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1.1 General 

Chapter 1 

INTRODUCTION 

Reinforced concrete is a major construction material. Its 

properties are not as well known as other more homogeneous structural 

materials such as steel and aluminum. The difficulties inherent in 

the analysis of reinforced concrete elements are due to the non­

homogeneity of the materials, their nonlinear response to load, the 

progressive destruction of bond between steel and concrete, progres­

sive cracking and the influence of shrinkage and creep. 

These difficulties have not prevented the extensive use of rein­

forced concrete in structural systems, where many approximate and 

empirical relations have been applied successfully. The rapid changes 

in practical design codes show that improved design and analysis pro­

cedures continue to be developed. However, more research is needed. 

One area where more research is needed is the study of reinforced 

concrete slabs. Mayer and Rusch (58) indicate that excessive slab 

deflection is the most common cause of damage in reinforced concrete 

structures. Serviceability requirements, in particular limitations 

on cracking and deflection, are becoming more important with the use 

of high strength steel and concrete. 

While a large volume of test data has been generated on the 

structural behavior of slabs, and relatively accurate procedures 

have been developed to predict member strength, accurate models for 

the load-deflection of reinforced concrete slabs are not widely 
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available. 

In this research, a finite element representation is developed 

for reinforced concrete slabs. Concrete and steel are treated as 

nonlinear materials, and the variation of material properties 

through the slab depth is considered. 

1.2 Previous Work 

Plates are highly indeterminate structures. Difficulties in 

analysis exist in satisfying equilibrium, stress-strain relations, 

compatibility of strains and boundary conditions. These difficulties 

increase when classical theory is applied to reinforced concrete 

slabs due to the non-homogeneous nature of concrete, the nonlinear 

response of the material, cracking and time effects. The use of 

classical elastic thin plate theory, therefore, has been limited to 

reinforced concrete slabs under low levels of stress. Classical 

elastic theory fails to predict either the yield moment capacity 

or the load-deflection behavior of reinforced concrete slabs. 

An alternative to elastic analysis is yield line analysis, 

which provides an estimate of slab bending strength (46,47,52,79). 

Yield line analysis of slabs gives no information on either shear 

strength or deflection. 

Due to the limitations of the classical and yield line theories, 

some approximate methods have emerged: The cross beam analogy, the 

gridwork method, the wide beam method, the equivalent frame method 

and the finite element method. The most recent state-of-the-art 

report on deflection of two-way reinforced concrete systems, is 

given by the ACI committee 435 (3). The paper summarizes the 
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practical methods for calculating the deflection of two-way slabs. 

Of the approximate methods of structural analysis, the finite 

element method has proved to be an extremely powerful and versatile 

tool for analysis. In recent years, extensive research has been 

conducted using the finite element method for the analysis of rein­

forced concrete structures. Scordelis (85) and Schnobrich (84) 

provide excellent summaries of this work. 

An early application of the finite element method to reinforced 

concrete was carried out by Ngo and Scordelis (66). They developed 

an elastic two-dimensional model of reinforced concrete beams with 

defined crack patterns. Bond slip between concrete and steel bars 

wa,g modeled by finite spring elements designated as bond links spaced 

along the bar length. Cracking was modeled by separation of nodal 

points and a redefinition of structural topology. Nilson (67) ex­

tended this work by including nonlinear properties. This approach 

has not achieved popularity due to the difficulties encountered in 

redefining the structural topology after each load increment. Mufti, 

Mirza, McCutcheon and Houde (61,62) used the same model but without 

modifying the topology. They deleted the cracked element from the 

overall stiffness; the forces in the cracked element were redistri­

buted during the next cycle. 

Rashid (71) introduced another approach in which the cracked 

concrete was treated as an orthotropic material. The steel elements 

were assumed to be elastic/perfectly plastic. The Von-Mises yield 

criterion and the Prandtl-Reuss flow equations were used to define 

the behavior of the steel in the range of plastic deformation. This 
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approach proved to be more popular and many investigators have used 

it with variations in material properties and modes of failure. 

Isenberg and Adham (43) introduced a nonlinear orthotropic 

model and demonstrated its use on tunnel problems. The nonlinear 

stress-strain behavior of concrete and steel was idealized with bi­

linear stress-strain curves. Bond and the effect of lateral confine­

ment on compression and tensile strength were considered. 

Franklin (32) analyzed reinforced concrete frames with and with­

out infilled shear panels using quadrilateral plane stress elements 

under monotonic and cyclic loading and compared the analytical studies 

with the experimental results. 

Valliappan and Doolan (90) studied the stress distribution in 

reinforced concrete structures (beams, haunches, hinges), using an 

elasto-plastic model for steel and concrete. The concrete was repre­

sented as a brittle material in tension. 

Other relevant studies include the work done by Yuzugullu and 

Schnobrich (94) in which reinforced concrete shear wall-frame systems 

were analyzed. Suidan and Schnobrich (87) used a three-dimensional 

isoparametric element to study cracking, crushing and yielding of 

reinforced concrete beams. Their analysis included a shear retention 

factor for post cracking behavior. Darwin and Pecknold (26,27,28) 

introduced a nonlinear constitutive model for plain concrete subject 

to cyclic biaxial stresses, and the concept of equivalent uniaxial 

strain, in order to separate the Poisson effect from the cumulative 

strain. They analyzed shear walls under monotonic and cyclic loading 

and compared their results with experimental results; a good match 
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was obtained. Salem and Mohraz (75) analyzed planar reinforced 

structures, deep beams and multiple opening conduits. They employed 

linear isoparametric quadrilateral elements with incompatible defor­

mation modes. The concrete in compression was modeled as a nonlinear 

material using the formulation developed by Mikkola and Schnobrich (60). 

In tension, the concrete followed a descending stress-strain curve 

after cracking. 

Nam and Salmon (64) compared the constant stiffness and the vari­

able stiffness approaches for nonlinear problems. Using a combination 

of isoparametric elements and bar elements they found the variable 

stiffness approach to be far superior for problems involving the pre­

diction of cracking in reinforced concrete structures. 

Reinforced concrete slabs and shells have received considerable 

attention from investigators. Two basic approaches have been used: 

the modified stiffness approach (9,45) and the layered element approach 

(36,37,53,54,81,82,83,92). 

Bell and Elms (9) presented a method for computer analysis of 

reinforced concrete slabs which produces deflections and crack patterns 

for the total range of loading from zero to ultimate. Triangular 

bending elements and the method of successive approximations were used. 

Cracking normal to the principal moment direction was accounted for 

by using a reduced stiffness. Theoretical and experimental displace­

ment curves did not match. Later (10) they developed a partially 

cracked element, but they found that this element was neither as accu­

rate nor as well behaved as an analysis based on either an elastic or 

a totally cracked element. 
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Jofriet and McNeice (45) used a quadrilateral plate bending 

element with four corner nodes and three degrees of freedom at each 

node. Cracking on normals to the principal moment directions were 

accounted for by using a reduced stiffness suggested by Beeby (8) 

for beams. Their research did not take into account load history or 

post-yielding behavior. 

Scanlon (81,82) presented a finite element analysis to determine 

the effects of cracking, creep and shrinkage on reinforced concrete 

slabs. The finite element consisted of a series of layers, each with 

a different plane stress constitutive relationship. Cracks progressed 

through the thickness of the element, layer by layer, parallel or 

perpendicular to the orthogonal reinforcement steel. The concrete 

was modeled as a linear elastic material in compression and an elastic 

brittle material in tension. The modulus in tension,after cracking, 

was obtained using a stepped stress-strain diagram. The stiffness 

of a layer was evaluated by superposing the stiffnesses of steel and 

concrete. The shear modulus of a layer, whether cracked or uncracked 

was taken to be that of an uncracked plain concrete layer. It was 

found that the use of tensile stiffening for concrete in cracked zones 

was a significant factor in the accuracy of deflection computations 

and that a significant redistribution of moments occurred as the result 

of cracking. Comparison was made with the experimental and theoretical 

analyses of Jofriet and McNeice (45) and good agreement was obtained. 

Scanlon and Murry (83) extended this work to include time-dependent 

deflection and the effect of creep, and shrinkage. 

Lin and Scordelis (53,54) extended the work of Scanlon to include 
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elasto-plastic behavior for the steel in tension and compression and 

for the concrete in compression. For tension in concrete, they replaced 

the actual curve by a triangular shaped curve with a descending slope 

after initial tensile failure. The post-yielding behavior obeyed the 

Von-Mises yield criterion. Incremental loading was used with iteration 

within each increment. 

Hand, Pecknold and Schnobrich (36,37) used a layered element to 

determine the load-deflection history of reinforced concrete plates 

and shells of uniform thickness. The nonlinear behavior of steel and 

concrete was considered in the analysis. Steel was modeled as elasto­

plastic; concrete was assumed to be elastic brittle in tension and to 

have a bilinear stress-strain relationship up to yield in biaxial 

compression. They used the strength envelope obtained by Kupfer, 

Hilsdorf and Rusch (48) as a yield criterion. A shear retention 

factor was introduced to provide torsional and shear stiffness after 

cracking. The layered finite element allowed the material properties 

to vary through the element depth. Bending and membrane forces were 

considered and a doubly curved rectangular shallow shell element with 

twenty degrees of freedom was used in the analysis. The authors 

stated that their numerical results were as good or better than the 

modified stiffness apprQach~s used by Jofriet and McNiece or by Bell. 

Wanchoo and May (92) introduced a layered model with concrete in 

compression and steel following the Von-Mises criteria. Concrete was 

elastic brittle in tension. The rectangular finite element developed 

by Bogner, Fox and Schmit (11) was used. Their analytical results 

were compared with a test slab and a good match was obtained. 
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1.3 Object and Scope 

The object of this research is to develop a model for reinforced 

concrete slabs using the finite element technique and appropriate con-

stitutive relations. The model may be used to simulate the load-

deflection behavior of slabs under monotonic load. In the analysis, 

the reinforced concrete slabs are modeled as incrementally elastic, 

anisotropic bodies. Nonlinear behavior is introduced through the 

material properties of concrete and reinforcing steel. Concrete is 

modeled as inelastic material in compression and as an elastic brittle 

material in tension. Steel is modeled as an uniaxial material with 

a bilinear stress-strain curve. Bond slip between steel and concrete, 

creep, shrinkage, temperature, long term loading, cyclic loading and 
• 

membrane stresses are not included. Loads are applied incrementally, 

and the solution is corrected using successive iterations. 

The proposed model is compared with experimental results for 

beams, and one-way and two-way slabs. 

The model should prove to be a useful research tool and may be 

used in limited design problems to check stresses and deflections of 

reinforced concrete slabs for various combinations of load and geometry. 
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Chapter 2 

MATERIAL AND SLAB MODELS 

Reinforced concrete is far from being homogeneous, isotropic, 

elastic material. It is a composite of many materials which behave 

linearly and elastically only under low loads. The object of this 

chapter is to introduce the material models used to represent the 

composite slab (plain concrete and reinforcing steel) and to describe 

the slab model in which the material models are combined. The 

resulting model is designed to represent the load-deformation 

behavior of reinforced concrete slabs up to failure. 

In this analysis, slabs are considered as anisotropic plates. 

Moment-curvature relations are developed and used to determine the 

resisting moments in the slabs. The assumptions used for bending of 

thin plates are used. Straight sections, normal to the middle 

surface before bending, remain straight and normal to the surface 

after bending; and normal stresses in sections parallel to the 

middle surface are assumed to be small compared with stresses in the 

transverse sections. 

The slab model introduced in this chapter is designed to be 

used with the finite element technique. The properties of the model 

are evaluated at the centroid of each element. 

The behavior of reinforced concrete slabs is controlled by the 

behavior of the constituent materials, steel and concrete. The 

anisotropic behavior of these slabs is modeled by treating the concrete 
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as a stress-dependent, orthotropic material and the steel as an uni-

axial material. For the concrete, the axes of orthotropy coincide 

with the yield lines of the slab; the steel axes coincide with the 

steel directions. 

As used in this study, the stiffness and moment-curvature rela-

tions are formulated along the yield lines, which do not, in general, 

coincide with the steel axes. The steel forces and stiffnesses must 

therefore be transformed to the yield axes. Sectional analyses are 

then carried out along the concrete material axis. This approach is 

used with the finite element approach together with the concept of 

"Initial Stresses" to solve the nonlinear load-deflection problem. 

2.2 Material Model 

2.2.1 Concrete 

2.2.1.1 Orthotropic Constitutive Relations 

In this study, concrete is modeled as an incrementally linear, 

orthotropic material. The stress-strain relations may be written in 

differential form as follows: 

do
1 El v2El 0 dc

1 

do2 
1 

vlE2 Ez 0 d2 2 (2.1) ~ 

1 - vl v2 

d:rl2 0 0 (l-v
1

v2)G dyl2 

where E1 , E
2

, v
1

, v
2 

and G are stress-dependent material properties, 

and 1 and 2 are the current material axes. 

Only four of the five material properties are independent; due 
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to energy considerations, 

(2.2) 

Darwin and Pecknold (26,27,28) reduced the four independent prop-

erties to three by insuring that neither direction is favored, either 

for Poisson's ratio, v, or for shear modulus, G. They used an 

"equivalent" Poisson's ratio, v: 

2 
v 

and the following constitutive equations for plain concrete: 

da
1 l El viE

1 
E2 0 dEl 

da2 
1 

Ez 0 dE 2 
= --2 

dT12 J 
1-v 1 

sym. 4(El+E2-2 viE1E2) dyl2 

(2.3) 

(2.4) 

The three values, E
1

, E
2 

and v, are determined as 

the state of stress and strain at each point. 

functions of 

Although the changes in the direction of the material axes be-

tween successive increments are small for most cases, rotations of 

the material axes are permitted in order to reflect the latest changes 

in stress and strain. 

2.2.1.2 Equivalent Uniaxial Strain 

In plate bending problems, the state of stress is essentially 

two-dimensional, and the strain in one direction is a function, not 

only of the stress in that direction, but also of the stress in the 
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orthogonal direction, due to Poisson's effect. It is convenient to 

analyze the two directions individually by separating that portion 

of strain due to the nonlinear behavior in each direction from that 

due to Poisson's effect. 

The device of "equivalent uniaxial strain", developed by Darwin 

and Pecknold (26,27,28) to keep track of the degradation of the stiff-

ness and the strength of concrete under cyclic loading, is used to 

help establish this directional behavior along the material axes. 

The -equivalent uniaxial strain is used, in conjunction with "equiv-

alent uniaxial curvature" (Section 2.3.2.1), to establish concrete 

stiffness and strength through the depth of the slab. Once the 

moment-curvature relations are established on the material axes, the 

equivalent uniaxial strains on the surface of the slab may be trans-

formed to true strains which are used in conjunction with the slab 

curvature to compute the strains in the reinforcing steel. 

By definition, the equivalent uniaxial strain, Eiu' is: 

or incrementally: 

= EliEiu = E 
load 
increment 

(2.5) 

(2.6) 

where llo1 is the incremental change in stress, o
1

, and E1 represents 

the tangent modulus in the I-direction at the start of the load in-

crement. An increment of equivalent uniaxial strain, llciu' represents 

the change in strain in the I-direction that would occur for a change 
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in stress of ~a1 , with ~aJ = 0. Equivalent uniaxial strains are 

not transformable,as are true strains. However, for a fixed set of 

axes, equivalent uniaxial strains may be converted to true strains, 

which are transformable. For an orthotropic material, the differen-

tial changes in strain are a function of the changes in stress. 

(2.7) 

Solving Eqs. (2.2) and (2.3) for Poisson's ratios, v1 and v2 gives: 

vl = 
v (:~t 

v ( :~) 
(2.8) 

v2 = 

Substituting these values in Eq. (2.7) and using the definition of 

equivalent uniaxial strain given in Eq. (2.5), the differential changes 

in the true strain may be expressed in terms of differential changes 

in equivalent uniaxial strain: 

( E r ds1 
= ds - v E~ 2ds2u lu 

(2.9) 

ds 2 
= (E r - v E~ 2dslu + dE2u 

The total strains in the material axes at any level of the slab may 

be written in incremental form as: 
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(E r El E (Lis lu- V E~ zLIE2u) 
load 
increment 

(2.10) 

( r 
E

1 
z 

E2 = E (- v R2 Llslu + Lls2u) 
load 
increment 

2.2.1.3 Uniaxial Stress-Strain Curves 

In spite of extensive research, knowledge of the behavior of 

concrete subject to multiaxial states of stress in incomplete. There-

for, empirical formulations are basic in both design and research. 

Of the many equations proposed for representing of stress-strain 

relations for concrete (39,69,76), the equation suggested by Saenz (74) 

is adapted for this study. Its parameters are modified here to include 

the descending portion of the stress-strain curve. The Saenz equation 

is presented in Fig. 2.l,and in nondimensional coordinates with an ex-

perimental curve, in Fig. 2.2. The Saenz equation for concrete under 

uniaxial compression is: 

(J (2.11) 

where 

s is the strain at any point in the concrete section; and 

a is the stress in concrete corresponding to strain E. 

The strain, s, for most applications in this study is the "equivalent 

uniaxial strain", Eiu' described above. A, B, C, and Dare parameters 

determined by imposing the following boundary conditions: 
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At the origin, the stress and the strain are zero and the tangent 

equals the initial modulus of elasticity for the concrete; at the 

maximum stress, a, the strain is E and the tangent is zero; and at 
0 0 

maximum strain, ~£' the stress is af. 

Thus: 

A = 

B = 

c 

D 
R = 

RE 
2 a E 

0 0 

R 
~ (Rf-1) 1 = 

(R - 1)
2 R 

£, 
E 

E a (2.12) 
~ 

0 0 = a 
0 

a 

Rf 
0 and 

af 

R 
Ef 

= 
E: E: 

0 

E is the initial tangent modulus of elasticity as determined from 
0 

uniaxial compression tests; the approximate formula given by 

ACI (318-71) (2) is used. 

o is the maximum concrete strength ( = f' for the uniaxial case). 
0 c 
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E is the strain at which the peak compressive stress is attained. 
0 

In this study its value varies between 0.0020 and 0.0021 (Fig. 

2.3) for concrete strength varying between 3500 psi and 5700 psi; 

in this range e 
0 

0.002 is satisfactory; however, for higher or 

lower strength the following formula may be used: 

This formula is obtained by curve fitting using the experimental 

results given in Reference 70. 

Ef is the maximum strain. 

(2.13) 

For the descending portion of the stress-strain curve, the·maxi-

mum strain is three to four times the strain at maximum strength. 

For this study: 

E = 4E 
f 0 

of the strength at Ef' is approximated by: 

3 4 
2 X 10-5 

• 0 
0 

(2.14) 

(2.15) 

Eq. (2.15) is empirical and obtained by interpolation methods, using 

the experimental results of Reference 70. 

The effect of concrete strength on the shape of the ascending 

portion of the stress-strain diagrams is small, but is quite noticeable 

on the descending portion, as shown in Fig. 2.2. As will be seen later, 

only part of the descending curve is used. 

Eq. (2.11) is used to represent stress as a function of strain 
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through the portion of the slab depth in which the concrete is in com-

pression. No attempt is made to model the effect of strain gradient 

on strength or stiffness. 

The modulus of elasticity for concrete in compression is a func-

tion of strain and is obtained by differentiating Eq. (2.11): 

(2.16) 

2.2.1.4 Biaxial Stress-Strain Relationships 

The increase in strength of concrete under biaxial stress has been 

reported by many investigators (48,56,65,72,93). However, the impor-

tance of this increase on the behavior of reinforced concrete slabs 

has been questioned (44,52,79). The biaxial effect is included in 

this analysis to help determine its importance in the load-deflection 

behavior of reinforced concrete slabs. 

To determine the shape of the stress-strain curves under biaxial 

stress, an approach similar to the one used for uniaxial stresses is 

followed. The equation suggested by Saenz is used. It is only neces-

sary to include the effect of biaxial stresses on the maximum strength 

of concrete and on strain at maximum strength. 

a) Determination of Maximum Strength 

Kupfer and Gerstle (49) introduced the following approxi-

mate equation for biaxial compressive strength: 

(J 

( 2::.+ 
f' 

c 
- 3.65 "lc = 0 f' 

c 
(2.17) 
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where a1cand a2c are the minor and major principal compressive 

strengths, respectively (see Fig. 2.4). Using a = a/a2 , Eq. 

(2.17) may be rewritten as (26): 

1 + 3. 65a f' (2.18) 0 2c = 
(1 + a) 

2 c 

The peak compressive stress in the minor direction is: 

(2 .19) 

b) Determination of the Equivalent Uniaxial Strain at Peak 

Stress, Ere' 

Investigators (48,56,72,92) have reported larger values of 

strain at maximum stress for biaxial compression than for uni-

axial compression. This increase in real strain occurred in 

spite of the Poisson effect. Darwin and Pecknold (26,27,28) 

gave the following equations for the equivalent uniaxial strain 

at the maximum compressive stress: 

(2.20) 

(R-1)) 

where 

E Strain at peak stress for uniaxial compression. 
0 

R = 3 : This value was derived from experimental curves 

for a = 0 and a = 1. 
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2) o!c ~ f' 
c 

(2.21) 

(J 3 (J 2 (J 

sic = s [-1.6 q~) + 2.25 ( ~~) + 0.35 ( ~~)] 
0 c c c 

The biaxial effect is included by substituting "Ic' oic and s 1a 

for s , a and s in Eqs. (2.11) and (2.12), respectively. 
0 0 

Comprehensive discussion and.comparison with both experimental 

and analytical work is given in References (26,27) and should 

be referred to for more details. 

This approach was originally developed for use in plain 

stress problems. For bending problems in this study, where 

stresses change through the depth in a nonlinear manner, the 

ratio of principal stresses, a, at the extreme compression 

fibers of the cross section is evaluated and used as the repre-

sentative value to calculate the maximum compressive strength. 

2.2.1.5 Tensile Behavior 

Reinforced concrete members are rarely employed in pure tension. 

Most design procedures and codes of practice neglect the tensile 

strength of concrete. However, the tensile strength of concrete is 

important in predicting the location and width of cracks, and plays 

an important role in the load-deflection behavior of reinforced con-

crete members. 

Concrete in tension behaves as a linear brittle material, as 

shown in Fig. 2.1. The modulus of elasticity for concrete in tension 
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is approximately equal to the initial tangent modulus in compression. 

Cracks form perpendicular to the material axes whenever the tensile 

stresses exceed the tensile strength of the concrete. 

Of the various methods of determining the tensile strength of 

concrete, the modulus of rupture seems to give a better prediction 

of structural behavior for members employed in flexure than does 

either the splitting tensile or direct tensile strengths. This is 

due to the fact that plain concrete can undergo larger stresses and 

strains when subjected to a strain gradient (73,75,86), a situation 

more closely matched in the modulus of rupture test than in the other 

tests. The effect of biaxial tension on tensile strength is very 

small and neglected in this work. 

In this study, concrete in tension is modeled as a linear, 

elastic, brittle material with a modulus of elasticity equal to the 

initial modulus in compression and with a maximum tension strength 

suggested by the ACI (2) Building Code: 

f = 7.5/f' 
rt c (2.22) 

2.2.2 Stress-Strain Relations for Steel Reinforcement 

The stress-strain relations and mechanical properties of steel 

are usually obtained from tensile tests. A sharply defined yield 

point and yield plateau can be obtained for mild and intermediate 

grades of steel. In this study, reinforcing steel is idealized as 

an uniaxial material with the bi-linear stress-strain curve shown 
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in Fig. 2.5. 

2. 3 Slab Model 

2.3.1 Flexural Stiffness of Reinforced Concrete Slabs 

In this study, reinforced concrete slabs are analyzed as in-

crementally linear, anisotropic plates. The concrete material axes 

(yield lines), (N,T), are considered to be the axes of anisotropy. 

The concrete material properties vary through the depth of the slab. 

If u, v and w are the translational components of displacements in 

N, T and Z (normal to surface) coordinates, then the strains in the 

(N,T) system are*: 

€ 
n 

= 
dU 
Cln 

From the assumption of straight sections, 

u = - Z' Clw 
n iln 

Clw 
v = - Z' 

t at 

(2.23) 

(2.24) 

where Z' and Z' are the distances from a point in the section to the 
n t 

* N (n) and T (t) are used interchangeably with 1 and 2 to represent 

material axes in this report. 
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neutral axes in the N and T directions, respectively. By substituting 

Eq. (2.24) in (2.23), the following is obtained: 

£ =­
n 

= Z' K 
n n 

a2w 
= - (Z' + Z') -- = 

n t 3n3t 
- (Z' + Z')K 

n t nt 

(2.25) 

where Kn' Kt and Knt are the curvatures on the (N,T) axes. Incrementally: 

6E = -z 6K n n n 

(2.26) 

=-

Zn and Zt in Eq. (2.26) are the distances from any point in the 

section to the instantaneous neutral axes in the N and T directions, 

respectively. The instantaneous neutral axis is the point of zero 

incremental change in stress and is located at a distance 6Z from the 

neutral axis, (Fig. 2.6): 

6Z = !EZ'dZ 
!EdZ 

(2.27) 
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where E is a function of z. 

For an anisotropic slab, the incremental stress-strain relations may 

be written as follows: 

I:, a 
n 

Acrt = 

~:,<[; 
nt Sym. 

AE 
n 

(2.28) 

where C .. are functions of depth,as well as location in the plate. 
l.J 

By substituting the incremental changes in strain from Eqs. (2.26) 

in Eqs. (2.28), the incremental changes in stress are expressed as 

functions of the incremental changes in curvature. 

I:, a zncll 2tcl2 t<zn+Zt)Cl3 AK n n 

ztc22 
1 (2.29) /:,crt =- z-CZn+Zt)C23 AKt 

"''nt Sym. 
1 
z-<Zn +Zt) c33 2AKnt 

The changes in bending and twisting moments per unit length are: 

AM = J I:, a Z d Z n n n 

i:,Mt = Ji:,a Z dZ 
t t 

(2.30) 

i:,Mnt = JA-r Z dZ nt nt 

where 

The incremental moment-curvature relations for an anisotropic 
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plate are obtained by substituting Eqs. (2.29) in Eqs. (2.30): 

2 
Jc12znZtdZ Jc13znzntdZ L\M Jc11zndZ n 

L\Mt 
2 

JC23ztzntdz = - JC22ztdZ 

L\Mnt Sym. 2 
Jc33zntdZ 

Eq. (2.31) may be expressed more simply as: 

or: 

LIM 
n 

Sym. 

{LIM} = - [D) {ilK} 

ilK 
n 

ilK n 

L\K 
t 

21\K 
nt 

(2.31) 

(2.32) 

(2. 33) 

Eqs. (2.31), (2.32) and (2.33) are modified below·to be used with rein-

forced concrete slabs. 

2.3.1.1 Steel Contribution to Flexural Stiffness 

Since steel occurs only at limited points through the depth of 

the section, Eq. (2.30) may be rewritten as follows: 

LIM = !Z L\o dZ + ZL\f Z n n n n n n 

L\Mt JZ L\o dZ t t. t + ZL\ftZt (2.34) 

L\M 
nt 

= JZ LIT tdZ nt n nt + ZL\fnt2nt 

where L\f , L\f and L\f are the incremental changes in the steel force n t nt 

per unit length and zn' z and z are measured from the centroid of 
t nt 

the steel area to the instantaneous neutral axes. The intergration 

terms in Eq. (2.34) are evaluated for the concrete only. 
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The incremental changes in the steel force are functions of 

the incremental strains in the steel. 

where X and Y are the steel axes: 

!:,e 
X 

6E 
y 

(2.35) 

Ax,Ay are the areas of steel reinforcement per unit length in the X 

and Y directions; 

E ,E are the tangent moduli of steel in the X and Y directions; and 
X y 

£ ,£ are the strains in the steel in the X and Y directions. 
X y 

The components of the changes in steel force in the N and T 

directions can be obtained by transformation from the X, Y system: 

M 
2 . 28 M cos e s~n n X 

Mt 
2 2 

M (2.36) = cos 8 cos e y 

Mnt -sine cose sine cose 

where 8 is the angle between the steel direction, (X,Y), and the 

material axes, (N,T). 

Likewise the incremental strains in the (X,Y) system may be expressed 

in terms of the incremental strains in the (N,T) coordinates: 

= 

2 cos 8 . 28 s1n 

2 
cos e 

-sin8cos8 

sin8cos8 

Substituting Eqs. (2.37) and (2.35) in Eq. (2.36), the following 
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expression is obtained: 

M 
n 

= 

Sym. 

(A E +A E )sin
2
ecos

2
e 

X X y y 

(E A sin4e+A E cos4e) 
X X y y 

(-A E cos
2

e+A E sin
2
e)sin6cos6 ~E 

X X y y n 

(-A E sin
2

e+A E cos
2
e)sinecose ~Et 

X X y y 

(E A +A E ) sin
2

ecos
2

e ~ynt 
X X y y 

(2.38) 

The strains at the level of the steel reinforcement are obtained 

in terms of the incremental changes in curvature from Eq. (2.26): 

~E 
n 

= 

= 

2 - z ~a w = - z ~K 
n an2 n n 

2 - z ~a w = - z ~K 
t at2 n t 

2 
~y = -(Z +Z )~a w = - (zn+Zt) ~Knt 

nt n t anat 

(2.39) 

By substituting Eqs. (2.39) in Eqs. (2.38), the contribution of 

steel to the moments in Eqs. (2.34) may be written as follows: 

ZM 
s s s 

~K z Dll D12 Dl3 n n n 

ZMt 
s s 

~Kt (2.40) zt = D22 D23 

ZMnt znt Sym. 
s 

D33 2~Knt 

where: 

Ds = is the contribution of steel to the flexural stiffness matrix 
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in the (N ,T) system; and 

s 4 
+A E sin4e) -2 

Dll = (A E cos e z 
X X y y n 

s (A E +A E ) sin
2
e 

2 
012 = cos e znzt X X y y 

s 2 
+ A E sin

2
e) 2n2nt Dl3 = (-A E cos e sine case 

X X y y 

s 
(A E sin4e 4 -2 022 = + A E cos e) zt X X y y 

s 
(-A E sin2e 023 = 

XX 

2 + A E cos e) sine case 2n2nt y y 

s 
(A E + A E ) sin2e 2 -2 (2.41) 033 = cos e 2nt X X y y 

2.3.1.2 Concrete Contribution to Flexural Stiffness 

The contribution of concrete to the fle~ral stiffness is obtained 

by substituting the incremental constitutive equations for concrete, 

Eqs. (2.4), in the first term of the right hand side of Eqs. (2.34) and 

expressing incremental changes in strain in terms of incremental 

changes in curvature (Eq. (2.36)) 

where: 

c 
Dll = 

c 
012 = 

c 
0 22 = 

c 
0

33 = 

!Z t:.a dZ 
n n 

!Z t:.a dZ 
t. t 

!Z f:.T dZ nt nt 

-
1
-JE z

2 
dZ 

l-v2 1 n 

-l~v2JIE1E2 znzt 

-
1
-JE l dZ 

1-} 2 t 

= -

dZ 

1 2 fcEl+E2-2viEl E2) 
4(1-v ) 

Sym. 

z2 
nt 

c 0 f:.K 012 n 
c 

0 22 0 f:.Kt 

c 
033 2t:.Knt 

dZ 

(2.42) 
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The final incremental moment-curvature relations for the slab may be 

written by substituting Eqs. (2.40) and Eqs. (2.42) in Eqs. (2.34): 

where: 

LIM 
n 

D .. 
l.J 

= 

Sym. 

s 
Dij is given by Eqs. (2.41) 

c 
Dij is given by Eqs. (2.43) 

L\K 
n 

(2.43) 

(2.44) 

Eqs. (2.43) are integrated using Gauss Quadrature with six inte-

gration points through the depth of the slab. 

As developed, the flexural stiffness matrix, D, automatically 

includes a "shear retention factor", negating the need for an arbi-

trary value to insure stability after cracking. 

The flexural stiffness matrix in the global coordinate system, 

D, is obtained as follows (98): 

[D] = [T]T [D] [T] (2.45) 

where: 

2-cos e 2-sin e sine cose 

[T] 2- 2-
= sin e cos e (2.46) -sine cose 

-2sine cose 2sine cose 
2- 2-

cos e -sin e 

and e is the angle between the global coordinate system and the 

material axes. 



29 

2.3.2 Moment-Curvature Relationships 

The moment-curvature relations for plate problems play the same 

role in bending problems as do the stress-strain relations in plane 

stress problems. Using a relationship of the form M = f(K) allows 

the "initial stress" technique to be expanded to an "initial moment" 

approach. 

In this section, the concept of "equivalent uniaxial curvature", 

analogous to equivalent uniaxial strain, is introduced. This concept 

allows the moments on the yield lines to be treated independently. 

The moment-curvature relations are determined along the yield lines 

using concrete stresses and transformed steel forces. These relations 

are the equilibrium equations for forces and moments. They are non­

linear and are solved by iteration. The moments, the location of the 

neutral axis, the strains and the stresses, at the section corres­

ponding to the equivalent uniaxial curvature are obtained. 

2.3.2.1 Equivalent Uniaxial Curvature 

The object of introducing the concept of "equivalent uniaxial 

curvature" is to allow the moment-curvature relations along each 

material axis to be followed independently. In general, the moment 

in one direction depends not only on the curvature in that direction, 

but also on the curvature in the orthogonal direction, due to Poisson's 

effect, as can be seen in Eqs. (2.32). Expressing the moment-curvature 

relations in terms of equivalent uniaxial curvature allows a substantial 

simplification of what would otherwise be a complex interaction problem. 

By definition, the "equivalent uniaxial curvature" in the I 



direction is: 

Kiu = JdKiu =JDd~ 
II 

or incrementally: 

I = 1,2 

where: 

= l: LIKiu 
load 
increment 

= 

30 

(2. 4 7) 

(2.48) 

increment 

Ll~ is the incremental change in the moment per unit length in 

the I direction during a load increment (from finite element 

analysis); and DII is the flexural stiffness in the I direction 

at the start of the load increment. 

An increment of equivalent uniaxial curvature, LIKiu' represents the 

change in curvature along the I axis that would occur for a change in 

moment of Ll~, with LIMJ = 0. 

2.2.2.2 Steel Forces 

In general, the yield lines do not coincide with the principal 

moment axes nor with the direction of steel reinforcement. The steel 

forces, f and f , are calculated using the true strains in the steel 
X y 

(Eq. (2.35)). The true strains in the steel directions are obtained 

using an iteration technique described in the next section.· 

Required in the solution of the moment-curvature relations, the 

components of the steel forces along the (N,T) axes are: 
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f 2 
f sin2e = f cos e + n X y 

ft fs~2e 2 
= + f cos e 

X y 

where: 

f , f are the steel forces per unit length in the (X,Y) axes; 
X y 

(2.49) 

fn' ft are the components of the steel forces in the (N,T), axes; and 

e is the angle between the steel axes, (X,Y), and the material 

axes, (N,T). 

2.3.2.3 Moment-Curvature Equations 

The moment-curvature relations are derived at the material axes, 

(N,T). All strains are equivalent uniaxial strains, (Section 2.2.1.2). 

These relations are used to obtain the resisting moment corresponding 

to the equivalent uniaxial curvature, (Section 2.3.2.1), so that re-

sidual moment at the centroid of the element can be obtained. The 

following notation, shown in Fig. 2.7. 

s = equivalent uniaxial strain at distance Z' from the neutral 

E 
c 

= 

axis. 

equivalent uniaxial strain at the extreme compressive fiber 

of concrete. 

<1~2 = equivalent uniaxial strains at the extreme fibers of the 

section,limits of integration. 

oi stress in the concrete at distance Z' from the neutral axis 

in the I direction, I = 1,2. 

fi = component of the compression steel forces per unit length in 

the N and T directions. 
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fi = component of the tensile steel forces per unit length in the 

N and T directions. 

kH = depth of the neutral axis; and 

= the resisting moment in the I direction. 

From statics, the following equilibrium equations are obtained: 

where 

l: F = 0, 
I 

I = 1,2 

l: M = 0 
I 

l:F sum of forces in the I direction. 
I 

(2.50) 

ZM sum of the moments around the neutral axis in the I direction. 
I 

Using material properties, Eq. (2.50) becomes: 

fGidA + f~ - fi = 0 
(2.51) 

·fcriZ'dA + f~(kH-d~) +fi((l-k)H-ds) -~R = 0 

The resisting moment in the I direction, ~R' is obtained by solving 

Eqs. (2.51) as shown below. 

From Fig • 2'; 7, the following is obtained: 

Z' 8 
= 

Klu 

dZ' d8 
= 

Kiu 
8 (2.52) 

k c 
= 

KiuH 

81 = s 
c 

s2 = HK - 8 
Iu c 
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In order to solve Eq. (2.51), the stress in the concrete, cri, is 

rewritten in terms of the equivalent uniaxial strain: cri = f(s) 

(Eq. (2.11)); after substituting Eq. (2.52) in Eq. (2.51) and chang-

ing the limits of integration, the following expressions are obtained: 

(a) 

(2.53) 

The components of the steel forces, fi' (f and f ), must be 
n t 

known in advance to solve Eq. (2.53). In fact, the true strains, 

s and s , and therefore the steel forces, f and f , in the steel 
X y X y 

directions are not known, but are functions of the strains,s , s and 
n t 

y (Eq. (2.37)). The strains, s and s , are obtained by trial and 
nt x y 

error, using the iteration technique summarized below. 

For any iteration, the most recent values of the steel forces, 

f and f , are used as approximate starting values to calculate the 
X y 

components of the steel forces, fi' (I= 1,2), in theN and T direc-

tions, (Eq. (2.49)). The components of the steel forces are approxi-

mated, and the equivalent uniaxial curvature, Klu' is known; Eq. 

(2.53(a)) is then solved, using the Newton-Raphson method, for the 

equivalent uniaxial strain, s , at the extreme compression fiber in 
c 

the section in the N and T directions. These equivalent uniaxial 

strains are then converted to true strains, s
1

, using Eq. (2.10). 
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The true strains at the surface of the slab in the X and Y directions, 

are obtained by transforming the strains, En' Etand ynt' from the 

(N,T) system to the (X,Y) system using Eq. (2.37). 

The strains in the steel, E and E , can be obtained using the 
X y 

true strains and curvatures in the X and Y directions. The strains 

in the steel are used to calculate the forces in the steel reinforce-

ment. The updated steel forces are transformed back to the (N,T) 

axes to obtain the steel forces f
1 

which are again used to solve 

Eq. (2.53(a)) for E • Convergence is obtained if the ratio of the 
c 

change in steel force to its original value is less than one percent: 

0.01 

(2.54) 

f 2 - f 1 y y 

fyl 
~ 0.01 

where fx2 and fy2 are the most recent values of the steel forces in 

the X andY directions and fxl and,fyl are the previous values. 

Following convergence of the steel forces and Eq. (2.53(a)), the 

resisting moments are obtained from Eq. (2.53(b)). In most cases, 

convergence is obtained in less than five iterations. More iterations 

are required when large deflections are ·reached, and excessive strains 

in concrete and steel occur. 

As stated above, Eq. (2.53(a)) is solved for the equivalent uni-

axial strain in the N and T directions using the Newton-Raphson 

method. The integrals in Eq. (2.53) are evaluated numerically, using 

I 
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Gaussian quadrature. The solution of Eq. (2.53(a)) is considered to 

have converged if both the strain, E , and the location of the neu­
e 

tral axis, k, satisfy the following criteria: 

a) Strains: 

e c new 
~ ~ 
~c old - (2.55) 

b) Location of neutral axis: 

k k 10-4 
new - old ~ (2.56) 

Convergence is obtained within 2 to 3 iterations because the most recent 

values of e and k are used as starting values. 
c 

In addition, the 

Newton-Raphson method has a second order convergence which assures 

fast convergence. 

2.3.3 Material Axes and Cracking of Reinforced Concrete Slabs 

The anisotropic properties of reinforced concrete slabs are due 

primarily to cracking concrete and yielding reinforcing steel. For 

orthotropically reinforced concrete slabs, the crack directions 

(yield lines) do not necessarily coincide with the direction of 

principal moments or with the direction of steel reinforcement, and 

only in isotropically reinforced slabs do the directions of the cracks 

coincide with those of the principal moments. 

In this study, the material coordinate system coincides with the 

yield lines. The yield line criteria follows the work of Kemp (47), 

Save (79) and Braestrup (12,13). 
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Save (79) expressed the yield line criteria in terms of the 

applied bending moments in the X andY directions. Kemp (47), 

Lenschow and Sozen (15,52) and Jain and Kennedy (44) expressed this 

criterion in terms of principal moments acting in any direction 

relative to the reinforcement. The same principles are used to 

derive these two approaches and either one can be obtained from the 

other. In this work Kemp's (47) approach is used to determine the 

yield line directions. 

Yielding occurs at the orientation in the slab where the ratio 

of the applied moment to the resisting moment is maximum, regardless 

of the absolute value of the external moment. A yield line forms 

when the applied and the resisting bending·moments and the applied 

and the resisting twisting moments are equal at a particular orien­

tation or: 

where: 

Mj_ and Mz 

(2.57) 

(2.58) 

are the principal bending moments per unit length (see 

Fig. 2.8). 

~ and ~ are the resisting moments per unit length in the X and 

e 

Y (steel) directions at yield. 

is the angle between Xl, the normal to the principal 

moment, and N, the normal to the yield line direction. 

is the angle between the X axis and the normal to the 

yield line. 
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8=lji+<jl 

is the angle between steel direction, X, and the normal 

to the principal moment, Hi· 
The orientation of the yield lines can be obtained by rearranging 

Eq. (2.58): 

tan 2lji 
(~ - MyR) sin2<jl 

= -..( .,.-(M""7i--'_"""-M-,.,z ),......=._"'-,-(~----My-R"'"") _c_o_s 2=-q,-.-J 

Eliminating lji from Eqs. (2.57) and (2.58), the yield criterion is 

obtained: 

2 
- ]J~ = 0 

where, IJ = MyR/~ 

Eqs. (2.60) and (2.61) can be rewritten as: 

where: 

tan 2lji 
S(l-w)-(1-]J) cosZq, 

S = P+wQ-/(P+wQ) 
2
-4]Jw 

2.W 

(2.60) 

(2.61) 

(2. 62) 

(2.63) 
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w = M'/M' 
2 1 

s = ~~~ 

p sin2~ + p 
2 

cos ~ 

Q = 2~ . 2~ cos + p Sln 

Before yielding, rotation of the material axes is permitted 

and the directions determined using Eq. (2.60). After yielding, 

this material axes are fixed. Therefore, in the proposed model, 

initial cracking does not start perpendicular to the principal 

moments, but follows the orientation of the principal curvatures 

(Eq. (2.60)). This has not been confirmed experimentally; probably 

because cracking does not occur on a single line whose inclination 

may be easily measured. The direction of principal moment and 

principal curvature are very close at this level of loading. 

Eqs. (2.62) and (2.63) determine the yield line direction at 

any point in the slab. Equations similar to (2.62) and (2.63) were 

given by Kemp (47), Jain and Kennedy (13,44) and Lenschow and 

Sozen (15,52). 

This theory has been confirmed by extensive testing programs 

carried out by Lenschow and Sozen (52), Lenkei (15), Cardenas and 

Sozen (16) and recently by Jain and Kennedy (44). 

According to this theory, twisting moments may exist on the 

yield lines. Cracks coincide with the direction of principal 

moments only in isotropically reinforced concrete slabs. Tests 
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show that the reorientation, or kinking, of reinforcing bars, is 

so small that it can be neglected (15,16,44,52). Kinking, there­

fore, is not included in this model. In addition, (15,16,52) the 

the effect of biaxial bending appears to have no measurable in­

fluence on flexural strength in under-reinforced slabs. This last 

point is verified in this study, as will be shown in Chapter 4 • 

• 
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Chapter 3 

FINITE ELEMENT PROCEDURE 

3.1 Plate Bending Element 

The finite element used in this study is a compact, rectangular, 

plate bending element with sixteen degrees of freedom. This element 

was developed by Bogner, Fox and Schmit (11), using first degree 

Hermitian polynominals. The element is widely used and has been 

checked. extensively (1,33)·. For elastic problems, the deflection 

converges to the exact value with a low number of elements (nine 

to sixteen elements per quarter plate). 

Bogner, Fox and Schmit (11) obtained the stiffness matrix for 

isotropic thin plates. In this study their work is extended to 

cover anisotropic, elastic thin plates. The stiffness matrix is 

written in a partitioned form and integrated item by item. Details 

of the. element and the adaptation for anisotropic plates are pre­

sented in Appendix A. 

3.2 Solution Procedure 

Linear strain-displacement relationships are adequate for most 

reinforced concrete slabs. Therefore, geometric nonlinearities are 

neglected and only nonlinearities due to material behavior are con­

sidered in this study. 

To obtain the load-deflection behavior of slabs to failure, 

loads are applied incrementally. During the course of loading, the 

original load increments are reduced to smaller values after cracking 
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of the concrete and/or yielding of the steel. For each increment 

of load, iterations are performed until the solution converges. 

Loads are corrected using one of two adaptations of the Initial 

Stress Method (95,96,98). Both the constant stiffness and the 

variable stiffness approaches are used, (see Figs. 3.1 and 3.2). 

The constant stiffness approach is used before cracks form in the 

slab. The initial stiffness of the structure is used for each 

load increment and iteration. Upon the initiation of cracking, 

the variable stiffness approach is used. This approach treats the 

problem as a series of linear problems and updates the stiffness 

matrix following each iteration. 

In general, the number of iterations required for convergence 

is greater when the constant stiffness method is used. The actual 

number of calculations and the amount of computation time required 

per iteration is less than when the variable stiffness approach is 

used, since the structure stiffness matrix is not recalculated 

during each step. However, in a nonlinear problem, the constant 

stiffness approach may prove less efficient due to slow convergence. 

For reinforced concrete slabs prior to cracking, nonlinearity due 

to material behavior is minor; the slab is practically linear and 

convergence is reached within two iterations using the constant 

stiffness method. After cracking, a large number of iterations are 

required to achieve a satisfactory degree of accuracy using the 

constant stiffness approach. This proves to be more expensive than 

the variable stiffness approach. Of more importance, after cracking, 

the problem is highly path dependent, and convergence is assurred 
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only with small load increments and continual updating of the stiff-

ness matrix. Since only a portion of the structure may be softened 

by cracking, realistic load-deflection behavior is modeled only by 

recalculating the structure stiffness to account for the cracks. 

Observations made early in this study show that when stiffness 

properties are used, that are not as accurate as those presented in 

Chapter 2, some load-deflection curves can be produced, but that 

at times, convergence and stability of the solution are extremely 

poor. 

Immediately after cracking starts, five to twelve iterations 

are required for convergence. Thereafter, two or three iterations 

are satisfactory to achieve convergence in most cases. 

The procedure used in this work is outlined below: Upon con-

vergence of a load increment, the remaining residual nodal forces, 

are added to the next increment of load to obtain the new incremental 

n load vector, {~f }. 

The element stiffness matrices, [k], are updated to reflect 

the current material properties. The structure stiffness matrix, 

[K], is assembled from the element matrices. 

The incremental nodal displacement vector, {~on}, is obtained 

by solving the system of equilibrium equations, using the incremental 

load vector and the updated stiffness of the structure: 

(3.1) 

The total nodal displacements are: 
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(3. 2) 

The superscript, n, is the number of the current iteration. 

The apparent or calculated moments at the centroids of the 

elements in the global coordinate system are obtained by adding the 

incremental changes in moment as follows: 

where: 

{LIM"} = [ii] [B] {Lion} 

{gn} = {Mn-1} + {LIMn} 

(3.3) 

(3.4) 

{LIM"} is the incremental change in the moment vector for the current 

iteration; 

{M-n} is the total moment vector; 

[ii] is the updated flexure and torsional stiffness; and 

[B] is the matrix relating curvatures to nodal displacements. 

The moments on the material axes are obtained by transforming 

Eqs. (3.3) and (3.4) from the global coordinate system to the material 

axes as follows: 

where: 

{LI~} = [T
0

] {LIM"} 

{~} = {~-1} +{LIMn} 

{LI~} is the incremental change in moment vector for the current 

iteration, in material axes (Fig. 3.3); 

(3.5) 

(3.6) 
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{MF} is the total moment vector in material axes; 

[T ] is the transformation matrix for stresses: cr 

2-cos e 2-sin 8 2sine cose 

[T ] 2- 2- -2sine = sin 8 cos 8 cose cr 

-sine cose sine cose 2- 2-cos 8-sin 8 

eis the angle between the global and material axes. 

(3. 7) 

For each element, the incremental and total equivalent uniaxial 

curvatures (Chapter 2) on the material axis are then obtained: 

n /'~} {I'.KI) = I = 1,2 n 
DII 

(3.8) 

n n-1 n 
{Kiu} = {Kiu } + {L'.K:Iu} (3.9) 

I= 1,2 

where: 

n 
{I'.Kiu} is the current change in the equivalent uniaxial curvature 

n 
{Kiu} 

{I'.M~} 

[D¥Il 

in the I direction; 

is the total equivalent uniaxial curvature in the I direction; 

is the current change in the moment in the I direction; and 

is the updated tangent flexural stiffness in the I direction. 

The resisting moments, ~· corresponding to the nonlinear material 

behavior, are calculated using the equivalent uniaxial curvatures 

(Section 2.3.2.3). Residual moments, l'.mn, which represent the lack 

\ 
' 



I 

45 

of satisfaction of equilibrium due to nonlinear material behavior, 

are obtained by subtracting the resisting moments from the apparent 

moments: 

(3.10) 

The residual moments are then converted to nodal forces to be 

applied to the structure: 

{~fn} ; Jf[B]T {~mn} dx dy 
A 

(3.11) 

If the incremental displacements have converged, or if the pre-

scribed number of iterations has been reached, another increment of 

load is applied and the solution continues; if the problem has not 

converged, the solution is repeated using the residual loads and the 

updated structure stiffness. Calculations terminate when the strain 

in the concrete or in the steel exceeds a specific limit. 

The input data for the program used in this study includes a 

description of the geometry of the structure and the properties 

of the materials used. The program permits the use of varying element 

thicknesses, reinforcing ratios, and directions of steel. 

As output, the program gives the total deflection, the total 

load vector and the residual nodal forces at nodal points. At the 

element centroids the program provides the total moments, the total 

curvatures, the stress and strainih the concrete at the extreme 

compressive fiber, the stress and strain in the steel, and the crack-

ing level and direction. Numerical examples for beams and slabs are 

presented in Chapter 4. 
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3.3 Convergence Criteria 

Convergence criteria play a key role in nonlinear problems. 

The accuracy of the solution and the speed of convergence depend 

on the magnitude and type of criteria selected. If the limits are 

loose, accuracy and convergence to the right roots are questionable; 

the structure appears to be too stiff. If very tight limits are 

imposed, the number of iterations increases and the incremental 

deflections may change sign with each iteration. In some problems , 

. the solution may even diverge. A middle ground must be established. 

Convergence criteria can be based on displacements and/or on 

forces. In this study, the convergence criteria are based on dis-

placements only. 

The convergence criteria imposed here use the Euclidian norms 

(square root of the sum of the squares) of the total nodal deflec-

tions, TD, and the change in nodal deflections for the last 

iteration, RD. The Euclidian norms are defined as follows: 

N2(6) = ;1;2 + 62 + ... + 62 
1 2 n 

(3.12) 

TD = N2(6n) 

RD = Nz(Mn) 
(3 .13) 

The solution is considered to have converged, if one of the follow-

ing two criteria is satisfied: 

a) The ratio of the norm of the incremental nodal deflection 

vector from the last iteration to the norm of the total 

deflection vector is less than one percent, and the ratio 
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of the norms of the last two incremental nodal deflection 

vectors is less than fifteen percent. 

RD 
TD 0.01 and RD new 

RD old 
:; 0.15 

b) The ratio of the norm of the last incremental nodal 

deflection vector to the norm of the total deflection 

vector is less than seven thousandths. 

RD 
TD 0.007 

(3.14) 

(3 .15) 

In this study, case (b) controlled for most iterations (more than 

90%). Case (a) controlled for the early load increments. When tighter 

criteria were used for case (b) (0.005), case (a) was found to control 

in many cases; the solution required a greater number of iterations 

without improving the accuracy of the results. 
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Chapter 4 

NUMERICAL EXAMPLES 

In this chapter the applicability and the usefullness of the 

proposed model are demonstrated. Numerical examples are selected 

and presented in a sequence of increasing complexity: Two singly 

reinforced concrete beams, tested by Gaston, Siess and Newmark (34), 

two slabs tested by Cardenas and Sozen (16), three slabs tested by 

Jain and Kennedy (44), and two slabs tested by McNeice (59). 

In each case, the analytical solution is compared with the 

experimental results. Several examples include additional compari­

sons with analytical results obtained by other investigators. 

The material properties of the test specimens are presented in 

Table 4.1. These values were used by the original investigators. 

Estimates are made in cases where specific data are not available. 

The model demonstrated in Sections 4.2 and 4.3 does not include 

the effect of biaxial stresses on concrete strength. The minor 

importance of the biaxial strength effect on slabs is demonstrated 

in Section 4.4. 

4.2 Beams 

4.2.1 Simply Supported Beams--Gaston, Siess and Newmark 

Gaston, Siess and Newmark (34) conducted a series of tests on 

simply supported reinforced concrete beams. The beams were loaded 

at the third points. Load-deflection curves were obtained 
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experimentally with deflections measured at the loading points and 

at the span center line. Two beams, TlMA (Fig. 4.1) and T3MA (Fig. 

4.2), demonstrate the ability of the proposed model to simulate 

load-deflection behavior. TlMA is under-reinforced, while T3MA has 

a balanced reinforcement ratio. 

Due to symmetry, only half of each beam is analyzed. For the 

analytical solution, the beams are loaded incrementally with an 

initial load increment of 2000 lbs. The load increment is reduced 

to 1000 lbs. after the initiation of cracking, and to 400 lbs. once 

yielding occurs. Although the load-deflection behavior of the pro­

posed model is,.for the most part, independent of the size of the 

load increment, these reductions in the size of the load increment 

give stability to the programmed calculations. If large increments 

are used, the analysis over-shoots the ultimate load, andcorrections 

must be made to attain the equilibrium configuration at large dis­

placements. In some cases, the analysis falsely indicates that the 

concrete has been crushed at a very early stage. Decreasing the size 

of the load increments, has only a small effect on the total computa­

tion time, since large load increments require a higher number of 

iterations. 

The load deflection curves in Figs. 4.1 and 4.2 show a good 

match with experimental results. Figs. 4.3 and 4.4 show the analytical 

crack depths in beams TlMA and T3MA immediately before and after 

yielding of the steel reinforcement. 

The analytical solutions for both beams, indicate that only very 

small changes in the resisting moments occur after yielding of the 
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stee~ independent of the stresses in the concrete when yielding 

begins. This observation is in concert with the well known fact 

that in balanced and under-reinforced concrete sections, the ulti­

mate moments are controlled by the reinforcing steel and that higher 

concrete strength adds very little to the ultimate strength. The 

stresses in the concrete reach a maximum immediately after yield­

ing of the steel in balanced reinforced beams and after a few 

additional small load increments in under-reinforced beams. The 

concrete stresses then begin to decrease on the downward portion of 

the stress-strain curve, demonstrating the "softer" nature of the 

model as compared to an elasto-plastic representation. 

The moments and deflections at yielding are compared with the 

experimental and analytical work ·of Gaston, Siess and Newmark (34), 

and Hsu and Mirza (40) in Table 4.2. The proposed model provides a 

good match with the experimental results. 

4.3 Slabs 

4.3.1 Slabs Subjected to Uniaxial Bending Moments--Cardenas and Sozen 

An extensive experimental investigation of flexural yield cri­

teria has been carried out by Lenschow and Sozen (52) and Cardenas 

and Sozen (16). A series of slabs, simply supported on two edges 

and free on the other two, are subjected to uniaxial bending moments. 

The proposed model is used to simulate the moment-curvature behavior 

of two slabs, B7 and BlO. The model also matches the change in steel 

strain and concrete strain with increasing moment. The slabs are 

isotropically reinforced (equal steel percentages) with slab BlO 
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reinforced parallel to slab edges, and slab B7 reinforced at an angle 

of450with the slab edges (Fig. 4.5). Due to symmetry, one half of 

the slab is used in the analysis. This half is divided into either 

three or nine elements, as shown in Fig. 4.6. The material proper­

ties used in the analysis are given by Cardenas and Sozen and shown 

in Table 4.1. 

For the analysis, load increments of 1000 in. lb. per in. are 

used. After cracking begins, the load increment is reduced to 250 

in-lb per inch. This change assures convergence and programming 

stability. 

The proposed model is compared with the results obtained experi­

mentally by Cardenas and Sozen (16) and analytically by Hand, Pecknold 

and Schnobrich (36) in Figs. 4.7 through 4.12. 

Hand, Pecknold and Schnobrich (36,37) analyze B7 and BlO using 

a layered, twenty degree of freedom, shallow shell finite element. 

Each layer is assumed to be in a state of plane stress and the ma­

terial properties are assumed to be constant over the layer thickness. 

Slabs B7 and BlO are represented by a single finite element. 

The proposed model shows good agreement with the experimental 

results, for moment-curvature and moment-strain (concrete and steel) 

behavior. The improved results, as compared with Hand, et. al., may 

be due in part to the higher number of finite elements used. However, 

because the moment field in these problems is essentially uniform, a 

larger number of elements provides no particular advantage. In fact, 

little difference is apparent when three and nine elements are used 

to model the slabs (Fig. 4.6). 
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Moments and curvatures at cracking and yieldin~ and moments 

at ultimate, are compared with those obtained both experimentally 

and analytically (16,34) in Table 4.3. 

Cracking in slab B7 occurs at an applied moment of 1625 in-lb/in. 

All elements in the proposed model start cracking during the same 

load increment due to the uniformity of the applied moment. For the 

nine element model, the middle elements crack perpendicular to the 

applied uniaxial moment (Fig. 4.13), while Poisson's effect and the 

boundary conditions at the edges, cause a gradual change in the 

orientation of the cracks for the exterior elements. A completely 

uniform field for moments and curvatures is perceived when three 

elements are used resulting in the uniform cracking pattern shown 

in Fig. 4.13. Slab BlO exhibits a similar crack pattern (not shown). 

A discontinuity in the analytical moment-curvature curves 

occurs approximately at one-third of the ultimate load, and is due 

to the development of cracks in the concrete. During this load 

increment, the bending moment in the section drops to a lower value 

after cracking (Fig. 4.14), due to the release of the tensile forces 

across the crack. Equilibrium is restored after redistribution of 

these forces as explained in Chapter 3. 

Prior to yielding, the direction of the reinforcing steel has 

a significant effect on the load-deflection and moment-curvature 

curves. The greater the inclination of the steel direction with 

respect to the edges of the slab, the greater the deflections and 

curvatures. This is due to the reduced contribution of inclined 

steel to the flexural stiffness of a reinforced concrete slab (see 
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Eqs. (2.41». As predicted by yield line theory, the orientation of 

steel in an isotropically reinforced slab has no influence on the 

ultimate loads. The same ultimate moments are obtained for both 

slabs, as may be seen by comparing Figs. 4.7 and 4.10. 

4.3.2 Micro-Concrete Slabs Under Line Loads--Jain and Kennedy 

The problems investigated in the preceeding sections consider 

full size concrete specimens. In this and the following section, 

micro-concrete slabs are investigated. 

Recently, Jain and Kennedy (44) conducted a series of tests 

on micro-concrete slabs to investigate the parameters that control 

the formation of yield lines. Their experimental results are repre­

sented by moment-deflection curves at the mid-span of the slab. 

Three of the slabs, Al, A2 and A3, are studied. The reinforcement 

is isotropic (equal moment capacities) in each slab and makes an 

angle of oo (Al), 300 (A2) or 45° (A3) with the direction of the 

applied uniaxial moment. The moments are generated by means of two 

uniformly distributed line loads (Fig. 4.15). The steel reinforce­

ment was annealed in order to lower the yield stress and obtain a 

distinct yield plateau. The average yield stress is 32 ksi. The 

material properties are given in Table 4.1, and the finite element 

grid and dimensions are shown in Fig. 4.15. Due to the lack of 

symmetry in the reinforcing, the full slab is modeled analytically 

for slab A2. 

Analytically, the slabs are loaded incrementally with a line 

load of 10 lbs/in. The load increment is reduced to 5 lbs/in after 
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the initiation of cracks, and to 2.5 lbs/in when yielding occurs. 

The analytical results are compared with the experimental moment-

deflection curves in Fig. 4.16. The curves for the proposed model 

exhibit a marked discontinuity due to cracking and look somewhat 

softer than the experimental curves. 

Both experimental and analytical results reinforce the conclu-

sions reached in the previous_section concerning the effect of rein-

forcement direction on the deflections, curvatures and ultimate 

moments. Fig. 4.16 shows that the deflection increases with in-

creased inclination of steel reinforcement with respect to the 

applied moments and reaches its maximum at an angle of 450. The 

value of the ultimate moment is constant and is independent of the 
• 

steel inclination. 

4.3.3 Slabs Under Concentrated Load--McNeice 

a) One-Way Slab 

McNeice (59) tested a one-way slab under a concentrated 

load (Fig. 4.17). The details of the slab properties are taken 

from reference (45); the yield strength of the steel reinforce-

ment is not given and is assumed as 50 ksi. 

Jofriet and McNeice (45) analyze this slab and a corner 

supported slab (discussed in Section 4.3.3(b)). Their analysis 

is "intended to deal with slabs in the service load range"; 

steel and concrete are treated as elastic materials, and non-

linear behavior is modeled by changes in slab stiffness during 

the monotonic increase in applied load. They use two empirical 
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formulas to approximate the moment of iHertia of the section. 

The first formula is due to Branson and is similar to the one 

adopted by the ACI (2), but the ratio of moments is taken to 

the fourth power. The second formula is due to Beeby (8); he 

assumed the modulus of elasticity of the cracked section to 

be reduced to 0. 57 E . Jofriet and McNeice use a quadrilateral 
0 

plate bending element. In their work, a unit load is applied 

and scaled down to the value at which the first region cracks; 

the stiffness matrix is changed appropriately; the unit load 

is reapplied and the results are scaled to the next crack obser-

vation. This procedure is repeated until the desired load 

level is reached. They had difficulty in matching the experi-
• 

mental results in this problem and felt that this was due to 

excessive bond slip between the flat reinforcing bars and the 

concrete. 

In this study, due to symmetry, only half of the slab is 

analyzed. The slab is divided into four elements. The slab 

is loaded incrementally with a concentrated load of 100 lbs. 

and reduced to 50 lbs. after the initiation of cracks. The 

slab model starts cracking, perpendicular to the direction of 

the principal applied moment at a total load-of 650 pounds. 

Fig. 4.18 shows the cracking level immediately before and after 

yielding of the steel reinforcement. As shown in Fig. 4.17, 

an extremely good match is obtained with the experimental curve 

up to a total load of 1400 pounds. These results are obtained 

assuming zero bond slip between the concrete and the reinforcing 
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steel. 

b) Two-Way Slab Supported at the Corners 

The two-way slab tested by McNeice (59) is square, sup­

ported at the four corners and reinforced with an isotropic 

mesh. The slab is subjected to a central concentrated load. 

The steel yield point is assumed to be 50 ksi. The material 

properties are given in Table 4.1, and the finite element grid 

is shown in Fig. 4.19. 

This problem is of special interest: first because it 

is a two-way slab with moments varying through the slab in 

two directions; second, because this slab has been analyzed 

by many investigators, Jofriet and McNeice (45), Scanlon (80, 

83), Hand, _Pecknold and Schnobrich (35) and Lin and Scordelis 

(53), and comparison between their models and the one introduced 

in this study can be made. A key disadvantage is the lack of 

detailed test data (i.e., the yield point of the steel). 

For his analytical work, Scanlan (82) uses a layered 

rectangular plate bendingelement with four degrees of freedom 

at each corner node. Cracks are assumed to progress through 

the thickness of the element, layer by layer, parallel and 

perpendicular to the orthogonal reinforcement. Steel and con­

crete are taken as linear materials with no post-yield behavior 

or failure considered. 

Lin and Scordelis (53) extend Scanlon's approach to in­

clude elasto-plastic behavior for steel and concrete. They 
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account for the coupling effect between membrane and bending 

action. A triangular element with fifteen degrees of freedom 

is used. Both of these studies include a tension stiffening 

effect for concrete between cracks. 

Jofriet and McNeice's (45) model and Hand, Pecknold and 

Schnobrich's (36) model are described in Sections 4.3.3(a) 

and 4.3.1, respectively. 

For the proposed model, one-quarter of the slab is con­

sidered, due to symmetry. Sixteen elements per quarter are 

used. With this number of elements, deflections in simply 

supported, isotropic elastic plates converged to the exact 

series solution. In the nonlinear analysis, single-precision 

provides satisfactory accuracy for the computer solution. If 

a higher number of elements had been used, double-precision 

would have been required, due to increase in the number of 

round-off errors in the solution of the larger system of 

equations. This would have increased the program storage re­

quirement and the computational time by more than fifty per­

cent, without changing the results significantly. 

Deflections at points A and B, located 3 and 9 inches 

from the concentrated load (Fig. 4.19), are used to compare 

the analytical and experimental results. The deflection at 

point A is obtained approximately from deflections at nodal 

points 20 and 25. Point B concides with nodal point 15. 

In the model, the slab is loaded incrementally with an 
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initial load increment of 400 lbs. This is reduced to 200 lbs., 

after initiation of cracks. Cracks start at a load of approxi­

mately 1200 lbs. As loading progresses to yield, the material 

axes rotate slightly. The rotation averages approximately 

three degrees in this problem and is due to changes in the 

principal moments caused by cracking. Fig. 4.20 shows the levels 

and directions of the cracks at a load of 2800 lbs. 

The proposed solution is compared with the experimental 

curves and analytical models proposed by others (Figs. 4.21, 

4.22). It is in good agreement with the experimental solution 

and with the solution of Jofriet and McNeice (Beeby). The model 

provides a better match than the three layered models shown. 

The ability to represent cracking as a continuous process, not 

limited to distinct layers, is viewed as a strong point of the 

proposed model. It also has the ability to represent a wider 

range of test results than that offered by Jofriet and McNeice. 

4.4 Biaxial Stresses 

The effect of the behavior of concrete under biaxial stresses 

on the behavior of reinforced concrete slabs is studied in this work. 

The slab in Section 4.3.3(b) is ideal for this purpose since the slab 

is subjected to positive biaxial moments over nearly its entire sur­

face. The slab is analyzed using the portion of the concrete model 

presented in Section 2.2.1.4. The results are compared (Fig. 4.23) 

with the analytical curve obtained in Section 4.3.3.(b), which did 

not include a biaxial strength effect. The two analytical curves 
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are very close; the biaxial model is slightly stiffer, as may be 

expected. This minor difference supports the experimental observa­

tions of other investigators (16,44,52). 

The fact that the increase in concrete strength due to biaxial 

compression has little effect on the load-deflection behavior of 

the model is due to the fact that the slab is under-reinforced and 

therefore, the effect of varying concrete strength (~ 20%) has very 

little effect on the resisting moment arm after the reinforcing steel 

yields. Because of the relatively minor effect on slab behavior of 

the biaxial strength increase, this portion of the model is not 

used in the other problems discussed in this chapter. Those results 

are, therefore, obtained with a somewhat simpler representation of 

concrete. 
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Chapter 5 

SUMMARY AND CONCLUSIONS 

A nonlinear model is developed to analyze reinforced concrete 

slabs under monotonically increasing loads. The model is used in 

conjunction with a compact, rectangular, plate bending finite element 

to trace elastic and inelastic load-deformation behavior of slabs up 

to failure. 

Concrete is represented as a linear, brittle material in tension 

and a nonlinear, softening material in compression. Yield line theory 

is used to establish material axes. Reinforcing steel is modeled as 

a uniaxial, elasto-plastic material. Perfect bond is assumed between 

the steel and the concrete. The influences of temperature, shrinkage, 

creep and cyclic loading are not considered. 

The slabs are analyzed as incrementally linear, anisotropic 

plates. Loads are applied incrementally and corrected using the 

initial stress method. Crack level and direction, and stresses and 

strains in concrete and steel are obtained using the nonlinear material 

and moment-curvature relationships. 

The validity of the model is studied by comparing analytical 

results for beams and slabs with the analytical and experimental re­

sults of others. The effect of the increase in concrete strength, 

due to biaxial compression, on the load-deflection behavior of the 

model is also studied. A computer program is developed to implement 

the analysis. 
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5.2 Conclusions 

The proposed model and method of analysis give satisfactory 

results for predicting the flexural behavior of reinforced concrete 

beams and slabs. The slab model is designed to analyze under­

reinforced, balanced and over-reinforced concrete flexural members. 

However, over-reinforced concrete slabs are not common in practice, 

and are not investigated in this work. 

The ability to represent cracking as a continuous process, 

appears to be a strong point of the model. The softening of concrete 

in compression appears to be a less critical, though significant, 

portion of the model. 

The numerical examples indicate that the effect of biaxial 

stresses on concrete plays an insignificant role in modeling the 

behavior of reinforced concrete slabs. The load-deflection behavior 

of under-reinforced concrete slabs is not sensitive to the exact 

shape of the stress-strain curve for concrete in compression. 

Good matches with test data are obtained for the numerical 

examples presented without modeling bond slip between steel and con­

crete or kinking of the steel at the yield lines. 

The accuracy of the structural stiffness used in the incre­

mental finite element analysis is an important factor in controlling 

the speed of convergence and the stability of the solution. The 

accuracy of the structural stiffness plays an important role in 

controlling the shape of the load-deflection curves, especially where 

highly inelastic behavior is involved, such as cracking or yielding. 

The variable stiffness approach proved to be a satisfactory procedure 

for handling these nonlinearities. In addition, reducing the size of 
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the load increment, after cracking and yielding, helps to insure an 

accurate analysis. 

As used in this model, the yield line theory proved to be an ex­

cellent tool, not only for predicting the ultimate strength of the slabs, 

but for formulating the full load-deflection curves of the members. 

The study demonstrates analytically, that the orientation of 

steel in isotropically reinforced slabs effects slab stiffness, but 

not strength. The conclusion matches experimental observations. 

5.3 Recommendations for Further Study 

The method of analysis introduced in this work, the concepts of 

uniaxial strain and curvature, and the calculation of strains and 

forces in the reinforcing steel are more general than applied in 

this study. They may be used with the finite element technique to 

analyze prestressed, as well as, reinforced concrete, and to analyze 

structural members such as shells. The proposed model may be easily 

extended to include in-plane stresses. 

Shear failure is likely to occur in thin reinforced concrete slabs 

under concentrated loads and over supports. Three-dimensional analysis 

is required to solve these problems. Extending the proposed model to 

include shear requires experimental, as well as analytical, research. 

The proposed model is limited to "thin slabs". The nonlinear analysis 

of thick slabs and deep beams requires a different approach, using three­

dimensional material representations and finite elements. 

Experimental work on hollow slabs is needed, and the technique 

introduced here can be used to compare the analytical and experimental 

findings. 
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Appendix A 

PROPERTIES OF THE PLATE BENDING ELEMENT 

A.l The finite element used i~ this study is a compact rectangular 

plate bending element with sixteen degrees of freedom (Figs. A.l 

and A.2): 

~1' 

where: 

w ll,y 

wl2 ' ,y 

= is the element displacement vector; 

w .. = is the deflection at the nodal point 
1.] .. 

3w the nodal point (i,j); w .. = - -"c at 
lJ ,x 3x 

3w 
the nodal point (i,j); and wi. = -at 

J,Y 3y 

3w 
(i,j). w .. = 3x3y at the nodal point 

1.] , xy 

(i,j); 

Fig. A.2 shows the four displacements, at point (1,1). 

Corresponding to these nodal displacements, nodal forces consist 

of shearing forces and bending moments about the X and the Y axes 

(A.l) 

at ea:ch node. They are represented by the following column vector; 

* The superscript T implies a transposed matrix. 



' .; where: 

M .• 
lJ,y 

M •. 
1J ,x 

M .. 
lJ ,xy 

i,j = 1,2 
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{f}e = 
[jl' Mll ' Mll,x' Mll,xy' ,y 

F21' M21 ' M2l,x' M 
,y 21, xy' 

F22' M22 ' M22,x' M 
(A.2) 

,y 22 ,xy' 

T 
Fl2' ~2,y' Ml2,x' M22 :-J ,xy 

is the nodal force corresponding to the displacement w .. ; 
lJ 

is the nodal bending moment in the Y direction correspond-

ing to w.. ; 
lJ ,x 

is the nodal bending moment in the X direction correspond-

ing to w. . ; and 
lJ ,y 

is the nodal twisting moment corresponding tow .. 
lJ ,xy 

The fourth nodal degree of freedom, w.. is included to improve 
lJ ,xy 

the convergence of the element. A similar element with twelve degrees 

of freedom, but without these twisting terms has proved to be non-

convergent. This extra degree of freedom is permissible as it does 

not involve excessive continuity (98). The convergent property of 

the two rectangular elements is shown in Fig. A.3. The element used 

in this study was developed by Bogner, Fox and Schmit (11) and will 

be referred to as BFS element. Hermitian polynomials of the first 

order are used in developing the BFS element. 
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A.2 Hermitian Polynomials 

Hermitian polynomials of the first-order are used to define 

the displacement functions in terms of the nodal displacements. 

The Hermitian polynomials H(~)(x) are polynomials of order (2n + 1) 
ml. 

which have the following properties: 

H(~) (x) 
ml. 

0 .• ifK O,n = = m, m = 
dxK l.J 

X = Xj 

(A. 3) 
and 

d~(n)(x) 
mi 

0 if K <f m = 
dxK 

X = Xj 

where: 

n is the number of derivatives that the set can interpolate; 

K is the order of derivative, between zero and n; 

X. is 
J 

the value of the argument x at j; and 

0 •. 
l.J 

is the Kronecker delta: 

0 if i 
"' 

j 
0 •• = (A.4) 

l.J 1 if i = j 

A set of first order Hermitian polynomials which satisfies these 

properties are: 
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Hbi)(x) 
1 3 2 3 = 3 (2x - 2ax + a ) 

a 

H(l)(x) -1 3 2 
= (2x - 3ax ) 02 3 a 

(A.5) 

Hii)(x) 1 3 2 2 = (x - 2a + a x) 2 a 

Hg) (x) 1 3 2 
= 2 (x - ax ) 

a 

These functions are known as osculatory polynominals, and are shown 

in Fig. A.4. They interpolate the displacement functions for an 

element. The values of the functions and their first derivatives 

are used as variables. 

The displacement function proposed by Bogner, Fox and Schmit (11) 

is: 2 2 

w(x,y) = 2: 2: [~b~) (x) Hb~) (y) w .. 
l.J 

i=l j=l 

Hi~) (x) H~) (y) w .. 
lJ ,x + 

(A. 6) 

H~) (x) Hi~)(y) w •. l.J ,y + 

where: 

w
1
.J., w.. , w.. and w. . are the displacements at nodal point 

l.J,X l.J,y l.J,xy 
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are given in Eq. (A.5). 

These functions satisfy compatibility of slope and deflection 

along the boundaries of the element. Eq. (A.6} can be written as: 

w = [N] { o} (A. 7) 

where: 

[N] contains the shape functions; and 

{o} is the nodal displacement vector. 

A.3 Formulation of Plate Bending Problem 

For completeness and clearity of th.e analysis introduced in 

Chapter 3, the following summary of the formulation of the plate 

bending problem is given: 

The incremental changes in curvature and bending moment for an 

element in an incrementally linear, anisotropic plate, are given in 

terms of displacements by: 

{6K}e = [B]{M}e (A.8) 

{6M}e = [D] [B]{M}e (A. 9) 

where: 

a
2
N. 
~ 

-.-2 
ax 

a
2
N. 

B. ~ i = 1,4 =-
~ 

ay 2 
(A.lO) 

2a 2N. 
~ 

axay 
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and: 

Dll D12 Dl3 

D = D22 D23 (A.ll) 

Sym. D33 

By minimizing the total potential energy, the following are obtained 

for each element, (A.l2), and for the whole structure, (A.l3): 

where: 

[k] is 

[K] is 

{11f} = [K] {M} 

[k] = 

[K] = 

!![B]T [D] [B] dxdy 
A 

E [k] 

the element stiffness matrix; 

the stiffness matrix for the structure; and 

{M} is the change in load vector at nodal points. 

The nodal forces due to distributed loads are: 

T f J[N] {q} dxdy 
A 

Those due to initial curvatures are: 

{11f} = -f![B]T[D]{l1K } dxdy 
"'o A 

0 

And for initial moments are: 

!! [S]T{l1M } dxdy 
A o 

(A.l2) 

(A.l3) 

(A.l4) 

(A.l5) 

(A.l6) 

(A.l7) 

(A.l8) 
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The solution of the nonlinear bending problem is reduced to the 

solution of the following algorithm: 

{~a} = [KJ-1 {~f} 

The total nodal displacements are: 

{a} {M} 

load 
increment 

The element stiffness formulation is presented in Section (A.4). 

A.4 The Element Stiffness Matrix 

(A.l9) 

(A. 20) 

In this s.tudy, the BFS element is extended to cover anisotropic 

plates. The derivation of the stiffness matrix for the anisotropic 

case is described below. 

The stiffness matrix for an element is: 

ff(B]T(D] (B] dxdy 
A 

[k]l6xl6 = (A.l4) 

By substituting [B]T, [D] and (B], using Eqs. (A.S), (A.6), (A.lO) and 

(A.ll) in (A.l5) and integrating term by term, the following stiffness 

matrix, which is the sum of six matrices, is obtained: 

(A.21) 
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The values of k
11

(i,j), k22 (i,j), k
33

(i,j), k12 (i,j), k13 (i,j), k23 Ci,j), 

col(i,j) and co2(i,j) are presented in Tables A.l to A.8. n11 , n12 , 

D13 , D22 , n23 , and n
33 

are the flexural and torsional stiffnessesgive 

in Eqs. (2.32) and (2.44). a and bare the element dimensions. 

A.5 Moments and Curvatures 

The B matrix at the centroid of the element, where the moments 

and curvatures are evaluated, is presented in Table A.lO. Although 

not used in this study, the B matrix, evaluated at the nodal points, 

is provided for completeness and shown in Table A.ll. 
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156 78 22 11 -156 78 -22 11 -51, 27 13 -13 54 27 -13 -13 
35 35 35 35 35 35 35 35 35 35 35 70 35 35 35 70 

52 11 22 -78 26 -11 11 -27 ....1. 13 -13 27 18 -13 -13 --
35 35 105 35 35 35 105 35 35 70 210 35 35 70 105 

4 2 -22 11 - 4 2 -13 13 3 - 3 13 13 - 3 - 3 
35 35 35 35 35 35 35 70 35 70 35 70 35 70 

4 -11 11 - 2 2 -13 _:u 3 .::..1. _:u 13 - 3 - 1 -- --
105 35 105 35 105 70 210 70 70 70 105 70 35 

156 -78 22 -11 54 -27 -13 13 -54 -27 13 13 -- ---
35 35 35 35 35 35 35 70 35 35 35 70 

52 -11 22 -27 18 13 -13 27 9 -13 -13 
35 35105 35 35 70 105 35 35 70 210 

4 - 2 13 -13 - 3 3 -13 -13 3 3 ---
357035 

-----
70 35 35 70 35 70 35 

4 -13 13 3 - 1 13 13 - 3 - 1 -- ---
105 70 105 70 35 70 210 70 70 

• 
156 -78 -22 11-156 -78 22 11 --- 353535 35 35 35 35 35 

52 11 -22 78 26 -11 -11 
35 35 105 35 35 25 105 

4 - 2 22 11 - 4 - 2 
35 35 35 35 35 35 

4 -11 -11 2 2 ---'105 35 105 35 105 

156 78 -22 -11 
35 35 35 35 

52 -11 -22 
35 35 105 

4 2 
35 35 

Sym. 
4 

105 

TABLE A.l Values k11(i,j)of the stiffness matrix, Eq. A.21. 



117 

156 22 78 11 54 -13 27 -13 -54 13 27 -13 -156 -22 78 11 
35 35 35 35 35 35 35 ----- 35 35 35 70 35 70 35 35 35 

4 11 2 13 - 3 13 - 3 -13 3 13 - 3 -22 - 4 11 2 --35 35 35 35 35 70 70 35 35 70 70 35 35 35 35 

52 22 27 -13 18 -13 -27 13 9 -13 -78 -11 26 11 --35 105 35 70 35 105 35 70 35 210 35 35 35 105 

4 13 - 3 13 - 1 -13 3 13 - 1 -11 - 2 11 2 --105 70 70 105 35 70 70 210 70 35 35 105 105 

156 -22 78 -11 -156 22 78 -11 -54 -13 27 13 --- --35 35 35 35 35 35 35 35 35 35 35 70 

4 -11 2 22 - 4 -11 2 13 3 -13 - 3 
35 35 35 35 35 35 35 35 35 70 70 

52 -22 -78 11 26 -11 -27 -13 9 13 --
35 105 35 35 35 105 35 70 35 210 

4 11 - 2 -11 2 13 3 -13 - 1 
105 35 35 105 105 70 70 210 70 

156 -22 -78 11 54 13 -27 -13 
35 35 35 35 35 35 35 70 

4 11 - 2 -13 - 3 13 3 
35 35 -- 70 35 35 35 70 

52 -22 -27 -13 18 13 --35 105 35 70 35 105 

4 13 3 -13 - 1 
105 70 70 105 35 

156 22 -78 -11 
35 35 35 35 

4 -11 - 2 
35 35 35 

52 22 
35 105 

Sym. 4 
105 

TABLE A. 2 Values k22(i,j) in the stiffness matrix, Eq. A.21. 
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144 12 12 1 -144 12 -12 1 144 -12 -12 1 -144 -12 12 1 ---25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 

16 1 4 -12 - 4 - 1 - 1 12 4 - 1 - 1 -12 -16 1 4 
25 25 75 25 25 25 75 25 25 25 75 25 25 25 75 

16 4 -12 1 -16 4 12 - 1 4 - 1 -12 - 1 - 4 - 1 ---
25 75 25 25 25 75 25 25 25 75 25 25 25 75 

16 - 1 - 1 - 4 - 4 1 1 1 1 - 1 - 4 - 1 - 4 ---
225 25 75 75 225 25 75 75 225 25 75 75 225 

144 -12 12 - 1 -144 12 12 - 1 144 12 -12 - 1 --- ---
25 25 25 25 25 25 25 25 25 25 25 25 

16 - 1 4 12 -16 - 1 4 -12 4 1 - 1 ---
25 25 75 25 25 25 75 25 25 25 75 

16 - 4 -12 1 - 4 1 12 1 4 1 
25 75 25 25 25 75 25 25 25 75 

16 1 - 4 1 - 4 - 1 1 - 1 1 
225 75 ---

25 75 225 25 75 75 225 

144 -12 -12 1 -144 -12 12 1 
25 25 25 25 25 25 25 25 

16 1 - 4 12 - 4 - 1 1 --
25 25 75 25 25 25 75 

16 - 4 12 1 -16 - 4 
25 75 25 252575 

16 - 1 1 4 - 4 
225 25 75 75 225 

144 12 -12 - 1 
25 252525 

16 - 1 - 4 -----25 25 75 

16 4 
25 75 

Sym. 16 
225 

TABLE A.3 Values of ~3 (i,j) in the stiffness matrix, Eq. A.21. 
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72 36 36 11 -72 6 -36 3 72 - 6 - 6 1 -72 -36 6 3 
25 25 25 so 25 25 25 25 25 25 25 50 25 25 25 25 

8 61 4 - 6 - 2 - 3 - 1 6 2 - 1 - 1 -36 - 8 3 2 
25 50 25 2s2s-z5 25 25 25 50 150 25 25 25 75 

8 4 -36 3 - 8 2 6 - 1 2 - 1 - 6 - 3 - 2 - 1 
25 25 2s ---

25 25 25 75 25 50 25 150 25 25 25 

8 - 3 - 1 - 2 - 2 1 1 1 1 - 3 - 2 - 1 - 2 --225 25 25 75 225 50 150 150 450 25 75 25 225 

72 -36 36 -11 -72 36 6 - 3 72 6 - 6 - 1 ---25 25 25 50 25 25 25 25 25 25 25 50 

8 -61 4 36 - 8 - 3 2 - 6 2 1 - 1 
25 50 25 25 25 25 75 2s 25 50 150 

8 - 4 - 6 3 - 2 1 6 1 2 1 
25 25 25 25 25 25 25 50 25 150 

8 3 - 2 1 - 1 - 1 1 - 1 1 
225 25 75 25 225 50 150 150 450 

"72 -36 -36 11 -72 - 6 36 3 
25 25 25 50 25 25 25 25 

8 61 - 4 6 - 2 - 3 1 
25 50 25 25 25 25 25 

8 - 4 36 3 - 8 - 2 
25 2s 25 25 25 75 

8 - 3 1 2 - 2 
225 2s 25 75 225 

72 36 -36 -11 
25 25 25 50 

8 -61 - 4 
25 so 2s 

8 4 
25 25 

Sym. 8 
225 

TABLE A. 4 Values of k12 ( i, j) in the stiffness matrix Eq. A.21. 



120 

0 0 0 
-2 

0 0 0 
2 0 2 0 -2 

0 -2 0 
2 

5 5 5 5 

1 
2 

0 0 0 
-2 1 

-2 1 
2 1 

2 0 -2 0 5 5 5 5 5 5 

0 0 0 
-2 

0 0 0 
2 

0 
-1 

0 
-2 

0 
1 

5 5 15 5 15 

0 
2 -1 

0 0 
-2 1 1 -1 2 0 -1 

0 
5 5 5 5 15 30 5 15 

0 0 0 
-2 

0 -2 0 
2 

0 2 0 
-2 

5 5 5 

-1 
2 

0 2 0 -2 
0 -2 -1 2 1 

5 5 5 5 

0 0 0 
-2 a· 1 

0 
2 

0 
-1 

5 15 5 15 

0 
2 

0 
-1 

0 
-2 -1 1 1 

5 15 5 5 15 30 

0 0 0 
-2 

0 0 0 
2 

5 5 

1 
2 

0 0 0 
-2 -1 

5 5 5 

0 0 0 
-2 

0 0 
5 

0 
2 1 

0 0 
5 5 

0 0 0 -2 
5 

-1 2 
0 

5 

0 0 

Sym. 0 

\ 

TABLE A.5 Values of k
13 

(i,j) in the stiffness matrix, Eq. A.21. 
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0 0 0 
-2 

0 0 
-2 2 

0 0 
2 -2 

0 0 0 
2 

5 1· 5 I 5 5 

0 
2 

0 0 0 
-2 1 0 0 

2 -1 
0 0 

-2 
0 5 - 15 15 5 5 5 

1 0 2 -2 
0 0 -2 

2 1 -1 
0 

-2 
0 

1 
5 5 5 5 5 

0 
2 -1 

0 0 
-2 1 1 -1 2 

0 
-1 

0 
5 15 5 15 5 30 5 5 

0 0 0 
-2 

0 0 0 
2 

0 0 -2 -2 
5 5 5 

0 
2 

0 0 0 
-2 

0 0 0 
2 1 

5 5 5 15 

-1 0 0 
-2 

0 
1 

2 
2 

-1 
-1 

5 5 5 5 

0 
2 

0 
-1 

0 -2 -1 1 1 
5 5 5 15 5 30 

0 0 0 
-2 

0 0 2 2 
5 5 

0 
2 

0 0 0 
-2 -1 

5 5 15 

1 0 -2 -2 0 0 5 

0 
2 1 

0 0 
5 15 

0 0 0 
-2 

5 

0 
2 

0 
5 

-1 0 

Sym. 0 

TABLE A.6 Values of the k
23

(i,j) in the stiffness matrix, Eq. A. 21 
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0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 

0 1 0 1 0 1 0 1 0 1 0 1 0 1 

2 1 2 1 2 1 2 1 2 1 2 1 2 

0 1 0 1 0 1 0 1 0 1 0 1 

2 1 2 1 2 1 2 1 2 1 2 

0 1 0 1 0 1 0 1 0 1 

2 1 2 1 2 1 2 1 2 

0 1 0 1 0 1 0 1 

2 1 2 1 2 1 2 

0 1 0 1 0 1 

2 1 2 1 2 

0 1 0 1 

2 1 2 

0 1 

Sjnn. 2 

TABLE A.7 Values of co1(i,j) in the stiffness matrix, Eq. A.21 
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0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

0 1 1 0 0 1 1 0 0 l l 0 0 l l 

2 2 l l 2 2 l l 2 2 l l 2 2 

2 l l 2 2 l l 2 2 l l 2 2 

0 0 l l 0 0 l l 0 0 l l 

0 1 l 0 0 l l 0 0 1 l 

2 2 l l 2 2 l l 2 2 

2 l l 2 2 1 l 2 2 

0 0 l l 0 0 l l 

0 1 l 0 0 1 1 

2 2 1 1 2 2 

2 1 1 2 2 

0 0 1 l 

0 1 1 

2 2 

s~. 2 

TABLE A.S Values of co2(i,j) in the stiffness matrix, Eq. A.21 



{llf} = 
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b2 -b2 b2 -b2 
0 

b 
0 0 

-b 0 0 
-b 

0 0 
b 0 

2 12 2 12 2 12 2 12 

2 2 2 2 
0 0 

a a 
0 0 

a -a 
0 0 

-a a 
0 0 

-a -a 
2 12 2 12 2 _12 2 12 

-2 0 0 0 2 0 0 0 -2 0 0 0 2 0 0 0 

TABLE A.9 Calculation of residual nodal forces from residual 
moments at the element centroid 

0 1 
0 

b 
0 -1 0 

-b 
0 -1 0 b 0 2a Sa 2a Sa Ta Sa 

(B] 0 0 
1 a 

0 0 
1 -a 

0 0 -1 a 
0 = 

2b Sb 2b Sb 2b Sb 

-9 -3 -3 -1 9 -3 3 -1 -9 3 3 -1_9 ---

T 

1 
2a 

0 

3 
2ab 4b 4a 8 2ab 4b 4a s 2ab 4b 4a 8 2ab 4b 

TABLE A.lO B matrix evaluated at the element centroid 

{1'1!1} 

" 

0 
-b 
Sa 

-1 -a 
2b Sb 

-3 -1 
4a s 



125 

6 4 0 0 -6 -2 0 0 0 0 0 0 0 0 0 0 - 2 2 a a a a 

6 0 
4 ' 

0 0 0 0 0 0 0 0 0 -6 0 
-2 

0 
b2 b b2 b 

0 0 0 -2 0 0 0 0 0 0 0 0 0 0 0 0 

-6 2 0 0 
6 -4 0 0 0 0 0 0 0 0 0 0 --

.2 a 2 a a· a 

0 0 0 0 0 0 0 0 
-6 

0 
-2 

0 .::.§. 0 
-2 0 

b2 b b2 b 

0 0 0 0 0 0 0 -2 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 
6 -4 0 0 -6 2 

0 0 
2 a 2 a 

a a 

0 0 0 0 
-6 

0 
2 

0 
6 0 -4 0 0 0 0 0 

b2 b b2 b 

0 0 0 0 0 0 0 0 0 0 0 -2 0 0 0 0 

0 0 0 0 0 0 0 0 
-2 -2 0 0 

6 4 
0 0 

2 - 2 a a 
a a 

-6 2 
0 0 0 0 0 0 0 0 0 0 

6 0 
-4 0 

b2 b b2 b 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2 

{K}l2xl = [B] {8} 
12x16 16xl 

TABLE A.ll B matrix evaluated at the nodal points 
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(1,2) 174-----------.--'"'1'1 0(2, 2) 

b 

(1, 1) 1 a 2 (2,1) 

Fig. A.l Rectangular Plate Element 

y 

z 

• 

X 

Fig. A.2 Nodal Degrees of Freedom 
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Fig. A.3 Convergence Properties of the Rectangular Bending 
Elements of Twelve and Sixteen Degrees of Freedom (33) 
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