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Incremental Changes 2 

Abstract 

Purpose. Phonotactic probability or neighborhood density have predominately been defined 

using gross distinctions (i.e., low vs. high). The current studies examined the influence of finer 

changes in probability (Experiment 1) and density (Experiment 2) on word learning. 

Method. The full range of probability or density was examined by sampling five nonwords from 

each of four quartiles. Three- and 5-year-old children received training on nonword-nonobject 

pairs. Learning was measured in a picture-naming task immediately following training and 1-

week after training. Results were analyzed using multi-level modeling. 

Results. A linear spline model best captured nonlinearities in phonotactic probability. 

Specifically word learning improved as probability increased in the lowest quartile, worsened as 

probability increased in the midlow quartile, and then remained stable and poor in the two 

highest quartiles. An ordinary linear model sufficiently described neighborhood density.  Here, 

word learning improved as density increased across all quartiles. 

Conclusion. Given these different patterns, phonotactic probability and neighborhood density 

appear to influence different word learning processes. Specifically, phonotactic probability may 

affect recognition that a sound sequence is an acceptable word in the language and is a novel 

word for the child, whereas neighborhood density may influence creation of a new representation 

in long-term memory. 

Key words: vocabulary, word learning, phonotactic probability, neighborhood density, spline 

regression
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The effect of incremental changes in phonotactic probability and neighborhood density on word 

learning by preschool children 

Learning is influenced by language structure, including phonotactic probability, which is 

the frequency of occurrence of a sound in a given word position and/or the frequency of co-

occurrence of adjacent sound combinations, and neighborhood density, which refers to the 

number of words that differ by one phoneme from a given word (Vitevitch & Luce, 1998, 1999). 

When probability and density are correlated, children learn high probability/density sound 

sequences more accurately than low probability/density (Storkel, 2001, 2003, 2004a; Storkel & 

Maekawa, 2005). When probability and density are differentiated, young children and adults still 

learn high density sound sequences more accurately than low density, but they now learn low 

probability sound sequences more accurately than high probability (Hoover, Storkel, & Hogan, 

2010; Storkel, 2009; Storkel, Armbruster, & Hogan, 2006; Storkel & Lee, 2011). 

Even though there is clear evidence that phonotactic probability and neighborhood 

density influence learning, the majority of evidence to date has only considered gross distinctions 

in phonotactic probability and neighborhood density. That is, virtually all empirical studies 

contrast “low” versus “high” probability or density, even though phonotactic probability and 

neighborhood density are continuous variables. Consequently, it is unclear at present whether 

smaller incremental differences in probability and/or density influence word learning. Likewise, 

the pattern of performance across the distribution of probability and density is unknown. On the 

one hand, children could show a nonlinear pattern, such that small changes at certain points on 

the probability or density distribution would improve (or worsen) performance while changes at 

other points would lead to minimal or no change in performance (e.g., stable performance). On 

the other hand, children could show a linear pattern, such that even small changes in probability 

and density would improve (or worsen) performance across the full distribution of probability 

and density. The overarching goal of this research is to examine whether smaller differences in 
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Incremental Changes 4 

probability and/or density influence performance on a word learning task and to determine the 

pattern of performance across the full distribution of probability and density. 

There is reason to predict that the pattern of word learning performance across the 

distribution of phonotactic probability will differ from that of neighborhood density (Storkel, et 

al., 2006; Storkel & Lee, 2011). Prior probability and density findings have been interpreted 

within a model of word learning that differentiates three processes: triggering, configuration, and 

engagement (cf. Dumay & Gaskell, 2007; Gaskell & Dumay, 2003; Leach & Samuel, 2007; Li, 

Farkas, & Mac Whinney, 2004). Triggering involves allocation of a new representation (i.e., 

recruitment of a new node in a connectionist network), which occurs when the mismatch 

between the input and existing representations exceeds a set threshold (e.g., the vigilance 

parameter, Li, et al., 2004). In this way, a novel input is detected and learning (i.e., recruitment 

of a new node) is initiated. Configuration entails the actual creation of the new representation in 

long-term memory (e.g., storing information in the newly allocated representation, Leach & 

Samuel, 2007; Li, et al., 2004). Finally, engagement is the integration of a newly created 

representation with similar existing representations in long-term memory, which may require a 

delay that includes sleep (e.g., forming connections between similar representations, Dumay & 

Gaskell, 2007; Leach & Samuel, 2007; Li, et al., 2004). 

Prior word learning research with children and adults suggests that phonotactic 

probability may influence triggering, whereas neighborhood density may influence configuration 

and/or engagement (Storkel, et al., 2006; Storkel & Lee, 2011). This finding also is consistent 

with the DevLex model (Li, et al., 2004) where neighborhood relationships are essentially turned 

off during triggering (i.e., node recruitment) to maintain the stability of previously learned 

words, but neighborhood structure is available during other types of processing (e.g., 

configuration and engagement). Based on the prior experimental findings and the DevLex model, 

the pattern of word learning performance across the phonotactic probability distribution is 
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Incremental Changes 5 

predicted to differ from the pattern of word learning performance across the neighborhood 

density distribution. 

In terms of specific predictions for triggering and phonotactic probability, past findings 

from disambiguation studies are relevant. In disambiguation studies, children are presented with 

at least one known object and at least one novel object along with a novel sound sequence, and 

looking behavior is measured. Presumably, if the child recognizes that the sound sequence is 

novel, more looks will be directed toward the novel object. This disambiguation is a type of 

triggering (i.e., recognizing novelty). At least a few studies have examined the effect of novelty 

on looking behavior in this paradigm with novelty being defined by the number of feature 

differences between the novel sound sequence and the known name of the real object. In fact, 

looks to the novel object increase as the novelty of the sound sequence increases.  However, 

when the novel word is minimally novel, children still overwhelmingly choose or look at the real 

object rather than the novel object (e.g., Creel, 2012; White & Morgan, 2008). This suggests that 

triggering may not be occurring for minimally novel stimuli. In terms of a prediction for the 

current study, word learning performance may decrease (linearly) as phonotactic probability 

increases due to inefficient triggering as the word becomes less novel. Then, stable poor 

performance may be observed at the higher end of the probability distribution where the items 

may no longer be detected as novel. Here, the assumption is that triggering does not occur at all, 

leading to uniformly poor word learning. An additional, as yet unexplored, possibility is that this 

shift in the effect of phonotactic probability (i.e., linear decrease in performance followed by 

stable poor performance) could occur rapidly, leading to a discontinuity in the function relating 

phonotactic probability to word learning performance. 

Turning to specific predictions for configuration and neighborhood density, working 

memory theory suggests that word learning performance should linearly increase as 

neighborhood density increases. This is based on the assumption that an item in working 
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Incremental Changes 6 

memory is supported by the activation of items in long-term memory (Roodenrys & Hinton, 

2002; Roodenrys, Hulme, Lethbridge, Hinton, & Nimmo, 2002). Thus, the more items activated 

(i.e., the higher the density), the greater the support to working memory from long-term memory, 

with no apparent cap on this support (i.e., no expectation of nonlinearity). Further, it is assumed 

that the integrity of the item in working memory influences the integrity of the newly stored item 

in long-term memory, namely configuration (Gathercole, 2006). Predictions from an engagement 

perspective are somewhat less clear because there has been less research in this area but 

presumably the logic is somewhat similar to that just described for configuration. That is, 

connections to existing items in long-term memory provide support to the newly created 

representation. The more connections created (i.e., the higher the density), the greater the support 

from existing representation, with no apparent cap on this support (i.e., no expectation of 

nonlinearity). 

The current research makes an initial attempt to address these issues in two word learning 

experiments with 3- and 5-year-old children. Experiment 1 examined learning of novel words 

varying in phonotactic probability but matched in neighborhood density. Experiment 2 examined 

learning of novel words varying in neighborhood density but matched in phonotactic probability. 

For both experiments, the full range of the distribution of phonotactic probability or 

neighborhood density was sampled by dividing that distribution into four ranges defined by 

quartiles, lowest (< 25
th

 percentile), midlow (25
th

 – 49
th 

percentile), midhigh (50
th

 – 74
th

percentile), and highest (>/= 75
th

 percentile), and sampling five items within each quartile. Based

on past word learning research, phonotactic probability and neighborhood density were predicted 

to have a significant effect on word learning accuracy. The main contribution of this research is 

examination of the relationship between word learning accuracy and the full distribution of 

probability or density. Several models were fit to the data to examine a variety of potential 

patterns including discontinuous and nonlinear patterns as well as continuous linear patterns. 
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Incremental Changes 7 

Experiment 1: Phonotactic Probability 

Learning of novel words varying in probability (i.e., lowest, midlow, midhigh, highest) 

but matched in density and nonobject characteristics (i.e., objectlikeness ratings, number of 

semantic neighbors) was examined. 

Method 

Participants. Twenty-three 3-year-old (M = 3 years; 8 months; SD = 0; 3; range = 3; 1 – 

3; 11) and 24 5-year-old (M = 5 years; 4 months; SD = 0; 3; range = 5; 0 – 6; 0) children 

participated. All children were monolingual native speakers of English with no history of speech, 

language, motor, cognitive, or health impairment by parent report. Standardized clinical testing 

(Dunn & Dunn, 2007; Goldman & Fristoe, 2000; Williams, 2007) confirmed normal productive 

phonology (M standard score = 110; SD = 7; range = 95 - 127), receptive vocabulary (M standard 

score = 112; SD = 13; range = 89 - 150), and expressive vocabulary (M standard score = 113; SD 

= 11; range = 95 - 135). 

Stimuli. Stimuli are listed in the appendix with greater item-level detail provided in the 

supplemental materials (see Table S1). A pool of all legal English consonant-vowel-consonant 

(CVC) sequences was created (Storkel, In Press).  This pool was submitted to an on-line 

calculator to identify real words in adult or child corpora 

(http://www.bncdnet.ku.edu/cml/info_ccc.vi), which were then eliminated from consideration as 

stimuli. In addition, only early acquired consonant sequences were retained (Storkel, In Press). 

This ensured that all remaining CVCs were nonwords with a high likelihood of correct 

production by preschool children (n = 687 CVCs). Two measures of probability and one measure 

of density were then calculated using the adult corpus. The adult corpus was selected because it 

was thought to reflect the language that children hear, thus providing a more accurate measure of 

children’s knowledge of probability and density;  however, calculations based on either corpus 

are highly correlated (Storkel, In Press; Storkel & Hoover, 2010). 
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Incremental Changes 8 

The two measures of phonotactic probability were positional segment sum and biphone 

sum (Storkel, 2004b). Positional segment sum was computed by summing the positional segment 

frequencies for each sound in the CVC. The positional segment frequency was computed by 

summing the log frequencies of the words in the corpus that contain the target sound in the target 

word position and then dividing by the sum of the log frequencies of the words in the corpus that 

contain any sound in the target word position. Biphone sum was computed in a similar manner 

except that the target is a pair of adjacent sounds rather than a single sound. Density was 

computed by counting the number of words in the corpus that differ from the target CVC by a 

one sound substitution, deletion, or addition in any word position (Storkel, 2004b). 

Because only a limited number of nonwords can reasonably be taught to young children 

during an experimental study, the stimuli selection method needed to ensure that the trained 

items would adequately sample the full distribution of phonotactic probability values. To 

accomplish this, percentiles/quartiles were computed for the CVC pool and used to define a 

range of values for sampling different points of the phonotactic probability distribution. 

Specifically, lowest probability was defined as a positional segment sum and biphone sum below 

the 25
th

 percentile (i.e., 1
st
 quartile); midlow corresponded to the 25

th
 to 49

th
 percentile (i.e., 2

nd

quartile); midhigh corresponded to the 50
th

 to 74
th

 percentile (i.e., 3
rd

 quartile); highest was the

75
th

 percentile and above (i.e., 4
th

 quartile). Five nonwords were then pseudo-randomly selected

from each phonotactic probability quartile. Selection was pseudo-random because control of 

neighborhood density was considered as well as phonological similarity among the selected 

nonwords (i.e., an attempt was made to select dissimilar nonwords). Generally, the five items 

selected in a given phonotactic probability category sampled the full range of values in that 

quartile. That is, the sampled items approximated the minimum and maximum value that defined 

the quartile as well as included values between the minimum and maximum. However, the 

requirement to control neighborhood density (see next) somewhat truncated the items that could 
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Incremental Changes 9 

be selected in the lowest and highest quartiles. Specifically, items below (approximately) the 10
th

percentile in the lowest category and items above the (approximately) 90
th

 (segment sum) or 95
th

(biphone sum) percentile in the highest category could not be selected while controlling 

neighborhood density. Thus, the most extreme values at the beginning and end of the distribution 

of phonotactic probability are not well represented in the selected stimuli. Note that this 

approach to stimuli selection also has the added benefit of connecting the current stimuli to those 

used in prior studies, which have typically defined “low” and “high” probability using a median 

(i.e., 50
th

 percentile) split. Thus, nonwords in the lowest and midlow probability quartiles in the

current study generally correspond to “low” probability in past research; whereas, nonwords in 

the midhigh and highest quartiles correspond to “high” in past studies. 

In terms of the control variable of neighborhood density, percentiles for the CVC pool 

were used to define acceptable values. Specifically, density was held constant at a mid-level, 

operationally defined as within 0.50 standard deviations of the 50
th

 percentile. Table 1 shows the

characteristics of the selected CVCs, with added detail shown in Table S1 of the supplemental 

materials. 

For all analyses, a single measure of phonotactic probability was needed. Because 

positional segment sum and biphone sum are on different measurement scales, each value was 

converted to a z score based on the means and standard deviations of the stimulus pool (i.e., 687 

CVC nonwords) and then averaged to yield one measure of phonotactic probability for analyses 

and figures. For analyses, this average z score was further re-scaled by multiplying by 10 to 

avoid extremely large or small odds ratios for the fixed effect of phonotactic probability, 

especially over the compressed range of lowest and midlow phonotactic probability. 

Nonobjects were selected from a pool of 88 black and white line drawings developed by 

Kroll and Potter (1984) with additional normative data from Storkel and Adlof (2009). Twenty 

nonobjects were selected and paired with the twenty nonwords such that the objectlikeness 
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Incremental Changes 10 

ratings (Kroll & Potter, 1984) and semantic set size (Storkel & Adlof, 2009) were matched 

across the probability conditions (see appendix). In addition, the pairing of nonobjects to 

nonwords was counterbalanced across participants. 

Procedures. The twenty nonword-nonobject pairs were divided into five training sets of 

four items, with each probability quartile represented in each set. That is, each training set 

consisted of one lowest, one midlow, one midhigh, and one highest probability nonword (refer to 

Table S1 of the supplemental materials for specific nonwords in each training set). Children were 

trained on each of the sets on a different day using a different child-appropriate game context 

(e.g., bingo, card game, board game). Training was administered via computer with 

accompanying hard copy pictures of the nonobjects (e.g., bingo board, small cards, board game) 

for game play. Training was divided into three blocks with each block providing eight auditory 

exposures to each nonword-nonobject pair for a total of 24 cumulative auditory exposures. 

Within a training block, presentation of nonword-nonobject pairs was randomized by the 

computer. Each exposure consisted of the nonobject appearing centered on the computer screen 

accompanied by a series of carrier phrases containing the corresponding nonword. The exact 

exposure script was: “This is a nonword. Say nonword.” The child attempted to imitate the 

nonword but no feedback was provided. “That’s the nonword. Remember, it’s a nonword. We’re 

going to play a game. Find the nonword.” Here, the child would find the hard copy picture that 

matched the picture on the computer screen and respond in a way appropriate to the game (e.g., 

move the marker on the game board to the corresponding picture). No feedback was provided. 

“That’s the nonword. Say nonword.”  Again, the child attempted to imitate the nonword but no 

feedback was provided. “Don’t forget the nonword.” Thus, the training script provided eight 

auditory exposures to the nonword, two imitation opportunities, and one picture matching 

opportunity. Repetition accuracy ranged from 45%-100% with a mean accuracy of 87% (SD = 

12%). Picture matching accuracy ranged from 80%-100% with a mean accuracy of 99% (SD = 
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Incremental Changes 11 

4%). The intent of this set of training activities was to provide repeated exposure to the nonword-

nonobject pair as well as relatively easy retrieval practice via repetition and picture matching 

prompts. 

Learning was measured in a picture-naming test administered immediately upon 

completion of training and 1-week after training. Children had to correctly produce the entire 

CVC name of the picture to be credited with an accurate response. Picture naming was chosen 

because prior studies suggested stronger effects of word characteristics on expressive measures 

of word learning than on receptive measures of word learning (Storkel, 2001, 2003). 

Analysis Approach. The data were analyzed using multilevel modeling. Multilevel 

modeling (MLM), also called mixed effects modeling, hierarchical linear modeling, or random 

coefficient modeling, is preferred over repeated measures ANOVA because it allows for a 

variety of variance/covariance structures, thus being more flexible regarding dependencies 

arising from repeated measures or missing and/or unbalanced data (Cnaan, Laird, & Slasor, 

1997; Gueorguieva & Krystal, 2004; Hoffman & Rovine, 2007; Misangyi, LePine, Algina, & 

Goeddeke, 2006; Nezlek, Schroder-Abe, & Schutz, 2006; Quene & van den Bergh, 2004). 

Moreover, random effects of participants and items can be accommodated in the same analysis 

by incorporating crossed random intercepts, and this is becoming the favored analysis approach 

for psycholinguistic data (cf., Baayen, Davidson, & Bates, 2008; Locker, Hoffman, & Bovaird, 

2007; Quene & van den Bergh, 2008).  Note that the dependent variable for this study was 

accuracy (i.e., correct or incorrect), which is a binary variable. Thus, a logistic MLM was used. 

The analysis proceeded in several steps. The first step was to examine the crossed 

random effects of participants and items to determine the significance and relative magnitude of 

participant and item (nonword) variance components in an empty model with no fixed predictors. 

For this particular experiment, the predictor phonotactic probability had a one-to-one 

relationship with nonword. That is, every nonword had a unique phonotactic probability so there 
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Incremental Changes 12 

are no repeated items at a given phonotactic probability. Thus, the crossed random intercept for 

nonword is not needed in the subsequent models that include the fixed effect of phonotactic 

probability. For this reason, between-item variability not related to phonotactic probability is 

relegated to the residual variance component in this experiment, and this should be kept in mind 

when appraising the magnitude of fixed effects and between-subject variability. 

The second step was to add the fixed effects of phonotactic probability, time (immediate 

vs. delayed test), and age (in months) to address the research questions. This model of the fixed 

effects used a spline regression model to capture the effect of phonotactic probability. Spline 

regression is a nonparametric approach used to approximate a nonlinear response across a 

continuous predictor without parametric assumptions or costs incurred by categorization (Marsh 

& Cormier, 2002). With linear splines, the effect of an explanatory variable (i.e. phonotactic 

probability) is assumed to be piecewise linear on a specified number of segments separated by 

knots (Gould, 1993; Panis, 1994). In terms of interpretation of the linear spline coefficients, 

coding can be for the slope in each segment or the change in slope from the prior segment. While 

the ability of linear spline models to provide a smooth transition across knots is generally valued, 

it is also possible to explore discontinuities between segments by dummy coding for an intercept 

change at each successive knot/segment (for an example of intercept dummy coding with linear 

splines, see UCLA Statistical Consulting Group). Note that dummy coding for change in level 

(as opposed to the actual level) in each segment is similar to ordinal dummy coding (Lyons, 

1971).  Many alternate codings for intercept and slope are possible. For this analysis, change in 

slope and intercept (level) from the prior segment was coded because the associated coefficients 

provide a test for whether a change/discontinuity is present without post-hoc tests. The number 

of segments is also arbitrary, but four segments were used in this analysis to align with the 

stimulus generation procedure based on quartiles. The specific coding scheme employed can be 

found in Table S3 of the online supplemental materials. Taken together, the fully-segmented 
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Incremental Changes 13 

spline model allows for detection of discontinuity and nonlinearity in the relationship between 

phonotactic probability and word learning accuracy. 

Although the fully-segmented spline model best matches the stimulus generation 

procedures, it is not the most parsimonious model. Thus, in a third and fourth step, alternative 

models were considered. Specifically, in the third step, phonotactic probability was modeled as a 

continuous linear predictor to determine whether the nonlinearity and discontinuity allowed by 

the spline model is really needed. Note that all other predictors in the linear model are the same 

as in the spline model, allowing for direct comparison between the two models using a 

likelihood-ratio test. In the fourth and final analysis step, phonotactic probability was modeled 

using a low-high median split for comparison to past studies of dichotomously coded phonotactic 

probability. Again, the other predictors in the model are the same as those in the spline model. 

To facilitate insight into the magnitude of individual differences, participant level (and 

item level) variance was expressed as a median odds ratio (MOR, Merlo et al., 2006). 

Conceptually, the MOR conveys the median increase in the odds of a correct response between a 

pair of participants or items that are alike on all other covariates. Therefore, a MOR of 1 would 

indicate no change in the odds of a correct response as participants (or items) are changed. In 

complement, a large MOR would suggest substantial variability between participants (or items), 

indicating a large change in the odds of a correct response as participants (or items) are changed. 

The MOR has the further advantage of being on the same scale as the odds ratio (OR), which 

was used as the effect size for the fixed effects (e.g., phonotactic probability).  In this way, the 

MOR for the random effects can be compared to the OR of the fixed effects to permit 

comparison of the magnitude of the effect of model predictors to the magnitude of individual 

differences (i.e., unexplained between-subject and between-item variances). 

Page 13 of 52 Journal of Speech, Language, and Hearing Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Incremental Changes 14 

Results 

Table 2 summarizes the different models created across analysis steps. The first model 

was an empty model with crossed random intercepts for both participants and items to assess 

baseline variability (see first column of Table 2). The MOR for participants was 2.34 (95% CI = 

1.84-3.27) and for items was 1.48 (95% CI = 1.24-2.08). Thus, the variability between subjects is 

associated with a median difference of 2.34 in the odds of a correct response between two 

randomly drawn participants. Likewise, the variability between items is associated with a median 

difference of 1.48 in the odds of a correct response. However, recall that each item had a unique 

phonotactic probability z score, meaning that the item intercept term was dropped in all 

subsequent models, which included phonotactic probability. Thus, a second empty model with 

only a random intercept for participants was included. This is shown in the second column of 

Table 2. Note that the MOR (i.e., MOR = 2.31, 95% CI = 1.82-3.24) for participants is similar to 

the crossed random model that included items. 

The next model was the fully-segmented spline model. As shown in the third column of 

Table 2, the spline model included a random intercept for participants, three fixed intercept 

parameters (each coding the change in level across segments), four slope parameters (each 

coding the change in slope from prior segment) as well as time (immediate vs. delayed test) and 

age (in months). The main effect of time was significant. The odds of a correct response were 

2.23 (95% CI = 1.55-3.20) times lower in the delayed test than in the immediate test condition, 

indicating that significant forgetting occurred across this no-training gap. In terms of raw values, 

percent correct in the delayed test (M = 5.76%, SD = 8.99) was lower than in the immediate test 

(M = 11.14%, SD = 9.66). There also was a significant effect of age. Specifically, the odds of a 

correct response were 1.03 (95% CI = 1.00-1.06) times higher for a child one month older than 

another child. Note that the lower end of the confidence interval includes 1.00, which would 

normally indicate a non-significant effect. However, this is an artifact of rounding. In terms of 
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Incremental Changes 15 

raw values, percent correct for the 5-year-olds (M = 10.20%, SD = 10.31) was higher than for the 

3-year-olds (M = 6.63%, SD = 6.51). These effects can be seen in more detail in Figure S1 of the 

supplemental materials. 

Turning to the main variable of interest, namely phonotactic probability, the top panel of 

Figure 1 aids visualization of the fully-segmented spline model. This panel shows the 

relationship between phonotactic probability on the x-axis and proportion correct on the y-axis 

collapsed across time and age. Vertical gray lines indicate the dividing points for the four 

probability quartiles: lowest, midlow, midhigh, highest. The four solid lines are a linear fit to 

each of the segments. These four lines closely approximate the splines that are modeled in the 

analysis. None of the intercepts in the spline model were significant. This indicates that the 

relationship between word learning accuracy and probability can be thought of as continuous. 

However, the slope for the first spline was significantly different from zero. As can be seen in 

Figure 1 and Table 2, the spline corresponding to lowest probability has a significant rising 

slope, indicating that the odds of a correct response were 1.69  (95% CI = 1.02-2.79) times 

higher for a one unit (i.e., 1/10 z score) increase in phonotactic probability in the lowest 

phonotactic probability quartile. The slope for the second spline also was significant. Here, the 

interpretation is that the slope for the second spline (midlow probability) is significantly different 

from the slope of the first spline (lowest probability). As shown in Figure 1, the second spline 

(midlow probability) has a falling slope, indicating that the odds of a correct response were 1.93 

(95% CI = 1.15-3.23) times lower for a one unit increase in phonotactic probability in the 

midlow phonotactic probability quartile. The other two slope parameters (midhigh and highest 

probability) were not significant. The final two splines (midhigh and highest probability) are 

relatively flat, indicating minimal change in word learning accuracy as probability increased in 

these final two segments, which correspond to phonotactic probability above the median. 
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Incremental Changes 16 

Turning to the alternative more parsimonious models, the effects of time and age in these 

models were similar to that of the fully-segmented spline model (see Table 2). Thus, the 

presentation of the alternative models focuses exclusively on the effect of phonotactic 

probability.  The linear model is shown in the fourth column of Table 2. Recall that the 

difference between the linear and spline models is that phonotactic probability is now modeled 

with just one slope parameter (see dashed line in top panel of Figure 1). This forces the effect of 

phonotactic probability to be continuous and linear in this model, rather than allowing for 

discontinuity and nonlinearity, as in the fully-segmented spline model. The effect of phonotactic 

probability remained significant in the linear model with accuracy increasing as phonotactic 

probability decreased. However, the fully-segmented spline model provided significantly better 

fit to the data, χ
2 

(6) = 15.08, p = .02. This indicates that the spline model better captures the

effect of phonotactic probability. 

Finally, the low-high median split model is shown in the last column of Table 2. 

Remember that this model was included to provide a comparison to past studies of phonotactic 

probability. Here, phonotactic probability is modeled with a second intercept term, capturing 

change in level across the median/50
th

 percentile. Consistent with previous findings (Hoover, et

al., 2010; Storkel, 2009; Storkel, et al., 2006; Storkel & Lee, 2011), participants were more 

accurate responding to low than high phonotactic probability items. However, once again, the 

fully-segmented spline analysis provided a better fit to the data, χ
2 

(6) = 13.71, p = .03.

Taken together, word learning accuracy and probability showed a non-linear relationship 

that was not well captured by a simple linear slope across the entire distribution or a simple 

change in level (i.e., low vs. high) at the median of the distribution. Specifically, accuracy 

increased as probability increased in the lowest probability quartile. Then, accuracy decreased as 

probability increased in the midlow probability quartile. In the midhigh and highest probability 

quartile (i.e., above the median), accuracy was relatively stable and poor. Thus, there appeared to 
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Incremental Changes 17 

be a change in the relationship between word learning accuracy and probability that occurred 

between the lowest and midlow probability quartiles, followed by no change above the median 

(i.e., midhigh and highest quartile). To investigate the location of the change point, a follow-up 

change point analysis was conducted  (McArdle & Wang, 2008). The change point analysis 

estimates the location of the change rather than forcing the change in slope to occur between pre-

defined segments corresponding to our probability quartiles (i.e., between lowest and midlow 

probability quartiles). The change-point analysis located the change point at phonotactic 

probability values near the minimum probability of the second spline (i.e., z = -0.65, see Table 1 

for corresponding raw values). Thus, our somewhat arbitrarily chosen ranges seem to be 

capturing the location of the change-point, rather than biasing the location of the change point. 

A final caveat relates to the variability across participants. There was significant 

variability across participants (i.e., Participant MOR = 2.37, 95% CI = 1.85-3.33). This 

participant variability was examined via (1) visual inspection of a figure plotting accuracy by 

phonotactic probability for individual participants (see Figure S2 of the supplemental materials), 

and (2) fitting several models with random coefficients for slopes (see Figure S3 of the 

supplemental materials). Based on these methods, variability appeared to be due to overall 

differences in accuracy rather than differences in the effect of phonotactic probability across 

participants. That is, some participants learned words with greater accuracy than other 

participants, which is captured by the random effect of participants, but all participants showed a 

roughly similar pattern in the effect of phonotactic probability on word learning, which is 

captured by the fixed effect of phonotactic probability. 

Experiment 2: Neighborhood Density 

Learning of novel words varying in neighborhood density (i.e., lowest, midlow, midhigh, 

highest) but matched in phonotactic probability and nonobject characteristics (i.e., objectlikeness 

ratings, number of semantic neighbors) was examined. 
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Incremental Changes 18 

Method 

Participants. Thirty-three 3-year-old (M = 3 years; 6 months; SD = 0; 3; range = 3; 1 – 3; 

11) and 37 5-year-old (M = 5 years; 3 months; SD = 0; 3; range = 5; 0 – 6; 0) children meeting

the same criteria as Experiment 1 participated. Children exhibited normal productive phonology 

(M standard score = 110; SD = 9; range = 83 - 127), receptive vocabulary (M standard score = 

113; SD = 12; range = 88 - 147), and expressive vocabulary (M standard score = 113; SD = 10; 

range = 93 - 135). None of the children participated in Experiment 1. 

Stimuli. Stimuli are shown in the appendix with more detailed item data in Table S2 of 

the on-line supplemental materials. Nonword stimuli were selected following the procedures 

outlined for Experiment 1, except that neighborhood density was the independent variable and 

the two measures of phonotactic probability were controlled. As with Experiment 1, the 

approach to stimuli selection led to adequate sampling of neighborhood density values from 

approximately the 10
th

 to the 95
th

 percentile, but extreme values were not sampled due to the

need to control phonotactic probability (see Table 1). The same nonobjects used in Experiment 1 

were used here. 

Procedures. Procedures were identical to Experiment 1. In terms of responses during 

training, repetition accuracy ranged from 60%-100% with a mean accuracy of 89% (SD = 9%). 

Picture matching accuracy ranged from 44%-100% with a mean accuracy of 98% (SD = 8%). 

Analysis Approach. Analysis approach was similar to Experiment 1 with the exception of 

the use of z scores. Because there was only one measure of neighborhood density, raw values 

were used in the analyses and figure rather than z scores. A second difference from Experiment 1 

is that several nonwords had the same density, making it possible to disentangle neighborhood 

density and between-item variability. Thus, the crossed random effects of participants and items 

are included in all models. Table S4 of the supplemental materials provides the model coding. 
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Incremental Changes 19 

Results 

Table 3 summarizes the four models. Beginning with the empty model in the first column 

of Table 3, participants and items were modeled as crossed random effects.  The MOR for 

participants was 2.31 (CI = 1.89-3.00) and the MOR for items was 2.26 (CI = 1.73-3.36). Thus, 

the variability between participants is associated with a median difference of 2.31 in the odds of 

a correct response between two randomly drawn participants. Likewise, the variability between 

items is associated with a median difference of 2.26 in the odds of a correct response between 

randomly drawn items. Recall that there were several items with the same neighborhood density. 

Thus, unlike Experiment 1, the random intercept for items is retained in all subsequent models. 

Turning to the fully-segmented spline model in the second column of Table 3, fixed 

effects were added to the empty model. As in Experiment 1, neighborhood density was modeled 

with three intercept change terms and four slope terms. Effects of time (immediate vs. delayed 

test) and age (in months) also were included. Once again, there was a significant effect of time. 

The odds of a correct response were 1.97 (95% CI = 1.47-2.65) times lower in the delayed test 

than in the immediate test. In terms of raw values, percent correct in the delayed test (M = 

6.46%, SD = 7.97) was lower than in the immediate test (M = 11.11%, SD = 10.36). Likewise, 

the effect of age was significant. Specifically, the odds of a correct response were 1.03 (95% CI 

= 1.00-1.05) times higher for a child one month older than another child. In terms of raw values, 

percent correct for the 5-year-olds (M = 10.46%, SD = 10.24) was higher than for the 3-year-olds 

(M = 6.95%, SD = 5.61). These effects can be seen in more detail in Figure S4 of the 

supplemental materials. 

More important, however, is the influence of neighborhood density. The lower panel of 

Figure 1 provides a visualization of the model, by showing the relationship between density and 

proportion correct collapsed across time and age. Again, vertical gray lines indicate the dividing 

points for the four density quartiles: lowest, midlow, midhigh, highest. The four solid lines are 
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Incremental Changes 20 

the linear fit to each of the density segments. The results were very straightforward. None of the 

intercept terms were significant, indicating no discontinuity between segments. In addition, none 

of the slope terms were significant, indicating that the distribution may be best described by a 

single slope. This possibility is explored in the alternative models. As shown in the bottom panel 

of Figure 1, word learning accuracy appears to increase as neighborhood density increases. 

The alternative models did examine the effects of time and age, with no major differences 

in findings from the spline model. These effects can be seen in more detail for the linear model 

in Figure S4 of the supplemental materials. Presentation of the alternative models focuses solely 

on the effect of neighborhood density. The third column of Table 3 shows the linear model. 

Recall that this model uses a single slope parameter to capture the effect of neighborhood 

density, making it more parsimonious than the spline model. The effect of density was 

significant. Specifically, the odds of a correct response were 1.09 (95% CI = 1.02-1.16) times 

higher for a one neighbor increase in density across the full distribution of density values. 

Importantly, there was no difference in fit between the spline model and this linear model, χ
2 

(6)

= 5.79, p = .45. This suggests that the more parsimonious linear model should be preferred over 

the fully-segmented spline model. Thus, the relationship between word learning and density is 

best described as a continuous linear function. Note that the MOR for items in this model is 2.00 

(95% CI = 1.58-2.85), which can be directly compared to the OR for neighborhood density, 

which is 1.09 (95%CI = 1.02-1.16). From this comparison, it is clear that neighborhood density 

is not the only item characteristic that influences ease of word learning. 

The final column of Table 3 reports the results of the median split model. Although the 

comparison between low and high density did not reach significance (p = .20), the trend (i.e., 

better accuracy for high than low density) is in the same direction as past studies (Hoover, et al., 

2010; Storkel, 2009; Storkel, et al., 2006; Storkel & Lee, 2011). Again, there was no difference 

in fit between the spline model and this median-split model, χ
2 

(6) = 10.18, p = .12.

Page 20 of 52Journal of Speech, Language, and Hearing Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Incremental Changes 21 

As with Experiment 1, participant variability was explored for the preferred model, 

namely the linear model. See Figure S5 in the supplemental materials. Again, participant 

variability appeared to be captured by a difference in overall accuracy rather than differences in 

the effect of density across participants. That is, some participants learned words with greater 

accuracy than other participants, which is captured by the random effect of participants, but all 

participants showed a roughly similar linear pattern in the effect of neighborhood density on 

word learning. 

General Discussion 

The goal of the present investigation was to determine whether incremental changes in 

phonotactic probability and neighborhood density influenced word learning performance and, if 

so, to determine the precise pattern of the relationship between probability or density and word 

learning. Both studies showed that incremental changes in phonotactic probability and 

neighborhood density did influence word learning. Moreover, the pattern of word learning 

performance across the phonotactic probability distribution differed from the pattern of word 

learning performance across the neighborhood density distribution. For phonotactic probability, a 

nonlinear pattern was observed. Specifically, word learning improved as probability increased in 

the lowest probability quartile. Then, there was a change in the next quartile (i.e., midlow 

probability) with word learning worsening as probability increased. In the midhigh and highest 

probability quartiles, word learning was relatively stable and poor. In contrast, word learning 

tended to improve as neighborhood density increased in a predominately linear fashion across 

the full density distribution. This finding of different patterns of word learning performance 

across the phonotactic probability distribution versus across the neighborhood density 

distribution partially supports the initial hypothesis that phonotactic probability and 

neighborhood density influence different word learning processes. 
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Phonotactic probability was hypothesized to influence triggering, namely allocation of a 

new representation. Based on past studies of disambiguation, word learning was expected to 

worsen as probability increased in the lower end of the phonotactic probability distribution and 

then expected to remain stable (and poor) at the higher end of the distribution. This hypothesis 

was partially supported, with the predicted pattern being observed in the midlow, midhigh, and 

highest probability quartiles. However, the finding that word learning improved as phonotactic 

probability increased in the lowest probability quartile was unexpected and appears inconsistent 

with claims about the triggering process. Therefore, the role of phonotactic probability in word 

learning may need to be reconsidered. One possibility is that phonotactic probability is involved 

in two aspects of word learning: recognizing which sound sequences are potential words and 

recognizing which sound sequences are novel words to-be-learned (i.e., triggering). In fact, past 

studies suggest that infants do not accept every sound, even every sequence of speech sounds, as 

a potential or acceptable word (Balaban & Waxman, 1997; Fulkerson & Haaf, 2003; Fulkerson 

& Waxman, 2007; MacKenzie, Curtin, & Graham, 2012). It is possible that phonotactic 

probability could influence recognition of which sound sequences are acceptable words, although 

this hypothesis awaits empirical testing. The implication for word learning is that children would 

not learn sound sequences that fail to meet some sort of acceptability criteria for their language. 

The tentative account of the current findings is that in the lowest phonotactic probability 

quartile, the sound sequences are unusual for the language. In support of this, in a sample of 

1,396 CVC real words (Storkel, In Press), only 3% of the sample had positional segment sums 

and biphone sums in the same range as the nonwords in our lowest phonotactic probability 

quartile. Within this lowest probability quartile, recognition that the sound sequence is an 

acceptable or potential word in the language may increase as probability increases, potentially 

accounting for the observed pattern in Figure 1. Presumably a threshold is crossed at the juncture 

between lowest and midlow probability, and all sound sequences with higher probability are 
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Incremental Changes 23 

recognized as acceptable words. Note that 10% of the 1,396 CVC real words had positional 

segment sums and biphone sums in the same range as the nonwords in our midlow phonotactic 

probability quartile, confirming that these sound sequences were not as unusual in the language. 

At this point (i.e., midlow probability), the triggering role of probability becomes more visible, 

such that recognition that a sound sequence is a novel word, requiring learning, decreases as 

probability increases. Then, at the median, performance stabilizes at a low level of word learning 

accuracy. These midhigh and highest probability sound sequences are likely recognized as 

acceptable words in the language but are not particularly novel based on their sound sequence 

alone. It is likely that other characteristics, many of which were controlled in the current 

research, would be more influential in triggering learning for these sound sequences and their 

referents. Taken together, the modified account is that word learning only occurs for sound 

sequences that are acceptable and novel, with phonotactic probability contributing to both 

criteria. 

The finding of a linear relationship between neighborhood density and word learning is 

consistent with the hypothesis that density influences configuration. Specifically, working 

memory is argued to affect configuration by providing temporary storage of the sound sequence 

while the new representation is being created (Gupta & MacWhinney, 1997). When a sound 

sequence is heard, existing lexical representations in long-term memory are activated. These 

existing representations provide support to working memory such that the more representations 

that are activated (i.e., the higher the density), the better the maintenance of a sound sequence in 

working memory (Roodenrys & Hinton, 2002; Thomson, Richardson, & Goswami, 2005; Thorn 

& Frankish, 2005). A related point is that existing representations may be more detailed (i.e., 

segmental) when there are many similar representations (i.e., the higher the density, Garlock, 

Walley, & Metsala, 2001; Metsala, Stavrinos, & Walley, 2009; Metsala & Walley, 1998; Storkel, 

2002). More detailed representations could lead to better maintenance of a sound sequence in 
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working memory (Metsala, et al., 2009). For configuration, better maintenance of a sound 

sequence in working memory translates into greater support for the creation of a complete and 

accurate new lexical representation in long-term memory. Thus, as the number of existing lexical 

representations activated increases or as the segmental detail of existing representations 

increases, the quality or robustness of the new lexical representation likely increases. 

Turning to the engagement process, recall that past research suggests that engagement 

occurs late in word learning, resulting from memory consolidation processes during sleep 

(Dumay & Gaskell, 2007; Gaskell & Dumay, 2003; Leach & Samuel, 2007). Thus, the primary 

evidence for engagement comes from changes in responding that occur over a delay interval 

without further training. The current data are inconsistent with an explanation that appeals to 

engagement because it appears that engagement may not have occurred. That is, performance in 

both experiments significantly declined over the delay, suggesting an absence of engagement 

(Dumay & Gaskell, 2007). Previous research suggests that participants sometimes encapsulate 

words learned in the laboratory from the rest of the lexicon (Magnuson, Tanenhaus, Aslin, & 

Dahan, 2003). This could account for the apparent lack of engagement in the current studies. 

Conclusion 

Past studies have examined only gross distinctions between low and high probability or 

density. The current studies provide evidence that incremental changes in probability and density 

influence word learning. Moreover, the pattern of word learning performance across the 

phonotactic probability distribution differed from the pattern of word learning performance 

across the neighborhood density distribution, supporting the theory that these two variables 

influence different word learning processes. Specifically, phonotactic probability appeared to 

influence two aspects of triggering word learning: (1) recognition of sound sequences as 

acceptable words in the language; (2) recognition of sound sequences as novel to the child. In 

contrast, neighborhood density seemed to influence configuration of a new representation in the 
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mental lexicon. Further examination of incremental changes in probability or density may yield 

new insights into other cognitive processes, such as spoken word recognition, learning, and 

memory. 
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Appendix: Stimuli 

Nonwords used in Experiment 1 and 2. 

Experiment 1: Probability 

Low – tɔf, huf, geɪg, haʊd, bug 

Midlow – baɪb, hɔd, doʊb, gid, goʊm 

Midhigh – poʊg, peɪb, fɛg, tɑb, moʊm 

High – pɑg, bɪf, poʊm, mɛm, dɪf 

Experiment 2: Density 

Low – bɑf, jɪb, mɑf, paɪb, gɛp 

Midlow – toʊb, doʊb, jun, waʊn, fɛg 

Midhigh – gut, woʊt, daɪp, hɛg, maɪp 

High – tip, beɪm, fʌm, mip, gaɪt 

Nonobjects (Kroll & Potter, 1984) used in Experiment 1 and 2. 

Group 1 – nonobjects 11, 29, 38, 81, 86 

Group 2 – nonobjects 26, 27, 46, 59, 63 

Group 3 – nonobjects 31, 37, 67, 78, 80 

Group 4 – nonobjects 5, 22, 23, 53, 82 

Table A1. Nonobject characteristics by group. 

Group 1 Group 2 Group 3 Group 4 

Objectlikeness Rating 

(Kroll & Potter, 1984) 

M 

(SD) 

range 

4.2 

0.9 

3.3-5.2 

4.2 

0.8 

3.2-5.2 

4.2 

0.8 

3.4-5.2 

4.2 

0.9 

3.4-5.6 

Number of Semantic Neighbors 

(Storkel & Adlof, 2009) 

M 

(SD) 

range 

10.8 

0.8 

10-12 

10.4 

0.5 

10-11 

10.4 

1.1 

9-12 

10.6 

0.9 

10-12 

Pairing of nonobject groups to the nonword conditions (low, midlow, midhigh, high) was 

counterbalanced across participants. 
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Table 1. Characteristics of the nonwords in each experiment. 

Condition 

Percentile 

Lowest 

< 25
th

Midlow 

25
th

 – 49
th

Midhigh 

50
th

 – 74
th

Highest 

>/= 75
th

Experiment 1: Probability 

Positional Segment Sum
1
    M

(SD) 

range 

0.083 

(0.007) 

0.073 - 0.091 

0.111 

(0.016) 

0.094 - 0.127 

0.143 

(0.010) 

0.131 - 0.156 

0.172 

(0.009) 

0.163 - 0.183 

Biphone Sum
1

0.0015 

(0.0001) 

0.0014 - 0.0015 

0.0028 

(0.0008) 

0.0018 - 0.0037 

0.0049 

(0.0010) 

0.0041 - 0.0064 

0.0105 

(0.0048) 

0.0070 - 0.0187 

Density
1

10 

(1) 

9 – 12 

11 

(1) 

9 - 13 

11 

(2) 

9 - 14 

11 

(1) 

10 – 13 

Experiment 2: Density 

Positional Segment Sum
1
    M

(SD) 

range 

0.136 

(0.006) 

0.130 - 0.145 

0.127 

(0.006) 

0.120 - 0.137 

0.126 

(0.008) 

0.114 - 0.136 

0.126 

(0.008) 

0.113 - 0.135 

Biphone Sum
1

0.0039 

(0.0016) 

0.0026 - 0.0066 

0.0042 

(0.0012) 

0.0027 - 0.0059 

0.0047 

(0.0012) 

0.0031 - 0.0058 

0.0039 

(0.0013) 

0.0027 - 0.0061 

Density
1

5 

(1) 

4 – 5 

10 

(1) 

8 - 11 

15 

(2) 

13 - 17 

20 

(2) 

18 - 24 

1
Based on the adult corpus and on-line calculator described in Storkel and Hoover (2010). 
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Table 2. Models from Experiment 1. Estimates are expressed as odds ratios with 95% confidence interval in parentheses. 

Variable Crossed Random 

Empty Model 

Participant Only 

Empty Model 

Fully-segmented 

Spline Model 

Linear Model Median Split Model 

Phonotactic Probability Intercept 2
3

1.12 (0.41-3.04)
1

1.76 (1.23-2.5)**
 1 2

Phonotactic Probability Intercept 3 1.01 (0.43-2.38)
 1

Phonotactic Probability Intercept 4 1.66 (0.45-6.15) 

Phonotactic Probability Slope 1 1.69 (1.02-2.79)* 1.03 (1.01-1.05)**
 1

Phonotactic Probability Slope 2 1.93 (1.15-3.23)*
 1

Phonotactic Probability Slope 3 1.08 (0.87-1.34) 

Phonotactic Probability Slope 4 1.01 (0.83-1.22) 

Time 2.23 (1.55-3.20)***
 1

 2.20 (1.54-3.16)***
 1

 2.20 (1.54-3.16)***
 1

Age 1.03 (1.00-1.06)* 1.03 (1.01-1.06)* 1.03 (1.01-1.06)* 

MOR for Participants 

(confidence interval) 

2.34 

(1.84-3.27) 

2.31 

(1.82-3.24) 

2.28 

(1.80-3.19) 

2.24 

(1.77-3.12) 

2.24 

(1.77-3.13) 

MOR for Items 

(confidence interval) 

1.48 

(1.24-2.08) 

Not in Model Not in Model Not in Model Not in Model 

Log-likelihood -502.0 -505.4 -481.8 -489.4 -488.7 

* p < .05, ** p < .01, *** p < .001

1
The reciprocal was taken for OR < 1. For these effects, the OR indicates that that a correct response is less likely for higher than a lower value of 

the variable. For all other ORs, the interpretation is that a correct response is more likely for a higher than lower value of the variable. 

2
Note that Phonotactic Probability Intercept 2 in this model is located at the median (i.e., start of the midhigh quartile). 

3
All models included an Intercept 1 term that serves as the traditional constant, and is the OR denominator. 

Page 35 of 52 Journal of Speech, Language, and Hearing Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Incremental Changes 36 

Table 3. Models from Experiment 2. Estimates are expressed as odds ratios with 95% confidence interval in parentheses. 

Variable Crossed Random 

Empty Model 

Fully-segmented 

Spline Model 

Linear Model Median Split Model 

Neighborhood Density Intercept 2
3

5.49 (0.04-863)
 1

1.69 (.76-3.76)
 2

Neighborhood Density Intercept 3 5.00 (0.72-35)
 1

Neighborhood Density Intercept 4 1.41 (0.26-7.56) 

Neighborhood Density Slope 1 1.95 (0.46-8.24)
 1

1.09 (1.02-1.16)** 

Neighborhood Density Slope 2 1.48 (0.32-6.89)
 1

Neighborhood Density Slope 3 1.07 (0.53-2.17)
 1

Neighborhood Density Slope 4 1.29 (0.76-2.21)
 1

Time 1.97 (1.47-2.65)***
 1

1.97 (1.47-2.65)***
 1

1.97 (1.47-2.65***
1

Age 1.03 (1.00-1.05)* 1.03 (1.00-1.05)* 1.03 (1.00-1.05)* 

MOR for Participants 

(confidence interval) 

2.31 

(1.89-3.00) 

2.25 

(1.85-2.91) 

2.25 

(1.85-2.92) 

2.25 

(1.86-2.92) 

MOR for Items 

(confidence interval) 

2.26 

(1.73-3.36) 

1.77 

(1.44-2.45) 

2.00 

(1.58-2.85) 

2.20 

(1.69-3.24) 

Log-likelihood -727.8 -709.3 -712.2 -714.4 

* p < .05, ** p < .01, *** p < .001

1
The reciprocal was taken for OR < 1. For these effects, the OR indicates that that a correct response is less likely for higher than a lower value of 

the variable. For all other ORs, the interpretation is that a correct response is more likely for a higher than lower value of the variable. 

2
Note that Neighborhood Density Intercept 2 in this model is located at the median (i.e., start of the midhigh quartile). 

3
All models included an Intercept 1 term that serves as the traditional constant, and is the OR denominator. 
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Figure Caption 

Figure 1. Mean proportion correct for Experiment 1: Phonotactic Probability (top panel, z 

scores) and Experiment 2: Neighborhood Density (bottom panel, raw values), collapsed across 

time and age. Circles represent individual nonwords (Experiment 1: Phonotactic Probability) or 

mean proportion correct across nonwords with the same neighborhood density (Experiment 2: 

Neighborhood Density). Vertical grey lines indicate the dividing points between the four 

quartiles of the distribution: lowest, midlow, midhigh, highest. The four solid lines are the linear 

fit lines for each quartile (i.e., lowest, midlow, midhigh, highest). This corresponds to the fully-

segmented spline model.  The dashed line is the linear fit line for the full distribution. This 

corresponds to the linear model. 
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Figure 1 
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Supplementary Materials 
Summary Description for Web Portal 

This pdf document contains: 

• Two tables that provide detailed information about the nonwords used in
Experiment 1: Phonotactic Probability (Table S1) and Experiment 2:
Neighborhood Density (Table S2). Available variables include: positional
segment sum, biphone sum, neighborhood density, and training set.

• Two tables providing the coding scheme used for the fully-segmented
spline model in Experiment 1: Phonotactic Probability (Table S3) and
Experiment 2: Neighborhood Density (Table S4). Additional tutorial is
provided regarding alternative coding schemes (see Table S3) for spline
regression.

• Two figures providing more detailed visualization of the effects of Time
(immediate vs. delayed), Age, and Experiment 1: Phonotactic Probability
(Figure S1) or Experiment 2: Neighborhood Density (Figure S4).

• Three figures showing individual variation in responding across participants
for Experiment 1: Phonotactic Probability (Figures S2 and S3) and
Experiment 2: Neighborhood Density (Figure S5).
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Supplemental Materials 

Storkel, H. L., Bontempo, D. E., Aschenbrenner, A. J., Maekawa, J., & Lee, S. Y. (In Review). The effect of 
incremental changes in phonotactic probability and neighborhood density on word learning by preschool 
children. Journal of Speech-Language-Hearing Research. 

Table S1: Nonword Stimuli for Experiment 1 

Nonword Phonotactic 
Probability 
Quartile 

SegSum ZSegSum BiphSum ZBiphSum PhonProb 
Avg 

Z-Score 

Density Training 
Set 

geɪg Lowest 0.07 -1.19 0.002 -0.69 -0.94 10 C 

huf Lowest 0.08 -1.00 0.001 -0.72 -0.86 10 B 

tɔf Lowest 0.08 -1.01 0.002 -0.69 -0.85 9 A 

haʊd Lowest 0.09 -0.86 0.001 -0.69 -0.77 12 D 

bug Lowest 0.09 -0.76 0.001 -0.72 -0.74 10 E 

hɔd Midlow 0.09 -0.69 0.002 -0.61 -0.65 10 B 

gid Midlow 0.10 -0.65 0.002 -0.48 -0.56 13 D 

baɪb Midlow 0.11 -0.27 0.003 -0.18 -0.23 9 A 

doʊb Midlow 0.13 0.10 0.003 -0.37 -0.13 11 C 

goʊm Midlow 0.12 0.05 0.004 -0.10 -0.03 11 E 

tɑb Midhigh 0.13 0.20 0.004 0.00 0.10 13 D 

fɛg Midhigh 0.14 0.35 0.004 0.06 0.20 11 C 

peɪb Midhigh 0.14 0.40 0.004 0.06 0.23 10 B 

poʊg Midhigh 0.15 0.69 0.005 0.35 0.52 9 A 

moʊm Midhigh 0.16 0.79 0.006 0.62 0.71 14 E 

bɪf Highest 0.17 1.06 0.008 0.94 1.00 11 B 

pɑg Highest 0.16 0.96 0.008 1.18 1.07 10 A 

poʊm Highest 0.18 1.45 0.007 0.78 1.11 13 C 

mɛm Highest 0.18 1.36 0.011 1.74 1.55 12 D 

dɪf Highest 0.17 1.08 0.019 3.91 2.49 11 E 

Table S1.Note 1: This table shows the item level data for each nonword in Experiment 1. From left to 

right, the table contains (1) IPA transcription of each nonword; (2) phonotactic probability quartile; (3) 

raw positional segment sum; (4) positional segment sum converted to z score; (5) raw biphone sum; 

(6) biphone sum converted to z score; (6) average of the segment sum and biphone sum z scores 

(used in all analyses); (7) raw neighborhood density; (8) assigned training set (e.g., set A trained on 

one day; set B on another; etc.). 
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Table S2: Nonword Stimuli for Experiment 2 

Nonword Density 
Quartile 

SegSum BiphSum Density Training 
Set 

jɪb Lowest 0.13 0.003 4 B 

gɛp Lowest 0.14 0.003 4 E 

bɑf Lowest 0.13 0.004 5 A 

mɑf Lowest 0.14 0.007 5 C 

paɪb Lowest 0.14 0.003 5 D 

waʊn Midlow 0.13 0.004 8 D 

toʊb Midlow 0.12 0.004 10 A 

doʊb Midlow 0.13 0.003 11 B 

jun Midlow 0.13 0.006 11 C 

fɛg Midlow 0.14 0.004 11 E 

hɛg Midhigh 0.13 0.006 13 D 

maɪp Midhigh 0.13 0.004 14 E 

gut Midhigh 0.11 0.003 15 A 

daɪp Midhigh 0.12 0.005 16 C 

woʊt Midhigh 0.14 0.006 17 B 

mip Highest 0.13 0.004 18 D 

gaɪt Highest 0.13 0.004 18 E 

fʌm Highest 0.14 0.006 19 C 

tip Highest 0.11 0.003 20 A 

beɪm Highest 0.13 0.003 24 B 

Table S2.Note 1: This table shows the item level data for each nonword in Experiment 2. From left to 

right, the table contains (1) IPA transcription of each nonword; (2) neighborhood density quartile; (3) 

raw positional segment sum; (4) raw biphone sum; (5) raw neighborhood density (used in all 

analyses); (6) assigned training set (e.g., set A trained on one day; set B on another; etc.). 
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Spline regression is a nonparametric approach used to approximate nonlinear response across a continuous predictor without 

parametric assumptions/artifacts, or costs incurred with categorization (Marsh & Cormier, 2002).  With linear splines the effect of the 

explanatory variable is assumed to be piecewise linear on some number of segments demarcated by knots (Gould, 1993; Panis, 1994). 

Linear spline coefficients are straightforward to interpret. Coding can be for slope in each segment (i.e., absolute coding scheme in blue 

in Table S3), or change in slope from the previous segment (i.e., change coding scheme in green in Table S3). While the ability of linear 

spline models to provide a smooth continuous transition across knots is generally valued, it is also possible to explore discontinuities by 

additionally dummy coding for an intercept change at each successive knot/segment (for an example of intercept dummy coding with 

linear splines, see UCLA Statistical Consulting Group). Dummy coding for change in level (as opposed to absolute level) in each 

segment is similar to ordinal dummy coding (Lyons, 1971). Many alternate codings for level and slope are possible, and we have 

chosen to code for change in slope and change in level from prior segment because the associated coefficients provide a test for 

whether a change/discontinuity is present without post-hoc tests (i.e., change coding scheme in green in Table S3 and S4). The 

number of segments is also arbitrary, but we employ four segments to align with our stimulus generation based on quartiles.  

Table S3: Segment Coding for Experiment 1 

Slope Coding Level Coding 

Predictor Absolute Segment Slope Segment Change in Slope 

Absolute Segment 

Level Segment Change in Level 

PhonProb x10 seg s1 s2 s3 s4 cs1 cs2 cs3 cs4 i1 i2 i3 i4 i1x i2x i3x i4x Freq 

-0.94 -9.4 1 -9.4 0 0 0 -9.4 0 0 0 1 0 0 0 1 0 0 0 94 

-0.86 -8.6 1 -8.6 0 0 0 -8.6 0 0 0 1 0 0 0 1 0 0 0 92 

-0.85 -8.5 1 -8.5 0 0 0 -8.5 0 0 0 1 0 0 0 1 0 0 0 92 

-0.77 -7.7 1 -7.7 0 0 0 -7.7 0 0 0 1 0 0 0 1 0 0 0 92 

-0.74 -7.4 1 -7.4 0 0 0 -7.4 0 0 0 1 0 0 0 1 0 0 0 94 

-0.65 -6.5 2 -6.5 0 0 0 -6.5 0 0 0 0 1 0 0 1 1 0 0 92 

-0.57 -5.7 2 -6.5 0.8 0 0 -5.7 0.8 0 0 0 1 0 0 1 1 0 0 92 

-0.23 -2.3 2 -6.5 4.2 0 0 -2.3 4.2 0 0 0 1 0 0 1 1 0 0 92 

-0.14 -1.4 2 -6.5 5.1 0 0 -1.4 5.1 0 0 0 1 0 0 1 1 0 0 94 

-0.03 -0.3 2 -6.5 6.2 0 0 -0.3 6.2 0 0 0 1 0 0 1 1 0 0 94 

0.01 1 3 -6.5 7.5 0 0 1 7.5 0 0 0 0 1 0 1 1 1 0 92 

0.21 2.1 3 -6.5 7.5 1.1 0 2.1 8.6 1.1 0 0 0 1 0 1 1 1 0 94 

0.23 2.3 3 -6.5 7.5 1.3 0 2.3 8.8 1.3 0 0 0 1 0 1 1 1 0 92 

0.52 5.2 3 -6.5 7.5 4.2 0 5.2 11.7 4.2 0 0 0 1 0 1 1 1 0 92 

0.71 7.1 3 -6.5 7.5 6.1 0 7.1 13.6 6.1 0 0 0 1 0 1 1 1 0 94 

1 10 4 -6.5 7.5 9 0 10 16.5 9 0 0 0 0 1 1 1 1 1 92 

1.07 10.7 4 -6.5 7.5 9 0.7 10.7 17.2 9.7 0.7 0 0 0 1 1 1 1 1 92 

1.12 11.2 4 -6.5 7.5 9 1.2 11.2 17.7 10.2 1.2 0 0 0 1 1 1 1 1 94 

1.55 15.5 4 -6.5 7.5 9 5.5 15.5 22 14.5 5.5 0 0 0 1 1 1 1 1 92 

2.5 25 4 -6.5 7.5 9 15 25 31.5 24 15 0 0 0 1 1 1 1 1 93 
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Table S3.Note 1: The incremental coding scheme used in Experiment 1 is shown in light green. This codes for change in slope in 

segments 2-4, as well as change in level in segments 2-4. By contrast, an absolute coding scheme is shown with active elements in 

light blue. While all values in each column contribute to the estimation of coefficients, only the portions that are varying relative to the 

rest of the column are relevant for interpretation. 

Table S3.Note 2: The sum of slope coding across the columns of the absolute scheme sums to the phonotactic probability value 

(highlighted in pink). Here is it seen that the total slope is decomposed into four distinct slopes, each active in successive segments. 

This decomposition is not present when coding for change in slope. In the change coding scheme, the 1st segment contains all levels of 

the predictor and denotes a line active across all levels. The non-zero codes in subsequent segments denote additional lines that 

deflect (i.e., change) from any prior lines. 

Table S3.Note 3: To obtain a predictor range grater than 3.14, average of the two phonotactic probability z-scores used to index 

phonotactic probability in this experiment (see above section Non-Word Stimuli for Experiment 1) was multiplied by 10 (pink highlighted 

column) to obtain more stable estimation, and more interpretable odds ratios. 

Table S3.Note 4: The Freq column shows that except for missing data, each of 20 levels of phonotactic probability is paired with only 

one nonword.  For 47 subjects observed under two conditions (immediate, delayed) there are 94 observations of each nonword. 
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Table S4: Segment Coding for Experiment 2 

Slope Coding Level Coding 

Absolute Segment Slope Segment Change in Slope Absolute Segment Level Segment Change in Level 

LexDens Seg s1 s2 s3 s4 cs1 cs2 cs3 cs4 i1 i2 i3 i4 i1x i2x i3x i4x Freq 

4 1 4 0 0 0 4 0 0 0 1 0 0 0 1 0 0 0 276 

5 1 5 0 0 0 5 0 0 0 1 0 0 0 1 0 0 0 414 

8 2 8 0 0 0 8 0 0 0 0 1 0 0 1 1 0 0 138 

10 2 8 2 0 0 10 2 0 0 0 1 0 0 1 1 0 0 138 

11 2 8 3 0 0 11 3 0 0 0 1 0 0 1 1 0 0 414 

13 3 8 5 0 0 13 5 0 0 0 0 1 0 1 1 1 0 138 

14 3 8 5 1 0 14 6 1 0 0 0 1 0 1 1 1 0 138 

15 3 8 5 2 0 15 7 2 0 0 0 1 0 1 1 1 0 138 

16 3 8 5 3 0 16 8 3 0 0 0 1 0 1 1 1 0 138 

17 3 8 5 4 0 17 9 4 0 0 0 1 0 1 1 1 0 138 

18 4 8 5 5 0 18 10 5 0 0 0 0 1 1 1 1 1 276 

19 4 8 5 5 1 19 11 6 1 0 0 0 1 1 1 1 1 138 

20 4 8 5 5 2 20 12 7 2 0 0 0 1 1 1 1 1 138 

24 4 8 5 5 6 24 16 11 6 0 0 0 1 1 1 1 1 138 

Table S4.Note 1: The incremental coding scheme employed in Experiment 2 is shown in light green. By comparison, an absolute 

coding scheme is show in columns containing light blue. 

Table S4.Note 2: Unlike Exp1, four levels of lexical density are paired with more than one nonword. For 69 subjects observed under 

two conditions (immediate, delayed) there are 138 observations of each nonword.  As indicated by the pink highlighting, there were two 

words with a density of 4, three with a density of 5, three with a density of 11, and two with a density of 18 (See also Table S2). 
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Figure S1. Nonlinearity in Response to Phonotactic Probability Level in Experiment 1. This 

figure presents the predicted probability of a correct response in the fully-segmented spline mode for 

Experiment 1 (phonotactic probability). Alternating blue and red markers distinguish each quartile of 

phonotactic probability. This is the fully segmented model permitting slope and intercept differences 

across segments. The dashed line is the linear fit line, which provides a visual comparison to the 

linear model. The visually apparent rise and fall (nonlinearity) of predicted probability of a correct 

response across low and mid-low phonotactic probability values is contrasted with the dashed line 

denoting a linear response. By comparison, the relative linearity across segments 3 and 4 is visually 

apparent. The vertical stratification of predicted values at each level of phonotactic probability 

denotes the fixed effect of age. The age gap between the 3 and 5 year old children is visually 

apparent, with better performance by the 5-year-old than 3-year-old children. Lastly, comparison of 

the top panel (i.e., immediate test) with the bottom panel (i.e., delayed test) shows the fixed effect of 

time, with better performance at the immediate than delayed test.  
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Figure S2. Individual Differences in Probability of Correct Response in Experiment 1. This plot 

corresponds to a more parsimonious (non-tabulated) phonotactic probability model that coded for 

significant slope change in the first 3 segments, but did not additionally code for a slope change in the 

4th segment, nor any level changes. This is the typical continuous linear spline model. The red lines 

show the predicted probability of a correct response across fixed effects of phonotactic probability 

and age; stratification is due to age. The fixed effect for immediate/delayed testing is observed across 

panels. The blue lines show individual predictions of a correct response across the range of 

phonotactic probability. The stratification of the blue lines is due to both the fixed effect of the child’s 

age, as well as the random intercept for each child. The age gap between the 3 and 5 year old 

children is moderately obscured by individual differences of both younger and older subjects. 

0
.1

.2
.3

.4
.5

.6
.7

.8

-1 0 1 2 3 -1 0 1 2 3

Immediate Delayed

P
ro
b
a
b
ili
ty
 o
f 
C
o
rr
e
c
t 
R
e
s
p
o
n
s
e

PhonProb

Continuous Segment Model

Figure S2.Note 1: Visually the vertical stratification of the fixed effect of age (red) relative to the 

vertical stratification of the combined effect of age and individual differences (blue) provides further 

insight into the magnitude of individual differences. The fixed effect of age required a 1.032 increase 

in the odds of a correct response for each additional month of age. The effect (MOR=2.278) of 

individual differences (between-subject variance) is considerably larger, as is visually illustrated by 

the greater range of blue lines. 
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For Peer Review

Figure S3. Individual Differences in Response to Phonotactic Probability Level. This plot 

contrasts aspects of the random coefficient continuous spline model in Figure S2 with a (non-

tabulated) continuous spline model that introduced random coefficients for slopes in segments 1 and 

2, thus relaxing the requirement of parallel slopes. Individual colored lines represent the predicted 

response (fixed + random effects) of an individual child. Same colored lines across panels denote the 

same child.
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Figure S3.Note 1: The estimated slope variance in segments 1 and 2 was very small with an almost 

perfect negative correlation, and a strong correlation with the random intercept. Decline corresponded 

only to prior gain. MOR effects were not computed because it was not clear how to incorporate the 
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covariance of random coefficients into the MOR formula. The respective log likelihood values (RI: -

482.4, RC:  -479.5) suggested minimal improvement gained by introducing 2 additional variance and 

3 new covariance parameters. Fixed effects remained virtually unchanged. 

Figure S3.Note 2: While relaxing the requirement of parallel slopes did permit higher (and lower) 

estimates for some children, relatively few lines cross, indicating individual differences are primarily in 

overall ability levels and not in segment slopes. For example, the three highest and lowest children 

can be seen to maintain their rank order. One exception is the orange line which rises to a predicted 

level of just over .2 in the 1st panel, but rises to about .45 in the 2nd panel. However the net effect of 

such exceptions was negligible on the coefficients for the model’s fixed effects of phonotactic 

probability and age. 
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Figure S4. Probability of Correct Response across Lexical Density in Experiment 2. Similar to 

Figure S1, the upper panel plots predicted probability of a correct response across levels of lexical 

density, with the dashed line denoting a linear response. This is the fully segmented model permitting 

slope and intercept differences across segments. Alternating blue and red markers distinguish each 

quartile of lexical density. The relative linearity across all 4 segments is visually apparent. The vertical 

stratification of predicted values at each level of lexical density denotes the fixed effect of age. The 

age gap between the 3 and 5 year old children is visually apparent, with better performance by the 5-

year-old than 3-year-old children. Lastly, comparison of the top panel (i.e., immediate test) with the 

bottom panel (i.e., delayed test) shows the fixed effect of time, with better performance at the 

immediate than delayed test. 
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The lower panel plots the predictions from the linear model which dropped the fixed slope and level 

effects for segments 2-4. As indicated by the likelihood ratio test statistic, the fully segmented model 

does not perform significantly better than the simpler linear model. Thus, the linear model may be 

preferred because it is more parsimonious. The fixed effect of age and test remain apparent in the 

figure for this model. 
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Figure S5. Individual Differences in Probability of Correct Response in Experiment 2. This plot 

corresponds to a more parsimonious (non-tabulated) linear lexical density model that used a random 

intercept for subjects, but dropped the random intercept for items to obtain a more visually 

approachable plot. This model is analogous to the model in Figure S2 (experiment 1) in that it retains 

only the fixed effects found to be significant in the fully segmented model. Unlike experiment 1 where 

several segments did have significant slope changes, in experiment 2 none of the fixed slope or 

intercept changes were significant. The red lines show the predicted probability of a correct response 

across fixed effects of neighborhood density and age; stratification is due to age. The fixed effect for 

immediate/delayed testing is observed across panels. The blue lines show individual predictions of a 

correct response across the range of neighborhood density. The stratification of the blue lines is due 

to both the fixed effect of the child’s age, as well as the random intercept for each child. The age gap 

between the 3 and 5 year old children is moderately obscured by individual differences of both 

younger and older subjects. 
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Figure S5.Note 1: Visually the vertical stratification of the fixed effect of age (red) relative to the 

vertical stratification of the combined effect of age and individual differences (blue) provides further 

insight into the magnitude of individual differences. The fixed effect of age required a 1.023 increase 

in the odds of a correct response for each additional month of age. The effect (MOR=2.165) of 

individual differences (between-subject variance) is considerably larger, as is visually illustrated by 

the greater range of blue lines. 
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Figure S5.Note 2: Relaxing the assumption of parallel slopes (i.e., introducing a random coefficient 

for slope similar to the model in Figure S3) resulted in changes so small as to be visually 

uninteresting. Individual differences are primarily in level of ability, similar to Experiment 1. 
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