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ABSTRACT 
The Tuttle Creek Bridge was built in 1962.  Like many older welded steel bridges, 

it has developed fatigue cracks.  The majority of cracks were forming in the upper 

web-gap region.  In addition, fatigue cracking was occurring along gusset plates in 

the structure.  A retrofit was performed in 1986 to prevent further fatigue cracking.  

Unfortunately, the cracks propagated after the retrofit.  Therefore, finite element 

models were created at the University of Kansas to investigate the continued fatigue 

cracking.  The models supplied a more effective retrofit procedure that included 

attaching the connection stiffener to the upper flange of the girder.   

Two tests were planned to determine the effectiveness of the retrofit.  The first 

field test occurred before the repair was started.  Its purpose was to provide stress 

values in key areas for comparison after the repair.  In addition, the pre-retrofit test 

provided information for future finite element models.  In 2005, the second retrofit 

was completed. 

The purpose of this report is to present results of the post-retrofit test with data 

from the pre-retrofit test.  Comparisons of stresses for each key area are included in 

the report.  Details of the Tuttle Creek Bridge and testing procedure are provided.  In 

addition, minor changes from the previous test are described.   
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CHAPTER 1   INTRODUCTION 
 

 The Tuttle Creek Bridge was built in 1962 as a means of crossing the Tuttle 

Creek Reservoir.  It is a two-girder steel bridge that consists of 30 spans that total 

5350 ft in length.  The width of the deck consists of two 12 ft lanes with 2 ft 

shoulders on each side.  The cross section of the width can be seen in Figure 1-1.  

Profile and plan views can be seen in Figures 1-2 and 1-3, respectively.  The bridge is 

located in the northern region of Kansas near the town of Randolph.  This region does 

not have a high amount of traffic, with approximately 520 vehicles per day crossing 

the bridge.  In addition, the region is relatively flat and the bridge is exposed to high 

wind conditions.   

 The Tuttle Creek Bridge developed fatigue cracking in the super-structure.  

This fatigue cracking was a potential threat to the longevity of the bridge.  Because 

the bridge was designed with very little redundancy, the structure was considered 

fracture critical.  A failure of any one of the structural members could result in a 

failure of some portion of the structure. 

 The fatigue cracking was located in two types of connections.  The first 

location was in the web-gap region located at each diaphragm.  The web-gap region is 

found between the fillet weld of the flange/web connection and the top of the 

connection stiffener.  The second location was in the welds attaching the lateral 

gusset plate to the bottom flange of the beam.  Repairs were completed at both types 

of crack locations in 1986.  In the case of the web-gap region, the repairs proved to be 

ineffective.  Repair methods were successful for the lateral gusset plates in which 

they were implemented.  However, plates that were not repaired developed cracks at a 

later time.   

A finite element model of the web-gap region of the bridge was developed at the 

University of Kansas in 2000.  Dr. Yuan Zhao, a former KU graduate student, 

investigated the connection and the efficiency of potential retrofit procedures.  A 

retrofit procedure was implemented in 2005, based on the results of the model. 
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To verify the results from the finite element model and the effect of the repairs, 

two sets of field measurements investigations were completed.  The first 

investigation, performed prior to the retrofit, provided the means to compare 

measured results to those from the finite element model.  In addition, this study 

investigated other fatigue-prone details, such as the connection between the gusset 

plates and the longitudinal stiffeners.  Information gathered from these connections 

will be used to improve future finite element models.  The second investigation was 

performed after the retrofit measures had been completed.  The methodology from the 

first investigation was followed as closely as possible to provide an accurate 

comparison.   

This report addresses the results of the second field investigation.  The focus of 

this report will be the comparison between the two field investigations.  Since this 

report focuses on the comparison between the field investigations, pertinent 

information from the first field report (Marshall et al., 2005) are included in this 

report.  In addition, an effort was made to maintain continuity between the pre-retrofit 

report and the post-retrofit report.  For the locations that remained the same for both 

investigations, a direct comparison in stress values is presented.  Results for the other 

locations are provided also.   
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Figure 1-1: Tuttle Creek Bridge Cross Section 
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Figure 1-2: Girder Details of Typical Intermediate Spans  
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Figure 1-3: Tuttle Creek Bridge Framing Plan 
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CHAPTER 2 FATIGUE HISTORY 
 

The significance of fatigue-prone details was not completely understood when the 

Tuttle Creek Bridge was designed.  In particular, distortion-induced fatigue cracking 

was overlooked.  Differential deflection between the two girders creates high 

secondary stresses, which can lead to fatigue cracking.  The locations investigated 

due to high stress concentrations included the web gap region, along the gusset plate, 

and at the end of the longitudinal stiffener.   

In addition to repairs performed in those locations, other repair procedures were 

completed.  These included replacement of the pin and hanger system, repair of web 

field splices, and ultrasonic impact treatment (UIT) of the welds.  The effects of these 

procedures are outside the scope of this report, but information about the ultrasonic 

impact treatment of welds is provided in Appendix A. 

 

2.1   Web-Gap Cracking 

The web gap region consisted of a 1”x 1” diagonal cut removed from the top and 

bottom of the stiffener as shown in Figures 2-1 and 2-2.  This cut allowed the fillet 

weld between the web and flange to be continuous.  This gap creates high stress 

concentrations in the web and creates the potential for fatigue cracks to propagate in 

this area.  Two types of cracks that occurred in the upper web-gap region were 

designated as either weld tears or horizontal cracks.  Figure 2-3 shows the two types 

of cracks, and Figure 2-4 presents a photograph of actual cracks. 

 

2.1.1   Cracking Patterns 

Of the two types of cracking, weld tears were found to be the most common.  The 

weld tears propagated down the 4 in. fillet weld between the upper portion of the 

stiffener and the web.  Many of the 4 in. top intermittent welds on the stiffener were 

broken completely by weld tears.  In addition, some weld tears propagated from the 

fillet weld into the web of the girder.   
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The other cracking pattern found in the web gap region was horizontal cracking.  

The horizontal cracks occurred at the base of the fillet weld that connects the upper 

flange to the web.  Horizontal cracks were located mainly on the interior side of the 

girders, but were also found on the exterior side.   

 

2.1.2   Source of Cracking 

The primary source of fatigue cracking in the Tuttle Creek Bridge was the lack of 

attachment between the top of the stiffener and the tension flange.  The web-gap 

cracking was the result of differential deflection of the girders.  Braces in the 

diaphragms created a tension force on the stiffener due to the difference in deflections 

between the two girders.  This caused the web-gap to undergo double-curvature 

bending.  Figure 2-5 shows the tension force created by the diaphragms.  This type of 

detail is classified as a category C fatigue detail according to the 2004 AASHTO 

LFRD specifications.   

Because the cracks were caused by forces induced by the diaphragms, web-gap 

cracking only occurred at diaphragm locations along the girder.  Two web-gap 

regions are located at the top and bottom of the stiffener, at each diaphragm 

connection.  For the Tuttle Creek Bridge, web-gap cracks were found exclusively in 

the upper regions.  This was a result of the relative flexibility of the lower flange 

compared to the upper flange.  The concrete decking rigidly held the upper flange 

while the lower flange had no such restraint.  Because the lower flange was not 

restrained from rotating, the stresses developed were not as high as the stresses in the 

upper flange.  Thus, cracks were found only in the upper flange.  

 

2.1.3   Crack Repairs 

 A previous repair of the web-gap region was implemented in 1986.  To repair the 

weld tears, the joint was “softened” by cutting the stiffeners 1 in. below the 

termination of the existing cracks.  A 0.5-in. radius was placed at the end of the cut.  

Even though this was supposed to have repaired the problem, weld tears continued to 
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grow in this region.  To stop the horizontal cracks, 0.75 in. diameter stop holes were 

drilled at the tips of existing cracks.  However, the horizontal cracks reinitiated after 

the retrofit.  

 To determine a new retrofit strategy, the Kansas Department of Transportation 

(KDOT) requested a study of the web-gap region to be completed by KU.  Dr. Yuan 

Zhao, a former KU graduate student, created finite element models of the web-gap 

region for the Tuttle Creek Bridge (Zhao et al., 2003).  Based on the analysis, it was 

determined that a positive connection between the connection stiffener and the flange 

would provide improved performance.  The investigation is summarized in Appendix 

B.   

 

2.2   Gusset Plate Cracking 

Fatigue cracking also occurred in the fillet weld between the gusset plate and the 

lower flange of the girder.  Gusset plates connect the girders to the lateral bracing of 

the girders.  As shown in Figure 2-7, three structural tees enter the connection.  Loads 

imposed by the lateral bracing caused cracking of the gusset plate connection.   

In addition to fatigue related cracks, several tack welds on the underside of the 

gusset plate, where it overhangs the girder, were found to have broken.  Because the 

tack welds were not essential to the structural integrity of the bridge, a problem arises 

only if cracks extend into the lower flange.  If a crack were to develop in the tension 

flange, significant crack growth could occur due to the primary loading of the bridge.    

 

2.2.1   Cracking Patterns 

Cracks developed in welds that were both perpendicular and parallel to the gusset 

plate.  Figure 2-6 shows a drawing of the cracking patterns, while Figure 2-7 displays 

an actual fillet weld crack.   

The more common of the two was the cracking of the fillet weld perpendicular to 

the gusset plate.  The fillet welds extended symmetrically across the back six inches 

along the sides of the gusset plate.  This type of detail is classified as a Category E 



 9

detail according to the 2004 AASHTO Bridge Specifications.  The cracks are found at 

the end of the weld along the sides of the plate.  The cracks were assumed to be only 

in the weld material, but could potentially propagate into the lower tension flange.   

 

 2.2.2   Sources of Cracking 

The source of the gusset plate cracks was not clearly defined.  One theory was 

that cracks developed from the bending stress of the girder (Figure 2-8).  Another 

possibility considered was that distortion of the girder caused high compressive 

stresses in the diagonal bracing.  The lateral bracing could potentially buckle upward 

along its weak axis introducing a prying action on the gusset plate (Figure 2-9).  

Another theory considered racking of the gusset plate due to loads from the diagonal 

bracing.  Twisting of the gusset plate would cause cracking to develop at the ends of 

the fillet weld (Figure 2-10).  To help clarify this issue, strain gages were placed on 

the top and the bottom of the plate as shown in Figure 2-11.   

 

2.3   Longitudinal Stiffener Cracking 

Longitudinal web stiffeners were used in regions of high compressive stresses.  

Stiffeners were located in the compressive region of both the positive and negative 

moment regions.  The negative moment stiffeners extended symmetrically 81 ft from 

each pier, while positive moment stiffeners extended 56 ft symmetrically about the 

centerline of typical spans.   

 

2.3.1   Cracking Pattern 

Cracks had developed in the butt welds of the stiffener splices.  The cracks are 

found only in the weld material.  Figure 2-12 shows a crack in the longitudinal 

stiffener.   
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2.3.2    Source of Cracking 

The crack was probably generated from a defect in the weld.  Due to the bending 

of the girder, stress cycles occurred within the stiffener.  These cycles propagated the 

crack in the stiffener. 
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Figure 2-1: Web-Gap Region 

 
 
 

 
 
 

Figure 2-2: Web-Gap Region (Picture) 
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Figure 2-3: Web-Gap Cracking Patterns 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-4: Web-Gap Cracking Patterns (Picture) 
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Figure 2-5: Differential Deflection of Girders 

 

 
Figure 2-6: Gusset Plate Cracking Patterns 
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Figure 2-7: Gusset Plate Cracking Patterns (Picture) 

 

 
Figure 2-8: Gusset Plate Cracking Source (Bending Stresses) 
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Figure 2-9: Gusset Plate Cracking Source (Distortion of Lateral Brace) 

 
 

Figure 2-10: Gusset Plate Cracking Source (Racking of Gusset Plate) 
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Figure 2-11: Relocated Strain Gages 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 2-12: Longitudinal Stiffener Crack 
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CHAPTER 3 INSTALLATION & TESTING 
 

To maintain continuity between the pre-retrofit and post-retrofit field 

measurements, the pre-retrofit installation and testing procedure was followed as 

closely as possible.  When possible, strain gages were placed at the same locations as 

in the pre-retrofit test.  Gages were placed again in span 29 in the web-gap region and 

on the longitudinal stiffener.  Due to repairs, a few changes to the procedure were 

necessary.  First, the gusset plate that was tested pre-retrofit had been replaced during 

the repair.  Because the new plate was vastly different, the decision was made to 

move the gusset plate gages to span 28, on which the particular gusset plate had not 

been replaced.  Second, five gages were added due to discovery of an unforeseen 

crack location.  The results of the five added gages are presented in detail in 

Appendix E.  Because the crack was located near span 14, the data acquisition system 

had to be moved during the testing.  The result was that more than the maximum 

number of channels (23) could be used.  Therefore, data was collected for 28 gages.  

Lastly, because no changes were made to the bracing, three of the bracing gages were 

relocated to the gusset plate.  The gages were placed on the gusset plate to check for 

bending in the perpendicular direction to investigate sources of gusset plate cracking. 

 

3.1 Test Preparation 

In addition to reviewing previous test methods, the data collection equipment was 

checked before testing began.  Supplies were prepared prior to the test.  Gages were 

taped to a plastic sheet to prepare them for application.  Full details of the testing 

procedure are listed in Appendix C. 

            

3.2 Instrument Installation 

Installation of the instruments was accomplished by using a snooper provided by 

KDOT.  The snooper, which was operated by KDOT personnel, was able to 
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maneuver through the bracing and reach remote areas on the bridge.  The snooper 

boom, shown in Figure 3-1, had one basket that was large enough for three people.   

Along with providing the snooper, KDOT also provided traffic control for the 

installation.  Two trucks were stationed at each end of the snooper during installation.  

Personnel for the gage installation included:  two snooper operators, two gage 

installers, and four traffic control experts.   

Installation of the gages was completed within three days.  In addition to 

installing gages, work performed also included placing the wires underneath the 

bridge.  On the third day, the data acquisition system was moved between all three 

piers to test the installed gages.  Figure 3-2 displays the testing station mounted under 

the bridge.  Further details of instrument installation and data acquisition setup can be 

found in Appendix C of this report.   

 

3.3 Test Setup 

After installation of the gages, field-testing was performed on the fourth day.  

Testing was accomplished by using the following personnel:  four traffic controllers, 

a data collector, a truck driver, and a radio operator.  The radio operator 

communicated to the data collector when to start and stop the data acquisition system.  

Maintenance workers stationed at opposite ends of the bridge controlled the local 

traffic during each test run.  The bridge was first closed to allow for calibration of the 

system.  The truck driver was instructed to maintain proper speeds by the radio 

operator.  Local traffic was stopped during data collection, but released after each 

truck passing.   

 

3.4 Data Collection 

Because the gages were spread over three different piers, the data had to be 

collected three times.  The length of the data collection was different for each pier.  A 

ten second pre-trigger was created to ensure recording of important data.  Strain gages 

readings were taken at a frequency of 200 Hz.   
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A tandem-axle dump truck, as shown in Figure 3-4, was used to load the 

structure.  The truck weight totaled 54 kips, with 17.2 kips on the front axle and 36.8 

kips on the rear axles.  For the pre-retrofit test, the vehicle had completed two passes 

at speeds of 0, 25, 45, and 65 mph for each direction of travel.  Due to time 

limitations, the total number of passes for a single location was reduced.  Two passes 

were completed at speeds of 0 and 65 mph for both directions.  However, only one 

pass was made for 25 and 45 mph in each direction.  This resulted with 36 loadings 

recorded for the strain gage data.  Data was collected using a Waveform Data 

Acquisition and Analysis Module.  It was connected to a laptop, which stored the data 

for later analysis.   

 

3.5 Gage Protection 

After testing had been completed, a protective coating was placed on the gages.  

The gages were left on the bridge for future testing.  Figure 3-4 shows a prepared 

gage.  Additionally, the wire was tied down to keep it from moving and damaging the 

connection to the gage.   
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Figure 3-1: Snooper Used for Bridge Girder Access 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-2: Data Acquisition System 
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Figure 3-3: Loading Vehicle 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3-4: Gage Protection  
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CHAPTER 4  BRIDGE BEHAVIOR GAGES 

 
Results from the pre-retrofit gages were used to determine the degree of 

composite action between girders and the deck.  In addition, the previous results 

provided information to improve the finite element model.  Due to the fact that the 

focus of this report was to assess the effectiveness of the retrofit, only the comparison 

between the field measurements was analyzed.    

 

4.1 Gage Locations 

In the pre-retrofit test, gages 9-20 were used to gain information about the 

behavior of the bridge.  In determining the effectiveness of the retrofit, the results of 

these gages were less important than the other gages.  Therefore, three of the gages 

(13, 15, and 16) were moved from the bracing to new locations on the gusset plate.  

The remaining gages were placed at the same locations to provide continuity between 

the tests.  Figure 4.1 shows the locations of the five gages in the web gap region.  

Figure 4.2 shows the locations of four gages in the gusset plate region.   

 

4.2 Results 

There was no retrofit implemented at the locations of these bridge behavior gages.  

Therefore, the stresses recorded by these gages were expected to be similar for the 

two tests.  A comparison is presented in Table 4.1 and Table 4.2.  Unfortunately, 

results from gage 10 could not be used in the analysis.  The values recorded with gage 

10 had a wide range and were non-uniform.  The measurements from the other gages 

show that the stress values were relatively similar for both tests.  This indicates that 

the retrofit had little impact on the stresses at these gage locations.   
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Figure 4-1: Web-Gap Region Gages 

 

 

9 11 12 14
Pre -0.8 0.9 -0.5 -0.4
Post -0.4 1.2 -0.2 -0.3
Pre 0.8 -0.4 0.6 0.6
Post 0.3 -0.1 0.3 0.2

9 11 12 14
Pre -0.6 1.1 0.7 -0.6
Post -0.1 2.1 0.8 -0.5
Pre 0.7 -0.4 -0.4 0.5
Post 0.6 -0.1 -0.1 0.3

Negative Moment

Negative Moment

Westbound
Positive Moment

Gage Number
Eastbound

Positive Moment

 
 

Table 4-1: Average Stress (ksi) Comparison for the Web Gap Gages 
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Figure 4-2: Gusset Plate Region Bracing Gages 

 

 

17 18 19 20
Pre 0.7 0.7 -0.9 1.4
Post 0.8 0.8 -0.6 1.1
Pre -0.4 -0.4 0.6 -0.6
Post -0.1 -0.2 0.9 -0.4

17 18 19 20
Pre -0.5 -0.5 1.1 -0.9
Post -0.3 -0.4 0.9 -0.6
Pre 0.6 0.6 -0.7 0.6
Post 0.5 0.6 -0.4 0.5

Negative Moment

Westbound
Positive Moment

Eastbound
Positive Moment

Negative Moment

Gage Number

 
 

Table 4-2: Average Stress (ksi) for Gusset Plate Bracing Gages 
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CHAPTER 5 WEB-GAP CRACKING 
 

In this chapter, the retrofit of the web-gap region is described.  The repair strategy 

and gage locations are presented.  In addition, stresses from both field investigations 

are compared.   

 

5.1 Repair Strategy 

The web-gap region had been previously repaired in 1986, as described in 

Chapter 2.  Because that repair was ineffective, a different retrofit scheme was 

implemented to fix the connection.  Part of the strategy was to create a positive 

connection between the upper flange and the connection stiffener.  To achieve this 

connection, two brackets were added and were connected to the upper flange by two 

welded studs.  The brackets were then bolted to the connection stiffener.  In addition, 

stop holes were drilled in the web to arrest the horizontal cracking.  To repair the 

lower web-gap region, the stiffener was fillet welded to the gusset plate.   

 

5.2   Gage Locations 

It was not necessary to change the location of any of the gages from the previous 

field investigation in the web gap region.  Therefore, eight gages were placed on 

diaphragm F2 to measure stresses.  Figure 5-1 shows the locations of the four gages 

in the upper web-gap region.  Two gages were placed on the interior side and exterior 

side of the web.  Due to space limitations, the gages could not be placed at the exact 

location of the horizontal cracks.  Therefore, the gages were placed in line with each 

other.  This alignment allowed the stress in the gages to be extrapolated to the crack 

location.  Figure 5-2 shows the other four gages in the lower web gap region.  These 

four gages were placed in a similar formation as the upper web-gap gages. 
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5.3   Results   

The post-retrofit measurements had similar patterns to those observed in the pre-

retrofit measurements.  Once again, the stress values for the upper web-gap region 

were higher in the westbound direction.  In addition, gages closer to the flange 

recorded higher stress values.  The average stress values for both pre-retrofit and 

post-retrofit are shown in Tables 5-1 and 5-2.  A comparison of the extrapolated 

values is presented in Table 5-3. 

According to the results, the retrofit procedure succeeded in reducing the stresses 

in the web-gap regions.  Using absolute stress values, reductions of up to 90 percent 

were observed for some gage locations.  These reductions are consistent with the 

finite element model created by Dr. Zhao (Zhao and Roddis, 2003).  Smaller pre-

retrofit absolute stress values generally showed a smaller percent reduction in stress 

values.  

For the upper web-gap extrapolated values with the truck moving westbound, the 

average maximum stress was reduced from 35.4 ksi to 9.3 ksi.  For the truck moving 

eastbound, the maximum average stress value changed from 12.6 ksi to 6.7 ksi.  

These values show a significant decrease in stress at the critical point where a crack 

might form in the upper web gap region.  In the lower web gap region, the absolute 

value of the stress was reduced, but the margin was not as pronounced as in the upper 

web-gap region. 
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Figure 5-1: Upper Web Gap Gages 

 
 
 
 

1 2 3 4
Pre -9.1 -4.5 9.7 5.1
Post -2.1 -0.4 5.0 2.7
Pre 2.6 0.9 -2.3 -0.7
Post 0.3 0.2 -0.3 -0.2

1 2 3 4
Pre -24.7 -9.3 25.3 9.2
Post -4.5 -1.1 7.0 3.3
Pre 1.7 0.6 -1.6 -0.8
Post 0.2 0.2 -0.3 -0.2

Eastbound

Westbound

Positive Moment

Negative Moment

Gage Number

Positive Moment

Negative Moment

 
 

Table 5-1: Average Stress (ksi) Comparison for the Upper Web Gap Gages 
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Figure 5-2: Lower Web Gap Gages 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5-2: Average Stresses (ksi) Comparison for the Lower Web Gap Gages 

5 6 7 8
Pre 1.2 -1.2 -2.5 -0.5
Post 0.3 -0.4 -0.6 -0.6
Pre -0.4 0.6 0.9 0.9
Post -0.4 0.3 0.3 0.3

5 6 7 8
Pre -0.7 1.7 0.9 -2.0
Post -0.6 0.3 0.3 -1.0
Pre 0.7 -0.6 -0.6 1.0
Post 0.3 -0.3 -0.4 0.4

Gage Number
Eastbound

Positive Moment

Negative Moment

Westbound
Positive Moment

Negative Moment
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Table 5-3: Average Stresses (ksi) Comparison for Extrapolated Values 

 

1 & 2 3 & 4 5 & 6 7 & 8
Pre -11.9 12.6 -2.4 1.8
Post -3.0 6.7 -0.7 -0.6
Pre 3.6 -3.2 1.2 1.0
Post 0.3 -0.4 0.6 0.4

1 & 2 3 & 4 5 & 6 7 & 8
Pre -34.4 35.4 3.0 -5.7
Post -6.6 9.3 0.7 -2.7
Pre 2.4 -2.1 -1.3 2.9
Post 0.3 -0.3 -0.6 1.5

Gage Number
Eastbound

Positive Moment

Negative Moment

Negative Moment

Westbound
Positive Moment
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CHAPTER 6 GUSSET PLATE CRACKING 
 

Work completed in the gusset plate region is presented in this chapter.  The 

repairs completed are discussed.  The reason for moving gages is given along with a 

comparison of the test results.  In addition, the position and results of new gage 

locations are explained. 

 

6.1 Repair Strategy 

Some gusset plates were repaired in 1986 due to the presence of fatigue cracks.  

The only plates that were repaired were located nearest to the piers.  The repair 

consisted of bolting a larger gusset plate to the flange and removing all welds in the 

connection (Figure 6-1).  This repair strategy was effective but was not done for 

every gusset plate.   

After 1986, cracks developed at diaphragms next to repaired plates.  To repair 

these gusset plates, KDOT used a slightly different strategy.  Figure 6-2 shows the 

new retrofit scheme that was used.  All cracked welds were repaired and the gusset 

plates were bolted to the lower flange.  In addition, some gusset plates were replaced 

due to damage. 

 
6.2 Gage Locations 

Several changes were made to the pre-retrofit gage locations.  First, the gusset 

plate at Pier 29 had been replaced due to damage.  The replacement gusset plate was 

not identical to the pre-retrofit plate.  Because the purpose of the measurements was 

to compare the behavior of a gusset plate that had been repaired, it was necessary to 

use a gusset plate that had an identical geometry to the original plate.  Therefore, the 

decision was made to move the gages to the gusset at Pier 28 because that gusset plate 

had not been replaced.  Second, three gages that were not in the pre-retrofit test were 

moved to the gusset plate region.  It was difficult to determine the exact source of the 

cracking from the pre-test data.  To help determine the source of cracking, these three 
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gages were placed on the gusset plate perpendicular to the girder.  In addition, two 

gages were placed at the same location on the top and bottom of the gusset plate to 

investigate whether bending was occurring in the plate.  A strain gage rosette was 

placed in the same location as was done in the pre-retrofit test.  Placement of the 

gages can be seen in Figure 6-3 and Figure 6-4.   

 

6.3 Results 

A comparison of the rosette gage values is presented in Table 6-1.  The data 

indicates little difference between pre-retrofit and post-retrofit measurements.  This 

was expected because, from the perspective of the gage location, the connection was 

largely unchanged.  However, the two tests were performed at different pier locations.  

Because the two test results appear to be relatively the same, the decision to use the 

same type of gusset plate was justified by the similar results.  In addition, this 

indicates that conclusions drawn from the pre-retrofit measurements apply to the 

post-retrofit analysis.   

Information from the pre-retrofit measurements was not sufficient to determine 

the origin of the cracks that formed on the gusset plate.  There were a few hypotheses, 

but it was not possible to derive a definitive conclusion based on the information 

gathered.  Three gages were relocated to the gusset plate region to provide more data.  

Average stresses in these gages can be seen in Table 6-2.  In addition, the variation of 

stress with time for the gages 13, 15, and 16 is presented in Appendix D.  In 

particular, the relationship between these gages is of interest because of their location 

relative to one another.  One hypothesis presented in the first field report (Marshall et 

al., 2005) was that cracking was caused by lateral distortion of the brace.  This 

distortion would induce a prying action in the gusset plate.  According to the graphs 

in Appendix D, the data supports the theory that the gusset plate experienced bending 

during loading.  While this does not prove that this was the only cause of the 

cracking, it does show that prying action contributed.  
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Figure 6-1:  1986 Repair of Gusset Plate (Only Gusset Plates Closest to Piers) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-2:  Repaired Gusset Plate (Remaining Gusset Plates) 
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Figure 6-3: Location of the Rosette Gage 

 

 

 

 

 

 

 

 

 

Table 6-1: Comparison of Average Stress Values (ksi) in Rosette Gage 

 

21 22
Pre -0.5 1.1
Post -0.1 1.0
Pre 0.6 -0.7
Post 0.7 -0.6

21 22
Pre 0.5 0.5
Post 0.5 0.5
Pre -0.4 -0.5
Post -0.1 -0.4

Negative Moment

Gage Number

Negative Moment

Westbound
Positive Moment

Eastbound
Positive Moment



 34

 
 

Figure 6-4: Location of Relocated Gages 

 

 

 

 

 

 

 

 

 

Table 6-2: Average Stress Values (ksi) for Relocated Gages (Post Retrofit Only) 

 

 

 

13 15 16
Post 1.1 -0.3 -0.2
Post -0.1 1.2 0.7

13 15 16
Post -0.1 0.8 0.5
Post 0.7 -0.5 -0.2

Gage Number

Westbound
Positive Moment

Negative Moment

Negative Moment

Eastbound
Positive Moment
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CHAPTER 7     LONGITUDINAL STIFFENER CRACKING 
 

This chapter discusses a comparison of pre-retrofit and post-retrofit test results.  

Repairs for the longitudinal stiffener are discussed.  In addition, the gage location is 

shown along with the results of the test. 

  
7.1 Repair Strategy 

Two repairs were performed on the longitudinal stiffener.  First, cracks in the butt 

welds of the stiffener were repaired.  This was accomplished by grinding off the butt 

welds and re-welding them.  Second, the end of the longitudinal stiffener was tapered 

to reduce the stress concentration because the termination point of the stiffener is 

classified as a category E detail according to the 2004 AASHTO LRFD 

specifications.  This repair was used as a preventative measure, and the second repair 

is shown in Figure 7-1.   

  

7.2 Gage Location 

As in the pre-retrofit test, only the effect of the tapering repair was investigated.  

A single gage was placed at the same location as in the pre-retrofit test.  The gage was 

located closest to Span 29.  The placement is shown in Figure 7-2.   

 

7.3 Results 

Comparison of the data can be found in Table 7.1.  According to the data, there 

was a slight decrease in average stress at the gage location.  The data obtained was 

not sufficient to determine the effectiveness of the repair.  Additionally, a study of the 

stiffener region was conducted by Santiago Bonetti at the University of Kansas.  The 

report is included as Appendix F. 

 

 

 



 36

 

 
Figure 7-1:  Completed Longitudinal Stiffener Repair 
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Figure 7-2:  Longitudinal Stiffener Gage Location  

 

 

 

 

 

 

 

 

 

 

Table 7.1: Average Stress (ksi) Comparison for Longitudinal Stiffener 

Pre
Post
Pre
Post

Pre
Post
Pre
Post

Gage Number
Eastbound

Positive Moment
3.1

23

23
3.4
2.6
-1.8
-1.1

4.6

Negative Moment -1.8
-1.0

Negative Moment

Westbound
Positive Moment
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CHAPTER 8 CONCLUSIONS 
 

Throughout the post-retrofit field measurements and report, continuity with the 

pre-retrofit test was maintained whenever possible to provide accurate comparisons 

between the two conditions.  The comparison between the two sets of measurements 

resulted in the following conclusions. 

 

1. Stresses in the upper web gap region were reduced dramatically by the 

retrofit.  This is expected to increase the fatigue life of the connection.  The 

results were in agreement with the model created by Dr. Zhao. 

2. Stresses in the lower web gap region were decreased, but in a smaller amount.  

Stresses in this region are not expected to produce fatigue cracking. 

3. Stresses in the gusset plate did not change drastically, but information from 

new gage locations suggest that prying action was involved in forming the 

fatigue cracks.   

4. Stress was slightly reduced at the termination of the longitudinal stiffener, but 

the overall benefit of the retrofit is not well defined. 

5. The overall post retrofit experimental analysis of the Tuttle Creek Bridge 

supports the proposed analytical changes recommended by Dr. Zhao. 
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APPENDIX A ULTRASONIC IMPACT TREATMENT  
 

A.1 Overview 

Ultrasonic impact treatment (UIT) was developed in 1972 by Dr. Efim Statnikov 

for use in Soviet Union naval ships. UIT induces compressive stresses into a welded 

joint, which increases fatigue initiation life.  To accomplish this, UIT equipment 

impacts the material with a very high frequency (27 kHz) to create a plastic 

deformation in the material.  It was introduced to the Federal Highway 

Administration in a demonstration at the Turner-Fairbank Research Center on June 6, 

1996.  Since then, limited research has been conducted in the United States to 

examine the benefits of UIT.  This research has shown that UIT can increase the 

fatigue initiation life of welds in new and existing bridges.   

  

A.2 Method of Application 

UIT is performed with a handheld tool, electronic control box, and water cooling 

system.  The handheld tool weighs approximately eight pounds and is much easier to 

control than other weld treatment systems such as shot peening due to the fact that the 

UIT process occurs at a very high frequency.  In addition, the high frequency range 

makes the process relatively quiet compared to other systems.  The metal is treated by 

placing the tip of the handheld tool at a 45-degree angle to the surface being treated.  

The tool is then moved back and forth over the area being treated.  This creates a 

small depression in the weld, resulting in compressive stresses.  Visual checks can be 

made to determine if the area has been properly treated.  

 

A.3 Research 

Since UIT is a relatively new procedure, additional research is needed to 

determine the range of applications that would benefit from the treatment.  Research 

was conducted by the FHWA to determine the effectiveness of the treatment.   After 

this initial research, the FHWA funded further testing conducted at Lehigh 
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University.  The research conducted at Lehigh University was performed by Dr. John 

Fisher.  This research is summarized in the following sections. 

 

A.4 Wright (1996) 

Wright, at the FHWA research center, performed an analysis of the UIT as it  was 

applied to fillet welds in a typical bridge girder.  The purpose of this study was to 

determine if UIT had any effect on the fatigue life of fillet welds.   

Eight mm fillet welds were placed on both sides of a girder web using the 

submerged arc welding (SAW) process to connect a transverse stiffener to the web, a 

category C detail.  Testing consisted of first saw cutting six cruciform-type fatigue 

specimens.  Weld toes were treated with UIT.  To complete the process, numerous 

passes were made over the weld toes.  The number of passes and speed of the 

application were not recorded for the test procedure.   

Specimens were load tested in a sinusoidal pattern at a frequency of 20 Hz.  The 

stress range applied was around 130 MPa (18.9 ksi) with an R-ratio (min load/max 

load) of .5.  The load cycle was applied until fatigue cracks developed and the 

specimen completely failed.   

The results indicated an improvement in the fatigue life of the ultrasonic impact 

treated welds.  According to the results, welds that had been treated showed a fatigue 

life over eight times greater than the welds which had not been treated.  

 

A.5 Fisher et al (2001) 

Fisher et al (2001) performed further analysis of UIT.  The purpose of the study 

was to determine the overall benefits gained from using UIT, which included 

examining both structural benefits (increased fatigue life of the weld) and application 

benefits (less difficulty, reduced implementation time, and reduced costs).  Eighteen 

specimens were tested.  The specimens were 18 ft long, 27 in. deep, W27x129 rolled 

wide-flange beam sections with 1.1 in. thick flanges.  The web of the girder was 0.61 

in. thick.  The transverse stiffeners were 0.5 in. thick.  All specimens were fabricated 
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according to AWS specifications.  The transverse stiffeners were provided over the 

full depth of the girder and were welded at the top and bottom flange and on the web.  

Cover plates were provided on both ends of the girder.  For seven of the specimens, 

one cover plate was welded on all sides to the flange with a 0.5 in. fillet weld.  For 

two of the specimens, the second cover plate did not have any end welds.  For the 

remaining specimens, both cover plates had 1 in. fillet end welds.  To reduce stress 

concentrations between the 1 in. end weld and the 0.5 in weld, a smooth transition 

betweeen the welds was made.   

Two critical areas were defined.  The welds at the junction of the transverse 

stiffener and the bottom flange were defined as critical, as was the lower portion of 

the junction between the stiffener and the web.  These were category C details.  All 

end welds on the cover plate were considered to be critical, and were category E 

details.  All critical details were treated by the UIT procedure.  Three passes were 

used to create a smooth transition between the weld toe and the material.   

Tests were conducted at a constant amplitude fatigue loading.  The beams were 

visually inspected with use of a magnifying glass.  Tests were continued until a 

fatigue crack formed in the critical details of the specimens.  If a crack formed in the 

web first, the test was stopped, and a hole was drilled to stop the crack.   

According to data gained from the test, the use of UIT is very beneficial to the 

fatigue life of the critical details.  For the cover plate, the fatigue life improved from 

that of a category E detail to the life of a category C detail.  For the stiffener, the 

detail improved from a category C performance to a category B detail performance 

level.   

The study also analyzed four bridges that were experiencing fatigue cracking.  

The bridges were located on Interstate 66 and were all built in 1979.  The bridges 

were experiencing fatigue cracking at the top of the connection plates where the 

plates were not positively connected to the flange.  It was determined that a retrofit 

would fix this problem.  It was also decided to retrofit the bottom of the connection 

plates before fatigue cracking initiated at that location.   
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For purposes of this study, two alternatives were considered: a conventional 

retrofit and ultrasonic impact treatment.  The study concluded that the latter was 

considerably more efficient.  To complete the UIT retrofit, the connection plates just 

needed to be welded to the flange and then treated.  According to the study, this 

would take much less time than a conventional retrofit.  Since the bridges were in use, 

being able to complete the repairs in a small time frame was important.  In addition, 

the cost of the UIT alternative was less than the cost for the conventional retrofit.  

Due to these factors, UIT was the more attractive of the two choices. 

 

A.6 Summary 

The benefits from UIT appear to be large, but very few details have been 

currently tested.  Thus, it would seem that fatigue tests should be conducted using 

details that represent possible KDOT applications.  Therefore, specimens that exhibit 

details used in current KDOT structures should be fabricated and fatigue tested.  This 

testing would provide specific UIT information for KDOT structures.   
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APPENDIX B PREVIOUS KU RESEARCH 
 
B.1 Overview 

Initial research on the Tuttle Creek Bridge was completed by Yuan Zhao, a 

former University of Kansas Ph. D. student.  The focus of her report (Fatigue Prone 

Steel Bridge Details:  Investigation and Recommended Repairs) was to analyze 

distortion induced cracking of steel bridge structures.  The Tuttle Creek Bridge was 

one of five bridges analyzed in her report.  The analysis of the stresses in the structure 

was completed using a finite element model created using ANSYS.  After the causes 

of cracking were investigated, multiple retrofit strategies were compared to determine 

the most effective repair. 

 

B.2 Finite Element Models 

A coarse model was made to analyze a typical intermediate span of the bridge.  

An HS15 truck with 10% wheel load was used to load the structure.  In the analysis, 

the deck was assumed to act non-compositely.  In addition, the truck loading was only 

placed in the westbound lane under the assumption that the bridge would act 

symmetrically.   

Sub-models were created to analyze the upper and lower web-gap regions.  Each 

repair strategy had a separate sub-model which used the forces found in the coarse 

model to predict the stresses in the connection.  These stresses were then compared to 

determine the most effective retrofit. 

 

B.3 Retrofit Strategies 

Four retrofit strategies were analyzed in the report: cutting a 4.5” slot into the 

stiffener, cutting a 12.5” slot into the stiffener, permitting the first intermittent welds 

to break, and positively connecting the stiffener to the flanges.  The analysis 

concluded that positively connecting the stiffener to the flange would be the most 

effective retrofit.  The analysis predicted that the stresses would be reduced by 
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approximately 90% of their original value.  The results from the post-retrofit analysis 

supported this conclusion as discussed in Chapter 5.  
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APPENDIX C INSTRUMENTATION PROCEDURE 
 

C.1 Gage Installation 

Gage installation was the majority of the work completed in the field testing.  

Placement of the gages was performed using a snooper to reach underneath the 

bridge.  Two installers were able to work in the bucket along with the operator.  

Materials for installation were prepared before application of the gages.   

 
C.1.1 Gages  

Twenty-six single element gages were used in this test.  Additionally, one 90° 

rosette was used.  The single element gages were purchased from Micro 

Measurements, Inc.  The part number for these gages was CEA-06-250UW-350.  The 

part number for the 90° rosette was CEA-06-250WQ-350.  It was also purchased 

from Micro Measurements, Inc.  The resistance of the gages was 350±0.3% ohms.   

 

C.1.2 Grinding 

The first step in installation was removal of the paint from the gage area.  This 

task was accomplished by using a braided wire wheel mounted on a grinder.  A 

generator on the snooper powered all electrical equipment.  Paint, rust, and grime 

were easily removed with the heavy-duty wire wheel.  Grinding continued until the 

base metal was clearly visible.  A patch approximately four inches long by three 

inches wide was created for each gage location.  The ground surface appeared gray 

and dull.  Grinding was performed for all locations prior to further surface preparation 

since grinding could easily contaminate other gage locations.  Dust masks and eye 

protection were used since the paint was lead-based.  After removing the paint, each 

gage location was labeled on the bridge using a permanent marker. 
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C.1.3 Surface Preparation 

After the paint had been removed, additional surface preparation was needed.  

First, the location was sprayed with degreaser and wiped clean.  Next, M-Prep 

Conditioner A was sprayed on the location.  Then, 320-grit sandpaper was used to 

clean the surface.  The sandpaper was kept moist with the conditioner while being 

used.  After using the sandpaper, the surface was wiped using gauze pads until no 

discoloration was seen on the pads.  The M-Prep Conditioner A was then applied 

again and the procedure repeated for 400-grit sandpaper.  After the two applications 

of the conditioner, M-Prep Neutralizer was applied to the area.  The same procedure 

for both 320-grit and 400-grit sandpaper was repeated using the neutralizer.  The gage 

placement was then drawn outside the conditioned area with a permanent marker.   

 
C.1.4 Gage Placement     

Before going into the field, the gages had been taped down to a plastic board to 

keep them from being scattered during the installation.  Care was taken to ensure that 

the edges of the tape and the edges of the gages were parallel to one another.  After 

the surface was prepared, the gages were taped to the surface in their proper positions.  

Then, the tape was slowly folded back to reveal the gage surface.  The tape was 

folded at a low angle compared to the surface to prevent bending of the gage.  Next, 

M-Bond 200 catalyst was brushed onto the gage surface.  After allowing the catalyst 

to dry for one minute, a small drop M-Bond 200 adhesive was placed at the fold of 

the tape.  The adhesive was spread by gently lowering the gage back down to the 

surface.  Firm pressure was applied to the gage for one minute to allow the adhesive 

to bond.   

 
C.1.5 Soldering      

After the gage had been adhered to the location, it was allowed to dry.  Once the 

adhesive had dried, the cellophane tape was removed from the gage.  The tape was 

peeled directly back to prevent any upward force on the gage.  To prepare for 

soldering, drafting tape was placed next to the soldering tabs.  Then, soldering flux 
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was applied to the two tabs.  The shielded part of the wire was duct taped to the 

bridge to hold the wire in place.  Next, the soldering iron was cleaned on a damp 

sponge.  A small amount of solder was then put on the iron.  The exposed wire was 

positioned on the tab and soldered.  The two wires were then checked with an ohm 

meter to make sure a proper connection was established.  M-Coat A Polyurethane was 

applied to both the strain gage surface and the exposed wires to protect against 

moisture.  M-Coat B was brushed over area after the M-Coat A had dried.   

 

C.2 Wire Preparation 

To connect the gages to the data acquisition system, shielded wiring from Newark 

InOne was purchased.  Belden Electronics specified the wire as 326DFV.  The 

shielding prevented any damage from occurring due to setting up the wire.   

The wire was prepared in the lab before going to the test site.  The wire was cut 

and bundled in the lab.  On one end of the wire, spade terminals were connected.  

This was completed removing about 2” of shielding and stripping 0.5” from the three 

strands.  Then, the red strand was connected to one spade terminal, while the black 

and white strands were connected to the other spade terminal.   

On the other end of the wire, 2” of shielding were removed from the wires.  The 

three wire strands were then stripped 1.5” from the ends.  To prepare the red strand, 

one wire from the braid was left straight while the rest were wrapped around that 

wire.  For the black and white strands, one wire from one braid was left straight.  

Then, the braided wire for both strands was wrapped around the exposed base of the 

one wire.  Both wrappings were covered by electrical tape.  The tape covered 

approximately 0.5” of the exposed 1.5”.  Duct tape was then wrapped around the 

electrical tape to help hold and protect the strands.  

 

C.3 Data Acquisition System 

An IOtech Waveform Data Acquisition and Analysis Module were used as the 

data acquisition system during the tests.  A laptop computer was connected to the 
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Wavebook to store the data.  The Wavebook, specified as a WB516, interchanged 

with three WBK16/SSH modules.  Software for the Wavebook was installed on the 

laptop computer that was used.  Terminal strips were used to connect the modules to 

the wiring.  The terminal strips were configured in a quarter-bridge setting.  These 

strips were mounted on a plywood sheet.  The spade terminals from the wires 

screwed into the strips.  Cables connected the strips to the three modules.  Each 

terminal strip was labeled. 

For gages near Spans 29 and 28, the data acquisition system was placed on the 

closest pier.  For the other gages, the data acquisition system was placed on the 

shoulder of the roadway.  The wires were placed along the bridge and secured with 

zip ties to prevent movement.   

Prior to testing, all equipment was tested for accuracy and precision.  After 

placing the gages and wires, the data acquisition system was tested at each location to 

check the connections.   
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APPENDIX D  STRAIN GAGE DATA 
The exact cause of cracking in the gusset plate was unknown after the first field 

investigation.  In order to help determine why the cracking was occurring, three gages 

were moved to new locations on the gusset plate.  Gage 13 was placed on the bottom 

side of the gusset plate with gage 15 placed directly above it on the top side.  Gage 16 

was placed in a similar location as gage 15 on the opposite side of the center brace.  

The locations are shown in Figure 6-4.   

The stress over time for these gages is shown in Figures D-1 through D-11.  The 

majority of the data supports the theory that there is bending force acting on the 

gusset plate during loading.  This is illustrated when gage 13 experiences a stress that 

is opposite of the stress in gage 15.  Gage 16 is also provided as a reference but is not 

directly related to the position of gage 13.  Due to the majority of the tests exhibiting 

this relationship, prying action is occurring in the plate and is contributing to the 

formation of cracks. 
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Figure D-1: Strain Gage Results Due to Truck Loading Westbound 5 mph A 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time (0.05 sec)

St
re

ss
 (k

si
)

Gage 13 Gage 15 Gage 16
 

Figure D-2: Strain Gage Results Due to Truck Loading Westbound 5 mph B 
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Figure D-3: Strain Gage Results Due to Truck Loading Westbound 25 mph  
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Figure D-4: Strain Gage Results Due to Truck Loading Westbound 45 mph  
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Figure D-5: Strain Gage Results Due to Truck Loading Westbound 65 mph A 
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Figure D-6: Strain Gage Results Due to Truck Loading Westbound 65 mph B 
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Figure D-7: Strain Gage Results Due to Truck Loading Eastbound 5 mph A 
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Figure D-8: Strain Gage Results Due to Truck Loading Eastbound 5 mph B 
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Figure D-9: Strain Gage Results Due to Truck Loading Eastbound 25 mph 
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Figure D-10: Strain Gage Results Due to Truck Loading Eastbound 45 mph 
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Figure D-11: Strain Gage Results Due to Truck Loading Eastbound 65 mph B 
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APPENDIX E UNIQUE CRACKING 
 

During the 2005 retrofit, unforeseen cracking occurred in the web of a girder.  

The crack appeared when the pin and hanger system on the bridge was being 

replaced.  Therefore, the cracking had occurred during an unknown and unlikely 

loading case.  Gages were placed in the area of the cracking during the post-retrofit 

test.  This was to confirm the theory that the normal loading stress would not induce 

more cracking.  The results of the test are shown in Table E.1.  The data proves that 

the stress is not great enough to cause any further propagation of the cracks. 

 

 

24 25 26 27 28
Post 0.4 0.2 0.2 0.3 0.2
Post -0.2 -0.1 -0.2 -0.1 -0.2

24 25 26 27 28
Post 0.1 0.1 0.1 0.1 0.1
Post -0.1 -0.1 -0.1 -0.1 -0.1

Westbound
Positive Moment
Negative Moment

Gage Number
Eastbound

Positive Moment
Negative Moment

 
Table E.1: Average Stress (ksi) for Gages near the Unique Cracking. 
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APPENDIX F LONGITUDINAL STIFFENER REPORT 
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a. Summary: 

The results of a study investigating the stress distribution at the termination of a 

longitudinal stiffener in a web girder are presented. Two different configurations were 

investigated. The first configuration represents the stiffener in the as-built condition, 

while the second configuration corresponds to the stiffener after a proposed repair. A 

comparison of the local stresses induced by the two configurations was carried out using 

finite element models. The software used to carry out the analyses was ABAQUS V 6.4-

1. It was found that the repaired configuration had peak stresses that were approximately 

25% lower than the as-build configuration. In addition, the stress gradient along the 

stiffener was found to be more gradual for the repaired configuration, and distributed 

over a larger area.  
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1. Material specs: 

It was assumed that the girder web, weld material, and the stiffener had the same 

material properties (linear-elastic steel). 

 

2. Analysis, boundary conditions and applied load: 

The finite element model consisted of a segment of girder with a stiffener 

attached to it. The type of analysis performed was linear-elastic. As shown in Figures 3 

and 8, a uniform stress of 36 ksi was applied at the end of the model where the stiffener 

was present. The model was restrained from motion at the opposite end. Displacements 

were restrained in the x direction in all nodes of this end of the model. In addition, the 

motion in the z direction was restrained for all nodes located in bottom row.   
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3. Geometry: “Before Repair” 

 

 
Figure 1 – Axis orientation - before repair. 

 
 
 

 
Figure 2 – Dimensions – before repair. 

 
 

4. Boundary Conditions and Loads: “Before Repair” 
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Figure 3 – Boundary conditions and applied stresses – before repair. 

5. Mesh: “Before Repair” 

 
Figure 4 – Mesh (x-y) – before repair. 
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Figure 5 – Superimposed deformed and undeformed configurations (x-z) – before 

repair. 
 

6. Geometry: “After Repair” 
 

 
 

Figure 6 – Axis orientation - after repair. 
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Figure 7 – Dimensions – after repair. 
 
 
 
 

7. Boundary Conditions and Loads: “After Repair” 
 

 
Figure 8 – Boundary conditions and applied stresses – after repair. 

 
 
 

8. Mesh: “After Repair” 
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Figure 9 – Mesh (x-y) – after repair. 

 
Figure 10 – Superimposed deformed and undeformed configurations (x-z) – after 

repair. 

9. FEM results: 
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Figure 11 – Stress scale. 
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Figure 12 - Girder web/stiffener (x-y) – before repair. 

 
Figure 13 - Girder web/stiffener (x-y) – after repair. 
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Figure 14 - Girder web (x-y) - before repair. 
 

 
 
 

Figure 15 - Girder web (x-y) - after repair. 
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Figure 16 - Girder web (x-y) - detail 1 - before repair. 

 
 

 
 

Figure 17 - Girder web (x-y) - detail 1- after repair. 
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Figure 18 - Stiffener (x-z) – before repair. 

 

 
Figure 19 - Stiffener (x-z) – after repair. 
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Figure 20 - Stiffener (x-z) – detail 1 – before repair. 

 
 

Figure 21 - Stiffener (x-z) – detail 1 – after repair. 
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Figure 22- Stiffener (x-z) – detail 2 – before repair. 
 
 

 
 

Figure 23 - Stiffener (x-z) – detail 2 – after repair. 
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Figure 24 - Stiffener (x-z) – detail 3 – before repair. 
 
 
 
 

 
 
 
 

Figure 25 - Stiffener (x-z) – detail 3 – after repair. 
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Figure 26 – Tip of stiffener - detail 1- before repair. 
 
 

 
 
 

Figure 27 – Tip of stiffener - detail 1- after repair. 
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Figure 28 – Tip of stiffener - detail 2- before repair. 
 
 
 
 

 
 

Figure 29 – Tip of stiffener - detail 2- after repair. 
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Figure 30 – Tip of stiffener –detail 3- before repair. 
 
 
 

 
 
 

Figure 31 – Tip of stiffener –detail 3- after repair. 
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10. Results comments: 

Figures 12 and 13 show that reduction in the stresses along the girder web caused 

by the repair was not significant. Although stress concentrations were localized at the tip 

of the stiffener in both cases, the maximum stress decreased after the repair.  

Figures 14 thru 17 show that on the side of the girder web opposite to the 

stiffener, stress concentrations were found right at the tip of the stiffener. However, the 

area over which these stress concentrations were present was very small. The 

implementation of the proposed repair did reduce the size of the region affected by stress 

concentrations. The FEM indicate that stress gradients at the sides of the model, near the 

tip of the stiffener, were eliminated by the repair (Figures 14 through 17).  

Figures 18 through 25 show that the longitudinal stresses along the stiffener were 

similar in magnitude. After the repair, stresses propagated from the tip of the stiffener 

over a larger area along the stiffener. Also the stress distribution after the repair shows a 

much more gradual gradient. This can be observed in Figures 24 and 25 (detail 3), where 

areas with higher stresses are shown in yellow.  

Figures 26 thru 31 show that the magnitude of the stresses (shown in increasing 

order of magnitude as yellow, orange and red) decreased with the repair. Figures 30 and 

31 show that the front face of the stiffener within the fillet weld region was the area most 

affected by these stress concentrations. It was found by direct comparison of results from 

FEMs that after the repair the maximum stresses were reduced by approximately 25%, 

which would improve the fatigue life. 
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