
A Combined Measure of Vascular Risk for White Matter Lesions

Amber Wattsa,*, Robyn A. Honeab, Sandra A. Billingerc, Kathleen T. Rhynera, Lewis 
Hutflesb, Eric D. Vidonib, and Jeffrey M. Burnsb

aDepartment of Clinical Psychology, University of Kansas, Lawrence, KS, USA

bAlzheimer’s Disease Center, University of Kansas, Fairway, KS, USA

cDepartment of Physical Therapy & Rehabilitation Science, University of Kansas Medical Center, 
Kansas City, KS, USA

Abstract

Background—Though hypertension is a commonly studied risk factor for white matter lesions 

(WMLs), measures of blood pressure may fluctuate depending on external conditions resulting in 

measurement error. Indicators of arterial stiffening and reduced elasticity may be more sensitive 

indicators of risk for WMLs in aging; however the interdependent nature of vascular indicators 

creates statistical complications.

Objective—The purpose of the study was to determine whether a factor score comprised of 

multiple vascular indicators would be a stronger predictor of WMLs than traditional measures of 

blood pressure.

Methods—In a sample of well-characterized nondemented older adults, we used a factor analytic 

approach to account for variance common across multiple vascular measures while reducing 

measurement error. The result was a single factor score reflecting arterial stiffness and reduced 

elasticity. We used this factor score to predict white matter lesion volumes acquired via fluid 

attenuated inversion recovery (FLAIR) magnetic resonance imaging.

Results—The combined vascular factor score was a stronger predictor of deep WML (β = 0.42, p 

< 0.001) and periventricular WML volumes (β = 0.49, p < 0.001). After accounting for the 

vascular factor, systolic and diastolic blood pressure measurements were not significant predictors.

Conclusions—This suggests that a combined measure of arterial elasticity and stiffening may 

be a stronger predictor of WMLs than systolic and diastolic blood pressure accounting for the 

multicollinearity associated with a variety of interrelated vascular measures.
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INTRODUCTION

Typical aging is associated with an accumulation of deleterious effects on brain structure, 

including degeneration in white matter [1]. White matter is particularly susceptible to age-

associated changes, especially cerebrovascular disorders and ischemia [2–4]. White matter 

lesions (WMLs), detectable through magnetic resonance imaging (MRI), increase with age 

and are common in older adults including those who are otherwise healthy [5]. 

Accumulation of WMLs is associated with poor cognitive function [6, 7], risk of dementia 

and stroke [8, 9], and depressive symptoms [10]. Two major classifications of WMLs are 

periventricular (PVWMLs), those contiguous with the margins of the lateral ventricles, and 

subcortical or “deep” (DWMLs), those that are separate from the ventricles. PVWMLs have 

generally been associated with cognitive changes, whereas those fully bounded by white 

matter (“deep”) have more often been associated with depression and related illnesses [1, 11, 

12].

Vascular risk factors are precursors of both types of WMLs. Hypertension is associated with 

increased rates of both PVWMLs and DWMLs [13] and duration of hypertension is an 

important factor [13, 14]. Some studies suggest that control of hypertension with 

medications results in less severe WMLs [13]. However, both increases and decreases in 

blood pressure are associated with more severe PVWMLs [15]. Though hypertension is a 

commonly studied vascular risk factor for WMLs, investigation of other vascular indicators 

such as arterial stiffening may shed light on the causes and consequences of WMLs in aging 

[16]. Arterial stiffening, thickening, and endothelial dysfunction have been associated with 

severity of WMLs and cognitive decline independent of blood pressure level [17]. Duprez et 

al. [18] reported that reduced large and small artery elasticity were associated with greater 

severity of cerebral WMLs and not significantly associated with blood pressure levels. The 

ability of the small and large arteries to stretch with increased blood flow (i.e., sheer stress) 

is an indicator of elasticity. Small and large artery elasticity indices are markers of 

arteriosclerosis and atherosclerosis respectively and linked to WMLs [19]. Decreased 

elasticity due to aging is associated with a reduction in blood flow toward the brain [20].

Several vascular indicators may predict WMLs even after accounting for blood pressure. 

However, due to the interdependent nature of these vascular measures, they are highly 

overlapping in their contributions to statistical variation, thus creating problems with 

multicollinearity. A factor analytic approach to this analysis allows us to account for the 

variance in common between the separate items and eliminate variance due to measurement 

error or variance due to unique characteristics of each measure [21]. Thus, a factor analytic 

model will allow us to better investigate a combination of multiple vascular risk factors 

reflecting arterial stiffness and reduced elasticity. We hypothesize that this combined 

vascular risk factor will be associated with WMLs even after accounting for traditional 

measures of blood pressure and other potential covariates.
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MATERIALS AND METHODS

Sample and recruitment

Data were collected from participants enrolled in the Brain Aging Project at the University 

of Kansas. The Brain Aging Project was designed as a longitudinal observational study of 

older adults, both nondemented individuals and those with early-stage AD, 65 years and 

older. The Brain Aging Project focused on the assessment of physical health and 

metabolism. The present study included nondemented participants who had a battery of tests 

including a clinical assessment, metabolic assessment, vascular compliance, cardiovascular 

fitness assessment, and structural MRI, among other tests documented in previous 

publications [22–25]. All study procedures were conducted in accordance with the Helsinki 

Declaration of 1975 and approved in compliance of the ethical standards of the University of 

Kansas Medical Center Institutional Review Board. Participants were recruited by self-

referral in response to media coverage and word of mouth. Informed consent was obtained 

for all participants prior to enrollment into the study.

The present study reports findings for healthy older adult control participants (n = 63) who 

were without evidence of functional cognitive impairment (Clinical Dementia Rating [CDR] 

0) [26]. We excluded participants who were missing data for the vascular measures or whose 

MRI scan was excluded due to movement or artifact based on visual inspection. Study 

exclusions at baseline include diabetes mellitus (clinical diagnosis, use of an anti-diabetic 

agent, or 2-h post-load serum glucose >199), unstable ischemic heart disease within the last 

2 years as previously described, neurological disease, schizophrenia, clinically significant 

depression, abnormalities in serum vitamin B12 levels, thyroid disease, use of psychoactive 

or investigational medications, significant visual or auditory impairment, history of alcohol 

abuse, and systemic illness that would impair completion of the study [22]. Participants were 

excluded if they had mobility impairments that would interfere with exercise testing. 

Twenty-nine percent of our participants reported using blood pressure medications including 

ACE inhibitors, angiotensin 2 receptor blocker, beta blockers, calcium channel blockers, 

diuretics, and thiazides.

Vascular measures

A nurse clinician recorded the participants’ vital signs, including cardiovascular dynamics 

(blood pressure, heart rate, estimated cardiac output, arterial elasticity, vascular resistance, 

body temperature, and estimated stroke volume) which were measured after approximately 

20 min supine using the PulseWave CR-2000 (Hypertension Diagnostics, Eagan, MN). A 

standard sphygmomanometer cuff was placed over the dominant upper arm and an 

automated tonometer was placed over the radial artery. Blood pressure was assessed using 

the average of two measurements. Pulse pressure was calculated as systolic blood pressure 

minus diastolic blood pressure. Measures of vascular compliance were determined (non-

invasively) by recording the radial artery pulse contour by tonometry. The measure was 

obtained by a technician experienced with the technique using the equipment to assess both 

large (C1) and small (C2) artery elasticity.
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The vascular compliance test uses two compliance elements, C1 and C2, and inertance and 

resistance elements to estimate the elasticity of the radial artery. With the use of a computer 

algorithm the morphology of the arterial pulse contour can be separated into an exponential 

diastolic decay generated by the release of blood from the large arteries and a sinusoidal 

wave arising from peripheral wave reflections. The diastolic decay is a function of large 

artery compliance (C1), while reflections or oscillations represent the compliance 

characteristics of the resistance vessels and branch points (C2). A comparison of direct 

brachial artery cannulation with combined radial artery tonometry and oscillometric 

measurement of brachial artery blood pressure shows a close correlation of systolic, 

diastolic, and mean arterial blood pressure, cardiac output, with C2 in subjects with well-

maintained cardiac output. Arterial elasticity is the measurement of the ability of the artery 

to stretch in response to each pulse, arterial compliance is the change in volume divided by 

the change in pressure, and the systemic vascular resistance is calculated from mean arterial 

blood pressure and estimated cardiac output [27].

Neuroimaging

Structural MRI data were obtained using a Siemens 3.0 Tesla Allegra MRI Scanner. Fluid 

attenuated inversion recovery (FLAIR) images were used for white matter lesion 

assessments (Ti = 2500, TR = 10,000, TE = 81.0, flip angle = 180°, slice thickness = 4 mm 

with 0 gap). WMLs (PVWMLs (contiguous with the ventricle) and DWMLs) were manually 

traced on FLAIR images as a measure of vascular related brain injury using Medical Image 

Processing, Analysis, and Visualization (MIPAV, Johns Hopkins University) expressed as 

volume in mm3. A single rater (LH) was trained to a threshold of <10% error and reliability 

of white matter assessments were assessed with 10 blinded repeat assessments inserted 

randomly into the rater’s workflow. The training set used to learn this method was randomly 

sampled drawn from a larger pool of 191 images, given a random identifier at each rating 

during training, and provided in batches of 20 (including 10 previously rated images) until 

repeat absolute error was below 10%. Intra-rater reliability was excellent, absolute-

agreement ICC(3,2) = 0.88 (F = 9.9, df = 51, p < 0.001).

Statistical analysis

As several of the vascular variables were non-normally distributed, we followed standard 

practice for correction of skewed distributions that violate assumptions of normality by 

using logarithmic transformation for small and large artery elasticity, and systemic vascular 

resistance. To convert all variables into a comparable metric we used percent of maximum 

scoring (observed score − minimum score/maximum score − minimum score)× 100). This 

approach is less problematic than using Z-scores [28]. For those variables requiring log 

transformation, percent of maximum scoring was conducted on the log transformed scores.

We conducted confirmatory factor analysis (CFA) using Mplus version 5 [29] to evaluate 

the inter-correlations among independent vascular measures including stroke volume, large 

and small artery elasticity, and vascular resistance. This approach offers improved 

measurement accuracy by aggregating common variance across multiple subtests and 

attenuating error idiosyncratic to the individual measures. In accordance with guidelines for 

proper execution of CFA techniques, we applied theoretical reasoning and well-established 
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clinical observation to the practice of selecting variables to include, testing models, and 

interpreting the results [30].

Goodness-of-fit was evaluated based on root mean square error of approximation (RMSEA), 

which is a measure of discrepancy between predicted and observed model values; values 

closer to 0 indicate better fit (preferred values <0.09). We also report the comparative fit 

index which estimates the relative fit of a model compared to an alternative model (CFI 

>0.90 indicates good fit). We used full information maximum likelihood algorithm to 

account for missing data.

We hypothesized that a single common factor would best describe the relationship among 

the vascular measures. Factor analysis was used to evaluate what individual tests had in 

common, rather than what they did not share. The factor weights estimated from the factor 

analysis were converted to factor scores that were used in subsequent analyses. Rather than 

assuming that each vascular measure contributes equally, factor analysis was used to 

estimate the relative importance and measurement error associated with each individual 

measure. These estimates (factor weights) were used to create a weighted factor score 

combining individual measures together into a single score. Thus, the vascular factor score 

contains the scores for each individual measure weighted by its relative contribution to the 

whole and adjusted for the measurement error associated with each measure.

To estimate the effect of the combined vascular factor, after accounting for the effects of 

systolic and diastolic blood pressure, on WMLs we used stepwise multiple regression 

models in which the vascular factor predicted neuroimaging measures accounting for age, 

gender, education, body mass index (BMI), use of anti-hypertensive medication, and 

apolipoprotein (APOE) ε4 carrier status. We include education as a covariate because there 

is evidence that education is important in estimating the impact of WMLs on cognitive 

function [31]. These analyses were conducted both including and excluding individuals with 

no evidence of WMLs to ensure that the results were not driven by those cases. The effect of 

the vascular factor on presence or absence of WMLs may be separate from the extent of 

WML damage in those with evidence of WMLs.

RESULTS

Table 1 summarizes the participant characteristics. For calculation of the vascular factor 

scores, the hypothesized one factor model fit the data (X2(df) = 2.8(2); CFI = 0.97; RMSEA 

= 0.06). All the measures loaded significantly on the factor (Table 2). Vascular factor scores 

used in subsequent regression analysis were based on the weights (standardized loadings) 

and error terms specified in this analysis (see Table 2 for the loadings and error terms 

combined to create the factor scores). Higher vascular scores were positively correlated with 

older age (R = 0.43, p < 0.001).

Deep white matter lesions

Stepwise regression indicated that higher scores on the combined vascular factor (β = 0.42, p 

= 0.001) and years of education (β = 0.26, p = 0.03) significantly predicted greater deep 

WML volume adjusting for age, gender, systolic and diastolic blood pressure, BMI, 
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antihypertensive medication use, and APOE ε4 carrier status (adjusted R2 = 0.18). In 

analyses including only patients with evidence of DWMLs (n = 44), the combined vascular 

factor (β = 0.48, p = 0.001) and years of education (β = 0.28, p = 0.049) significantly 

predicted greater deep WML volume adjusting for age, gender, systolic and diastolic blood 

pressure, BMI, antihypertensive medication use, and APOE ε4 carrier status (adjusted R2 = 

0.23).

Periventricular white matter lesions

Age (β = 0.43, p < 0.001), gender (β = −0.31, p = 0.007), and education (β = 0.23, p = 0.04) 

significantly predicted periventricular WMLs adjusting for the same covariates (adjusted R2 

= 0.26). The vascular factor did not predict PVWMLs when all participants were included. 

However, in analyses including only patients with evidence of PVWMLs (n = 58), higher 

scores on the combined vascular factor (β = 0.50, p < 0.001) and years of education (= 0.29, 

p < 0.014) predicted greater lesion volume adjusting for age, gender, systolic and diastolic 

blood pressure, BMI, antihypertensive medication use, and APOE ε4 carrier status (adjusted 

R2 = 0.27).

DISCUSSION

Our data suggest that combining related vascular measures into a single factor score allows 

us to better examine the relationships between arterial stiffness, reduced elasticity, and 

WMLs, instead of relying on blood pressure measures that fluctuate depending on external 

conditions and create measurement error. Our vascular factor was a stronger predictor than 

blood pressure in regression analyses. In fact, systolic and diastolic blood pressure did not 

contribute significant variance to explaining WMLs when the vascular factor was included 

the model. Using CFA improves measurement accuracy by combining common variance 

across vascular measures and minimizing error that is unique to the individual measures. 

Using a more robust measure of vascular health may be more informative than using a 

measure such as blood pressure when investigating brain health during aging. While some 

studies have reported associations between blood pressure and WMLs [33], several others 

report no association or associations that are inconsistent. For example, the relationship 

depended on age of individuals measured or time of day when measured [33–35]. These 

inconsistencies may be due to the variability in blood pressure measures, or the likelihood of 

individuals on medications for hypertension having lowered blood pressure values, which 

might otherwise have been associated with WML. In our study, use of anti-hypertensive 

medications did not predict WMLs after accounting for the other predictors and covariates in 

the models.

Since white matter is particularly susceptible to age-associated changes [2–4], using a stable 

measure of vascular health with reduced measurement error allows us greater confidence in 

understanding the role of vascular disease on the brain. In our study we used vascular 

measures such as arterial stiffness, arterial elasticity, and estimated stroke volume that are 

better reflections of overall vascular health than simple blood pressure, which is more 

subject to fluctuations due to correct size of blood pressure cuff, time of day, body and arm 

position, and medication use. White coat hypertension, persistently elevated blood pressure 
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in the presence of health care providers in individuals not taking medication, also makes 

accurate detection of hypertension difficult [36], and studies suggest that management of 

white coat hypertension should include cardiovascular risk factors, not blood pressure alone 

[37].

Both deep and periventricular WMLs were associated with the vascular factor in 

nondemented elderly. Lower elasticity and higher vascular resistance were associated with 

greater white matter lesion volumes. The two classes of WMLs have been associated with 

different etiologies and outcomes. For example, some evidence suggests that PVWMLs may 

predict the rate of cognitive decline [38] and poorer executive function in nondemented 

patients [39], and are associated with hypometabolism in frontal regions [39]. PVWMLs are 

preferentially associated with atherosclerosis, changes in hemodynamics, and hypoperfusion 

[5]. DWMLs, by contrast, have more often been related to depression and related illnesses 

[1, 11, 12] and are more likely attributed to hypertension and homocysteine levels, both risk 

factors for small vessel disease [5]. Individuals with cardiovascular disease typically have a 

compromised peripheral vascular system including hypertension and poor arterial 

compliance [27]. Using a computerized device that generates information about 

cardiovascular health such as the one used in this study and using the combined vascular 

factor could be beneficial for determining the incidence of and risk for small vessel disease. 

The unique information provided by the vascular factor score may provide clinicians with 

useful information for those at risk for small vessel disease. Previous studies suggest that 

small vessel disease burden is an independent predictor of measures of memory, language, 

and executive function [40]. Using indicators of arterial stiffness instead of blood pressure 

could be used to more accurately evaluate these individuals and deliver a lifestyle or 

pharmaceutical intervention before cerebrovascular damage such as WML occurs.

Limitations of the study include limited generalizability due to our highly educated, mostly 

Caucasian, Midwestern American sample. Many clinical studies of older adults suffer from 

a difficulty in recruiting diverse samples and our center is engaged in ongoing efforts to 

expand the sample to be more diverse and representative. Our findings are consistent with a 

previous study of small artery elasticity in a multi-ethnic cohort demonstrating that small 

artery elasticity is a risk factor for cerebrovascular events beyond the effects of blood 

pressure [18]. A further limitation of the study was that we were unable to estimate 

reliability for the pulse wave, tonometry, and white matter lesion measures, as each was 

performed by a single trained rater.

Aging and chronic hypertension facilitate arterial stiffening across the lifespan and 

ultimately affect cerebrovascular health including WMLs [41]. Our research suggests that a 

vascular factor including measures of arterial stiffening and reduced elasticity may be more 

sensitive for predicting WMLs than traditional measures of blood pressure after accounting 

for the multicollinearity associated with the variety of interrelated vascular measures.
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Table 1

Participant characteristics (n = 63)

n (%)

Gender (Female) 36 (57%)

Race (Caucasian) 63 (100%)

APOE ε4 Carrier 18 (29%)

Use of Antihypertensive Medications 18 (29%)

M (SD)

Age (years) 73.3 (6.8)

Education (years) 16.4 (2.6)

Systolic Blood Pressure (mm/Hg) 130.0 (15.7)

Diastolic Blood Pressure (mm/Hg) 72.2 (9.9)

Body Mass Index (kg/m2) 26.30 (3.7)

Stroke Volume (mL/beat) 68.2 (13.4)

Large Artery Elasticity (mL/mmHg ×10) 13.7 (5.4)

Small Artery Elasticity (mL/mmHg ×100) 4.3 (2.5)

Systemic Vascular Resistance (dynes cm5) 1641.6 (332.6)

Deep WML Volume (cm3) 308.37 (649.25)

Periventricular WML Volume (cm3) 881.67 (1262.60)

Total white matter lesion volume (cm3) 1190.04 (1850.98)
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Table 2

Factor loadings for vascular measures

Std Loading (λ) Std Residual (Error) Variances

Stroke Volume 0.75* 0.44*

Large Artery Elasticity 0.71* 0.49*

Small Artery Elasticity 0.79* 0.38*

Vascular Resistance 0.94* 0.13

*
p < 0.001. Note: Standardized loadings (λ) reflect the strength of the relationship of each item with the shared vascular factor. Similar to a 

correlation coefficient (range 0.00 to 1.00), a higher number indicates a stronger association.
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