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Abstract

Three types of stochastic partial differential equations are studied in this dissertation.

We prove the existence and uniqueness of the solutions and obtain some properties of

the solutions.

Chapter ?? studies the linear stochastic partial differential equation of fractional

orders both in time and space variables

⇣

∂

b +
n

2
(�D)a/2

⌘

u(t,x) = au(t,x)Ẇ (t,x).

Here Ẇ is a general Gaussian noise. ∂

b is the Caputo fractional derivative of order a

with respect to the time variable t.

b 2 (1/2,2), a 2 (0,2],

and a is some fixed real number.

For the case,
8

>

>

>

>

>

<

>

>

>

>

>

:

a 2 (0,2], b 2 (1/2,1), d 2 N,

a 2 (0,2], b 2 (1,a), d = 1,

a = 2, b 2 (1,2), d = 2,3.

We prove the existence and uniqueness of the solution and calculate the moment bounds

of the solution when Ẇ has Reisz kernel as space covariance.
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For the case when

b 2 (1,2) and a 2 (0,2],

we prove the existence and uniqueness of the solution when Ẇ has Reisz kernel as

space covariance. Along the way, we obtain some new properties of the fundamental

solutions.

Chapter ?? studies the time-fractional diffusion in with fractional Gaussian noisy as

described by the fractional order stochastic diffusion equations of the following form:

⇣

∂

(a)�B
⌘

u(t,x) = u(t,x) ·Ẇ H(x),

where

a 2 (0,1),

B is a second order elliptic operator with variable cooefficients and Ẇ H is a time in-

dependent fractional Gaussian noise of Hurst parameter H = (H1, · · · ,Hd). We obtain

conditions satisfied by a and H so that the square integrable solution u exists uniquely.

Chapter ??, we prove the existence and uniqueness of mild solution for the stochas-

tic partial differential equation

(∂ a �B)u(t,x) = u(t,x) ·Ẇ (t,x),

where

a 2 (1/2,1)[ (1,2);

B is an uniform elliptic operator with variable coefficients and Ẇ is a Gaussian noise

general in time with space covariance given by fractional, Riesz and Bessel kernel.
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Chapter 1

Introduction

In 1827, Robert Brown observed that minute particles suspended in liquid moved con-

tinuously in a jittery way. He found that the movement was not caused by the currents

of the fluid. He also ruled out the explanation that this was the display of life in a mi-

croscopic form, because he observed the same phenomenon in non-living medium. He

didn’t put forward a theory explaining the mechanism underlying this motion, which is

now referred to as Brownian motion.

In a 1905 paper, Einstein gave the explanation which is accepted among the science

community nowadays. He suggested that the Brownian motion is caused by random

buffeting from the numerous particles in the fluid. He showed that the mean squared

displacement during a time interval of length T is proportional to T .

Due to the irregular movement of the molecules, the substance in the area of higher

concentration are more likely spread to area with lower concentration. This spreading

process is called diffusion. For diffusion processes in more complex medium, the mean

squared displacement of the particle during time T is proportional to T a ,a 6= 1. This

kind of diffusion is called fractional diffusion.

The theory of fractional diffusion has wide applications in physics and biology.

When a > 1, the fractional diffusion is referred to as super-diffusion, which describes
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the diffusion in the case of turbulent plasmas, Levy flights, etc. When a < 1, the frac-

tional diffusion is referred to as sub-diffusion, which describes the diffusion in fractal,

porous media, etc.

For tutorial introduction of fractional diffusion and its theoretical framework, we

refer the reader to [?]. For more recent works on anomalous diffusions in the study of

biophysics, we refer the reader to [?], [?], [?], [?].

In this dissertation, we consider two type of stochastic fractional differential equa-

tion.

The first type is the following equation which is fractional in time,

∂

au(t,x) = Bu(t,x)+u(t,x)Ẇ(t,x) (1.0.1)

Here t � 0 ; x 2 Rd ; a 2 (1/2,1) is a positive number; B is an uniformly elliptic

operator and ∂

a is the Caputo fractional derivative with respect to t (see [?] for the

study of various fractional derivatives). When a = 1,B = D, this equation has been

studied extensively in for some examples [?, ?, ?, ?, ?, ?, ?].

A. Kochubei [?] and W. Schneider el al [?] have considered the following.

∂

au(t,x) = Du(t,x) (1.0.2)

Therein A. Kochubei [?] derived the explicit form of the solution of (??) in terms of the

H function:

Z0(t,x) = p

�d/2|x|�dH2,0
1,2

✓

|x|2

4ta

�

�

�

�

(1,a)

(d/2,1),(1,1)

◆

.
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With the asymptotic properties of H function, Eidelman et al [?] have constructed

the following solution of the Cauchy problem of (??).

u(t,x) =
Z

Rd
Z(t,x,x )u0(x )dx +

Z t

0
ds
Z

Rd
dy f (s,y)Y (t � s,x� y).

When a 2 (1,2), A. V. Pskhu [?] considered the Cauchy problem of (??) and

showed that when B is D, the Green’s function Y of (??) is the following:

Y (t,x) =Cdt
a

2 (2�d) f a

2
(|x|t�

a

2 ;d �1,
a

2
(2�d)),

Based on the above results, in chapters ?? and ?? we extend some results of [?], [?]

to

∂

au(t,x) = Bu(t,x)+u(t,x)Ẇ (t,x),

where B is a second order differential operator and Ẇ is a Gaussian noise similar to [?]

or [?].

The other type of stochastic fractional equation in this dissertation is of the follow-

ing, which is referred as space-time fractional diffusion equation:

⇣

∂

b +
n

2
(�D)a/2

⌘

u(t,x) = au(t,x)Ẇ (t,x), t > 0, x 2 Rd.

The work by Chen and Dalang [?] deals with the case where b = 1, a 2 (1,2].

When b 2 (0,1), a = 2, D is replaced by a general elliptic operator, and Ẇ is a

fractional noise, the equation was studied in [?].

When b 2 (0,1), a = 2 and Ẇ is a fractional noise, the smoothed equation

⇣

∂

b � n

2
D
⌘

u(t,x) = I1�b

t
⇥

u(t,x)Ẇ (t,x)
⇤

3



(see (??) for a generalization) was studied in [?]. In a series of papers [?, ?, ?], Nane

and his coauthors studied the case a 2 (0,2].

The case b 2 (0,1) corresponds to the slow diffusion (subdiffusion). For the fast

diffusion case (super diffusion), i.e., b 2 (1,2), there have been only a few works. Le

Chen has studied in [?] the smoothed equation with a = 2, d = 1 and with space-time

white noise. The corresponding non-smoothed equation is studied recently in [?]. Both

papers [?, ?] deal with the nonlinear equation, i.e., r(u)Ẇ with r being a Lipschitz

function.

Khoshnevisan and Foondun [?] and Song [?] has studied a similar equation with the

a-stable generator (�D)a/2 replaced by a general Lévy generator.

In chapter ?? we consider the general case when both derivatives are fractional and

Ẇ is the general multiplicative noise.

Chapter 3-5 are based on the following papers and draft.

• Le Chen, Guannan Hu, Yaozhong Hu and Jingyu Huang, Space-time fractional

diffusions in Gaussian noisy environment Preprint arXiv:1508.00252, 2015.([?]).

• G. Hu and Y. Hu. Fractional diffusion in Gaussian noisy environment. Mathe-

matics, 2015, 3(2), 131–152. ([?]).

• Stochastic time-fractional diffusion equations with variable coefficients, draft.
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Chapter 2

Preliminaries

2.1 Fractional calculus

Here we give some definitions and basic properties of fractional calculus used in this

dissertation. For detail account of Fractional calculus, we refer the reader to [?].

The following formula is well known.

Z x

a
dx

Z x

a
dx · · ·

Z x

a
f(x)dx =

1
(n�1)!

Z x

a
(x� t)n�1

f(t)dt

Therefore naturally we define the fractional integral the following way.

Definition 2.1.1. Let f(x) 2 L1(a,b). The following integral is called the (left-handed)

Riemann-Liouville fractional integral of order a

(Ia

a+f)(x) :=
1

G(a)

Z x

a

f(t)
(x� t)1�a

dt x > a

From the definition one can check that

Ia

a+Ib

a+f = Ia+b

a+ f a,b > 0.
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Definition 2.1.2. f : [a,b] ! R and a 2 (0,1). The following integral is called the

(left-handed) Riemann-Liouville fractional derivative of order a

(Da

a+ f )(x) :=
1

G(1�a)

d
dx

Z x

a

f (t)
(x� t)a

dt

Denote by AC([a,b]) the absolutely continuous function on [a, b]. Denote f (x) 2

ACn([a,b]) if f (n�1)(x) 2 AC([a,b]).

Theorem 2.1.3. Let f (x)2AC([a,b]). Then Da

a+ exists a.e. for a 2 (0,1). Furthermore

(Da

a+ f )(x) =
1

G(1�a)



f (a)
(x�a)a

+
Z x

a

f 0(t)
(x� t)a

dt
�

For any real number a , denote [a] the integer part of a,{a} the fractional part of

a . If a is not an integer, we define

(Da

a+ f )(x) :=
✓

d
dx

◆[a]

(D{a}
a+ f )(x) =

✓

d
dx

◆[a]+1
(I1�{a}

a+ f )(x) (2.1.1)

Therefore we have

(Da

a+ f )(x) =
1

G(n�a)

✓

d
dx

◆n Z x

a

f (t)
(x� t)a�n+1 dt n = [a]+1

The sufficient condition for the existence of above integral is f (x) 2 AC[a]([a,b])

Definition 2.1.4. For a 2 (0,1), the following is called Caputo derivative.

(∂ a f )(x) :=
1

G(1�a)



d
dx

Z x

a

f (t)
(x� t)a

dt � (x�a)�a f (a)
�

.

6



Let f (x) 2 AC[a]([a,b]) for any non-integer real a . By (??) and integration by parts

we have

(∂ a f )(x) =
1

G(n�a)

Z x

a

f (n)(t)
(x� t)a�n+1 dt, n = [a]+1.

2.2 H function

The H function generalizes many special functions including the Mittag-Leffler func-

tion, and the Wright function.

The Mittag-Leffler function is defined as

E
a,b (z) =

•

Â
k=0

zk

G(ak+b )
,a,b 2 C,¬(a),¬(b )> 0.,

where ¬(a) is the real part of the complex number a . It is as a natural generalization

of ez. As ez is involved with differential equation, Mittag-Leffler function is involved

when using Fourier transform to solve fractional differential equation. The solutions

of fractional differential equation involved in this dissertation are represented via H

function. We rely heavily on the asymptote property and differential formula of H

function to obtain the property of these solutions.

Definition 2.2.1. Let m,n, p,q be integers such that 0  m  q,0  n  p. Let ai,bi 2C

be complex numbers and let a j,b j be positive numbers, i = 1,2, · · · , p; j = 1,2, · · · ,q.

Let assume that the set of poles of the gamma functions G(b j +b js) doesn’t intersect

with that of the gamma functions G(1�ai �ais), namely,

⇢

b jl =
�b j � l

b j
, l = 0,1, · · ·

�

\

⇢

aik =
1�ai + k

ai
,k = 0,1, · · ·

�

= /0
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for all i = 1,2, · · · , p and j = 1,2, · · · ,q. Denote

H mn
pq (s) :=

’m
j=1 G(b j +a js)’n

i=1 G(1�ai �ais)

’p
i=n+1 G(a j +ais)’q

j=m+1 G(1�b j �a js)
.

The Fox H-function

Hm,n
p,q (z)⌘ Hm,n

p,q



z
�

�

�

�

(a1,a1) · · · (ap,ap)

(b1,b1) · · · (bq,bq)

�

is defined by the following integral

Hmn
pq (z) =

1
2pi

Z

L
H mn

pq (s)z�sds , z 2 C , (2.2.1)

where an empty product in (??) means 1 and L in (??) is the infinite contour which

separates all the points b jl to the left and all the points aik to the right of L. Specifically,

L is defined to be one of the following forms:

(1) L = L�• is a left loop situated in a horizontal strip starting at point �•+ if1 and

terminating at point �•+ if2 for some �• < f1 < f2 < •

(2) L = L+• is a right loop situated in a horizontal strip starting at point +•+ if1 and

terminating at point •+ if2 for some �• < f1 < f2 < •

(3) L = Lig• is a contour starting at point g � i• and terminating at point g + i• for

some g 2 (�•,•)

See the corresponding figure as an example of the contour.

8



(1) (2) (3)

We will need the following notations in this section:

a⇤ :=
n

Â
i=1

ai �
p

Â
i=n+1

ai +
m

Â
j=1

b j �
q

Â
j=m+1

b j � 0; (2.2.2)

D :=
q

Â
j=1

b j �
p

Â
i=1

ai � 0; (2.2.3)

d :=
p

’
i=1

a

�ai
i

q

’
j=1

b

�b j
j ; (2.2.4)

µ :=
q

Â
j=1

b j �
p

Â
i=1

ai +
p�q

2
(2.2.5)

Theorem 2.2.2. If the condition

L =L�•, D > 0, z 6= 0; (2.2.6)

L =L�•, D = 0, 0 < |z|< d ; (2.2.7)

L =L+•, D < 0, z 6= 0; (2.2.8)

L =L+•, D = 0, |z|> d ; (2.2.9)

L =Lig•, a⇤ > 0, |argz|< a⇤p

2
, z 6= 0; (2.2.10)

then the integral (??) is well defined.

Furthermore if any of the conditions in Theorem ?? are satisfied, then H-function

?? is a analytic function of z. Specifically we have

9



Theorem 2.2.3. (1) If condition (??) or (??) are satisfied then

Hmn
pq (z) =

m

Â
j=1

•

Â
l=0

Res
s=b jl

[H mn
pq (s)z�s],

(2) If condition (??) or (??) are satisfied then

Hmn
pq (z) =�

n

Â
i=1

•

Â
k=0

Res
s=aik

[H mn
pq (s)z�s],

(3) If condition (??) is satisfied then H-function ?? is a analytic function of z on

|argz|< a⇤p

2 .

In this dissertation we mainly use the Theorem ?? to the following two special

cases.

D � 0 L = L�•, and a⇤ � 0 L = Lig•.

Based on Theorem ??, we have the following asymptotic expansions of the H-

functions at • and 0.

Let’s first consider the case where the poles of G(b j +b js) :

b jl :=�
b j +1

b j
, j = 1, · · · ,m; l = 0,1,2, · · ·

do not coincide, namely

8i, j, b j(bi + k) 6= bi(b j + l), i 6= j; i, j = 1.2, · · ·m; k, l = 0,1, · · · ;

(2.2.11)

In this case, we apply the case 1 of Theorem ?? and the property of gamma function

G(z). We have

Res
s=b jl

[H mn
pq (s)z�s] = h⇤jlz

�b jl ,

10



where

h⇤jl :=
(�1)l

l!b j

’m
i=1,i 6= j G

⇣

bi � [b j + l] bi
b j

⌘

’n
i=1 G

⇣

1�ai +[b j + l]ai
b j

⌘

’p
i=n+1 G

⇣

ai � [b j + l]ai
b j

⌘

’q
i=m+1 G

⇣

1�bi +[b j + l] bi
b j

⌘ . (2.2.12)

Thus we have the asymptote expansion of Hmn
pq (z) at 0.

Denote A ⇠ B, if lim
z!0

A
B
=C, where C is a constant.

Theorem 2.2.4. Suppose Hmn
pq (z) satisfies either D < 0,a⇤ > 0 or D � 0. When z ! 0,

we have

Hmn
pq (z)⇠

m

Â
j=1

•

Â
l=0

h⇤jlz
b j+l

b j , (2.2.13)

if the poles of G(b j +b js) :

b jl :=�
b j +1

b j
, j = 1, · · · ,m; l = 0,1,2, · · ·

do not coincide. (See (??)).

Similarly if the poles of G(1�ai +ais) do not coincide, namely

8i, j, a j(1�ai+k) 6= ai(1�a j+ l), i 6= j; i, j = 1.2, · · ·m; k, l = 0,1, · · · .

(2.2.14)

Using the case 2 of Theorem ??, we have the following asymptote expansion of Hmn
pq (z)

at •

Theorem 2.2.5. Suppose Hmn
pq (z) satisfies either D < 0,a⇤ > 0 or D � 0. When z ! •,

we have

Hmn
pq (z)⇠

n

Â
i=1

•

Â
k=0

hikz
ai�1�k

ai , (2.2.15)

if the poles of G(1�ai +ais) do not coincide.(See (??))

11



Here

hik :=
(�1)k

k!ai

’m
j=1 G

⇣

b j +[1�ai + k]b j
ai

⌘

’n
j=1,i6= j G

⇣

1�a j � [1�ai + k]a j
ai

⌘

’p
j=n+1 G

⇣

a j +[1�ai + k]a j
ai

⌘

’q
j=m+1 G

⇣

1�b j � [1�ai + k]b j
ai

⌘ .

(2.2.16)

Now let’s consider the case when poles of G(b j +b js) coincide. Suppose the order

of the pole b is N⇤. Then

Res
s=b

[H mn
pq (s)z�s] =

1
(N⇤ �1)!

lim
s!b

[(s�b)N⇤
H mn

pq (s)z�s](N
⇤�1)

Using the Leibniz rule to calculate above N⇤ �1 order derivative. We have

[(s�b)N⇤
H mn

pq (s)z�s](N
⇤�1)

= z�s
N⇤�1

Â
i=0

(

N⇤�1

Â
n=i

(�1)i
✓

N⇤ �1
n

◆✓

n
i

◆

[H ⇤
1 (s)](N

⇤�1�n)[H ⇤
2 (s)](n�i)

)

[logz]i,

(2.2.17)

where

H ⇤
1 (s)= (s�b)N⇤

jN⇤

’
j= j1

G(b j+b js) and H ⇤
2 (s)= (s�b)N⇤

jN⇤

’
j= j1

G(b j+b js)H mn
pq (s).

(2.2.18)

Therefore we have

Res
s=b

[H mn
pq (s)z�s] = z

b j+l
b j

N⇤
jl�1

Â
i=0

H⇤
jli[logz]i,

12



where

H⇤
jli =

1
(N⇤

jl �1)!

N⇤
jl�1

Â
n=i

(�1)i
✓

N⇤
jl �1
n

◆✓

n
i

◆

[H ⇤
1 (b jl)]

(N⇤
jl�1�n)[H ⇤

2 (b jl)]
(n�i).

(2.2.19)

Thus we have

Theorem 2.2.6. Suppose Hmn
pq (z) satisfies either D < 0,a⇤ > 0 or D � 0. When z ! 0,

we have

Hmn
pq (z)⇠ Â0

j,l h⇤jlz
b j+l

b j +Â00
j,l

N⇤
jl�1

Â
i=0

H⇤
jliz

b j+l
b j [logz]i, (2.2.20)

if the poles of G(b j +b js) coincide. Here Â0
j,l is summation over j, l such that the b jl

do not coincides; Â00
j,l is the summation over j, l such that b jl coincide with order N⇤

jl;

If the poles of G(1� ai +ais) coincides, we have the a counterpart of Theorem

?? for the case when the poles of G(1� ai +ais) coincides. We don’t include it here

because this case does not apply to the H function in this dissertation. For a detailed

account of above theorems, we refer to [?].

13



Chapter 3

Space-time fractional diffusions in Gaussian noisy

environment

3.1 Introduction

We consider the following linear stochastic partial differential equation of fractional

orders both in time and space variables:

8

>

>

>

<

>

>

>

:

⇣

∂

b +
n

2
(�D)a/2

⌘

u(t,x) = au(t,x)Ẇ (t,x), t > 0, x 2 Rd,

∂

k

∂ tk u(t,x)
�

�

�

�

t=0
= uk(x), 0  k  dbe�1, x 2 Rd,

(3.1.1)

with b 2 (1/2,2) and a 2 (0,2], where dbe is the smallest integer greater than or equal

to b . We limit our consideration to the above parameter ranges of b and a since we

plan to use some particular properties of the corresponding Fox H-functions which will

be proved only for these parameter ranges. Now let us give more detailed explanation

on the terms appeared in the above equation. The fractional derivative in time ∂

b =
∂

b

∂ tb

14



is understood in the Caputo sense:

∂

b f (t) :=

8

>

>

>

<

>

>

>

:

1
G(m�b )

Z t

0

f (m)(t)

(t � t)b+1�m dt if m�1 < b < m ,

dm

dtm f (t) if b = m ,

where t � 0. D =
d

Â
i=1

∂

2

∂x2
i

is the Laplacian with respect to spatial variables and (�D)a/2

is the fractional Laplacian. Ẇ is a zero mean Gaussian noise with the following covari-

ance structure

E(Ẇ (t,x)Ẇ (s,y)) = l (t � s)L(x� y),

where both (possibly generalized) functions g and L are assumed to be nonnegative

and nonnegative definite. We denote by µ the Fourier transformation measure of L(x).

Namely,

L(x� y) =
1

(2p)d

Z

Rd
eix (x�y)

µ(dx ) .

This Fourier transform is understood in distributional sense (see Section 2). When

l (t) = d0(t) and L(x) = d0(x), this noise Ẇ reduces to the space-time white noise.

n > 0 and a are some real valued parameters. The given initial conditions uk(x) are

assumed to be continuous and bounded functions. The product u(t,x)Ẇ (t,x) in the

equation (??) is the Wick one (see e.g. [?]). So, the equation will be understood in

the Skorohod sense. Let us point out that some of our results can also be extended

to nonlinear equation (namely, replace u(t,x)Ẇ (t,x) in (??) by s(u(t,x))Ẇ (t,x) for a

Lipschitz nonlinear function s ). However, we limit ourselves to this linear case for two

reasons: One is to simplify the presentation and to better explain the ideas and the other

one is that we want to use chaos expansion method.
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The deterministic counterparts of the equation (??) have received many attentions

and are called anormalous diffusions. They appeared in biological physics and other

fields. Equation (??) is an anormalous diffusion in a Gaussian noisy environment. More

detailed motivations for the study of this type of equations are given in [?, ?, ?, ?].

To study the equation (??) the important tools are the fundamental solutions corre-

sponding to its deterministic counterpart. Let us briefly recall them. If f is a continuous

and bounded function on R+⇥Rd , then there are two fundamental solutions

Z(t,x) := Z
a,b ,d(t,x) and Y (t,x) := Y

a,b ,d(t,x)

such that the solution u(t,x) to the following deterministic equation (the deterministic

counterpart of (??))

8

>

>

>

<

>

>

>

:

⇣

∂

b +
n

2
(�D)a/2

⌘

u(t,x) = f (t,x), t > 0, x 2 Rd,

∂

k

∂ tk u(t,x)
�

�

�

�

t=0
= uk(x), 0  k  dbe�1, x 2 Rd,

(3.1.2)

is represented by

u(t,x) = J0(t,x)+
Z t

0
ds
Z

Rd
dy f (s,y)Y (t � s,x� y), (3.1.3)

where and throughout the chapter, we denote

J0(t,x) :=
dbe�1

Â
k=0

Z

Rd
udbe�1�k(y)∂

kZ(t,x� y)dy . (3.1.4)

Here, we recall the notation ∂

k = ∂

k

∂ tk , k 2 N.
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This motivates us to study the mild solution to (??) (see e.g. Definition ?? below),

namely, the solution to the following stochastic integral equation:

u(t,x) = J0(t,x)+
Z t

0

Z

Rd
Y (t � s,x� y)u(s,y)W (ds,dy). (3.1.5)

As in the classical case, the above equation can be studied by using the Itô-Wiener chaos

expansion. To this end we need to understand well the two fundamental solutions Z and

Y . In particular, we need their nonnegativity and some heat kernel like estimates.

The nonnegativity of some Z’s is known. However, since Y is the Riemann-Liouville

fractional derivative of Z, its nonnegativity is a challenging problem. There have been

only few results: As proved in Lemma 25 of [?], Y2,b ,d with b 2 (1,2) is nonnegative

if and only if d  3. The one dimensional case is proved in [?], namely, DtZ
a,b ,1, and

hence Y
a,b ,1, is nonnegative either if 1 < b  a  2, or if a 2 (0,1] and b 2 (0,2).

Here, we willshow the nonnegativity of Y in the following three cases:

8

>

>

>

>

>

<

>

>

>

>

>

:

a 2 (0,2], b 2 (1/2,1), d 2 N,

a 2 (0,2], b 2 (1,a), d = 1,

a = 2, b 2 (1,2), d = 2,3.

(3.1.6)

This includes the above mentioned results as special cases. Let us also point out that

for the smoothed SPDE, only the fundamental solution Z is needed, which is usually

more regular than the fundamental solution Y .

When b = 1 and a = 2, to show the solution of (??) is square integrable, it is

assumed in [?] and [?] that the covariance of noise satisfies the following conditions:

(i) g is locally integrable;

(ii) Dalang’s condition
Z

Rd

µ(dx )

1+ |x |2 < • is satisfied (see also [?, ?]).
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For the existence and uniqueness of the solution to the general equation (??), Dalang’s

condition will be replaced by the following condition:

Z

Rd

µ(dx )

1+ |x |2a�a/b

< • . (3.1.7)

It is obvious that if it is formally set a = 2 and b = 1, then (??) is reduced to the usual

Dalang’s condition.

The remaining part of the chapter is organized as follows. We first specify the noise

structure and present the definition of the solution in Section ??. The main results

are Theorem ?? on the existence and uniqueness of the mild solution and Theorem

?? on the moment bounds of the solution stated in Section ??. The proof of these

two theorems are based on some properties of the fundamental solutions represented

in terms of the Fox H-functions. These results themselves are of particular interest

and importance. We also list them as Theorem ?? and Theorem ?? in Section ??. The

properties of the fundamental solutions (Theorem ??) are proved in Section ?? by using

the Fox H-functions. In Section ??, we obtain an expression of the density function

for the d-dimensional spherically symmetric a-stable distribution - an auxiliary result

(Theorem ??) which is used in the proof of Theorem ??. The existence and uniqueness

result (Theorem ??) of the solution to (??) is proved in Section ??. In Section ??, we

prove the explicit moment bounds when L is the Riesz kernel.

Our main results (Theorem ??) assume that the fundamental solutions are nonneg-

ative. However, when 1 < b < 2 and when the dimension is high, the nonnegativity of

the fundamental solution Y is not known yet. In this case, we shall show in Theorem ??

the existence and uniqueness of the solution of (??) for some specific Gaussian noise

whose covariance function L is the Riesz kernel.
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3.2 Preliminaries

Let us start by introducing some basic notions on Fourier transforms. The space of

real-valued infinitely differentiable functions on Rd with compact support is denoted

by D(Rd) or D . The space of Schwartz functions is denoted by S (Rd) or S . Its

dual, the space of tempered distributions, is denoted by S 0(Rd) or S 0. The Fourier

transform is defined with the normalization

Fu(x ) =
Z

Rd
e�ix ·xu(x)dx,

so that the inverse Fourier transform is given by F�1u(x ) = (2p)�dFu(�x ).

Similarly to [?], on a complete probability space (W,F ,P) we consider a Gaussian

noise W encoded by a centered Gaussian family {W (j); j 2 D(R+ ⇥Rd)}, whose

covariance structure is given by

E(W (j)W (y)) =
Z

R2
+⇥R2d

j(s,x)y(t,y)l (s� t)L(x� y)dxdydsdt, (3.2.1)

where l : R!R+ and L : Rd !R+ are nonnegative definite functions and the Fourier

transform FL = µ such that µ(dx ) is a tempered measure, that is, there is an integer

m � 1 such that
R

Rd(1+ |x |2)�m
µ(dx ) < •. Throughout the paper, we assume that l

is locally integrable and we denote

Ct := 2
Z t

0
l (s)ds, t > 0. (3.2.2)

Let H be the completion of D(R+⇥Rd) endowed with the inner product

hj,yiH =
Z

R2
+⇥R2d

j(s,x)y(t,y)l (s� t)L(x� y)dxdydsdt (3.2.3)
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=
1

(2p)d

Z

R2
+⇥Rd

Fj(s,x )Fy(t,x )l (s� t)µ(dx )dsdt,

where Fj refers to the Fourier transform with respect to the space variable only. The

mapping j ! W (j) defined on D(R+ ⇥Rd) can be extended to a linear isometry

between H and the Gaussian space spanned by W . We will denote this isometry by

W (f) =
Z •

0

Z

Rd
f(t,x)W (dt,dx), for f 2 H .

Notice that if f and y are in H , then E(W (f)W (y)) = hf ,yiH .

We will denote by D the derivative operator in the sense of Malliavin calculus. That

is, if F is a smooth and cylindrical random variable of the form

F = f (W (f1), . . . ,W (fn)) ,

with fi 2 H , f 2 C•
p (Rn) (namely f and all its partial derivatives have polynomial

growth), then DF is the H -valued random variable defined by

DF =
n

Â
j=1

∂ f
∂x j

(W (f1), . . . ,W (fn))f j .

The operator D is closable from L2(W) into L2(W;H ) and we define the Sobolev space

D1,2 as the closure of the space of smooth and cylindrical random variables under the

norm

kFk1,2 =
q

E[F2]+E[kDFk2
H ] .

We denote by d the adjoint of the derivative operator given by the duality formula

E(d (u)F) = E(hDF,uiH ) , (3.2.4)
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for all F 2 D1,2 and any element u 2 L2(W;H ) in the domain of d . The operator

d is also called the Skorohod integral because in the case of the Brownian motion, it

coincides with an extension of the Itô integral introduced by Skorohod. We refer to

Nualart [?] for a detailed account of the Malliavin calculus with respect to a Gaussian

process.

With the Skorohod integral introduced, the definition of the solution to equation

(??) can be stated as follows.

Definition 3.2.1. Let Z and Y be the fundamental solutions defined by (??) and (??).

An adapted random field {u = u(t,x) : t � 0,x 2 Rd} such that E
⇥

u2(t,x)
⇤

< +• for

all (t,x) is a mild solution to (??), if for all (t,x) 2 R+⇥Rd , the process

n

Y (t � s,x� y)u(s,y)1[0,t](s) : s � 0, y 2 Rd
o

is Skorohod integrable (see (??)), and u satisfies

u(t,x) = J0(t,x)+
Z t

0

Z

Rd
Y (t � s,x� y)u(s,y)W (ds,dy) (3.2.5)

almost surely for all (t,x) 2 R+⇥Rd , where J0(t,x) is defined by (??).

The main ingredient in proving the existence and uniqueness of the solution is the

Wiener chaos expansion, to which we now turn.

Suppose that u = {u(t,x); t � 0,x 2 Rd} is a square integrable solution to equation

(??). Then for all fixed (t,x) the random variable u(t,x) admits the following Wiener

chaos expansion

u(t,x) =
•

Â
n=0

In( fn(·, ·, t,x)) , (3.2.6)

where for each (t,x), fn(·, ·, t,x) is a symmetric element in H ⌦n. Then, as in [?, ?, ?],

to show the existence and uniqueness of the solution it suffices to show that for all (t,x)
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we have
•

Â
n=0

n!k fn(·, ·, t,x)k2
H ⌦n < • . (3.2.7)

For some technical reason, we will assume, throughout the paper, the following

properties on L:

• L(x) : Rd ! [0,•] is a continuous function, where [0,•] is the usual one-point

compactification of [0,•).

• L(x)< • if and only if x 6= 0 or F (L)(x ) 2 L•(Rd) and L(x)< • when x 6= 0.

With these two assumptions, according to Lemma 5.6 in [?], for any Borel probability

measures µ1(dx) and µ2(dx), the following identity holds,

Z

Rd

Z

Rd
L(x� y)n1(dx)n2(dy) =

1
(2p)d

Z

Rd
F µ1(x )F µ2(x )µ(dx ) . (3.2.8)

In particular, the above result can be applied to the case when µ1(dx) = f1(x)dx and

µ2(dx) = f2(x)dx for two nonnegative functions f1 and f2 2 L1(Rd).

3.3 Main results

3.3.1 Fundamental solutions: formulas and nonnegativity

Our first result is concerned with the fundamental solutions to (??) stated in the follow-

ing theorem. We need the two parameter Mittag-Leffler function E
a,b (z):

E
a,b (z) :=

•

Â
n=0

zn

G(an+b )
, ¬(a)> 0, b 2 C, z 2 C , (3.3.1)
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where ¬(a) is the real part of the complex number a . When b = 1, we also write

E
a

(z) := E
a,1(z). The H-functions appearing in the following theorem and their prop-

erties are given in Chapter 2, section H function.

Theorem 3.3.1. The fundamental solutions to (??) are given by

Z(t,x) := Z
a,b ,d(t,x) = p

�d/2tdbe�1|x|�dH2,1
2,3

✓

|x|a

2a�1
ntb

�

�

�

�

(1,1), (dbe,b )
(d/2,a/2), (1,1), (1,a/2)

◆

(3.3.2)

and

Y (t,x) := Y
a,b ,d(t,x) = p

�d/2|x|�dtb�1H2,1
2,3

✓

|x|a

2a�1
ntb

�

�

�

�

(1,1), (b ,b )

(d/2,a/2), (1,1), (1,a/2)

◆

.

(3.3.3)

If b 2 (1,2), then

Z⇤(t,x) := Z⇤
a,b ,d(t,x) =

d
dt

Z
a,b ,d(t,x) = p

�d/2|x|�dH2,1
2,3

✓

|x|a

2a�1
ntb

�

�

�

�

(1,1), (1,b )

(d/2,a/2), (1,1), (1,a/2)

◆

.

(3.3.4)

The Fourier transforms of the fundamental solutions are given by the following:

FZ(t, ·)(x ) = tdbe�1E
b ,dbe(�2�1

ntb |x |a), (3.3.5)

FY (t, ·)(x ) = tb�1E
b ,b (�2�1

ntb |x |a), (3.3.6)

FZ⇤(t, ·)(x ) = E
b

(�2�1
ntb |x |a), if b 2 (1,2); (3.3.7)

Moreover, we have the following results on the positivity of the fundamental solutions.

(a) If b 2 (0,1], d 2 N and a 2 (0,2], then both Z(t,x) and Y (t,x) are nonnegative;
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(b) If b 2 (1,2), d 2 {2,3}, and a = 2, then both Z(t,x) and Y (t,x) are nonnegative;

(c) If b 2 (1,2), d = 1 and a 2 [b ,2], then all Z(t,x), Y (t,x) and Z⇤(t,x) are nonneg-

ative.

The proof of this theorem is given in Section ??.

Remark 3.3.2. Here are some known special cases:

(1) When a = 2 and b 2 (0,1), it is proved in [?, ?] and in [?], respectively, that

Z0(t,x) = p

�d/2|x|�dH2,0
1,2

✓

|x|2

2ntb

�

�

�

�

(1,b )

(d/2,1),(1,1)

◆

, (3.3.8)

and

Y0(t,x) = p

�d/2|x|�dtb�1H2,0
1,2

✓

|x|2

2ntb

�

�

�

�

(b ,b )

(d/2,1),(1,1)

◆

, (3.3.9)

which correspond to our Z2,b ,d(t,x) and Y2,b ,d(t,x), respectively. The equivalence

is clear by applying Property 2.2 of [?]. For Z2,b ,d , see also [?, Chapter 6].

(2) When a = 2 and b 2 (0,2), it is proved in [?] that

G
b ,d(t,x) = p

�d/2|x|�dtb�1H2,0
1,2

✓

|x|2

4tb

�

�

�

�

(b ,b )

(d/2,1),(1,1)

◆

, (3.3.10)

which corresponds to our Y2,b ,d with n = 2.

(3) In [?], the fundamental solution Z⇤
a,b ,d(t,x) has been studied for all a,b 2 (0,2)

and d = 1. From the Mellin-Barnes integral representation (6.6) of [?], we see that

the reduced Green’s function of [?] can be expressed by using the Fox H-function:

Kq

a,b (x) =
1
|x|H

2,1
3,3

✓

|x|a
�

�

�

�

(1,1), (1,b ), (1,a�q

2 )

(1,1), (1,a), (1,a�q

2 )

◆

, x 2 R, (3.3.11)
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where a and b have the same meaning as in this paper and q is the skewness:

|q |  min(a,2�a). For the symmetric a-stable case, i.e., q = 0, this expression

can be simplified by using the definition of the Fox H-function and the fact that

(see, e.g., [?, 5.5.5])

G(1+as)
G(1+as/2)

=
1p
p

2asG(1/2+as/2). (3.3.12)

Hence,

K0
a,b (x) =

1p
p|x|

H2,1
2,3

⇣

(|x|/2)a

�

�

�

(1,1), (1,b )

(1/2,a/2), (1,1), (1,a/2)

⌘

, x 2 R. (3.3.13)

This implies that the fundamental solution in [?, (1.3)]

G0
a,b (x, t) = t�b/aK0

a,b (t
�b/ax) =

1p
p|x|

H2,1
2,3

✓

|x|a

2atb

�

�

�

�

(1,1), (1,b )

(1/2,a/2), (1,1), (1,a/2)

◆

corresponds to our Z⇤
a,b ,1(t,x) with n = 2.

The proof of the nonnegativity part in Theorem ?? requires a representation of the

spherically symmetric a-stable distribution from the Fox H-function, which is of inter-

est by itself. The one-dimensional case can be found in [?]; see Remark ?? below.

Theorem 3.3.3. Let X be a centered, d-dimensional spherically symmetric a-stable

random variable with a 2 (0,2]. Then the characteristic function and the density of X

are, respectively,

f
a,d(x ) = exp(�|x |a) , x 2 Rd, (3.3.14)
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and

r

a,d(x) = p

�d/2|x|�dH1,1
1,2

⇣

(|x|/2)a

�

�

�

(1,1)

(d/2,a/2), (1,a/2)

⌘

, x 2 Rd. (3.3.15)

The proof of this theorem is given in Section ??.

Remark 3.3.4. When d = 1, the formula (??) yields a result in [?]. In particular, as

proved in [?] (see (??)), when d = 1, we have

r

a,1(x)= |x|�1H1,1
2,2

⇣

|x|a
�

�

�

(1,1), (1,a/2)

(1,a), (1,a/2)

⌘

= p

�1/2|x|�1H1,1
1,2

⇣

(|x|/2)a

�

�

�

(1,1)

(1/2,a/2), (1,a/2)

⌘

,

where the second equality is due to (??) and the definition of the Fox H-function.

3.3.2 Existence and uniqueness of solutions to the SPDE

The following is one of the main theorem of the paper.

Theorem 3.3.5. Assume the following conditions.

(1) Y
a,b ,d(t,x) is nonnegative;

(2) b 2 (1/2,2) and a 2 (0,2];

(3) g is locally integrable;

(4) µ satisfies Dalang’s condition (??);

(5) The initial conditions are such that for all t > 0,

bCt := sup
y2Rd , s2[0,t]

|J0(s,y)|<+•. (3.3.16)
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Then relation (??) holds for each (t,x). Consequently, equation (??) admits a unique

mild solution in the sense of Definition ??.

The proof of this theorem is given in Section ??.

Remark 3.3.6. From Theorem ??, it follows that the three cases in (??) satisfy the

above assumptions (1) and (2). Moreover, if uk 2 L•(Rd) for the first two cases in (??),

or if u0 2 L•(Rd) and u1(x)⌘ u1 is a constant for the last case in (??), then by Lemma

?? below,

|J0(t,x)| ||u0||L•(Rd) + tb�1 ||u1||L•(Rd) 1{b>1}.

Hence the assumption (5) is also satisfied. The Dalang condition (??) imposes a further

restriction on the possible values of (a,b ) due to the spatial correlation L(x).

Remark 3.3.7 (Space-time white noise case). When the noise Ẇ is a space-time white

noise, i.e., l (t) = d0(t) and L(x) = d0(x), then Dalang’s condition (??) becomes

d
a

+
1
b

< 2. (3.3.17)

This condition implies that b > 1/2. In particular, if a = 2 and d = 1, then (??) reduces

to

b > 2/3 ,

which recovers the condition in [?] and [?, Section 5.2]. If b = 1 and d = 1, then this

condition becomes

a > 1 , (3.3.18)

which recovers the condition in [?].
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3.3.3 The smoothed equation

The methodology used in the proof of Theorem ?? can also be used to study the fol-

lowing equation

⇣

∂

b +
n

2
(�D)

a

2

⌘

u(t,x) = Idbe�b

t
⇥

u(t,x)Ẇ (t,x)
⇤

, (3.3.19)

with the same initial conditions as (??). Here Ib

t is the Riemann-Liouville fractional

integral of order b (with an abuse of the notation b ):

Ib

t f (t) =
1

G(b )

Z t

0
(t � s)b�1 f (s)ds, for t > 0 and b > 0 .

Due to the fractional integral in equation (??) which plays a smoothing role, the mild

formulation for the solution can be expressed by using Z(t,x) only, namely,

u(t,x) = J0(t,x)+
Z t

0

Z

Rd
Z(t � s,x� y)u(s,y)W (ds,dy) . (3.3.20)

Then, using the same procedure as in the proof of Theorem ??, we have the following

result.

Theorem 3.3.8. Assume the conditions (3) and (5) in Theorem ?? and the other condi-

tions are replaced by the following.

(1’) Z
a,b ,d(t,x) is nonnegative;

(2’) b 2 (1/2,1][ (3/2,2) and a 2 (0,2];

(4’) µ satisfies
Z

Rd

µ(dx )

1+ |x |a(2dbe�1)/b

< • . (3.3.21)
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Then relation (??) holds for each (t,x). Consequently, the smoothed equation (??)

admits a unique mild solution in the sense of Definition ?? with Y replaced by Z.

Remark 3.3.9. The condition (1’) is different and is usually easier to verify than

the condition (1) in Theorem ??. When b 2 (1/2,1], the condition (??) becomes
R

Rd
µ(dx )

1+|x |a/b

< • which is also weaker than (??) (since b  1). When b 2 (3/2,2),

the condition (??) becomes
R

Rd
µ(dx )

1+|x |3a/b

< • which is also weaker than (??) (since

b < 2).

The proof is essentially the same as that for Theorem ??, the only change in the

proof worthy to be pointed out is that instead of computing the integral

Z •

0
w2(dbe�1)E2

b ,dbe(�2�1
nwb |x |a)dw ,

we now need to compute the integral

Z •

0
w2(dbe�1)E2

b ,dbe(�2�1
nwb |x |a)dw =

(2/n)(2dbe�1)/b

|x |a(2dbe�1)/b

Z •

0

1
b

s
1
b

(2dbe�b�1)E2
b ,dbe(�ns)ds

=
C

|x |a(2dbe�1)/b

. (3.3.22)

The integrability condition of the above equation at zero and at infinity implies that

b > 0 and b 2 (1/2,1][ (3/2,2] (which is equivalent to dbe< b +1/2), respectively.

Note that this condition on b is more restrictive than the condition b 2 (0,2) in [?].

Remark 3.3.10 (Space-time white noise case). When the noise Ẇ is a space-time white

(namely µ(dx ) = dx ), then Dalang’s condition (??) becomes

d < a(2dbe�1)/b or
d
a

+
1
b

<
2dbe

b

. (3.3.23)
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In particular, if a = 2 and d = 1, then this condition reduces to b < 2. If b = 1 and

d = 1, then this condition becomes (??), which recovers the condition in [?].

3.3.4 Moment bounds

In this subsection we give some upper bounds for the p-th moment and the lower bound

of the second moment of the solution for some specific choice of the covariance kernel.

Theorem 3.3.11. Assume the following conditions.

(1) The initial conditions satisfy condition (5) of Theorem ??;

(2) (a,b ,d) satisfies one of the three conditions in (??);

(3) L(x) = |x|�k , x 2 Rd with

0 < k < min(2a �a/b ,d).

Then the solution u(t,x) to (??) satisfies that for all p � 1,

E [u(t,x)p]Cp
bCp

t exp
✓

t(C
k

Ct eCC⇤(2/n)k/a(2p)�d)
a

2ab�a�bk p
2ab�bk

2ab�a�bk

◆

, (3.3.24)

where Ct and bCt are defined in (??) and (??), respectively, C =C(a,b ,k)> 0, and

C⇤ = G(2b �1�bk/a) and eC =
Z

Rd
E2

b ,b (�|x |a)|x |k�ddx ,

and C
k

appears in the Fourier transform of |x|�k , i.e., µ(dx ) =C
k

|x |k�d.
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In particular, if g is the Dirac delta function and if initial data u0(x) ⌘ u0 > 0 is a

constant and u1 ⌘ 0 when b > 1, then for some constant c = c(a,b ,k)> 0,

E
⇥

|u(t,x)|2
⇤

� c u2
0 exp

⇣

t (C
k

eC(4p)�dC⇤ (2/n)k/a)
1

2b�1�bk/a

⌘

, (3.3.25)

The proof of this theorem is given in Section ??. The same method can be used to

obtain the moment bound for the solution to the smoothed equation (??).

Remark 3.3.12. When b = 1 and a = 2, the equation (??) is reduced to the multiplica-

tive stochastic heat equation (1.1) considered in [?]. In this case the exponent of p in

(??) becomes
2ab �bk

2ab �a �bk

=
4�k

2�k

,

which is the same as in [?, Theorem 6.1, inequality (6.1)] (with k = a). If we assume

g(t) = t�b̃ , then Ct =Ct�b̃+1. The exponent of t in (??) is

1+(�b̃ +1)
✓

a

2ab �a �bk

◆

=
4�2b̃ �k

2�k

which is the same exponent of t as in [?], inequality (6.1). Hence, we conjecture that

the bound (??) is sharp.

Theorem 3.3.13. Under the conditions (1), (2) of Theorem ?? and

(3’) L(x) = |x|�k , x 2 Rd with

0 < k < min(a/b ,d).
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Then the solution u(t,x) to the smoothed equation (??) satisfies that for all p � 1,

E [u(t,x)p]Cp
bCp

t exp
✓

t
h

C
k

CtC̄C#(2/n)k/a

i

a

2adbe�a�bk p
2adbe�bk

2adbe�a�bk

◆

, (3.3.26)

where C =C(a,b ,k)> 0, bCt is defined in (??),

C# = G(2dbe�1�bk/a) and C̄ =
Z

Rd
E

b ,dbe(�|h |a)|h |k�ddh ,

and C
k

is as defined in Theorem ??. In particular, if g is the Dirac delta function and

if initial data u0(x) ⌘ u0 > 0 is a constant and u1 ⌘ 0 when b > 1, , then for some

constant c = c(a,b ,k)> 0,

E
⇥

|u(t,x)|2
⇤

� c u2
0 exp

✓

t
h

C
k

C̄(4p)�dC#(2/n)k/a

i

1
2b�1�bk/a

◆

. (3.3.27)

The proof of this theorem is a line-by-line change of the proof of Theorem ??, and

we leave it to the interested reader.

3.3.5 Case 1 < b < 2 and d � 2

When 1 < b < 2 and a 6= 2, we could not show the nonnegativity of Y (t,x) for high

dimension (d � 2) (see Theorem ?? (b)). However, with a slightly different approach,

it is possible to obtain similar results (to Theorem ??) for Riesz kernels. Here is the

main theorem of this subsection.

Theorem 3.3.14. Assume the conditions (2), (3) and (5) of Theorem ??, and assume

(4’) L(x) = |x|�k , x 2 Rd with

0 < k < min(2a �a/b ,d).
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Then relation (??) holds for each (t,x). Consequently, equation (??) admits a unique

mild solution in the sense of Definition ??.

This theorem is proved in Section ??.

Remark 3.3.15. It is easy to see that the condition L(x)= |x|�k with 0< k < 2a�a/b

implies Dalang’s condition (??). Condition k < d is to guarantee that L is a locally

integrable function.

3.4 Fox H-functions: Some proofs

3.4.1 Proof of Theorem ??

The proof of Theorem ?? will be based on following lemmas.

Lemma 3.4.1. The function Z
a,b ,d(t,x) has the Fourier transform given by (??).

Proof. The proof needs the following relation between the Mittag-Leffler function and

the Fox H-function (see [?, (2.9.27)]):

E
r,µ(x) = H1,1

1,2

⇣

�x
�

�

�

(0,1)

(0,1), (1�µ,r)

⌘

. (3.4.1)

The case where b 2 (0,1], a = 2 and d 2 N can be found in [?, Section 4] or [?]. For

b 2 (0,1] and for general a , one can simply replace |x |2 by |x |a in the argument of

[?, Section 4] and then use (??) to obtain (??). The case where d = 1, b 2 (0,2), and

a 2 (0,2) is proved by [?]. For the general case, denote m = dbe� 1. We know that

Z
a,b ,d solves

⇣

∂

b +
n

2
(�D)a/2

⌘

u(t,x) = 0,
∂

m

∂ tm u(t,x)
�

�

�

�

t=0
= d0(x).
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Hence, the Fourier transform of Z
a,b ,d satisfies

∂

b FZ(t, ·)(x ) =�n

2
|x |aFZ(t, ·)(x ), ∂

m

∂ tm FZ(t, ·)(x )
�

�

�

�

t=0
= 1.

This equation can be solved explicitly (see, e.g., [?, Theorem 7.2, on p. 135]) as

FZ(t, ·)(x ) = Im
t E

b

(�n |x |atb/2),

which gives immediately (??) when m = 0. When m = 1, the integral can be evaluated

by [?, (1.99)] to give

FZ(t, ·)(x ) = tE
b ,2(�n |x |2tb/2).

This completes the proof of Lemma ??.

Lemma 3.4.2. The function Z
a,b ,d(t,x) can be expressed in (??).

Proof. Following Lemma ??, we need to compute the inverse Fourier transform of

(??). Instead of finding the inverse Fourier transform, it turns out that it is easier to

verify that the Fourier transform of (??) is equal to the right hand side of (??). Let now

Z be defined by (??).

Case I d = 1. Notice that x 7! Z(t,x) is an even function. We have that

FZ(t, ·)(x ) = 2p

�1/2tdbe�1
Z •

0
dxx�1H2,1

2,3

✓

xa

2a�1
ntb

�

�

�

�

(1,1), (dbe,b )
(1/2,a/2), (1,1), (1,a/2)

◆

cos(xx ).

Write the cos(·) function in the Fox H-function form by using (2.9.8) and Property 2.4

of [?]. We have

FZ
a,b (t, ·)(x ) = tdbe�1

Z •

0
dx x�1H2,1

2,3

✓

xa

2a�1
ntb

�

�

�

�

(1,1), (dbe,b )
(1/2,a/2), (1,1), (1,a/2)

◆
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⇥H1,0
0,2

⇣

x|x |/2
�

�

� (0,1/2), (1/2,1/2)

⌘

.

Now apply [?, Theorem 2.9 on p. 56]. We need to check the conditions there. The

condition a⇤ > 0 (see (??) for the definition of a⇤) imposes that b < 2. Note that since

both ntb and x are real numbers, a⇤0 = 0 is allowed (see the paragraph before Theorem

2.10 of [?]). Hence,

FZ(t, ·)(x ) = tdbe�1H2,2
4,3

✓

2
⇣

ntb |x |a
⌘�1

�

�

�

�

(1,1), (1,a/2), (1/2,a/2), (dbe,b )
(1/2,a/2), (1,1), (1,a/2)

◆

= tdbe�1H1,1
1,2

⇣

2�1
ntb |x |a

�

�

�

(0,1)

(0,1), (1�dbe,b )

⌘

,

where the second equality follows from [?, Properties 2.2 and 2.4]. This proves the

lemma when d = 1.

Case II d � 2. Because the function x 7! Z
a,b ,d(t,x) is a radial function, by [?, The-

orem 3.3 on p. 155],

FZ(t, ·)(x )= 2d/2tdbe�1|x |
Z •

0
dxH2,1

2,3

✓

xa

2a�1
ntb

�

�

�

�

(1,1), (dbe,b )
(1/2,a/2), (1,1), (1,a/2)

◆

J(d�2)/2(x|x |)(|x |x)�d/2,

where J
n

(x) is the Bessel function of the first kind. Then we can apply Corollary 2.5.1

of [?]. Similar to the previous case, all conditions are satisfied with the condition a⇤ > 0

imposing that b < 2. Hence,

FZ(t, ·)(x ) = tdbe�1H2,2
4,3

✓

2
⇣

ntb |x |a
⌘�1

�

�

�

�

(1,1), (1,a/2), (d/2,a/2), (dbe,b )
(d/2,a/2), (1,1), (1,a/2)

◆

= tdbe�1H1,1
1,2

⇣

2�1
ntb |x |a

�

�

�

(0,1)

(0,1), (1�dbe,b )

⌘

,

where the second equality follows the same way as the previous case. This completes

the proof of Lemma ??.
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Lemma 3.4.3. The fundamental solutions Y
a,b ,d(t,x) and Z⇤

a,b ,d(t,x) are given by (??)

and (??), respectively.

Proof. We first prove the expression for Y
a,b ,d . By Section 2 of [?], we know that

Y
a,b ,d(t,x) is the Riemann-Liouville fractional derivative in t of Z

a,b ,d(t,x) of order

dbe�b . Notice that Z
a,b ,d(0,x) = 0 for |x| 6= 0. Denote the Riemann-Liouville deriva-

tive of order b by tD
b

+. By [?, Property 2.3],

Z
a,b ,d(t,x) = p

�d/2tdbe�1|x|�dH1,2
3,2

 

2a�1
ntb

|x|a

�

�

�

�

�

(1�d/2,a/2), (0,1), (0,a/2)

(0,1), (1�dbe,b )

!

.

Because a⇤ = (2�b )+(2�a)/2 > 0, we can apply part (i) of [?, Theorem 2.8 on p.

55],

tD
dbe�b

+ Z
a,b ,d(t,x) = p

�d/2|x|�dtb�1H1,3
4,3

 

2a�1
ntb

|x|a

�

�

�

�

�

(1�dbe,b ), (1�d/2,a/2), (0,1), (0,a/2)

(0,1), (1�dbe,b ), (1�b ,b )

!

.

Then we use Properties 2.2 and 2.4 of [?] to simplify the above expression to obtain

(??). The expression for Z⇤
a,b ,d can be proved in a similar way.

Lemma 3.4.4. The Fourier transforms of Y
a,b ,d(t,x) and Z⇤

a,b ,d(t,x) are given by (??)

and (??), respectively.

Proof. We first consider Y
a,b ,d . From Lemma ?? and the proof of Lemma ?? it follows

FY
a,b ,d(t, ·)(x ) = tD

dbe�b

+ tdbe�1H1,1
1,2

⇣

2�1
ntb |x |a

�

�

�

(0,1)

(0,1), (1�dbe,b )

⌘

.

Because a⇤ = 2�b > 0, we can apply part (i) of Theorem 2.8 of [?] to obtain

FY
a,b ,d(t, ·)(x ) = tb�1H1,2

2,3

⇣

2�1
ntb |x |a

�

�

�

(1�dbe,b ), (0,1)
(0,1), (1�dbe,b ), (1�b ,b )

⌘

.
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This is simplified to (??) by the properties 2.2 and 2.4 of [?]. The identity (??) can be

obtained in a similar way.

Lemma 3.4.5. For all µ > 0 and 0 < q  min(1,µ), the following H-function is non-

negative:

H1,0
1,1

⇣

|x|
�

�

�

(µ,q)

(1,1)

⌘

� 0 , 8 x 2 R . (3.4.2)

Proof. We only need to prove that the following function is nonnegative

f (x) = |x|�1H1,0
1,1

⇣

|x|
�

�

�

(µ,q)

(1,1)

⌘

, x 2 R.

By [?, Corollary 2.3.1] and the equation (??), the Laplace transform of f is equal to

Z •

0
dx e�xz f (x) = E

q ,µ(�z).

By [?], we know that the above Mittag-Leffler function E
a,b (�z) is completely mono-

tonic if and only if 0 < a  min(b ,1). Then the Bernstein theorem (see, e.g., [?,

Theorem 12a]) implies that the function f (x) is nonnegative.

Lemma 3.4.6. The nonnegative statements in Theorem ?? hold true.

Proof. We first prove the case (a). In this case, b 2 (0,1]. Because limt!0 Z
a,b ,d(t,x) =

0 for all |x| 6= 0 and from [?, Theorem 3.8] we see

Z
a,b ,d(t,x) = I1�b

t ∂

1�b Z
a,b ,d(t,x) = I1�b

t Y
a,b ,d(t,x).

Hence, it suffices to show the nonnegativity of Y
a,b ,d(t,x). Applying Theorem 2.9 of

[?] with h = 0, s = b and z = |x|a/(2a

n) to the expression of Y (t,x) (it is easy to

37



verify that all conditions are satisfied) yields

Y (t,x) = bp

�d/2tb�1|x|�d
Z •

0
ds s�1H1,1

1,2

✓

|x|a

2a�1
n

sb

�

�

�

�

(1,1)

(d/2,a/2), (1,a/2)

◆

H1,0
1,1

⇣

(ts)�b

�

�

�

(b ,b )

(1,1)

⌘

.

By Lemma ??, the second H-function in the above equation is nonnegative. On the

other hand, Theorem ?? tells us that the first H-function is nonnegative. Thus, Y (t,x)

is nonnegative.

As for the case (b), it is known from [?] that Y2,b ,d is nonnegative for d  3. By the

same argument as in the proof of (a), Z2,b ,d is also nonnegative.

Finally, for the case (c), it is proved in [?] that Z⇤
a,b ,1(t,x) is nonnegative. By the

same reason as in the proof of (a), Y
a,b ,1 and Z

a,b ,1 are fractional integrals of Z⇤
a,b ,1 of

orders 1�b and 1, respectively. Therefore, both Y
a,b ,1 and Z

a,b ,1 are nonnegative as

well. The proof of Lemma ?? is now complete.

Proof of Theorem ??. The Theorem ?? follows from the above lemmas.

3.4.2 Proof of Theorem ??

Proof of Theorem ??. The characteristic function (??) of X is proved in [?, (7.5.3) on

p. 211]. For the density r

a,d , we need to compute the inverse Fourier transform. From

[?, (7.5.5)] this inverse transform is

r

a,d(r) = (2p)�d/2r1�d/2
Z •

0
e�ta

J(d�2)/2(rt)td/2dt .

By (2.9.18) and (2,9.4) of [?], we have that

t(d+2)/2J(d�2)/2(rt) = (2/r)(d+2)/2H1,0
0,2

✓

r2t2

4

�

�

�

� (d/2,1), (1,1)

◆
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and

e�ta

=
1
a

H1,0
0,1

⇣

t
�

�

� (0,1/a)

⌘

.

Hence,

r

a,d(r) = p

�d/2r�d
Z •

0
t�1H1,0

0,2

✓

⇣rt
2

⌘

a

�

�

�

� (d/2,a/2), (1,a/2)

◆

H1,0
0,1

⇣

t
�

�

� (0,1/a)

⌘

dt.

Application of [?, Theorem 2.9] to evaluate the above integral yields the theorem.

3.5 Proof of Theorem ??

Proof of Theorem ??. Recall that J0(t,x) defined by (??) is the solution to the homoge-

neous equation. Using an iteration procedure as in [?], we have

fn(s1,x1, · · · ,sn,xn, t,x) = gn(s1,x1, · · · ,sn,xn, t,x)J0(s
s(1),xs(1))

where

gn(s1,x1, · · · ,sn,xn, t,x) =
1
n!

Y (t � s
s(n),x� x

s(n)) · · ·Y (ss(2)� s
s(1),xs(2)� x

s(1)) ,

and s denotes a permutation of {1,2, · · · ,n} such that 0 < s
s(1) < · · ·< s

s(n) < t. Fix

t > 0 and x 2 Rd , set fn(s,y, t,x) = fn(s1,y1, · · · ,sn,yn, t,x). Then we have that

n!k fn(·, ·, t,x)k2
H ⌦n

= n!
Z

[0,t]2n
dsdr

Z

R2nd
dydz fn(s,y, t,x) fn(r,z, t,x)

n

’
i=1

L(yi � zi)
n

’
i=1

l (si � ri). (3.5.1)
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where dy= dy1 · · ·dyn, the differentials dz, ds and dr are defined similarly. Set µ(dx ) :=

’n
i=1 µ(dxi). Using the Fourier transform and Cauchy-Schwartz inequality together

with (??), we obtain that

n!k fn(·, ·, t,x)k2
H ⌦n 

bC2
t n!

(2p)nd

Z

[0,t]2n

Z

Rnd
Fgn(s, ·, t,x)(x )Fgn(r, ·, t,x)(x )µ(dx )

n

’
i=1

l (si � ri)dsdr

(3.5.2)


bC2

t n!
(2p)nd

Z

[0,t]2n

✓

Z

Rnd

�

Fgn(s, ·, t,x)(x )
�2

µ(dx )

◆1/2

⇥
✓

Z

Rnd

�

Fgn(r, ·, t,x)(x )
�2

µ(dx )

◆1/2 n

’
i=1

l (si � ri)dsdr ,

where the constant bCt is defined in (??). Thus, thanks to the basic inequality ab 

2�1(a2 +b2) and the fact that l is locally integrable, we obtain

n!k fn(·, ·, t,x)k2
H ⌦n 

bC2
t n!

(2p)nd

Z

[0,t]2n

Z

Rnd
|Fgn(s, ·, t,x)(x )|2µ(dx )

n

’
i=1

l (si � ri)dsdr


bC2

t Cn
t n!

(2p)nd

Z

[0,t]n
ds
Z

Rnd
|Fgn(s, ·, t,x)(x )|2µ(dx ) ,

where the constant Ct is defined in (??). Furthermore, from the Fourier transform of

Y (t, ·) we can check that

|Fgn(r, ·, t,x)(x )|2

=
1

(n!)2

n

’
i=1



(s
s(i+1)�s

s(i))
b�1E

b ,b

�

�2�1
n(s

s(i+1)�s
s(i))

b |x
s(i)+ · · ·+x

s(1)|a
�

�2
,

where we have set s
s(n+1) = t. As a consequence,

Z

Rnd
|Fgn(s, ·, t,x)(x )|2µ(dx )
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 1
(n!)2

n

’
i=1

sup
h

�

�

�

�

Z

Rd
(Y (s

s(i+1)� s
s(i), ·)⇤Y (s

s(i+1)� s
s(i), ·))(xs(i))e

ih ·x
s(i)L(x

s(i))dx
s(i)

�

�

�

�

 1
(n!)2

n

’
i=1

�

�

�

�

Z

Rd
(Y (s

s(i+1)� s
s(i), ·)⇤Y (s

s(i+1)� s
s(i), ·))(xs(i))L(xs(i))dx

s(i)

�

�

�

�

 1
(n!)2

n

’
i=1

Z

Rd

⇥

(s
s(i+1)� s

s(i))
b�1E

b ,b

�

�2�1
n(s

s(i+1)� s
s(i))

b |x
s(i)|a

�⇤2
µ(dx

s(i)),

(3.5.3)

where we have used the fact that |eix
s(i)·h |= 1 and that Y and L are nonnegative to get

rid of the supremum in h . Therefore, using Fourier transform again we have

n!k fn(·, ·, t,x)k2
H ⌦n 

bC2
t Cn

t
(2p)nd

Z

Rnd
µ(dx )

Z

Tn(t)
ds

⇥
n

’
i=1

�

si+1 � si
�2b�2E2

b ,b

�

�2�1
n(si+1 � si)

b |xi|a
�

,

(3.5.4)

where Tn(t) denotes the simplex

Tn(t) := {s = (s1, · · · ,sn) : 0 < s1 < · · ·< sn < t}. (3.5.5)

By the change of variables si+1 � si = wi for 1  i  n�1 and t � sn = wn, we see that

n!k fn(·, ·, t,x)k2
H ⌦n 

bC2
t Cn

t
(2p)nd

Z

Rnd

Z

St,n

n

’
i=1

w2b�2
i E2

b ,b

�

�2�1
nwb

i |xi|a
�

dwiµ(dxi),

where

St,n = {(w1, · · · ,wn) 2 [0,•)n : w1 + · · ·+wn  t}.

We take N � 1 which will be chosen later, and let

CN =
Z

|x |�N

µ(dx )

|x |2a�a/b

and DN = µ{x 2 Rd : |x | N}. (3.5.6)
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Let I be a subset of {1,2, · · · ,n} and Ic = {1,2, · · · ,n}\I. Then we have

Z

Rnd

Z

St,n

n

’
i=1

w2b�2
i E2

b ,b

�

�2�1
nwb

i |xi|a
�

dwiµ(dxi)

=
Z

Rnd

Z

St,n

n

’
i=1

w2b�2
i E2

b ,b

�

�2�1
nwb

i |xi|a
��

1{|xi|N}+1{|xi|>N}
�

dwiµ(dxi)

= Â
I⇢{1,2,··· ,n}

Z

Rnd
dw

Z

St,n
µ(dx )’

i2I
E2

b ,b

�

�2�1
nwb

i |xi|a
�

w2a�2
i 1{|xi|N}

⇥ ’
j2Ic

E2
b ,b

�

�2�1
nwb

j |x j|a
�

w2b�2
j 1{|x j|>N} .

where dw = dw1 · · ·dwn. For the indices i in the set I, for some constant C
b

� 1 (one

may choose C
b

= G(b )�2)

E2
b ,b

�

�2�1
nwb

i |xi|a
�

C
b

. (3.5.7)

Now using the inclusion St,n ⇢ SI
t ⇥SIc

t with

SI
t =

⇢

(wi, i 2 I) : wi � 0, Â
i2I

wi  t
�

and SIc

t =

⇢

(wi, i 2 Ic) : wi � 0, Â
i2Ic

wi  t
�

,

we obtain that

Z

Rnd

Z

St,n

n

’
i=1

w2b�2
i E2

b ,b

�

�2�1
nwb

i |xi|a
�

dwiµ(dxi)

C|I|
b

Â
I⇢{1,2,··· ,n}

Z

Rnd
µ(dx )

Z

SI
t⇥SIc

t

dw

⇥’
i2I

w2b�2
i 1{|xi|N} ’

j2Ic
w2b�2

j 1{|x j|>N}E2
b ,b

�

�2�1
nwb

j |x j|a
�

.
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Furthermore, one can bound the integral over SIc
t in the following way

Z

SIc
t

’
j2Ic

w2b�2
j E2

b ,b

�

�2�1
nwb

j |x j|a
�

dw j 
Z

R|Ic|
+

’
j2Ic

w2b�2
j E2

b ,b

�

�2�1
nwb

j |x j|a
�

dw j .

Then make the change of variables wb

j |x j|a ! v j to obtain

Z

[0,•)|Ic| ’j2Ic
w2b�2

j E2
b ,b

�

�2�1
nwb

j |x j|a
�

dw j  ’
j2Ic

1
|xi|2a�a/b

Z •

0

1
b

v1�1/b

j E2
b ,b (�2�1

nv j)dv j

C|Ic|
n ,b ’

j2Ic

1
|xi|2a�a/b

,

where

C
n ,b =

Z •

0

1
b

v1�1/b E2
b ,b (�2�1

nv)dv.

Note that the integrability of the above quantity at zero and at infinity implies that

b > 1/2 and b > 0, respectively. Thus we have the following bound.

Z

Rnd

Z

St,n

n

’
i=1

w2b�2
i E2

b ,b

�

�2�1
nwb

i |xi|a
�

dwiµ(dxi)

 Â
I⇢{1,2,··· ,n}

C|I|
b

Z

SI
t
’
i2I

w2b�2
i dwi ·

⇣

µ{x 2 Rd : |x | N}
⌘|I|

C|Ic|
n ,b

Z

|x j|>N,8 j2Ic ’
j2Ic

µ(dx j)

|x j|2a�a/b

 Â
I⇢{1,2,··· ,n}

C|I|
b

t(2b�1)|I|C|Ic|
n ,b

G((2b �1)|I|+1)
D|I|

N Cn�|I|
N

Cn
⇤

n

Â
k=0

✓

n
k

◆

t(2b�1)k

G((2b �1)k+1)
Dk

NCn�k
N .

where C⇤ = max(C
b

,C
n ,b ), and CN and DN are defined in (??). Observing the trivial

inequality
�n

k
�

 2n, we have

•

Â
n=0

n!k fn(·, ·, t,x)k2
H ⌦n 

bC2
t

(2p)nd

•

Â
k=0

•

Â
n=k

✓

n
k

◆

(C⇤Ct)
n t(2b�1)k

G((2b �1)k+1)
Dk

NCn�k
N
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bC2

t
(2p)nd

•

Â
k=0

•

Â
n=k

t(2b�1)k

G((2b �1)k+1)
Dk

NC�k
N (2C⇤CtCN)

n .

Choosing N sufficiently large so that 2C⇤CtCN < 1 yields

•

Â
n=0

n!k fn(·, ·, t,x)k2
H ⌦n 

bC2
t

(2p)nd

•

Â
k=0

t(2b�1)k

G((2b �1)k+1)
Dk

NC�k
N

(2C⇤CtCN)k

1�2C⇤CtCN
< • .

This proves (??), and thus the existence and uniqueness of the solution.

3.6 Proof of Theorem ??

Lemma 3.6.1. Suppose that the initial conditions uk(x)⌘ uk are constant. Then under

the three cases of (??), we have that

J0(t,x) =

8

>

>

<

>

>

:

u0 if b 2 (0,1],

u0 + tb�1u1 if b 2 (1,2).
(3.6.1)

Proof. By Theorem ??, we know that under the first two cases of (??), the fundamental

solutions are nonnegative and hence,

J0(t,x) =
dbe�1

Â
k=0

udbe�1�k

Z

Rd
∂

kZ(t,x� y)dy =
dbe�1

Â
k=0

udbe�1�k F
h

∂

kZ(t, ·)
i

(0),

which is equal to the right hand side of (??). As for the last case in (??), because Z is

still nonnegative, the contribution by u0 can be computed in the same way. However, we

do not know whether Z⇤ is nonnegative, and thus we cannot use the Fourier transform

arguments to compute the contribution by u1. Instead, we compute it directly:

Z

Rd
Z⇤

2,b ,d(t,x)dx = Sd�1p

�d/2
Z •

0
x�1H2,0

1,2

✓

xa

2ntb

�

�

�

�

(1,b )

(d/2,1), (1,1)

◆

dx,
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where

Sd�1 =
2p

d/2

G(d/2)
. (3.6.2)

Then by [?, Corollary 2.3.1], we have the following Laplace transform:

g(z) :=
Z •

0
e�zxx�1H2,0

1,2

✓

xa

2ntb

�

�

�

�

(1,b )

(d/2,1), (1,1)

◆

dx = H1,2
2,2

⇣

2ntb z2
�

�

�

(�1/3,1), (0,1)

(0,2), (0,b )

⌘

.

Then by [?, Theorem 1.3],

g(0) = h10 =
G(3/2)

2
.

Putting these identities together, we have that

Z

Rd
Z⇤

2,b ,d(t,x)dx = 1.

This completes the proof of Lemma ??.

Proof of Theorem ??. Since L(x) = |x|�k , we have µ(dx ) = C
k

|x |k�d , for some co-

efficient C
k

; see, e.g., [?]. We begin with the upper bound. By the hypercontractivity

property of the n-th chaos, i.e.

kIn( fn(·, ·, t,x))kLp(W)  (p�1)
n
2kIn( fn(·, ·, t,x))kL2(W) . (3.6.3)

On the other hand, from the proof of Theorem ?? (see (??)) it follows

kIn( fn(·, ·, t,x))k2
L2(W) = n! || fn(·, ·, t,x)||2H ⌦n


bC2

t Cn
k

Cn
t

(2p)nd

Z

Tn(t)

Z

Rnd

n

’
i=1

(si+1 � si)
2b�2E2

b ,b (�2�1
n(si+1 � si)

b |xi|a)|xi|k�ddxidsi
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=
bC2

t Cn
k

Cn
t (2/n)kn/a

(2p)nd

Z

Tn(t)

Z

Rnd

n

’
i=1

(si+1 � si)
2b�2� bk

a E2
b ,b (�|hi|a)|hi|k�ddhidsi

=
bC2

t Cn
k

Cn
t (2/n)kn/a

eCn

(2p)nd

Z

Tn(t)

n

’
i=1

(si+1 � si)
2b�2� bk

a dsi,

where bCt is defined in (??),

eC :=
Z

Rd
E2

b ,b (�|h |a)|h |k�ddh = Sd�1

Z •

0
E2

b ,b (�ta)tk�1dt,

and Sd�1 is defined in (??). According to the property of the Mittag-Leffler function

at zero and infinity, if 0 < k < 2a , then the above constant eC is finite. Then, under

the condition that k < a(2�1/b ) (this condition implies 0 < k < 2a), the integration

over ds can be evaluated explicitly; see [?, Lemma 4.5]. Hence,

kIn( fn(·, ·, t,x))k2
L2(W) 

1
(2p)nd (Ck

C⇤Ct eC)n t(2b�1� bk

a

)n (2/n)kn/a

G((2b �1� bk

a

)n+1)
,

where C⇤ := G(2b �1�bk/a). Denote

Qt :=
1

(2p)d C
k

C⇤Ct eC (2/n)k/a .

Thus we obtain

kIn( fn(·, ·, t,x))kL2(W)  bCt
Qn/2

t t(b�
1
2�

bk

2a

)n

G((2b �1� bk

a

)n+1)
1
2
. (3.6.4)

This bound together with the hypercontractivity implies that

kIn( fn(·, ·, t,x))kLp(W)  bCt
Qn/2

t t(b�
1
2�

bk

2a

)n(p�1)
n
2

G((2b �1� bk

a

)n+1)
1
2
. (3.6.5)
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Therefore,

ku(t,x)kLp(W) 
•

Â
n=0

kIn( fn(·, ·, t,x))kLp(W)  bCt

•

Â
n=0

Qn/2
t tqn p

n
2

G(2qn+1)
1
2
.

where

q := b �1/2�bk/(2a). (3.6.6)

Then by the fact that G(1+2x)� G(1+ x)2 for x >�1,

ku(t,x)kLp(W)  bCt

•

Â
n=0

Qn/2
t tqn p

n
2

G(qn+1)
= bCtE

q

⇣

Q1/2
t tq p1/2

⌘

CbCt exp
⇣

t(C
k

Ct eCC⇤(2/n)k/a(2p)�d)
a

2ab�a�bk p
a

2ab�a�bk

⌘

,

for some positive constant C = C(a,b ,k), where in the last step, we have used the

asymptotic property of the Mittag-Leffler function (see, e.g., [?, Theorem 1.3]).

Now we consider the special case when l is the Dirac delta function. By Lemma

?? and the assumptions on the initial conditions we have

J0(t,x) = u0 + tb�1u11{b>1} = u0.

From the proof of Theorem ?? (see (??) and (??)), we see that

kIn( fn(·, ·, t,x))k2
L2(W) =

1
n!

u2
0Cn

k

(2p)nd

Z

[0,t]n
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Z

Rnd
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n
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s(i+1)� s
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⇥E2
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⇣
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s(i+1)� s
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⌘
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0Cn
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Z
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⇥E2
b ,b

⇣

�2�1
n(si+1 � si)

b |xi + · · ·+x1|a
⌘

|xi|k�d .

Then by the change of variable xi + · · ·x1 = hi and replacing Rnd by Rnd
+ , we obtain

that
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⌘
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0Cn
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b |hi|a
⌘

|hi|k�ddxidsi ,

where h0 = 0. Then with another change of variable (n/2)1/a(si+1 � si)b/a

hi ! hi,

and by the same reasoning as before, we obtain that

kIn( fn(·, ·, t,x))k2
L2(W) �

u2
0Cn

k

(2p)nd

Z

Tn(t)

Z
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n

’
i=1

(si+1 � si)
2b�2� bk

a E2
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0Cn
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eC
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!n
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a

Z

Tn(t)

n

’
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(si+1 � si)
2b�2� bk

a dsi

=
tn(2b�1� bk

a

)(2/n)kn/au2
0Cn

k

eCn(4p)�ndCn
⇤

G(n(2b �1� bk

a

)+1)
.

Therefore, by the asymptotic property of the Mittag-Leffler function,

E
⇥

u(t,x)2⇤�
•

Â
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u2
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⇣

C
k

eC(4p)�dC⇤
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�c u2
0 exp

⇣

(C
k

eC(4p)�dC⇤(2/n)k/a)
1

2b�1�bk/a t
⌘

,

for some positive constant c= c(a,b ,k). This completes the proof of Theorem ??.

3.7 Proof of Theorem ??

In this section, C =C
a,b ,··· denotes a positive constant, possibly dependent on a,b ,d,n , · · · .

Lemma 3.7.1. Assume that b 2 (0,2), a > 0 and d 2 N. Then there is a nonnegative

constant C
a,b ,d such that for all 0 < z < min(d/a,2),

�

�

�

H2,1
2,3

⇣

z
�

�

�

(1,1), (b ,b )

(d/2,a/2), (1,1), (1,a/2)

⌘

�

�

�

C
a,b ,d

zz

zz+1 +1
, for all z � 0.

Proof. Notice a⇤ = 2�b > 0 and condition (??) is sastidfied. We apply Theorem ??

to obtain

H2,1
2,3

⇣

z
�

�

�

(1,1), (b ,b )

(d/2,a/2), (1,1), (1,a/2)

⌘

⇠
1

Â
i=1

•

Â
k=0

hikz
ai�1�k

ai ; z ! •.

By the definition of hik in (??), it’s not difficult to see that all hik 2R for b 2 (0,2),a >

0. Especially, we have

h10 =
G(d

2 )G(1)
G(b )G(0)

= 0.

Therefore

•

Â
k=0

hikz
ai�1�k

ai = h10z
a1�1

a1 +h11z
a1�1�1

a1 +o(z
a1�1�1

a1 )C
a,b ,d

1
z

; z ! •.
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When (1+M)a 6= d + 2K for all M,K = 0,1,2, . . . , so condition (??) is satisfied.

Theorem ?? case (1) implies that

H2,1
2,3

⇣

z
�

�

�

(1,1), (b ,b )

(d/2,a/2), (1,1), (1,a/2)

⌘

⇠
2

Â
j=1

•

Ầ
=0

h⇤jlz
(b j+`)/b j ; z ! 0.

Our assumption (1+M)a 6= d + 2K guarantees ’m
i=1,i 6= j G

⇣

bi � [b j + l] bi
b j

⌘

2 R.

With this observation and the definition of h⇤jl in (??), it’s not difficult to check that

h⇤jl 2 R for b 2 (0,2),a > 0. Especially we have

h⇤20 =
G(d

2 �
d
a

)G(1)
G(0)G(a

2 )
= 0.

Therefore we have

2

Â
j=1

•

Ầ
=0

h⇤jlz
(b j+`)/b j =h⇤10zb1/b1 +o(zb1/b1)+h⇤20zb2/b2 +h⇤21z(b2+1)/b2 +o(z(b2+1)/b2)

C
a,b ,dz

d
a +C

a,b ,dz2; z ! 0.

When (1 + MJ)a = d + 2KJ for MJ,KJ 2 {0,1,2, . . .}, J 2 {1,2, · · ·}, we can

apply Thereom ??.

For the first summation We just proved

Â0
j,l h⇤jlz

b j+l
b j C

a,b ,dz
d
a +C

a,b ,dz2; z ! 0.

For the second summation

Â00
j,l

N⇤
jl�1

Â
i=0

H⇤
jliz

b j+l
b j [logz]i,
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we first need to check H⇤
jli 2R for b 2 (0,2),a > 0 but it’s routine using by its definition

(??).

Furthermore

Â00
j,l

N⇤
jl�1

Â
i=0

H⇤
jliz

b j+l
b j [logz]i =Â00

j=1,l=KJ

N⇤
jl�1

Â
i=0

H⇤
jliz

b j+l
b j [logz]i

=H⇤
1K10z

b1+K1
b1 +H⇤

1K11z
b1+K1

b1 logz

+H⇤
1K20z

b1+K2
b1 +H⇤

1K21z
b1+K2

b1 logz+ · · ·

C
a,b ,dz

d
a +C

a,b ,dz
d
a | logz|; z ! 0.

In sum, we have shown

H2,1
2,3

⇣

z
�

�

�

(1,1), (b ,b )

(d/2,a/2), (1,1), (1,a/2)

⌘



8

>

>

<

>

>

:

C
a,b ,d(z

d
a + z

d
a | logz|+ z2); z ! 0;

C
a,b ,d

1
z ; z ! •.

Lastly, the conditions of Theorem ?? are satisfied, so H2,1
2,3

⇣

z
�

�

�

(1,1), (b ,b )

(d/2,a/2), (1,1), (1,a/2)

⌘

is continuous when z > 0. This completes the proof of Lemma ??.

Lemma 3.7.2. For all a 2 (0,2], d 2N and k <min{2a,d}, one can find z <min(d/a,2)

and a nonnegative constant C (independent of a) such that

Z

Rd
|x�a|�kQ(x)dx C < • for all a 2 Rd,

where

Q(x) =
1

|x|a+d + |x|d�z a

.

51



Proof. We divide the integral domain into {|x|  1} and {|x| > 1}. Over the domain

{|x| 1}, we have

Z

|x|1
|x�a|�kQ(x)dx 

Z

|x|1
|x�a|�k

1
|x|d�z a

dx

=
Z

|x|1, |x||x�a|
|x�a|�k

1
|x|d�z a

dx+
Z

|x�a|<|x|1
|x�a|�k

1
|x|d�z a

dx


Z

|x|1, |x||x�a|
|x|�k

1
|x|d�z a

dx+
Z

|x�a|<|x|1
|x�a|�k

1
|x�a|d�z a

dx

 2
Z

|z|1

1
|z|k+d�z a

dz C.

The last inequality is valid since we can choose z sufficiently close to min(d/a,2) so

that k +d �z a < d. On the other hand, over the domain {|x|> 1}, we have

Z

|x|>1
|x�a|�kQ(x)dx 

Z

|x|>1
|x�a|�k

1
|x|a+d dx


Z

|x�a|�|x|>1
|x�a|�k

1
|x|a+d dx+

Z

|x|>|x�a|>1
|x�a|�k

1
|x|a+d dx

+
Z

|x|>1�|x�a|
|x�a|�k

1
|x|a+d dx

2
Z

|z|>1

1
|z|a+d dz+

Z

|z|1
|z|�kdz C.

Note that the above constant C does not depend on a.

Lemma 3.7.3. Assume k < min{2a,d}. Then for all s,r > 0 and x2 ,y2 2Rd, we have

that
Z

R2d
|Y (s,x1 � x2)Y (r,y1 � y2)| |x1 � y1|�kdx1dy1 C

a,b ,d,n ,k (s r)q ,

where C does not depend on x2 and y2 2 Rd, and

q := b �1� b

2a

k.
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Proof. We use the notation Q(x) in Lemma ??. By Lemma ?? and the expression of Y

through Fox H-function (??), we see that for any z < min(d/a,2), there is a constant

C
a,b ,d,n ,z such that

|Y (t,x)|  C
a,b ,d,n ,z |x|�dtb�1 | x

tb/a

|az

| x
tb/a

|az+a +1

= C
a,b ,d,n ,z tb�1� bd

a Q
✓

x
tb/a

◆

.

Therefore, by Lemma ??, we have
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✓
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◆
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✓
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◆
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�

�
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�

�

�

�k
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!

Q
✓

y1 � y2

rb/a

◆

dy1

C
a,b ,d,n ,z rb�1� bd

a sb�1�kb/a

Z

Rd
Q
✓

y1 � y2

rb/a

◆

dy1

C
a,b ,d,n ,z rb�1sb�1�kb/a .

By symmetry, we also have

ZZ

R2d
|Y (s,x1 � x2)Y (r,y1 � y2)| |x1 � y1|�kdx1dy1 C

a,b ,d,n ,z sb�1rb�1�kb/a .

Now from the fact that c  a and c  b implies c 
p

ab, the lemma follows.

The following lemma is from [?, Theorem 3.5].

Lemma 3.7.4. Let Tn be the simplex defined in (??). Then for all h >�1, it holds that

Z

Tn(t)
[(t � sn)(sn � sn�1) . . .(s2 � s1)]

hds =
G(1+h)n

G(n(1+h)+1)
tn(1+h) .
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Proof of Theorem ??. Following the same notation and arguments as the proof of The-

orem ?? until (??), we have

n!k fn(·, ·, t,x)k2
H ⌦n

C
1
n!

Z

[0,t]2n
dsdr

Z

R2nd
dydz gn(s,y, t,x)gn(r,z, t,x)

n

’
i=1

L(yi � zi)
n

’
i=1

l (si � ri).

Furthermore, by Cauchy-Schwarz inequality, we obtain

Z

R2nd
dydz gn(s,y, t,x)gn(r,z, t,x)

n

’
i=1

L(yi � zi)


(

Z

R2nd
dydz gn(s,y, t,x)gn(s,z, t,x)

n

’
i=1

L(yi � zi)

)1/2

⇥
(

Z

R2nd
dydz gn(r,y, t,x)gn(r,z, t,x)

n

’
i=1

L(yi � zi)

)1/2

Applying Lemma ?? to the above two integrals, we have

Z

R2nd
dydz gn(s,y, t,x)gn(r,z, t,x)

n

’
i=1

L(yi � zi)Cn
a,b ,d,v,k(f(s)f(r))

q ,

where

f(s) :=
n

’
i=1

(s
s(i+1)� s

s(i)) and f(r) :=
n

’
i=1

(r
r(i+1)� r

r(i)),

with

0 < s
s(1) < s

s(2) < .. . < s
s(n) and 0 < r

r(1) < r
r(2) < .. . < r

r(n).
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Hence,

n!k fn(·, ·, t,x)k2
H ⌦n 

Cn
a,b ,d,v,k

n!

Z

[0,t]2n

n

’
i=1

l (si � ri)(f(s)f(r))q dsdr


Cn

a,b ,d,n ,k

n!
1
2

Z

[0,t]2n

n

’
i=1

l (si � ri)
⇣

f(s)2q +f(r)2q

⌘

dsdr

=
Cn

a,b ,d,n ,k

n!

Z

[0,t]2n

n

’
i=1

l (si � ri)f(s)2q dsdr


Cn

a,b ,d,n ,kCn
t

n!

Z

[0,t]n
f(s)2q ds

=Cn
a,b ,d,n ,kCn

t

Z

Tn(t)
f(s)2q ds

=
Cn

a,b ,d,n ,kCn
t G(2q +1)nt(2q+1)n

G((2q +1)n+1)
,

where Ct is defined in (??). Therefore,

n!k fn(·, ·, t,x)k2
H ⌦n 

Cn
a,b ,d,n ,kCn

t

G((2q +1)n+1)
,

and Ân�0 n!k fn(·, ·, t,x)k2
H ⌦n converges if q >�1/2. Finally, the condition q >�1/2,

which is equivalent to k < 2a �a/b , guarantees both condition q >�1 in Lemma ??

and the assumption k < 2a used in Lemma ??. This completes the proof of Theorem

??.
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Chapter 4

Stochastic time-fractional diffusion equations with

variable coefficients and time independent noise

Here is the organization of the chapter, Section 2 will describe the operator B and the

noise W H and state the main result of the chapter. In our proof we need to use the

properties of the two fundamental solutions (Green’s functions) Z(t,x,x ) and Y (t,x,x )

associated with the equation ∂

au(t,x) = Bu(t,x), which is represented by the Fox’s H-

function . we will recall some most relevant results on the H-function and the Green’s

function Z(t,x,x ) and Y (t,x,x ) in Section 3. A number of preparatory lemmas are

needed to prove main results and they are presented in Section 4. Finally, the last

section is devoted to the proof of our main theorem.

4.1 Main result

Let

B =
d

Â
i, j=1

ai, j(x)
∂

2

∂xi∂x j
+

d

Â
j=1

b j(x)
∂

∂x j
+ c(x)

be a uniformly elliptic second-order differential operator with bounded continuous real-

valued coefficients. Let u0 be a given bounded continuous function (locally Hölder
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continuous if d > 1). Let {W H(x) ,x 2Rd} be a time homogeneous (time-independent)

fractional Brownian field on some probability space (W,F ,P) (Like elsewhere in prob-

ability theory, we omit the dependence of W H(x) =W H(x,w) on w 2 W). Namely, the

stochastic process {W H(x) ,x 2Rd} is a (multi-parameter) Gaussian process with mean

0 and its covariance is given by

E
�

W H(x)W H(y)
�

=
d

’
i=1

RHi(xi,yi) , (4.1.1)

where H1, · · · ,Hd are some real numbers in the interval (0,1). Due to some technical

difficulty, we assume that Hi > 1/2 for all i = 1,2, · · · ,d; the symbol E denotes the

expectation on (W,F ,P) and

RHi(xi,yi) =
1
2
�

|xi|2Hi + |yi|2Hi � |xi � yi|2Hi
�

, 8 xi,yi 2 R

is the covariance function of a fractional Brownian motion of Hurst parameter Hi.

Throughout this chapter we fix an arbitrary parameter a 2 (0,1) and a finite time

horizon T 2 (0,•). We study the following stochastic partial differential equation of

fractional order:

8

>

>

<

>

>

:

∂

au(t,x) = Bu(t,x)+u(t,x) ·Ẇ H(x), t 2 (0,T ], x 2 Rd ;

u(0,x) = u0(x) ,
(4.1.2)

where

∂

au(t,x) =
1

G(1�a)



∂

∂ t

Z t

0
(t � t)�au(t,x)dt � t�au(0,x)

�
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is the Caputo fractional derivative (see e.g. [?]) and Ẇ H(x) = ∂

d

∂x1···∂xd
W H(x) is the dis-

tributional derivative (generalized derivative) of W H , called fractional Brownian noise.

Our objective is to obtain condition on a and H such that the above equation

has a unique solution. But since W H is not differentiable or since Ẇ H(x) does not

exist as an ordinary function, we have to describe under what sense a random field
�

u(t,x) , t � 0 ,x 2 Rd is a solution to the above equation (??).

To motivate our definition of the solution, let us consider the following (determinis-

tic) partial differential equation of fractional order with the term u(t,x) ·Ẇ H(x) in (??)

replaced by f (t,x):

8

>

>

<

>

>

:

∂

a ũ(t,x) = Bũ(t,x)+ f (t,x), t 2 (0,T ], x 2 Rd ;

ũ(0,x) = u0(x) .
(4.1.3)

Here u0(x) is bounded continuous function(locally hölder continuous if d > 1). The

function f is bounded and jointly continuous in (t,x) and locally Hölder continuous in

x. In [?], it is proved that there are two Green’s functions:

n

Z(t,x,x ) , Y (t,x,x ) ,0 < t  T ,x,x 2 Rd
o

,

such that the solution to the Cauchy problem (??) is given by

ũ(t,x) =
Z

Rd
Z(t,x,x )u0(x )dx +

Z t

0
ds

Z

Rd
Y (t � s,x,y) f (s,y)dy. (4.1.4)

In general, there is no explicit form for the two Green’s functions {Z(t,x,x ) , Y (t,x,x )}.

However, their constructions and properties are known (see [?], [?], [?], and the refer-

ences therein). we will recall some needed results in the next section.

58



From the classical solution expression (??), we expect that the solution u(t,x) to

(??) satisfies formally

u(t,x) =
Z

Rd
Z(t,x,x )u0(x )dx +

Z t

0
ds

Z

Rd
Y (t � s,x,y)u(s,y)Ẇ H(y)dy .

The above formal integral
R t

0 ds
R

Rd Y (t � s,x,y)u(s,y)Ẇ H(y)dy can be defined by Itô-

Skorohod stochastic integral
R

Rd
⇥

R t
0 Y (t � s,x,y)u(s,y)ds

⇤

W H(dy) as given in [?].

Now, we can give the following definition.

Definition 4.1.1. A random field
�

u(t,x) ,0  t  T ,x 2 Rd is called a mild solution

to the equation (??) if

(1) u(t,x) is jointly measurable in t 2 [0,T ] and x 2 Rd;

(2) 8(t,x) 2 [0,T ]⇥Rd ,
R t

0
R

Rd Y (t � s,x,y)u(s,y)dsW H(dy) is well defined in L 2;

(3) The following holds in L 2

u(t,x) =
Z

Rd
Z(t,x,x )u0(x )dx +

Z t

0

Z

Rd
Y (t � s,x,y)u(s,y)W H(dy)ds. (4.1.5)

Let us return to the discussion of the two Green’s functions {Z(t,x,x ) , Y (t,x,x )}.

If a = 1, namely, if ∂

a in (??) is replaced by ∂t and B = D :=
d

Â
i=1

∂

2
xi

, then

Z(t,x,x ) = Y (t,x,x ) = (4pt)�d/2 exp
⇢

� |x�x |2

4t

�

. (4.1.6)

In this case the stochastic partial differential equation of the form

∂u(t,x)
∂ t

= Du(t,x)+u ·Ẇ H(x), x 2 Rd, (4.1.7)
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was studied in [?]. The mild solution to the above equation (??) is proved to exist

uniquely under conditions

Hi > 1/2 , i = 1, · · · ,d and
d

Â
i=1

Hi > d �1 . (4.1.8)

The main result of this chapter is to extend the above result in [?] to our equation

(??).

Theorem 4.1.2. Let the coefficients ai j(x), bi(x) , i, j = 1, · · · ,d , be bounded and con-

tinuous and let them be Hölder continuous with exponent g . Let ai j(x) be uniformly

elliptic. Namely, there is a constant a0 2 (0,•) such that

d

Â
i, j=1

ai j(x)xix j � a0|x |2 8 x = (x1, · · · ,xd) 2 Rd .

Let u0 be a bounded continuous (and locally Hölder continuous if d > 1). Assume

Hi >

8

>

>

<

>

>

:

1
2 if d = 1,2,3,4

1� 2
d �

g

2d if d � 5
(4.1.9)

and
d

Â
i=1

Hi > d �2+
1
a

. (4.1.10)

Then, the mild solution to (??) exists uniquely in L2(W,F ,P).

Remark 4.1.3. (i) When a is formally set to 1, the condition (??) is the same as the

condition (??) given in [?]. So, in some sense our condition (??) is optimal.

(ii) Since Hi < 1 for all i = 1,2, · · · ,d the condition is possible only when a > 1/2.

60



4.2 Green’s functions Z and Y

Example 4.2.1. To compare with the classical case a = 1, we consider the case m = 2,

n = 0, p = 1, q = 2, a1 = a1 = b2 = b1 = b2 = 1 and b1 =
d
2 . Let L = L�•. Then, we

have

H20
12



z
�

�

�

�

(1,1)

(d
2 ,1), (1,1)

�

=
1

2pi

Z

L

G(d
2 + s)G(1+ s)

G(1+ s)
z�sds

=
1

2pi

Z

L
G(d

2
+ s)z�sds

=
•

Â
v=0

lim
s!�( d

2+v)
(s+

d
2
+ v)G(d

2
+ s)z�s

=
•

Â
v=0

lim
s!�( d

2+v)

G(v+ d
2 + s+1)

(s+ d
2 + v�1) · · ·(s+ d

2 )
z�s

=
•

Â
v=0

zd/2(�1)v 1
v!

zv

= zd/2 exp(�z) . (4.2.1)

4.2.1 Green’s functions Z and Y when B has constant coefficients

In this subsection let us consider Z and Y when the operator B in (??) has the following

form

B =
d

Â
i, j=1

ai j
∂

2

∂xi∂x j
,

where the matrix A = (ai j) is positive definite. In this case, Z and Y (we call them Z0

and Y0 to distinguish with the general coefficient case) are given as follows.

Z0(t,x) =
p

�d/2

(detA)1/2

 d

Â
i, j=1

A(i j)xix j

��d/2

61



⇥H20
12



1
4

t�a

d

Â
i, j=1

A(i j)xix j

�

�

�

�

(1,a)

(d
2 ,1), (1,1)

�

,

where (A(i j)) = A�1 and

Y0(t,x) =
p

�d/2

(detA)1/2

 d

Â
i, j=1

A(i j)xix j

��d/2
ta�1

⇥H20
12



1
4

t�a

d

Â
i, j=1

A(i j)xix j

�

�

�

�

(a,a)

(d
2 ,1), (1,1)

�

.

It is easy to see that for the constant coefficients, both of the Green’s functions are

homogeneous in time and space. Namely,

Z0(t,x,x ) = Z0(t,x�x ) , Y0(t,x,x ) = Y0(t,x�x ) .

In particular, when a = 1, it is easy to see from the above expression and the explicit

form (??) of H20
12 (z) that

Z0(t,x,x ) = Y0(t,x,x ) = (4p)�d/2 det(A)�1/2 exp

(

�
Âd

i, j=1 A(i j)(xi �xi)(x j �x j)

4t

)

.

which reduces to (??) when A = I is the identity matrix.

With the above expression for Z0 and Y0 and the properties of the H-function, one

can obtain the following estimates.

Proposition 4.2.2. Denote

p(t,x) = exp
�

�st�
a

2�a |x|
2

2�a

�

, t > 0 , x 2 Rd , (4.2.2)
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where s 2 (0,•) is generic positic constant whose exact value may vary at occurrence.

Then, we have the following estimates:

|Z0(t,x)|

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Ct�
a

2 p(t,x) when d = 1

Ct�a [| log |x|2
ta

|+1]p(t,x) when d = 2

Ct�a |x|2�d p(t,x) when d � 3 ,

(4.2.3)

where for instance, |Z0(t,x)|Ct�
a

2 p(t,x) means that there are positive constant C and

positive constant s such that the above inequality holds. In what follows the positive

constants C and s are generic, which may be different in different occurrences.

Proof. Denote R = |x|2/ta . From [?], Proposition 1, it follows that when R  1, we

have

|Z0(t,x)|

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Ct�
a

2 when d = 1

Ct�a [| log |x|2
ta

|+1] when d = 2

Ct�a |x|2�d when d � 3 ,

Since when R  1, p(t,x) is bounded from below. This proves the inequality (??) when

R  1.

When R > 1, then by [?], Proposition 1 we have |Z0(t,x)|Ct�
ad
2 p(t,x). It is clear

that this implies the inequality (??) when d = 1 and d = 2. Now, we assume that d � 3.

We have

|Z0(t,x)|  Ct�
ad
2 p(t,x)Ct�a |x|2�d

✓

|x|2

ta

◆

d
2�1

p(t,x)

 Ct�a |x|2�d p(t,x) ,
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where we used the fact that
⇣

|x|2
ta

⌘

d
2�1

p(t,x)  p(t,x) for a different s in the later

p(t,x).

Similarly, we can use [?], Proposition 2 (for d = 1 case) and [?], Section 4.2 (for

d � 2 case) to obtain the following estimates for Y0(t,x).

Proposition 4.2.3. We follow the same notation p(t,x) as defined by (??). We have

(i) When d = 1, we have the following estimates:

|Y0(t,x)|

8

>

<

>

:

Ct
a

2 �1 p(t,x) when t�a |x|2 � 1

Ct
a

2 �1 when t�a |x|2  1.
(4.2.4)

(ii) When d � 2, we have the following estimates:

|Y0(t,x)|

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

Ct�1 p(t,x) when d = 2

Ct�
a

2 �1 p(t,x) when d = 3

Ct�a�1[| log |x|2
ta

|+1]p(t,x) when d = 4

Ct�a�1|x|4�d p(t,x) when d � 5 ,

(4.2.5)

where for instance, |Y0(t,x)|Ct�1 p(t,x) means that there are positive constant

C and positive constant s such that the above inequality holds. In what follows

the positive constants C and s are generic, which may be different in different

occurrences. when

When the constants ai j are dependent on x , we use

Z0(t,x,x ) = Z0(t,x�x ,x ) , Y0(t,x,x ) = Y0(t,x�x ,x ) .
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to denote the Green’s functions. The above estimations are still valid and the constants

in the estimations are independent of x .

4.2.2 Green’s functions Z and Y in general coefficient case

If the coefficients of B are not constant, then the Green’s functions Z and Y are more

complicated and may be obtained by a method similar to the Levi parametrix for the

parabolic equations.

Denote

M(t,x,x ) =
d

Â
i, j=1

[ai j(x)�ai j(x )]
∂

2

∂xi∂x j
Z0(t,x�x ,x )

+
d

Â
i=1

bi(x)
∂

∂xi
Z0(t,x�x ,x )+ c(x)Z0(t,x�x ,x )

K(t,x,x ) =
d

Â
i, j=1

[ai j(x)�ai j(x )]
∂

2

∂xi∂x j
Y0(t,x�x ,x )

+
d

Â
i=1

bi(x)
∂

∂xi
Y0(t,x�x ,x )+ c(x)Y0(t,x�x ,x ) .

Let Q(s,y,x ) and F(s,y,x ) be defined by

Q(t,x,x ) = M(t,x,x )+
Z t

0
ds

Z

Rd
K(t � s,x,y)Q(s,y,x )dy,

F(t,x,x ) = K(t,x,x )+
Z t

0
ds

Z

Rd
K(t � s,x,y)F(s,y,x )dy

The following proposition is prove in [?], see section 2.2, Theorem.

Proposition 4.2.4. Let the coefficients ai j(x) and bi(x) satisfy the conditions in Theorem

??. Recall that g is the Hölder exponent of the coefficients with respect to the spatial
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variable x. Then, the Green’s functions {Z(t,x,x ),Y (t,x,x )} have the following form:

Z(t,x,x ) = Z0(t,x�x ,x )+VZ(t,x,x );

Y (t,x,x ) = Y0(t,x�x ,x )+VY (t,x,x ), (4.2.6)

where

VZ(t,x,x ) =
Z t

0
ds

Z

Rd
Y0(t � s,x,y)Q(s,y,x )dy;

VY (t,x,x ) =
Z t

0
ds

Z

Rd
Y0(t � s,x,y)F(s,y,x )dy.

Moreover, the function VZ(t,x,x ),VY (t,x,x ) satisfy the following estimates.

|VZ(t,x,x )|

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

Ct(g�1)a

2 p(t,x�x ) , when d = 1;

Ct
ga

2 �a p(t,x�x ) , when d = 2;

Ct
g0a

2 �a |x�x |2�d+g�g0 p(t,x�x ) , when d = 3 or d � 5;

Ct(g�g0)
a

2 �a |x�x |�2+g�2g0 p(t,x�x ) , when d = 4
(4.2.7)

and

|VY (t,x,x )|

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

Cta�1+(g�1)a

2 p(t,x�x ) , when d = 1;

Ct
ga

2 �1 p(t,x�x ) , when d = 2;

Ct(g0+g)a

4 �1|x�x |2�d+(g�g0)/2 p(t,x�x ) , when d = 3 or d � 5;

Ct(g�g0)
a

4 �1|x�x |�2+g�2g0 p(t,x�x ) , when d = 4
(4.2.8)

Here g0 is any number such that 0 < g0 < g and in the case d � 3, the constant C

depends on g0.
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4.3 Auxiliary lemmas

To prove our main theorem, we need to dominate certain multiple integral involving

Y (t,x,x ) and Z(t,x,x ). Since both Y (t,x,x ) and Z(t,x,x ) are complicated, we will

first bounded them by p(t,x� x ) from the estimations of |Y0(t,x,x )| and |VY (t,x,x )|.

More precisely, we have the following bounds for Y (t,x,x ).

Lemma 4.3.1. Let x 2 Rd, t 2 (0,T ]. Then

|Y (t,x,x )|

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

Ct�1+a

2 p(t,x�x ), d = 1;

Ct�1 p(t,x�x ), d = 2;

Ct�(g�2g0)
a

2 �1|x�x |�2+g�2g0 p(t,x�x ), d = 4;

Ct�(g�g0)
a

4 �1|x�x |2�d+(g�g0)/2 p(t,x�x ), d = 3 or d � 5.
(4.3.1)

Proof. we will prove the lemma case by case. First, when d = 1, by Proposition ??, we

have

|Y0(t,x�x ,x )| 

8

>

<

>

:

Ct
a

2 �1 p(t,x�x ), t�a |x�x |2 � 1;

Ct
a

2 �1, t�a |x�x |2  1.

If t�a |x�x |2  1, then

|Y0(t,x�x ,x )|Ct�1+a

2 · p(x, t)
e�s

Ct
a

2 �1 p(t,x�x ).

Therefore

|Y (t,x,x )|  |Y0(t,x�x ,x )|+ |VY (t,x,x )|

 Cta�1+(g�1)a

2 p(t,x�x )+Ct�1+a

2 p(t,x�x )
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 Ct�1+a

2 p(t,x�x ) .

Now we consider the case d = 2. From the following inequalities:

|VY (t,x,x )|  Ctg

a

2 �1 p(t,x�x ) ;

|Y0(t,x�x ,x )|  Ct�1 p(t,x�x )

we have easily

|Y (t,x,x )| |Y0(t,x�x ,x )|+ |VY (t,x,x )|Ct�1 p(t,x�x ) .

We re going to prove the lemma when d = 3. From Proposition ?? we have

|Y0(t,x�x ,x )|  Ct�
a

2 �1 p(t,x�x )

= Ct�(g�g0)
a

4 �1|x�x |�1+(g�g0)/2
�

�

�

�

x�x

t
a

2

�

�

�

�

1�(g�g0)/2
p(t,x�x )

 Ct�(g�g0)
a

4 �1|x�x |�1+(g�g0)/2 p(t,x�x ) .

Combining this inequality with Proposition ?? we obtain

|Y (t,x,x )|Ct�(g�g0)
a

4 �1|x�x |�1+(g�g0)/2 p(t,x�x ) .

We turn to consider the case d = 4. Proposition ?? yields that for any q > 0 the follow-

ing holds true:

|Y0(t,x�x ,x )|  Ct�a�1
✓

|x�x |2

ta

◆

q

+

✓

ta

|x�x |2

◆

q

�

p(t,x�x ) ;

= Ct�a�1
✓

ta

|x�x |2

◆

q

✓

|x�x |2

ta

◆2q

+1
�

p(t,x�x ) .
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If |x�x |2
ta

> 1, then

✓

|x�x |2

ta

◆2q

+1
�

p(t,x�x )  2
✓

|x�x |2

ta

◆2q

p(t,x�x )Cp(t,x�x ) .

As a consequence, we have

|Y0(t,x�x ,x )|Ct�a�1
✓

ta

|x�x |2

◆

q

p(t,x�x ) .

If |x�x |2
ta

 1, then the above inequality is obviously true. Now, we can choose q > 0,

such that �2q � (�2+ g �2g0). Thus, we have

|Y0(t,x�x ,x )| = Ct�a�1+aq+(�2q�(�2+g�2g0))
a

2 |x�x |�2+g�2g0

·
✓

|x�x |
t

a

2

◆�2q�(�2+g�2g0)

p(t,x�x )

 Ct�(g�2g0)
a

2 �1 · |x�x |�2+g�2g0 p(t,x�x ) .

Combining the above inequality with Proposition ?? we have

|Y (t,x,x )|  Ct�(g�2g0)
a

2 �1|x�x |�2+g�2g0 p(t,x�x )

+Ct(g0+g)a

4 �1|x�x |�2+g�2g0 p(t,x�x )

 Ct�(g�2g0)
a

2 �1|x�x |�2+g�2g0 p(t,x�x )

since �(g �2g0)
a

2 �1  (g0 + g)a

4 �1.

Finally we consider the case d � 5. From the estimates |Y0(t,x�x ,x )|Ct�a�1|x�

x |4�d p(t,x�x ) we obtain

|Y0(t,x�x ,x )|  Ct�(g0+g)a

4 �1|x�x |2�d+(g�g0)/2
�

�

�

�

x�x

t
a

2

�

�

�

�

2�(g�g0)/2
p(t,x�x )

69



 t�(g�g0)
a

4 �1|x�x |2�d+(g�g0)/2 p(t,x�x ) .

Therefore, we have

|Y (t,x,x )|Ct�(g�g0)
a

4 �1|x�x |2�d+(g�g0)/2 p(t,x�x ) .

The proposition is then proved.

The bound (??) will greatly help to simplify our estimation of the multiple integrals

that we are going to encounter. However, when the dimension d is greater than or equal

to 2, the multiple integrals are still complicated to estimate and our main technique is

to reduce the computation to one dimensional. This means we will further bound the

right hand side of the inequality (??) by product of functions of one variable. Before

doing so, we denote the exponents of t and |x� x | in (??) by zd and kd . Namely, we

denote

zd :=

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

�1+ a

2 , d = 1;

�1, d = 2;

�(g �2g0)
a

2 �1, d = 4;

�(g � g0)
a

4 �1, d = 3 or d � 5 .

(4.3.2)

and

kd :=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0, d = 1,2;

�2+ g �2g0, d = 4;

2�d +(g � g0)/2, d = 3 or d � 5 .

(4.3.3)
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From now on we will exclusively use p(t,x) = exp
�

�st�
a

2�a |x|
2

2�a

�

to denote a func-

tion of one variable. However, the constant s may be different in different appearances

of p(t,x) (for notational simplicity, we omit the explicit dependence on s of p(t,x)).

With these notation Lemma ?? yields

Lemma 4.3.2. The following bound holds true for the Green’s function Y :

|Y (t,x,x )|C
d

’
i=1

tzd/d|xi �xi|kd/d p(t,xi �xi) . (4.3.4)

Proof. It is easy to see that

|x|=
 

d

Â
i=1

x2
i

!1/2

� max
1id

|xi|�
d

’
i=1

|xi|
1
d .

Thus for any positive number a > 0, |x|�a  ’d
i=1 |xi|�

a

d .

On the other hand,

|x|
2

2�a =

 d

Â
i=1

|xi|2
�

1
2�a

�


max
1id

|xi|2
�

1
2�a

= max
1id

|xi|
2

2�a � 1
d

d

Â
i=1

|xi|
2

2�a .

Combining the above with (??) yields (??) since the exponents in |x� x | in (??) are

negative.

Lemma 4.3.3. Let �1 < b  0,x 2 R. Then, there is a constant C, dependent on s , a

and b , but independent of x and s such that

sup
x2R

Z

R
|x|b p(s,x�x )dx Cs

ab

2 +a

2 .
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Proof. Making the substitution x = ys
a

2 we obtain

Z

R
|x|b p(s,x�x )dx = s

ab

2 +a

2

Z

R
|y|b · exp

✓

�s

�

�

�

�

y� x

s
a

2

�

�

�

�

2
2�a

◆

dy

 s
ab

2 +a

2

✓

Z

|y|1
|y|b dy+

Z

R
exp

✓

�s

�

�

�

�

y� x

s
a

2

�

�

�

�

2
2�a

◆

dy
◆

 Cs
ab

2 +a

2

since the two integrals inside the parenthesis are finite (and independent of s and x ).

The following is a slight extension of the above lemma.

Lemma 4.3.4. There is a constant C, dependent on s , a and b , but independent of x

and s such that

sup
x2R

Z

R
|x|b |log |x|| p(s,x�x )dx Cs

ab

2 +a

2 [1+ |logs|] .

Proof. we will follow the same idea as in the proof of Lemma ??. Making the substi-

tution x = ys
a

2 we obtain

Z

R
|x|b |log |x|| p(s,x�x )dx

Cs
ab

2 +a

2

Z

R
|y|b [| log |y||+ | logs|] · exp

✓

�s

�

�

�

�

y� x

s
a

2

�

�

�

�

2
2�a

◆

dy

Cs
ab

2 +a

2 (1+ | logs|)
✓

Z

|y|e
|y|b | log |y||dy+

Z

R
exp

✓

�s

�

�

�

�

y� x

s
a

2

�

�

�

�

2
2�a

◆

dy
◆

Cs
ab

2 +a

2 (1+ | logs|) .

This proves the lemma.

Lemma 4.3.5. Let q1 and q2 satisfy �1 < q1 < 0,�1 < q2  0. Then for any r1,t2 2

R,r1 6= t2,
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(i) If q1 +q2 =�1, then

Z

R
|r1 � t1|q1 |r2 �r1|q2 p(s2 � s1,r2 �r1)dr1 C+C| log(r2 � t1)| .

(ii) If q1 +q2 <�1, then

Z

R
|r1 � t1|q1 |r2 �r1|q2 p(s2 � s1,r2 �r1)dr1 C|r2 � t1|1+q1+q2 .

Proof. Without loss of generality, suppose t1  r2. We divide the integral domain into

four intervals.

Z

R
|r1 � t1|q1 |r2 �r1|q2 p(s2 � s1,r2 �r1)dr1

=
Z

3t1�r2
2

�•
|r1 � t1|q1 |r2 �r1|q2 p(s2 � s1,r2 �r1)dr1

+
Z

t1+r2
2

3t1�r2
2

|r1 � t1|q1 |r2 �r1|q2 p(s2 � s1,r2 �r1)dr1

+
Z

3r2�t1
2

t1+r2
2

|r1 � t1|q1 |r2 �r1|q2 p(s2 � s1,r2 �r1)dr1

+
Z •

3r2�t1
2

|r1 � t1|q1 |r2 �r1|q2 p(s2 � s1,r2 �r1)dr1

=: I1 + I2 + I3 + I4 .

Let us consider I2 first. When r1 2


3t1 �r2

2
,
t1 +r2

2

�

, we have |r2 � r1| � r2�t1
2 .

Noticing p(s2 � s1,r2 �r1) 1, we have the following estimate for I2:

I2 
✓

r2 � t1

2

◆

q2 Z t1+r2
2

3t1�r2
2

|r1 � t1|q1dr1


✓

r2 � t1

2

◆

q2
"

Z

t1+r2
2

t1
(r1 � t1)

q1dr1 +
Z

t1

3t1�r2
2

(t1 �r1)
q1dr1

#
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= C
✓

r2 � t1

◆1+q1+q2

.

With the same argument, we have

I3 C
✓

r2 � t1

◆1+q1+q2

.

Now, we study I1. The term I4 can be analyzed in a similar way. Since r1 <
3t1�r2

2 <

t1 < r2, we have

I1 
Z

3t1�r2
2

�•
(t1 �r1)

q1+q2 p(s2 � s1,r2 �r1)dr1 .

To estimate the above integral, we divide our estimation into three cases.

Case i): q1 +q2 <�1.

In this case, we bound p(s2 � s1,r2 �r1) by 1. Thus, we have

I1 
Z

3t1�r2
2

�•
(t1 �r1)

q1+q2dr1 =
1

1+q1 +q2

✓

r2 � t1

2

◆1+q1+q2

.

Case ii): q1 +q2 =�1, r2�t1
2 � 1.

In this case, we have 3t1�r2
2  t1 �1. Thus, we have

I1 
Z

t1�1

�•
(t1 �r1)

�1 p(s2 � s1,r2 �r1)dr1


Z

t1�1

�•
p(s2 � s1,r2 �r1)dr1


Z •

�•
p(s2 � s1,r2 �r1)dr1

which is bounded when s1 and s2 are in a bounded domain.

Case iii): q1 +q2 =�1, r2�t1
2 < 1.
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In this case, we divide the integral into two intervals as follows.

I1 =
Z

3t1�r2
2

�•
(t1 �r1)

q1+q2 p(s2 � s1,r2 �r1)dr1


Z

t1�1

�•
(t1 �r1)

�1 p(s2 � s1,r2 �r1)dr1 +
Z

3t1�r2
2

t1�1
(t1 �r1)

�1 p(s2 � s1,r2 �r1)dr1

 C+
Z

3t1�r2
2

t1�1
(t1 �r1)

�1dr1

 C+C| ln(r2 � t1)| .

Similar argument works for I4. Combining the estimates for Ik,k = 1,2,3,4 yields the

lemma.

Lemma 4.3.6. Let q1 and q2 satisfy �1 < q1 < 0,�1 < q2  0 and q1+2q2 >�2. Let

0  r1 < r2  T and 0  s1 < s2  T . Then for any r1,t2 2 R,r1 6= t2, we have

Z

R2
|r1 � t1|q1 |r2 �r1|q2 |t2 � t1|q2 p(s2 � s1,r2 �r1)p(r2 � r1,t2 � t1)dr1dt1



8

>

>

>

>

<

>

>

>

>

:

C(s2 � s1)
a(q1+q2+1)

2 (r2 � r1)
a(q2+1)

2 , q1 +q2 >�1;

C(r2 � r1)
a(q1+2q2+2)

2 , q1 +q2 <�1;

C(r2 � r1)
a(q2+1)

2 [1+ | log(r2 � r1)|] , q1 +q2 =�1.

(4.3.5)

Proof. First, we write

I :=
Z

R2
|r1 � t1|q1 |r2 �r1|q2 |t2 � t1|q2 p(s2 � s1,r2 �r1)p(r2 � r1,t2 � t1)dr1dt1

=
Z

R
f (t1,r2,s1,s2,q1,q2)|t2 � t1|q2 p(r2 � r1,t2 � t1)dt1 , (4.3.6)

where

f (t1,r2,s1,s2,q1,q2) =
Z

R
|r1 � t1|q1 |r2 �r1|q2 p(s2 � s1,r2 �r1)dr1 .
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We divide the situation into three cases.

Case i): q1 +q2 >�1.

In this case we apply the Hölder’s inequality to obtain

f (t1,r2,s1,s2,q1,q2) 
⇢

Z

R
|r1 � t1|q1+q2 p(s2 � s1,r2 �r1)dr1

�

q1
q1+q2

·
⇢

Z

R
|r2 �r1|q1+q2 p(s2 � s1,r2 �r1)dr1

�

q2
q1+q2

 C(s2 � s1)
a(q1+q2)

2 +a

2 , (4.3.7)

where the last inequality follows from Lemma ??. Substituting the above estimate (??)

into (??), we have

I =
Z

R
f (t1,r2,s1,s2,q1,q2)|t2 � t1|q2 p(r2 � r1,t2 � t1)dt1

 C(s2 � s1)
a(q1+q2)

2 +a

2

Z

R
|t2 � t1|q2 p(r2 � r1,t2 � t1)dt1 .

Using Lemma ?? again we have,

I C(s2 � s1)
a(q1+q2)

2 +a

2 (r2 � r1)
aq2

2 +a

2 .

Case ii): q1 +q2 <�1.

In this case, from Lemma ??, part (ii) it follows

f (t1,r2,s1,s2,q1,q2)C|r2 � t1|q1+q2+1 .

Hence, we have

I  C
Z

R
|r2 � t1|q1+q2+1|t2 � t1|q2 p(r2 � r1,t2 � t1)dt1 .
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Now, since from the condition of the lemma, q1 +2q2 +1 > �1, we can use Hölder’s

inequality such as in the inequality (??) in the case (i), to obtain

I  C
Z

R
|r2 � t1|q1+q2+1|t2 � t1|q2 p(r2 � r1,t2 � t1)dt1

 C(r2 � r1)
a(q1+2q2)

2 +a .

Case iii): q1 +q2 =�1.

In this case, we first use Lemma ??, part (i) to obtain

f (t1,r2,s1,s2,q1,q2)C [1+ |log |r2 � t1||] .

Thus, using Lemma ??, we have

I  C
Z

R
{1+ |log |r2 � t1||}|t2 � t1|q2 p(r2 � r1,t2 � t1)dt1

 C(r2 � r1)
a(q2+1)

2 [1+ |log |r2 � r1||] .

The lemma is then proved.

Corollary 4.3.7. Let q1 and q2 satisfy �1 < q1 < 0,�1 < q2  0 and q1 +2q2 >�2.

Let 0  r1 < r2  T and 0  s1 < s2  T . Then for any r1,t2 2 R,r1 6= t2, we have

Z

R2
|r1 � t1|q1 |r2 �r1|q2 |t2 � t1|q2 p(s2 � s1,r2 �r1)p(r2 � r1,t2 � t1)dr1dt1



8

>

>

<

>

>

:

C(s2 � s1)
a(q1+2q2+2)

4 (r2 � r1)
a(q1+2q2+2)

4 ; q1 +q2 6=�1

C(s2 � s1)
a(q2+1)

4 (r2 � r1)
a(q2+1)

4 [1+ | log(r2 � r1)|+ | log(s2 � s1)|] ; q1 +q2 =�1 .

(4.3.8)
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Proof. Consider first the case q1 +q2 < �1. Denote the integral on the left hand side

of (??) by I. Then the inequality (??) implies

I C(r2 � r1)
a(q1+2q2)

2 +a .

In the same way we have

I C(s2 � s1)
a(q1+2q2)

2 +a .

Now we use the fact that if three numbers satisfying a b and a c, then a= a1/2a1/2 

b1/2c1/2.

I C(r2 � r1)
a(q1+2q2)

4 +a/2(s2 � s1)
a(q1+2q2)

4 +a/2

which simplifies to (??). The exactly the same argument applied to the case q1 +q2 =

�1 and the case q1 +q2 >�1. Thus, the inequality (??) implies (??).

Lemma 4.3.8. Let p1, · · · , pn > 0. Then for any T > 0,

Z

0s1<···<snT
(sn � sn�1)

pn�1 · · ·(s2 � s1)
p2�1sp1�1

1 ds =
T n ’n

k=1 G(pk)

G(p1 + · · ·+ pn +1)
.

(4.3.9)

Lemma 4.3.9. Assume that u0 is bounded. Then

sup
x2R

Z

Rd
Z(t,x,x )u0(x )dx C .

Proof. We use Z(t,x,x ) = Z0(t,x�x ,x )+VZ(t,x,x ). Since u0 is bounded,

�

�

�

�

Z

Rd
Z0(t,x,x )u0(x )dx

�

�

�

�

 C
Z

Rd
|Z0(t,x,x )|dx
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which is bounded by the estimates in (??) and a substitution x = x+ t
a

2 y. In fact, we

have, for example, when d � 3,

Z

Rd
|Z0(t,x�x )|dx  C

Z

Rd
t�at

(2�d)a
2 t

da

2 |y|2�d exp{�s |y|
2

2�a }dy Ct1�a C.

Similarly, using the estimation for VZ(t,x,x ) given in Proposition ?? we can bound
R

Rd |VZ(t,x,x )|dx by a constant. In fact, for example, when d = 3, we have

Z

Rd
|VZ(t,x,x )|dx  Ct

g0a

2 �a

Z

Rd
t

3a

2 t
(g�g0�1)a

2 |y|g�g0�1 exp{�s |y|
2

2�a }dy Ct
ga

2 C.

The other dimension case can be dealt with the same way.

4.4 Proof of the main theorem ??

Change t to s and x to y and the equation (??) for mild solution becomes

u(s,y) =
Z

Rd
Z(s,y,x )u0(x )dx +

Z s

0

Z

Rd
Y (s� r,y,z)u(r,z)W H(dz)dr .

Substituting the above into (??), we have

u(t,x) =
Z

Rd
Z(t,x,x )u0(x )dx +

Z t

0

Z

R2d
Y (t � s,x,y)Z(s,y,x )u0(x )dxW H(dy)ds

+
Z t

0

Z s

0

Z

R2d
Y (t � s,x,y)Y (s� r,y,z)u(r,z)W H(dz)drW H(dy)ds .

We continue to iterate this procedure to obtain

u(t,x) =
•

Â
n=0

Yn(t,x) , (4.4.1)
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where Yn satisfies the following recursive relation:

Y0(t,x) =
Z

Rd
Z(t,x,x )u0(x )dx

Yn+1(t,x) =
Z t

0

Z

Rd
Y (t � s,x,y)Yn(s,y)W H(dy)ds , n = 0,1,2, · · ·

To write down the explicit expression for the expansion (??), we denote

fn(t,x;x1, · · · ,xn) =
Z

Tn

Z

Rd
Y (t � sn,x,xn) · · ·Y (s2 � s1,x2,x1)Z(s1,x1,x )u0(x )dx ds ,

(4.4.2)

where

Tn = 0  s1 < s1 < · · ·< s1  t and ds = ds1ds2 · · ·dsn .

With these notations, we see from the above iteration procedure that

Yn(t,x) = In( f̃n(t,x))

=
Z

Rnd
fn(t,x;x1, · · · ,xn)W H(dx1)W H(dx2) · · ·W H(dxn)

=
Z

Rnd
f̃n(t,x;x1, · · · ,xn)W H(dx1)W H(dx2) · · ·W H(dxn) . (4.4.3)

where In denotes the multiple Itô type integral with respect to W (x) (see [?]) and

f̃n(t,x;x1, · · · ,xn) is the symmetrization of fn(t,x;x1, · · · ,xn) with respect to x1, · · · ,xn:

f̃n(t,x;x1, · · · ,xn) =
1
n! Â

i1,··· ,in2s(n)
fn(t,x;xi1 , · · · ,xin) ,

where s(n) denotes the set of permutations of (1,2, · · · ,n).

The expansion (??) with the explicit expression (??) for Yn is called the chaos

expansion of the solution.
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If the equation (??) has a square integrable solution, then it has a chaos expansion

according to a general theorem of Itô. From the above iteration procedure, it is easy to

see that this chaos expansion of the solution is given uniquely by (??)-(??). This is the

uniqueness.

If we can show that the series (??) is convergent in L2(W,F ,P), then it is easy to

verify that u(t,x) defined by (??)-(??) satisfies the equation (??). Thus, the existence

of the solution to (??) is solved and the explicit form of the solution is also given (by

(??)-(??)). We refer to [?] for more detail.

Thus, our remaining task is to prove that the series defined by (??) is convergent in

L2(W,F ,P). To this end, we need to use the lemmas that we just proved.

Let now u(t,x) be defined by (??)-(??). Then we have

E[u(t,x)2] =
•

Â
n=0

E
⇥

In( f̃n(t,x))
⇤2

=
•

Â
n=0

n!h f̃n, f̃niH


•

Â
n=0

n!h fn, fniH , (4.4.4)

where

h f ,giH =
Z

R2nd

n

’
i=1

jH(ui,vi) f (u1, · · · ,un)g(v1, · · · ,vn)du1dv1du2dv2 · · ·dundvn

(4.4.5)

and the last inequality follows from Hölder inequality. Here and in the remaining part

of the chapter, we use the following notations:

ui = (ui1, · · · ,uid) , dui = dui1 · · ·duid , i = 1,2, · · · ,n ;

jH(ui,vi) =
d

’
j=1

jHj(ui j,vi j) =
d

’
j=1

Hj(2Hj �1)|ui j � vi j|2Hj�2 .
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We use the idea in [?] to estimate each term Qn(t,x) = n!h fn, fniH in the series (??).

By the defining formula (??) for fn we have

Qn(t,x) = n!
Z

T 2
n

Z

R2nd+2

n

’
i=1

jH(xi �hi) Y (t � sn,x,xn) · · ·Y (s2 � s1,x2,x1)

·
Z

Rd
Z(s1,x1,x0)u0(x0)dx0 ·Y (t � rn,x,hn) · · ·Y (r2 � r1,h2,h1)

·
Z

Rd
Z(r1,h1,h0)u0(h0)dh0dx dhdsdr.

Application of lemma ?? to the above integral yields

Qn(t,x)  Cn!
Z

T 2
n

Z

R2nd

n

’
i=1

jH(xi �hi)Y (t � sn,x,xn) · · ·Y (s2 � s1,x2,x1)

·Y (t � rn,x,hn) · · ·Y (r2 � r1,h2,h1)dx dhdsdr.

Using lemma ?? to the above integral, we have

Qn(t,x)Cnn!
Z

T 2
n

d

’
i=1

Qi,n(t,xi,s,r)dsdr, (4.4.6)

where

Qi,n(t,xi,s,r) =
Z

R2n

(

n

’
k=1

jHi(rk � tk)

)

|t � sn|
zd
d |xi �rn|

kd
d p(t � sn,xi �rn)

· · · |s2 � s1|
zd
d |r2 �r1|

kd
d p(s2 � s1,r2 �r1)

·|t � rn|
zd
d |xi � tn|

kd
d p(t � rn,xi � tn) · · · |r2 � r1|

zd
d

·|t2 � t1|
kd
d p(r2 � r1,t2 � t1)drdt.
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Here we use the notation rk = xki and tk = hki, k = 1, · · · ,n. The quantity Qi,n can be

written as

Qi,n(t,xi,s,r) = |t � sn|
zd
d |t � rn|

zd
d · · · |s2 � s1|

zd
d |r2 � r1|

zd
d

·
Z

R2n

(

n

’
k=1

jHi(rk � tk)

)

|xi �rn|
kd
d p(t � sn,xi �rn)

·|xi � tn|
kd
d p(t � rn,xi � tn) · · · |r2 �r1|

kd
d p(s2 � s1,r2 �r1)

· · · |t2 � t1|
kd
d p(r2 � r1,t2 � t1)drdt . (4.4.7)

From the definition (??) of kd we see easily kd
d >�1 . We assume

2Hi +
2kd

d
> 0 . (4.4.8)

Under the above condition we can apply the Corollary ?? with q1 = 2Hi � 2 > �1,

q2 =
kd
d >�1 to the integration dr1dt1 in the expression (??) (Condition (??) implies

that q1 +2q2 >�2). Then, when q1 +q2 6=�1, we have

Qi,n(t,xi,s,r)  C|t � sn|
zd
d |t � rn|

zd
d · · · |s3 � s2|

zd
d |r3 � r2|

zd
d

·|s2 � s1|
zd
d +

Hid+kd
2d a |r2 � r1|

zd
d +

Hid+kd
2d a

·
Z

R2n�2

(

n

’
k=2

jHi(rk � tk)

)

|xi �rn|
kd
d p(t � sn,xi �rn)

·|xi � tn|
kd
d p(t � rn,xi � tn) · · · |r3 �r2|

kd
d p(s3 � s2,r3 �r2)

· · · |t3 � t3|
kd
d p(r3 � r2,t3 � t2)drn · · ·dr2dtn · · ·dt2 .

Repeatedly applying this argument, we obtain

Qi,n(t,xi,s,r)  Cn
n

’
k=1

|tk+1 � tk|`i |sk+1 � sk|`i , (4.4.9)
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where we recall the convention that tn+1 = t and sn+1 = s and where

`i =
zd

d
+

Hid +kd

2d
a .

Substituting the above estimate of Qi,n into the expression for Qn, we have

Qn(t,x)  Cn
Z

T 2
n

n

’
k=1

(sk+1 � sk)
`(rk+1 � rk)

`dsdr

= Cn

"

Z

Tn

n

’
k=1

(sk+1 � sk)
`ds

#2

,

where

`=
d

Â
i=1

`i = zd +
|H|a

2
+

kda

2
with |H|=

d

Â
i=1

Hi .

Now, we apply Lemma ?? to obtain

Qn(t,x)  Cn


G(`+1)
G(n(`+1))

�2

 Cn

G(2n(`+1))
.

This estimate combined with (??) proves that if

2(`+1)> 1 , (4.4.10)

then Â•
n=0 Qn(t,x) is bounded which implies that the series (??) is convergent in L2(W,F ,P).

Using the explicit expressions of zd and kd , we analyze the condition (??) for the

cases d = 1, d = 2, d = 4 and d = 3 or d � 5 separately, then we see that the condition

(??) is equivalent to
d

Â
i=1

Hi > d �2+
1
a

. (4.4.11)
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For instance, when d = 1,

2(`+1)> 1 , |H|> 1
a

�kd �
2
a

dd , |H|> 1
a

� 2
a

(�1+
a

2
) =

1
a

�1.

When q1 +q2 =�1, Corollary ?? implies that for any e < 0,

Z

R2
|r1 � t1|q1 |r2 �r1|q2 |t2 � t1|q2 p(s2 � s1,r2 �r1)p(r2 � r1,t2 � t1)dr1dt1

 C(s2 � s1)
a(q2+1+e)

4 (r2 � r1)
a(q2+1++e)

4 .

Now we can follow the above same argument to obtain that if

2(`+1)> 1 , (4.4.12)

where ` = td +
td
2

de+kd+d
4 a , then Qn(t,x) is bounded. In the same way as in the case

q1 +q2 6=�1, we can show that the condition (??) implies (??).

Now we consider the condition (??). From the definition (??) of kd , we see that

when d = 1,2,3,4, Hi > 1/2 implies (??). When d � 5, then the condition (??) is

implied by the following

Hi > 1� 2
d
� g

2d

by choosing g0 sufficiently small.

Theorem 2 is then proved. ⇤.
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Chapter 5

Stochastic time-fractional diffusion equations with

variable coefficients and time dependent noise

5.1 Introduction

In this article we prove the existence and uniqueness of the mild solution of the equation

8

>

>

>

<

>

>

>

:

(∂ a �B)u(t,x) = u(t,x)Ẇ (t,x), t 2 (0,T ], x 2 Rd,

∂

k

∂ tk u(t,x)
�

�

�

�

t=0
= uk(x), 0  k  dae�1, x 2 Rd,

(5.1.1)

with any fixed T 2 R+, a 2 (1/2,1)[ (1,2), where dae is the smallest integer not less

than a . Here we assume

• u0(x) is bounded continuously differentiable. Its first order derivative bounded

and Hölder continuous. The Hölder exponent g > 2�a

a

• u1(x) is bounded continuous function(locally hölder continuous if d > 1)
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In this equation, Ẇ is a zero mean Gaussian noise with the following covariance struc-

ture

E(Ẇ (t,x)Ẇ (s,y)) = l (t � s)L(x� y),

where l (·) is nonnegative definite and locally intergrable and L(·) is one of the follow-

ing situations:

(i) Fractional kernel. L(x) :=
d

’
i=1

2Hi(2Hi �1)|xi|2Hi�1, x 2 Rd and 1/2 < Hi < 1.

(ii) Reisz kernel. L(x) :=C
a,d|x|�k , x2Rd and 0< k < d and C

a,d =G(k

2 )2
�a

p

�d/2/G(a

2 ).

(iii) Bessel kernel. L(x) :=C
a

R •
0 w

� k

2 �1e�we
�|x|2

4w dw , x 2 Rd , 0 < k < d, and C
a

=

(4p)a/2G(a/2).

B :=
d

Â
i, j=1

ai, j(x)
∂

2

∂xi∂x j
+

d

Â
j=1

b j(x)
∂

∂x j
+ c(x)

is uniformly elliptic. Namely it satisfies the following conditions:

(i) ai j(x),b j(x) and c(x) are bounded Hölder continuous functions on Rd

(ii) 9a0 > 0, such that 8x,x 2 Rd,

d

Â
i, j=1

ai, j(x)xix j � a0|x |2.

The fractional derivative in time ∂

a is understood in Caputo sense:

∂

a f (t) :=

8

>

>

>

<

>

>

>

:

1
G(m�a)

Z t

0
dt

f (m)(t)

(t � t)a+1�m if m�1 < a < m ,

dm

dtm f (t) if a = m .
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Throughout this chapter, the initial conditions uk(x) are bounded continuous(Hölder

continuous, if d > 1) functions. The study of the mild solution relies on the asymptote

property of the Green’s function Z,Y of the following deterministic equation.

8

>

>

<

>

>

:

(∂ a �B)u(t,x) = f (t,x), t > 0, x 2 Rd,

∂

k

∂ tk u(t,x)
�

�

�

�

t=0
= uk(x), 0  k  dae�1, x 2 Rd,

(5.1.2)

In chapter ?? we cover the case a 2 (1/2,1). When a 2 (1,2), [?] showed that when

B is D, Green’s function Y of (??) the following:

Y (t,x) =Cdt
a

2 (2�d) f a

2
(|x|t�

a

2 ;d �1,
a

2
(2�d)),

where

f a

2
(z; µ,d ) =

8

>

>

>

<

>

>

>

:

2
G(µ

2 )

Z •

1
f(�a

2
,d ;�zt)(t2 �1)

µ

2 �1dt, µ > 0,

f(�a

2
,d ;�z), µ = 0;

Cd = 2�n
p

1�d
2 and the wright’s function

f(�a

2
,d ;�z) :=

•

Â
n=0

zn

n!G(d � a

2 n)

The solution of (??) has the following form:

u(t,x) = J0(t,x)+
Z t

0
ds
Z

Rd
dy f (s,y)Y (t � s,x� y), (5.1.3)
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where and throughout the chapter, we denote

J0(t,x) :=
dae�1

Â
k=0

Z

Rd
uk(y)Zk+1(t,x� y)dy . (5.1.4)

For case of a 2 (1/2,1), we use Z in place of Z1. We have the following facts about

Z1(t,x), Z2(t,x) and Y (t,x).

Z1(t,x) = Da�1Y (t,x); Z1(t,x) =
∂

∂ t
Z2(t,x)

As in the chapter ??, We first get the estimation of Y , then use Wiener chaos expan-

sion to obtain relation between the parameter a,d,Hi and k such that the mild solution

exist.

The rest of the article is organized as follows. Section 2 gives more details about the

solution of (??), estimation of Y for a 2 (1/2,1) and some preliminaries about Wiener

spaces. Section 3 gives the estimation of Y for a 2 (1,2) and further estimations before

proving the existence of the mild solution.

Notation: Throughout this chapter we denote

p(t,x) := exp

(

�s

�

�

�

�

x
t

a

2

�

�

�

�

2
2�a

)

,

where s > 0 is a generic positive constant whose values may vary at different occur-

rence, so is C.
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5.2 Preliminary

We consider a Gaussian noise W on a complete probability space (W,F ,P) encoded

by a centered Gaussian family {W (j); j 2 L2(R+⇥Rd)}, whose covariance structure

l (s� t) is given by

E(W (j)W (y)) =
Z

R2
+⇥R2d

j(s,x)y(t,y)l (s� t)L(x� y)dxdydsdt, (5.2.1)

where l : R ! R+ is nonnegative definite and locally intergrable. Throughout the

chapter, we denote

Ct := 2
Z t

0
l (s)ds, t > 0. (5.2.2)

L : Rd ! R+ is a fractional, Reisz or Bessel kernel.

Definition 5.2.1. Let Z and Y be the fundamental solutions defined by (??) and (??).

An adapted random field {u = u(t,x) : t � 0,x 2 Rd} such that E
⇥

u2(t,x)
⇤

< +• for

all (t,x) is a mild solution to (??), if for all (t,x) 2 R+⇥Rd , the process

n

Y (t � s,x� y)u(s,y)1[0,t](s) : s � 0, y 2 Rd
o

is Skorodhod integrable (see (??)), and u satisfies

u(t,x) = J0(t,x)+
Z t

0

Z

Rd
Y (t � s,x� y)u(s,y)W (ds,dy) (5.2.3)

almost surely for all (t,x) 2 R+⇥Rd , where J0(t,x) is defined by (??).
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We use a similar chaos expansion to the one used in chapter 3. To prove the exis-

tence and uniqueness of the solution we show that for all (t,x),

•

Â
n=0

n!k fn(·, ·, t,x)k2
H ⌦n < • . (5.2.4)

5.3 Estimations of the Green’s functions

The fundamental solution of (??) is constructed by Levi’s parametrix method. We refer

the reader to [?] for detail of this method. In this section x := (x1,x2, · · · ,xd) 2Rd,x ,h

are defined the same way; t 2 (0,T ]. We use g to denote the Hölder exponents with

respect to spatial variables. We can assume they are equal. For a 2 (1,2), we assume

g > 2� 2
a

.

For a 2 (1
2 ,1), Chapter 4 gives the estimations the Z and Y . For a 2 (1,2), we need

some lemmas before we can estimate Z1,Z2 and Y .

From [?] we have

Z j(t,x�x ) =Z0
j (t,x�x ,x )+VZ j(t,x;x ), j = 1,2.

Y (t,x�x ) =Y0(t,x�x ,x )+VY (t,x;x ).

We refer the reader to [?] for the definitions of Z0
k (t,x�x ,x ),Y0(t,x�x ,x ) and VY (t,x;x ).

Here we list their estimations which we use to get the estimations of Zk and Y in section

3. These estimations are given in section 2.2 of [?] or Lemma 15 in [?].
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Lemma 5.3.1.

|Z0
1(t,x�x ,h)|Ct�

ad
2

µd(t�
a

2 |x�x |)p(t,x�x ),

|Z0
2(t,x�x ,h)|Ct�

ad
2 +1

µd(t�
a

2 |x�x |)p(t,x�x ),

where

µd(z) :=

8

>

>

>

>

<

>

>

>

>

:

1, d = 1;

1+ | logz|, d = 2;

z2�d, d � 3.

(5.3.1)

Lemma 5.3.2.

|Y0(t,x�x ,h)|Cta�ad
2 �1

µd(t�
a

2 |x�x |)p(t,x�x ),

where

µd(z) :=

8

>

>

>

>

<

>

>

>

>

:

1, d  3;

1+ | logz|, d = 4;

z4�d, d � 5.

(5.3.2)

The following estimations of VZ1 ,VZ2 and VY are from Theorem 1 of [?], where

n1 2 (0,1), such that g > n1 > 2� 2
a

and n0 = n1 �2+ 2
a

.

Lemma 5.3.3.

|VZ1(t,x;x )|

8

>

>

<

>

>

:

Ct(g�1)a

2 p(t,x�x ) , d = 1;

Ctn0a�1|x�x |�d+g�n1+2�n0 p(t,x�x ) , d � 2
(5.3.3)
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Lemma 5.3.4.

|VZ2(t,x;x )|

8

>

>

<

>

>

:

Ct(g�1)a

2 +1 p(t,x�x ) , d = 1;

Ct
n0a

2 +1�a |x�x |�d+g�n1+2�n0 p(t,x�x ) , d � 2
(5.3.4)

Lemma 5.3.5.

|VY (t,x;x )|

8

>

>

<

>

>

:

Cta�1+(g�1)a

2 p(t,x�x ) , d = 1;

Ctn0a�1|x�x |�d+g�n1+2�n0 p(t,x�x ) , d � 2
(5.3.5)

Based on the above three lemmas we have

Lemma 5.3.6. Let x 2 Rd, t 2 (0,T ]. Then

|Y (t,x�x )|

8

>

<

>

:

Ct�1+a

2 p(t,x�x ), d = 1;

Cta�a

2 g+n0a�2|x�x |�d+g�2n0+
2
a p(t,x�x ), d � 2.

(5.3.6)

Proof. We ”add” together the estimation of Y0 in Lemma ?? and Vy in Lemma ?? to get

the estimation of Y . We use the following inequality throughout the proof.

a,b,s > 0, then 9s ,C > 0, s.t. xae�sxb
<Ce�s

0xb
,

First when d = 1,

|Y (t,x�x )|  |Y0(t,x�x ,x )|+ |VY (t,x,x )|

 Cta�1+(g�1)a

2 p(t,x�x )+Ct�1+a

2 p(t,x�x )

 Ct�1+a

2 p(t,x�x ) .
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When d � 5, by the fact

n0 = n1 �2+2/a and g > n1 > 2� 2
a

,

we have

4� g +2n0 �
2
a

=�g +2n1 +
2
a

� 0 .

Therefore

|Y0(t,x�x ,x )|  Cta�ad
2 �1

�

�

�

�

x�x

t
a

2

�

�

�

�

4�d
p(t,x�x )

= Cta�ad
2 �1

�

�

�

�

x�x

t
a

2

�

�

�

�

�d+g�2n0+
2
a

�

�

�

�

x�x

t
a

2

�

�

�

�

4�g+2n0� 2
a

p(t,x�x )

 Cta�a

2 g+n0a�2|x�x |�d+g�2n0+
2
a p(t,x�x ) .

Furthermore because of the assumption

g > 2� 2
a

,

we have

a � a

2
g +n0a �2 < n0a �1.

Therefore

|Y (t,x�x )|  |Y0(t,x�x ,x )|+ |Vy(t,x,x )|

 Cta�a

2 g+n0a�2|x�x |�d+g�2n0+
2
a p(t,x�x )

+ Ctv0a�1|x�x |�d+g�2n0+
2
a p(t,x�x )

 Cta�a

2 g+n0a�2|x�x |�d+g�2n0+
2
a p(t,x�x ) .
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When d = 2 and d = 3, as in the previous cases, we first have

|Y0(t,x�x ,x )|  Cta�an
2 �1 p(t,x�x )

 Cta�a

2 g+n0a�2|x�x |�d+g�2n0+
2
a p(t,x�x ).

Then as the last step in the case of d � 5, we have

|Y (t,x�x )|  Cta�a

2 g+n0a�2|x�x |�d+g�2n0+
2
a p(t,x�x ) .

When d = 4, let’s first transform the estimation of Y0 into the following form:

tzd |x�x |kd p(t,x�x ).

We have

|Y0(t,x�x ,x )|  Cta�ad
2 �1

(

�

�

�

�

x�x

t
a

2

�

�

�

�

q

+

�

�

�

�

t
a

2

x�x

�

�

�

�

q

)

p(t,x�x )

 Cta�ad
2 �1

�

�

�

�

t
a

2

x�x

�

�

�

�

q

(

�

�

�

�

x�x

t
a

2

�

�

�

�

2q

+1

)

p(t,x�x ),

for 8q > 0.

If | x�x

t
a

2
| 1, then

(

�

�

�

�

x�x

t
a

2

�

�

�

�

2q

+1

)

p(t,x�x )  2p(t,x�x );
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if | x�x

t
a

2
|> 1, then

(

�

�

�

�

x�x

t
a

2

�

�

�

�

2q

+1

)

p(t,x�x )  2
�

�

�

�

x�x

t
a

2

�

�

�

�

2q

p(t,x�x )

 Cp(t,x�x ).

Therefore if we choose q > 0 such that

�q >�d + g �2n0 +
2
a

,

we have

|Y0(t,x�x ,x )|  Cta�ad
2 �1

�

�

�

�

x�x

t
a

2

�

�

�

�

�q

p(t,x�x )

 Cta�ad
2 �1

�

�

�

�

x�x

t
a

2

�

�

�

�

�d+g�2n0+
2
a

p(t,x�x )

 Cta�a

2 g+n0a�2|x�x |�d+g�2n0+
2
a p(t,x�x ) .

As in previous two cases, we end up with

|Y (t,x�x )|  Cta�a

2 g+n0a�2|x�x |�d+g�2n0+
2
a p(t,x�x ) .

Let’s denote the the estimation function of Y by tzd |x�x |kd p(t,x�x ). For the esti-

mation of integral (??) involving Y and fractional kernel it more convenient to represent

the estimation of Y as the the product of one dimensional functions. To this purpose,

as in the case of 0 < a < 1, the estimation of Y is represented as the product of one

dimensional functions, which is shown in the following lemma.
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Lemma 5.3.7. Let xi,xi 2 R, t 2 (0,T ]

|Y (t,x�x )|C
d

’
i=1

tzd/d|xi �xi|kd/d p(t,xi �xi) , (5.3.7)

where zd and kd are the powers of t and x�x in the estimation of Y , i.e.,

zd =

8

>

>

<

>

>

:

�1+ a

2 , d = 1;

a � a

2 g +n0a �2, d � 2 .
(5.3.8)

and

kd =

8

>

>

<

>

>

:

0, d = 1;

�d + g �2n0 +
2
a

, d � 2 .
(5.3.9)

Lemma 5.3.8.

sup
t,x

�

�

�

�

Z

Rd
Zk+1(t,x�x )uk(t,x )dx

�

�

�

�

C k = 0,1.

Proof. First recall that uk(x) are bounded. Thanks to the following fact from [?]

Z

Rd
Z0

1(t,x,x )dx = 1 and
Z

Rd
Z0

2(t,x,x )dx = t,

we only need to show

sup
t,x

Z

Rd
VZ j(t,x,x )dx C,

since uk are bounded.
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Let’s consider the case d � 3 and d = 2 for Vz1 as examples. When d � 3, by the

estimation of VZ1 in Lemma ??, we have

Z

Rd
|VZ1(t,x,x )|dx 

Z

Rd
Ct�

ad
2

µd(t�
a

2 |x�x |)p(t,x�x )dy


Z

Rd
Ct�

ad
2 +d

µd(z)p(t,x�x )dz

 Ct�
ad
2 +d

 C,

due to the fact t 2 (0,T ].

For the case d = 2,Z1, notice that

8q > 0,9C > 0 s.t. (log |z|+1)< c|z|q ,

as shown in the case of d=4 in the proof of ??. Then the above argument ends proof.

The proof for the rest of the cases is almost the same, so we omit it.

5.4 Miscellaneous estimations

For fractional kernel, we need the following estimation, which is immediate from

Corollary 15, [?].

Lemma 5.4.1. Let 0 < r,s  T and

2Hi +
2kd

d
> 0. (5.4.1)
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Then for any r1,t2 2 R,r1 6= t2, we have

Z

R2
|r1 � t1|2Hi�2|r2 �r1|

kd
d |t2 � t1|

kd
d p(s,r2 �r1)p(r,t2 � t1)dr1dt1 C(s r)qi ,

where

qi =

8

>

>

<

>

>

:

C(s r)
Hid+kd

2d a , 2Hi �2+kd/d 6=�1;

C(s r)
de+kd+d

4d a , 2Hi �2+kd/d =�1 .

Proof. In Corollary 15, [?], let q1 = 2Hi�2,q2 = kd/d. Then notice that for 0 < r  T

8e < 0,9C > 0, s.t. logr <Cre .

The next lemma can be proved as in Lemma 11, [?].

Lemma 5.4.2. Let �1 < b  0,x 2 Rd. Then, there is a constant C, dependent on s ,

a and b , but independent of x and s such that

Z

Rd
|x|b p(s,x�x )dx Cs

ab

2 +a

2 d .

For Bessel kernel, we need the following lemma.

Lemma 5.4.3. Assume 0 < s,r  T and y1,y2,z1,z2 2 Rd, we have that

Z

R2d
|Y (r,y1 � y2)Y (s,z1 � z2)|

Z •

0
w

� k

2 �1e�we
�|y1�z1|

2
4w dwdy1dz1 C · (r s)`,

where

` := zd �
a

4
k +

a

2
kd +

a

2
d
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Proof. Recall that the estimation of Y (t,x) in (??) and (??) has the following form:

Cszd |x|kd p(t,x).

By substituting Y , we have

Z

R2d
|Y (r,y1 � y2)Y (s,z1 � z2)|

Z •

0
w

� k

2 �1e�we
�|y1�z1|2

4w dwdy1dz1

C
Z

Rd
szd |z2 � zkd

1 |p(s,z2 � z1)rzd

Z •

0
I ·w� k

2 �1e�wdwdz1,

where

I :=
Z

Rd

|y2 � y1|kd exp

(

�s

�

�

�

�

y2 � y1

r
a

2

�

�

�

�

2
2�a

)

exp
⇢

� |y1 � z1|2

4w

�

dy1.

For I, we have two estimations:

I 
Z

Rd

|y2 � y1|kd exp

(

�s

�

�

�

�

y2 � y1

r
a

2

�

�

�

�

2
2�a

)

dy1

Cr
a

2 kd+
a

2 d,

and

I 
Z

Rd

|y2 � y1|kd exp
⇢

� |y1 � z1|2

4w

�

dy1

Cw

kd
2 + d

2 ,

by Lemma ??.
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With the estimations of I, we have

Z •

0
I ·w� k

2 �1e�wdw =
Z ra

0
I ·w� k

2 �1e�wdw +
Z •

ra

I ·w� k

2 �1e�wdw

 r
a

2 kd+
a

2 d�a

2 k +
Z •

ra

w

kd
2 + d

2
w

� k

2 �1e�wdw.

For
R •

ra

w

kd
2 + d

2
w

� k

2 �1e�wdw ,

if kd
2 + d

2 �
k

2 < 0

Z •

ra

w

k

2 +
d
2

w

� kd
2 �1e�wdw 

Z •

ra

w

kd
2 + d

2�
k

2 �1dw

=Cra(
kd
2 + d

2�
k

2 );

if kd
2 + d

2 �
k

2 � 0

Z •

ra

w

k

2 +
d
2

w

� kd
2 �1e�wdw =

Z •

ra

w

k

2 +
d
2�

kd
2 �1e�wdw

=C

Cra(
kd
2 + d

2�
k

2 ).

Therefore we end up with

Z •

0
I ·w� k

2 �1e�wdw Cra(
kd
2 + d

2�
k

2 ).

The estimation of integration with respect to z1 is straightforward thank to fact that

C is independent of z1.
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We have

Z

Rd
szd |z2 � z1|p(s,z2 � z1)rzd

Z •

0
I ·w� k

2 �1e�wdwdz1

Cra(
kd
2 + d

2�
k

2 ) · rzd · sa(
kd
2 + d

2�
k

2 )szd ,

by Lemma ??.

By symmetry, we have

Z

R2d
|Y (r,y1 � y2)Y (s,z1 � z2)|

Z •

0
w

� k

2 �1e�we
�|y1�z1|2

4w dwdy1dz1

Csa(
kd
2 + d

2�
k

2 ) · szd · ra(
kd
2 + d

2�
k

2 )rzd .

Combining the two estimations we get the estimation in the lemma.

The following lemma is Theorem 3.5 from [?].

Lemma 5.4.4. Let Tn(t) = {s = (s1, . . . ,sn) : 0 < s1 < s2 < .. . < sn < t}. Then

Z

Tn(t)
[(t � sn)(sn � sn�1) . . .(s2 � s1)]

hds =
G(1+h)n

G(n(1+h)+1)
tn(1+h),

if and only if 1+h > 0.

5.5 Existence and uniqueness of the solution

Theorem 5.5.1. Assume the following conditions:

(1) l (t) is a nonnegative definite locally integrable function ;

(2) a 2 (1/2,1)[ (1,2).

102



Then relation (??) holds for each (t,x), if any of the following is true. Consequently,

equation (??) admits a unique mild solution in the sense of Definition ??.

(i) L(x) is fractional kernel with condition:

Hi >

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1
2 , d = 1,2,3,4

1� 2
d �

g

2d , d � 5,a 2 (0,1)

1� 2
d , d � 5,a 2 (1,2)

and
d

Â
i=1

Hi > d �2+
1
a

.

(ii) L(x) is the Reisz or Bessel kernel with condition:

k < 4�2/a;

Proof. Fix t > 0 and x 2 Rd .

Let

(s,y, t,x) := (s1,y1, · · · ,sn,yn, t,x);

gn(s,y, t,x) :=
1
n!

Y (t � s
s(n),x� y

s(n)) · · ·Y (ss(2)� s
s(1),ys(2)� y

s(1)) ;

fn(s,y, t,x) := gn(s,y, t,x)J0(s
s(1),xs(1)),

where s denotes a permutation of {1,2, · · · ,n} such that 0 < s
s(1) < · · ·< s

s(n) < t.

By iteration of u(t,x), we have

n!k fn(·, ·, t,x)k2
H ⌦n
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= n!
Z

[0,t]2n
dsdr

Z

R2nd
dydz fn(s,y, t,x) fn(r,z, t,x)

n

’
i=1

L(yi � zi)
n

’
i=1

l (si � ri), (5.5.1)

where dy := dy1 · · ·dyn, the differentials dz, ds and dr are defined similarly. Set µ(dx ) :=

’n
i=1 µ(dxi).

Recall that J0 is bounded, so we have

n!k fn(·, ·, t,x)k2
H ⌦n

C
1
n!

Z

[0,t]2n
dsdr

Z

R2nd
dydz gn(s,y, t,x)gn(r,z, t,x)

n

’
i=1

L(yi � zi)
n

’
i=1

l (si � ri).

Furthermore by Cauchy-Schwarz inequality,

Z

R2nd
dydz gn(s,y, t,x)gn(r,z, t,x)

n

’
i=1

L(yi � zi)


(

Z

R2nd
dydz gn(s,y, t,x)gn(s,z, t,x)

n

’
i=1

L(yi � zi)

)1/2

·
(

Z

R2nd
dydz gn(r,y, t,x)gn(r,z, t,x)

n

’
i=1

L(yi � zi)

)1/2

(i) Let L(·) = jH(·) and use the estimation of Y in Lemma ??, we have

Z

R2nd
dydz gn(s,y, t,x)gn(s,z, t,x)

n

’
i=1

L(yi � zi)

C
d

’
i=1

Z

R2n

n

’
k=1

jHi(yik � zik)Qn(t,yik,s)Qn(t,zik,s)dyidzi (5.5.2)
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where

Qn(t,yik,s) := |s
s(k+1)�s

s(k)|
zd
d |yis(k+1)�yis(k)|

kd
d p(s

s(k+1)�s
s(k),yis(k+1)�yis(k));

yi = (yi1,yi2, · · · ,yik, · · · ,yin), zi = (zi1,zi2, · · · ,zik, · · · ,zin);

dyi :=
n

’
k=1

dyik dzi :=
n

’
k=1

dzik;

and

y
s(k+1) = z

s(k+1) := xi ; s
s(n+1) = r

s(n+1) := t.

Let’s first consider the case 2Hi �2+kd/d 6=�1. Applying Lemma ?? to

Z

R2n

n

’
k=1

jHi(yik � zik)Qn(t,yik,s)Qn(t,zik,s)dyidzi (5.5.3)

for dyis(1)dzis(1), we have

Z

R2n

n

’
k=1

jHi(yik � zik)Qn(t,yik,s)Qn(t,zik,s)dyidzi

C(sis(2)� sis(1))
2`i

Z

R2n

n

’
k=2

jHi(yik � zik)Qn(t,yik,s)Qn(t,zik,s)dyidzi

where

`i =
zd

d
+qi .
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Applying Lemma ?? to (??) for dyis(k)dzis(k),k = 2, · · · ,n, we have

d

’
i=1

Z

R2n

n

’
k=1

jHi(yik � zik)Qn(t,yik,s)Qn(t,zik,s)dyidzi 
n

’
k=1

Cn(s
s(k+1)� s

s(k))
2`

where

`=
d

Â
i=1

`i = zd +
|H|a

2
+

kda

2
with |H|=

d

Â
i=1

Hi . (5.5.4)

Due to the same argument, we have

d

’
i=1

Z

R2n

n

’
k=1

jHi(yik � zik)Qn(t,yik,r)Qn(t,zik,r)dyidzi 
n

’
k=1

Cn(r
r(k+1)� r

r(k))
2`

Therefore

Z

R2nd
dydz gn(s,y, t,x)gn(r,z, t,x)

n

’
i=1

L(yi � zi)Cn (f(s)f(r))`,

where

f(s) :=
n

’
i=1

(s
s(i+1)� s

s(i)), f(r) :=
n

’
i=1

(r
r(i+1)� r

r(i)),

with

0 < s
s(1) < s

s(2) < .. . < s
s(n) and 0 < r

r(1) < r
r(2) < .. . < r

r(n).

Hence,

n!k fn(·, ·, t,x)k2
H ⌦n 

Cn

n!

Z

[0,t]2n

n

’
i=1

l (si � ri)(f(s)f(r))`dsdr

 Cn

n!
1
2

Z

[0,t]2n

n

’
i=1

l (si � ri)
⇣

f(s)2`+f(r)2`
⌘

dsdr

=
Cn

n!

Z

[0,t]2n

n

’
i=1

l (si � ri)f(s)2`dsdr
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 CnCn
t

n!

Z

[0,t]n
f(s)2`ds

=CnCn
t

Z

Tn(t)
f(s)2`ds

=
CnCn

t G(2`+1)nt(2`+1)n

G((2`+1)n+1)
,

where Ct = 2
R t

0 l (r)dr. The last step is by Lemma ??.

Therefore,

n!k fn(·, ·, t,x)k2
H ⌦n 

CnCn
t

G((2`+1)n+1)
,

and Ân�0 n!k fn(·, ·, t,x)k2
H ⌦n converges if `>�1/2.

Next we need to show

`>�1/2 () |H|> d �2+
1
a

.

Firstly by definition of ` (??)

`>�1/2 () |H|>� 1
a

�kd �
2
a

zd.

Then using the definition of zd and kd in (??), (??), (??), (??) we have:

when 1/2 < a < 1,

1
a

�kd �
2
a

zd =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

�1+ 1
a

, d = 1;

1
a

, d = 2;

1
a

+2, d = 4;

1
a

�2+d, d = 3 or d � 5;
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when 1 < a < 2,

1
a

�kd �
2
a

zd =

8

>

>

<

>

>

:

�1+ 1
a

, d = 1;

d �2+ 1
a

, d � 2;

For case 2Hi �2+kd/d =�1, applying Lemma ?? to (??), we have

d

’
i=1

Z

R2n

n

’
k=1

jHi(yik � zik)Qn(t,yik,s)Qn(t,zik,s)dyidzi 
n

’
k=1

Cn(s
s(k+1)� s

s(k))
2`0 ,

where

`0 = zd +
de +kd +d

4
a with |H|=

d

Â
i=1

Hi .

Using the relation 2Hi �2+kd/d =�1, we have

`0 = `+
da

4
e.

Since

|H|> d �2+
1
a

=) `>�1/2 ,

we can choose e big enough such such

|H|> d �2+
1
a

=) `0 >�1/2 .

Lastly, when a 2 (1/2,1), for d  4,Hi > 1/2 implies condition (??); for d > 4,

condition (??) is implied by

Hi > 1� 2
d
� g

2d
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with g0 sufficiently small; when a 2 (1,2) for d = 1,Hi > 1/2 implies (??); for d � 2,

(??) is implied by

Hi > 1� 2
d

with n0 sufficiently small. This completes the proof of Theorem ?? for case of L(·) =

jH(·)

(ii) Let x = (x1,x2, · · · ,xd) 2 Rd . For Reisz kernel, notice that

|x|�k C
d

’
i=1

|xi|
k

d ,

so this case is reduced to case (i) with Hi = (�k

d +2)1
2 , i = 1,2, · · · ,d.

Correspondingly

|H|> d �2+
1
a

is

k < 4�2/a,

which also guarantees condition (??) .

For Bessel kernel, applying Lemma ?? for dy
s(i)dz

s(i) in the order of i = 1,2, · · · ,n

to
Z

R2nd
dydz gn(s,y, t,x)gn(s,z, t,x)

n

’
i=1

L(yi � zi)

yields

Z

R2nd
dydz gn(s,y, t,x)gn(s,z, t,x)

n

’
i=1

L(yi � zi)
n

’
k=1

Cn(s
s(k+1)� s

s(k))
2`,

109



where

` := zd �
a

4
k +

a

2
kd +

a

2
d

As in case (i), Ân�0 n!k fn(·, ·, t,x)k2
H ⌦n converges if ` > �1/2. Then using the

definition of zd and kd in (??), (??), (??), (??), we have

`>�1/2 () k < 4�2/a.

This finishes the the proof of the theorem.
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