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Abstract
Sky islands are disjunct patches of montane forested habitat in a matrix of desert,
grasslands, and scrub. [ investigated intraspecific evolutionary biology of two bird
species—the White-breasted Nuthatch (Sitta carolinensis) and the Brown Creeper (Certhia
americana)—in the Madrean Archipelago sky islands (Arizona, USA), a biodiversity and
evolution hotspot. In addition, I explored patterns of codiversification of these two birds
and their associated gut microbial communities. The two bird studies revealed different
patterns of diversification within the sky islands. The White-breasted Nuthatch exhibits a
pattern of isolation by environment, where genetic differences among populations are
related to environmental differences of those localities. In contrast, the Brown Creeper has
a strong genetic break between northern and southern populations, with no evidence of
gene flow between lineages. When I investigated codiversification of birds and their
microbial communities, I found no relationship between host genetic diversity and
microbial community alpha diversity, while genetic differentiation between birds was
significantly related with beta diversity between microbial communities. This dissertation
provides a first step in comparative evolutionary biology of Madrean Archipelago avian
taxa, and adds to the knowledge of the factors shaping microbial community diversity in

wild animals.
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Introduction

Sky islands are disjunct patches of montane forested habitat in a lowland matrix of
desert, grasslands, and scrub. Sky islands may be centers for diversification, and have been
shown to exhibit some of the same island biogeographic patterns (e.g., species area
relationship) as oceanic islands. The sky islands of the Madrean Archipelago in the U.S.
Southwest and Northwest Mexico are considered a biodiversity and evolution hotspot, are
susceptible to habitat changes (e.g., via landscape or climatic forces), and therefore
represent an excellent locale to study ecology and evolutionary biology.

In the Madrean Archipelago, pine and songbird diversity is positively related to sky
island size, in accordance with the predictions of MacArthur and Wilson’s species area
relationship. This region of sky islands has also promoted diversification, with speciation
among populations on isolated sky islands (e.g., scorpions); alternatively, the matrix of
unsuitable habitat between sky islands has acted as a barrier to gene flow in species with
better dispersal ability (e.g., black bears), but has not promoted speciation. Investigations
of phylogeographic structure and restrictions to gene flow in Madrean Archipelago taxa
have uncovered a plethora of patterns; however, little has been done to investigate genetic
and geographic patterns in birds. Additionally, no studies have investigated genomic
patterns of diversification in Madrean Archipelago taxa.

Just as animals can be isolated on sky islands, animals may act as islands of habitat
for symbiotic bacteria. All animals have communities of microorganisms living with them.
Biology’s “dark matter” has symbiotic roles ranging from beneficial metabolic processes to

contributing to disease. In natural systems (e.g., wild animals), little has been done to



investigate codiversification of hosts and their associated microbial communities,
especially in vertebrate species.

The goals of this dissertation were twofold. First, I aimed to investigate processes
shaping patterns of genetic diversity and differentiation in birds of the Madrean
Archipelago sky islands. Second, I looked to explore patterns and processes affecting
bacterial community structure in the guts of their avian hosts. This work largely utilized
specimen collections, genomics, geographic information systems, and bioinformatics. In
three chapters, [ used restriction site associated DNA sequencing (RAD-seq) to explore
genomic patterns in the White-breasted Nuthatch (Sitta carolinensis, Chapter 1) and the
Brown Creeper (Certhia americana, Chapter 2), and used targeted amplicon sequencing to
characterize the birds’ gut microbial communities (Chapter 3).

In Chapter 1, [ investigated patterns of genetic diversity and differentiation of the
White-breasted Nuthatch across the Madrean Archipelago sky islands. Using large panels of
single nucleotide polymorphisms (SNPs), I found a lack of any strong phylogeographic
structuring. Geography seemed to play little role in structuring genetic differentiation,
because there was no pattern of isolation by distance. Conversely, climatic differences
between sampling sites explained genetic differentiation among birds, suggesting isolation
by environment.

In Chapter 2, [ investigated a putative contact zone between Brown Creeper
lineages. In previous studies, I found two strongly structured lineages, with a genetic break
somewhere in Arizona. Here, | sampled individuals across the sky islands to identify where
the split between lineages occurred, identify possible hybridization, and determine levels

of gene flow at a small geographic scale. Analysis of thousands of SNPs revealed no



evidence of hybridization, with a sharp geographic break between lineages. Additionally,
widespread chromosomal patterns of genetic differentiation were also apparent within the
contact zone, where chromosome size was positively related with genetic differentiation
among lineages.

In Chapter 3, [ explored how host genetic diversity and differentiation affected the
hosts’ associated gut microbial community alpha and beta diversities. Although host
genetic diversity was not associated with microbial community alpha diversity, genetic
differentiation between birds was related to beta diversity between microbial
communities. Between the Brown Creeper and White-breasted Nuthatch, the microbial
communities were significantly different in several metabolic functional categories.

Overall, this dissertation provides a foundation for future comparative analyses of
avian evolutionary biology in the Madrean Archipelago. With the two birds studies here, |
found vastly different, but equally interesting, patterns of diversification. By utilizing
additional aspects of scientific specimens—Dby collecting gut samples—I was able to
explore patterns of coevolution of these birds and their associated microbial communities.
The analysis of the avian genomic and microbial community data identified a significant
amount of microbial community vertical transmission; continued investigation of
codiversification between hosts and their microbial communities in a small geographic
scale and a comparative framework would greatly add to our understanding of the factors
shaping these symbioses, as well as further our understanding microbiome functional

differences in higher taxa.



CHAPTER 1*
[solation by environment in White-breasted Nuthatches (Sitta carolinensis) of the Madrean

Archipelago sky islands: a landscape genomics approach

*Manthey, J. D. & R. G. Moyle. 2015. Isolation by environment in White-breasted Nuthatches
(Sitta carolinensis) of the Madrean Archipelago sky islands: a landscape genomics
approach. Molecular Ecology 24: 3628-3638.



Abstract
Understanding landscape processes driving patterns of population genetic differentiation
and diversity has been a longstanding focus of ecology and evolutionary biology. Gene flow
may be reduced by historical, ecological, or geographic factors resulting in patterns of
isolation by distance (IBD) or isolation by environment (IBE). Although IBE has been found
in many natural systems, most studies investigating patterns of IBD and IBE in nature have
used anonymous neutral genetic markers, precluding inference of selection mechanisms or
identification of genes potentially under selection. Using landscape genomics, the
simultaneous study of genomic and ecological landscapes, we investigated the processes
driving population genetic patterns of White-breasted Nuthatches (Sitta carolinensis) in sky
islands (montane forest habitat islands) of the Madrean Archipelago. Using more than 4000
single nucleotide polymorphisms and multiple tests to investigate the relationship between
genetic differentiation and geographic or ecological distance, we identified IBE, and a lack
of IBD, among sky island populations of S. carolinensis. Using three tests to identify
selection, we identified 79 loci putatively under selection; of these, seven matched CDS
regions in the Zebra Finch. The loci under selection were highly associated with climate
extremes (maximum temperature of warmest month and minimum precipitation of driest
month). These results provide evidence for IBE—disentangled from IBD—in sky island

vertebrates and identify potential adaptive genetic variation.



Introduction
Understanding the processes driving patterns of population genetic differentiation and
diversity has been a longstanding focus of ecology and evolutionary biology (e.g., Mayr
1942). Historical, geographic, and environmental effects contribute to current patterns
among populations that may have differentiated via diverse mechanisms, both adaptive
and non-adaptive. Reduced gene flow between populations because of greater geographic
distance, or isolation by distance (IBD, Wright 1943) is commonly seen in empirical studies
(e.g., Kuchta & Tan 2005; Sharbel et al. 2000). IBD will manifest whenever dispersal is
geographically limited. In contrast, gene flow also can be inversely correlated with
environmental distance between populations, resulting in adaptive divergence or isolation
by environment (IBE, Nosil et al. 2008). IBE may result from various mechanisms, including
local adaptation, migration-selection balance, and non-random gene flow and dispersal
(Nosil et al. 2008; Edelaar & Bolnick 2012). These processes (IBD and IBE) are not mutually
exclusive, and an expected correlation between environmental and geographic distance
will produce similar patterns.

Recent meta-analyses (Sexton et al. 2014; Shafer & Wolf 2013; Orsini et al. 2013)
have investigated the prevalence of IBD and IBE in natural systems; all identify multiple
examples of IBE in the wild, indicating the importance of the processes creating this
pattern. Shafer & Wolf (2013) identified ways to improve IBE studies to enhance
understanding of adaptation contributing to genetic differentiation in the wild. First,
geographic distance and environmental dissimilarity among populations are often
correlated. Disentangling the relative effects of geographic distance and environmental

dissimilarity between populations on genetic differentiation is paramount to identifying



IBE. A recent study in anoles (17 Anolis sp.; Wang et al. 2013) sought to disentangle
geographic and environmental factors shaping genetic differentiation among Caribbean
populations; although many species showed significant environmental factors shaping
population genetic differentiation, the difference was uncoupled from geographic factors in
only a single species (A. chlorocyanus).

A second issue identified as crucial for informative IBE studies (Shafer & Wolf 2013)
is the scope of the genetic data analyzed. Although IBE patterns have been found using
neutral markers (e.g., microsatellites or amplified fragment length polymorphisms), it is
unclear whether IBE patterns can be identified genome-wide or only in particular genomic
regions. Additionally, identifying adaptive genetic variation may be informative for
investigating different stages of ecological speciation (Shafer & Wolf 2013). Recently,
techniques to acquire thousands of genetic loci across the genome [e.g., restriction site
associated DNA (RAD) markers (Miller et al. 2007)] allow researchers to investigate
environmental and genomic landscapes simultaneously. The investigation of spatially
explicit adaptive genetic diversity and differentiation—landscape genomics (Manel &
Holderegger 2013)—has flourished, including new conceptual frameworks for the
identification of adaptive genetic variation (Orsini et al. 2013) based on the expected
relationships between neutral and non-neutral genetic variation and geographic or
environmental distances between populations.

Landscape genomics requires thorough sampling across the genomic landscape as
well as the environmental landscape; as such, heterogeneous landscapes provide great
potential for investigating adaptive genetic variation across species’ ranges. Arizona (U.S.

Southwest) has a highly heterogeneous landscape, with many disjunct, isolated mountain



ranges that harbor montane forest separated by lowlands with scrub, grass, or desert.
These isolated forests act as islands of habitat, or sky islands, for species that are unable to
persist in lowland, non-forested, habitats. The sky islands are located in the transition
between temperate and subtropical biomes, increasing the heterogeneity of the landscape.

The White-breasted Nuthatch (Sitta carolinensis) is a widespread, North American
songbird that inhabits the sky islands of Arizona. Although S. carolinensis has
phylogeographic structure across North America (Spellman & Klicka 2007; Walstrom et al.
2012), the populations of Arizona are all included in a single clade. In Arizona, the species
inhabits oak, pine-oak, and pine woodlands, which form a contiguous tract of habitat
through the centre of Arizona along the Mogollon Rim, and many isolated tracts of sky
island habitat in the mountain ranges of southern Arizona (Fig. 1.1), also known as the
Madrean Archipelago. In the sky islands, the subalpine flora and fauna are elevation-limited
by temperature and precipitation extremes (high temperature and low precipitation;
Poulos & Camp 2010) along elevational gradients, providing a potential context for
selection or biased dispersal that may lead to a pattern of IBE.

Here, using geographic data, ecological data, and thousands of genetic loci obtained
using I[llumina sequencing, we characterize differentiation among and diversity within
populations of S. carolinensis in the sky islands of Arizona. With these data, we investigated
the following questions and hypotheses:

(1) What patterns are evident in genetic diversity within populations?

Ho: Population genetic diversity is similar across populations.

Hai: Larger sky islands will have higher genetic diversity.



Haz: More suitable environmental localities will have higher genetic

diversity.
(2) Does geographic distance or environmental dissimilarity between populations
shape patterns of genetic differentiation among populations?

Ho: Population genetic differentiation is structured by limited random
dispersal, resulting in a pattern of IBD.

Ha: Habitat differences—and their associated temperature and
precipitation differences—will shape genetic differentiation among
populations more than geographic distance between populations due to

environmental heterogeneity and the fragmented landscape.

Methods
Sampling, laboratory procedures, and SNP dataset creation

Fresh tissue samples of 27 S. carolinensis (Rocky Mountain phylogeographic group) were
obtained from across the sky islands of Arizona (three from each locality; Table 1.1; Fig.
1.1). The sky islands are islands of montane forest habitat surrounded by lowland desert
and scrub. One eastern S. carolinensis, and one S. europea were used as outgroup samples to
confirm that ingroup samples belong to a single clade. Genomic DNA was extracted using a
QIAGEN DNeasy blood and tissue extraction kit following manufacturer protocols.

To obtain many anonymous genetic loci, we performed a modified RAD-seq (Miller
et al. 2007) protocol. DNA samples were digested with the restriction enzyme Ndel to
produce a reduced representation genomic library. Following ligation of custom adapters

with attached barcodes for multiplexing (one barcode per individual, minimum two



Figure 1.1. Map of the Madrean Archipelago sky islands of southern Arizona, within the

United States of America, and sampling localities for this study. Dark grey areas correspond

to montane pine-oak and pine habitats.
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Table 1.1. List of localities, latitude and longitude coordinates, voucher number at the University
of Kansas Biodiversity Institute, number of reads for each individual from I[llumina sequencing
run (# Reads), coverage of each individual from the SNP dataset (Cov.), and mean and standard
deviation of sequence reads per locus (Reads Cov.).

Locality Lat. Long. Voucher # Reads Cov. Reads Cov.
Chiricahua 31.78 -109.30 KU 31223 1,025,931 96.3% 88.00 (34.51)
KU 31225 1,548,897 77.2% 137.40 (54.61)
MBR 8613 100,932 14.2% 5.82 (3.81)
Huachuca 31.43 -110.29 DM 054 1,590,374 92.6% 135.30 (49.22)
MBR 8587 1,237,388 82.6% 33.77 (17.84)
MBR 8588 684,026 95.2% 47.09 (19.76)
Mogollon East 33.92 -109.27 KU 31224 2,173,135 94.1% 98.44 (40.64)
MBR 8611 1,010,500 59.5% 16.82 (11.11)
MBR 8615 583,512 50.9% 10.92 (8.43)
Mogollon West ~ 34.48 -111.42 DM 056 285,311 75.9% 23.03 (10.74)
JDM 058 295,361 78.9% 19.52 (11.08)
MBR 8600 74,929 7.9% 5.38 (2.79)
Pinal 33.29 -110.87 ]JDM 052 135,912 23.4% 7.94 (3.94)
JDM 053 125,285 40.5% 10.63 (5.21)
MBR 8582 1,540,003 88.1% 94.29 (38.33)
Pinalefio 32.69 -109.83 MBR 8598 172,636 46.4% 9.52 (4.62)
MBR 8599 818,232 91.6% 54.23 (21.39)
MBR 8605 228,966 62.6% 21.81 (12.78)
Prescott 34.41 -112.42 MBR8576 987,402 90.5% 41.18 (17.72)
MBR 8577 377,098 69.3% 23.80 (10.52)
MBR 8610 2,192,338 93.3% 141.00 (52.30)
Santa Catalina 34.42 -110.73 KU 31220 834,036 95.0% 38.45 (16.10)
KU 31221 937,297 92.6% 41.31 (20.20)
KU 31222 126,096 21.7% 7.94 (4.65)
Santa Rita 31.70 -110.88 JDM 059 834,785 92.9% 38.08 (20.26)
JDM 060 485,778 90.7% 30.79 (13.60)
MBR 8608 352,386 53.4% 10.44 (6.26)

11



differences between barcodes), we pooled and purified all samples using AMPure magnetic
beads (Agencourt). Size selection of fragments (500 - 600 bp) using a Pippin Prep
electrophoresis cassette (Sage Science) further reduced the genomic libraries, followed by
another DNA purification step. A brief PCR reaction of the pooled samples was performed
in quadruplicate using an initial denaturation period of 98°C for 30 s, 14 cycles of 98°C for
10s, 64°C for 30 s, and 72°C for 20 s, and a final extension of 72°C for 7 min. The pooled
library was tested for quality and quantity of DNA using quantitative PCR and the Agilent
Tapestation at the University of Kansas Genome Sequencing Core, followed by sequencing
of 100 bp single-end reads on a partial lane of an Illumina HiSeq2500.

Using the STACKS (Catchen et al. 2011) pipeline, we assembled loci de novo from
the fastQ files obtained from the Illumina sequencing run. The process_RADtags python
script included in STACKS was used to assign sequence reads to individuals and remove
sequencing reads of poor quality. We used a quality threshold for inclusion as an average
phred score of ten in sliding windows of 15 bp. Sequences with possible adapter
contamination or lacking the restriction site were removed. After quality control, the
ustacks, cstacks, and sstacks modules of STACKS were used with the default settings, but
with a modified number of mismatches allowed between individuals from two to five.
Finally, we used the populations module of STACKS to create a SNP dataset with the
following restrictions: minimum stack depth of five, at least two individuals per sampling
locality, minimum minor allele frequency of 0.05, and observed heterozygosity less than
50% (to reduce inclusion of paralogous loci). To ensure that stack depth did not influence
our results, we used varying minimum levels (m = 1, 5, 10, 15). This changed the number of

loci between datasets, but did not influence levels of genetic differentiation between

12



populations (all r > 0.84, p < 0.001). Additionally, to ensure that the number of individuals
with low sequencing coverage did not influence the results, we ran STACKS limited to
individuals with greater than 50% coverage (Table 1.1; causing exclusion of the Pinal
locality). Again, number of loci changed, but differentiation between populations did not (r
= 0.965, p < 0.001). Finally, we ran STACKS including only loci found in 90% of individuals.
Differentiation between populations was unaffected (r = 0.97, p < 0.001). Based on these
sensitivity tests, we continued with the original dataset (minimum stack depth of 5 and all
individuals). To check for even coverage across the genome, we used a BLAST+ search
(Camacho et al. 2009). Here, we BLASTed against the Zebra Finch (Taeniopygia guttata)
genome, and considered loci a match if they had 70% sequence identity and a maximum e-

value of 0.01.

Ecological niche modeling and measuring niche centrality

To assess the current and potential Last Glacial Maximum (LGM) distribution of Sitta
carolinensis, we created an ecological niche model with the following methodology. We
obtained occurrence localities from Global Biodiversity Information Facility (GBIF) and
ORNIS, online and curated repositories of museum and herbarium specimens. Occurrence
points were visualized and quality-checked in ArcMap v10.1 followed by rarefication to
remove points within two km of one another using custom R (R Development Core Team
2012) scripts. Twenty per cent of points were set aside to check model quality. This
resulted in 2294 training and 574 testing points.

19 bioclimatic layers were obtained from the WorldClim database (Hijmans et al.,

2005; www.worldclim.org). These layers contain worldwide precipitation and temperature
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information, including minima, maxima and ranges of values. To reduce using layers with
high correlation (R > 0.8; measured in R) across North America, we included only 11 in
analyses (Appendix I). Additionally, we obtained bioclimatic layers for the LGM (~21,000
ya), which were produced from model output of the Model for Interdisciplinary Research
on Climate (MIROC; Nozawa et al.,, 2005) and the Community Climate System Model
(CCSM3; Collins et al., 2006).

Ecological niche models were created using Maxent (Phillips et al. 2006), which
relates environmental variables with species’ occurrences to estimate environmental
requirements and potential distributional areas. We used a model training area of 500 km
buffer around all occurrence points, which we determined as a reasonable region
accessible to S. carolinensis over evolutionary time (i.e., since the LGM). We set a threshold
on output models as inclusion of 95% of training points, allowing 5% omission based on
estimated error rates (Peterson et al. 2008). We assessed model performance using a
cumulative binomial test, using the data points set aside before model creation; here, the
null probability of prediction of occurrence points is the proportion of area predicted in the
model across the training area (Peterson et al. 2011).

To characterize each population’s position in environmental space, we used the
methods of Lira-Noriega & Manthey (2014). Briefly, we extracted 5000 random points from
the ecological niche model thresholded region and extracted environmental data from the
19 bioclimatic variables for those points. We transformed this matrix of environmental
data using principal component analysis. The mean of scores along the first four principal
components, which explained 92% of the variance in the environmental data, was used as

an estimate of the species’ niche centroid. For each locality, we measured the Euclidean
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distance to niche centroid (i.e., we used the environmental values as “coordinates,” and
measured the distance between them). Additionally, for all pairwise comparisons of
populations, we measured Euclidean distance between populations in environmental
space. Distances between populations, in both geographic and environmental distances, are
shown in Table 1.2. Principal component analysis and measures of environmental distance
were all performed in R (R Development Core Team 2012).

To assess habitat size on each sky island and distance to “mainland” (i.e., the
Mogollon Rim or Sierra Madre Occidental) we used the Global Land Cover Facility’s Tree
Cover Continuous Fields dataset, derived from Advanced Very High Resolution Radiometer
(AVHRR) satellite imagery (DeFries et al. 2000), to classify forest cover for each sky island.
This dataset classifies percent tree cover at 1 km resolution. Using this data, we calculated
the area of each sky island (i.e., amount of suitable habitat) as the amount of the region
with a minimum of 20% tree cover. To identify the distance to the nearest mainland, we
calculated the minimum distance between forested regions in each sky island to forested

regions in the mainland using ArcMap v10.1.

Relationships of genetic and ecological data and investigation of selection
To investigate relationships between genetic and ecological characteristics, we performed
linear regressions between habitat/ecological conditions and genetic parameter estimates
(e.g., Fst and nucleotide diversity), using the following comparisons: (1) current suitable-
habitat island size and genetic diversity; (2) niche centrality and genetic diversity; (3)
geographic distance between populations and population differentiation (Fst); and (4)

environmental distance between populations and population differentiation. The use of Fsr
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Table 1.2. Geograpic (km) and environmental (PCA-based) distances between populations below and above the diagonal, respectively.

Santa Santa Mogollon Mogollon

Prescott Pinal Catalina Rita Huachuca Chiricahua Pinalefio West East
Prescott - 0.99 1.01 1.58 2.15 1.38 1.44 0.35 1.39
Pinal 189.78 - 1.04 1.36 1.46 1.10 0.95 1.28 2.29
Santa Catalina 271.30 97.65 - 0.62 1.66 1.01 1.61 1.30 1.81
Santa Rita 333.85 176.85 81.32 - 1.33 091 1.72 1.88 2.19
Huachuca 386.51 213.94 117.69 63.47 - 091 1.20 2.48 2.96
Chiricahua 412.37 223.33 152.38 149.72 101.54 - 0.93 1.70 2.05
Pinalenos 306.96 117.76 89.56 147.96 146.70 112.83 - 1.69 2.37
Mogollon West 92.05 141.77 237.90 313.28 355.25 359.39 247.67 - 1.29
Mogollon East 294.96 163.95 215.20 289.16 292.95 238.04 146.38 207.36 -
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with small sample sizes is sufficient for estimating genetic differentiation here because of
the inclusion of thousands of genetic markers (Willing et al. 2012). All regressions were
performed in R (R Development Core Team 2012).

Given the inherent non-independence of data points in pairwise comparisons, we
investigated relationships between genetic differentiation, geographic distance, and
ecological distance using two additional methods. First, we performed Partial Mantel tests
in R (R Development Core Team 2012), assessing significance with 10,000 permutations.
Second, we used BEDASSLE, which models covariance structure in allele frequencies
between populations as a decreasing function of ecological and geographic distance
(Bradburd et al. 2013). We used BEDASSLE because it simultaneously estimates the
relative effects of geographic and environmental distances between populations on genetic
differentiation. BEDASSLE uses a Bayesian framework and estimates model parameters
with an MCMC algorithm. We ran BEDASSLE—using the beta-binomial model—for 8
million generations and sampling every 100. Performance of the model was evaluated by
visualizing MCMC acceptance rates and parameter trace plots as suggested by Bradburd
and colleagues (2013). Based on stabilization in trace plots, we discarded the first four
million generations as burn-in and used the remaining samples to estimate the relative
effect size of ecological versus geographic distance (aE/aD). To obtain more interpretable
results from BEDASSLE, rather than simply from the PCA-based environmental values, we
ran BEDASSLE again with two environmental variables: minimum precipitation of the
driest month and maximum temperature of the hottest month, two environmental
characteristics important for determining plant communities in the sky islands. Here, we

ran BEDASSLE for 10 million generations with the first eight million as burn-in.
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To assess potential selection in the SNP dataset, we used three methods. Because of
the nature of the dataset (reduced representation library of the genome), it is unlikely that
our data included the adaptive genetic variation directly impacting local adaptation, but
rather regions of the genome that may be linked with adaptive genetic variation. First, we
used BayeScan (Foll & Gaggiotti 2008) to identify diversifying or balancing selection based
on allele frequency differences among populations. BayeScan compares the posterior
probability of a neutral model with a population-level Fst shared across all loci with the
posterior probability of a selection model that incorporates locus-specific Fsr estimates to
explain differences in allele frequencies among populations. BayeScan was run for 20 pilot
runs, with a final run containing a burn-in period of 50,000 iterations followed by an
additional 50,000 iterations sampled every ten. We used the default settings for the Fis
distribution and prior odds for the neutral model. To determine significance of BayeScan
results, we interpreted the log posterior odds ratio using Jeffreys’ scale of evidence
(Jeffreys 1961); with this scale, a value of one is considered strong evidence for selection.

We used latent fixed mixed modeling (LFMM) to investigate associations between
environmental variables (minimum precipitation of driest month and maximum
temperature of hottest month) and SNPs while accounting for population structure in the
data (Frichot et al. 2013). LFMM uses environmental variables as fixed effects, and
population structure is modeled as latent factors (i.e., an inferred variable; Frichot et al.
2013). We ran LFMM with the full range of latent factors (assumed population structure
between one and nine distinct populations), using 1000 iterations as burn-in followed by
10,000 iterations to compute LFMM parameters. Significance was applied at an alpha value

of 0.001 with a Bonferroni correction for multiple testing.
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Lastly, we used Bayenv2 (Giinther & Coop 2013) to investigate relationships
between population allele frequencies and two environmental variables (minimum
precipitation of driest month and maximum temperature of hottest month). Bayenv2 uses a
Bayesian model to identify correlations between environmental variables and outlier
alleles while accounting for sampling and covariance due to population history (Glinther &
Coop 2013). Bayes factors for all SNPs (output of Bayenv2) were interpreted using Jeffreys’
scale of evidence (Jeffreys 1961), again using a value of one as strong evidence for

selection.

Results

Characteristics of sequence data
From the partial [llumina HiSeq2500 lane, we obtained 20,758,546 sequencing reads from
27 individuals. When barcodes and restriction sites were trimmed, this resulted in a total of
~1.89 billion bp. Following quality control (i.e., process_radtags), the number of
sequencing reads across individuals was highly variable; with a mean of 768,825 reads and
arange of 74,000 to 2.2 million reads (median = 684,026, standard deviation = 620,690).
The number of RAD-tags per individual ranged from 5971 to 48,430 (mean = 26,590). This
resulted in a total of 6734 loci (2635 polymorphic) with at least two individuals
represented per sampling locality. Among polymorphic loci, the mean SNPs per locus was
1.59 (median = 1, standard deviation = 0.89). We found a strong relationship between
chromosome size [based on BLAST+ search (Camacho et al. 2009)] and number of

polymorphic loci (R? = 0.963, p < 0.001), suggesting our SNPs were spread evenly across
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the genome. All pairwise Fst values were low (< 0.09), suggesting current or recent

connectivity among populations.

Ecological data

The ecological niche model of S. carolinensis (not shown) predicted distributional areas
that correspond well with known range limits. Quantitatively, the model showed better
predictive ability than null expectations based on a binomial test (510/574 testing points
predicted; p << 0.001). In Arizona, the niche model generally corresponds with known
suitable habitat of the sky islands (Fig. 1.2A). Because of the qualitative and quantitative
effectiveness of the niche model’s predictability, we were justified to explore correlates of
genetic data and ecological data derived from the niche model. When projected to the LGM,
the niche model generally showed a wide swath of potentially suitable area across most of
the state of Arizona (Fig. 1.2B), implying the potential for widespread connectivity of sky
island populations as recently as the LGM.

Genetic diversity could not be explained by suitable habitat size for each population
(p = 0.094) or distance from a mainland (p = 0.422); similarly, distance from niche centroid
did not explain genetic diversity of the sky island populations (p = 0.688) and was not
related to sky island habitat size (p = 0.104). Although geographic distance and ecological
distance among populations was linked (Fig. 1.3A), regressions between geographic and
genetic distance (isolation by distance) were not significant (Fig. 1.3B; p = 0.623), whereas
the relationship of ecological distance between populations and genetic differentiation
(isolation by environment) was significant (Fig. 1.3C; R? = 0.346, p < 0.001). However,

because the ecological distance partially encompasses geography (Fig. 1.3A), the ecological
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Figure 1.2. Projections of ecological niche models of S. carolinensis in Arizona for current
conditions (A) and the Last Glacial Maximum (B). In (B), dark grey regions represent areas
predicted by one of two climate scenarios and black regions predicted by both climate

scenarios.
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Figure 1.3. Regression of genetic and environmental distance among all population

pairwise comparisons (A), regressions of genetic differentiation (Fst) and geographic

distance among populations (B), and regressions of genetic differentiation and

environmental distance (C; in PCA-transformed units). In (B) and (C), solid points indicate

the full (All) dataset and open points only the outlier loci putatively under selection (Sel.).

Results (R? and p-value) for regressions omitting outlier loci (w/0*) are reported but not

plotted.
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distance may be interpreted in a biologically more meaningful context as a combination of
geographic and environmental distance.

Partial Mantel tests showed no relationship between genetic differentiation and
geographic distance between populations (r =-0.5362, p = 0.98), whereas they identified a
strong relationship between genetic differentiation and ecological distance between
populations (r = 0.7283, p < 0.001). Two replicates of BEDASSLE identified no effect of
geographic distance, relative to ecological distance, on genetic differentiation (aE/aD;
Table 1.3). Separate BEDASSLE analyses identified a strong relationship—relative to
geographic distance—of minimum precipitation of driest month with genetic
differentiation between populations (Table 1.3) and a weaker relationship with maximum

temperature of hottest month.

Investigation of selection
Using BayEnv2 and LFMM, we found 36 and 50 outlier SNPs, respectively (Appendix II),
including eight in common between analyses (Table 1.4). Among these 78 loci, outgroup
individuals contained both major and minor alleles. Because only eight loci overlapped
between analyses, we may interpret the other loci as only indicating weak selection, or due
to spurious results through chance and which highlight the potential limitations of
selection scans using reduced representation genomic sampling. The eight loci in common
between analyses BLASTed only to large chromosomes (1-3; Table 1.4), and were not
indicative of obvious functional genes associated with climatic conditions. In the program

BayeScan, one locus was identified as a potential outlier for selection (BLASTed to
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Table 1.3. Results of BEDASSLE runs. Two replicates were run for two datasets. The first
compared the relative effect of the PCA-based environmental (E) variable vs. geographic distance
(D) on genetic differentiation (S). The second compared the relative effect of maximum
temperature of hottest month (T) and minimum precipitation of driest month (P) vs. geographic
distance. These can be interpreted as the relative effect of a single degree centigrade or
millimeter precipitation vs. a single kilometer distance between populations and the associated
genetic differentiation between populations. Results are rounded to nearest integer.

Mean aE/aD 95% Confidence Interval
Run 1 (S) 17,228 9374 - 23,988
Run 2 (S) 19,839 12,841 - 31,456
Run 3 (T) 880 670 - 1140
Run 4 (T) 4500 200-1030
Run 3 (P) 9249 6898 - 10,959
Run 4 (P) 16,409 7790 - 23,006
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Table 1.4. Outlier loci identified in both LFMM and BayEnv2. For LFMM, results are shown when one or nine latent
factors (LF) were used to test associations between environmental variables and SNPs. Environmental variables are
temperature of warmest month (TWM) and precipitation of driest month (PDM). BLAST results (to Zebra Finch
genome) are shown to chromosome (Chr.) and gene (BLAST).

LF1 LF9 LF1 LF9 BayEnvZ  Bayenv2
Locus TWM TWM PDM PDM TWM PDM Chr. BLAST

1942

4782

6137 X

8133

14162 X X
19820

22782

25589

ephrin-B2
uncharacterized protein LOC100190155

Neuroblastoma-amplified gene protein

W W R R R R,

2 -

ST TR S
MKooXooX X X X X
ST TR - S
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chromosome 3), although it matched none of the loci identified as outliers with
environmental variables.

Of the 79 SNPs identified as putatively under selection, 60 were identified to Zebra
Finch chromosomes and seven of these were located in CDS regions (~8.9%), although this
was not significantly different than the entire dataset and may be inflated from null
expectations because of the methods used for ascertainment of the SNP data. Because we
found loci potentially under selection, we again investigated isolation by distance (both
geographic and ecological) with Fsr values estimated only from loci identified as under
selection. Again, regressions between geographic and genetic distance were not significant
(Fig. 1.3B; p = 0.245), while the relationship between ecological and genetic differentiation
was significant (Fig. 1.3C; R2 = 0.700, p < 0.001) and more extreme than estimates from all
loci (slope of 0.118 compared to 0.025). When loci putatively under selection were

removed from the dataset, the regressions’ significance did not change (Figs. 1.3B, 1.3C).

Discussion
We identified IBE as the pattern of genetic differentiation in S. carolinensis in the Madrean
Archipelago sky island region. Of loci putatively under selection (1.2% of loci), ~9% were
identified in genic regions (7/60 in CDS; i.e., linked to potential adaptively important
genes). In their recent review paper, Orsini and colleagues (2013) summarized the
processes driving genetic differentiation in landscape genetics studies. They developed a
framework for differentiating between IBD, IBE, and isolation by colonization (e.g., founder
effects). In Orsini et al.’s (2013) framework, IBE would be identified if there was no

relationship between genetic differentiation and geographic distance between populations,
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but a positive relationship between genetic differentiation and environmental dissimilarity
between populations. Neutral markers would show a small positive relationship (or small
slope in a regression) with markers putatively under selection showing a larger positive
relationship (or larger slope) between genetic differentiation and environmental
dissimilarity among populations.

Our data (Fig. 1.3) match the patterns associated with IBE identified by Orsini and
colleagues (2013) exactly. IBE has been inferred in many species, including vernal grasses
(Freeland et al. 2010), fishes (Bond et al. 2014), birds (Smith et al. 2005), mammals
(Dudaniec et al. 2013), amphibians (Dudaniec et al. 2012), and invertebrates (Funk et al.
2011, Nosil et al. 2008); however, all of these studies used few markers (tens to hundreds)
and no sequence data (all were amplified fragment length polymorphisms or
microsatellites), precluding inference of selection mechanisms. Only a study on
sticklebacks (Deagle et al. 2011) identified IBE using high volumes of SNP data (1509
SNPs), which can be matched to annotated gene regions of the stickleback genome. The
geographic scope of our data is also notable, because in birds, few studies have shown
genetic variation associated with environmental characteristics across small geographic
regions (e.g., Garroway et al. 2013, Pavlova et al. 2013).

Using three different tests for selection, we identified 79 loci potentially under
selection, of which seven were in CDS regions. These genetic markers were all associated
with environmental factors that limit distributional ranges on each sky island: maximum
temperature of warmest month and minimum precipitation of driest month. These SNPs
are located in genic regions, so they represent potential adaptive genetic variation or may

be linked to adaptive genetic variation (e.g., other SNPs on same gene). Because the
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methods used to identify these outlier loci intrinsically use environmental-SNP
associations, they provide possible underlying mechanisms driving divergence among
populations. The subalpine flora and fauna inhabiting the sky islands of Arizona are
elevation-limited by temperature and precipitation extremes (high temp. and low precip.;
Poulos & Camp 2010) in the elevational transect from pine forest to scrub to desert.
Additionally, because outgroup genotypes for the loci under selection included major
alleles and minor alleles, selection is likely acting on standing genetic variation, although
we cannot exclude the possibility of novel mutations. This highlights the effects of large
population sizes’ standing genetic variation and the potential for adaptation from this
variation (Barrett & Schluter 2008).

Potentially adaptive genetic variation associated with temperature and
precipitation extremes provides a starting point for understanding the adaptability of
species in the Madrean Archipelago sky islands. This process is particularly important in
advancing knowledge of species susceptibility to climate change and landscape
fragmentation. Recent studies of climate-change sensitive species, the American pika
(Henry & Russello 2013) and Atlantic salmon (Bourret et al. 2013), have investigated
selection across the genome to identify adaptive genetic variation. Because sky island
species are susceptible to environmental changes, they should be investigated for potential
adaptive genomic variation to understand future responses to selection pressures caused
by environmental changes. In the face of climate change, sky island populations that
experience changing temperature regimes will be forced to track climate and habitat, adapt

to new conditions, or face extirpation.
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Our main result of IBE can be explained by a combination of restricted gene flow
due to some level of reproductive isolation among populations and linkage of outlier loci to
genomic regions actually under selection. However, since there are presumably high levels
of gene flow among populations in the recent evolutionary past (pairwise-Fsr values
between -0.037 and 0.087), any reproductive barriers among populations must be weak or
recently developed. Further evidence of this point is the lack of a relationship between
geographic and genetic distance among populations (Fig. 1.3B), suggesting neutral gene
flow among populations is not restricted or has only recently ceased.

Alternatively, the results may reflect non-random gene flow among populations,
where nuthatches are more often selecting more suitable environments. Because the
environmental differences between habitats (and their associated temperature and
precipitation differences)—compared to geographic distances between populations—are a
large factor in population genetic differentiation (Table 4.1), the birds may be specifically
selecting different habitats (e.g., oak vs. pine). Southern Arizona includes the transition
between temperate and subtropical habitats, potentially providing an intrinsic habitat
gradient allowing for accumulation of genetic differentiation due to selection, migration-
selection balance, or non-random dispersal. Non-random gene flow and dispersal may be
more likely than reproductive isolation among populations as different clades of White-
breasted Nuthatches inhabit different habitat types (Walstrom et al. 2012), which could
have been a possible contribution to differentiation among phylogeographic clades.

Because ~9% of putative loci under selection are in CDS regions, it is possible that
gene flow has been restricted recently, and local adaptations have accumulated rapidly

since the LGM (i.e., environmental selection on a recent evolutionary timescale). Although
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no studies have investigated natal dispersal in S. carolinensis, a study measuring dispersal
in the closely-related S. europaea identified a maximum of ~10 km dispersal per generation
in a fragmented landscape (Matthysen et al. 1995), suggesting fragmentation since the LGM
has likely played a role in limiting gene flow between sky islands, although not limited
enough to manifest in a pattern of IBD. Further work should investigate these genomic
regions with greater SNP density, also including targeted sequencing to identify potential
adaptive protein changes near genomic regions with signatures of selection.

This investigation of Sitta carolinensis provided a first genomic assessment of
processes driving genetic differentiation among sky island vertebrates and identified IBE,
with a lack of IBD. Additionally, this provided a first step in identifying potential adaptive

variation in a species inhabiting climate-change sensitive ecosystems.
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CHAPTER 2*
A genomic investigation of the putative contact zone between divergent Brown Creeper

(Certhia americana) lineages: chromosomal patterns of genetic differentiation

* Manthey, ]. D., Robbins, M. B. & R. G. Moyle. 2015. A genomic investigation of the putative
contact zone between divergent Brown Creeper (Certhia americana) lineages:
chromosomal patterns of genetic differentiation. Genome doi: 10.1139/gen-2015-0093
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Abstract
Sky islands, or montane forest separated by different lowland habitats, are highly
fragmented regions that potentially limit gene flow between isolated populations. In the
sky islands of the Madrean Archipelago (Arizona, USA), various taxa display different
phylogeographic patterns, from unrestricted gene flow among sky islands to complex
patterns with multiple distinct lineages. Using genomic-level approaches allows the
investigation of differential patterns of gene flow, selection, and genetic differentiation
among chromosomes and specific genomic regions between sky island populations. Here,
we used thousands of SNPs to investigate the putative contact zone of divergent Brown
Creeper (Certhia americana) lineages in the Madrean Archipelago sky islands. We found the
two lineages to be completely allopatric (during the breeding season) with a lack of
hybridization and gene flow between lineages and no genetic structure among sky islands
within lineages. Additionally, the two lineages inhabit different climatic and ecosystem
conditions and have many local primary song dialects in the southern Arizona mountain
ranges. We identified a positive relationship between genetic differentiation and
chromosome size, but the sex chromosome (Z) was not found to be an outlier. Differential
patterns of genetic differentiation per chromosome may be explained by genetic drift—
possibly in conjunction with non-random mating and non-random gene flow—due to

variance in recombination rates among chromosomes.
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Introduction

Understanding the processes driving lineage divergence and limiting gene flow across
species boundaries has been a longstanding focus of evolutionary biology (Mayr 1942).
Highly fragmented landscapes escalate restrictions to gene flow among populations,
potentially leading to increased genetic differentiation. The sky islands of the Madrean
Archipelago represent one such example of a fragmented landscape for forest species; here,
isolated patches of forest (i.e., the sky islands) are separated by desert, grassland, and
scrub habitat. In poorly dispersing species, independent lineages have evolved on different
sky islands, suggesting little dispersal between populations [e.g., jumping spiders (Masta
2000), bears (Atwood et al. 2011)]. In contrast, species with higher dispersal ability may
show fewer restrictions on gene flow among sky islands [e.g., birds (Manthey & Moyle
2015)]. With new methods for obtaining reduced-representation genomic libraries [e.g.,
restriction-site associated DNA sequencing (RAD-seq); Miller et al. 2007] for many
individuals, genetic structure and gene flow between sky islands can now be investigated at
the genomic scale. Although researchers have taken a genomic approach to investigate
gene flow and selection across species boundaries in many organisms, including—but not
limited to—trees (Hersch-Green et al. 2014 ), mussels (Gardner & Wei 2015), snakes
(Schield et al. 2015), fishes (Malek et al. 2012), birds (Lavretsky et al. 2015), and mammals
(Janousek et al. 2012), sky island taxa have received little attention at the genomic level.

Songbirds have high levels of interchromosomal synteny (Kawakami et al. 2014)
and the genomic resources of a well-annotated genome (Estrildidae: Taeniopygia guttata;
Warren et al. 2010). These patterns and tools thus allow the use of high-throughput

sequence data of non-model songbirds, with the possibility to identify genomic regions
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biased toward a lack of gene flow or increased selective pressures (e.g., sex chromosomes).
Biased levels of divergence, lack of gene flow, and greater selective pressures on sex
chromosomes have been found in many avian contact zones using large genetic datasets,
including flycatchers (Ficedula; Ellegren et al. 2012), chickadees (Poecile; Taylor et al.
2014), and sparrows (Passer; Elgvin et al. 2011), suggesting a common pattern in the Z
chromosome’s role in speciation. Additionally, this pattern has been found in ducks across
populations and species (Lavrestsky et al. 2015).

In contrast, a recent study investigating genomic patterns of differentiation between
two divergent lineages of Brown Creeper (Certhia americana) did not find biased
differentiation of the Z chromosome between lineages, but rather a positive relationship
between chromosome size and genetic differentiation (Manthey et al. 2015a). The two
divergent [~5% mitochondrial DNA (mtDNA) divergence; Manthey et al. 2011a] lineages
come into contact in Arizona, although it is unclear exactly where the contact occurs.
Marshall (1956) studied the plumage morphology of C. americana in Arizona (USA), where
the defining differences between northern and southern forms were coloration of the rump
(tawny vs. chestnut, respectively) and coloration of the underparts (white vs. sooty relative
to throat color). He found the transition from northern to southern birds between the Santa
Catalina Mountains and Huachuca Mountains (Fig. 2.1; his Fig. 11), with intermediate
colorations in the Santa Catalina, Rincon, Santa Rita, Chiricahua, and Huachuca ranges. This
region includes the transition from temperate to subtropical coniferous forests (Wade et al.
2003), which may act as a mechanism for speciation or biased dispersal within a species.
Indeed, the climatic extremes in this region (minimum precipitation of driest month and

hottest temperature warmest month) were shown to correspond with genetic
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Figure 2.1. (A) Sampling map in Arizona, USA. Gray areas correspond to montane forest.
Inset shows locations of parental populations (solid circles) used in this study. (B)
STRUCTURE results for the 75% coverage matrix (75% CM) dataset. Each bar represents
the probability of population assignment to northern (gray) or southern (white) lineages.
All individuals sorted with population assignment values greater than 0.9. (C) Proportion of
shared (white), private (gray), and fixed (black) polymorphisms in Arizona between the
two lineages [based on genetic structure in part (B)]. (D) Proportion of SNPs fixed between
parental populations at each locality in Arizona. Black and white indicate proportion of
fixed SNPs for the northern and southern alleles, respectively. Gray indicates the

population is polymorphic with both northern and southern alleles.
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differentiation in the White-breasted Nuthatch (Sitta carolinensis; Manthey & Moyle 2015).
The northern and southern forms of C. americana also differ in migratory behavior; the
southern forms appear to be resident and the northern forms are partially migratory
(Phillips et al. 1964). Wintering and migrant specimens of the northern form have been
collected in southern Arizona, within the distribution of the southern form (Phillips et al.
1964).

Previous genetic studies (Manthey et al. 2011a,b; Manthey et al. 2015a) of C.
americana have included sparse sampling from Arizona, only including individuals from
the Kaibab National Forest surrounding the Grand Canyon (northern lineage) and the
Chiricahua Mountains (southern lineage; Fig. 2.1). The lack of genetic sampling across the
putative contact zone, a transition in color pattern across multiple mountain ranges, and
chromosomal variation in patterns of genetic differentiation in birds suggest that a
genomic-level investigation of C. americana in Arizona is needed. Additionally, a genomic-
level investigation in a Madrean Archipelago sky island taxon will build upon previous
studies to infer comparative population genetic patterns and processes [e.g., birds
(Manthey & Moyle 2015), mammals (Fitak et al. 2013, Atwood et al. 2011), invertebrates
(Masta 2000, Smith & Farrell 2005), trees (Potter et al. 2013)].

Here, using large numbers of SNPs across the genome, we investigate a putative
contact zone between two lineages of C. americana and address the following questions
and hypotheses:

1. Where is the genetic break between lineages?

Ho: The genetic break matches morphology, and is clinal across several

mountain ranges in Arizona.
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Ha: The genetic break is narrow and lineages are allopatric.

2. Within the zone of plumage transition, do the two lineages show a positive
relationship between genetic differentiation and chromosome size, as was
shown in a broader phylogeographic study?

Ho: The positive relationship between chromosome size and genetic
differentiation remains intact in the contact zone.

Ha: In the contact zone, this relationship breaks down.

Methods

Sampling, sequencing, and SNP dataset creation
Fresh tissue samples of 45 C. americana were obtained across the putative contact zone in
the sky islands of Arizona (Fig. 2.1, Table 2.1). The sky islands are islands of montane forest
habitat separated by lowland scrub, grassland, and desert habitat. Four samples each of the
northern and southern lineages were acquired from Utah, USA (northern) and Jalisco,
Mexico (southern) to use as pure parental samples (Table 2.1). A single C. familiaris sample
was used as an outgroup (Table 2.1). We used a QIAGEN DNeasy blood and tissue kit to
extract genomic DNA for each sample.

We performed a modified RAD-seq (Miller et al. 2007) protocol to obtain thousands
of genetic loci spread across the genome. We used the restriction enzyme Ndel to digest
DNA samples as the first step to create a reduced representation genomic library. Custom
adapters with attached barcodes for multiplexing were ligated to digested DNA samples
followed by pooling and purification of all samples using an Agencourt AMPure magnetic

bead cleanup. To further reduce the genomic libraries, we size-selected fragments in the
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Table 2.1. List of samples and their associated RAD-seq coverage. For each individual, the locality
(as in Fig. 2.1), collection number [either from University of Washington Burke Museum (UWBM) or
University of Kansas Natural History Museum (all others)], percent completeness in the 50% and
75% coverage matrices (C50 and C75, respectively), number of sequencing reads (# Reads),
number of RAD-tags, and coverage of sequencing reads for the 50% coverage matrix dataset (RAD
Cov.; mean and standard deviation).

Locality Coll. Number C50 C75 #Reads RAD-tags RAD Cov.
Chiricahua MBR8595 89.3 95.7 2,193,670 48,677 48.5 (51.1)
Chiricahua MBR8596 86.3 93.2 1,874,272 47,317 40.7 (41.4)
Chiricahua JDMO057 91.8 96.5 3,102,638 50,786 62.8 (71.8)
Chiricahua MBR8601 88.2 959 1,614,960 34,682 40.6 (44.5)
Chiricahua KU31226 87.6 94.2 2,468,865 52,090 14.7 (11.5)
Huachuca MBR8586 89.6 95.7 2,475,852 52,235 52.0 (53.1)
Huachuca MBR8584 89.2 957 2,110,794 40,465 48.9 (51.7)
Huachuca MBR8585 86.5 92.6 3,582,197 45,483 73.1 (84.6)
Huachuca KU31227 91.8 97.3 2,344,278 38,860 56.4 (62.4)
Jalisco UWBM110712 88.1 93.5 3,912,641 65,526 73.9 (84.5)
Jalisco UWBM110615 92.7 97.7 1,656,810 42,467 39.0 (36.5)
Jalisco UWBM110621 87.7 93.0 4,114,168 55,404 77.1(86.2)
Jalisco UWBM117091 913 97.5 2,883,402 39,628 69.5 (78.2)
Santa Ritas JDM063 88.3 952 1,206,553 34,904 30.6 (29.7)
Santa Ritas JDM064 89.4 956 1,831,829 42,147 41.4 (41.7)
Santa Ritas MBR8609 89.6 959 2,997,954 48,142 64.7 (68.6)
Santa Ritas JDM065 91,5 971 1,738,408 42,413 42.1 (40.3)
Kaibab North Rim JDM002 86.2 932 2,037,171 50,198 42.8 (43.4)
Kaibab North Rim JDMO009 913 974 2,179,302 46,187 50.9 (52.3)
Kaibab North Rim JDMO010 91.1 96.1 3,039,178 52,035 67.6 (64.6)
Kaibab South Rim JDM061 91.7 974 2,467,519 39,978 59.7 (64.5)
Kaibab South Rim JDM062 90.7 95.7 1,456,471 40,073 35.3(32.0)
Mogollon Rim JDMO012 90.5 96.1 3,599,547 48,270 79.8 (86.4)
Mogollon Rim JDMO013 92.7 979 2,947,298 40,714 71.2(77.1)
Mogollon Rim JDMO014 89.1 956 2,897,455 56,549 55.4 (58.5)
Mogollon Rim JDMO015 79.9 90.5 863,742 26,774 26.4 (24.7)
Mogollon Rim JDMO16 45.6 54.2 155422 14,710 7.6 (4.3)
Mogollon Rim JDMO017 70.1 82.1 414,123 22,121 14.7 (11.5)
Mogollon Rim JDM018 63.1 749 291,260 20,417 10.6 (7.4)
Mogollon Rim JDM043 69.1 79.7 879,162 44,515 19.5 (16.3)
Mogollon Rim JDM045 51.6 579 212,617 18,040 7.0 (3.9)
Pinal MBR8580 90.7 96.6 2,677,802 43,901 59.7 (64.5)
Pinal MBR8579 91.7 969 3,098,164 42,654 72.2 (79.4)
Pinal MBR8604 89.2 953 2,505,339 59,776 50.7 (50.2)
Pinalefio JDM033 79.6 899 686,733 33,435 17.6 (14.6)
Pinalefio JDM034 91.6 97.0 1,366,277 46,048 32.5(28.8)

Pinalefio JDMO035 54.1 639 650917 27,576 19.6 (17.4)



Table 2.1. Continued.

Locality Coll. Number C50 C75 #Reads RAD-tags RAD Cov.
Pinalefio JDMO036 89.1 958 978,434 31,435 26.7 (27.0)
Pinalefio JDM037 56.6 67.4 250,007 18,556 10.1 (6.8)
Prescott MBR8578 89.1 94.7 3,920,836 58,548 78.3 (87.1)
Prescott JDMO051 94.0 98.7 3,718,143 40,543 90.8 (102.8)
Prescott JDMO055 90.4 97.0 1,346,722 34,398 33.8 (35.4)
Prescott MBR8602 93.1 98.0 1,902,484 53,109 42.6 (38.8)
Prescott MBR8603 89.0 94.8 4,669,850 53,519 96.8 (104.4)
Santa Catalina JDM027 41.1 474 122,107 14,648 5.6 (2.5)
Santa Catalina JDM028 91,5 96.8 2,755,533 45,462 64.6 (65.0)
Santa Catalina JDM029 70.0 82.7 524,465 22,115 19.7 (16.7)
Santa Catalina JDM030 93.2 978 1,735,413 39,986 42.1 (42.7)
Santa Catalina JDM032 53.5 64.6 349,605 26,160 10.1 (6.6)
Utah UWBM114838 68.5 815 460,367 36,076 9.8 (6.4)
Utah UWBM111063 92.6 96.8 2,916,596 42,087 67.5 (72.0)
Utah UWBM114811 86.8 94.7 644,668 34,290 16.4 (12.6)
Utah UWBM111062 799 92.2 687,820 28,984 18.9 (17.3)
Outgroup - England KU6761 79.1 843 2,085339 49,129 37.4 (41.3)
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range of 500 to 600 bp using a Pippin Prep electrophoresis cassette (Sage Science).
Libraries were cleaned again with a bead cleanup, followed by a brief polymerase chain
reaction (PCR) of each library in duplicate. PCR conditions were as follows: an initial
denaturation period of 98°C for 30 s, 14 cycles of 98°C for 10 s, 64°C for 30 s, and 72°C for
20 s, and a final extension of 72°C for 7 min. PCR reactions were cleaned a final time using a
bead cleanup and were tested for DNA quality and quantity using an Agilent Tapestation
and quantitative PCR at the University of Kansas Genome Sequencing Core Facility. All
libraries were pooled and sequenced on a partial lane (~56%) of an I[llumina HiSeq2500
100 bp single-end sequencing run.

We used the STACKS (Catchen et al. 2011) pipeline to assemble loci de novo from
fastQ sequence files obtained from the Illumina sequencing run. Sequence reads of poor
quality were removed using a quality threshold as an average phred score of ten in sliding
windows of 15 bp using the process_RADtags python script included in STACKS. Sequences
lacking the restriction site were removed. The ustacks, cstacks, and sstacks modules of
STACKS were used to assemble catalogs of loci for each individual as well as a catalog of
overlapping loci among all individuals (mismatches allowed between individuals = 5).
Lastly, the populations module of STACKS was used to create SNP datasets with the
following restrictions: minimum stack depth of five, minimum minor allele frequency of
0.05, and observed heterozygosity of 0.5 or less to reduce inclusion of paralogous loci. With
these conditions, two SNP datasets were created with different levels of coverage: 50%,
and 75% coverage matrices. Here, coverage was determined for three groups: northern
parentals, southern parentals, and individuals near the putative contact zone. For loci to be

included, the coverage threshold needed to be met in each of these groups. For example, in
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the 75% coverage dataset, three northern parentals, three southern parentals, and 34
individuals in the contact zone needed to have data for a particular SNP in order for that

SNP to be included.

SNP dataset analyses
We used the BLAST+ utility (Camacho et al. 2009) to match loci in our study to
chromosomes in the Zebra Finch (Taeniopygia guttata). This is possible due to high levels
of synteny in songbirds, but is limited in identifying chromosomal location due to high
rates of intrachromosomal recombination in songbirds (Kawakami et al. 2014). Loci were
determined a match to the Zebra Finch genome with 70% sequence identity and a
maximum e-value of 0.01. We initially tested multiple e-values (0.01, 0.001, 0.0001), but
the number of loci matching each chromosome was strongly related between datasets (R? >
0.99); we therefore proceeded using the e-value less than 0.01 results.

For each chromosome, all matched loci were rerun in STACKS to estimate Fst
between northern and southern lineages (based on STRUCTURE results; See RESULTS and
Fig. 2.1). Linear regression of chromosome size and Fst was performed in R (R
Development Core Team 2011), using chromosomes with a minimum of ten loci.

All analyses were performed for both SNP datasets. To identify any potential
admixture or hybridization, we used the program STRUCTURE (Pritchard et al. 2000) with
an a priori number of genetic clusters equaling two (K = 2). Initially, we inferred lambda by
estimating the K = 1 likelihood and allowing lambda to converge. We used this inferred
value of lambda in five subsequent replicates with K = 2, the same Fsr assumed in the two

groups, and using the admixture model. The burn-in was set as a period of 50,000 steps
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followed by 100,000 MCMC iterations. All replicates converged on the same general
parameter estimates, and the mean of all replicates was used for reporting assignment of
individuals to genetic clusters. Within each of the lineages, STRUCTURE was run for
multiple values of K; no additional genetic clustering was identified.

In addition to STRUCTURE analyses, we examined population genetic structure
using Discriminant Analysis of Principal Components (DAPC; Jombart et al. 2010),
implemented in the R package adegenet (Jombart & Ahmed 2011). DAPC transforms the
SNP data using principal components analysis and then uses discriminant analysis to
identify genetic clusters. Because two lineages were again identified (Appendix III), DAPC
was run with the northern and southern lineages separately; here, the most likely number

of genetic clusters within each lineage was one.

Song and environmental characteristics

During June 2013, song recordings were collected from multiple localities in the
contact zone (Table 2.2), although not enough sampling to perform an extensive
quantitative analysis. Here, our goal was to find potentially identifying characteristics
between the song of northern and southern lineages. We used the terminology of syllables
used by Baptista and Krebs (2000), who studied C. americana song dialects in California,
USA. The song repertoire of C. americana generally consists of five types of syllables (as in
Baptista and Krebs 2000; Fig. 2.2): (1) srih—rapidly frequency modulated note, (2) note
complex—group of notes forming an obvious cohesive unit, (3) sigmoid—note shaped like
a sideways letter “S” on the spectrogram, (4) tiit—note that rapidly drops in frequency and

then remains sustained, and (5) whistle—a frequency sustained note. We used the Raven
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Table 2.2. Song repertoires of C. americana near the contact zone. Based on limited sample sizes, songs
did not noticeably differ in length or frequency range between lineages and varied in the number of
syllables from three to five. All syllable types are as in Figure 2.2. In the Santa Rita Mountains, birds

appear to have a unique syllable, where the end of a sigmoid is rapidly frequency modulated (similar to a

srih syllable). Recording number refers to Macaulay Library reference number.

Locality # 1 2 3 4 5
Prescott 202873 Srih Long Sigmoid Note Complex - -
Prescott 202882 Srih Long Sigmoid Note Complex - -
Prescott 202884  Srih Sigmoid Whistle Note Complex -
Prescott 202888 Srih Whistle Whistle Note Complex -
Santa Catalina 203222 Srih Sigmoid Sigmoid Whistle -
Santa Catalina 203223 Srih Sigmoid Sigmoid Whistle -
Santa Rita 203232  Srih Srih-Sigmoid Sigmoid Sigmoid Whistle
Santa Rita 203233  Srih Srih-Sigmoid Sigmoid Sigmoid Whistle
Santa Rita 203234  Srih Srih-Sigmoid Sigmoid Sigmoid -
Huachuca 203253 Srih Sigmoid Tiit Tiit Tiit
Pinalefio 203292  Srih Whistle Long Sigmoid Whistle -
Pinalefio 203298 Srih Whistle Long Sigmoid Whistle -
Mog. Rim (East) 203628 Srih Sigmoid Whistle Note Complex -

4



Figure 2.2. Definition of syllables used in song analysis. Song vocabulary follows Baptista
and Krebs 2000. Frequency of each note is not on the same scale (i.e., the Sigmoid is not at

an innately higher frequency than a Srih).
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Pro v1.4 (Cornell Lab of Ornithology) software to audibly and visually inspect songs.
Measurements were taken of the following song attributes: total length, frequency range,
number of syllables, and types of syllables. All songs are deposited in the Macaulay Library
(Table 2.2).

Because another species (Sitta carolinensis) was shown to have genetic structure
based on temperature and precipitation extremes in the Madrean Archipelago sky islands
of Arizona, USA (Manthey & Moyle 2015), we obtained environmental data (minimum
precipitation of driest month and maximum temperature of warmest month) from
worldclim.org (Hijmans et al. 2005) to test this possibility in C. americana. We obtained all
specimen records of C. americana around the putative contact zone (Arizona, USA, Sonora,
Mexico, and Chihuahua, Mexico) from VertNet, an online repository of museum-vouchered
specimen data. Specimens were restricted to breeding months (late May-early August) to
prevent inclusion of migrants. To assess if northern and southern localities (based on
genetic results in Fig. 2.1) significantly differed in environmental characteristics, we
performed a multivariate analysis of variance (MANOVA) in R (R Development Core Team

2012).

Results
Number of reads and RAD-tags per individual was highly variable (Table 2.1). The 50% and
75% coverage matrices had 15,531 and 7,995 loci, with ~2.8 SNPs per locus on average
(Table 2.3). STRUCTURE analyses, for both the 50% and 75% coverage matrices, identified
a strong and well-defined split between northern and southern populations (Fig. 2.1B). All

individuals sorted to their respective lineages with greater than 90% probability
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Table 2.3. Statistics for the 50% and 75% coverage matrices (CM).
Number of loci, single nucleotide polymorphisms (SNPs), SNPs per
locus (PL; mean and standard deviation), SNPs per locus in the contact
zone (PL CZ), and percent missing data in each dataset (Miss.).

Dataset Loci SNPs SNPs PL SNPs PL CZ Miss.

50% CM 15,531 44,400 2.86(1.59) 2.65(1.50) 17.11%
75% CM 7,995 22,700  2.84(1.53) 2.62(1.44) 10.08%
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assignment (Fig. 2.1B), indicating a lack of hybridization between lineages. However, if
hybridization rarely occurs, our limited sampling may not be sufficient to identify hybrids.
Within each lineage, the most likely number of genetic clusters was one, suggesting a lack
of fine-scale spatial structure. Similar to STRUCTURE analyses, DAPC identified the same
individuals sorting to two genetic clusters and a lack of genetic structure within each of the
lineages (Appendix III).

The parental populations (Utah and Mexico) had 2296 and 766 fixed differences for
the 50% and 75% coverage matrices, respectively. Note that these numbers may be
inflated due to small sample sizes. Most SNPs fixed between parental populations were
similarly fixed in sampled localities of Arizona (Fig. 2.1D). In the contact zone specifically,
most SNPs were private alleles (SNPs found in only one lineage), with more than 1.5% of
SNPs fixed between lineages (Fig. 2.1C), even between populations as close as 70 km.

The number of loci per chromosome was highly related to chromosome size (R? >
0.98), suggesting our data were spread evenly across the genome (based on BLAST+
results). When Fst was computed per chromosome across the putative contact zone
between northern and southern lineages, genetic differentiation was positively related to
chromosome size (Fig. 2.3A). Additionally, the pattern was similar between contact zone
samples and parental samples (Fig. 2.3B), although the scale of Fsr was different between
groups, likely due to different sample sizes.

Northern and southern localities near the contact zone differed significantly in
environmental characteristics (Fig. 2.4), likely a reflection of the latitudinal difference
between lineage distributions. The geographic break between lineages is at the split

between temperate and subtropical coniferous forests (Wade et al. 2003), however, and

47



Figure 2.3. (A) Relationship of genetic differentiation (Fsr) between lineages in the contact

zone and chromosome size for the 50% and 75% coverage SNP matrices (CM). (B)
Comparison of chromosomal patterns of genetic differentiation between lineages in the

contact zone and in parental populations. Arrows indicate the Z chromosome.
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Figure 2.4. Scatter plot of environmental variables (minimum precipitation of driest month

and maximum temperature of warmest month) for both lineages and results of a

multivariate analysis of variance (MANOVA) between lineages of these two environmental

variables.
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may represent a real difference in climate regimes inhabited by each lineage. In this region,
the northern lineage inhabits forests dominated by Ponderosa Pine (Pinus ponderosa); in
contrast, the southern lineage populations are in the northernmost Madrean forest
localities, where Pinus species are interspersed with Madrean oak species (Genus:
Quercus). Further south (northern Mexico), the sky island habitat of C. americana becomes
dominated by mixed oak communities.

No differences between lineages were apparent in song length, frequency range, or
song structure (Table 2.2). All individuals’ songs began with the Srih note, ranged between
1.12 and 1.53 seconds in duration, and had similar frequency ranges (3.0 - 8.2 kilohertz).
Differences in song mostly existed among sampling localities; all but one locality (Santa
Rita Mountains) with multiple individuals had the same beginning and ending syllables
(Table 2.2). In the Santa Rita Mountains, the first four syllables were always the same, with
the only difference being whether the song ended with a whistle. These results suggest that
each locality has developed a specific local dialect, independent of genetic lineage, although

more song recordings are needed to test this.

Discussion
High throughput sequencing to investigate genetic structure and gene flow
The use of high-throughput sequencing has been critical in identifying chromosomal levels
of differentiation between species at contact zones (e.g., Ellegren et al. 2012, Taylor et al.
2014), usually identifying higher relative effects (e.g., divergence, lack of introgression,
selection) of sex chromosomes compared to autosomes. Studies with thousands of SNPs

have been used to provide genomic scale resolution in contact zone studies compared to
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traditional studies using mtDNA or microsatellites alone. Large panels of SNPs provide an
increasingly robust method to diagnose hybridization or lack thereof. Here, using more
than 40,000 SNPs we identified a lack of hybridization and a sharp geographic break
between two genetically distinct lineages (Fig. 2.1). Interestingly, this pattern is in contrast
to Marshall’s (1956) evidence for a more gradual cline across several mountain ranges
based on morphology. This may be caused by multiple factors; we may have not sampled
the genetic variation that contributes to morphological variation (e.g., Sporophila
seedeaters, Campagna et al. 2015). Alternatively, morphological differences could be due to
an environment by genotype interaction; here, a cline in environmental conditions (i.e.,
latitudinal cline) may contribute to a cline in morphological characters.

The observed genetic pattern is not unique to C. americana, however. The sky
islands between the Rocky Mountains and Sierra Madre Occidental span the transition
between temperate and subtropical coniferous forests (Wade et al. 2003). Here, at the
southern range limits of the Rocky Mountains, higher elevations are dominated by
Ponderosa Pine. This transitions to the northern range limits of the Sierra Madre
Occidental, where higher elevations are dominated by mixed pine (Genus Pinus) and
Madrean oak species (Genus Quercus). As such, many montane songbird species (> 50)
have their northern or southern range limits in this region. The specific geographic break
identified here in C. americana is evident in three other bird species, including the southern
range limit of the Mountain Chickadee (Poecile gambeli) and the northern range limit of
two species: Mexican Chickadee (Poecile sclateri), and the montane range of the Eastern
Bluebird (Sialis sialis). Between C. americana lineages, divergence likely occurred during

the Pleistocene (Manthey et al. 2011b); however, during the Pleistocene glacial cycles there
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is little evidence for increased distributional overlap among lineages during glacial maxima
based on ecological niche modeling (Manthey et al. 2014), suggesting mechanisms other

than climate cycles have restricted gene flow among lineages.

Chromosomal patterns and divergence hypotheses
In the contact zone, we found a positive relationship between genetic differentiation and
chromosome size (Fig. 2.3A). The Z chromosome had the highest Fst between lineages
(arrows in Fig. 2.3A) and one of the narrower cline widths (Fig. 2.3C), although it did not
appear to be an outlier based on relationships with chromosome size. Many studies of
hybridizing bird species have found elevated genetic differentiation on the Z chromosome
relative to autosomes (e.g., Carling et al. 2010; Storchova et al. 2010) when using intron
sequence data and small numbers of loci. Indeed, in this study system (C. americana),
elevated Z chromosome differentiation has been shown in analyses of introns alone
(Manthey & Spellman 2014). This discrepancy suggests that using only intron sequences
biases inference of chromosome wide patterns of differentiation. However, a genome-level
analysis of Ficedula flycatchers still estimated the Z chromosome to be an order of
magnitude more differentiated on average than autosomes (Ellegren et al. 2012),
suggesting small-scale genetic sequencing may be biased in only some cases.

An alternative hypothesis to explain this pattern may be that only recent speciation
events exhibit elevated sex chromosome differentiation. Relative to Ficedula flycatchers
(Ellegren et al. 2012) and Passerina buntings (Carling & Brumfield 2008), the two Certhia
lineages are more divergent based on mitochondrial and nuclear sequence data (Manthey

etal. 2011a,b, 2015a). Under a time-since-speciation scenario, biased genomic
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introgression (i.e., less on sex chromosomes) may have ceased much earlier in Certhia due
to lack of interbreeding between lineages.

A final hypothesis is that sex chromosome evolution is similar to autosomal
evolution when genetic mechanisms involved with postzygotic isolation between taxa do
not occur [e.g., large-Z effect or Haldane’s rule (Coyne & Orr 1989)]. In this scenario, a lack
of hybridization prevents increased differentiation on the Z to manifest. Here, prezygotic
isolation would have needed to occur throughout the divergence process. Behavioral
differences between populations could cause divergence on chromosomes via genetic drift
and non-random mating. This possibility may also be the isolation mechanism between
Poecile gambeli and P. sclateri, sister species (Harris et al. 2013) that do not hybridize
(McCarthy 2006), occupy the same habitat, and have the identical genetic break shown
here in C. americana.

Some behavioral characteristics potentially minimizing interbreeding between
lineages include non-random gene flow, non-random mating, and natal philopatry. Non-
random gene flow may lead to population differentiation with or without the presence of
fitness variation (Edelaar & Bolnick 2012). Variation in dispersal ability, individual
behavior, and habitat preference genes alone can lead to biased gene flow and subsequent
genetic differentiation through time (Edelaar & Bolnick 2012). Short natal dispersal
distance (Davis 1978) and natal philopatry (Cramp & Perrins 1993) in creepers could
increase the effects of non-random gene flow. Because northern and southern forms of C.
americana at least overlap seasonally (Phillips et al. 1964) and there is still a distinct
genetic break between lineages (Fig. 2.1) suggests that behavioral characteristics may

minimize gene flow among lineages.
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Multiple lines of evidence suggest non-random mating, with or without other
sources of non-random gene flow, may be causing the patterns observed in C. americana.
First, local dialect formation appears to be common, as has been shown in California, USA
(Baptista & Krebs 2006) and now in Arizona, USA (Table 2.2). Song variation has been
suggested as a cue for finding locally-adapted mates and thus promoting co-divergence of
song and genetics (Slabbekoorn & Smith 2002), but has also been shown to differ widely
among populations without speciation events [e.g., White-crowned Sparrows (Zonotrichia
leucophrys), Marler & Tamura 1962]. Additionally, each lineage is associated with
significantly different climates (Fig. 2.4)—and associated ecosystems—a potential context
for non-random dispersal and gene flow.

Lastly, the genomic patterns observed here (Figs. 2.1 & 2.3)—namely chromosome-
differentiation relationships—are similar between local (i.e., in the contact zone) and
highly disjunct (e.g., eastern USA and southern Mexico; Manthey et al. 2015a) populations.
The same patterns between geographically and ecologically disparate populations suggest
selection is not the driving force of differentiation, as it would be unlikely for such
widespread populations to be undergoing the same selective pressures (Manthey et al.
2015a). Rather, genetic drift—in conjunction with non-random mating and possibly non-
random gene flow—is causing the differential patterns of genetic differentiation observed
between lineages (Fig. 2.3). Genetic drift alone could cause divergence patterns correlated
to chromosome size because of differential average recombination; recombination rates

scale with chromosome size due to meiotic crossover requirements (Lynch 2007).
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CHAPTER 3*
Genetic differentiation among birds (Aves: Passeriformes) explains a portion of the beta

diversity among their gut microbial communities

* Manthey, ]. D., & R. G. Moyle. Genetic differentiation among birds (Aves: Passeriformes)
explains a portion of the beta diversity among their gut microbial communities.
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Abstract
All animals have evolved in the presence of microorganisms, with symbioses ranging from
negative influences in disease to beneficial roles in host nutrient synthesis. The mutually
obligate relationship of the host and associated microbiota suggests evolution in one would
have an impact on the other, yet this remains inadequately explored in nature. Here, we
used gut microbiota samples from populations of two songbird species—Sitta carolinensis
and Certhia americana—across multiple geographic localities in the Madrean Archipelago
sky islands of Arizona, USA to explore coevolution between hosts and their gut microbial
communities. We explored relationships between host genetic diversity and associated
microbial community alpha diversity, as well as between host genetic differentiation,
distance between sampling localities, and microbial community beta diversity. We found
no relationship between host genetic diversity and microbial alpha diversity. We identified
no appreciable effect of geography on microbiota community assembly, but found a
significant proportion of the microbial community beta diversity to be explained by genetic
differentiation among hosts. Additionally, we found significant differences in predicted
proportions of metabolic functional units in the microbiomes of C. americana and S.
carolinensis. These results suggest a lack of horizontal transfer of bacterial 0TUs among

localities, as well as a significant proportion of the microbiota vertically inherited.
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Introduction

All animals have evolved in the presence of microorganisms. Animals have several distinct
communities of symbiotic microorganisms (Turnbaugh et al. 2007), many representing
mutually obligate relationships (e.g., the gut microbial community, Xu & Gordon 2003). The
role of the microbiome in animals ranges from negative influences in disease (Kingsley &
Baumler 2000) to mutually beneficial roles in development (Yin et al. 2009) or nutrient
synthesis (Mai & Baer 2008). Despite some negative interactions, the mutually obligate
relationship between hosts and their microbial communities suggests evolution in one will
have an impact on the other and may work in both directions.

In natural systems, coevolutionary patterns of microbial communities and their
hosts have been investigated across geography (e.g., Hird et al. 2014) and phylogeny (e.g.,
Banks et al. 2009, Hird 2013). Many of the relationships between microbial communities
and their hosts have been described in model organisms (e.g., livestock species such as
chicken; Lan et al. 2005), but studies investigating assembly of these microbial
communities in natural systems have yielded ambiguous results. For example, some
studies find some geographic structuring of microbial communities within species (Hird et
al. 2014), whereas others find some phylogenetic signal within microbial communities
(Banks et al. 2009). To better investigate patterns of microbial community assembly in
natural systems, as well as investigate patterns of coevolution between microbial
communities and their hosts, studies should include aspects of both geography and
phylogeny. Sampling multiple species across many geographic localities would enable the
identification of the relative effects of geography, phylogeny, ecology, and stochasticity on

the formation of vertebrate microbial communities.
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Two songbirds, the Brown Creeper (Certhia americana) and White-breasted
Nuthatch (Sitta carolinensis), have similar ecological niches in the sky islands of the
Madrean Archipelago in southern Arizona. Despite their shared affinities for preening
invertebrates on tree bark, they have very different patterns of genetic structure in this
region (Fig. 3.1). The Brown Creeper has a strong genetic break between lineages (dotted
line in Fig. 3.1; Manthey et al. 2015b), with individuals on either side of the break
genetically pure for their respectively lineages. Alternatively, the White-breasted Nuthatch
exhibits a pattern of isolation by environment (Manthey & Moyle 2015) where individuals
in more similar environmental conditions, regardless of geographic location, are more
genetically similar. The observed dissimilar phylogeographic patterns across the same
sampling regime between species provides a comparative framework to assess the relative
contributions of geography and phylogeny to vertebrate microbial community assembly.
Because of the similar ecological niche of the two species (invertebrate preeners), the effect
of each species’ ecological niche on microbial community assembly is minimized between
species.

Here, we utilize restriction-site associated DNA sequence (RAD-seq; Miller et al.
2007) data of the host organisms in conjunction with targeted sequencing of the V4
variable region of the 16S ribosomal subunit of the microbiotic communities for each host
individual. Using these two datasets, we assessed the following questions and hypotheses:

1) Is microbial community assembly determined by geography, phylogeny, or a
combination?

H1o) No genetic or geographic structuring of microbial communities.
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H1a1) Differentiation among microbial communities is correlated with genetic

differentiation among host birds.
H142) Differentiation among microbial communities is correlated with

geographic distance between sampling sites of host birds.

H1a3) A combination of geographic and genetic factors best explain microbial

community differentiation between individual hosts.

2) Is genetic diversity within host individuals correlated with microbial community

alpha diversity?
H2¢) Genetic diversity in hosts is correlated with intestinal microbial alpha

diversity.

H2,) No relationship between host genetic diversity and intestinal microbial

alpha diversity.

Methods

Bird genetic data and bioinformatics

Avian genetic data were retrieved from previous studies investigating landscape genomics

of the White-breasted Nuthatch (Manthey & Moyle 2015) and contact zone genomics of the

Brown Creeper (Manthey et al. 2015b). The two studies used identical methods in

obtaining RAD-seq data for each taxon; therefore, the datasets could be utilized together.

Sampling localities of both taxa were nearly identical (Fig. 3.1; Table 3.1). Additionally,

both species forage on tree bark for invertebrates, reducing a possible contributing factor

for variance in gut microbial communities.
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Figure 3.1. Sampling localities of Certhia americana and Sitta carolinensis individuals and

associated microbiota in the Madrean Archipelago of the Southwest USA (Arizona). Shaded

gray regions indicate montane forest habitat.
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Table 3.1. Sampling localities (approximate lat./long.) and number of
individuals for which RAD-seq. and gut microbiota sequencing was
performed for each species.

Locality Latitude Longitude # Certhia # Sitta
Mogollon Rim West 1 34.97 -111.54 4 -
Mogollon Rim West 2 34.48 -111.42 - 2
Mogollon Rim West 3 34.45 -111.38 2 -
Prescott 34.41 -112.42 5 2
Mogollon Rim East 1 33.92 -109.27 - 3
Mogollon Rim East 2 33.81 -109.16 2 -
Pinal 33.29 -110.87 3 3
Pinalefio 32.69 -109.83 5 3
Santa Catalina 32.42 -110.73 5 2
Chiricahua 31.78 -109.30 4 3
Santa Rita 31.70 -110.88 2 3
Huachuca 31.43 -110.29 2 3




We used the STACKS (Catchen et al. 2011) pipeline to assemble a single nucleotide
polymorphism (SNP) library using default settings in the ustacks, cstacks, and sstacks
modules with the exception of mismatches allowed between stacks when building the
catalogue of loci (in cstacks). We initially tested multiple values for the allowed number of
mismatches (n = 1-10) between stacks to build the catalogue of loci (e.g., Mastretta-Yanes
et al. 2015). We completed the rest of the STACKS pipeline and calculated population
genetic statistics [nucleotide diversity (1) and genetic differentiation (Fsr)] of S.
carolinensis and each lineage of C. americana. Based on plateauing of these statistics when
the number of mismatches (n) allowed ranged between six and eight, we included the
middle value (i.e., n = 7) for downstream analysis. Initial sequence quality control was
performed in previous studies (Manthey et al. 2015b, Manthey & Moyle 2015). The
populations module of STACKS (Cathen et al. 2011) was used to create SNP libraries with
the following settings: minimum stack depth of five, minimum minor allele frequency of
0.05, observed heterozygosity less than 0.5 (to reduce inclusion of paralogous loci), a
minimum of 50% of individuals from each taxonomic group (S. carolinensis and each
lineage of C. americana), and a minimum of one individual for each species at each locality.
Variants of minimum stack depth (m = 5, 10, 15) did not change genetic differentiation
among lineages. With this final SNP dataset, downstream analyses were performed on
individual and locality levels. Genetic diversity [observed heterozygosity (Ho)] and genetic
differentiation (Fst) were calculated in STACKS. In the individual-based dataset, Fst was
highly related with (log) pairwise differences between individuals (R? = 0.984, p << 0.001);

we therefore continued with the Fsr values for analyses.
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Gut microbial communities and bioinformatics

Intestinal microbiota samples included full intestinal contents of the duodenum, jejunum,
and ileum of each bird, extracted from each individual within two hours of collection and
immediately frozen. MO BIO Laboratories (Carlsbad, California) PowerSoil DNA Isolation
Kits were used to extract DNA from intestinal samples following manufacturer protocols.
The V4 variable region of the 16S ribosomal RNA gene (~250 bp) was sequenced in all
samples on a single [llumina MiSeq 151x151 paired-end sequencing run at the Institute for
Genomics and Systems Biology Next Generation Sequencing Facility at Argonne National
Laboratories. Recent studies have shown indistinguishable conclusions of studies based on
the V4 region versus the entire gene sequence of 16S rDNA (Caporaso et al. 2012).

Paired-end sequences were quality-checked and assembled using QIIME (Caporaso
et al. 2010), an open-source software package for analysis of microbial communities. 100%
sequence identity in overlap between paired reads was required for retention. Sequences
with unassigned bases (N calls) or lacking specified barcode sequences were removed.
Reads were assigned to operational taxonomic units (OTUs) using the open-reference OTU
picking process invoked in QIIME. First, sequences were aligned to the Greengenes
database (McDonald et al. 2011) by utilizing uclust (Edgar 2010). All reads that were not
clustered using the reference collection were clustered de novo. Final OTU picking was
performed at two thresholds (95% and 97% sequence identity) with all subsequent
analyses performed on both datasets. All 0TUs belonging to Cyanobacteria were filtered, as
they likely represent ingested plant material (Waite & Taylor 2014).

For alpha and beta diversity metrics, we created OTU datasets based on microbial

sequences from individuals (i.e., each bird) and localities (i.e., all birds from one sampling
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site). Microbial community similarity between samples was measured using UniFrac
distance (Lozupone & Knight 2005), a phylogeny-based distance metric of community
similarity. In addition to the standard UniFrac distance, we also measured the weighted
UniFrac (Lozupone et al. 2007), which utilizes OTU abundances to calculate distance. Alpha
diversity of microbial communities was measured using phylogeny-based (Faith et al.
2006) and count-based (e.g. OTU richness) metrics as implemented in the QIIME package.
All estimates of alpha diversity were based on ten replicates of rarefication to 17,000 and
68,000 reads for individual and locality-based datasets, respectively; this ensured
comparable coverage across all samples. Lastly, we used principal coordinate analyses, as
implemented in QIIME, to visualize variation in microbial community distance (i.e., Unifrac

distance) matrices.

Co-analysis of avian and microbial data

We used regression and correlation analyses in R (R Development Core Team 2013) to
identify factors shaping microbial communities. First, we investigated the effects of genetic
distance and geographic distance on microbial community differentiation using multiple
regression. To look at the effect of genetic or geographic distance on beta diversity, while
controlling for the other factor, we used partial Mantel tests. Finally, we explored the effect
of host genetic diversity on microbial community alpha diversity (i.e., variation in alpha
diversity explained by observed heterozygosity).

To investigate potential functional differences of gut microbial communities
between avian taxa, we used PICRUSt (Langille et al. 2013). In PICRUSt, we used the 97%

clustering OTU table from all individuals, filtered to only include known taxa from the
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Greengenes database, normalized by 16S gene copy number for each taxon, predicted
functions for the metagenome, and categorized the predictions into KEGG pathway
categories. Using Statistical Analysis of Metagenomic Profiles (STAMP) v2.1.3 (Parks et al.
2014), we investigated differences in relative abundance of functional categories using
analysis of variance (ANOVA), followed by a post-hoc Games-Howell test. We corrected for

multiple testing using Benjamini-Hochberg FDR (Benjamini and Hochberg 1995).

Results
Characteristics of datasets

Following quality control, our microbial sequence dataset contained 7,880,262 merged
pairs of sequences, with a median length of 253 bp. The number of sequences per
individual was highly variable (mean = 131,338 reads, sd = 85,606). Across all individuals,
there was a mean of 207 (sd = 113) and 193 (sd = 104) OTUs identified for the 97% and
95% clustering datasets, respectively. Three phyla were represented in all individuals (Fig.
3.2A): Actinobacteria (10.3% mean abundance), Firmicutes (19.9%), and Proteobacteria
(59.8%). The bacterial genera Corynebacterium, Enterococcus, Rickettsiella, and
Staphylococcus were present in all individuals. In total, 8089 and 5506 OTUs were
identified for the 97% and 95% clustering datasets, respectively.

The final RAD-seq dataset contained 696 loci and 4123 SNPs. In the individual-
based dataset, observed heterozygosity ranged between 0.057% and 0.200%, while Fsr
ranged between -0.027 and 0.979. The locality-based dataset had a range of observed

heterozygosity between 0.099% and 0.185%, and an Fsr range between -0.028 and 0.943.
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Figure 3.2. (A) Composition of microbial communities in Sitta and Certhia gut samples. All

phyla represented by < 2% of overall microbiota samples were pooled into the “Other”

category. (B) Principal coordinate analyses of the individual and locality based microbial

communities (based on 97% clustering threshold).
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Co-analysis of microbial and avian datasets
Principal coordinates analyses did not indicate clear taxonomic clustering using individual-
based information, while we found clear separation between Certhia and Sitta samples
using the locality-based data (Fig. 3.2B). Microbial community alpha diversity and host
genetic diversity showed no clear relationship in the individual or locality-based datasets
(Table 3.2).

Genetic differentiation among birds and beta diversity of their associated microbial
communities was significantly correlated for most comparisons (Table 3.2, Fig. 3.3; based
on multiple regression), with the exception of the locality-based datasets using unweighted
Unifrac distances (Table 3.2). In the multiple regressions, geographic distance among
samples had no impact on differentiation among microbial communities in most
comparisons (Table 3.2, Fig. 3.3). When one factor was controlled for using partial Mantel
tests, genetic differentiation again showed a significant relationship with differences in
microbial communities (Table 3.3), but there was no apparent relationship between
geographic distance and microbial beta diversity.

STAMP analyses revealed no differences between metagenomic profiles of the
northern and southern lineages of C. americana. In contrast, six functional categories of
metagenomic profiles differed significantly between Certhia and Sitta (Table 3.4). Of the six
features that differed between taxa, metabolism-related categories were overrepresented

(binomial test p = 0.016).
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Table 3.2. Summary of regression analyses. At top, the relationship between
alpha diversity [either phylogenetic diversity (PD) or OTU richness (# OTUs)]
and host genetic diversity [observed heterozygosity (Ho)]. At bottom, results
of multiple regression investigating the relationships between beta diversity
(weighted or unweighted Unifrac distance), genetic differentiation (Gen.), and
geographic distance (Geo.). Results are shown for the 97% (0TU97) and 95%
(OTU95) clustering thresholds, and for datasets based on individuals (I) or
localities (L).

Alpha Diversity Ho R? Hop

OTU97 PD (L) 0.032 0.463

OTU97 # OTUs (L) 0.091 0.209

OTU95 PD (L) 0.033 0.460

OTU95 # OTUs (L) 0.094 0.201

OTU97 PD (I) 0.039 0.136

OTU97 # OTUs (I) 0.040 0.130

OTU95 PD (I) 0.035 0.158

OTU95 # OTUs (1) 0.041 0.126

Beta Diversity Gen. + Geo.Dist. R”? Gen.p Geo.p
OTU97 Unifrac (Unweighted) (L)  0.010 0.249 0.531
OTU97 Unifrac (Weighted) (L) 0.066 0.001 0.366
OTU95 Unifrac (Unweighted) (L)  0.010 0.371 0.311
OTU95 Unifrac (Weighted) (L) 0.086 <0.001 0.844
OTU97 Unifrac (Unweighted) (I) 0.004 0.010 0.744
OTU97 Unifrac (Weighted) (I) 0.018 <0.001 0.382
OTU95 Unifrac (Unweighted) (1) 0.010 0.014 0.002

OTU95 Unifrac (Weighted) (I) 0.021 <0.001 0.738




Figure 3.3. Results of simple linear regressions for individual (A) and locality (B) based

datasets (based on 97% clustering threshold). Also shown are the results of partial Mantel

tests (second line of values over each plot), including the Mantel statistic (r) and associated

p-value (but also see Table 3.3).
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Table 3.3. Partial Mantel tests investigating the relationship between beta diversity
(weighted or unweighted Unifrac distance) and genetic differentiation [while
controlling for geographic distance; Gen. Dist. (Geo. Dist.)] or geographic distance
(while controlling for genetic differentiation). Mantel test statistic (r) and associated
significance level (p) based on 1000 permutations are reported. Results are shown for
the 97% (0TU97) and 95% (OTU95) clustering thresholds, and for datasets based on
individuals (I) or localities (L).

Beta Diversity Gen. Dist. (Geo. Dist.)  Geo. Dist. (Gen. Dist.)

OTU97 Unifrac (Unweighted) (L)
OTU97 Unifrac (Weighted) (L)
OTU95 Unifrac (Unweighted) (L)
OTU95 Unifrac (Weighted) (L)
OTU97 Unifrac (Unweighted) (I)
OTU97 Unifrac (Weighted) (I)
OTU95 Unifrac (Unweighted) (I)
OTU95 Unifrac (Weighted) (1)

r=0.087,p=0.141

r=0.190,p = 0.010
r=0.053,p=0.232

r=0.239,p=0.007
r=0.060,p =0.020
r=0.129,p = 0.001
r=0.060,p = 0.024
r=0.139,p = 0.001

r=0.041,p = 0.330
r=-0.095, p = 0.838
r=0.066,p = 0.234
r=-0.052,p=0.711
r=0.000,p = 0.464
r=-0.029, p = 0.733
r=0.068,p = 0.063
r=-0.001, p = 0.500
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Table 3.4. Results of statistical analysis of metagenomic profiles (STAMP) analyses. No categories
differed between Certhia lineages, while 6 of 36 differed between Certhia and Sitta. The predicted
metagenome percentage (MG %) and multiple testing corrected significance values are reported.

Functional Category

Certhia MG %

Sitta MG %

Corrected p-value

Amino Acid Metabolism

Biosynthesis of other Secondary Metabolites
Glycan Biosynthesis and Metabolism
Metabolism of other Amino Acids

Signaling Molecules and Interaction
Xenobiotics Biodegradation and Metabolism

0.25
11.65
1.02
2.43
2.24
4.21

0.14
10.17
0.77
2.95
1.87
2.57

<<0.001
<<0.001
0.034

<<0.001
<<0.001
<<0.001
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Discussion
Here, we characterized the gut microbiota of two songbirds of the Madrean Archipelago
sky islands of the U.S. Southwest. We found that small (~0.5% to 9%, Table 3.2) but
significant proportions of the microbial community beta diversity could be explained by
genetic differentiation among avian hosts. Between taxonomic groups (i.e., Certhia and
Sitta), significant differences existed in proportions of functional KEGG modules grouped

by biochemical pathways related to metabolism.

Composition of gut microbiota

This study adds to the growing body of literature characterizing avian microbiota
(for a review see Waite and Taylor 2014). Across multiple studies, five phyla have been
shown to persist at high levels in the avian gut: Proteobacteria, Firmicutes, Actinobacteria,
Tenericutes, and Bacteroidetes (Waite and Taylor 2014). Here, we found a similar pattern,
with a high prevalence of all the aforementioned phyla except Bacteroidetes (Fig. 3.2A).
Previous work has shown that Bacteroidetes comprises a large proportion of mammals’
(Nelson et al. 2013a) and non-Passeriformes bird species’ (e.g., chicken, penguins, turkey,
ratites; Waite and Taylor 2014) microbiota. This study, and a recent study across multiple
Passeriformes species (Hird et al. 2014), identified a smaller role for Bacteroidetes in the
songbird microbiota. Interestingly, four bacterial genera were ubiquitous throughout all
samples, including Corynebacterium, Enterococcus, Rickettsiella, and Staphylococcus. This
prevalence may be because of the pervasive nature of these bacterial genera in nature and
animals. For example, Enterococcus sp. have been found in a majority of animal and

environmental microbiota surveys (Kiihn et al. 2003). In contrast to the ubiquitous
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bacteria, a large proportion (~48% based on 97% clustering threshold) of bacterial 0TUs
were private to a single individual. In both mammals (Ley et al. 2008) and birds (Banks et
al. 2009), microbiota studies have often found a majority of OTUs to be specific to a
particular host. These highly contrasting patterns suggest that the ability to colonize hosts
(i.e., transferability of specific microbiota) differs greatly among bacterial OTUs.

Based on predicted functionality of metagenomic content, the Certhia and Sitta gut
microbiome was largely (> 50%) metabolism related. No statistically different
metagenomic functional groups were identified between the two Certhia lineages, but
numerous differences identified between Certhia and Sitta were related to metabolism
(Table 3.4). This result is similar to the findings of the meta-analysis of Waite and Taylor

(2014), in which many functional differences were found among host species.

Factors shaping the gut microbiota

In natural systems, the vertebrate gut microbiota has been shown to vary with ecology
(e.g., diet; Waite and Taylor 2014; Ley et al. 2008), age (Godoy-Vitorino et al. 2010, van
Dongen et al. 2013), geography (Lucas and Heeb 2005, Hird et al. 2014), and genetics
(Ochman et al. 2010, Banks et al. 2009, Dewar et al. 2013). In birds, the majority of studies
have used categorical analyses to investigate factors shaping the gut microbiota (e.g., Waite
and Taylor 2014). Here, incorporating genome-wide genetic data for hosts in conjunction
with 16S data from microbial communities, we investigated the relationship between host
genetics and microbial community structure in a multivariate framework.

Our first question attempted to explain microbial community diversity in relation to

host genetic diversity; we found no relationship between the two variables (Table 3.2).
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This result is echoed by an experiment in mice (Mus musculus, Kreisinger et al. 2014), in
which inbred lines showed no significant difference in alpha diversity compared to wild-
caught mice. In leopard seals (Hydrurga leptonyx), captive individuals have been shown to
harbor a higher alpha diversity of gut microbiota relative to their wild counterparts
(Nelson et al. 2013b). These results go against null expectations; in wild populations, more
opportunities should exist for horizontal transfer of microbiota than in captive populations.
Similarly, hosts with higher genetic diversity have likely had exposure to more divergent
populations and associated microbiota in previous generations.

The aim of our second question and associated hypotheses was to investigate the
relationships between beta diversity of microbial communities, genetic differentiation of
hosts, and distance between sampling localities. Here, we found small but significant
amounts of variation in beta diversity explained by genetic differentiation among hosts
(Fig. 3.3, Tables 3.2 & 3.3). In contrast, geographic distance between sampling sites had no
appreciable relationship with beta diversity. These relationships were simultaneously
investigated between individuals of the same lineage, between different clades of the same
species, and between species. Notably, the results were congruent when the microbiota
were investigated at two levels: within individuals and within sampling localities of the
same species (Fig. 3.3, Tables 3.2 & 3.3).

In other studies of avian gut microbiota community composition, the role of
geography has varied; while some species, such as Hoatzin (Ophisthocomus hoazin; Godoy-
Vitorino et al. 2012) and Brown-headed Cowbird (Molothrus ater; Hird et al. 2014), have
shown differences between sampling localities, other species’ gut microbial communities

showed no effects of geographic sampling locality [e.g., Adélie penguins (Pygoscelis
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adeliae); Banks et al. 2009]. Like geography, genetics has been shown to play a role in avian
microbiota assembly in some taxa, both within (e.g., Adélie penguins; Banks et al. 2009)
and among species (e.g., multiple penguin species; Dewar et al. 2013). In contrast, species
assignment did not explain microbiota community assemblages across multiple passerine
birds (Hird et al. 2014).

The varied relationships of geography and genetics with avian gut microbial
community composition suggest mixed levels of dispersal and inheritance effects on
different bird species’ microbiota. Substantial dispersal of hosts among localities would be
required to manifest a signal of isolation by distance in gut microbial communities. With a
lack of significant dispersal, opportunities would not exist for lateral transfer of bacterial
OTUs among host localities. In contrast, too much dispersal of hosts, and associated lateral
transfer of bacterial OTUs, could lose any geographic signal and cause a large proportion of
the microbiota to be ubiquitous among localities. The effects of genetics on microbial
community structure depend on the proportion of those communities passed between
parents and offspring. Differential inheritance among taxa would lead to mixed signals of
the relationships between microbial community beta diversity and genetic differentiation
among birds. Here, we found a lack of geographic signal, suggesting limited lateral transfer
of microbiota among disjunct sampling localities. In contrast, we found a significant
relationship between genetic differentiation and microbial community differences,
indicating a partial role of inheritance on microbiota composition in C. americana and S.

carolinensis.
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Appendix I

Bioclimatic layers and their descriptions,
used for ecological niche modeling in Sitta

carolinensis.

Layer  Description

Biol Annual mean temperature

Bio2 Monthly temperature range

Bio4 Temperature seasonality

Bio5 Max temperature warmest month
Bio6 Min temperature coldest month
Bio9 Mean temperature driest quarter
Bio1l2  Annual precipitation

Biol5  Precipitation seasonality

Biol7  Precipitation driest quarter
Biol8  Precipitation warmest quarter
Bio19  Precipitation coldest quarter

RA



Appendix IL

Outlier loci identified in LFMM and BayEnv2 in Sitta carolinensis. For LFMM, results are shown when
one or nine latent factors (LF) were used to test associations between environmental variables and
SNPs. Environmental variables are temperature of warmest month (TWM) and precipitation of driest
month (PDM).

Locus K1 TWM K9 TWM K1 PDM K9 PDM BayEnv2 TWM Bayenv2 PDM  both
266 X

599 X X X X

1709 X

1942 X X X
1971

2015 X X X X

2076

2245

2322 X X X

2946 X

3905 X X

3926 X

4167

4307

4782

4836 X

4928

5290 X X
5586

5619 X X
5970

5976 X X

6137 X X X X X
6377 X

6657

7347 X X

8133 X X X X
8375

8425 X
8984 X

9065

9414

9477

9599

9779 X X

10315 X X X

RKooXooX X X X X
LT TR

>

TR T A
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10922
11718
12309
12436
12531
12673
14016
14162
15430
16207
16278
16535
16614
16829
17546
17564
17616
19820
20075
20578
21626
21956
22693
22720
22782
23035
23512
23692
24511
24569
25589
26003
26292
26398
26758
26778
28408
28722
29026
29142
29349
30021

»

LT T R

TR T A

]R8



Appendix III.

Certhia americana DAPC Results. Bayesian Information Criterion plot indicating the most
likely number of genetic clusters for the 50% and 75% coverage datasets, on the left and

right respectively. The lowest value (in both cases 2) indicates the assumed best number of
genetic clusters. Below these, the assignment of the individuals from each locality to

genetic cluster 1 or 2.
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