/Rl; s2 := s2+e2*e2/R2/R2; 
ifj >I then 

begin 
sdl := sqrt((r21-Re1 *Re1/j)/j); 
sd2 := sqrt((r22-Re2*Re2/j)/j); 

end; 
ifkl >I then 

begin 
ms1 := sqrt((s1-s3*s3/kl)/k1); 
ms2 := sqrt((s2-s4*s4/kl)/k1); 
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end; 
fern:= fcm+fc; Cbm := Cbm+Cb; Cim := Cim+Csi; Lsm := Lsm+Ls; 
Elm:= Elm+el; E2m := E2rn+e2; 

{SECTION DISPLAYS TilE CURRENT RESULTS ON TilE SCREEN} 

Window( 10,16,70,21 ); 
writeln(' CURRENT Rl = ',ei/RI :6:3,' CURRENT R2 = ',e2/R2:6:3); 
writeln(' MEAN Rl = ',Rclfj:6:3,' MEAN R2 = ',Rc2/j:6:3); 
writeln(' STD DEV I = ',sd1:6:3,' STD DEV 2 = ',sd2:6:3); 
writeln(' C.O.V. I = ',sdi/Rcl *j:6:3,' C.O.V. 2 = ',sd2/Rc2*j:6:3); 

{WRITES TilE CURRENT RESULTS INTO TilE RESULT FILE FOR} 
{EACH BEAM} 

write(fout,j:3,W:7:2,fc:6:0,Cb:7:3,Cso:7:3,Csi:7:3,Ls:7:2,Nb:3,Db:7:3,Ab:6:2); 
write(fout,e I :7 :O,e2:7 :O,e 1/R I :7 :3,e21R2:7 :3,Rc 1/j :7: 3,Rc2/j :7:3 ,sd I :7:3 ); 
writeln(fout,sd2:7 :3,sd 1/Rc I *j:7 :3,sd2/Rc2*j:7 :3); 

end; 
writeln(fout,' '); 
Close(fout); 

{COMPUTES TilE AVERAGE VALUES FOR ALL VARIABLES FOR} 
{EACH OF THE BEAMS} 

fc := fcrnlj; Cb := Cbrnlj; Csi := Cirn!j; Ls := Lsrnlj; el := Elrnlj; 
e2 := E2rnlj; mrl := mrl+ei/Rl; mr2 := mr2+e21R2; mvl := msl/mrl*n; 
mv2 := ms2/mr2*n; 

{WRITES THE CURRENT BEAM RESULTS INTO TilE RESULT FILE} 
{THAT CONTAINS TilE SUMMARY OF ALL TilE RESULTS FOR ALL BEAMS) 

write(fl,n:3,W:7:2,fc:6:0,Cb:7:3,Cso:7:3,Csi:7:3,Ls:7:2,Nb:3,Db:7:3); 
write(fl,Ab:6:2,e 1 :7 :O,e2:7 :O,e 1/R I :7:3,e2/R2:7 :3); 
write( fl,sd 1 :7:3 ,sd2:7 :3,sd 1/Rc 1 *j:7 :3 ,sd2/Rc2 *j :7 :3,mr 1/n:7 :3); 
writeln(fl,mr2/n:7: 3,rns 1 :7: 3,ms2:7 :3,mv 1 :7 :3,rnv2:7 :3 ); 

end; 
End; 

{CHECKS TO SEE IF A SPECIFIED FILE EXISTS OR WAS OPENED SUCCESSFULLY) 

Procedure Chkfile(s1,s2: String); 
Begin 

if loresult <> 0 then 
begin 
Window(l0,10,70,15); 
ClrScr; 
writeln(' CANNOT OPEN ',sl); 
writeln; 
writeln(' PRESS ANY KEY TO END AND CHECK ',s2); 
err:= 1; 
st := Readkey; 
Exit; 

end; 
End; 

{START OF THE MAIN PROGRAM WHERE ALL INPUT IS MADE) 

BEGIN 
GetTime(hr,rnn,sec,sec 1 00); 
Window( 1, 1 ,80,25); 
ClrScr; 
err:= 0; 
n :=0; 
write(' ENTER NAME OF THE DATA FILE W/0 EXIENSION: '); 



readin(fname); 
Assign(fin,fname+'.DAT'); 
{$!-}Reset( fin); { $!+} 
Chkfiie('DATA FILE ','DATA FILE'); 
if err= 1 then Exit; 
Assign(fl,fname+'.RST'); 
{ $!-} Rewrite(fl); { $!+} 
Chkfiie('FILE FOR OUTPUT','DISK/DRIVE'); 
if err= I then Exit; 
writeln; 
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write(' ENTER 1BE NUMBER OF CYCLES REQUIRED: '); readln(k); 
Simulate; 
GetTime(hr1 ,mn 1 ,sec I ,sec 1001 ); 
writein(fl,' '); 
writeln(fl,'STOPPING 1Thffi: ',hrl,':',mnl,':',secl,'.',seclOOl); 
writeln(fl,'STARTIN"G TIME: \hr/:',mn,':',sec,'.',seclOO); 
Close( fin); 
Ciose(fl); 

END. 
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(b) 

Program Bst; 
{MONTE CARLO SIMULATION FOR BEAMS WITH STIRRUPS} 

Uses Crt, Dos; 

{DECLARATION OF GLOBAL CONSTANTS FOR THE PROGRAM} 

Canst 
left= 0.0; tol = l.Oe-6; 

{DECLARATION OF GLOBAL VARIABLES FOR THE PROGRAM} 

Var 
a, b, z, pz, Ls, Cb, Csi, fc, Db, Ab, Cmin, Cmax, fern, Cbm, Cim, Lsm, 
Elm, E2m, Rl, R2, h, tel, te2, Rcl, Re2, aO, a!, a2, a3, a4, sdl, sl, 
sd2, r21, r22, Vc, Av, Sv, Nv, mrl, mr2, msl, ms2, mvl, mv2, s2, s3, 
result, errest, Cso, W, Cs, s4, Atr, Atrn, el, e2, ell, el2, e21, e22, 
CMm, feR, Rr, a5, Vr, Rrm, Rm, Cmind, denol, deno2, trtd: Real; 

Nb, Ns, err : Byte; 
n, 1 : Integer; 
kl, i,j, k, m, mO, hr, mn, sec, seclOO, hrl, mnl, secl, seclOOl: Word; 
fname : String[20]; 
st: String; 
fin, fout, fl : Text; 

{FUNCTION EVALUATES THE EXPRESSION e"-(0.5*z"2)} 

Function F(z : Real) : Real; 
Begin 

F := exp(-z*z/2.0); 
End; 

{FUNCTION EVALUATES THE EXPRESSION FOR SIMPSON'S RULE} 

Function Simpson(a,b,h :Real): Real; 
V ar mid : Real; 
begin 

mid := (b+a)/2.0; 
Simpson := h/6.0*(F(a)+4.0*F(mid)+F(b)); 

end; 

{NUMERICAL METHOD TO DETERMINE THE CURRENT IMPROVED STANDARD} 
{NORMAL VALUE, z[i+l], FROM A PREVIOUS VALUE OF z[i] DURING EACH CYCLE} 
{OF THE ITERATIVE PROCESS} 

Procedure Adap_Quad(left,z,tol:Real; var result:Real; var errest:Real); 
Var h, II, I2, mid, result!, result2, errestl, errest2: Real; 
Begin 
m:=m+l; 
h := z-left; 
II := Simpson(left,z,h); 
h := h/2.0; 
mid := (left+z)/2.0; 
I2 := Simpson(left,mid,h)+Smpson(mid,z,h); 
errest := abs((I2-II)/15.0); 
if abs(errest) >tal then 

begin 
Adap_Quad(left,mid,toU2,resultl,errestl); 
Adap_Quad(mid,z,toU2,result2,errest2); 
result :=result! +result2; 
errest := errestl +errest2; 

end 



else 
result := !2-errest; 

End; 
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{ITERATIVE PROCESS TO OBTAIN THE STANDARD NORMAL VALUE, z, FOR ANY} 
{RANDOMLY GENERA TED CUMULATIVE PROBABILITY, pz, USING THE} 
{PROCEDURE Adap_Quad AS OFTEN AS IT IS REQUIRED} 

Procedure Getz; 
Begin 

pz := Random; 
a := 0.0; z := 2.0; b := 4.0; rnO := 0; 
Repeat 

rnO := rnO+ l; rn := 0; 
Adap_Quad(left,z,tol,result,errest); 
result := 0.5+resultlsqrt(2.0*pi); 
if pz < 0.50 then 
begin 

result := 1.0-result; 
if result< pz then b := z else a := z; 

end 
else 

begin 
if result< pz then a := z else b := z; 

end; 
z := 0.5*(a+b); 
if rnO > 500 then Exit; 

Until abs(pz-result) <tal; 
End; 

{FUNCTION DETERMINES THE MINIMUM OF TWO VARIABLES} 

Function Min(a,b :Real) : Real; 
begin 
if a< b then Min:= a 
else Min := b; 

end; 

{FUNCTION DETERMINES THE MAXIMUM OF TWO VARIABLES) 

Function Max(a,b :Real) : Real; 
begin 
if a> b then Max:= a 
else Max := b; 

end; 

{FUNCTION DETERMINES NOMINAL BOND FORCE WITII THE Crnax/Crnin TERM} 

Function Eqnl :Real; 
Var Eq: Real; 
Begin 
Eq := 80.2*Ls*Ab/Db*denol+2130.0*Ab*(O.lO*CMm+0.90); 
Eqnl := Sqrt(Sqrt(fc))*Eq 

End; 

{FUNCTION DETERMINES NOMINAL BOND FORCE WITIIOUT THE} 
{ Crnax/Crnin TERM} 

Function Eqn2 : Real; 
Var Eq: Real; 
Begin 

Eq := 80.2*Ls*Ab/Db*deno2+2130.0*Ab; 
Eqn2 := Sqrt(Sqrt(fc ))*Eq 

End; 
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[FUNCTION DETERMINES PREDICTED BOND FORCE) 

Function EqnP : Real; 
Var Eq: Real; 
Begin 
Eq := 63.0*Ls*Db*denol+2130.0*Ab*(O.l*CMm+0.9)+66.0; 
EqnP := Sqrt(Sqrt(fc))*Eq 

End; 

[FUNCTION DETERMINES THE APPROPRIATE VALVES FOR SOME PARAMETERS) 
[AND FUNCTIONS USED IN THE DETERMINATION OF BOND FORCE) 

Function Eqn(n :Byte) :Real; 
Begin 

Csi := (O.S*W-Nb*Db-Cso)/(Nb-1.0); 
Cs := Min(Cso,Csi+0.25); 
ifCs < Cb then Atr := 2.0*Av/Nb 
else Atr := A v; 
Cmin := Min(Cs,Cb ); 
Cmind :=Min(Min(Csi,Cso ),Cb ); 
Cmax := Max(Cs,Cb); 
CMm := Cmax/Cmin; 
if CMm > 3.5 then CMm := 3.5; 
trtd := (9.6*Rr+0.28)*(0.72*Db+0.28); 
denol := ((Cmin+0.5*Db)*(O.I*CMm+0.9)+35.3*trtd* Atr/(Ls/Nv))/Db; 
deno2 := ((Cmind+0.5*Db)+35.3*trtd*Atr/(Ls/Nv))/Db; 
if dena!> 4.0 then denol := 4.0; 
if deno2 > 4.0 then deno2 := 4.0; 
case n of 

0 : Eqn := EqnP; 
I :Eqn :=Eqnl; 
2 : Eqn := Eqn2; 

end; 
End; 

[PROCEDURE FOR READING, FROM THE DATA FILE, AND DISPLAYING, ON THE) 
[SCREEN, THE NOMINAL VALUESFOREACHBEAM) 

Procedure InputData; 
Begin 
readln(fin,W,h,fc,Cb,Cso,Ls,Nb,Db,Ab,Av,Sv); 
n := l+n; 
writeln(' 
writeln(' 
writeln(' 
writeln(' 
writeln(' 
writeln(' 
writeln(' 
writeln(' 
writeln(' 
writeln(' 
writeln(' 
writeln(' 
writeln(' 
writeln(' 
writeln(' 
writeln(' 

End; 

CURRENT INPUT DATA FROM FILE ',fname+'.DAT'); 
----------------------------------------'); 
Data for beam number ............ ',n:5); 
Beam width (ins.) ............... ',W:5:2); 
Beam depth (ins.) ............... ',h:5:2); 
Concrete strength (psi) ......... ',fc:4:0); 
Concrete cover (ins.) ........... ',Cb:5:3); 
Concrete side cover (ins.) ...... ',Cso:5:3); 
Splice length (ins.) ............ ',Ls:5:2); 
Number of bars spliced .......... ',Nb:2); 
Spliced bar diameter (ins.) ..... ',Db:5:3); 
Spliced bar area (sq. ins.) ..... ',Ab:4:2); 
Stirrup area (sq. ins.) ......... ',Av:4:2); 
Stirrup spacing (ins.) .......... ',Sv:5:2); 
Relative Rib Area, Rr ........... ',a5:5:3); 
Coeff. of Variation for Rr ...... ',Vr:6:4); 

[PROCEDURE FOR WRITING THE NOTATION AND HEADING INFORMATION FOR) 
[EACH BEAM INTOTHEOUTPUTFILEFOR THE BEAM) 

Procedure OutData; 
Begin 
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writeln(fout,' RESULTS OUTPUT FOR BEAMS WITH STIRRUPS'); 
writeln(fout,' -------------------------------------'); 
writeln(fout,' n = Number of iterations'); 
writeln(fout,' W = Beam width (ins.)'); 
writeln(fout,' fc = Concrete strength (psi)'); 
writeln(fout,' Cb =Concrete cover (ins.)'); 
writeln(fout,' Cso =Concrete side cover (ins.)'); 
writeln(fout,' Csi =One-half clear bar spacing (ins.)'); 
writeln(fout,' Ls =Splice length (ins.)'); 
writeln(fout,' Number of bars spliced .............. .',Nb:7); 
writeln(fout,' Spliced bar diameter (ins.) ......... .',Db:7:3); 
writeln(fout,' Spliced bar area (sq. ins.) ......... .',Ab:7:2); 
writeln(fout,' Stirrup effective area (sq. ins.) ... .',Atr:7:2); 
writeln(fout,' Stirrup spacing (ins.) .............. .',Sv:7:2); 
writeln(fout,' Relative Rib Area of Bar, Rr ........ .',a5:7:3); 
writeln(fout,' Coeff. of Variation for Rr .......... .',Vr:7:4); 
writeln(fout,' '); 
write(fout,' n W fc Cb Cso Csi Ls '); 
writeln(fout,'Rr Eql Eq2 Rl R2 MRl MR2 SDl SD2 VI V2'); 
write(fout,'-------------------------------------------------'); 
writeln(fout,'---------------------------------------------------------------------'); 

End; 

{ITERATIVE PROCESS FOR DETERMINING THE LONG-TERM IN-SITU} 
{COMPRESSIVE STRENGTH OF CONCRETE} 

Procedure fcstrR; 
V ar fc35 : Real; 
Begin 
fc35 := fc; 
Repeat 
feR:= fc; 
fc := fc35*(0.89*(1.0+0.08*ln(fcR/3600)1ln(IO.O))); 

until Abs(fcR-fc) < 1.0; 
End; 

{MAIN PROCEDURE FOR THE MONTE CARLO SIMULATIONS WHERE THE DATA} 
{FOR EACH BEAM IS READ FROM THE DATA FILE; RUNS ALL THE PROCEDURES} 
{REQUIRED FOR THE SIMULATIONS; COMPUTES THE MEANS, STANDARD} 
{DEVIATIONS, AND COV FOR EACH BEAM; COMPUTES THE CUMULATIVE} 
{MEANS, STANDARD DEVIATIONS, AND COV; AND WRITES THE RESULTS} 
{INTO FILES } 

Procedure Simulate; 
Begin 

{WRITES THE NOTATION AND HEADING INFORMATION FOR} 
{MONTE CARLO SIMULATION OUTPUT RESULT FILE} 

writeln(fl,' RESULTS OUTPUT FOR BEAMS WITH STIRRUPS'); 
writeln(fl,' --------------------------------------'); 
writeln(fl,' W =Beam width (ins.)'); 
writeln(fl,' fc = Concrete strength (psi)'); 
writeln(fl,' Cb =Concrete cover (ins.)'); 
writeln(fl,' Cso =Concrete side cover (ins.)'); 
writeln(fl,' Csi =One-half clear bar spacing (ins.)'); 
writeln(fl,' Ls =Splice length (ins.)'); 
writeln(fl,' Nb =Number of bars spliced'); 
writeln(fl,' Db =Spliced bar diameter (ins.)'); 
writeln(fl,' Ab =Spliced bar area (sq. ins.)'); 
writeln(fl,' Atr =Stirrup effective area (sq. ins.)'); 
writeln(fl,' Sv =Stirrup spacing (ins.)'); 
writeln(fl,' Relative Rib Area, Rr =',a5:7:4,' ; COV for Rr =',Vr:7:4); 
writeln(fl,' '); 
write(fl,'Beam W fc Cb Cso Csi Ls Nb Db Ab '); 
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write(fl,' Atr Sv Rr El E2 Rl R2 S I S2 VI '); 
writeln(fl,' V2 MRI MR2 MSI MS2 MY! MV2'); 
write(fl,'-------------------------------------------------------------'); 
write(fl, ·--------------------------------------------------------------'); 
wri teln( fl , '---------------------------------------------------'); 

{READS THE FIRST LINE, HEADING, FROM THE INPUT FILE} 

readln(fin,st); 

{INITIALIZES VARIABLES} 

mrl := 0.0; mr2 := 0.0; msl := 0.0; ms2 := 0.0; mvl := 0.0; mv2 := 0.0; 
sl := 0.0; s2 := 0.0; kl := 0; s3 := 0.0; s4 := 0.0; 

{ITERATION FOR READING AND PROCESSING THE DATA FOR EACH BEAM} 

While not Eof(fin) do 
begin 

Window(l,l,80,25); 
ClrSer; InputData; Str(n,st); 
Assign(fout,fname+'. '+st); { $1-} Rewrite( font); { $!+} 
Chkfile('FILE FOR OUTPUT,'DISK/DRIVE'); 
if err = I then Exit; 

{INITIALIZES AND EVALUATES VARIABLES} 

Rr := a5; Nv := Ls/Sv; Rl := Eqn(l); R2 := Eqn(2); 
OutData; 
write(fout,W: II :2,fe:6:0,Cb:7:3,Cso:7:3,Csi:7:3;Ls:7:2); 
writeln(fout,Rr:7 :4,R I :7 :O,R2:7 :0); 
aO := Ls; a! := Cb; a2 := Cso; a3 := W; a4 := fe; 
Ve := 550.0/(fe+2.33*550.0-500.0); Ve := sqrt(Ve*Ve+0.0084); 
festrR; 
Rei := 0.0; Re2 := 0.0; sdl := 0.0; sd2 := 0.0; r21 := 0.0; 
r22 := 0.0; fern := 0.0; Cbm := 0.0; Cim := 0.0; Lsm := 0.0; 
Elm := 0.0; E2m := 0.0; Atm := 0.0; Rrm := 0.0; 

{ITERATION FOR PERFORMING THE MONTE CARLO SIMULATIONS k TIMES} 
{FOR EACH BEAM} 

for j := I to k do 
begin 
Randomize; 
Window(20,23,40,24 ); 
writeln('WORKING ON CYCLE ',j); 
Ls := aO; Cb := al; Cso := a2; W := a3; fe := a4; Rr := a5+Rm; 

{ITERATION FOR RANDOMLY GENERATING THE VARIABILITY ASSOCIATED} 
{WITH EACH OF THE VARIABLES FOR CALCULATING THE PREDICTED} 
{BOND FORCE} 

for i := I to 7 do 
begin 
Getz; 
if pz < 0.50 then z := -z; 
Case i of 

I : Ls := Ls+0.6079*z; 
2 : if h > 12.0 then Cb := Cb+0.3040*z 

else Cb := Cb+0.2280*z; 
3 : if W > 12.0 then Cso := Cso+0.2551 *z 

else Cso := Cso+O.I9!3*z; 
4: ifW > 12.0 then W := W+0.0625+0.2232*z 

else W := W+0.0625+0.1594*z; 
5: fe := fcR*(I.O+Vc*z); 



6: tel := 1.0082*(1.0+0.1022*z); 
7: Rr := Rr*(l.O+Vr*z); 

end; 
end; 
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{EVALUATES THE PREDICTED BOND FORCE FOR THE TWO} 
{INTEGER VALUES FOR THE NUMBER OF STIRRUPS} 

for I := 0 to I do 
begin 
Nv := l.O*(Trune(Ls/Sv)+l); 
ifl=Othen 

begin 
ell :=tel *Eqn(O)*(l.O-Frae(Ls/Sv)); 
el2 := te2*Eqn(0)*(1.0-Frae(Ls/Sv)); 
el :=tel *Eqn(O); e2 := te2*Eqn(O); 
write(fout,j:3,'a',W:7:2,fe:6:0,Cb:7:3,Cso:7:3,Csi:7:3); 
writeln(fout,Ls:7:2,Rr:7:3,el:7:0,e2:7:0,el/Rl:7:3,e2/R2:7:3); 

end 
else 

begin 
e21 := tel*Eqn(O)*Frae(Ls/Sv); 
e22 := te2*Eqn(O)*Frae(Ls/Sv); 
el := tel*Eqn(O); e2 := te2*Eqn(O); 
write(fout,j:3,'b',W:7:2,fe:6:0,Cb:7:3,Cso:7:3,Csi:7:3); 
writeln(fout,Ls:? :2,Rr:7 :3,e I :7 :O,e2:7 :O,e 1/Rl :7:3 ,e2/R2: 7:3 ); 
el := ell+e21; 
e2 := e12+e22; 

end; 
end; 

{COMPUTES THE MEAN, STANDARD DEVIATION, AND COV FOR } 
{EACH BEAM AND CUMULATIVE MEAN, STANDARD DEVIATION,} 
{AND COV INCLUDING PRECEDING BEAMS} 

Rei := Rel+(ell+e21)/Rl; Re2 := Re2+(el2+e22)/R2; kl := kl+l; 
r21 := r2l+(ell *ell/(1.0-Frae(Ls/Sv))+e21 *e21/Frae(ls/Sv))/Rl/Rl; 
r22 := r22+(el2*el2/(l.O-Frae(Ls/Sv))+e22*e22/Frae(ls/Sv))/R2/R2; 
s3 := s3+(ell+e21)/Rl; s4 := s4+(el2+e22)/R2; 
sl := sl +(ell *ell/(1.0-Frae(Ls/Sv))+e21*e21/Frae(ls/Sv))/Rl/Rl; 
s2 := s2+(el2*el2/(l.O-Frae(Ls/Sv))+e22*e22/Frae(ls/Sv))IR2/R2; 
ifj > 1 then 

begin 
sdl := sqrt((r21-Rel*Rc!/j)/j); 
sd2 := sqrt((r22-Re2*Re2/j)/j); 

end; 
ifkl > 1 then 

begin 
msl := sqrt((s l-s3*s3Jkl)Jkl); 
ms2 := sqrt((s2-s4*s4Jkl)Jkl); 

end; 
fern := fem+fe; Cbm := Cbm+Cb; Cim := Cim+Csi; Lsm := Lsm+Ls; 
Elm:= Elm+el; E2m := E2m+e2; Atm := Atm+Atr; Rrm := Rrm+Rr; 

{DISPLAYS THE CURRENT RESULTS ON THE SCREEN} 

Window(! 0, 18,70,23); 
writeln(' CURRENT Rl = ',el/Rl:6:3,' CURRENT R2 = ',e2/R2:6:3); 
writeln(' MEAN Rl = ',Rel/j:6:3,' MEAN R2 = ',Re2/j:6:3); 
writeln(' STD DEV 1 = ',sdl:6:3,' STD DEV 2 = ',sd2:6:3); 
writeln(' C.O.V. 1 = ',sdl/Rcl*j:6:3,' C.O.V. 2 = ',sd2/Re2*j:6:3); 

{WRITES THE CURRENT RESULTS INTO THE RESULT FILE FOR} 
{EACH BEAM} 
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write(fout,j:3,W:8:2,fc:6:0,Cb:7:3,Cso:7:3,Csi:7:3,Ls:7:2,Rr:7:3); 
write(fout,e 1 :7 :O,e2:7 :O,e 1/R I :7 :3,e2/R2:7 :3,Rc 1/j :7 :3,Rc2/j :7 :3,sd I :7 :3); 
writeln(fout,sd2:7:3,sd1/Rcl *j:7:3,sd2/Rc2*j:7:3); 

end; 
writeln(fout,' '); 
Close(fout); 

{COMPUTES THE AVERAGE VALUES FOR ALL VARIABLES FOR} 
{EACH OF THE BEAMS} 

fc := fcm/j; Cb := Cbm/j; Csi := Cim/j; Ls := Lsm/j; el := Elm/j; 
e2 := E2m/j; mrl := mrl+ei/Rl; mr2 := mr2+e2/R2; mvl := msl/mr1*n; 
mv2 := ms2/mr2*n; Atr := Atrn/j; Rr := Rrm!j; 

{WRITES THE CURRENT BEAM RESULTS INTO THE RESULT FILE} 
{THAT CONTAINS THE SUMMARY OF ALL THE RESULTS FOR ALL BEAMS} 

write(fl,n:3,W:7:2,fc:6:0,Cb:7:3,Cso:7:3,Csi:7:3,Ls:7:2,Nb:3,Db:7:3); 
write( f!,Ab:6:2,Atr:6:2,Sv:6: I ,Rr:7 :3,e I :7 :O,e2:7 :O,e 1/RI :7 :3,e2/R2:7 :3); 
write(f!,sd I :7:3 ,sd2:7 :3,sd liRe I *j :7 :3,sd2/Rc2 *j:7 :3,mr lln:7 :3 ); 
writeln(fl,mr2/n:7:3,msl:7:3,ms2:7:3,mvl:7:3,mv2:7:3); 

end; 
End; 

{CHECKS TO SEE IF A SPECIFIED FILE EXISTS OR WAS OPENED SUCCESSFULLY} 

Procedure Chkfile(s I ,s2 : String); 
Begin 
if Ioresult <> 0 then 

begin 
Window(I0,10,70,15); 
ClrScr; 
writeln(' CANNOT OPEN ',sl); 
writeln; 
writeln(' PRESS ANY KEY TO END AND CHECK ',s2); 
err:= 1; 
st := Readkey; 
Exit; 

end; 
End; 

{START OF THE MAIN PROGRAM WHERE ALL INPUT IS MADE} 

BEGIN 
GetTime(hr ,mn,sec,sec 1 00); 
Window(!, 1,80,25); 
ClrScr; 
err:== 0; 
n :=0; 
write(' ENTER NAME OF THE DATA FILE W/0 EXTENSION:'); 
readln(fname ); 
Assign(fin,fname+'.DAT'); 
{ $1-} Reset(fin); { $1+} 
Chkfile('DATA FILE ','DATA FILE'); 
if err = I then Exit; 
Assign(fl,fname+'.RST'); 
{ $1-} Rewrite(fl); { $1+} 
Chkfi1e('FILE FOR OUTPUT,'DISK/DRIVE'); 
if err= 1 then Exit; 
writeln; 
write(' ENTER THE NUMBER OF CYCLES REQUIRED : '); readln(k); 
write In; 
write(' ENTER THE RELATIVE RIB AREA OF BAR:'); readln(a5); 
write In; 
write(' ENTER DEVIATION OF RELATIVE RIB AREA;'); readln(Rm); 
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write In; 
write(' ENTER THE COV OF RELATIVE RIB AREA:'); read1n(Vr); 
Simulate; 
GetTime(hr I ,mn 1 ,sec I ,sec 100 I); 
write1n(fl,' '); 
write1n(fl,'STOPPING TIME: ',hr1,':',mnl,':',secl,'.',secl001); 
writeln(fl,'STARTING TIME: ',hr,':',mn,':',sec,'.',sec!OO); 
Close(fin); 
C1ose(fl); 

END. 
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Appendix C 

Notation 

Ab = bar area, in in.2 

Ar = influence area, in ft2 

AT = tributary area, in ft2 

Atr = area of each stirrup or tie crossing the potential plane of splitting adjacent to the 
reinforcement being developed or spliced, in in.2 

b = beam width, in in. 

cb = bottom cover of reinforcing bars, in in. 

CM =maximum value of c, or cb (cM/Cm s; 3.5), in in. 

Cm =minimum value of c, or Cb (cMICm s; 3.5), in in. 

c, =min (csi + 0.25 in., C50) or min (Csi> C50), in in. 

Csi = one-half of clear spacing between bars, in in. 

c50 = side cover of reinforcing bars, in in. 

db = nominal bar diameter, in in. 

f = stress rate, in psi/sec 

f'c =concrete compressive strength, in psi; f'cl/4 in psi 

f~ =concrete compressive strength at stress rate f, in psi 

f'cr = f'c + 2.33 O'ccyl- 500 psi, required average concrete compressive strength, in psi 

f' c35 = concrete compressive strength at f = 35 psi I sec, in psi 

f, = steel stress at failure, in psi 

fy =yield strength of bars being spliced or developed, in psi 

h = beam depth, in in. 

Ktr = 35.3 t,l,jA,rfsn 

L0 = basic (unreduced) Jive load 

J,j = development or splice length, in in. 
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N =number of transverse reinforcing bars (stirrups or ties) crossing lct 

n = number of bars being developed or spliced along the plane of splitting 

nb = number of bars 

Q = total load 

Qo = random variable representing dead load effects 

C2on = nominal dead load 

Q = random variable representing live load effects 

Qn = nominal live load 

(QI.IQo)n = nominal ratio of live to dead load 

q = random loading 

R = random variable for resistance 

Rn = nominal resistance 

Rp = predicted capacity random variable 

R, = ratio of projected rib area normal to bar axis to the product of the nominal bar 
perimeter and the center-to-center rib spacing 

s = spacing of transverse reinforcement, in in. 

T b = total force in a bar at development or splice failure, in lb 

Ts = contribution of confining steel to total bar force at bond failure 

1<1 = 0.72 db+ 0.28, term representing the effect of bar size on Ts 

t, = 9.6 R, + 0.28, term representing the effect of relative rib area on Ts 

V = coefficient of variation 

VR = coefficient of variation for random variable for resistance 

V Q = coefficient of variation for random variable for total load 

Vc = (V ccyl2 + 0.0084)112, assumed coefficient of variation for in-place concrete 

V m = coefficient of variation associated with the predictive equation (or model) itself 

V Q = coefficient of variation of random variable representing dead load effects 
0 



Vxci) 

V<~>q 

X( I) 

X(2) 

X(3) 

X(4) 

X(5) 

X(6) 

X(7) 

X(8) 

X(9) 

p 

tj> 

0' 

47 

= coefficient of variation of random variable representing live load effects 

= coefficient of variation of relative rib area 

= coefficient of variation of resistance random variable r 

= coefficient of variation of test/prediction ratio 

= coefficient of variation of the predictive equation caused by uncertainties in the 
measured loads and differences in the acmal material and geometric properties of the 
specimens from values used to calculate the predicted strength 

= coefficient of variation of random variable X(i) 

= coefficient of variation of loading random variable q 

= test-to-predicted load capacity random variable 

= actual-to-nominal dead load random variable 

= actual-to-nominal live load random variable 

= concrete strength, f' c, random variable 

= splice length, ld, random variable 

= concrete cover, cb, random variable 

= side cover, c50, random variable 

= beam width, b, random variable 

= relative rib area, Rr, random variable 

= reliability index 

= strength reduction factor for the main loading 

= overall strength reduction factor against bond failure 

= "composite" strength reduction factor 

= %ftj>, effective strength reduction factor for use in calculating development/splice 
length 

= load factor for dead loads 

= load factor for live loads 

= standard deviation 

= standard deviation for standard laboratory cylinders 

overbar represents average value of the variable 




