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Abstract 

 The goal of this research was to disentangle effects of phonotactic probability, the 

likelihood of occurrence of a sound sequence, and neighborhood density, the number of 

phonologically similar words, in lexical acquisition. Two word learning experiments were 

conducted with 4-year-old children. Experiment 1 manipulated phonotactic probability while 

holding neighborhood density and referent characteristics constant. Experiment 2 manipulated 

neighborhood density while holding phonotactic probability and referent characteristics constant.  

Learning was tested at two time points (immediate vs. retention) in both a naming and referent 

identification task, although only data from the referent identification task were analyzed due to 

poor performance in the naming task. Results showed that children were more accurate learning 

rare sound sequences than common sound sequences and this was consistent across time points. 

In contrast, the effect of neighborhood density varied by time. Children were more accurate 

learning sparse sound sequences than dense sound sequences at the immediate test point but 

accuracy for dense sound sequences significantly improved by the retention test without further 

training. It was hypothesized that phonotactic probability and neighborhood density influenced 

different cognitive processes that underlie lexical acquisition.   
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The Independent Effects of Phonotactic Probability and Neighborhood Density on Lexical 

Acquisition by Preschool Children 

 Models of spoken word recognition and production typically incorporate three types of 

representations: phonological, lexical, and semantic (e.g., Dell, 1988; Gupta & MacWhinney, 

1997; Levelt, 1989; Luce, Goldinger, Auer, & Vitevitch, 2000; Magnuson, Tanenhaus, Aslin, & 

Dahan, 2003; McClelland & Elman, 1986; Norris, 1994).The phonological representation 

corresponds to information about individual sounds, with models varying in the specific sound 

unit chosen (e.g., phonetic features, context specific allophones, phonemes). Assuming a 

phoneme unit of representation, the phonological representation of a word such as “seal” would 

consist of three separate sound units, namely /s/, /i/, and /l/. The lexical representation 

corresponds to the whole-word form as a single unit. Thus, the lexical representation of “seal” 

would be a single lexical unit, specifically /sil/. Finally, the semantic representation corresponds 

to the meaning of the word, which for “seal” would include information such as “ocean mammal 

with webbed flippers.”  

 Recent studies of adult and child spoken word recognition and production suggest that 

form-related variables influence retrieval of phonological and lexical representations. 

Specifically, phonotactic probability, the likelihood of occurrence of a sound sequence, 

facilitates spoken word recognition and production with common sound sequences being 

recognized and produced more accurately and/or faster than rare sound sequences (Edwards, 

Beckman, & Munson, 2004; Munson, Swenson, & Manthei, 2005; Newman & German, 2005; 

Vitevitch, 2003; Vitevitch, Armbruster, & Chu, 2004; Vitevitch & Luce, 1998, 1999; Zamuner, 

Gerken, & Hammond, 2004).  Neighborhood density, the number of words in the lexicon that are 

phonologically similar to a given word, influences word recognition in a different manner than 



Lexical Acquisition 5 

word production. In particular, words from sparse neighborhoods are recognized more accurately 

and/or faster than words from dense neighborhoods (Garlock, Walley, & Metsala, 2001; Metsala, 

1997; Vitevitch, 2002b, 2003; Vitevitch & Luce, 1998, 1999); whereas, words from dense 

neighborhoods are produced more accurately and/or faster than words from sparse 

neighborhoods (Vitevitch, 1997, 2002a, but see Munson et al., 2005; Newman & German, 2005).  

 While there is ample evidence that phonotactic probability and neighborhood density 

influence retrieval of phonological and lexical representations by adults and children, their role 

in acquisition of representations is less clear. Emerging evidence suggests that phonotactic 

probability and neighborhood density may influence lexical acquisition by children and adults. 

However, few studies have attempted to differentiate effects of phonotactic probability from 

those of neighborhood density (but see Storkel, 2009; Storkel, Armbruster, & Hogan, 2006) due 

to the inherent correlation between these two variables (Storkel, 2004b; Vitevitch, Luce, Pisoni, 

& Auer, 1999). That is, rare sound sequences tend to reside in sparse neighborhoods and 

common sound sequences tend to reside in dense neighborhoods. Studies of correlated 

phonotactic probability and neighborhood density show that 3- to 5-year-old children learn 

common sound sequences in dense neighborhoods more readily than rare sound sequences in 

sparse neighborhoods (Storkel, 2001, 2003, 2004a; Storkel & Maekawa, 2005). However, the 

independent effect of each variable can not be determined from only examining the correlated 

condition, limiting the ability to fully understand how these two variables influence lexical 

acquisition. The goal of these studies is to examine how children learn words varying in 

phonotactic probability but matched in neighborhood density (Experiment 1) and words varying 

in neighborhood density but matched in phonotactic probability (Experiment 2). 
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 To fully understand the role of phonotactic probability and neighborhood density in 

lexical acquisition, the cognitive processes that underlie acquisition must be considered. At least 

three processes may be relevant: triggering (allocating a new representation in long-term 

memory), configuration (storing lexical and semantic information in long-term memory), and 

engagement (integrating the new representation with existing representations). In terms of 

triggering, when a sound sequence and referent are encountered, existing phonological, lexical, 

and semantic representations will be activated. Triggering mechanisms, which are incorporated 

into many computational models that both acquire new information and recognize old 

information (cf. Adaptive Resonance Theory for an example of this type of mechanism, e.g., 

Carpenter & Grossberg, 1987), determine whether the input sufficiently matches existing 

representations by setting a threshold defining what constitutes a sufficient match (i.e., the 

vigilance parameter). In the case of a previously encountered sound sequence and referent (i.e., 

known word), the input will likely sufficiently match existing representations (i.e., threshold not 

exceeded) and an existing representation will be retrieved (i.e., recognition of a known word). In 

the case of a novel sound sequence and referent (i.e., new word), the input likely will not exactly 

match existing representations (i.e., threshold exceeded) and a new representation will be 

allocated (i.e., node recruitment, Li, Farkas, & MacWhinney, 2004). To summarize, the outcome 

of triggering is a determination of which representations to use: already existing representations 

or completely new representations.  

Presumably, there is some degree of error associated with triggering. That is, novel words 

that are highly similar to existing representations, such as those that are high probability or high 

density, may fail to exceed threshold. In this case, an existing representation will be erroneously 

retrieved, interfering with learning of the novel word. In contrast, novel words that are similar to 
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few existing representations, such as those that are low probability or low density, will likely far 

exceed the threshold. Here, a new representation will be allocated, facilitating learning of the 

novel word. Based on these hypotheses, if phonotactic probability or neighborhood density 

influences triggering, differences should be apparent early in learning with better performance 

for low than high probability or density.  

Turning to configuration, once a new representation is allocated during triggering, 

information from the input (e.g., the sound sequence and referent of the word) must be stored 

within this new representation (Leach & Samuel, 2007). It is likely that configuration is 

incomplete following minimal exposure, resulting in a potentially incorrect or gradient 

representation (Capone & McGregor, 2005; Gershkoff-Stowe, 2002; Metsala & Walley, 1998). 

However, upon subsequent exposure to the word, triggering likely results in activation and 

selection of the previously created new representation so that it can be updated via configuration 

(e.g., updating of connection weights as in Li et al., 2004). Thus, while triggering selects a 

representation (old or new), configuration stores or updates information within the selected 

representation.  

There is ample evidence that working memory influences storage of information, namely 

configuration, during word learning (e.g., Gathercole & Baddeley, 1989, 1990; Gathercole, 

Willis, Emslie, & Baddeley, 1992). Although certainly not the only factor that influences 

configuration, the role of working memory in configuration has particular relevance for the study 

of phonotactic probability and neighborhood density in word learning. Specifically, past studies 

of working memory show better performance for high probability or high density nonwords 

compared to low probability or low density nonwords (Edwards et al., 2004; Gathercole, 

Frankish, Pickering, & Peaker, 1999; Roodenrys & Hinton, 2002; Thomson, Richardson, & 



Lexical Acquisition 8 

Goswami, 2005; Thorn & Frankish, 2005). This leads to the hypothesis that high probability or 

high density sound sequences will be maintained more accurately and/or for a longer time in 

working memory, leading to a more accurate and detailed representation in long-term memory. If 

this is the case, the influence of phonotactic probability or neighborhood density should be 

apparent during training when the input is being held in working memory to create or update the 

representation in long-term memory and performance should be better for high than low 

probability or density. 

Turning to engagement, once a new representation is created it must be integrated with 

similar existing representations, allowing the new representation to influence processing of 

existing representations and vice-versa (Leach & Samuel, 2007). Unlike triggering and 

configuration, engagement does not appear to be dependent on input. That is, recent evidence 

suggests that engagement may not occur during training when input is available, but rather 

occurs over a no training delay when input is not available but memory consolidation is 

occurring (Dumay & Gaskell, 2007; Gaskell & Dumay, 2003; Tamminen & Gaskell, 2008). 

Memory consolidation presumably involves the off-line transfer of a fragile episodic memory 

trace to a more stable memory trace that can resist interference and be retained over a long 

period (Davis & Gaskell, 2009). Moreover, this process may be critically linked to sleep (Dumay 

& Gaskell, 2007). Previous studies of engagement have not manipulated the characteristics of the 

words to be learned so it is unclear how phonotactic probability or neighborhood density might 

influence this process.  However, an influence of phonotactic probability or neighborhood 

density on engagement could be inferred if differences arise after a no training delay. 

There are multiple potential points of influence for phonotactic probability and 

neighborhood density during lexical acquisition. To begin to address these issues, learning of 
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nonwords varying in phonotactic probability (Experiment 1) or neighborhood density 

(Experiment 2) was examined immediately following training to examine triggering and 

configuration and 1-week after training to examine engagement. 

Experiment 1 

 The goal of this experiment was to examine the influence of phonotactic probability on 

lexical acquisition by typically developing 4-year-old children.  The to-be-learned nonwords 

varied in phonotactic probability (rare vs. common) while holding neighborhood density 

constant. Likewise, characteristics of the novel objects paired with the nonwords were held 

constant.  Learning was measured in two tasks:  (1) picture naming, where a novel object was 

presented and the child produced the trained nonword; (2) referent identification, where the child 

heard a nonword and selected the trained novel object from an array of choices. These two 

measures were administered at three time points, prior to training to establish baseline 

performance, immediately following exposure to tap the creation of new lexical and semantic 

representations, and one-week post-exposure to tap retention of these newly created 

representations. Unfortunately, floor effects were apparent on the naming task as characterized 

by relatively low proportion correct and a large standard deviation extending close to 0 (M = 

0.20, SD = 0.14). Therefore, only the referent identification task is reported. 

Method 

 Participants. Participant characteristics are shown in Table 1. Thirty-one 4-year-old 

children were recruited through local preschools or a database of families interested in 

participating in research. Based on parent questionnaire, children had no previously identified 

cognitive, social, emotional, motor, visual, hearing, or major medical impairments. Participating 

children passed a hearing screening (ASHA, 1997) and scored within normal limits (i.e., 
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obtained a score above the 16th percentile or standard score of 85) on standardized tests of 

phonological development (Goldman & Fristoe, 2000), receptive vocabulary (Dunn & Dunn, 

1997), and expressive vocabulary (Williams, 1997). 

(Table 1 about here) 

 Nonword Stimuli. Phonotactic probability and neighborhood density were computed for a 

pool of legal American English consonant-vowel-consonant (CVC) nonwords with early 

acquired phonemes (Smit, Hand, Freilinger, Bernthal, & Bird, 1990). Original computations and 

stimuli selection were based on an approximately 20,000 word adult corpus (Nusbaum, Pisoni, & 

Davis, 1984). Later, values were re-computed using an approximately 5,000 word child corpus 

that recently became available on-line (Storkel & Hoover, 2009, 

http://www.bncdnet.ku.edu/cml/info_ccc.vi). Values for the selected CVCs are shown in Table 2. 

(Table 2 about here) 

 Two measures of phonotactic probability were computed: positional segment sum and 

biphone sum (Storkel, 2004b). Positional segment sum is computed by adding the positional 

segment frequency of each sound in the word. Positional segment frequency is the sum of the log 

frequency of each word in the corpus that contains the target sound in the target word position 

divided by the sum of the log frequency of every word in the corpus that contains any sound in 

the target word position. Biphone sum is computed by adding the biphone frequency of each 

adjacent pair of sounds in the word. Biphone frequency is the sum of the log frequency of each 

word in the corpus that contains the target pair of sounds in the target word position divided by 

the sum of the log frequency of every word in the corpus that contains any sound in the target 

word position. 
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 Neighborhood density was computed by counting the number of words in the corpus that 

differed from the target CVC by a one sound substitution, deletion, or addition in any word 

position. 

 Percentiles for phonotactic probability and neighborhood density were computed for the 

CVC pool and used to define rare (i.e., 10th – 25th percentile for both positional segment sum and 

biphone sum) versus common phonotactic probability (i.e., 50th – 75th percentile for both 

positional segment sum and biphone sum) and mid neighborhood density (i.e., 50th percentile +/- 

½ standard deviation). Five nonwords with rare phonotactic probability were selected followed 

by five nonwords with common phonotactic probability that were matched in neighborhood 

density to the rare nonwords. Computations based on the child corpus resulted in similar 

classification of the stimuli (see Table 2). Stimuli were recorded by a female native speaker of 

American English and intelligibility was verified by two transcribers blind to the intended target. 

 Nonobject Stimuli. Nonobjects were selected from a pool of 88 black and white line 

drawings developed by Kroll and Potter (1984). Five pairs of nonobjects were selected. 

Nonobjects within a pair were matched for objectlikeness ratings (Kroll & Potter, 1984) and 

number of semantic neighbors (Storkel & Adlof, 2009a). Storkel and Adlof determined semantic 

neighbors for both adults and children using a discrete association task (Nelson & Schreiber, 

1992), whereby participants were presented with a nonobject and asked to provide the first real 

word that came to mind that was meaningfully related to the nonobject. Responses provided by 

two or more participants within a group (i.e., adult or child) were counted as semantic neighbors 

of the nonobject, and the total number of semantic neighbors was tallied per group (i.e., adult or 

child). In selecting nonobjects for this task, the number of semantic neighbors was held at a mid 

level (i.e., 50th percentile +/- ½ standard deviation for adult generated semantic neighbors). One 
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nonobject from each pair was pseudorandomly assigned to one of two sets (i.e., nonobjects 23, 

27, 53, 63, and 67 in set 1; nonobjects 26, 31, 59, 78, and 82 in set 2). The two sets were matched 

in objectlikeness ratings (M = 4.2, SD = 0.7, range 3.4 – 5.2 for set 1, M = 4.2, SD = 0.7, range 

3.4 – 5.2 for set 2), adult generated semantic neighbors (M = 10.2, SD = 0.4, range 10 – 11 for 

set 1, M = 10.0, SD = 0.7, range 9 – 11 for set 2), and child generated semantic neighbors (M = 

9.8, SD = 3.4, range 7 - 14 for set 1, M = 11.0, SD = 3.4, range 9 – 17 for set 2). Pairing of 

nonobject sets to rare versus common nonwords was counterbalanced across participants.  

 Procedures. Procedures were the same as those reported by Storkel and Adlof (2009b), 

although recall that the naming task is dropped from this report due to floor effects. Briefly, each 

child was seated at a laptop computer connected to desktop speakers. Direct RT software 

controlled the presentation of auditory and visual stimuli, including randomizing the order of 

presentation on all tasks. The session began with baseline testing of referent identification. In this 

task, all ten nonobjects were presented on the computer screen and a nonword was presented via 

the speakers. The child was asked to point to the picture that went with the word. During 

baseline testing, children were encouraged to guess. The goal of baseline testing was to 

familiarize children with the procedures and establish chance responding as a reference point for 

determining when significant learning has occurred during training. Responses were scored as 

correct (i.e., target nonobject selected) or incorrect (i.e., target nonobject not selected or no 

response). 

 Following baseline testing, training was initiated. Each nonobject was shown on the 

computer with an accompanying exposure script that provided eight presentations of the 

nonword, including two prompts to repeat the nonword and one prompt to identify a hard copy 

picture of the nonobject in a card game format. The exact exposure script and card games are 
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described more fully in Storkel and Adlof (2009b). Following completion of training for all ten 

stimuli, the referent identification task was re-administered, completing the first training-testing 

cycle.  

Training and testing continued until either (1) an overall accuracy criterion was met or (2) 

the maximum training had been provided. The criterion for the referent identification task was 

correct identification of 5 of the 10 stimuli. The goal of this criterion was to ensure that all 

children achieved performance above the floor (i.e., 0% correct) but below the ceiling (i.e., 100% 

correct) when training was discontinued. If a child did not meet the overall criterion, training was 

discontinued after six training-testing cycles had been administered, with a maximum of 3 cycles 

being administered in one day in a 45- to 60-minute session. Fifty-five percent of children met 

criterion with an average criterion cycle of 4 (SD = 1.8, range 1-6).  

Note that for the majority of children (87%), training extended over a period of two days. 

This method differs from that reported for adults where training typically occurs on one day 

(Leach & Samuel, 2007), providing a clearer delineation of configuration, which reportedly 

occurs immediately following training, and engagement, which reportedly occurs after a delay 

perhaps crucially involving sleep (Dumay & Gaskell, 2007). However, children do not appear to 

learn words as rapidly as adults (as evidenced by these criteria data), requiring training across 

multiple days. This sets up the possibility that configuration may be more protracted in children 

than in adults and that there could be an interaction between configuration and engagement in 

children that has not been observed in adults. These hypotheses warrant direct testing.   

The referent identification task was re-administered approximately one-week (M = 7 

days, SD = 3, range 4 – 17) after completion of training to examine retention of the nonwords. 

Results 
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 The first analysis examined whether significant learning occurred in the referent 

identification task. Proportion correct was compared following training (i.e., criterion/last cycle; 

retention test) to proportion correct prior to training (i.e., baseline). Proportion correct at 

criterion/last cycle (M = 0.38, SD = 0.18) was significantly higher than proportion correct at 

baseline (M = 0.11, SD = 0.10), F (1, 30) = 63.44, p < 0.001, ηp
2 = 0.68. Note that the 

interpretation of the effect size partial eta squared is similar to r squared with ηp
2 = 0.01 

representing a small effect, ηp
2 = 0.10 representing a medium effect, and ηp

2 = 0.25 representing a 

large effect (Cohen, 1988). Proportion correct at retention test (M = 0.36, SD = 0.24) also was 

significantly higher than proportion correct at baseline (M = 0.11, SD = 0.10), F (1, 30) = 31.33, 

p < 0.001, ηp
2 = 0.51. Thus, significant learning over baseline was apparent at both test points.  

 The second analysis addressed the primary research questions. Proportion of correct 

responses on the referent identification task was submitted to a 2 (phonotactic probability: rare 

vs. common) x 2 (time: criterion/last cycle vs. retention test) repeated measures analysis of 

variance. Results are shown in Figure 1, which also includes the baseline test point as a reference 

for chance performance. There was no significant difference between performance at the 

criterion/last cycle (M = 0.38, SD = 0.18) and performance at the retention test (M = 0.36, SD = 

0.24), F (1, 30) = 0.44, p > 0.50, ηp
2 = 0.02, suggesting no loss in performance over the 1-week 

delay without further training. In terms of phonotactic probability, proportion correct for rare 

sound sequences (M = 0.41, SD = 0.20) was significantly higher than proportion correct for 

common sound sequences (M = 0.33, SD = 0.23), F (1, 30) = 5.09, p < 0.05, ηp
2 = 0.15. As 

shown in Figure 1, this main effect of phonotactic probability was consistent at each test point 

following training (i.e., criterion/last cycle; retention test), as indicated by the lack of a 
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significant interaction between phonotactic probability and time, F (1, 30) = 0.01, p > 0.90, ηp
2 < 

0.01.  

(Figure 1 about here)  

Discussion 

The primary finding from Experiment 1 is that responses to rare sound sequences were 

significantly more accurate than responses to common sound sequences and that this difference 

between rare and common sound sequences was robust over time. One possible explanation of 

this finding is that phonotactic probability influenced triggering. Upon hearing a novel sound 

sequence, existing phonological representations will be activated which will in turn spread 

activation to existing lexical representations. In this scenario, phonotactic probability will 

determine the extent to which phonological representations are activated, influencing the amount 

of activation that is spread to lexical representations. Phonological representations will be 

activated less when the sound sequence is rare than when the sound sequence is common. As a 

result, less activation will be spread to existing lexical representations when a rare sound 

sequence is being learned than when a common sound sequence is being learned. Note that the 

number of lexical representations that are activated is the same across the rare and common 

sound sequences because the neighborhood density is held constant in this study. Thus, the 

distinction lies in the amount of activation that is spread to the (same number of) existing lexical 

representations. The mismatch between the input and existing lexical representations likely is 

maximized when lexical representations are less activated, as for a rare sound sequence, 

compared to when lexical representations are more activated, as for a common sound sequence. 

Consequently, a new representation is correctly allocated for the rare sound sequence but perhaps 

not for the common sound sequence.  
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Although the hypothesized influence of phonotactic probability on triggering seems 

defensible, it is important to consider other alternatives. In terms of configuration, the direction 

of the effect of phonotactic probability appears inconsistent with an influence on configuration. 

Recall that working memory was hypothesized to provide support for configuration and the past 

studies of working memory document poorer performance for rare sound sequences relative to 

common sound sequences in working memory (Gathercole et al., 1999; Thorn & Frankish, 

2005). Thus, the direction of the effect with more accurate referent identification for rare than 

common sound sequences runs counter to this hypothesis. In terms of engagement, the timing of 

the effect of phonotactic probability appears inconsistent with an influence on engagement. That 

is, the effect of phonotactic probability on lexical acquisition was detected immediately upon 

completion of training, whereas engagement is hypothesized to occur only after a delay 

potentially involving sleep (Dumay & Gaskell, 2007; Gaskell & Dumay, 2003). Taken together, 

the most viable account of the data in terms of triggering, configuration, and engagement is that 

phonotactic probability influenced triggering and that this initial advantage in initiating learning 

was robust over time. 

Experiment 2 

The goal of this experiment was to examine the influence of neighborhood density on 

lexical acquisition by typically developing 4-year-old children.  The to-be-learned nonwords 

varied in neighborhood density (sparse vs. dense) while holding phonotactic probability constant. 

Likewise, characteristics of the novel objects paired with the nonwords were held constant.  

Learning was measured using two tasks, picture naming and referent identification, that were 

administered at three time points, prior to exposure to establish baseline, immediately following 

exposure (i.e., creation of new representations), and one-week post-exposure (i.e., retention of 
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newly created representations). As in Experiment 1, floor effects were apparent on the naming 

task (M = 0.20, SD = 0.11). Consequently, only the referent identification task is reported in 

Experiment 2. 

Method 

 Participants. Participant characteristics are shown in Table 1. Twenty-five 4-year-old 

children were recruited in the same manner as Experiment 1 and met the same criteria for typical 

development as Experiment 1.  Participant characteristics were compared across experiments 

using a univariate analysis of variance. As shown in Table 1, the children from each experiment 

were similar in age, F (1, 54) = 0.04, p = 0.84, ηp
2 < 0.01, and phonological development, F (1, 

54) = 2.01, p = 0.16, ηp
2 = 0.04. However, children in Experiment 2 had higher vocabulary 

scores than children in Experiment 1, F (1, 54) = 6.27, p < 0.05, ηp
2 = 0.10 for receptive 

vocabulary and F (1, 54) = 4.34, p < 0.05, ηp
2 = 0.07 for expressive vocabulary. This difference 

in vocabulary scores did not appear to translate into differences in performance on the 

experimental tasks. Specifically, 60% of children in Experiment 2 met criterion with an average 

criterion cycle of 4 (SD = 1.9, range 1-6), which was similar to Experiment 1 where 55% of 

children met criterion with an average criterion cycle of 4 (SD = 1.8, range 1-6). 

 Stimuli. Phonotactic probability and neighborhood density were computed following the 

methods of Experiment 1. Percentiles for the full pool of CVCs were used to define sparse (i.e., 

10th – 25th percentile) versus dense neighborhoods (i.e., 50th – 75th percentile for both positional 

segment sum and biphone sum) and mid phonotactic probability (i.e., 50th percentile +/- ½ 

standard deviation). Characteristics of the selected nonwords are shown in Table 2. Five 

nonwords from sparse neighborhoods were selected followed by five nonwords from dense 

neighborhoods that were matched in phonotactic probability to the sparse nonwords. 
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Computations based on the child corpus resulted in similar classification of the stimuli as sparse 

and dense but poorer matching of phonotactic probability (see Table 2). Stimuli were recorded 

by a female native speaker of American English and intelligibility was verified by two 

transcribers blind to the intended target. The nonobjects from Experiment 1 and the procedures 

for pairing nonwords with nonobjects were used in this experiment. 

Procedures. Procedures were identical to Experiment 1. Criterion cycles and proportion 

of children meeting criterion are shown in Table 3. As in Experiment 1, training extended over a 

period of two days for the majority of children (88%). Like Experiment 1, the retention referent 

identification task was administered approximately one-week (M = 8 days, SD = 3, range 7 – 18) 

after completion of training. 

Results 

As in Experiment 1, proportion correct in the referent identification task was compared 

following training (i.e., criterion/last cycle; retention test) to proportion correct prior to training 

(i.e., baseline) to determine whether significant learning had occurred on this task. Proportion 

correct at criterion/last cycle (M = 0.41, SD = 0.24) was significantly higher than proportion 

correct at baseline (M = 0.14, SD = 0.10), F (1, 24) = 24.92, p < 0.001, ηp
2 = 0.51, indicating 

significant learning. Likewise, proportion correct at the retention test (M = 0.43, SD = 0.23) was 

significantly higher than proportion correct at baseline (M = 0.14, SD = 0.10), F (1, 24) = 36.74, 

p < 0.001, ηp
2 = 0.61.  

To address the primary research question, proportion of correct responses in the referent 

identification task was submitted to a 2 (neighborhood density: sparse vs. dense) x 2 (time: 

criterion/last cycle vs. retention test) repeated measures analysis of variance. Results are shown 

in Figure 2, which also includes the baseline test point as a reference for chance performance. 
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There was no significant difference between performance at the criterion/last cycle (M = 0.41, 

SD = 0.25) and performance at the retention test (M = 0.43, SD = 0.26), F (1, 24) = 0.11, p > 

0.70, ηp
2 = 0.01, suggesting no loss in performance over the 1-week delay without further 

training. In terms of neighborhood density, proportion correct for sparse sound sequences (M = 

0.44, SD = 0.26) was similar to proportion correct for dense sound sequences (M = 0.41, SD = 

0.24), F (1, 24) = 0.39, p > 0.30, ηp
2 = 0.02. However, these non-significant main effects were 

qualified by a significant interaction between neighborhood density and time, F (1, 24) = 8.05, p 

< 0.01, ηp
2 = 0.25 (see Figure 2).  

(Figure 2 about here) 

There are two potential approaches for exploring this interaction. One is to examine the 

effect of neighborhood density at each time: criterion/last cycle and retention. The other is to 

examine the effect of time for each level of density: sparse and dense. Both approaches have the 

potential to be informative. The first examines when in acquisition differences arise between 

sparse and dense nonwords, whereas the second addresses how acquisition of sparse verses dense 

nonwords changes over time. Pursuing both approaches may yield a fuller understanding of the 

interaction between neighborhood density and time. In terms of the first approach, proportion 

correct for sparse nonwords (M = 0.49, SD = 0.31) was significantly higher than proportion 

correct for dense nonwords (M = 0.34, SD = 0.29) at the criterion/last cycle, F (1, 24) = 4.64, p < 

0.05, ηp
2 = 0.16. In contrast, proportion correct for sparse nonwords (M = 0.39, SD = 0.30) was 

similar to proportion correct for dense nonwords (M = 0.47, SD = 0.26) at the retention test, F (1, 

24) = 1.53, p > 0.20, ηp
2 = 0.06.  To summarize, sparse nonwords appear to be learned more 

accurately than dense nonwords immediately following training but this initial difference is not 

apparent 1-week later.  
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In terms of the second approach, sparse nonwords showed minimal change over time. 

Specifically, proportion correct at the criterion/last cycle (M = 0.49, SD = 0.31) was similar to 

proportion correct at the retention test (M = 0.39, SD = 0.30) for sparse nonwords, with the trend 

being for a decrease rather than an increase in performance, F (1, 24) = 2.34, p > 0.10, ηp
2 = 

0.09. In contrast, dense nonwords improved over time. Specifically, proportion correct at the 

retention test (M = 0.47, SD = 0.26) was significantly higher than proportion correct at the 

criterion/last cycle test (M = 0.34, SD = 0.29) for dense nonwords, F (1, 24) = 5.33, p < 0.05, ηp
2 

= 0.18. In summary, performance for dense nonwords appeared to improve over a 1-week 

interval with no additional training, whereas performance for sparse nonwords did not improve 

during this same interval. 

Discussion 

The effect of neighborhood density on word learning depended on the time of test. 

Specifically, sparse nonwords were responded to with greater accuracy than dense nonwords 

immediately upon completion of training. Sparse nonwords appeared to be retained over the 1-

week period without training, although there was a non-significant trend for decrements in 

performance. In contrast, dense nonwords showed clear improvements in performance over the 

1-week period without additional training. This pattern suggest that neighborhood density 

influences multiple cognitive processes underlying lexical acquisition and that the optimal 

density condition (i.e., sparse vs. dense) depends on the specific cognitive process.  

The early effect of sparse neighborhoods on lexical acquisition may be consistent with an 

influence on triggering. Specifically, upon hearing a novel word in a sparse neighborhood, few 

existing lexical representations will be activated. In contrast, hearing a novel word in a dense 

neighborhood will activate many more existing lexical representations. Consequently, the 
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mismatch between the input and existing representations likely is maximized for sparse 

neighborhoods compared to dense neighborhoods. This likely leads to allocation of a new 

representation for a sparse neighborhood but perhaps not for a dense neighborhood, which allows 

the learner to capitalize on the earliest exposures to a novel word in a sparse neighborhood but 

not in a dense neighborhood.  

The early effect of sparse neighborhoods on lexical acquisition could be consistent with 

an influence on configuration because of the timing of the effect, but the direction of the effect 

makes this hypothesis less likely. Previously, working memory was argued to be critical during 

configuration because the sound sequence input needed to be accurately held in working memory 

so that an accurate and detailed representation could be created in long-term memory. Past 

research suggests that sound sequences from sparse neighborhoods are not maintained in 

working memory as accurately as sound sequences from dense neighborhoods (Roodenrys & 

Hinton, 2002; Thomson et al., 2005; Thorn & Frankish, 2005). Thus, the direction of the effect 

of neighborhood density is inconsistent with an account that appeals to configuration. 

Turning to the later effect of dense neighborhoods, the timing of this effect is inconsistent 

with an account that would appeal to triggering or configuration. These two processes are 

hypothesized to occur during training when the input is present, but the performance 

improvements associated with dense neighborhoods were observed after a delay without training. 

Consequently, the later effect of dense neighborhoods suggests an influence on engagement, a 

process that is proposed to occur in the absence of input during memory consolidation. Recall 

that memory consolidation yields a stable representation that can be retained over time and resist 

interference. The results suggest that engagement occurs for the new lexical representations of 

both sparse and dense nonwords but that the number of existing representations, namely the 
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density, determines the benefit. In terms of the sparse nonwords, the new lexical representation 

will be integrated with few similar existing representations. This may provide enough 

stabilization of the new representation to support retention over a delay. This hypothesis is 

consistent with the non-significant change in accuracy for sparse nonwords from the immediate 

test to the retention test. Turning to the dense nonwords, the new lexical representation will be 

integrated with many similar existing representations. This likely provides greater stabilization 

and strengthening of the new representation, which is consistent with the significant 

improvement in accuracy for dense nonwords over the delay. Across these two scenarios, it is 

proposed that the time course of engagement was similar for sparse and dense nonwords but the 

outcome of engagement in terms of stabilizing the new representation was dependent on the 

number of existing representations. This hypothesis warrants direct testing. Previous studies of 

engagement have examined when in learning the new lexical representation influences 

processing of existing representations (Dumay & Gaskell, 2007; Gaskell & Dumay, 2003; Leach 

& Samuel, 2007). A study examining whether the new representation of both the sparse and 

dense nonwords influence processing of existing representations at a similar time point would 

substantiate the claim that the time course of engagement is similar for sparse and dense 

nonwords. 

General Discussion 

 Results across experiments indicated that both phonotactic probability and neighborhood 

density influenced lexical acquisition by children. However, the cognitive processes by which 

each variable influenced lexical acquisition were hypothesized to differ. Specifically, it was 

argued that phonotactic probability influenced triggering of lexical acquisition with rare sound 

sequences facilitating the detection of a mismatch between the input and existing representations. 
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It was further argued that this initial advantage was maintained over time. Interestingly, 

neighborhood density appeared to have a more varied role in lexical acquisition, influencing 

multiple processes. In terms of the first process, neighborhood density appeared to influence 

triggering of lexical acquisition with sparse neighborhoods facilitating the detection of a 

mismatch between the input and existing representations. In terms of the second process, 

neighborhood density influenced engagement. In particular, integration with many existing 

representations, as in a dense neighborhood, improved retention. These hypotheses warrant direct 

empirical testing using methods that are differentially sensitive to triggering versus configuration 

versus engagement (e.g., Gaskell & Dumay, 2003; Leach & Samuel, 2007; Merriman & 

Marazita, 1995). 

 Findings from the current experiments may appear to be at odds with those from past 

studies of correlated phonotactic probability and neighborhood density (Storkel, 2001, 2003, 

2004a; Storkel & Maekawa, 2005), although they generally converge with those of studies 

differentiating phonotactic probability and neighborhood density (Storkel, 2009; Storkel et al., 

2006). Past studies of correlated phonotactic probability and neighborhood density have tended 

to show greater accuracy for learning of common sound sequences in dense neighborhoods than 

rare sound sequences in sparse neighborhoods. It is difficult to account for this discrepancy in the 

absence of further empirical evidence; however, there are several issues that need to be 

addressed in future investigations. In particular, the current experiments investigated each 

variable while the other was held constant. This removes the interactive effects of the two 

variables. It is quite possible that when both variables are manipulated in tandem, interactive 

effects arise, leading to a different pattern than would be expected from a simple combination of 

independent effects. Further complicating this issue is that different combinations of phonotactic 
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probability and neighborhood density could facilitate different cognitive processes that underlie 

lexical acquisition. For example, rare sound sequences and sparse neighborhoods could converge 

to facilitate triggering of lexical acquisition because this combination would result in the lowest 

activation of the fewest existing representations, speeding detection of mismatch between the 

input and existing representations. In contrast, common sound sequences and dense 

neighborhoods might converge to facilitate configuration because this combination would result 

in the most accurate maintenance of the sound sequence in working memory (Gathercole et al., 

1999; Roodenrys & Hinton, 2002; Thomson et al., 2005; Thorn & Frankish, 2005), leading to the 

creation of a more accurate and detailed lexical representation. There likely are other alternative 

hypotheses. The point is that future research needs to systematically vary phonotactic probability 

and neighborhood density in paradigms that are differentially sensitive to the cognitive processes 

that underlie acquisition (i.e., triggering, configuration, and engagement). 

Conclusion 

 The present results support the idea that lexical acquisition is a dynamic process 

involving several cognitive processes (i.e., triggering, configuration, engagement).  Moreover, 

the findings suggest that characteristics of novel words, such as phonotactic probability and 

neighborhood density, dictate how existing representations affect this dynamic process, 

influencing which words are acquired more readily. Additional research is needed to unpack the 

complex relationship between word characteristics and lexical acquisition. 
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Table 1 

Participant characteristics. 

 Experiment 1  Experiment 2 

Age                                                        M 

(SD) 

range 

4;6 

(0;3) 

4;0 – 4;11 

4;5 

(0;4) 

4;0 – 4;11 

GFTA percentile 77 

(19) 

23 - 98 

69 

(24) 

19 - 98 

PPVT standard score* 105 

(11) 

88 - 136 

112 

(11) 

94 - 132 

EVT standard score* 108 

(12) 

90 – 133 

115 

(11) 

86 – 130 

GFTA = Goldman-Fristoe Test of Articulation – 2, PPVT = Peabody Picture Vocabulary Test – 3, 

EVT = Expressive Vocabulary Test. *Significant difference between experiments, p < 0.05. 
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Table 2 

Phonotactic probability and neighborhood density of the stimuli. 

 Experiment 1 Experiment 2 

 Rare1 Common2 Sparse3 Dense4 

Characteristics Based on Adult Corpus 

Positional segment sum     M 

(SD) 

range 

0.08 

(0.01) 

0.07 – 0.09 

0.15 

(0.01) 

0.14 – 0.16 

0.13 

(0.02) 

0.11 – 0.14 

0.13 

(0.02) 

0.11 – 0.15 

Biphone sum                     M 

(SD) 

range 

0.0015 

(0.0001) 

0.0014 – 0.0016 

0.0049 

(0.0009) 

0.0039 – 0.0061 

0.0038 

(0.0024) 

0.0001 – 0.0063 

0.0035 

(0.0008) 

0.0027 – 0.0046 

Neighborhood density       M 

(SD) 

range 

10 

(1) 

9 - 12 

10 

(1) 

9 - 12 

5 

(1) 

5 - 6 

14 

(2) 

12 – 17 

Characteristics Based on Child Corpus 

Positional segment sum     M 

(SD) 

range 

0.11 

(0.01) 

0.10 – 0.13 

0.15 

(0.01) 

0.14 – 0.17 

0.13 

(0.01) 

0.12 – 0.15 

0.16 

(0.02) 

0.14 – 0.17 

Biphone sum                     M 

(SD) 

range 

0.0019 

(0.0007) 

0.0012 – 0.0026 

0.0058 

(0.0016) 

0.0038 – 0.0078 

0.0030 

(0.0019) 

0.0000 – 0.0044 

0.0054 

(0.0007) 

0.0045 – 0.0062 

Neighborhood density       M 

(SD) 

range 

8 

(3) 

5 - 12 

7 

(3) 

3 - 11 

5 

(1) 

4 – 7 

12 

(2) 

10 – 15 

1/geɪg geɪf tɔf haʊd bug/ 2/jaɪn nɪb bɛb poʊg poʊb/ 3/dɔɪk gɪf paɪb jɑm nɛp/ 4/jʌt boʊg tɑb faʊn wæd/ 
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Figure Captions 

Figure 1. Mean proportion correct for rare (open bar) versus common sound sequences (filled 

bar) on the referent identification task at baseline, criterion, and retention test points. Error bars 

depict the standard error of the mean.  

 

Figure 2. Mean proportion correct for sparse (open bar) versus dense sound sequences (filled 

bar) on the referent identification task at baseline, criterion, and retention test points. Error bars 

depict the standard error of the mean. 
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Figure 1 
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Figure 2 
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